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Abstract. The X-rank of a point p in projective space is the minimal number of points of an
algebraic variety X whose linear span contains p. This notion is naturally submultiplicative under
tensor product. We study geometric conditions that guarantee strict submultiplicativity. We prove
that in the case of points of rank two, strict submultiplicativity is entirely characterized in terms
of the trisecant lines to the variety. Moreover, we focus on the case of curves: we prove that for
curves embedded in an even-dimensional projective space, there are always points for which strict
submultiplicativity occurs, with the only exception of rational normal curves.

1. Introduction

Let V be a complex finite dimensional vector space and let PV be the corresponding projective space.
When V = Cn+1, denote PCn+1 simply by Pn. Throughout the paper, a projective, irreducible,
reduced and linearly nondegenerate (i.e., not contained in a hyperplane) algebraic variety is called
variety.

Ever since the nineteenth century, a line of research dealt with determining normal forms of algebraic
objects in terms of basic building blocks: a classical example concerns expressions of homogeneous
polynomials as sum of powers of linear forms. These additive problems can be rephrased equivalently
in geometric terms as follows: given a variety and a point in its ambient space, determine sets of
points of the variety whose linear span contains the given point. This approach motivated the
study of secant varieties during the twentieth century. In the last decades the connections with
applications involving additive tensor decomposition attracted the interest of a broad community,
both in pure and applied mathematics and in other fields. In the rich literature, we briefly mention
the classical [Cle61, Syl52, Pal03], concerning the study of homogeneous polynomials, [Pal06, Ådl87],
studying secant varieties of curves, [AR08, Str69, DVC00] drawing connection with phylogenetics,
theoretical computer science and quantum information theory. We refer to [Lan12, BCC+18] and
the references therein for a more extensive presentation.

We formally introduce the notion of rank with respect to an arbitrary variety X ⊆ PV . Given a
point p ∈ PV , the X-rank (or simply the rank) of p is the minimal number of points of X whose
linear span contains p:

RX(p) := min {r | ∃ q1, . . . , qs ∈ X, p ∈ 〈q1, . . . , qs〉} .

Let σr(X) be the r-th secant variety of X, i.e., the Zariski-closure of the set of points whose
X-rank is at most r. The border X-rank (or simply the border rank) of p is

RX(p) := min {r | p ∈ σr(X)} .
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It is natural to study properties of rank and border rank with respect to basic operations among
varieties. Due to the additive nature of the problem, in the most general framework one is interested
in relations between the rank of a linear combination of two points and their ranks. For example, in
the tensor setting, Strassen [Str73] conjectured that the rank of a direct sum of two tensors always
coincides with the sum of their ranks: this conjecture has been answered affirmatively in several
cases [CCG12, BGL13, CCC15, Tei15, CCC+18, LM17, CCO17, BPR20]. In the case of tensors with
three factors, a counterexample was given by Shitov [Shi19], while the analogous equality for border
ranks was shown to be false already by Schönhage [Sch81]. In theoretical computer science, one is
interested in multiplicativity properties of tensor rank and border rank under Kronecker powers,
which capture the asymptotic complexity of the bilinear map defined by the tensor [Str87].

In this work, we are interested in multiplicativity properties of rank and border rank under tensor
product. Given two varieties X1 ⊆ PV1 and X2 ⊆ PV2, their Segre product is the image of X1×X2 ⊆
PV1 × PV2 under the Segre embedding

PV1 × PV2 −→ P(V1 ⊗ V2),
([v1], [v2]) 7→ [v1 ⊗ v2].

Denote the Segre product of X1 and X2 by X1 ×X2. We often identify points in projective space
and vectors of the line they represent; in particular, we will drop the bracket [−] from the notation.

For any p1 ∈ PV1 and p2 ∈ PV2, one has

RX1×X2(p1 ⊗ p2) ≤ RX1(p1)RX2(p2) and RX1×X2
(p1 ⊗ p2) ≤ RX1

(p1)RX2
(p2). (1)

Certain techniques to determine lower bounds on rank and border rank guarantee that the lower
bound propagates to the tensor product and can be used to prove multiplicativity: this is the case
of flattening lower bounds, see Section 4. However, both inequalities in (1) can be strict in general,
as shown in [CJZ18] for rank and [CGJ19] for border rank.

Despite the achievements mentioned above originated from tensor problems, we investigate the
multiplicativity problem in general.

Problem. Determine geometric conditions which guarantee either multiplicativity or strict submul-
tiplicativity in the inequalities in (1).

Contributions and structure of the paper.

• In Section 2, we classify the ranks of tensor products of points of rank 2: if p1, p2 are points
of rank 2 with respect to varieties X1, X2 respectively, we give sufficient and necessary
conditions so that the (X1×X2)-rank of p1⊗p2 is equal to 3, instead of 4; see Theorem 2.6.
As a corollary, if p has X-rank 2, then p⊗2 has X×2-rank equal to 3 if and only if p lies on
a multisecant line.

• We show that if a variety X admits a secant r-dimensional plane PW intersecting X in more
than r + 1 points then, for any p ∈ PW , the X×(r+1)-rank of p⊗(r+1) is strictly less than
RX×(r+1)(p)r+1; see Proposition 2.13.

• In Section 3, we investigate conditions which guarantee that the geometric construction in
[CGJ19] may be applied; see Proposition 3.4 and Proposition 3.8. We show that if X ⊆ P2k

is a curve which is not the rational normal curve of degree 2k, then there are always examples
of strict submultiplicativity; see Theorem 3.7.

• In Section 4, we turn our attention to homogeneous polynomials. In more geometric terms,
we characterize rank submultiplicativity when either X is a rational normal curve or X is
the third Veronese embedding of P2; see Proposition 4.1 and Proposition 4.2, respectively.
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• In Section 5, we consider cases for which multiplicativity of rank holds. We ask whether all
minimal decompositions of products are products of minimal decompositions of the factors.
In Theorem 5.4, we give conditions which guarantee a positive answer while in Example 5.6
we provide an example having a negative answer.

In view of these results, we propose the following.

Conjecture 1.1. Let X ⊆ Pn be a variety and let p ∈ Pn.

If RX(p) < RX(p), then RX×2(p⊗ p) < RX(p)2.

Observe that Conjecture 1.1 holds asymptotically, in the following sense. If p ∈ Pn is a point such
that RX(p) < RX(p), then there is a value k such that RX×k

(
p⊗k
)
< RX(p)k: this is a consequence

of the fact that the two limits limk→∞RX×k

(
p⊗k
)1/k and limk→∞RX×k

(
p⊗k
)1/k coincide and they

are bounded from above by RX(p). We refer to [CGJ19, Section 6] for details on this asymptotic
behaviour.
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2. Multisecant spaces and strict submultiplicativity

In this section, we look for geometric conditions on a variety X which guarantee strict submultipli-
caitivity for points of X-rank 2. The first idea comes from [CGJ19, Lemma 4.1] which shows that if
the secant variety σr(X) has a trisecant line PL such that one of the points of PL∩σr(X) lies on X
itself, then there exists at least one point on PL for which the rank multiplicativity does not hold.
We prove that strict rank submultiplicativity for points having X-rank 2 depends on the existence
of a trisecant line to X itself.

Definition 2.1. A line PL is multisecant to a variety X ⊂ PV if the intersection X ∩PL contains
a set of at least 3 distinct points.

Notation 2.2. Given a vector space V , denote by SymrV the space of symmetric elements of V ⊗r.
Let νr be the map from V to SymrV which sends v ∈ V to v⊗r ∈ SymrV . Denote by νr also the
corresponding map between the projective spaces known as Veronese embedding. Given a subset
S ⊆ V , denote by 〈S〉 the linear span of S in V . Similarly, given a subset S ⊆ PV , denote by 〈S〉
the projective linear span of S in PV .

Proposition 2.3. Let X ⊆ PV be a variety and let PL be a line such that PL ∩X contains a set
of at least k + 1 points. Let p ∈ PL \X. Then, for every r ≤ k

RX×r

(
p⊗r
)
≤ r + 1.

In particular, for every r ≥ 2, RX×r(p⊗r) < RX(p)r.
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Proof. Notice that RX(p) = 2, because p lies on a secant line to X and p /∈ X. Let L ⊂ V be the
vector space of dimension 2 defining the projective line PL: p ∈ PL and p⊗r = νr(p) ∈ P(SymrL).
Fix r ≤ k and let S ⊆ PL ∩ X be a set of r + 1 points. Then, νr(S) ⊆ νr(X) ⊆ X×r is a set of
r + 1 points lying on the rational normal curve νr(PL) ⊆ P(SymrL) ⊆ PV ⊗r. In particular, νr(S)
is a set of r + 1 linearly independent points in P(SymrL) ' Pr; hence, 〈νr(S)〉 = P(SymrL). Since
p⊗r ∈ 〈νr(S)〉, we conclude that RX×r (p⊗r) ≤ r + 1.

