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Abstract
In these days and age, printed and digital images are the

principal means of communication chosen by companies to con-

vey information about their products, since visual contents pro-

duce a direct and effective influence on people. At the same time,

imagery can be digitally enriched with additional information,

imperceptible to the human eye, yet still retrievable using specific

software or hardware: this is the case of digital watermarking. In

this work, we propose a digital watermarking pipeline that per-

forms information embedding robust to printing operations and

enables blind detection from digital acquisitions. We select a wa-

termark from a set of orthogonal antipodal matrices and adap-

tively insert repeated copies in the horizontal, vertical and diago-

nal sub-bands of the Wavelet domain. Blind detection is achieved

denoising the digitally acquired marked image, retrieving the wa-

termark information from the Wavelet domain, restoring the orig-

inal scaling with an optimization algorithm and computing a sim-

ilarity score with each of the possible orthogonal marks. Our

system is able to reconstruct the embedded information both in

the cases of acquisition from digital and printed watermarked im-

ages. It is able to recognize the correct mark among the set of

possible messages, even when considering poor-quality printing

systems.

Introduction and Related Works
The field of digital watermarking is rich of solutions that are

capable of embedding hidden information in digital images with-

out degrading image quality, yet achieving reasonable robustness.

[1][2][3][4]: attacks such as lossy compression or standard image

processing operations are well countered in most of the proposed

pipelines. At the same time, there is a growing interest towards

marking for tagging purposes, especially on physical products.

Common examples are bar- or QR-codes, which efficiently con-

vey information when scanned, yet are visually bulky and may

degrade product perception, covering parts of it. Embedding a

hidden message into the visual product itself helps overcoming

the waste of space of traditional solutions, even though techni-

cal challenges due to printing procedure and smart-phone acquisi-

tions are still many and, to date, not much has been accomplished

in this direction.

As far as printing is concerned, few works have been pre-

sented in the framework of digital watermarking. In [5], it is

proposed a watermarking procedure able to resist the combina-

tion of printing and scanning operations, embedding the spec-

trum hologram of a given watermark, generated by conjugate-

symmetric extension, in the Discrete Cosine Transform (DCT)

domain. Instead, [6] presents a blind architecture both in the Dis-

crete Wavelet Transform and DCT domains: in addition, authors

propose a thorough modeling of the print-scan attack combina-

tion, including noise addition, non-linear effects and geometrical

transformations. A more recent approach, presented in [7], per-

forms the information embedding in image halftones, forcing a

given correlation to pairs of pixels, while employing a Direct Bi-

nary Search algorithm for watermarking detection. However, all

these works do not take into consideration digital acquisition of

the watermarked content by means of smart-phone devices.

Digimarc Corporation [8] introduced the concept of Smart

Images, physical imagery that is digitally enriched with more in-

formation, and proposed a blind watermarking pipeline that ex-

ploits an additive Spread Spectrum approach in the DCT domain

combined with error-correction codes. We propose an alternative

embedding procedure, while still maintaining a blind detection

approach: the DWT domain is employed in combination with

orthogonal watermarking dictionaries that help reducing misde-

tections in message retrieval. Furthermore, to better counter the

effects of smart-phone acquisitions, we propose to use an opti-

mization algorithm for scaling estimation, resorting to the correct

image proportion and improving the information extraction pro-

cess.

Proposed Method
In this section, a blind watermarking approach robust to

printing and scanning operations is presented in all its steps.

The embedding phase follows a traditional approach that aims at

spreading watermarking information in the Wavelet domain, con-

sidering also the local variance to reduce visual degradation. The

blind detection procedure relies on an optimization algorithm for

scale restoration, that aims at countering the effects of digital ac-

quisition through smart-phone devices, combined with a median

filtering of the obtained image.

Watermark Generation
The watermarking information that will be considered in this

approach is represented with square patches of antipodal values

and side L. We opted to choose orthogonal square patches in order

to maximize diversity between each watermark signal, obtaining

a number of possible messages equal to L2:

Wi ∈ {−1,1}LxL
, i = 1, ...,L2 (1)

L

∑
x=1

L

∑
y=1

Wi(x,y)∗W j(x,y) = 0, i 6= j (2)

In Figure 1 two examples of watermark patches are repre-

sented, considering side length L = 16.
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Figure 1: Examples of watermark patches (#15, #24) with L = 16

Moreover, in order to improve detection performance, the

following condition is applied to discard similar messages, reduc-

ing confusion in the detection procedure:

sim(Wi,W j) =
∑x ∑y F−1{|F{Wi}∗F{W ∗

j }|}

L2
(3)

max(sim(Wi,W j))< 0.1∗ sim(Wi,Wi), i 6= j (4)

In (3), W ∗
j corresponds to a 180 rotation of watermark W j,

while F and F−1 refer to the Fourier and inverse Fourier trans-

form, respectively. Such similarity metric relies on a matched

filtering approach [9], commonly used to detect the presence of a

specific template in an unknown signal.

