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Abstract

We propose a geometrically and materially nonlinear discrete mechanical model of graphene that assigns

an energetic cost to changes in bond lengths, bond angles, and dihedral angles. We formulate a variational

equilibrium problem for a rectangular graphene sheet with assigned balanced forces and couples uniformly

distributed over opposite side pairs. We show that the resulting combination of stretching and bending

makes achiral graphene easier to bend and harder (easier) to stretch for small (large) traction loads. Our

general developments hold for a wide class of REBO potentials; we illustrate them in detail by numerical

calculations performed in the case of a widely used 2nd-generation Brenner potential.

Keywords: graphene, softening, hardening, bending stiffness, stretching stiffness.
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1 Introduction

Flexible and stretchable components are more and more frequently employed in such electronic devices as

displays, light emitters, solar cells, etc. Recently, graphene has been shown to be a promising material to

build devices that are able to bend and stretch; it has then become important to model, predict, and test,

its mechanical behaviour under various combinations of bending and stretching loads. The basic problem

we here tackle is sketched in Fig. 1, where a rectangular graphene sheet is depicted, subject to balanced

Figure 1: A sheet subject to bending and stretching loads.

couples and forces uniformly applied along two different pairs of opposite sides. Our goal is to evaluate how

the sheet’s bending and stretching stiffnesses depend on the value of the couple and force loads. A brief

survey of the relevant literature is to be found in Section 2.

We consider a force-and-couple distribution as in Fig. 1, for which it has been shown in [38], with

the use of Density Functional Theory, that bending stiffness decreases in the presence of traction loads.
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This effect, which is ascribed to a microscopic phenomenon, namely, the stretch-induced loosening of atom

packing, is somehow counterintuitive for a person trained in standard structure mechanics, whose point of

view is of course macroscopic. In this contribution, we propose a geometrically and materially nonlinear

discrete mechanical model, microscopic in nature, which predicts, among other things, that stretch reduces

the bending stiffness of graphene.

Graphene is a two-dimensional carbon allotrope, in the form of a hexagonal lattice whose vertices are

occupied by C atoms. In principle, just as for every other molecular arrangement, graphene’s equilibrium

shapes can be characterized as local minima of an intermolecular potential depending on the relative positions

of all C-atom pairs. Needless to say, numerical simulations based on such an approach would turn out to

be either scarcely significant or prohibitively honerous. In another largely adopted approach, a choice of

kinematic order parameters is made: (i) under the assumption that their changes decide the energetic cost

of shape changes, as predicted by a related intermolecular potential; (ii) with a view to end up with a list of

Lagrangian coordinates much shorter than the collection of triplets of Cartesian coordinates of all C atoms

in a given graphene sheet. What makes the list short is a careful account of the symmetries enjoyed by the

problem at hand. We choose three types of scalar order parameters, namely, bond length, bond angle, and

dihedral angle (see Fig. 2 in Section 3). The number of triplets of such order parameters one needs assign to

determine a deformed configuration of a graphene sheet is small when attention is confined, as we do here,

to rectangular achiral graphene sheets (see Fig.s 4 and 7 for, respectively, armchair and zigzag graphene

sheets), because their local and global geometries agree, in the sense that their chiral vectors are parallel to

a side pair, both before and after application of loads. A further reduction in the number of independent

configuration variables follows from taking into account the symmetries in the equilibrium solutions implied

by the specialty of the load distribution over the boundaries; as detailed in Sections 4 and 5, these symmetries

are different in the two achiral cases, but equally effective.

Just as in [10], material constitution is specified here by an intermolecular potential depending on a finite

list of the above order parameters: our constitutive prescriptions (19)-(20) are general enough to include

all potentials in the REBO family we know of [3, 4, 40, 41]; equilibria correspond to local minima of an

energy functional including also the potential of the applied loads; the governing equations are expressed in

terms of three types of nanostresses, that is, force-like objects which are work-conjugated to, respectively,

changes in length of atomic bonds, changes in angle between two adjacent bonds, and changes in dihedral

angles. The problem-specific novelties in this paper are that we introduce proper definitions of curvature,

axial deformation, bending stiffness, and stretching stiffness of a graphene sheet; and that, for whatever
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potential in the chosen constitutive class, we derive two analytical conditions for, respectively, (i) softening

of bending stiffness induced by a force distribution as in Fig. 1 (condition (C1), formulated in Subsection

4.3 for armchair graphene and adapted for the zigzag case in Subsection 5.3);1 (ii) hardening of stretching

stiffness induced by a couple distribution as in Fig. 1 (condition (C2), Subsections 4.5 and 5.4).

Our main qualitative result is that concomitant bending and stretching loads make the bending stiff-

ness decrease and, provided the applied tractions are not too large, make the stretching stiffness increase;

said differently, graphene is softer to bend when stretched and bent and harder to stretch when bent and

moderately stretched; moreover, the stretching stiffness decreases for large tractions, no matter how large

the applied couples. Related qualitative results are the analytical expressions we derive for the pristine

(≡ no-load) bending and stretching stiffnesses of achiral graphene. These expressions permit to spot what

deformation mechanisms make graphene able to bear applied forces and couples, a piece of information that

we regard as important to try and build a continuum theory by way of homogenization.

To arrive at the representative quantitative results collected and discussed in Section 6, we choose the

same 2nd-generation Brenner potential as in [10].2 This potential is widely used in MD simulations for

carbon allotropes, such as graphene; for a detailed description of its general form and the one adopted in

our theory, the reader is referred to the Appendix B of [10]. Here we remark that the quantitative results

we obtain are plausible insofar the potential is; its calibration is then crucial. We learn from [4] that “the

database used for fitting the parameters in the pair interactions and the values of the bond order consists of

equilibrium distances, energies, and stretching force constants for single (from diamond), conjugated double

(from graphite), full double (from ethene), and triple (from ethyne) bonds”. As detailed in Section 6, our

results are in good agreement with DFT computations presented in [38], where axial strain up to 25% is

considered; we presume, but we cannot guarantee as now, in the absence of specific DFT confirmation, that

our results are realistic for very large curvature. We calculate numerically how bending stiffness (Fig.s 10

- 13), stretching stiffness (Fig.s 14 - 17) and nanostresses (Fig.s 18 - 24) depend on the axial strain and

curvature induced by the applied force F and couple C. As to the bending stiffness, we find that: (i) for

F = Fmax and C increasing from 0 to Cmax, it decreases till ≈ 19% (43%) in the armchair (zigzag) case; (ii)

for F = 0 and C increasing from 0 to Cmax, it decreases till ≈ 20% (23%) in the armchair (zigzag) case; (iii)

C = Cmax and F increasing from 0 to Fmax, it decreases till ≈ 35% (59%) in the armchair (zigzag) case;

1In this connection, we note that, reversing the force distribution shown in Fig. 1 does not necessarily induce hardening,
because the problem nonlinearity demands for a recalculation of the solution with a priori unpredictable effetcs.

2In fact, we repeat, our procedure is general enough to accommodate a variety of diehedral-angle sensitive REBO potentials;
consequently, it can be adopted to find out whether an intermolecular potential in the class specified by (19)-(20) does predict
the peculiar behavior of graphene predicted in [38].
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(iv) for C = 0 and F increasing from 0 to Fmax, it decreases till ≈ 36% (45%) in the armchair (zigzag) case.

