ABSTRACT
Recent initiatives in IR community have shown the importance of going beyond factoid Question Answering (QA) in order to design useful real-world applications. Questions asking for descriptions or explanations are much more difficult to be solved, e.g., the machine learning models cannot focus on specific answer words or their lexical type. Thus, researchers have started to explore powerful methods for feature engineering. Two of the most promising methods are convolution tree kernels (CTKs) and convolutional neural networks (CNNs) as they have been shown to obtain high performance in the task of answer sentence selection in factoid QA. In this paper, we design state-of-the-art models for non-factoid QA also carried out on noisy data. In particular, we study and compare models for comment selection in a community QA (cQA) scenario, where the majority of questions regard descriptions or explanations. To deal with such complex task, we incorporate relational information holding between questions and comments as well as domain-specific features into both convolutional models above. Our experiments on a cQA corpus show that both CTK and CNN achieve the state of the art, also according to a direct comparison with the results obtained by the best systems of the official cQA challenge, SemEval. This also shows the primary importance of coding relational information between question and answer text.

1. INTRODUCTION
Community Question Answering (cQA) enables users to freely ask questions in web forums and expect some good answers in the form of comments from other users. However, many comments are typically not pertinent to the user question, thus automatic approaches for selecting those useful are very valuable.

Previous work for automatic answer sentence selection, e.g., [22, 23, 18], has inspired recent international competitions on cQA, where answer sentences are replaced by entire comments of forum users. For example, SemEval-2016 Task 3 in Subtask A asks to rank the posts in comment threads that answer the question well before those that are just bad or potentially useful. Tab. 1 describes an example of the task: the participants are given a question, its author’s ID, a set of comments along with the IDs of the users who wrote them, and their systems have to rerank the comments so that the good ones are pushed to the top. All the comments are manually annotated with their relevance with respect to the question and thus can be used for training and testing learning to rank (L2R) algorithms.

The overall setting of this task is similar to that of the answer sentence selection in the factoid QA, therefore an intuitive approach would be to employ state-of-the-art answer sentence selection models. However, it should be noted that the cQA questions are typically non-factoid, e.g., asking for opinions or advice. Moreover, the text involved in this scenario is rather noisy, making it difficult to outperform simple bag-of-word models.

To tackle such complexity, we rely on state-of-the-art machine learning methods such as CTKs and CNNs. Thus, we design L2R models for comment selection using (i) CTKs based on our previous successful CTK models for factoid QA [18, 20, 21], and (ii) new CNNs. In particular, we improve the CTK models using some basic filtering strategies for building robust tree structures that can deal with the noisy and relatively larger size of forum comments. At the same time, we deal with the more challenging nature of non-factoid questions by encoding relational information in both CTKs and CNNs. The experiments with the official data of SemEval cQA challenge [14] show that CNNs are on par with CTKs: we attain state-of-the-art accuracy using two completely different models, although we also needed to define some task specific features. In particular, our models evaluated on the official test set produce a MAP of 78.80, just 0.4 less than the best system (79.19), and would have ranked second.

Table 1: Qatar Living question and comments examples

Question	Body: Could someone advise the best psychiatrist/psychologist in DOHA?
Author	princess_naila
Subject	Psychiatrist in DOHA
Comments	
feba	heard a good doctor in doha clinic... potentially useful
mariyam	
princess	ok..shall check that out..thank you :)
naila	
Equinox	"Visit Psychiatrist clinic of Hamad Hospital located opposite ""The Center"" exactly facing KFC."

2. STRUCTURES FOR CTKs

Table 2: Example of CTKs structures

<table>
<thead>
<tr>
<th>CTK Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear CTK</td>
<td>A simple linear kernel that computes the similarity between two sentences as the dot product of their word embeddings.</td>
</tr>
<tr>
<td>Tree CTK</td>
<td>A tree kernel that captures the similarity between two sentences by computing the similarity between their constituent trees.</td>
</tr>
<tr>
<td>Convolutional CTK</td>
<td>A convolutional kernel that captures the similarity between two sentences by computing the similarity between their word sequences using sliding windows of fixed size.</td>
</tr>
</tbody>
</table>
Figure 1: SH tree for the Q/Comment pair.

Figure 2: CONST tree enriched with question author information

Severyn et al. [18] built a reranker for QA applying CTKs to a shallow structural representation of question and answer sentences, called SH. This is constituted by two trees with lemmas, at leaf level and their part-of-speech (POS) tags at the preterminal level. The authors mark the lemmas that occur in both question and answer passage by prepending the REL tag to the labels of the corresponding POS-tag nodes and their parents, thus encoding information about their relatedness.

