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geometrical Fill Factor, but without providing spatial panile

information [16], [17].

In charged particle tracking and counting applications,
the detectors of choice can be either hybrid or monolithic
depending on the required resolution and radiation damag
tolerance. In the case of hybrid detectors, bump bondin¢
is typically used to connect the sensor array to a read,,., -~
out electronic chip. This approach offers the flexibility of shielss ~
customizing sensors and electronics independently, at the
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expense of a larger parasitic input capacitance. Since the layers
input noise of the readout electronics is increased by large

input capacitances, a large charge discrimination thresh - =

old needs to be set in hybrid detectors, thus limiting the Avalanehadetector ‘fe\'“h Piollelect T
minimum detectable charge. The large threshold affect: \

the minimum detector thickness, that is around {®0in

the hybrid pixels currently under development for tracking iniGuRE 1. cross section of a two-layer CMOS pixel based on avalanche
high-energy physics applications [18], [19]. In State-of-theistectors in coincidence.

Art monolithic detectors, the active area is typically limited

to a few 10s ofum and full substrate depletion is notyyell in a deep nwell, is isolated from the p-type substrate.
achieved. However, they exhibit a good signal-to-noise ratigherefore, the thickness of the active volume is very narrow,
thanks to their low parasitic capacitance, and their chargeine order of fim [26]. The detectors have been covered
collection time can be as low as a few tens of ns [20)ith a metal shield to avoid optical cross-talk between dif-
For ultrafast timing applications, a class of detectors Wity ent layers, but a few pixels have been left unshielded to
low-gain avalanche amplification is emerging, providing @naple optical tests.
timing resolution as low as a few 10s of ps [21]. For this A simplified schematic diagram of the pixel is presented
class of detectors, however, a fine pixelation has still to hg Fig. 2. The detector front-end is the same in both layers
demonstrated. If compared to existing solutions, the proposgg includes a quenching transistor, a comparator and a pro-
Geiger-mode avalanche pixel is potentially interesting fQframmable monostable for pulse shortening. The coincidence
combining fine pixelation, low material budget, low powepegg|ytion time depends on the monostable pulse width, that
consumption and timing resolutions that in principle can kg, pe set to three different nominal values of 750ps, 1.5ns
lower than 100ps thanks to Geiger-mode operation. or 10ns. A configuration register is used to independently
~ To fully exploit the potential of the coincidence detecgpaple or disable the pixels with an arbitrary pattern. The
tion concept, low-noise avalanche detectors need t0 Bgitom half-pixel also includes a coincidence detector and
co-integrated with deep submicron readout circuits, anflyital electronic circuits for data storage (Lbit/pixel) and
two detector layers should be vertically integrated. Severlzqout.
gxamples of 3D-integrated SPAD arrays for opticall SeNS-The pixel array, having a total size of 26 48 pixels,
ing have been recently presented [22]-{24], supporting i partitioned in subarrays with 4 different detector sizes.
technol_og|cal feasibility of the proposed approach. Each pixel has a size of 50m x 75 pm, with a maximum

In this work, we present a two-layer sensor based Qometrical fill factor of 51.6%. The peripheral electronic
ayalanche detectors in commden.ce fabncated_ in & comMefreyits offer the flexibility for mapping dark count rate
cial 150nm CMOS process and integrated using a stand@gtr), timing resolution and crosstalk probability between
bump bonding technology. The architecture of the sensgerent pixels in the same layer [27].
is described in Section Il. A selection of results from the p micrograph of the bottom chip is shown in Fig. 3(a)
experimental validation of the sensor is shown in Section Ilyhije 3(b) shows a concept view of the complete sensor
while possible improvements of the proposed sensor in Vigjhere the two tiers have been vertically integrated using a
of the potential applications are discussed in Section IV. flip chip process with SnAg solder bumps. In the final assem-

bly, the bottom chip is connected to the package through

Il. SENSOR DESIGN standard wire bonds, while power, analog and digital signals

The coincidence pixel is composed of 2 levels of detegye sypplied from the bottom to the top chip through bump
tors and electronics, with a vertical interconnection used Efbnding pads.