As to the stretching stiffness, we find that, for C increasing from 0 to Cmax, bending makes graphene harder

to stretch when F = 0 and easier to stretch when F = Fmax; the regime transition occurs at the threshold

value F ' 6.5 nN/nm in the armchair case (F ' 12.3 nN/nm in the zigzag case), that is, at about 15%

(29%) of the fracture load. Moreover, (i) for F = Fmax and C increasing from 0 to Cmax, the stretching

stiffness decreases till ≈ 14% (13%) in the armchair (zigzag) case; (ii) for F = 0 and C increasing from 0 to

Cmax, it increases till ≈ 11% (38%) in the armchair (zigzag) case.

2 A brief survey of the literature

The literature about the mechanical modeling of C-atom complexes whose shape is reminiscent of one or

another type of macroscopic structure and whose dimensions are minuscules is vast: in addition to nan-

otubes, by far the most studied such minuscule structures, one encounters nanoropes, graphene nanoribbons,

nanoshells (a term at times used as alternative to nanutubes), etc.; what follows has no pretensions to

completeness, it only aims to exemplify the various modeling approaches that have been used.

The elastic properties of nanoropes and of single- and multi-wall carbon nanotubes (CNTs) have been

investigated in [25] by means of a lattice model adopting a pair-wise harmonic interatomic potential; in

[49], molecular dynamics (MD) simulations were performed, on adopting the Tersoff-Brenner potential; local

density approximation has been used in [43], and ab initio calculations relative to nanoshells are offered in

[22]; experimental values have been reported in [42, 24]. Discrete models have been employed since long

to predict the mechanical properties of CNTs: in [14], closed-form expressions for the elastic properties

of armchair and zigzag CNTs have been proposed; the model has been extended in [48] to study torsion

loading, with nonlinearities handled by means of a modified Morse potential. A similar approach has been

used in [37] to investigate various loading conditions, and in [45] to evaluate effective in-plane stiffness and

bending rigidity of CNTs. In [8], the model of [7] is extended to chiral CNTs, an issue addressed also in [9].

Computational methods have been presented in [28] for CNTs and in [15, 14, 16, 18, 17] for graphene and

grahene nanoribbons.

Various continuum theories have been proposed, with the same scope: in [50] a continuum theory of

single-wall CNTs has been presented, based on Tersoff-Brenner potential; in [1] the stretching and bending

stiffnesses of graphene have been investigated, by means of Tersoff-Brenner interatomic potential; in [19, 44]

the elastic properties of graphene and CNTs have been evaluated by means of a higher-order Cauchy-Born
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rule and of a Tersoff-Brenner potential; in [29], an equivalent-continuum modeling of nanostructured materials

has been adopted; and scale-bridging methods have been proposed in [6, 2, 12, 13].

As to single-layer graphene sheets, their nonlinear response to both in-plane and bending deformations

has been studied in [27] and their out-of-plane bending behavior has been investigated in [33, 32] with the

use a special equivalent atomistic-continuum model. In [51], the elastic properties of graphene have been

theoretically predicted on taking into account internal lattice relaxation. In [5], by combining continuum

elasticity theory and tight-binding atomistic simulations, a constitutive nonlinear stress-strain relation for

graphene stretching has been proposed. Atomistic simulations have been employed to investigate the elastic

properties of graphene in [31]. Based on the experiments performed in [23], the nonlinear in-plane elastic

properties of graphene have been calculated in [46], by means of DFT. A continuum theory of a free-standing

graphene monolayer, viewed as a two dimensional 2-lattice, has been proposed in [34, 35, 36], where the shift

vector, which connects the two simple lattices, is considered as an auxiliary variable.

To the best of our knowledge, the effects on graphene stiffness of simultaneously increasing axial and

bending loads have never been investigated by means of either first-principle calculations or MD. That

graphene’s bending stiffness decreases when graphene is stretched has been shown for the first time in

2012, in a paper where density functional theory (DFT) and bond-orbital-theory (BOT) calculations were

performed and found to provide consistent results [38]. A study of the bending stiffness of single-layer

graphene with an initial curvature has been presented in [21], where small-scale effects are accounted for

by the use of nonlocal elasticity. Very recently, in [30] and in [39], a continuum theory based on REBO

potentials has been proposed, in order to study the elastic properties of finitely-deformed graphene sheets;

the authors of [30], seemingly unaware of [38], claim that theirs is the first study where the effects of curvature

on stretching stiffness are considered.

Papers [38] and [30] are the closest antecedents of our study, in which the effects of concomitant stretching

and bending loads are examined in detail, both qualitatively and quantitatively, on the basis of the geomet-

rically and materially nonlinear mechanical model we propose. In the first of those papers, the reported

results are the output of DFT and BOT computations; neither the dependence of the bending stiffness on

the amount of bending is evaluated nor the stretching stiffness is considered; the focus is on how bending

stiffness depends on stretching in the absence of bending loads: it is shown that softening does occur, a

prediction of our model that we use to validate it by comparison. The influence of a modest amount of

curvature on stretching stiffness has been considered in [30], within the framework of a continuum theory

and in the absence of stretching loads; a 2nd-generation Brenner potential is adopted, but dihedral contribu-
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tions are neglected and the potential is not re-parameterized to compensate for this shortage. That dihedral

contributions are important was pointed out in [26] and [10], and it is made evident by our equation (40),

that displays a direct dependence of the bending stiffness, even in the absence of any loads, on the dihedral

stiffness and the bond-angle selfstress.

3 A discrete mechanical model for graphene

In this section, we introduce the geometrical, constitutive, and equilibrium-related, general features of our

model. As anticipated, the solutions of the bending and stretching problems we solve will be discussed in

detail in Section 4 for an armchair sheet, and in Section 5 for a zigzag sheet.

3.1 Order parameters

The kinematic variables we consider are associated with the interactions of a given atom with its first, second

and third nearest neighbours. Precisely, with reference to the typical chain of four atoms depicted in Fig.

2, consisting of atom H and its nearest neighbours I, J , and K, we consider: (i) bond lengths, namely, the

H

I J

K

Figure 2: A four-atom chain in a hexagonal lattice.

lengths of the covalent bonds between two successive atoms, such as H and I; (ii) bond angles, namely,

the angles between two successive bonds, such as H − I and I − J ; (iii) dihedral angles, namely, the angles

between the planes spanned by two pairs of successive bonds, such as the plane spanned by H − I and I −J

and the plane spanned by I − J and J −K.

In its unloaded ground configuration, the graphene sheet we consider has the form of a rectangle (see

Fig. 3), whose sides are aligned with, respectively, the armchair and zigzag directions 1 and 2; this rectangle

consists of n1 hexagonal cells in direction 1 and n2 cells in direction 2. With reference to the representative

cell A1B1A2B3A3B2A1, a denotes the length of sides A1B1 and A3B3, and b the length of the remaining

four sides; morever, bond angles are of α-type, such as e.g. Â3B2A1, and of β-type, such as B̂2A1B1; finally,
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B3

(or              )

(or              )

(or              )

Figure 3: A rectangular graphene sheet.

there are only five types of dihedral angles, denoted by (Θ1, . . . ,Θ5), to be individuated with the help of the

colored bond chains. The information carried by a 9-entry substring

ξsub := (a, b, α, β,Θ1, . . . ,Θ5) (1)

is enough to determine the deformed configuration of a representative hexagonal cell. In principle, the whole

sheet’s order-parameter string ξ consists of an exhaustive and non-redundant sequence of cell substrings; in

practice, as we shall see in Sections 4 and 5, the symmetries enjoyed by the equilibrium problems we study

are such that the convenient kinematical unknown turns out to be a string q of Lagrangian coordinates

shorter than ξsub.