The inequality RX×r(p⊗r) < RX(p)r for every r ≥ 2 follows because if strict submultiplicativity
holds for r = 2, as shown above, then it holds for any r ≥ 2. �

Remark 2.4. More generally, the argument of Proposition 2.3 applies if PL∩X is any 0-dimensional
scheme rather than a set of points. The cactus X-rank of a point p is the minimal degree of a
0-dimensional scheme on X whose linear span contains p (see [RS11, BR13]). Then, similarly as
for the X-rank, there is a notion of cactus varieties and border cactus X-rank (see [BR13, BB14]).
Proposition 2.3 applies to cactus rank: if PL is a line whose intersection with X is a 0-dimensional
scheme of degree at least k + 1 then for every r ≤ k, the cactus X×r-rank of p⊗r is at most r + 1.

Proposition 2.3 guarantees that for every point p lying on a multisecant line of X ⊆ PV , but not
on X, multiplicativity of rank does not hold; in particular, the X×2-rank of p⊗2 is at most 3.
Theorem 2.6 below shows that this is essentially the only way that the tensor product of two
elements of rank 2 has rank 3 instead of 4.

First, we record an easy observation which will be used in the proof of Theorem 2.6.

Lemma 2.5. Let p1⊗p2 ∈ P(V1⊗V2). Suppose p1⊗p2 ∈ 〈a1⊗b1, . . . , ar⊗br〉. Then, p1 ∈ 〈a1, . . . , ar〉
and p2 ∈ 〈b1, . . . , br〉.

Proof. After passing to the underlying linear spaces, with a slight abuse of notation, we write
p1 ⊗ p2 =

∑
iλiai ⊗ bi ∈ V1 ⊗ V2. If β ∈ V ∗2 is a linear form such that β(p2) 6= 0, then β(p2)p1 =∑

iλiβ(bi)ai is a linear combination of a1, . . . , ar which gives p1. Analogously, one can prove that
p2 ∈ 〈b1, . . . , br〉. �

Theorem 2.6. For i = 1, 2, let Xi ⊆ PVi be varieties and let pi ∈ PVi such that RXi(pi) = 2.
Then, 3 ≤ RX1×X2(p1⊗ p2) ≤ 4. Moreover, for a1, a2, a3 ∈ X1 and b1, b2, b3 ∈ X2, the following are
equivalent:

(i) RX1×X2(p1 ⊗ p2) = 3 with p1 ⊗ p2 ∈ 〈a1 ⊗ b1, a2 ⊗ b2, a3 ⊗ b3〉;

(ii) the linear spaces PL1 = 〈a1, a2, a3〉 and PL2 = 〈b1, b2, b3〉 are multisecant lines to X1 and X2,
respectively, where the ai’s and the bi’s are all distinct; moreover, if ϕ : PL1 → PL2 is the
unique linear map such that ϕ(aj) = bj, then ϕ(p1) = p2.

Proof. The upper bound RX1×X2(p1 ⊗ p2) ≤ 4 is immediate from submultiplicativity.

First, we show the lower bound 3 ≤ RX1×X2(p1 ⊗ p2). Since p1 ⊗ p2 /∈ X1 × X2, we have
RX1×X2(p1 ⊗ p2) ≥ 2. Suppose equality holds and p1 ⊗ p2 ∈ 〈a1 ⊗ b1, a2 ⊗ b2〉, for a1, a2 ∈ X1

and b1, b2 ∈ X2. Let PL1 = 〈a1, a2〉 and PL2 = 〈b1, b2〉: then dimPL1 = dimPL2 = 1 otherwise
p1 = a1 ∈ X1 or p2 = b1 ∈ X2. Now, regard p1 ⊗ p2, a1 ⊗ b1 and a2 ⊗ b2 as rank one matrices, after
a suitable choice of coordinates, they can be identified with

a1 ⊗ b1 =

(
1 0
0 0

)
and a2 ⊗ b2 =

(
0 0
0 1

)
;
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then, 〈a1⊗ b1, a2⊗ b2〉 does not contain any other rank one matrix, providing a contradiction. This
shows RX1×X2(p1 ⊗ p2) ≥ 3.

Now, we address the second part of the statement. The same proof as in Proposition 2.3 (for r = 2)
shows that (ii) implies (i).

In order to prove that (i) implies (ii), we first show that dimPL1 = dimPL2 = 1. Clearly
dimPL1, dimPL2 ∈ {1, 2}, because if dimPLi = 0, i = 1, 2, then pi ∈ Xi. Similarly to the
first part of the proof, we reduce the problem to the span of rank one matrices:

• Let dimPL1 = dimPL2 = 2. After a suitable choice of coordinates,

a1 ⊗ b1 =
(

1 0 0
0 0 0
0 0 0

)
, a2 ⊗ b2 =

(
0 0 0
0 1 0
0 0 0

)
, a3 ⊗ b3 =

(
0 0 0
0 0 0
0 0 1

)
,

and their span does not contain other rank one matrices, providing a contradiction.

• Let dimPL1 = 2 and dimPL2 = 1. At least two among b1, b2, b3 are distinct, so we may
assume b3 ∈ 〈b1, b2〉. Passing to the affine cones, suppose b3 = λ1b1 + λ2b2. After a suitable
choice of coordinates,

a1 ⊗ b1 =
(

1 0
0 0
0 0

)
, a2 ⊗ b2 =

(
0 0
0 1
0 0

)
, a3 ⊗ b3 = a3 ⊗ (λ1b1 + λ2b2) =

(
0 0
0 0
λ1 λ2

)
.

If λ1, λ2 are both nonzero, then their span does not contain other rank one matrices; con-
tradiction. If λ1 = 0, then b3 = b2, and p1 ⊗ p2 ∈ 〈a1 ⊗ b1, a2 ⊗ b2, a3 ⊗ b2〉, so that
p1 ⊗ p2 ∈ 〈a1 ⊗ b1, ã ⊗ b2〉, for some ã ∈ 〈a2, a3〉. Since a1, ã are linearly independent and
b1, b2 are linearly independent, we obtain a contradiction as in the previous case; analogously
for λ2 = 0.

• Let dimPL1 = 1 and dimPL2 = 2. This is analogous to the previous case.

Therefore, we are left with the case dimPL1 = dimPL2 = 1.

Claim. PL1 and PL2 are multisecant lines to X1 and X2, respectively.

Proof of Claim. We are going to show that ]{a1, a2, a3} = ]{b1, b2, b3} = 3. Suppose,
by contradiction, that the ai’s are not distinct, and assume a2 = a3. There are two
cases:

• if b1, b2, b3 are distinct, then PL2 is a multisecant line to X2 and we may assume
b3 = λ1b1 + λ2b2. In this case, after a suitable choice of coordinates,

a1 ⊗ b1 = ( 1 0
0 0 ) , a2 ⊗ b2 = ( 0 0

0 1 ) , a3 ⊗ b3 = a2 ⊗ (λ1b1 + λ2b2) =
(

0 0
λ1 λ2

)
,

the only other rank one matrices in their span are of the form
(
µ1 0
µ2 0

)
= (µ1a1 +

µ2a2)⊗ b1 and this would imply p2 = b1, in contradiction with the hypothesis;

• if b1, b2, b3 are not distinct, then there are two possibilities: either b1 = b2
(equivalently b1 = b3) or b2 = b3. Again, after a suitable choice of coordinates,
we have one of the following possibilities:

– if b1 = b2, then

a1 ⊗ b1 = ( 1 0
0 0 ) , a2 ⊗ b2 = a2 ⊗ b1 = ( 0 0

1 0 ) , a3 ⊗ b3 = a2 ⊗ b3 = ( 0 0
0 1 ) :

the only other rank one matrices in their span are of the form
(
µ1 0
µ2 0

)
=

(µ1a1 + µ2a2) ⊗ b1 or
(

0 0
µ1 µ2

)
= a2 ⊗ (µ1b1 + µ2b3). In both cases we

obtain a contradiction.
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– if b2 = b3, then a2⊗b2 = a3⊗b3 and we would obtain RX1×X2(p1⊗p2) = 2,
in contradiction with the first part of the proof. �

Therefore, we proved that PL1 (resp. PL2) is a multisecant line to X1 (resp. X2) and its intersection
with X contains the set of points {a1, a2, a3} (resp. the set of points {b1, b2, b3}).
Let ϕ : PL1 → PL2 be the unique linear map such that ϕ(aj) = bj . Consider the identification
ϕ× idPL2 : PL1 × PL2 → PL2 × PL2. By linearity, we have that ϕ(p1)⊗ p2 ∈ 〈ϕ(a1)⊗ b1, ϕ(a2)⊗
b2, ϕ(a3) ⊗ b3〉 = 〈b⊗2

1 , b⊗2
2 , b⊗2

3 〉. This shows that ϕ(p1) ⊗ p2 is a symmetric rank one element of
P(V2 ⊗ V2), namely it belongs to ν2(PL2), so that p2 = ϕ(p1). This concludes the proof. �

As a direct corollary, we have the following classification of the X×2-ranks attained by p⊗2 for points
p ∈ PV with X-rank equal to 2: this is obtained by combining Theorem 2.6 and Proposition 2.3.