Applying (3) and (4) to the initial set of L2 watermarks re-

sults in a reduced dictionary M composed of messages with lim-

ited cross-similarity values. The number of messages included in

M, defined as NM , changes according to the chosen side L. Figure

2 represents the cross-similarity values calculated over the water-

marks belonging to the reduced dictionary M with L = 16. As

expected, when considering Wi and W j with i 6= j, the similarity

function results in reduced values, hence indicating great diversity

among the watermarks that respect condition (4).

Figure 2: Cross-similarity among the watermarks in the reduced

dictionary M.

Watermark Emebdding
The proposed embedding approach is presented in the block

diagram of Figure 3.

Figure 3: Proposed embedding scheme

The procedure starts with the conversion of the input image

I from the RGB to the HSV color space, considering only the

Value component for further processing. The first level Wavelet

sub-bands are estimated using the image Value component and the

Symlets wavelet family of order 4: all three directions are consid-

ered for watermarking embedding. Figure 4 shows examples of

vertical V , horizontal H and diagonal D sub-bands as well as the

approximation coefficients of the first Wavelet level applied to a

given image. In order to introduce redundancy, we propose gener-

ate a matrix R composed by the spatial repetition of the following

base structure:

M =

[

Ws Wm

Wm Ws

]

where Wm is the watermark message and Ws is a fixed syn-

chronization signal exploited for scaling reconstruction in the de-

tection phase. Structure M is spatially repeated until the dimen-

sions of R match those of each wavelet subband.

Figure 4: Lowpass component, vertical, horizontal and diagonal

Wavelet sub-bands

In addition to the Wavelet sub-bands computation, image I

is downsized, halving its dimensions and generating Id . Local
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variance Ω is calculated on Id , employing a [7×7] sliding window

according to (5).

Ω(x,y) =
1

49
∗

3

∑
u=−3

3

∑
v=−3

|Id(x+u,y+ v)−µ|2 (5)

where µ is the mean value over the same window:

µ =
1

49
∗

3

∑
u=−3

3

∑
v=−3

Id(x+u,y+ v) (6)

For convenience, values of Ω are normalized to [0,1].

Figure 5: Normalized local variance Ω.

Watermark embedding is performed using an additive ap-

proach in each of the Wavelet directions, according to the fol-

lowing:

Ei = Oi +α ·Ω ·R, i =V,H,D (7)

where Oi refers to the original wavelet sub-bands and Ei to

the corresponding embedded counterparts. Ω is used as weight to

add more information in textured areas while reducing embedding

strength in flat regions, exploiting the human visual system char-

acteristics. Watermark intensity is also modulated by the scalar

multiplier α , which is manually increased to introduce robustness

or decreased to achieve imperceptibility. The watermarked image

Iwm is finally obtained applying the inverse Wavelet transform us-

ing the modified sub-bands.

To monitor visual performance and evaluate the content

degradation imposed by the inserted information, image quality

assessment metrics (PSNR [10], WPSNR and SSIM [11]) are ap-

plied to I and Iwm.

Printing rules
In order to properly print an embedded image and hence not

to lose the watermark content, a guideline for printing is provided.

Supposing that the bottleneck in the print/acquire process is the

acquisition, then the dimension of the printed version of the image

must be adjusted accordingly. Given a M×N resolution image, in

order to find the width in centimeters of the image after the print

phase the following equation is used:

Figure 6: Watermarked image Iwm

width =
N

ppimin
det

·2.54[cm] (8)

where 2.54 accounts only for Inch to cm conversion, ppi

(points-per-Inch) is the minimum number of points per Inch (of

the watermarked image) expected to be read by the acquiring de-

vice (scanner or smart-phone) at the operational distance from this

image. In the experiments ppimin
det = 100 was set to decide for the

printing size.

Watermark Detection
Figure 7 shows the proposed detection scheme, presenting

the blind approach applied on a watermarked image I∗wm.