3.2 Energetics and equilibria

When attention is confined to traction loads as in Fig. 1, a string q of Lagrangian coordinates is enough to

determine the energetic cost of load-induced changes in bond lengths, bond angles and dihedral angles of

achiral graphene sheets; this fact, that we anticipated in closing the previous subsection, will be made clear

in Sections 4 for armchair sheets and in Section 5 for zigzag sheets.
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The constitutive information about atom interactions is embodied in a a stored-energy functional V =

Ṽ (ξ) of the REBO class, to be specified in Section 4.2; given the mapping q 7→ ξ = ξ̂(q), we set:

V = V̂ (q), with V̂ = Ṽ ◦ ξ̂ . (2)

For f the generalized dead load work-conjugated to the generalized displacement d̂(q), the load potential

takes the form:

P̂ (q) := f · d̂(q) . (3)

The equilibrium configurations are the stationary points of the functional

W = Ŵ (q) := V̂ (q)− P̂ (q) . (4)

An equilibrium point q0 satisfies the condition:

δW = ∂q V̂ (q0) · δq −
(
∂q d̂(q0)

)T
f · δq = 0 for all variations δq = q − q0, (5)

with

∂q V̂ (q0) · δq =
(
∂q ξ̂(q0)

)T
∂ξṼ (ξ0) · δq = ∂ξṼ (ξ0) ·

(
∂q ξ̂(q0)

)
δq , ξ0 = ξ̂(q0) .

We set χ̃ := ∂ξṼ , and call χ = χ̃(ξ) the stress mapping, in that, for δξ := ξ − ξ0 the strain increment in

passing from the configuration ξ0 to the configuration ξ, the quantity

δV = χ · δξ (6)

can be regarded as the incremental stress power, that is, the expenditure of internal power associated with

a strain increment. We also set B̂ := ∂q ξ̂, and call B̂ the kinematic compatibility operator, in that

δξ = B̂(q)δq .

Finally, we call Â := B̂T the equilibrium operator, and note that (5) holds if and only if

Â(q0)χ̃(ξ0) =
(
∂q d̂(q0)

)T
f . (7)
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4 Armchair graphene

In the first two parts of this section we pose the equilibrium problem of an armchair graphene sheet acted

upon by such couple and force distributions as depicted in Fig. 4. Our main concern is to assess whether

traction loads induce a reduction in the bending and in the stretching stiffnesses the graphene sheet exhibits

in their absence ; the preparatory developments to settle this issue in the affirmative in Section 6 are the

contents of Subsection 4.3; the bending stiffness when traction loads are null is evaluated in Subsection 4.5.

The analysis in Subsections 4.1 and 4.2 is general enough to evaluate the effects of any combination of

distributed couple and force loads; in particular, in the last subsection we determine the effects of couple

loads on stretching stiffness and we evaluate the latter explicitly when those loads are null; that non-null

couple loads induce hardening of stretching stiffness will be shown in Section 6.

4.1 Loads and geometry

The bending loads applied to the undeformed rectangular sheet sketched in the leftmost part of Fig. 4 consists

of two equal and opposite sets of uniformly distributed couples, whose axes are aligned with direction 2,

applied over the two sides of the sheet parallel to direction 2 itself; C is the magnitude of the resultant

moment of both couple sets. Moreover, equal and opposite sets of uniformly distributed forces parallel

to direction 2, whose resultant magnitude is F , are applied over the two sides of the rectangle parallel to

direction 1.3

1

2

C C

1

3

Á

CC

F

F

2 1

3

Figure 4: Bending and stretching an armchair graphene sheet.

The monolayer graphene piece we consider is in its ground configuration (GC) when both C and F are

null, all atoms lie on the same plane, all bond lengths have the ground length r0,4 all bond angles are

3Couples and forces are uniformly distributed in a discrete sense.
4The value of this parameter depends slightly on the intermolecular potential of one’s choice; for the 2nd-generation Brenner
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equal to θ0 = 2π/3, and all dihedral angles are null; we assume that the stored-energy functional Ṽ has a

global minimum in the GC. When at least one of C and F is non-null, the graphene piece is in a deformed

configuration (DC). No matter if F is null or not, when C 6= 0 we have that: (i) all atoms lie on the lateral

surface of a right cylinder, whose axis is parallel to direction 2; (ii) each plane orthogonal to the cylinder’s

axis and passing through an atom is a plane of both reflection and periodic symmetry for atomic positions;

(iii) the axis of the cylinder is an axis of one-cell periodic polar symmetry for atomic positions, and any

plane through this axis and an atom is a plane of reflection symmetry. Consequently, in a DC there are only

two inequivalent bond length a and b, two inequivalent bond angles α and β, and three inequivalent dihedral

angles, Θi (i = 1, 2, 3), while the two remaining dihedral angles keep the GC value Θ0 = 0.

With reference to Fig. 5, let ϕ be the angle between the plane of A1, B1, and B3 and the plane of B1, A2,

®

¯ a

b

1

2

'

B

B

'

3

A

A

A

B

HH

3

2
2

1 1

2
¶

A2
¶

A2
¶¶

B3

'

2'

¶

2'

Figure 5: The deformed cell of an armchair graphene sheet.

and B3 and, this time with reference to the rightmost sketch in Fig. 4, let Φ be the angle at center subtended

by the deformed sheet; then,

Φ = 2n1ϕ . (8)

Moreover, for geometric compatibility, the bond angles α and β must satisfy the following condition:

cosβ = − cos
α

2
cosϕ , (9)

potential we use later on in our computations, r0 = 0.14204 nm.
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whence

β = β̃(α,ϕ) := arccos
(
− cos

α

2
cosϕ

)
. (10)

Finally, the dihedral angles can be expressed in terms of α and β with the use of the following relations:

sinβ sin
Θ1

2
= cos

α

2
sinϕ , sinβ sin Θ2 = sinϕ , Θ3 = 2 Θ2 , Θ4 = Θ5 = 0 , (11)

whence expressions for Θ1 = Θ̃1(α,ϕ) and Θ2 = Θ̃2(α,ϕ) follow.

With the help of Figure 6, it is not difficult to see that the following geometric compatibility relation

holds:

Figure 6: Local geometry of a deformed armchair graphene sheet.