Corollary 2.7. Let X ⊂ PV be a variety. Let p ∈ PV with RX(p) = 2. Then

3 ≤ RX×X
(
p⊗2
)
≤ 4,

and RX×X
(
p⊗2
)

= 3 if and only if p lies on a multisecant line to X.

2.1. Examples of trisecant lines to space curves. The results we mention here are classical:
we include them with a particular focus on characterizing points lying on generalized trisecant lines,
namely those lines whose intersection with X consists of a 0-dimensional scheme of degree at least 3.
A nondegenerate smooth curve X ⊂ P3 has infinitely many trisecant lines (their closure is a surface),
unless the degree d and genus g of X are (d, g) = (3, 0), (4, 1); see [Ber98, Proposition 1, Remark 1].
When X ⊂ P3 is smooth (and in characteristic zero), the generic trisecant line has indeed three
distinct points of intersection with the curve; this is a consequence of the results of [Kaj86].

Example 2.8 (Twisted cubic). If (d, g) = (3, 0), then X is the twisted cubic, which has no trisecant
line. Indeed, the ideal of the twisted cubic is generated by quadrics; hence, a trisecant line would have
to be contained in every quadric surface containing X and, in particular, in X. By Corollary 2.7, we
recover a multiplicativity result for points with X-rank equal to 2 in the case of the twisted cubics:
if p ∈ P3 satisfies RX(p) = 2, then RX×X(p⊗2) = 4.

Example 2.9 (Elliptic normal quartic). If (d, g) = (4, 1), then X is an elliptic normal curve. The
Riemann-Roch Theorem [Har77, Theorem IV.1.3] provides h0(OX(2)) = 8. To see this, let KX be
the canonical divisor of X; recall deg(KX) = 2g−2 = 0. Thus the Riemann-Roch Theorem, applied
to the divisorD = 2H whereH is the hyperplane section, gives h0(OX(2)) = deg(OX(2))+g−1 = 8.
The long exact sequence in cohomology associated to the short exact sequence 0 → IX(2) →
OP3(2)→ OX(2)→ 0 gives h0(IX(2)) ≥ 2. Thus X is contained in the intersection of two quadric
surfaces Q1, Q2. Since deg(X) = 4 = deg(Q1 ∩ Q2), X is exactly the intersection of two quadrics.
Every trisecant line to X is contained in every quadric containing X, so X has no trisecant lines.
As above, if p ∈ P3 satisfies RX(p) = 2, then RX×X(p⊗2) = 4.

Example 2.10 (Rational quartic in P3). If (d, g) = (4, 0), then X is a linear projection of the
rational normal curve in P4. As before, by Riemann-Roch, h0(OX(2)) = 9. So the long exact
sequence associated to 0→ IX(2)→ OP3(2)→ OX(2)→ 0 gives h0(IX(2)) ≥ 1.

Then X is contained in at least one quadric surface Q. Recall that Q is unique, irreducible and
smooth:

• Uniqueness. If Q is not unique, then X would be a complete intersection of two quadrics
and therefore would be of genus g = 1.
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• Irreducibility. If Q is reducible, then it is union of two planes, in contradiction with the fact
that X is non-degenerate.

• Smoothness. This is more involved and follows from [Har77, Exercise V.2.9].

Notice that if PL is a trisecant line to X, then PL ⊆ Q, therefore if p /∈ Q and RX(p) = 2 then p
does not lie on a trisecant line and RX×X(p⊗2) = 4.

We analyze points in Q. Since Q is smooth, we have Q ' P1 × P1 and X is a divisor on Q.
Since deg(X) = 4, X is a divisor of bidegree (a, b) with a + b = 4: clearly a, b > 0 because X is
non-degenerate. If (a, b) = (2, 2), X is the elliptic quartic of Example 2.9, in contradiction with
the rationality of X. Therefore X is a divisor of bidegree (3, 1) or (1, 3). Assume X ∈ |OQ(3, 1)|.
Now, lines in Q coincide with the lines of the two rulings. If PL ∈ |OQ(0, 1)|, then deg(PL ∩X) =
0·3+1·1 = 1, so PL cannot be a trisecant line. If PL ∈ |OQ(1, 0)|, then deg(PL∩X) = 1·3+0·1 = 3,
so that PL∩X is a 0-dimensional scheme of degree 3, and PL is a trisecant line if and only if PL∩X
is reduced. Theorem 2.6 guarantees that the points lying on these lines are the unique elements of
X-rank 2 for which strict submultiplicativity of rank occurs.

Let π : X → P1 be the restriction of the projection of Q ' P1 × P1 → P1 on the first factor.
Then π is a finite morphism of degree 3; its fibers are generically reduced, showing that every line
PL ∈ |OQ(1, 0)| is a trisecant (with L∩X reduced) except at most finitely many of them. The lines in
|OQ(1, 0)| for which PL∩X is not reduced correspond to the ramification locus R of π. By Hurwitz
Formula [Har77, Corollary 2.4], the degree of the ramification locus is deg(R) = 2g−2−2dg+2d = 4.
This shows that there are at most 4 lines PL ∈ |OQ(1, 0)| such that PL∩X is not-reduced: equality
holds if and only if the ramification locus is reduced; a more delicate argument, shows that indeed,
there are always at least two distinct lines such that PL ∩X is not reduced.

Therefore, strict submultiplicaitivity of a point p having X-rank 2, occurs if and only if p ∈ PL ∈
|OQ(1, 0)| with PL /∈ R.

Remark 2.11. For curves X ⊆ P4, one expects a finite number of trisecant lines. This number was
determined by Castelnuovo and Berzolari, see [Bar06, p. 435]. If X ⊆ P4 has degree d and genus g,
then the expected number of trisecant lines is

(d− 2)(d− 3)(d− 4)

6
− g(d− 4).

If X ⊆ PN for N ≥ 5 then one expects X to have no trisecant lines, so Theorem 2.6 implies that
the rank multiplicativity holds for points of X-rank 2.

The idea of having a trisecant line to guarantee the strict rank multiplicativity of the X-rank 2
points can be extended to the existence of multisecant spaces of higher dimension.

2.2. Multisecant r-dimensional planes.

Definition 2.12. An r-dimensional linear space PW ' Pr is multisecant to a variety X ⊂ PV if
the intersection PW ∩X contains at least a set of r + 2 distinct points.

Proposition 2.13. Let X ⊆ PV be a variety and PW ' Pr ⊆ PV be a multisecant linear space
to X. Suppose that PW does not contain a multisecant Ps, for any s < r. For every p ∈ PW , we
have

RX×(r+1)

(
p⊗(r+1)

)
≤ (r + 1)r+1 − (r + 1)! + 1.
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Proof. Let z0, . . . , zr, w ∈ PW ∩ X so that w ∈ 〈z0, . . . , zr〉 = PW . Since PW does not contain
any smaller multisecant space, the point w is not in the linear span of any proper subset of the
zi’s. For every sequence of (r + 1) non-negative integers α = (α0, . . . , αr) with αj ≤ r, write
zα = zα0⊗ · · · ⊗ zαr . By definition,

p⊗(r+1) ⊆ 〈zα : α ∈ {0, . . . , r}r+1〉 = PW⊗(r+1) ⊆ PV ⊗(r+1).

Let Σ = {zσ | σ ∈ Sr+1 is a permutation of {0, . . . , r}}. Then, let

PE = 〈zα | zα ∈ Σ〉 and PF = 〈zα | zα 6∈ Σ〉.

Clearly dimE = (r + 1)!, dimF = (r + 1)r+1 − (r + 1)! and both E and F are invariant under the
action of Sr+1 which permutes the factors.

Claim. p⊗(r+1) ∈ 〈PF ∪ w⊗(r+1)〉.

Proof of Claim. If p⊗(r+1) ∈ PF , then p⊗(r+1) ∈ 〈PF ∪ w⊗(r+1)〉.