In our work, we adjust their representation to fit the cQA task, i.e., we enrich the structures with additional relational information and cQA-specific thread knowledge. Additionally, we found that using a constituency structure CONST is more effective than SH. Moreover, differently from [18], we do not remove the punctuation marks from the trees, as, for example, the comments that ask additional questions and thus contain a question mark are unlikely to answer the original question.

Most importantly, we encode the following cQA-related information: (i) the question subject is a separate subtree under the SUBJECT-S root in the question tree; (ii) following the intuition that the question author unlikely will correctly answer his/her own question, we add the SAMEAUTH label to the sentence nodes in the comment tree. Additionally, when constructing the CONST representation of the question tree, we do not use the question body, but only its subject. Figure 1 provides an example of the REL-encoding in the SH tree with lemma psychiatrist marked with REL in both trees and question subject separated from its body. Fig. 2 illustrates a CONST representation of the author’s comment to her own question.

3. RELATIONAL NNs FOR CQA

We propose a NN for matching sentence pairs on the same research line of answer selection [17, 9, 5, 23]. The general architecture is depicted in Fig. 3. It includes two main components (i) two sentence encoders that map input documents i into fixed size m-dimensional vectors xs, and (ii) a feed forward NN that computes the similarity between the two sentences in the input.

Let d be the size of the word embeddings, the sentence encoders are composed of (i) a sentence matrix ws, ∈ Rdx|s| obtained by concatenating the word vector of the corresponding word in the input sentence wj, ∈ R|j| and (ii) a sentence model f : R^d x |s| → R^m, which maps the sentence matrix to a fixed size sentence embedding xs, ∈ R^m. The choice of the sentence model plays a crucial role as the resulting representation of the input sentences affects the successive steps of computing their similarity. Previous work uses different types of sentence models for matching sentence pairs such as LSTM, distributional sentence model, and convolutional sentence model. In particular, the latter is composed of a sequence of convolution-pooling feature maps and has achieved the state of the art in various NLP tasks [7, 8].

Here, we implement a sentence model with a convolutional operation followed by a k-max pooling layer with k = 1. This choice has been proved successful for factoid QA [17]. The sentence vectors, xs, are concatenated together and given as input to standard NN layers, which are constituted by a non-linear hidden layer and a sigmoid output layer. The sentence encoder, xs = f(s), outputs a fixed-size vector representation of the input sentence s,. In the remainder of the paper, we will refer to the question and the comment representations as the question embedding (QE) and the comment embedding (CE). Similarly the output of the penultimate layer of the network (the hidden layer whose output feeds the final classification layer) is a compact representation of the input question and comment pair, which we call Joint Embedding (JE).

3.1 Injecting Relational features

Despite the fact that NNs can automatically generate embeddings from raw inputs, adding manually engineered features can be useful for solving complex tasks such as cQA. In particular, we can add any discrete features to the model, as described in [2], i.e., use an additional lookup layer for every feature, feat. Word features can be added to the model by augmenting the word embedding with the corresponding feature embedding. Given a word, w;, its final word embedding is defined as w; ∈ R^d + df;feat. Specific cQA features, x;feat, can be inserted into the join layer using feature embedding: the resulting vector is x; = x; + x;feat ∈ R^d + df;feat.

Sec. 2 shows that establishing relational links (REL nodes) between a question (Q) and comment (C) is very important for solving the cQA tasks. We enable our NNs to capture the connections between words shared by Q and C by encoding relational links as binary word features. In particular, we associate each word w in the input sentences with a word overlap feature o ∈ {0, 1}, where o = 1 means that w is shared by both Q and C, i.e., overlaps, o = 0 otherwise. Basically the word-overlap vector plays the role of the REL tag added to the CTK structures (see Sec 2).

Nicosia et al. [15] describe other important features for cQA, including whether (i) the author of the comment is the same of the question (SAMEAUTH); and (ii) the comment in consideration is followed by another comment from the author of the question (SAMEAUTH”). These two sentence features are binarized and added to the network at the join layer.

4. EXPERIMENTS

In these experiments, we compare CTKs and CNNs, also combining them with traditional feature vector representations.

4.1 Experimental setup

Experimental dataset. We use the Subtask A Question-Comment
Figure 3: Neural Network model

Similarity subset of the Semeval-2016 Task 3 English cQA dataset. This enables a direct comparison with results of challenge. The dataset of questions and comments was extracted from the Qatar Living forum. For each question, the first ten comments were collected and manually annotated as good, i.e., answering the question, and potentially useful or bad. The Potentially useful class was relabeled as bad during the challenge evaluation. The train, development and test sets contain 1790, 244 and 327 questions.

QA metrics. We report our results in terms of Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR).

CTKs. We trained our models with SVM-light-TK. It enables the use of CTKs [13] in SVM-light [6]. We used the partial and the subset tree kernels (PTK and STK) with their default parameters and the polynomial kernel (P) of degree 3 on all feature vectors.