ρa sinϕ =
b

2
cos

α

2
+
a

2
cosϕ , (12)

where ρa is the distance of an a-type bond from the cylinder’s axis; moreover,

ρ =

√
ρ2
a +

a2

4
, (13)

where ρ denotes the cylinder’s radius; hence, the current curvature κ := 1/ρ has the expression

κ =

(
ρ2
a +

a2

4

)−1/2

, ρa = (sinϕ)−1

(
b

2
cos

α

2
+
a

2
cosϕ

)
. (14)
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Moreover, the current lengths of the rectangle’s sides are given by:

λ1 =

(
1− b

a
cosβ

)
n1 a, in direction 1,

λ2 = 2n2 b sin
α

2
, in direction 2;

(15)

as an axial deformation measure we take

ε =
λ2 − λ2,0

λ2,0
, λ2,0 =

√
3n2r0, (16)

where λ2,0 denotes the GC length of the rectangle’s side in direction 2, whence

ε =
2√
3

b

r0
sin

α

2
− 1 . (17)

4.2 Equilibrium conditions

Let na, nb, nα, nβ , and nΘi (i = 1, 2, 3), be the number of bond lengths, bond angles, and dihedral angles, of

the same type; it is the matter of a simple count to find:

na ' n1n2, nb = 2n1n2, nα ' 2n1n2, nβ = 4n1n2,

nΘ1
= 2na, nΘ2

= 2nb, nΘ3
= nb, nΘ4

= nb, nΘ5
= 2na

(18)

(in the above expression, terms which are linear in n1 or n2, two very large integers, have been neglected).

Firstly, we specify as follows the stored-energy functional introduced in equation (2):

V = naVa + nbVb = n1n2(Va + 2Vb) , (19)

where

Va(a, β,Θ1) = VR(a) + ba(β,Θ1)VA(a) ,

Vb(b, α, β,Θ2,Θ3,Θ4) = VR(b) + bb(α, β,Θ2,Θ3,Θ4)VA(b) .

(20)

As is typical of REBO potentials, VR and VA are, respectively, the repulsive and attractive ingredients of

V , and ba, bb are the bond-order mappings, each of which depends on some, but not all, of the geometric
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parameters. In the present case of armchair bending, with slight notational abuse, we set:

V = Ṽ (ξ) := naVa(a, β,Θ1) + nbVb(b, α, β,Θ2,Θ3, 0), ξ := (a, b, α, β,Θ1,Θ2,Θ3, 0, 0); 5 (21)

due to the geometric conditions (9) and (11), the 9-entry string ξsub in (1) is determined by the 4-entry

string q = (a, b, α, ϕ) (recall the anticipations given in Sections 3.1 and 3.2).

Secondly, we specify as follows the load potential introduced in equation (3):

P = F (λ− λ0) + C Φ, (22)

where the loads f ≡ (F,C), are associated to the generalized displacement

d̂(q) ≡
(
δλ̂(b, α), δΦ̂(ϕ)

)
,

δλ̂(b, α) = λ− λ0 = 2n2 b sin
α

2
− λ0, δΦ̂(ϕ) = Φ = 2n1ϕ

(here we have made use of (15) and (8)).

We are now in a position to write explicitly the stationarity condition (7) of potential Ŵ . Under the

present circumstances, the equilibrium operator takes the form of a 4× 7 matrix:

[
A

]
=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 β,α Θ1,α Θ2,α 2Θ2,α

0 0 0 β,ϕ Θ1,ϕ Θ2,ϕ 2Θ2,ϕ


, (23)

and the stress-mapping string χ consists of the following seven entries:

[χ ]
T

= [na σa nb σb nα τα nβ τβ nΘ1
T1 nΘ2

T2 nΘ3
T3] . (24)

5Here we have taken relations (11)4,5 into account; later on, when we deal with zigzag bending, we shall use another

specialization of (19) and (20).
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All in all, in view of (18) and (11)3, the equilibrium equations (7) now read:

σa = 0 , (25)

σb −
F

n1
sin

α

2
= 0 , (26)

τα + 2τββ,α +Θ1,α T1 + 2Θ2,α (T2 + T3)− 1

2

F

n1
b cos

α

2
= 0 , (27)

2τββ,ϕ +Θ1,ϕ T1 + 2Θ2,ϕ (T2 + T3)− C

n2
= 0 . (28)

We call each of σa, σb, τα, τβ , and Ti (i = 1, 2, 3), a nanostress. Nanostresses are work-conjugate to changes

of, respectively, a- and b-bond lengths, α and β bond angles, and dihedral angles, and depend as follows

from the order parameters:

σa = V ′R(a) + ba(β,Θ1)V ′A(a) , σb = V ′R(b) + bb(α, β,Θ2, 2Θ2, 0)V ′A(b) , (29)

τα = bb,α(α, β,Θ2, 2Θ2, 0)VA(b) , τβ =
1

4

(
ba,β(β,Θ1)VA(a) + 2bb,β(α, β,Θ2, 2Θ2, 0)VA(b)

)
, (30)

T1 =
1

2
ba,Θ1(β,Θ1)VA(a) , T2 =

1

2
bb,Θ2(α, β,Θ2, 2Θ2, 0)VA(b) , T3 =

1

2
bb,2Θ2(α, β,Θ2, 2Θ2, 0)VA(b)(31)

(in the first two of these relations an apex signifies differentiation). Combination of (29)-(31) with (10)

and (11)1,2, followed by substitution into (25)−(28), gives a nonlinear system of four equations in the four

unknowns (a, b, α, ϕ), whose solution is unique under reasonable assumptions on the constitutive mappings

VR, VA, ba and bb,
6 a system generally too difficult to be solved analytically but solvable numerically for any

given load pair (C,F ).

4.3 Stretching-induced softening of bending stiffness

In the framework of structure mechanics, bending stiffness is a constitutive/geometric notion, intended to

measure a structure’s sensitivity to bending whatever the loads: e.g., in the standard one-dimensional linear

theory of rods, the bending stiffness EJ , where E is the Young’s modulus and J the cross-section’s inertia,

equals the moment-to-curvature ratio M/κ; its inverse (EJ)−1 is the bending compliance. In the present

context, the role of stiffness or compliance notions is different: although they all incorporate constitutive and

geometric information, they tell us about a structure’s response to a given system of loads and are expressed

in terms of the solution to the relative equilibrium problem. Had we at our disposal an analytic expression

6For an example of such assumptions, which are fulfilled by the stored-energy functional we will use to obtain the represen-
tative results reported in Section 6, see [10].



Graphene, bent and stretched 17

for the part ϕ = ϕ̂(C,F ) of the solution to the armchair-bending problem, our task would be easy: in view

of (8), we would set

Φ = Φ̂(C,F ) := 2n1ϕ̂(C,F )

and define the bending compliance of a graphene sheet to be

γ̂(C,F ) := ∂CΦ̂(C,F ),

with

∂F γ̂(C,F ) := ∂
(2)
FCΦ̂(C,F )

the relative stretching sensitivity: the sign of this second derivative would tell us whether an axial traction

induces softening or hardening of the sheet’s bending stiffness. Unfortunately, we cannot count on an explicit

knowledge of ϕ̂. We then take a different and less direct path.