Assume p⊗(r+1) /∈ PF . Consider the linear projection πF : PW⊗(r+1) → PE from
PF , defined in terms of the chosen basis. Remark that πF is defined on p⊗(r+1) since
p⊗(r+1) 6∈ PF . Moreover, πF is Sr+1-equivariant and, since p⊗(r+1) ∈ PW⊗(r+1)

is symmetric, πF
(
p⊗(r+1)

)
is symmetric as well. The only symmetric element in

PE is e =
∑

σ∈Sr+1
zσ and, therefore, we have that πF

(
p⊗(r+1)

)
= e. Since w is a

non-trivial linear combination of all the zi’s, we deduce that w⊗(r+1) /∈ PF and, in
particular, πF is defined on w⊗(r+1) so that πF

(
w⊗(r+1)

)
= e as well. Since p⊗(r+1)

and w⊗(r+1) have the same image under πF , the line 〈w⊗(r+1), p⊗(r+1)〉 intersects
PF , showing that p⊗(r+1) ∈ 〈PF ∪ w⊗(r+1)〉. �

Since PF is spanned by rank-one elements with respect to X×(r+1), from the Claim we get that

RX×(r+1)

(
p⊗(r+1)

)
≤ dimF + 1 = (r + 1)r+1 − (r + 1)! + 1. �

3. Sufficient conditions for strict submultiplicativity of border rank

The existence of multisecant lines turns out to be a key tool for the strict submultiplicativity of
the X-rank. The geometric concept of multisecant line can be generalized to what we will call
r-multidrop lines; they turn out to be a valuable tool to verify the strict submultiplicativity of the
border X-rank. In this section we study sufficient conditions that guarantee the existence of such
r-multidrop lines that we introduce next.

3.1. The multidrop construction. The multidrop construction was firstly introduced in [CGJ19,
Section 4]:

Definition 3.1. Let X ⊆ PV be a variety and let z, q0, q1 three points on a line PL ⊆ PV such that

• z ∈ PL ∩X;

• q0, q1 ∈ PL ∩ σr(X), with q0, q1, z distinct;

• PL 6⊆ σr(X).

The line PL is said to be an r-multidrop line for X.
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Notice that in this case we have PL ⊆ σr+1(X). The existence of such a line guarantees the existence
of points realizing strict submultiplicativity of border X-rank; for this reason, we call such a line
an r-multidrop line for X. Note that 1-multidrop lines are simply multisecant lines in the sense of
Definition 2.1.

Choose coordinates on PL ' P1 such that z = (1 : 0), q0 = (0 : 1) and q1 = (1 : 1). The line PL is
parametrized by

` : P1 → PV
(ε0 : ε1) 7→ `(ε0 : ε1) = ε0z + ε1q0,

so that `(1 : 1) = q1. Let p = q0 + 2z = q1 + z. Points constructed in this way are used in [CGJ19]
to obtain examples of strict submultiplicativity of border rank.

The following lemma was proved in [CGJ19] for a single variety X and strict submultiplicativity
for p⊗r was considered. We state it more generally for the case of two distinct varieties; the proof
is essentially the same.

Lemma 3.2 ([CGJ19, Lemma 4.1]). Let X1 ⊂ PV1 and let X2 ⊂ PV2. Let PL1 and PL2 such that
zi ∈ PLi∩Xi and {qi,0, qi,1} ⊆ PLi∩σri(X), for i = 1, 2, namely PL1,PL2 are r1- and r2-multidrop
lines for X1, X2, respectively. Let pi = qi,0 + 2zi, for i = 1, 2. Then,

RX1×X2
(p1 ⊗ p2) ≤ r1r2 + r1 + r2 < (r1 + 1)(r2 + 1).

In particular, if RXi
(pi) = ri + 1, we obtain RX1×X2

(p1 ⊗ p2) < RX1
(p1) · RX2

(p2).

The existence of multidrop lines is a strong condition and determining whether a variety admits
them is not easy.

In [CGJ19], the case where σr(X) is a hypersurface was considered. In this case, the existence of
r-multidrop lines can be determined by studying the multiplicity of a point of X in σr(X). Briefly,
suppose σr(X) is a hypersurface, fix z ∈ X and let PL be a generic line through z. By Bezout’s
Theorem, PL ∩ σr(X) consists of deg(σr(X)) points counted with multiplicity and, by Bertini’s
Theorem, all intersection points except z are non-singular points of σr(X). More precisely, these
are deg(σr(X)) − multσr(X)(z) points, where multσr(X)(z) is the multiplicity of z in σr(X). In
particular, if deg(σr(X))−multσr(X)(z) ≥ 2, then L is a r-multidrop line and it is possible to apply
Lemma 3.2.

In this section, we investigate conditions to guarantee that deg(σr(X)) −multσr(X)(z) ≥ 2 in the
hypersurface case.

First, notice that if deg(σr(X))−multσr(X)(z) = 0, then every line through z only intersects σr(X)
at z; this implies that a line through z and q ∈ σr(X), for q ∈ σr(X), must be entirely contained
in σr(X). This shows that σr(X) is a cone with vertex containing z. In particular, we may assume
that there exists z ∈ X with deg(σr(X)) −multσr(X)(z) ≥ 1, because if this is not the case, then
σr(X) is a cone over every point of X, against the non-degeneracy condition of X.

3.2. Rationality. First observe that if deg(σr(X))−multσr(X)(z) = 1, for some z ∈ X, then σr(X)
is a rational variety.

Proposition 3.3. Let X ⊆ PN be a variety. Suppose that σr(X) is a hypersurface and let z ∈ X
be a point with deg(σr(X))−multσr(X)(z) = 1. Then, σr(X) is rational.

Proof. Let πz : σr(X) 99K PN−1 be the projection from z. The map πz is regular on σr(X) \ {z}. If
PL is a generic line through z, then σr(X) ∩ PL = {z, q}, for a point q ∈ σr(X). In particular, q is
the only point in π−1

z (πz(q)), so πz is generically one-to-one and, therefore, birational. �



10 E. BALLICO, A. BERNARDI, F. GESMUNDO, AND E. VENTURA

Proposition 3.3 shows that if σr(X) is not rational, then generic lines intersecting X are multidrop
lines. We provide a technical condition which guarantees that σr(X) is not rational.

For a set U and a positive integer m, let ΣmU := U×m/Sm be the symmetric product of m copies of
U , that is the quotient of U×m under the action of the symmetric group Sm permuting the factors.
If X is a projective algebraic variety, then ΣmX is a projective algebraic variety, as well [Har92,
Lecture 10]. The r-th abstract secant variety of X ⊆ PN is

S◦r (X) := {((x1, . . . , xr), p) ∈ ΣrX × PN : p ∈ 〈x1, . . . , xr〉} ⊆ ΣrX × PN .

Then S◦r (X) is an irreducible locally closed set and the projection to PN surjects onto the set of
points having X-rank at most r. Write Sr(X) = S◦r (X).

A variety X is generically r-identifiable if the projection of Sr(X) to PN is generically one-to-one,
hence birational. In particular, if X is generically r-identifiable, then σr(X) is rational if and only
if Sr(X) is rational. We refer to [BBC18] and the references therein for a complete explanation of
the notion of identifiability and related topics.

Proposition 3.4. Let X be generically r-identifiable and suppose there exists a non-constant map
α : X → A where A is an abelian variety. Then, σr(X) is not rational.

Proof. It is a known fact that if a variety Y is rational and A is an abelian variety, then every map
β : Y → A is constant, see, e.g., [Mil08, Proposition 3.9]. Define αΣ : ΣrX → A by αΣ(x1, . . . , xr) =
α(x1)+· · ·+α(xr), where + denotes the (abelian) operation of A as a group; since + is commutative,
αΣ is well-defined. Notice that since α is not constant, then αΣ is non-constant.

In particular, the map Sr(X) → ΣrX → A given by the composition of the projection of Sr(X)
onto ΣrX followed by αΣ is non-constant as well. This shows that Sr(X) is not rational, and
therefore, since by generic identifiability Sr(X) is birational to σr(X), we conclude that σr(X) is
not rational. �

We mention that, given a smooth projective variety X, there is a general construction to define an
abelian variety Alb(X), called Albanese variety, together with a map α : X → Alb(X) satisfying
a universal property, see [Bea96, Theorem V.13]. We do not provide any detail here, but we point
out that one of the properties of this construction is that α(X) generates Alb(X) as an abelian
group and that dim Alb(X) = h1(OX). In particular, if h1(OX) > 0, then α : X → Alb(X) is
non-constant. Hence, Proposition 3.4 provides immediately the following.

Corollary 3.5. Let X be a smooth projective variety, generically r-identifiable and such that
h1(OX) > 0. Then, σr(X) is not rational. Moreover, if σr(X) is a hypersurface, then a generic line
through X is a r-multidrop line.

We conclude this section providing a class of varieties to which Corollary 3.5 can be applied.

Example 3.6. Let X ⊂ P2k be a smooth curve of genus g > 0. By Palatini’s Lemma (see, e.g.,
[Rus16, Corollary 1.2.3]), its k-th secant variety is a hypersurface. Generic identifiability always
holds for curves, see [CC06, Corollary 2.7]. The condition h1(OX) > 0 follows by Serre’s duality,
since h1(OX) = h0(ωX) = g, where ωX is the canonical bundle on X. This shows that X satisfies
the hypotheses of Corollary 3.5 and a generic line through X is a r-multidrop line.

Example 3.6 generalizes the example of [CGJ19, Section 5.2] where it was shown that a generic line
through the elliptic normal quintic X ⊆ P4 is a 2-multidrop. In that case, the result was shown
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directly using the equation of the hypersurface σ2(X) which provides deg(σ2(X))−multσ2(X)(z) =
5− 3 = 2. In fact, the result of the next subsection give a full generalization of Example 3.6.