deliver the digitized signal from the top to the bottom layer
(Fig. 1). [ll. EXPERIMENTAL RESULTS

The Geiger-mode detectors used in this work, fabricatédfew samples of top and bottom chips were wire-bonded for
in a commercial 150nm CMOS process (6 metal, 1 polylesting before proceeding to vertical integration. Electrical
have been previously developed for optical sensing applidasts showed the correct functionality of both avalanche
tions [25], [26]. The detector junction, implemented as p+ atetectors and electronics in the two chips.
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FIGURE 5. DCR distribution of the pixels measured separately in the two
chips and distribution of the DCR in coincidence for 3 different settings of
the pixel monostable circuit. Measurements are done at T=20  °C and

FIGURE 7. DCR distribution of the pixels as a function of temperature.
VEX =1V.

Measurements are done atV gx =2Vand T =0.75ns.

both layers and was in agreement with previous measu[genhanced by the coincidence, since they affect both terms
ments. The distribution of dark coincidence measurememg R, and DCR; in equation 1.

in the array, with the 3 different monostable width settings, A validation of the sensor operation with charged particles
are shown in Figure 5 together with the DCR of the separajg,s carried out using &°Sr  source with 39 kBej 6%
layers. The average coincidence DCBORc) is as low as  activity and 2 crd area. The source was placed on top of
93 mHz per pixel with the minimum pulse width, corréthe sensor at 5 mm distance from its surface. The setup
sponding to 24.Hz/m|3r1 This value is in good agreementyas placed in a climate chamber and cooled #€,5in
with the theoretical value predicted by order to reduce the DCR to levels comparable or lower than
DCR- = DCR -DCR> -2 T 1 the count rate induced by the source, and the sensors
Re = 1-DCR; - @) were biased with ¥x = 1V. In the measurements, a large

whereDCR, and DCR, is the DCR of the two layers, SeIO_number of frames with 1 ms integration time were summed,

arately, and T is the coincidence resolution time definec}o obtgm_a t_otal accumula_tlon time .Of 10000 s. The coun_t
. rate distribution was acquired both in the presence and in
by the monostable pulse width.

the absence of the source, and is shown in Figure 8(a),
while the distribution of the count rate difference is shown
in Figure 8(b). Figure 8(c) shows a response map of the
array, that does not exhibit any apparent gradient. This is
not surprising, since the source size is much larger than the
detector and was centered on it for the measurements.
The average count rate per pixel induced byparticles
is approximately 33mHz, while the distribution follows the
Poisson statistics. Since the total measurement time was
10* s, considering only the beta events, the expected uncer-
tainty due to Poisson statistics should be  0.033 10# =
1.8 mHz. The measured uncertainty is= 2 mHz, in good
agreement with the estimated value.

IV. DISCUSSION

The measurements carried out with the beta source pro-

vide a first means to evaluate the performance of the sensor
FIGURE 6. DCR distribution of the pixels as a function of V. gx. in partide counting applications. The measured count rate
Measurements are done at T=20 °Cand T=0.75 ns. corresponds to a detection rate of 8.8 eventsAs)mto

be compared with 1976% events/(mrfs) emitted by the

The coincidence DCR distribution is shown as a functio?Sr source. Monte Carlo (MC) simulations were used to