When combined with (29)-(31) and (15)2, equation (28) can be used to define a mapping C̃ delivering

the couple per unit current length:

C = C̃(a, b, α, β,Θ1,Θ2) :=
(

2b sin
α

2

)−1 (
2τββ,ϕ +T1Θ1,ϕ +2(T2 + T3)Θ2,ϕ

)
. (32)

Now, in view of the geometric relations (10) and (11)1,2, each of the variables β, Θ1 and Θ2 depends

in a known manner on the pair (α,ϕ). Consequently, (i) in view of the equilibrium equation (25) and

the constitutive equation (29)1, variable a too depends in a known manner on (α,ϕ); (ii) in view of the

equilibrium equation (26) and the constitutive equation (29)(29)2, variable b depends in a known manner on

(α,ϕ) and the datum F : we provisionally have from (32) that

C = C̃
(
ã(α,ϕ), b̃(α,ϕ, F ), α, β̃(α,ϕ), Θ̃1(α,ϕ), Θ̃2(α,ϕ)

)
. (33)

Furthermore, in view of the dependences detailed just above, (iii) when combined with the constitutive

equations (30), the equilibrium equation (27) takes the form of a restriction on the triplet (α,ϕ, F ); (iv)

the geometric relation (14) takes the form of a restriction on the triplet (α,ϕ, κ), where, we recall, κ is the

current curvature; (v) the system of these two restrictions provides implicit representations in terms of the
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pair (κ, F ) for both α and ϕ. In conclusion, we have from (33) that

C = Ĉ(κ, F ) := C̃
(
ã(α,ϕ), b̃(α,ϕ, F ), α, β̃(α,ϕ), Θ̃1(α,ϕ), Θ̃2(α,ϕ)

)
, α = α̃(κ, F ), ϕ = ϕ̃(κ, F ). (34)

For the bending stiffness of an armchair graphene sheet loaded as indicated in Fig. 4 we take

D = D̂(κ, F ) := ∂κĈ(κ, F ); (35)

the derivative of D̂ with respect to F :

S = Ŝ(κ, F ) := ∂F D̂(κ, F ) = ∂
(2)
FκĈ(κ, F ) (36)

measures the sensitivity of the bending stiffness to the applied traction:

(C1) stretching-induced softening of the bending stiffness occurs whenever S < 0.

We point out that these derivatives can be analytically determined, possibly with the help of a symbolic

manipulator, but the task of evaluating them in correspondence of the solution of a given equilibrium problem

can be achieved only numerically; this we have done, and our findings are presented in Sec. 6.1. To evaluate

the pristine bending stiffness of an armchair graphene sheet – that is, its bending stiffness for null force loads

and small angle ϕ – turns out to be a much easier task, undertaken in the next section.

4.4 Pristine bending stiffness

We consider an armchair graphene sheet in its ground configuration (GC). In addition to setting F = 0

in the equilibrium equations (26) and (27), we approximate all ϕ-dependences detailed just after equation

(32) by their first-order expansion in ϕ itself; combination of these two measures eliminates any need for

numerical calculations. Our developments are sketched hereafter.

To begin with, note that the first-order expansion in ϕ of (14) is:

κ0 :=
4

3
r0
−1ϕ. (37)

In view of (32) and (35), we have that, respectively,

C0 = (
√

3 r0)−1
(
2τββ,ϕ +T1Θ1,ϕ +2(T2 + T3)Θ2,ϕ

)∣∣∣
GC

(38)
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and

D0 := (ϕ,κ ∂ϕC)
∣∣∣
GC

=

√
3

4
∂ϕ
(
2τββ,ϕ +T1Θ1,ϕ +2(T2 + T3)Θ2,ϕ

)∣∣∣
GC
, (39)

where the indicated evaluations at the ground configuration are understood in the sense of small angles ϕ.

Recourse to the constitutive equations (29)-(31), after some simple calculations that we here omit, yields the

following formula:

D0 = −1

2
τ0 +

7√
3
ν, (40)

where

τ0 := τα

∣∣∣
GC

= τβ

∣∣∣
GC

is the bond-angle self-stress – that is, the ground value of the nanostress work-conjugated to bond-angle

changes – and ν is the dihedral stiffness in GC – that is, the ground value of the nanostress work-conjugated

to a unit change in dihedral angle:

Ti
∣∣∣
GC

= νΘi

∣∣∣
GC
, (i = 1, 2, 3).

When, as we do in Sec. (6), we specialize the above results for the case of a 2nd-generation Brenner

potential, we find that ν= 0.0282596 nN×nm; moreover, we import from [10] the value τ0 = −0.2209

nN×nm for the bond-angle self-stress. The resulting GC bending stiffness has a value in complete agreement

with what is found in the literature [26, 47], namely,

D0 = 0.22466 nN×nm = 1.4022 eV. (41)

We point out that, in absence of the dihedral contribution, the bending stiffness is about one half of the above

value. Such an incorrect evaluation is inevitable, as remarked in [26], in case of MD simulations based on

potentials that do not account for third-neighbour interactions (e.g., the 1st-generation Brenner potential).

4.5 Bending-induced hardening of stretching stiffness

In this subsection we parallel as much as we can the developments in the previous one. Just as we did to lay

down equation (32) for the couple per unit current length, we begin by observing that, when combined with

(30)-(31) and (15), equation (26) can be used to define a mapping F̃ delivering the force per unit current
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length:

F = F̃(a, b, α, β,Θ1,Θ2) := σb

((
1− b

a
cosβ

)
sin

α

2

)−1

(42)

We continue by noting that, in view of the geometric relations (10) and (11)1,2, each of the variables β, Θ1

and Θ2 depends in a known manner on the pair (α,ϕ). Consequently, (i) in view of the equilibrium equation

(25) and the constitutive equation (29)1, variable a too depends in a known manner on (α,ϕ); (ii) in view

of the equilibrium equation (27) and the constitutive equation (29)2, variable b depends in a known manner

on (α,ϕ) and the datum C. Thus, we provisionally have from (42) that

F = F̃
(
ã(α,ϕ), b̃(α,ϕ,C), α, β̃(α,ϕ), Θ̃1(α,ϕ), Θ̃2(α,ϕ)

)
. (43)

Furthermore, in view of the dependences detailed just above, (iii) the equilibrium equation (27), when com-

bined with the constitutive equations (30) and the equilibrium equation (26), takes the form of a restriction

on the triplet (α,ϕ,C); (iv) the geometric relation (16), combined with (15), takes the form of a restriction

on the triplet (α,ϕ, ε), where, we recall, ε is the axial strain; (v) the system of these two restrictions provides

implicit representations in terms of the pair (ε, C) for both α and ϕ. All in all, we have from (43) that

F = F̂(ε, C) := F̃
(
ã(α,ϕ), b̃(α,ϕ,C), α, β̃(α,ϕ), Θ̃1(α,ϕ), Θ̃2(α,ϕ)

)
, α = α̃(ε, C), ϕ = ϕ̃(ε, C). (44)

For the stretching stiffness of an armchair graphene sheet loaded as indicated in Fig. 4 we take

Y = Ŷ(ε, C) := ∂εF̂(ε, C); (45)

the derivative of Ŷ with respect to C:

H = Ĥ(ε, C) := ∂CŶ(ε, C) = ∂
(2)
Cε F̂(ε, C) (46)

measures the sensitivity of the stretching stiffness to the applied couple:

(C2) bending-induced hardening of the stretching stiffness occurs whenever H > 0.