3.3. The case of curves. We completely characterize the existence of multidrop lines for curves
admitting a secant variety that is a hypersurface. Briefly, if X ⊆ P2k is a non-degenerate curve,
then X always admits k-multidrop lines, except if X is the rational normal curve in P2k.

Theorem 3.7. Let X ⊆ P2k be a non-degenerate curve and let z ∈ X be a generic point. Then
σk(X) is a hypersurface. Moreover, deg(σk(X)) −multσk(X)(z) = 1 if and only if X is a rational
normal curve of degree 2k.

Proof. By Palatini’s Lemma (see e.g. [Rus16, Proposition 1.2.3]), dimσk(X) = 2k − 1, so it is a
hypersurface. Let z ∈ X be a generic point and let µ = multσk(X)(z). Let πz : P2k \ {z} → P2k−1

be the projection from z and let X ′ = πz(X) ⊆ P2k−1. Since z is generic, the projection πz is a
birational map between X and X ′; in particular πz is generically one-to-one on X. Moreover, X ′ is
a non-degenerate curve and σk(X ′) = P2k−1.

Let PL be a generic line through z. Let q′ = πz(PL), which is a generic point of P2k−1. Let
u : Sk(X ′) → P2k−1 be the projection from the abstract secant variety of X ′ to P2k−1. Since
dimSk(X ′) = 2k − 1, we deduce that u is surjective and generically finite.

Since q′ is generic in P2k−1, deg(u) can be computed as the number of preimages of q′ via u. Every
element of u−1(q′) is a pair (S′, q′) ∈ ΣkX ′×P2k−1 where S′ ⊆ X ′ with |S′| = k and q′ ∈ 〈S′〉. Now,
from each element (S′, q′) ∈ u−1(q′), we construct different points qS′ ∈ σr(X) ∩ PL, such that all
these points are also distinct from z. In particular, we conclude deg(σk(X))− µ ≥ deg(u).

Since πz is generically one-to-one on X and q′ is generic in P2k−1, for every (S′, q′) ∈ u−1(q′) and
every w′ ∈ S′, there is a unique w ∈ X such that πz(w) = w′. In particular, every (S′, q′) ∈ u−1(q′)
defines a subset S ⊆ X with |S| = k. Notice that for all S constructed in this way, z /∈ 〈S〉‘:
indeed, 〈S〉 is a generic Pk−1 secant to X and therefore by the Trisecant Lemma (see e.g. [Rus16,
Proposition 1.4.3]), 〈S〉 only intersects X at the points of S. For every S, let qS′ be the unique
preimage of q′ in 〈S〉. Notice that qS′ can only arise from a single (S′, q′) ∈ u−1(q′). Indeed, X is
generically r-identifiable (see e.g. [CC02, Corollary 2.7]) and qS′ is a generic point of σk(X), since it
arises as intersection of σk(X) with a generic line through z. In particular, for each S′, the preimage
S is the only subset of X with |S| = k and qS′ ∈ 〈S〉. This shows deg(σk(X))− µ ≥ deg(u).

Therefore, we conclude that deg(σk(X)) − multσk(X)(z) ≥ 2 whenever deg(u) ≥ 2. By [CJ01,
Theorem 3.4], the only curve X ′ ⊆ P2k−1 with deg(u) = 1 is a rational normal curve of degree
2k− 1. If X ′ is a rational normal curve in P2k−1 then X is a rational normal curve in P2k, showing
that deg(σk(X))−multσk(X)(z) ≥ 2 if X is not the rational normal curve.

Conversely, if X is the rational normal curve in P2k, then σk(X) is the hypersurface of degree k+ 1
defined by the determinant of a square matrix of size k + 1, see [Har92, Proposition 9.7]. In this
case, one can observe multσr(X)(z) = k − 1 and therefore deg(σk(X))−multσk(X)(z) ≥ 1. �

Theorem 3.7 generalizes Example 3.6 as well as the examples on curves of [CGJ19, Section 5.2 and
Section 5.3].

3.4. Multidrop lines via projection. We saw that the existence of multidrop lines implies the
existence of points for which border rank strict submultiplicativity occurs. The construction of the
previous sections relies on the fact that one of the secant varieties is a hypersurface. In this section,
we provide a more general construction to generate multidrop lines which does not depend on the
dimension of the secant variety.
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Let X ⊆ PN and fix r such that σr(X) 6= PN . Let z ∈ X and q0, q1 ∈ σr(X) be generic points:
in particular z, q0, q1 are not collinear and RX(q0) = RX(q0) = RX(q1) = RX(q1) = r. A generic
w ∈ 〈q0, q1, z〉 is such that RX(w) = RX(w) = min{2r + 1, gX}, where gX is the generic X-rank in
PN .

Let πw : PN 99K PN−1 be the projection from w. Since w /∈ σr(X), πw is regular on σr(X) and by
genericity Rπw(X)(πw(q0)) = Rπw(X)(πw(q1)) = r and similarly for the πw(X)-rank.

Proposition 3.8. In the construction above, let PL = 〈πw(z), πw(q0)〉. If PL 6⊆ σr(πw(X)), then
PL is an r-multidrop line for πw(X).

Proof. First observe that πw(q0), πw(q1), πw(z) are collinear, so that πw(q1) ∈ PL as well. Notice
that πw(σr(X)) ⊆ σr(πw(X)) because for every x1, . . . , xr ∈ X, we have w /∈ 〈x1, . . . , xr〉, as
RX(w) > r; in particular πw〈x1, . . . , xr〉 = 〈πw(x1), . . . , πw(xr)〉. This shows that πw(q0), πw(q1) ∈
σr(πw(X)).

By assumption PL 6⊆ σr(πw(X)), hence PL is a r-multidrop line for σr(πw(X)). �

Proposition 3.8 generalizes the example of the rational quartic in P3 described in Section 2.10.
Indeed, let X be a smooth rational quartic in P3, then X is realized as the projection of a rational
normal quartic Y ⊆ P4 from a point w ∈ P4. Let πw : Y → X be this projection.

If RY (w) ≤ 2 then it is easy to verify that πw(X) is not smooth. Therefore, RY (w) = RY (w) = 3.
Then, there are infinitely many planes 〈y1, y2, y3〉 ⊆ P4 with y1, y2, y3 ∈ Y such that w ∈ 〈y1, y2, y3〉.
The images of πw(y1), πw(y2), πw(y3) are collinear and the line PL = 〈πw(y1), πw(y2), π(y3)〉 is a
trisecant line to X = πw(Y ).

4. Submultiplicativity for homogeneous polynomials

This section studies submultiplicativity properties of rank of homogeneous polynomials with respect
to Veronese varieties. Let V be a vector space of dimension n + 1 and let Symd V be the space of
degree d homogeneous polynomials in n + 1 variables. The Veronese variety Xd is defined as the
image of the Veronese embedding

νd : PV −→ P Symd V, [`] 7→ [`d].

If V is 2-dimensional, then Xd is the rational normal curve Cd ⊂ Pd.

For homogeneous polynomials f ∈ Symd V , the Xd-rank of the point [f ] ∈ P Symd V is classically
referred to as Waring rank, and it coincides with the minimum number of d-th powers of linear forms
needed to express f as their linear combination. In the following, write f both for the element in
Symd V and for its projective class [f ].

The first example of rank strict submultiplicativity given in [CJZ18] was the monomial xy2, for which
RC3(xy2) = 3, but RC×2

3
(xy2⊗xy2) ≤ 8 < 9. In fact, RC×2

3
(xy2⊗xy2) = 8, see [CF18]. In [BBCG19],

strict submultiplicativity was observed for all monomials of the form xyd, for any d ≥ 3. In this
case, one has RCd+1

(xyd) = d+ 1 (see, e.g., [CCG12]), but RC×2
d+1

(xyd⊗xyd) ≤ 4d+ 1 < (d+ 1)2, see

[BBCG19, Proposition 3.5]. Note that the form xyd lies on a tangent line to Cd+1, so RCd(xyd) = 2
and, therefore, it has border rank smaller than the rank. In particular, these are instances for which
Conjecture 1.1 holds.

In this section, we study the cases of binary forms and ternary cubics, proving that Conjecture 1.1
holds in these cases. In fact, in these cases, having border rank strictly smaller than the rank is
equivalent to have strict submultiplicativity for the rank of the second tensor power. However, we
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believe this to be a low dimensional phenomenon, due to the fact that in these cases the border
rank lower bounds are attained by flattening methods, as explained below. We expect that as soon
as there are cases of strict submultiplicativity of border rank, then strict submultiplicativity of rank
will occur as well, even in examples where rank and border rank coincide. This is what happens in
the tensor setting in the construction of [CGJ19] via the multidrop lines described in Section 3.