Figure 7: Proposed detection scheme

Since the embedding procedure introduces a noise-like layer

on the original image, we propose in the detection phase to exploit

a denoised version of the watermarked image, obtained applying a

[17×17] median filter to the watermarked image. Figure 8 shows

an image area where the noise pattern caused by the embedding

operation is visible, and the same patch processed with the median

filtering.

Consequently, the first level Wavelet sub-bands are extracted

both from the filtered content and the watermarked image, and the

corresponding directions are subtracted:

Si = Ei −Fi, i =V,H,D (9)

IS&T International Symposium on Electronic Imaging 2018
Image Processing: Algorithms and Systems XVI 262-3



Figure 8: Noise-layer due to embedded information and result of

the median filtering.

with Ei, Fi and Si referring to the embedded, filtered con-

tent and resulting sub-bands, respectively. Antipodal values are

obtained applying a threshold at 0 to each difference sub-band Si:

• Si ≥ 0 → Si = 1

• Si < 0 → Si =−1

As a consequence, each Si is an approximation of the in-

serted content R, which hosts both the selected watermark and the

synchronization information.

Scaling Factor Estimation
Given that, in a real case scenario, I∗wm is the result of a smart-

phone acquisition, user imprecisions are bound to affect the ac-

quired content, especially in terms of scale: the distance of the

device from the printed watermark product may result in content

whose proportions differ from those of the digitally embedded

image. In order to counter this issue, we propose to employ a

Differential Evolution (DE) approach to find the best scaling fac-

tor, according to the cost function (10) that takes into account the

synchronizing information inserted during the embedding phase.

y =−∑
i

simpool(SCi,Ws), i =V,H,D (10)

where SCi indicates the i-th directional band of the scaled

content and simpool(·) as the similarity metric applied after a max

pooling passage as defined in:

simpool(Wi,W j)=
∑x ∑y poolmax

16×16{F
−1{|F{Wi}}∗F{W ∗

j }|}

L2

(11)

where poolmax
16×16(·) is the max-pooling operation with a

16×16 window. It is applied before summing up the coefficients

and it consists in a substitution of each 16× 16 non-overlapping

block with the maximum value contained in it. This passage re-

duces the noise generated by the raster convolution (since the peak

is expected ideally only on perfect match) and does not affect de-

tection since there is spatial redundancy and the filter window is

sized to the dimension of the watermark blocks.

In Figure 9 an example of cost function behavior is pre-

sented, highlighting a global minimum in correspondence to the

inverse of the scaling factor that maximizes similarity between the

synchronization mark and the respective estimated counterpart.

Figure 9: Example of cost function

The choice of a global optimization algorithm, such as the

DE, comes from the non-convexity of the cost function, that

presents local minima at wrong scales. To successfully explore

the cost function, the DE algorithm is initialized with a popula-

tion of P = 6 scale factors and the initial positions are chosen

using a 1D Latin Hypercube Sampling to avoid under or over

sampled regions. For each scale factor, a resizing operation is

applied to I∗wm and the corresponding directional sub-bands are

extracted and thresholded. Subsequently, the pooled similarity

function (11) is evaluated between each thresholded sub-band and

the synchronization mark Ws, and their result is used to evaluate

the fitness function. The particular algorithm is the DE/best/2/bin

and the optimized variable is the inverse of the scale factor men-

tioned. This choice was motivated by the speed-up of the evalu-

ation that results from the non-linear compression of the search

space. At each iteration of the DE each of the particles undergoes

a crossover operation where the best solution so far is mixed with

four other particles chosen at random in the current population in

a differential fashion. If the resulting child particle has a better

fitness than its parents one, then the parent is substituted with its

child. This procedure is repeated for Niter = 3 iterations, then the

scale corresponding to the minimum fitness is selected as optimal

for image I∗wm.

The optimal scale is applied to I∗wm, along with the very same

detection procedure, until the thresholded sub-bands extraction.

With the optimal scale application, the information contained in

each Si sub-band should result in reduced errors in the watermark

evaluation.

Watermark Selection
The similarity function (3) is evaluated on each sub-band Si

against each of the watermarks signals in dictionary M (excluding

the synchronization mark Ws), resulting in NM responses per sub-

band:

Ci( j) = simpool(Si,W j), i =V,H,D, j = 1, ...,NM (12)

The cumulative response information is obtained combining

in a multiplicative way the responses evaluated on each sub-band:

Ccum = ∏
i

Ci, i =V,H,D (13)
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In Figure 10, an example response analysis is presented, con-

sidering a set of 24 marks. The response of each watermark

is evaluated in every directional sub-band, and the cumulative

response is obtained combining such information. This exam-

ple shows how combining information helps reducing secondary

peaks that may arise in the sub-bands, while maintaining a high

response for the correct detection.