Preprocessing. We truncate all the comments to 2000 symbols and all the sentences to 70 words. When generating the structural representations described in Section 2, we used the first three sentences of a question or a comment. We used the Illinois chunker [16] and the Stanford CoreNLP [10] toolkit for the needed preprocessing.

Signatures. If a specific user always signs their posts with the same phrase, e.g., “The tough gets going.”, we consider this phrase irrelevant and remove it. More specifically, we delete all the strings with length exceeding 20 characters that occur at the end of more than one comment by the same user.

cQA-relevant features vectors (QF). We used the thread-level features by one of the top-performing SemEval-2015 systems [15]. Among others, they include the features encoding whether the comment (c) is authored by the question (q) author, whether c contains a question, an acknowledgment word or a URL, and other intuitions.

4.2 Neural Network experiments

We pre-initialize the word embeddings with skipgram embedding of dimensionality 50 trained on the English Wikipedia dump [12]. The input sentences are encoded with fixed-sized vectors using a convolutional operation of size 5 and a k-max pooling operation with k = 1. We use a single non-linear hidden layer (with hyperbolic tangent activation, Tanh), whose size is equal to the size of the sentence embeddings, i.e., 200. The network is trained using SGD with shuffled mini-batches using the Rmsprop update rule. The model is trained until the validation loss stops improving.

For computational reasons, we decided to limit the size of the input sentences to 100 words. This did not degrade the observed performance. To improve learning generalization and avoid co-adaptation of features (which negatively impact the transfer capabilities of the sentence embeddings), we opted for adding dropout [19] between the layers of the network. Table 2 reports the results of our NNs on the development set. The first sentence model is a word embedding averaging model (W2V), where the sentence embeddings are calculated by averaging the word vectors. Then, two strong baseline sentence models are presented, a Long-Short Term Memory (LSTM) sentence model [4] and our vanilla CNN, presented in Section 3. Our CNN, without any additional features, outperforms W2V, obtaining similar accuracy than LSTM. Thus, we decided to use the convolutional sentence model mainly for computational reasons. The second part of the table shows CNN incrementally enhanced by the overlap, SAMEAUTH and SAMEAUTH+ features (see Sec. 3.1) for further improving its performance.

Table 2: NNs results on the development dataset

<table>
<thead>
<tr>
<th>Encoder</th>
<th>MAP</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2V</td>
<td>68.53</td>
<td>71.78</td>
</tr>
<tr>
<td>LSTM</td>
<td>66.48</td>
<td>73.46</td>
</tr>
<tr>
<td>CNN</td>
<td>66.48</td>
<td>72.56</td>
</tr>
<tr>
<td>+overlap</td>
<td>67.41</td>
<td>73.64</td>
</tr>
</tbody>
</table>

5http://www.qatarliving.com/forum
6the official Subtask A metric
7http://disi.unimi.it/moschitti/Tree-Kernel.htm
Table 3: Performance of CTK, CNN and QF models on the development (DEV) and test (TEST) settings. Imbument embeddings (Sec. 3) as the feature vector, whereas l denotes that the respective vectors were concatenated into a single vector. None of the combinations improved over the CTKs models with QF features, however, an interesting finding is that, in general, V systems, which use only embeddings as features outperform VQF. Concatenating the QF, CE and QF into a single feature vector results in a further improvement, e.g., VQF achieves an MAP of 77.22 on the TEST, which is only 0.44 points lower than the MAP of the #2 ranked system. CTKC+VQF, a combination of QE and CE with CTKC (without QF) slightly improves over CTKC (using STK) on both DEV and TEST sets. However, the CTKC+VQF, a combination of CTKs, CNN and QF, scores lower than CTKC + VQF, thus additional investigation is needed to understand how to successfully combine CTK and CNN.

5. CONCLUSION

In this paper, we studied state-of-the-art QA methods and applied them to cQA. Several challenges have to be tackled in this kind of real-world applications: the questions are mainly non-factoid and the text is typically informal and noisy. We provided two solutions based on tree kernels applied to robust syntactic structures and for the first time applied them to comment reranking tasks in cQA. Additionally, we designed new CNN architectures for comment reranking, which exploit cQA features as well as important relational information between questions and comments. The results show that tree kernels and CNNs can achieve the state of the art. The high quality of our solutions is also confirmed by the official results of a cQA challenge, among which our best system would have achieved the second position. The most important aspect of our future work will be to investigate ways of successfully combining CTKs and CNNs.

Acknowledgements

This work has been partially supported by the EC project CogNet, 671625 (H2020-ICT-2014-2, Research and Innovation action) and by an IBM Faculty Award.

References