We introduce briefly some basics about flattening methods. A flattening of Symd V is a linear map
Flat : Symd V → Hom(E,F ) where E,F are vector spaces. One can exploit semicontinuity of
matrix rank to obtain lower bounds on R(f) from the rank of Flat(f) as a map from E to F . More
precisely, from [LO13, Proposition 4.1.1], we have

R(f) ≥ rank(Flat(f))

max{rank(Flat(`d)) : ` ∈ V }
. (2)

Since Waring rank and Waring border rank are invariant under the action of the general linear
group GL(V ) acting on the variables, usually one chooses Flat to be a GL(V )-equivariant map.
In [CJZ18], it was shown that flattening lower bounds are multiplicative with respect to tensor
products. This directly follows from: (a) the fact that one can combine two flattening maps by
taking the Kronecker product of the images and (b) the rank of a linear map is multiplicative under
Kronecker product. In [BBCG19, Section 7.2], generalizations to other varieties are given.

4.1. Binary forms. We recall basic facts of apolarity theory. We refer to [IK99, Ger96] for details.

Let V be a vector space of dimension 2 and let V ∗ be its dual. Write Cd = νd(PV ) for the rational
normal curve in P Symd V . Let {x, y} be a basis for V . Then, we identify the symmetric algebra
Sym• V with the polynomial algebra C[x, y] and Sym• V ∗ with the algebra of differential operators
with constant coefficients C[∂x, ∂y], where ∂x = ∂

∂x and ∂y = ∂
∂y . Then, Sym• V ∗ acts on Sym• V

by contraction with the differential operators:

◦ : Sym• V ∗ × Sym• V −→ Sym• V, (ϕ, f) 7→ ϕ ◦ f := ϕ(f).

The apolar ideal of a homogeneous polynomial f ∈ Symd V , denoted f⊥ ⊂ Sym• V ∗, is the ideal
of differential operators which annihilate f , i.e., f⊥ = {ϕ ∈ Sym• V ∗ | ϕ ◦ f = 0}. It is a classical
result that if f is a binary form, then

f⊥ = (ϕ1, ϕ2), where deg(ϕ1) + deg(ϕ2) = deg(f) + 2.

If deg(ϕ1) ≤ deg(ϕ2) then RCd(f) = deg(ϕ1). Moreover, if ϕ1 is square-free (as a homogeneous
polynomial in ∂x, ∂y), then RCd(f) = deg(ϕ1), otherwise, RCd(f) = deg(ϕ2). As a consequence, the
rank of a generic binary form of degree d is

⌈
d+1

2

⌉
. These results essentially date back to Sylvester

[Syl51]; for more recent references, see [IK99, CS11, BGI11].

The following result proves a stronger version of Conjecture 1.1 in the case of binary forms.

Theorem 4.1. Let f ∈ Symd V , dimV = 2. Then,

RCd(f) < RCd(f) if and only if RC×2
d

(f⊗2) < RCd(f)2.

Proof. First, we show that if RCd(f) = RCd(f) then multiplicativity holds. This is a consequence of
multiplicativity of flattening lower bounds. Indeed, for every e ≤ d, define the following flattening
map, called e-th catalecticant :

cate : Symd V −→ Hom(Syme V ∗, Symd−e V )
f 7→ cate(f) : ϕ 7→ ϕ ◦ f.

Equivariantly, cate is an embedding of Symd V into Syme V ⊗ Symd−e V .
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It is easy to see that if f is a binary form with R(f) = r, then rank(cate(f)) ≤ r with equality for
r − 1 ≤ e ≤ d− (r − 1) (this is a classical result that goes back to Sylvester [Syl51]). In particular,
the denominator in (2) is one and the border rank of binary forms matches a flattening lower bound.

By multiplicativity of flattening lower bounds, we deduce RC×2
d

(f ⊗ f) = RC×2
d

(f ⊗ f) = r2.

Now, suppose that RCd(f) < RCd(f). From the discussion above, f⊥ = (ϕ1, ϕ2) with RCd(f) =

deg(ϕ1) < deg(ϕ2) = RCd(f) and RCd(f) + RCd(f) = d + 2. In particular, if rg =
⌈
d+1

2

⌉
is the

generic rank in P Symd V , we have RCd(f) ≥ rg + 1. Write RCd(f) = (rg + 1) + ρ for some ρ ≥ 0.

We use induction on ρ.

Case ρ = 0, i.e., RCd(f) = r = rg + 1. For any s, let Ys be the locus of forms having rank exactly s.

Claim. Yrg is Zariski-open.

Proof of Claim. We use [CS11, Theorem 11]. Write d = 2δ or d = 2δ + 1 depending
on the parity; then rg = δ + 1. If d = 2δ is even, Yrg is the complement of σδ(Cd),
hence Zariski-open. If d = 2δ + 1 is odd, then Yrg is the complement of the union
σδ(Cd)∪Yδ+2. Write Yrg = P Symd V \ (σδ(Cd)∪Yδ+2) = (P Symd V \σδ(Cd)) \Yδ+2.
Since σδ(Cd) is closed, PSymd V \ σδ(Cd) is open and it suffices to show that Yδ+2 is
a closed subset of P Symd V \ σδ(Cd). This can be shown as follows. Let h ∈ Yδ+2,
namely RCd(h) = δ+ 2 so that RCd(h) = δ+ 1; the apolar ideal of h is h⊥ = (ψ1, ψ2)
with deg(ψ1) = δ + 1 and ψ1 not square-free. Therefore, Yδ+2 is determined by the
vanishing of the discriminant of ψ1; indeed, the generator of lowest degree in the
apolar ideal of an element of Yδ+1 has degree δ + 1 and it is square-free; since the
vanishing of the discriminant is a closed condition, we conclude. �

Now, let ` be a linear form such that there exists a scalar a with RCd(f −a`d) = RCd(f)−1, namely
f − a`d ∈ Yrg . Since Yrg is Zariski-open by the Claim, we deduce that f − ε`d ∈ Yrg for a generic
choice of ε. In particular, let ε be such that q0 = f − 2ε`d and q1 = f − ε`d are elements of Yrg . We
conclude using the same argument as in [CJZ18]: we write

f ⊗ f = (q0 + 2ε`d)⊗ (q0 + 2ε`d) = q0 ⊗ q0 + q1 ⊗ ε`d + ε`d ⊗ q1 (3)

and we deduce RC×2
d

(f ⊗ f) ≤ (r − 1)2 + 2(r − 1) = r2 − 1 < RCd(f)2.

Case ρ ≥ 1. Let ` be a linear form such that RCd(f − `d) = R(f)− 1. Let g = f − `d and observe
that RCd(g) = r−1 = (rg+1)+ρ−1 ≥ rg+1. In particular RC×2

d
(g⊗g) ≤ RCd(g)2−1 = (r−1)2−1,

by the induction hypothesis. Hence, we write

f ⊗ f = (g − `d)⊗ (g − `d) = g ⊗ g − g ⊗ `d − `d ⊗ g + `d ⊗ `d,
and, passing to the rank, we obtain

RC×2
d

(f ⊗ f) ≤ [(r − 1)2 − 1] + (r − 1) + (r − 1) + 1 = r2 − 1. �

4.2. Plane cubics. Also in the case of ternary cubics we prove a stronger version of Conjecture 1.1.
LetX3 be the Veronese surface given by the Veronese embedding of PV in P Sym3 V , with dimV = 3.

There is a complete classification of plane cubics, up to change of coordinates: in other words,
the GL(V )-orbits in Sym3 V are entirely classified, together with ranks and border ranks of their
elements, see e.g. [KM02, LT10]. We record them as in [CCO17] for convenience:

(i) f = x3 + y3 + z3 + a · xyz with a3 6= −33, 0, 63: the generic cubic, with R(f) = R(f) = 4;
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(ii) f = x3 + y3 + z3: the Fermat cubic, with R(f) = R(f) = 3;

(iii) f = x2(x− z) + y2z: the nodal cubic with R(f) = R(f) = 4;

(iv) f = x3 + y2z: the cuspidal cubic with R(f) = 3, R(f) = 4;

(v) f = z(x2 + y2 + z2): a conic and a secant line, with R(f) = R(f) = 4;

(vi) f = z(x2 + yz): a conic and a tangent line, with R(f) = 3, R(f) = 5;

(vii) f = xyz: three lines intersecting generically, with R(f) = R(f) = 4;

(viii) f = xy(x+ y): three lines intersecting in a single point, with R(f) = R(f) = 2;

(ix) f = x2y: a double line and a transverse line, with R(f) = 2, R(f) = 3;

(x) f = x3: a triple line, with R(f) = R(f) = 1.

Proposition 4.2. Let f ∈ Sym3 V , dimV = 3. Then,

RX×2
3

(f ⊗ f) < RX3(f)2 if and only if RX3(f) < RX3
(f).