of Vex and temperature in Figures 6 and 7. It is worth notinguantify the different effects accounting for the observed
that both the voltage and temperature dependence of DCRarged-particle detection efficiency.
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104 50 . . . . . _
T — pptlcally _measur_ed data. Py is the triggering pr_obgbn
£ "% 1 [==win s source e DTS ity associated with 1 generated electron-hole pair, i.e., the
= A0 3] aqHare: oo . . . . .
2 § 30 value measured optically, the combined triggering probabil-
E 10 g 2 ity Pin, due to the generation of N electron-hole pairs, can
S 10 10 be estimated as
102 0 " =18 S N
0 20 40 60 80 100 0 20 40 60 Pn=1S (1S Ptl) . (2)
% devices Differences [mHz]
5 If, for example,Py; = 50%, according to equationRs =
) 97% andPi10 = 99.9%. Therefore, even though the optically-
40 measured avalanche triggering probability is far from 100%,
@ . .
g 48 ] in most cases several electrons are generated with charged
6F 1 20 particles and the combined probability can be very close to
y 100%.
. = e 5 0 Taking all these effects into account, MC simulations
Columns predict a particle-induced count rate of 7.3 Hz/fiim good
agreement with the experimentally measured 8.8 HZmm
FIGURE 8. (a) Count rate distribution with and without source. rate
(b) Distribution of the count rate difference. (c) Map of the count rate :
difference.

V. CONCLUSION
In this paper, we have presented the first demonstration of

Among the several factors accounting for the measuradpixel array for charged particles based on Geiger-mode
inefficiency, the most relevant one is the geometric accepvalanche detectors in coincidence. The experimental results
tance of the detector, which depends on the relative posititiglicate that detectors with a fine pixelation, a good uni-
between source and detector. According to MC simulatiorfermity and small power consumption are feasible with the
with the geometrical arrangement used in the measugsgiopted technology. The coincidence DCR depends on the
ments, the hit rate on the detector surface should amolMER statistics of the single detectors, that in turn is strongly
to 50 Hz/mn¥. affected by the distribution of defects in the sensor active

Another important contribution is given by the pixel fillvolume. MC analysis has showed that the main limitations
factor, whose design value is around 50%. Previous mda-the detection efficiency are the thickness of the top-chip
surement campaigns conducted on SiPMs suggest that shistrate and the geometrical fill factor of the detectors.
geometrical fill factor in the case of particles might be larger It is worth noting that the aforementioned factors can be
than the one measured optically [17], but this should tsidressed and both the sensor DCR and its particle detec-
experimentally confirmed on this CMOS prototype using #on efficiency can be improved. In fact, sensors based on the
controlled particle beam with nearly orthogonal incidenceproposed concept can benefit from the technological devel-

The thickness of the top chip is 280m, so a consis- opments of CMOS-integrated SPADs. The pixel DCR can be
tent fraction of the low-energy particles emitted by #&r reduced by employing dedicated implantations and processes
source is absorbed in the substrate of the top chip bef@stomized for image sensors [5], while the geometrical fill
arriving to the active region. According to MC simulationsfactor, not optimized in this first trial, can be increased
only 40% of the particles arriving at the surface can reachy adopting a more scaled CMOS process [23]. With an
the active layer. advanced process node, the pixel size can also be reduced

The angle of incidence constitutes another source With a minimum loss of efficiency. Since the devices have
inefficiency, since particles hitting the sensor with a norg very small active thickness and are isolated from the sub-
orthogonal angle might generate a signal only in one of tis&rate, the substrates can be thinned down to a few microns
two layers. Particles incident at large angles are more likelithout compromising sensor functionality and DCR.
to fail hitting both layers. An aggressive thinning would enable the stacking of more

Some events, despite crossing the sensor within the acti@n two layers for improved efficiency while maintaining
volume, might not generate charge due to the granularity @flow material budget. These properties, together with the
charge release in the very thin active region. MC simulatiofécosecond timing resolution achievable thanks to Geiger-
predict that, in more than 99% of the cases, at least 1 electivade operation, make the proposed sensors appealing for
is released in the active volume, while at least 5 electroparticle counting and timing in high-energy physics and
are generated in 97.5% of cases. medical applications.

Last, even if one or more electron-hole pairs are gener-
ated within the active volume, there might be a small chanfé&FERENCES
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