Figure 10: Similarity measure in each sub-band and cumulative

response for each of the watermarks.

The watermark with the highest response in Ccum is selected.

In the example of Figure 10, watermark #21 is selected as de-

tected information. In addition, the confidence value for a given

watermark selection is computed as:

CF =
max(Ccum)− c

max(Ccum)
(14)

where c corresponds to the second highest response in Ccum.

Experimental Setting

Dataset
The evaluation of our proposed technique is performed con-

sidering selected pictures that are likely to be employed in real

scenarios, such as product leaflets or advertising imagery. We

considered the Office-Home Dataset [12], originally created for

object recognition purposes using deep learning approaches, as a

reliable source of such imagery. The dataset consists of 65 cate-

gories of everyday objects, represented in various ways, including

sketches, cliparts, real-environment pictures and real objects with

removal of background content. In this context, we selected pic-

tures of real objects with and without background information. In

Figure 11, examples of such image configurations are presented,

including a bed in a real unprocessed context and a set of real

markers represented discarding any other object from the visual-

ization.

Testing Phase
The proposed watermarking approach is tuned to be robust

to printing operations and smart-phone acquisitions. For this rea-

son, we selected specific image processing operations aimed at

reproducing imperfections that arise from a real scenario, in order

to perform digital tests. Subsequently, we performed analysis on

Figure 11: Example images extracted from the Office-Home

dataset [12].

smart-phone acquisitions of printed watermarked content, to con-

firm the results of the first phase. The printer and scanner used

for the experiments is the Kyocera TASKalfa 4551ci. The smart-

phone test was done with a One Plus 5T (16 MP camera).

As to the digital reproduction of the combination of printing

and smart-phone acquisition, we considered three sets of image

processing operators:

• contrast adjustments and histogram equalization to take

into consideration over- and under-exposure, typical conse-

quences of reduced printing quality or illumination condi-

tion in the acquisition environment;

• geometrical operations, including rotation, cropping, and

scaling, to simulate a non-optimal position of the smart-

phone device with respect to the printed watermarked con-

tent;

• blurring filter to consider de-focused acquisitions;

Most processing operations require the definition of a spe-

cific parameter: Table 1 includes the various configurations that

have been considered. In particular, contrast adjustments are ap-

plied to map intensity values to a new range [Gmin,Gmax], saturat-

ing all the pixel values exceeding Gmin and Gmax.

Table 1: Parameter configuration for the first test phase

Operation Parameter Min Max Step

Over-exposition Gmax 0.387 0.9125 0.087

Under-exposition Gmin 0.387 0.9125 0.087

Rotation φ [◦] 0.5 4 0.58

Cropping c [%] 0 99 5

Down-Scaling s ∈ [0,1] 0.9 0.99 0.015

Up-Scaling s >1 2 7 0.66

Gaussian Blurring σ 0.5 2.5 0.33

The embedding procedure was applied to a set of images (see

Table 2) selected from [12], considering a dictionary of NM = 24
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marks: the same watermark W was inserted in all images with

strength α = 10. All the watermarks proved to be retrievable

in general so we decided to keep the watermark fixed for all the

images for a fair comparison of the performance. We randomly

chose the watermark #6 as the hidden tag to retrieve (Wm) and the

watermark #1 as the synchronization one (Ws), they are visible in

Figure 15. Moreover, Table 2 reports for each embedding case the

resulting PSNR, WPSNR and SSIM.

Table 2: Perceptual quality of selected images after watermarking,

the originals are visible in Figure 16

Image PSNR WPSNR SSIM

bed12 30.32 53.37 0.67

couch9 30.31 54.70 0.62

knives13 30.43 54.88 0.79

marker12 31.48 46.21 0.73

mug27 30.52 46.77 0.64

printer25 30.10 54.32 0.63

soda12 31.46 51.44 0.87

toys16 30.06 54.58 0.56

The detection logic was instead carried out on a printed ver-

sion of the embedded contents, subsequently digitalized by means

of a scanner device, to avoid all issues related to smart-phone

acquisitions. A preliminary test was carried out directly on the

digitalized images, without further processing: confidence results

of this scenario are reported in Table 4. Table 4 also reports

confidence results for the histogram equalization case, which did

not require any specific parameter configuration. When the con-

fidence value is non-zero then the correct watermark has been

found. In addition, the higher the confidence the higher the

certainty of correct choice (assuming the correct scale was esti-

mated).