Proof. The cases (viii), (ix) and (x) are already included in Theorem 4.1. Hence, it suffices to show
that RX×2

3
(f ⊗ f) = RX3(f)2 in cases (i), (ii), (iii), (v), (vii) and RX×2

3
(f ⊗ f) < RX3(f)2 in cases

(iv), (vi).

The equality in cases (i), (ii), (iii), (v), (vii) follows by multiplicativity of flattening lower bounds,
which implies multiplicativity of border rank. For f ∈ Sym3 V , define the linear map f∧1 given by
the following composition

f∧1 : V ⊗ V ∗ idV �cat1(f)−−−−−−−−−→ V ⊗ Sym2 V
δ−−→ Λ2V ⊗ V,

where the first map is the catalecticant map augmented via the identity on a factor V and the
second map δ : V ⊗ Sym2 V → Λ2V ⊗ V is the classical Koszul differential [Eis95, Chapter 17].
It is a classical fact that RX3

(f) = 4 if and only if rank(f∧1) = 8; see [Lan12, Section 3.10]. In
particular, the flattening map Sym3 V → Hom(V ⊗V ∗,Λ2V ⊗V ) provides a flattening lower bound
in the cases (i), (ii), (iii), (v), (vii), which is multiplicative.

Strict submultiplicativity in the case (iv) follows directly from the submultiplicativity for the mono-
mial y2z. Indeed, we have

RX×2
3

((x3 + y2z)⊗(x3 + y2z))

≤ RX×2
3

(x3 ⊗ x3) + RX×2
3

(y2z ⊗ x3) + RX×2
3

(x3 ⊗ y2z) + RX×2
3

(y2z ⊗ y2z)

= 1 + 3 + 3 + 8 = 15 < 16 = (RX3(x3 + y2z))2.

Consider the case (vi), i.e., f = z(x2 + yz). Let, fε = f − εy3. Then, rank(f∧1
1 ) = 8, showing

RX3
(fε) = 4, for a generic choice of ε. From the classification, observe that RX3(gε) = 4 as well. In

particular, there exists a coefficient ε such that both fε and f2ε have rank 4. Proceeding as in (3),
we conclude RX3(f⊗2) ≤ 24. �

4.3. A lower bound for rank of tensor product of bivariate monomials. We conclude this
section providing a lower bound on the rank of the tensor product of two monomials in two variables.
We use a method introduced in [CCG12].

Letm = xayb, with a ≤ b. It is known that RCa+b
(m) = b+1 (see e.g. [BGI11, Remark 24], [CCG12,

Proposition 3.1] and [RS11, Corollary 2]) and that RCa+b
(m) = a+1 (see e.g. [LT10, Theorem 1.11]
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and [RS11, Corollary 2]). By Theorem 4.1, we have that RC×2
a+b

(m⊗2) = RCa+b
(m)2 if and only if

a = b. From [BBCG19, Proposition 4.3], we have the lower bound RC×2
d

(m ⊗m) ≥ 2d − 1 when
m = xyd−1. We provide a lower bound for any xayb with a < b.

The strategy of the proof allows us to formulate the result for the tensor product of two binary
monomials, not necessarily equal.

Proposition 4.3. Let m1 = xa11 y
b1
1 and m2 = xa22 y

b2
2 with a1 ≤ b1 and a2 ≤ b2. Then,

RCa1+b1
×Ca2+b2

(m1 ⊗m2) ≥ max{(a1 + 1)(b2 + 1), (a2 + 1)(b1 + 1)}.

Proof. We show RCa1+b1
×Ca2+b2

(m1 ⊗m2) ≥ (a1 + 1)(b2 + 1).

Regard m1 ⊗m2 in the bi-graded polynomial ring S = k[x1, y1]⊗ k[x2, y2] = k[x1, y1;x2, y2], where
deg(x1) = deg(y1) = (1, 0) and deg(x2) = deg(y2) = (0, 1). Let S(i,j) be the k-vector space of
homogeneous polynomials of bi-degree (i, j). The apolar ideal of m1 ⊗m2 is

(m1 ⊗m2)⊥ = (xa1+1
1 , yb1+1

1 , xa2+1
2 , yb2+1

2 ).

From the multigraded version of the Apolarity Lemma (see e.g. [GRV16, Gał16, BBCM11, BBG19,
Ber08]), the rank of m1 ⊗ m2 coincides with the minimal cardinality of a reduced set of points
X ⊂ P1×P1 whose bi-graded defining ideal IX is contained in (m1⊗m2)⊥. For any bi-graded ideal
I ⊂ S, we denote I(i,j) = I ∩ S(i,j). The Hilbert function of S/I in degree (i, j) is HFS/I(i, j) :=
dimk S(i,j)/I(i,j). We refer to [SVT06] for basic properties of the bi-graded Hilbert function of ideals
of points in multi-projective space. For convenience, we just recall two facts about the Hilbert
function of ideals of points that we will use in the rest of the proof:

(1) the Hilbert function of S/IX is strictly increasing until it gets constant along the i-th row(
HFS/IX(i, j)

)
j≥0

and along the j-th column
(
HFS/IX(i, j)

)
i≥0

;

(2) if i, j � 0, then HFS/IX(i, j) = |X|.

Let X ⊆ P1 × P1 be a set of points with IX ⊆ (m1 ⊗ m2)⊥. Let X′ = X \ {x1 = 0}: we have
IX′ = IX : (x1) and x1 is not a zero-divisor in S/IX′ . This implies that, for i� 1 and for j ≥ 1:

|X| ≥ |X′| ≥ HFS/I′X(i, j) =

i∑
k=1

HFS/IX′+(x1)(k, j).

Now, since IX ⊂ (m1 ⊗m2)⊥, we have IX′ ⊂ (m1 ⊗m2)⊥ : (x1), so that∑
k≥0

HFS/IX′+(x1)(k, j) ≥
∑
k≥0

HFS/((m1⊗m2)⊥:(x1)+(x1))(k, j).

Let J = (m1 ⊗m2)⊥ : (x1) + (x1) = (x1, y
b+1
1 , xa+1

2 , yb+1
2 ). We have

S/J ' k[x1, y1]/(x1, y
b1+1
1 )⊗ k[x2, y2]/(xa2+1

2 , yb2+1
2 ).

Therefore,∑
k≥0

HFS/J(k, j) =
∑
k≥0

dim
(
k[x1, y1]/(x1, y

b1+1
1 )

)
(k)
· dim

(
k[x2, y2]/(xa2+1

2 , yb2+1
2 )

)
(j)
.

Let j = a2, so that the right hand side is (b1 + 1)(a2 + 1). We conclude that

RCa1+b1
×Ca2+b2

(m1 ⊗m2) ≥ |X| ≥ |X′| ≥ (b1 + 1)(a2 + 1).

Exchanging the roles of m1 and m2, we get RCa1+b1
×Ca2+b2

(m1 ⊗m2) ≥ (b2 + 1)(a1 + 1). �
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The bound of Proposition 4.3 is far from being sharp: recall that RC3×C3(x2y ⊗ x2y) = 8 [CF18,
BBCG19], while the lower bound from Proposition 4.3 is just 6.

5. Minimal decompositions of products and products of minimal decompositions

In this section, we focus on cases in which multiplicativity of rank holds. In particular, we ask
whether minimal decompositions of a tensor product always arise as tensor products of minimal
decompositions of the factors.

We consider varieties X1, . . . , Xk, with Xi ⊂ PVi, for all i = 1, . . . , k. Given sets of points S1, . . . , Sk
with Si ⊂ PVi, denote by S1×. . .×Sk both the cartesian product in PV1×. . .PVk and its image with
respect to the Segre embedding PV1×. . .×PVk → P(V1⊗· · ·⊗Vk), i.e., the set {z1⊗. . .⊗zk | zi ∈ Si}.

First, we provide an immediate result on minimality of product decompositions.

Lemma 5.1. For i = 1, . . . , k, let Xi ⊂ PVi be a variety, let pi ∈ Xi and let Si ⊆ Xi be a
non redundant set of points spanning pi, namely pi ∈ 〈Si〉 and no proper subset of Si spans pi.
Let S = S1 × · · · × Sk. Then, there is no proper subset T ( S ⊂ P(V1 ⊗ · · · ⊗ Vk) such that
p1 ⊗ · · · ⊗ pk ∈ 〈T 〉.

Proof. We proceed by induction on k. Let k = 2. Write S1 = {a1, . . . , as1} and S2 = {b1, . . . , bs2}.
Without loss of generality, we may assume p1 =

∑
i ai and p2 =

∑
i bi. So p1 ⊗ p2 can be regarded

as an element of the space of matrices 〈S1〉 ⊗ 〈S2〉 ⊆ V1 ⊗ V2. In particular, the set S1 × S2 =
{ai ⊗ bj : i = 1, . . . , s1, j = 1, . . . , s2} gives a basis for 〈S1〉 ⊗ 〈S2〉 and we can choose coordinates so
that ai ⊗ bj is represented by the matrix having the (i, j)-th entry equal to 1 and zero elsewhere,
and p1 ⊗ p2 is represented by the matrix having 1 in every entry. We conclude that no proper
T ( S1 × S2 can span p1 ⊗ p2 because every element of 〈T 〉 has a zero entry.