4.6 Pristine stretching stiffness

By pristine stretching stiffness of an armchair graphene sheet we mean its GC stretching stiffness, for null

couple loads and small strain ε in direction 2. In the flat ground configuration, ϕ = 0 and Θ1 = Θ2 = 0, and
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the relevant equilibrium equations are (25), (26) and (27), which, with the use of (26), takes the following

form:

τα + 2τβ β,α−
1

2
σb b cot

α

2
= 0. (47)

Furthermore, equation (26), together with the constitutive assumptions (29)-(30) and the geometric condi-

tions (9) and(11)1,2, allows to define the load per unit length as a function of b and α:

F0 =
F

λ1,0
=

4

3
√

3r0

σb(b, β̃(α), α) = F̃(b, α); (48)

where use has been made of the fact that the GC side length in direction 1 is

λ1,0 =
3

2
n1r0.

Equations (17), (25), and (47), together with the constitutive assumptions (29)1-(30), implicitly define each

of a, b, and α, as a function of ε. All in all, we have from (48):

F0 = F̂0(ε) = F̃0

(
b(ε), α(ε)

)
; (49)

whence the following notion of GC stretching stiffness:

Y0 = ∂εF̂0(ε) = ∂bF̃0

(
b(ε), α(ε)

)
∂εb(ε) + ∂αF̃0

(
b(ε), α(ε)

)
∂εα(ε) (50)

(hereafter, although not indicated in the interest of notational lightness, evaluation at GC has to be under-

stood). As to the partial derivatives of F̃0 in (50), we have:

∂bF̃0 =
4

3
√

3r0

κb, κb = σb,b ,

∂αF̃0 =
4

3
√

3 r0

(
µbα −

1

2
µbβ

)
, µbα = σb,α , µbβ = σb,β ;

(51)
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as to the other partial derivatives in (50), on taking again into account equations (17), (25), (47), and

(29)1-(30), we have via some cumbersome calculations that we prefer to omit that

∂εb =
12 r0κaλα + 6 r0κaλβ −

√
3 r2

0κaµbα − 6 r0κaµαβ − 6 r0µaβµβa − 12 r0κaµβα

r2
0κaκb + 12κaλα + 6κaλβ − 3

√
3 r0κaµbα − 6κaµαβ − 6µaβµβa + 2

√
3 r0κaµβb − 12κaµβα

,

∂εα =
2r0κa(

√
3r0κb − 6µbα + 6µβb)

r2
0κaκb + 12κaλα + 6κaλβ − 3

√
3r0κaµbα − 6κaµαβ − 6µaβµβa + 2

√
3r0κaµβb − 12κaµβα

,

(52)

where we have set

κa = σa,a , µaβ = σa,β , µαb = τα,b , µβb = τβ ,b ,

λα = τα,α , µαβ = τα,β µβα = τβ ,α , λβ = τβ ,β .

(53)

By combining (51) and (52), we arrive at:

Y0 =
4

3
√

3

κa

(
− 6µbα(µbα − µβb + κb

(
12λα + 6λβ − 6 (µαβ + 2µβα)

))
− 6κbµaβµβa

√
3 r0κa(3µbα − 2µβb)− r2

0κaκb + +6
(
µaβµβa + κa(−2λα − λβ + µαβ + 2µβα)

) . (54)

This expression shows that the stretching stiffness depends in a complicated way on the bond-length stiffnesses

κa and κb, on the bond-angle stiffnesses λα and λβ and on the four coupling stiffnesses denoted by the kernel

letter µ, but it does not depend on self-stress; not surprisingly, dihedral stiffness has no role. Among other

things, this result should be kept in mind in the perspective of putting together a proper homogenized theory.

When, as we do in Sec. (6), we specialize the above results for the case of a 2nd-generation Brenner

potential, we find that

Y0 = 242.924 nN/nm,

a result in complete agreement with the literature (cf. [1, 20, 27], where the value 243 nN/nm is computed

on adopting the 2nd-generation Brenner potential, by an approach completely different from ours). If Y0 is

divided by the nominal thickness t = 0.34 nm usually adopted in the literature to evaluate graphene’s Young

modulus, the value 714.482 GPa is obtained.

5 Zigzag graphene

In this section we repeat the developments of the previous one, with the few changes made necessary by the

different interplay between loads and geometry, so as to arrive at a complete formulation of the equilibrium

problem for a zigzag graphene sheet.
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5.1 Loads and geometry

Compare Fig. 7 with Fig. 4: side couples and forces have been switched, so that now C (F ) is the magnitude

1

2

2

3

CC

F

F

1

2

3

C C

Á

Figure 7: Bending and stretching a zigzag graphene sheet.

of the resultant of each set of uniformly distributed couples (forces) acting along direction 1 (1), applied

to the sides parallel to direction 1 (2). In view of symmetry properties that can be exploited in the same

way as before, there are two inequivalent bond-lengths, two inequivalent bond-angles, and three (out of five)

non-null inequivalent dihedral angles. The definitions of a, b, α, and β, remain the same, and the count of

the dihedral angles associated to the two types of bonds gives the same result.

The geometric conditions involving the order parameters are different from those holding in the armchair

case. Let ϕ denote the angle between planes (1-2) and A1B1A2 (see Fig. 8,); with reference to the rightmost

Figure 8: The deformed cell of a bended sheet in Z-direction.
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sketch in Fig. 7, we find that

Φ = 2n2ϕ . (55)

The geometric compatibility condition for bond angles is:

sinβ cos
ϕ

2
= sin

α

2
, (56)

whence

β = β̃(α,ϕ) := π − arcsin

 sin
α

2

cos
ϕ

2

 ; (57)

finally,

Θ1 = ϕ , sinα sin Θ2 = sinβ sinϕ , Θ3 = 0 , Θ4 = 2 Θ2 , Θ5 = 0 . (58)

With the help of Fig. 9,

A3

A1

Figure 9: Local geometry of a sheet bended in Z-direction.

it is not difficult to see that the radius of curvature of a sheet bent in Z-direction is:

ρ =
sinβ

2 sinϕ/2
b ; (59)

the current curvature κ := 1/ρ has the expression

κ =

(
sinβ

2 sinϕ/2
b

)−1

. (60)
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As a measure of axial deformation we take

ε =
λ1 − λ1,0

λ1,0
, λ1,0 =

3

2
n1r0, (61)

where λ1,0 denotes the GC length of the rectangle’s side in direction 1; therefore,

ε =
2

3

a

r0
(1− b/a cosβ). (62)

5.2 Equilibrium conditions

By the same procedure as in Section 4.2, the following equilibrium equations are obtained:

σa −
F

n2
= 0 , (63)

σb +
F

2n2
cosβ = 0 , (64)

τα + 2τββ,α +2Θ2,α (T2 + T4)− 1

2

F

n2
bβ,α sinβ = 0 , (65)

2τββ,ϕ +T1 + 2Θ2,ϕ (T2 + T4)− C

n1
= 0 ; (66)

the constitutive equations for the nanostresses are:

σa = V ′R(a) + ba(β,Θ1)V ′A(a) , σb = V ′R(b) + bb(α, β,Θ2, 0, 2Θ2)V ′A(b) , (67)

τα = bb,α(α, β,Θ2, 0, 2Θ2)VA(b) , τβ =
1

4

(
ba,β(β,Θ1)VA(a) + 2bb,β(α, β,Θ2, 0, 2Θ2)VA(b)

)
, (68)

T1 =
1

2
ba,Θ1

(β,Θ1)VA(a) , T2 =
1

2
bb,Θ2

(α, β,Θ2, 0, 2Θ2)VA(b) , T4 =
1

2
bb,2Θ2

(α, β,Θ2, 0, 2Θ2)VA(b) .(69)

5.3 Stretching-induced softening of bending stiffness

When combined with (68)-(69) and (15)1, equation (66) can be used to define a mapping C̃ delivering the

couple per unit current length:

C = C̃(a, b, α, β,Θ1,Θ2) :=

(
1− b

a
cosβ

)−1 (
2τββ,ϕ +T1 + 2Θ2,ϕ (T2 + T4)

)
. (70)

This relation can be given a form parallel to (34), that is, the form of a function that delivers C as a function

of κ and F .