Table 3: Confidence values in cases of no additional processing

and histogram equalization, the originals are visible in Figure 16

Image CF [%] - No Proc CF [%] - HistEQ

bed12 73.68 72.57

couch9 69.14 70.11

knives13 29.30 25.06

marker12 24.67 32.99

mug27 99.14 99.15

printer25 93.99 93.70

soda12 50.10 50.02

toys16 94.73 94.64

The plots reported in Figure 12 refer to the confidence re-

sults employing all the operations and parameter configurations

of Table 1. We can notice that the behavior is not stable across

pictures: the watermark is almost always correctly detected but

only in some cases with a high confidence level for almost all

considered attacks. Further research should be carried out in order

to better understand which are the image characteristics allowing

good performance in different scenarios.

Finally, we consider smart-phone acquisition of printed em-

bedded contents and analyze the performance of the proposed

method in such very challenging scenario. A total of 51 acqui-

sitions have been tested with our detection approach, where ac-

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

G
max

0

10

20

30

40

50

60

70

80

90

100
Confidence Over-exposition [%]

bed12

couch9

knives13

marker12

mug

printer25

soda12

toys

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

G
max

0

10

20

30

40

50

60

70

80

90

100
Confidence Under-exposition [%]

bed12

couch9

knives13

marker12

mug

printer25

soda12

toys

0.5 1 1.5 2 2.5 3 3.5 4

Degrees [°]

0

10

20

30

40

50

60

70

80

90

100
Confidence Rotation [%]

bed12

couch9

knives13

marker12

mug

printer25

soda12

toys

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
max

0

10

20

30

40

50

60

70

80

90

100
Confidence Crop [%]

bed12

couch9

knives13

marker12

mug

printer25

soda12

toys

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

s

0

10

20

30

40

50

60

70

80

90

100
Confidence Down-scale [%]

bed12

couch9

knives13

marker12

mug

printer25

soda12

toys

2 2.5 3 3.5 4 4.5 5 5.5 6

s

0

10

20

30

40

50

60

70

80

90

100
Confidence Up-scale [%]

bed12

couch9

knives13

marker12

mug

printer25

soda12

toys

0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

100
Confidence Blur [%]

bed12

couch9

knives13

marker12

mug

printer25

soda12

toys

Figure 12: Confidence plots considering the processing opera-

tions and parameter configurations of Table 1.

quisition of each printed image is performed with realistic config-

urations of non ideal smart-phone position or lighting conditions,

see examples in Figure 13.

The inserted watermark is correctly detected (green line) in

various acquisition settings: standard light-bulb, no flash-light

used, close-up picture; presence of surrounding environment, dis-

tant picture; flash-light, close-up. Out of the complete set of ac-

quisitions, 10/51 (19.6%) tests result in mis-detections: many of

such cases refer to the use of the smart-phone flash-light. If we

do not consider the flash-light case the mis-detections decrease to

4/38 (10.5%). Figure 14 report the cumulative responses for a few

cases out of the 51 tested (due to lack of space): the inserted wa-

termark is correctly detected (green line) despite the poor quality
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Figure 13: Example of printed and acquired watermarked images.

of analyzed pictures.

Table 4: Confidence values for smart-phone detection on the 8

images (Figure 16) used in the benchmark testing case.

Image CF [%]

bed12 10.00

couch9 13.79

knives13 23.79

marker12 14.64

mug27 6.20

printer25 0.00

soda12 7.00

toys16 17.58

Conclusions

We have presented a novel watermarking system for insert-

ing an invisible information robust to printing operations and for

enabling blind detection from digital acquisitions. Our system

is able to reconstruct the embedded mark both in the cases of

acquisition from digital and printed watermarked images. It is

able to recognize the correct mark among the set of possible mes-

sages, even when considering poor-quality printing systems. Fu-

ture work will be devoted to further increase the robustness of

the methodology, also extending the watermark testing with an

increased number of image configurations to understand wether

specific watermarks or images result in increased performance.

In addition, an expansion of the dictionary to increase the number

(and hence dimensions) of possible messages that can be hidden

is a possible direction for future investigation.

Figure 14: Photographs and corresponding similarity scores for

two tested, printed and acquired images: the green vertical line

highlights the correct watermark.

Figure 15: The complete set of the 24 generated watermarks in

order of index from the top-left as #1 to the down-right as #24.
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