If k ≥ 2, the statement follow by induction regarding p1 ⊗ · · · ⊗ pk as p1 ⊗ (p2 ⊗ · · · ⊗ pk). �

Notation 5.2. Given a Cartier divisor D and a set of points A, we denote by ResD(A) the residual
set of points with respect to A, namely the set Ar (A∩D). In particular, if IA and ID are the ideal
sheaves defining A and D, respectively, then IResD(A) = IA : ID.

In Theorem 5.4, we will use a slight variant of [BBCG19, Lemma 2.5]. Given a variety X, a very
ample line bundle L on X, and a set of points S ⊆ X, we say that S imposes independent conditions
on the sections of L if h1(IS ⊗L) = h1(L) or equivalently if the restriction map H0(L)→ H0(L|S)
is surjective.

Lemma 5.3. Let X be a variety and let L be a very ample line bundle on X. Let V = H0(L)∗ and
identify X with its embedding in PV . Let p ∈ PV and let A,B ⊂ X be non redundant sets of points
spanning p in PV . Assume h1(IB ⊗ L) = h1(L). Let D be an effective Cartier divisor on X such
that ResD(A) ∩ ResD(B) = ∅. If h1(IResD(A∪B) ⊗ L(−D)) = 0 then A ∪B ⊆ D.

Proof. The proof is essentially the same as [BBCG19, Lemma 2.5] with the bundle L replacing the
bundle OPN (1). The condition h1(IB(1)) = 0 in [BBCG19, Lemma 2.5] is replaced by h1(IB⊗L) =
h1(L) and the same argument provides the proof. �

Recall the definition of identifiability : given X ⊆ PN and p ∈ PN with RX(p) = r, one says that p
is identifiable if there is a unique set of r points of X whose span contains p. We refer to [Chi19]
for a basic introduction to identifiability problems.
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Theorem 5.4. Let X1, . . . , Xk be irreducible projective varieties. For every i = 1, . . . , k, let Li be a
very ample line bundle on Xi and identify Xi with the embedded subvariety in Vi = H0(Li)∗ defined
by the sections of Li. Let Mi and Ni be line bundles on Xi with an isomorphism Mi ⊗ Ni ' Li.
Let pi ∈ PVi and Si ⊆ Xi be a set of points evincing RXi(pi), for every i = 1, . . . , k. Then:

(i) If for every i = 1, . . . , k, Si imposes independent conditions on the sections of Ni,Mi and Li
and in addition h1(Mi) = 0, then

RX1×···×Xk
(p1 ⊗ · · · ⊗ pk) =

∏k
i=1RXi(pi).

(ii) If for every i = 1, . . . , k, ISi⊗Ni has no base points outside Si, then S1×· · ·×Sk is the unique
set of points evincing RX1×···×Xk

(p1 ⊗ · · · ⊗ pk). In particular, the pi’s are identifiable as well
as p1 ⊗ · · · ⊗ pk.

Proof. Set ri = RXi(pi). Let A ⊆ X1×· · ·×Xk be a set of points enhancing the rank of p1⊗· · ·⊗pk.
We show that deg(A) ≥

∏
ri. Write L = L1⊗ · · · ⊗Lk, regarded as a line bundle on X1× · · · ×Xk

and similarly forM and N .

Let B = S1 × · · · × Sk. By Lemma 5.1, there is no proper subset of B spanning p1 ⊗ · · · ⊗ pk. We
will show H0(IA ⊗N ) ⊆ H0(IB ⊗N ). If H0(IA ⊗N ) = 0, this statement is true. Otherwise, let
D ∈ H0(IA ⊗N ) and identify D with the divisor in X1 × · · · ×Xk that it defines.

We verify the hypotheses of Lemma 5.3 to show A ∪B ⊆ D:

· B imposes independent conditions on L: this is straightforward from Künneth’s formula as
H0(L1 ⊗ · · · ⊗ Lk) =

⊗
H0(Li) and similarly for the restrictions to S;

· ResD(A) ∩ ResD(B) = ∅, because ResD(A) = ∅ since A ⊆ D;

· h1(IResD(A∪B) ⊗ L(−D)) = 0: notice L(−D) = M because L = M⊗ N [Har77, Prop.
II.6.13]; moreover ResD(A ∪ B) = ResD(B) ⊆ B and B imposes independent conditions
on M, which guarantees h1(IResD(A∪B) ⊗ L(−D)) ≤ h1(IB ⊗ M) = h1(M), where the
right-hand-side is equal to 0, again by Künneth’s formula.

Applying Lemma 5.3, deduce A∪B ⊆ D and so B ⊆ D, and we deduce H0(IA⊗N ) ⊆ H0(IB⊗N ).

Again, B imposes independent conditions on N , namely the restriction map H0(N )→ H0(N|B) is
surjective and one has the exact sequence

0→ H0(IB ⊗N )→ H0(N )→ H0(N|B)→ 0.

This provides h0(IB ⊗N ) = h0(N )− deg(B) = h0(N )−
∏
iri. On the other hand h0(IB ⊗N ) ≥

h0(IA ⊗N ) ≥ h0(N )− deg(A). Hence, deg(A) ≥
∏
i ri and part (i) of the statement holds.

It remains to show that if the hypothesis of (ii) is satisfied, then A = B. From the first part of the
proof we have deg(A) = deg(B). Then, H0(IA⊗N ) = H0(IB⊗N ). Indeed: h0(IB ⊗ N ) = h0(N )−
deg(B), because B imposes independent conditions on N and, on the other hand, h0(IA ⊗ N ) =
h0(N )−deg(A)+h1(IA⊗N )−h1(N ); notice h1(IA⊗N )−h1(N ) ≥ 0 becauseH1(IA⊗N )→ H1(N )
is surjective. This shows h0(IB ⊗ N ) = h0(IA ⊗ N ) and, since from the first part of the proof
H0(IA ⊗N ) ⊆ H0(IB ⊗N ), the equality follows.

Now, by assumption ISi ⊗Ni has no base points out of Si, and therefore IB⊗N has no base points
outside of B: this shows A ⊆ B and since they have the same degree equality holds. �

Theorem 5.4 can be applied to Veronese varieties as follows.
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Corollary 5.5. Let i = 1, . . . , k. For every i, let di ≥ 1, ni ≥ 1 and let fi ∈ P Symdi Cni+1 be
elements with Rνdi (P

ni )(fi) = ri ≤ ddi/2e. Let Si ⊆ Pni be a set of ri points such that pi ∈ 〈νdi(Si)〉.
Then Rνd1,...,dk (Pn1×···×Pnk )(f1 ⊗ · · · ⊗ fk) = r1 · · · rk and S1 × · · · × Sk is the unique set of points in
Pn1 × · · · × Pnk such that p1 ⊗ · · · ⊗ pk ∈ 〈νd1,...,dk(S1 × · · · × Sk)〉.

We point out that in general, already for points of rank two, there are decompositions of the product
not arising from decompositions of the single factors.

Example 5.6. Let X1 ⊆ PN1 be a variety; suppose there is a 2-dimensional linear space PA such
that PA ∩X1 contains at least four points of intersection a1, a2, a3, a4 ∈ X1. Let p1 ∈ 〈a1, a2〉 be a
point such that RX1

(p1) = 2.

Let X2 ⊆ PN2 be a variety, let b1, b2 ∈ X2 be two points and let p2 ∈ 〈b1, b2〉 be a point such that
RX2(p2) = 2. Write p1 = a1 + a2 and p2 = b1 + b2.

Suppose that the condition described in Theorem 2.6 does not hold, so that RX1×X2(p1 ⊗ p2) = 4.
Then {a1, a2}× {b1, b2} = {a1⊗ b1, a2⊗ b1, a1⊗ b2, a2⊗ b2} is a minimal set of four points X1×X2

spanning p1 ⊗ p2.

We determine a second set of four points as follows. After a suitable choice of coordinates, write
a4 = a1 + a2 − a3. Define

a′1 = a1, a′2 = a2, a′3 = a3, a′4 = a4,
b′1 = b1, b′2 = b1, b′3 = b2, b′4 = b2,

Then ∑
ia
′
i ⊗ b′i = a1 ⊗ b1 + a2 ⊗ b1 + a3 ⊗ b2 + (a1 + a2 − a3)⊗ b2

= (a1 + a2)⊗ (b1 + b2) = p1 ⊗ p2.

This shows that S = {a′1⊗ b′1, . . . , a′4⊗ b′4} is a set of four points of X1×X2 spanning p1⊗ p2. The
set S is not of the form S1 × S2 for some S1 ⊆ X1, S2 ⊆ X2.
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