To begin with, note that (70) admits a formal expression identical to (33), as the consequence of the
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combined implications of the following facts:

(i) in view of the geometric relations (57) and (58)1,2, each of the variables β, Θ1 and Θ2 depends in a known

manner on the pair (α,ϕ);

(ii) in view of the equilibrium equation (63) and of the constitutive equation (67)1, variable a too depends

in a known manner on (α,ϕ);

(iii) in view of the equilibrium equation (64) and the constitutive equation (67)2, variable b depends in a

known manner on (α,ϕ) and the datum F .

Furthermore, on taking into account the dependences detailed just above,

(iv) when combined with the constitutive equations (68), the equilibrium equation (65) takes the form of a

restriction on the triplet (α,ϕ, F );

(v) the geometric relation (60) takes the form of a restriction on the triplet (α,ϕ, κ), where, we recall, κ is

the current curvature;

(vi) the system of these two restrictions provides implicit representations in terms of the pair (κ, F ) for both

α and ϕ.

In conclusion, an expression of type (34) is arrived at or the mapping (κ, F ) 7→ C. With such a mapping

at hand, we can again define as in (35) the bending stiffness, and its sensitivity to applied tractions as in

(36), so that condition (C1) of Section 4.3 continues to hold; the same is true for formula (40).

5.4 Bending-induced hardening of stretching stiffness

When combined with (68)-(69), equation (64) can be used to define a mapping F̃ delivering the force per

unit current length:

F = F̃(a, b, α, β,Θ1,Θ2) := −2σb

(
2 b sin

α

2
cosβ

)−1

. (71)

Again, in view of the geometric relations (57) and (58)1,2, each of the variables β, Θ1 and Θ2 depends in a

known manner on the pair (α,ϕ). Consequently,

(i) in view of the equilibrium equation (63) combined with (64) and the constitutive equation (67)1, variable

a depends in a known manner on (α,ϕ);

(ii) in view of the equilibrium equation (65) and the constitutive equation (67)2, variable b depends in a

known manner on (α,ϕ) and the datum C.

Thus, we provisionally have from (71) a formal expression identical to (43). Furthermore, in view of the

dependences detailed just above,
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(iii) the equilibrium equation (65), when combined with the constitutive equations (68) and the equilibrium

equation (64), takes the form of a restriction on the triplet (α,ϕ,C);

(iv) the geometric relation (61), when combined with (15)2, takes the form of a restriction on the triplet

(α,ϕ, ε), where, we recall, ε is the axial strain;

(v) the system of these two restrictions provides implicit representations in terms of the pair (ε, C) for both

α and ϕ.

All in all, we have an implicit representation for F as a function of (ε, C), as in (44). Therefore, we are

in a position to define the stretching stiffness as in (45) and its sensitivity to applied couples as in (46), as

well as to state condition (C2) as in Section 4.5; moreover, formula (54) still holds true.
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6 Numerical results

In this section we collect a set of representative results and compare them with those in the literature, when

available. In our computations, we choose a 2nd-generation Brenner potential, the same as in [10]; the

applied traction load ranges from 0 to a value Fmax approximately equal to 2/3 of graphene’s fracture load

('42 nN/nm, according to [23]) and the applied couple ranges from 0 to a value Cmax that induces a large

curvature, approximatively equal to that of a (6-6) armchair CNT or of a (10-0) zigzag CNT.

6.1 Stretching-induced softening of bending stiffness

By definition (recall equation (35)), D, the bending stiffness, is a function of curvature κ and applied load

F . In the light of (14) (for the armchair direction) and of (60) (for the zigzag direction), κ can be regarded

as a function of the order-parameter list {a, b, α, ϕ} that solves either system (25)-(31) (for the armchair

direction) or system (63)-(69) (for the zigzag direction); and, such solution depends on the assigned data

(C,F ). Therefore, D is expressible as a function of (C,F ), whose level curves are depicted in Fig. 10; the
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Figure 10: Level curves of bending stiffness as a function of curvature and applied traction load, armchair
(left) and zigzag (right).

same is true for the axial stretch ε, with the use of either (17) (for the armchair direction) or (62) (for the

zigzag direction).

Fig. 11 is a plot of D = D(C,F ) vs. ε = ε(C,F ), for a discrete set of values of the applied couple C

and for both directions, armchair and zigzag; here and in Fig. 12 the color code is: blue, C = 0; green,

C = 0.233 eV; orange, C = 0.346 eV; pink, C = 0.467 eV; cyan, C = 0.587 eV; red, C = Cmax = 0.7 eV.
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Figure 11: Bending stiffness D versus axial strain ε, armchair (left) and zigzag (right).

Two concurrent effects can be individuated: whatever the value of parameter C, D decreases when (F and

hence) ε increases; and, for each fixed value of ε, D decreases for increasing values of C. That graphene is

softer to bend when stretched is also illustrated by Fig. 12, where the softening measure S is plotted as a
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Figure 12: Softening measure S versus axial strain ε, armchair (left) and zigzag (right).

function of ε for the same set of values of parameter C as in Fig. 11: at first glance, we see that S is always

negative for both directions, armchair and zigzag; we also see that, in the zigzag case, the 2nd-generation

Brenner potential predicts an unexpected jump of S for C = Cmax (red curve).

As a complement to the quantitative information about the bending stiffness summarized in Fig. 11, we

point out that

(i) for F = Fmax, increasing the applied couple produces a decreasing up to ≈ 19% in the armchair case

and ≈ 43% in the zigzag case;
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(ii) for F = 0, increasing the applied couple produces a decreasing up to ≈ 20% in the armchair case and

≈ 23% in the zigzag case;

(iii) for C = Cmax (red curve), increasing the stretching load produces a decreasing up to ≈ 35% in the

armchair case and ≈ 59% in the zigzag case;

(iv) for C = 0 (blue curve), increasing the stretching load up produces a decreasing up to ≈ 36% in the

armchair case and up to ≈ 45% in the zigzag case. These results can be compared with those obtained

by the use of DFT and BOT in [38], namely, a reduction of about 35% (armchair) and 44% (zigzag)

of the pristine bending stiffness D0, whose estimated value is however quite higher than according to

both our theory and MD computations, namely, 1.5292 eV instead of 1.4022 eV.

