Para-centred community services: A conceptual shift

Beyond enhancing capacity to provide traditional medical and functional services, a change in the conceptualization of patient care is due. Treating each patient as a unique individual, understanding their subjective points of view, and meeting the needs of patients with acceptance and respect are key principles of para-centred care. At the same time, interacting in a nonjudgmental, collaborative, and empowering way that includes families and the community contributes to high-quality community care, and helps patients to be more dignified, independent, and productive members of society.

Too often, the current practices reflect a paternalistic approach that equates mental health “care” as “supervision.” Much of the current community services evaluation also focuses on “rate of patient registration,” “rate of SM services management/treatment,” and “rate of social disturbances,” among other indicators (2). Under the current framework, patients are mostly passive, and may be labeled and marginalized as the “other,” potentially heightening shame and reinforcing society’s negative views and attitudes against the mentally ill. At worst, this framework may unintentionally contribute to discrimination and societal stigma against them (6). Recent studies from Beijing, Wuhan, and Guangzhou show a rise in psychiatric hospitalizations. In 2011, China’s first Mental Health Act was created, prescribing basic rights and protection for this vulnerable group. The current National Mental Health Work Plan (2015-2020) introduced a three-year demonstration pilot involving six Ministries to improve coordination of community care for those with SMI. Most recently, in 2016, mental disability treatment and rehabilitation service programs included in the list of basic medical insurance payments. Together, these policies and developments have improved the quality of care and shift care more into the community.

During this ambitious process, notable problems have surfaced:

- The gap between the demand for SMI services and the capacity to provide them is large;
- Management is still largely focused on societal safety (i.e., reducing nuisances and disturbances caused by people with SMI), which leads to strategies of containment and control—this is the focus on improving social functioning and quality of life;
- There is a scarcity of community-based services and evaluation in the community mental health and rehabilitation fields; and
- There is insufficient professional knowledge and training.

Despite gaps between aspiration and implementation, there are also opportunities for positive and enduring changes.

Mindfulness training and multimodal neuroimaging for mental health

Paras Lina, Junfeng Gaoa, Yong Yang, Jorge Jovovich, Xiang Wang, Chun S Zuoa, and Nicole De Planaca

The World Health Organization estimates that 10-15% of the Chinese population suffers from some form of mental illness, such as anxiety, depression, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD), autism, and posttraumatic stress disorder (PTSD) (1). One promising research direction shows that mental-training approaches can be useful to prevent and treat several mental illnesses. Mindfulness-based approaches are a particular methodology of mental training that can be effective for at least some of these conditions. They have gained increasing popularity, both worldwide and in Chinese society, as a strategy for self-care. Given the beneficial effects of these meditation practices that have been recently discovered by scientific research, this novel societal interest could be an opportunity to generally improve mental health. More specifically, on a neurological level, many studies support the idea that mental training programs such as mindfulness meditation can deeply impact plasticity and induce changes in brain networks that are associated with attentional control, emotion regulation, and self-awareness, and therefore with mental well-being in general (2, 3).

References
1. L. Quan et al., PLOS ONE 10, e0124525 (2015); doi:10.1371/journal.pone.0124525
2. J. J. Good et al., Scholarly Psychiatry 24, 121 (2011)
4. X. Q. Wang et al., Arch Psychiat Nurs. 30, 4-16 (2016)
5. X. Wang et al., Psychiatr Serv. 67, 431-437 (2016)
6. X. Q. Wang et al., Primary Psychiatry 6, 426-441 (2015)
7. X. Wang et al., The World Mental Health Forum, June 20-24, Chengdu, China (2016).

Acknowledgments
This work was supported by the China Medical Board (CMB5911) and the New Century Excellent Talents in Universities Program of China (NCET-12-2057).

Types of mindfulness meditation

Mindfulness meditation is not one single practice, but a collection of different methodologies. We divide the various mindfulness meditations into essentially three types: attention regulation, emotion regulation, and self-regulation. In all these cases, mindfulness practices are related to the cognitive capacities of control, inhibition, and integration—typical of executive functions. Regarding attention regulation, there are many practices that underline the importance of exercising attention before embarking on any developmental path; the ability to regulate one’s attention is a prerequisite for exercising other, more sophisticated forms of control related to well-being (e.g., sustained focus, avoidance of distractions, and self-control). With detailed biological mechanisms behind mindfulness mediation is still uncertain. However, advances in multimodal neuroimaging techniques, including magnetic resonance spectroscopy (MRS), functional magnetic resonance imaging (fMRI), structural magnetic resonance imaging (MRI) and positron emission tomography (PET) (on the next page), do provide state-of-the-art scientific tools to explore the neural mechanisms of mindfulness meditation and how these can impact general mental health.
connectivity changes in brain networks. The DMN is known to play a key role in mind-wandering or rumination. In addition, studies on mindfulness training are showing that the central executive network is enhanced during this activity. Furthermore, the salience network plays a significant role in monitoring our body state, and therefore in mental training it is generally involved in perceiving sensations inside the body, or interception (10). During mindfulness meditation, the brain is continuously communicating with the body (the heart, other internal organs, and the immune system). The communication between brain and body provides the brain with a body mapping of how and what the practitioner feels. Recently, some researchers have begun to investigate the relationship between interception and mindfulness training.

Mindfulness training is believed to impact large-scale brain networks (whole networks or sub-networks) that have been associated with different brain functions and behaviors of fundamental importance for mental health. There is a growing interest in the application of mindfulness to the clinical field. Since most psychological disorders are associated with poor regulation of emotions and/or dysfunctional strategies to manage emotions, many researchers believe that psychotherapeutic interventions should be focused on these types of techniques. Determining the properties of large-scale brain networks is an important step toward understanding the underlying neural mechanisms of mindfulness training and its impact on the clinical population. A key research direction appears to be how to integrate the mental and physical effects of mindfulness meditation with the information coming from neuroimaging and physiology research, in order to better understand the relationship between the brain and the body. The combination of a real-time neurofeedback technique, such as electromyography-correlated functional magnetic resonance imaging (EEG-fMRI), statistical learning (Bayesian and machine learning), interception, and behavior studies can be useful tools for decoding the dynamics of mental states throughout such intervention. The outcomes of such large-scale research could be a significant foundation for improving mental health worldwide.

References
3. A. Greicius et al., PLOS ONE 6, e61634 (2011). doi: https://doi.org/10.1371/journal.pone.0061634

Acknowledgments
This work was supported by the National Natural Science Foundation of China (61473222, 3167144, 61662026).