In Fig. 13, bending stiffness is plotted vs. curvature for a discrete set of values of the stretching force; the

color code is: blue, F = 0; light blue, F = 4.474 nN/nm; green, F = 8.681 nN/nm; orange, F = 12.895

nN/nm; pink, F = 17.367 nN/nm; cyan, F = 21.836 nN/nm; red, F = 26.050 nN/nm. This figure shows

that increasing (the applied couple and hence) the curvature makes the bending stiffness decrease, with a

concurring softening effect.
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Figure 13: Bending stiffness D versus curvature κ, armchair (left) and zigzag (right).

6.2 Bending-induced hardening of stretching stiffness

Just as detailed in the preceding subsection for the bending stiffness D and it sensitivity S to stretching,

the stretching stiffness Y and its sensitivity H to bending – whose definitions are given by (45) and (46),

respectively – can be expressed in terms of the assigned data (C,F ). The level curves of Y as a function
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Figure 14: Level curves of stretching stiffness as a function of curvature and applied traction load, armchair
(left) and zigzag (right).

of (C,F ) are depicted in Fig. 14. By comparison with Fig. 10, we see that the dependences of bending

stiffness and stretching stiffness on the data are quite different. Fig. 15 permits to visualize how the latter

depends on curvature for a discrete set of increasing values of the applied traction; here and in Fig. 16 the

color code is: blue, F = 0; light blue, F = 1.316 nN/nm; green, F = 2.632 nN/nm; orange, F = 6.316

nN/nm; pink, F = 14.472 nN/nm; cyan, F = 21.836 nN/nm; red, F = 26.050 nN/nm. We see that, both
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Figure 15: Stretching stiffness Y vs. curvature κ, armchair (left) and zigzag (right).

for armchair and zigzag directions, bending makes graphene harder to stretch for F = 0 (blue curve) and

easier to stretch for F = Fmax (red curve); the transition, which is visualized by the light blue, green

and orange curves, occurs for 0 < F < F tld, with the threshold value F tld ' 6.5 nN/nm (about 15% of

the fracture load) in the armchair case and ' 12.3 nN/nm (about 29% of the fracture load) in the zigzag

case. The qualitative information summarized by Fig. 15 are supplemented by that in Fig. 16, where we also
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Figure 16: Hardening measure H vs. curvature κ , armchair (left) and zigzag (right).

notice that once again the 2nd-generation Brenner potential predicts unexpected jumps in the zigzag case;

some complementary quantitative information are:

(i) for F = Fmax (red curves), the decrement in stretching stiffness is ≈ 14% in the armchair case and ≈

13 % in the zigzag case;

(ii) for F = 0 (blue curves), the increment in stretching stiffness goes up to ≈ 11% (armchair case) and ≈

38% (zigzag case); interestingly, the stretching stiffness of bent graphene is the same as that of a CNT

of identical curvature, as computed in [11].

0.00 0.05 0.10 0.15

160

180

200

220

240

260

280

S
tr
et
ch
in
g
st
iff
n
es
s
[n
N
/
n
m

]

"

0.00 0.02 0.04 0.06 0.08 0.10

150

200

250

300

S
tr
et
ch
in
g
st
iff
n
es
s
[n
N
/
n
m

]

"

Figure 17: Stretching stiffness vs. ε, armchair (left) and zigzag (right).

While bending makes the stretching stiffness increase, stretching makes it decrease; which of the two effects

is going to prevail depends on the region of the (C,F ) plane one selects, in a manner that depends on the
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type of graphene, armchair or zigzag. This explains why, in Fig. 15, the blue and red curves do not include

all the others. This also explains why in Fig. 17, where the stretching stiffness is plotted vs. the amount of

stretching for two fixed values of the couple, null (blue curve) and large (red curve, C = Cmax), an initial

hardening regime is followed by a substantial softening regime.

6.3 Nanostresses

Recall that we have introduced three types of nanostresses, work-conjugated to, respectively, changes in

length of atomic bonds (σa and σb), with σa = 0 in the equilibrium problem of armchair graphene; changes

in angle between two adjacent bonds (τα and τβ); changes in dihedral angles (Ti, i=1,. . . ,4), with T4 = 0 in

the case of armchair graphene and T3 = 0 in the zigzag case.

The color code we use in the figures to follow is the same as in Subsection 6.1: blue, C = 0; green,

C = 0.233 eV; orange, C = 0.346 eV; pink, C = 0.467 eV; cyan, C = 0.587 eV; red, C = Cmax = 0.7

eV. We see that application of a bending couple does not affect significantly either bond-length nanostresses
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Figure 18: Nanostress σa versus axial strain ε, zigzag.

(Fig.s 18 and 19) or the bond-angle nanostresses τa, in the case of armchair graphene, and τ b in the zigzag

case (Fig.s 20 and 21). Both τα and τβ are different from zero in GC, a fact that reveals that graphene

suffers a bond-angle selfstress in its ground configuration, as extensively discussed in [10]. Finally, Fig.s 22,

23 and 24 illustrate the significant dependence of dihedral-angle nanostresses on the applied couple.
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Figure 19: Nanostress σb versus axial strain ε, armchair (left) and zigzag (right; curves cross at ε ' 0.65%).
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Figure 20: Nanostress τα versus axial strain ε, armchair (left) and zigzag (right).

7 Conclusions

A discrete mechanical model for graphene, both geometrically and materially nonlinear, has been proposed.

Atomic interactions have been specified by choosing a class of REBO potentials depending on strings of

kinematic descriptors(≡ order-parameters) identified with changes in bond lengths, bond angles, and dihedral

angles. The equilibrium problem considered has been that of balanced and uniform boundary distributions

of force and couple over pairs of opposite sides of a rectangular graphene sheet. The governing equilibrium

equations have been written in terms of nanostresses, i.e., force-like objects in one-to-one correspondence

with the order parameters. Suitable definitions of bending and stretching stiffnesses have been proposed, and

analytical formulas given to evaluate them whatever the loads and the configuration, including the ground

one; moreover, notions of sensitivity to changes in applied forces and couples of bending and stretching
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Figure 21: Nanostress τβ versus axial strain ε, armchair (left) and zigzag (right; curves cross at ε ' 0.55%).
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Figure 22: Nanostress T1 versus axial strain ε, armchair (left) and zigzag (right).

stiffnesses have been introduced, and two analytical conditions for detecting softening of the former and

hardening of the latter have been formulated. Such definitions and conditions are written in terms of bond-

length, bond-angle, and dihedral, stiffnesses and of bond-angle selfstress, that is, in terms of the quantities

on which, according to our discrete model, graphene’s mechanical response depends, and whose role, so we

believe, should be properly reflected into whatever homogenization procedure one may think of.

Combination of large bending and stretching states has been investigated here for the first time. It has

been shown that concomitant bending and stretching, whatever their value, concur to make bending stiffness

decrease. It has also been shown that concomitant bending and stretching make the stretching stiffness

increase until the applied forces reach a threshold value, then they make it decrease; the reasons of this

rather surprising behaviour have been discussed. Finally, equilibrium nanostresses have been quantitatively

evaluated for whatever combination of applied forces and couples.
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Figure 23: Nanostress T2 versus axial strain ε, armchair (left) and zigzag (right).
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Figure 24: Nanostress T3 (armchair, left) and T4 (zigzag, left) versus axial strain ε.
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