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ABSTRACT

Light Detection And Ranging (LiDAR) data have proven to
be very effective in the estimation of parameters for forestry
applications. However, little research has been done regard-
ing the multitemporal analysis of these data. In this paper we
propose a novel hierarchical change detection approach that
first performs the detection of major changes (e.g., harvested
trees) and then focuses on the detection of minor changes
(e.g., single tree growth), using multitemporal LiDAR data
having different point densities. Splitting the change de-
tection problem allows us to analyze the different types of
changes with different techniques. In particular, the detection
of minor changes is carried out directly on the point clouds
in order to exploit all the informative content of the LiDAR
data. The approach has been tested on a dataset acquired
in 2010 and 2014 on a complex forest area located in the
Southern Italian Alps. The experimental results confirm the
effectiveness of the proposed approach.

Index Terms— 3D change detection, multitemporal anal-
ysis, Light detection and Ranging (LiDAR), remote sensing,
forestry.

1. INTRODUCTION

Nowadays, it is necessary to perform a regular forest moni-
toring for the preservation of the environment. In this frame-
work, LiDAR sensors allow an accurate estimation of the for-
est parameters due to their capability of measuring the 3D
structure of the crowns. However, while a lot of effort has
been devoted to the analysis of the LiDAR point cloud for
single acquisitions, little work has been done regarding the
multitemporal analysis of these data. Indeed, the compari-
son of pairs of LiDAR point clouds introduces several chal-
lenges that have to be carefully addressed: i) the LiDAR point
density may be significantly different between the considered
acquisitions, ii) the laser may penetrate different parts of the
canopy in the two acquisitions, iii) the tree canopies are nat-
ural structures with highly irregular properties. Hence, it is
not possible to perform a point to point comparison. For
these reasons, most of the papers present in the literature work
only on the 2D rasterized version of the LiDAR data (i.e., the

Canopy Height Model (CHM)). Typically the existing works
focus the attention on the detection of major changes such
as canopy gaps or harvested trees [1, 2] and on the vertical
growth of the forest [1, 2, 3]. Few papers address the lateral
growth of the trees by working on the CHM [2, 4]; however,
these methods do not allow for the use of the full information
content of the LiDAR data. In contrast, by working directly
in the point cloud domain it is possible to perform a more de-
tailed analysis.
In this paper, we propose a hierarchical change detection ap-
proach that first detects the major changes in the CHMs and
then performs the analysis of the minor changes directly in
the point cloud space. In particular, an object-based change
detection is performed to analyze the growth of the crown
(i.e., vertical growth and volume growth of the canopy). The
method is divided into four main steps: i) pre-processing of
the LiDAR point clouds; ii) detection of major changes; iii)
identification and characterization of the canopy structure af-
ter matching the trees in the two point clouds having different
point densities; iv) detection of minor changes. While the
hierarchical approach allows us to decompose the change de-
tection problem and thus to facilitate the multitemporal anal-
ysis, the object-based approach allows us to compare the Li-
DAR point clouds without using the CHM. The rest of the pa-
per is organized as follows. Section 2 describes the proposed
method. Section 3 presents the dataset and the experimental
results. Finally, Section 4 draws the conclusion.

2. PROPOSED METHOD

The block scheme of the proposed method is shown in figure
1.

2.1. Pre-processing

The first step of the proposed method aims at preparing the
data for the netxt steps. First, the two point clouds are reg-
istered by means of the Iterative Closest Point Algorithm
(ICP)[5]. Then, the same digital terrain model (DTM) is
subtracted from the two point clouds to obtain the relative
height of the trees with respect to the ground. Finally, a reg-
ularization and interpolation process is applied to convert the
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Fig. 1: Architecture of the proposed method.

LiDAR point clouds into the two CHMs (CHM1 at time t1
and CHM2 at time t2).

2.2. Detection of major changes

At the first level of the hierarchy we aim to detect the major
changes, which are defined as significant variations between
the two acquisitions. To this end, the most efficient approach
is the analysis of the main height differences of the CHMs.
First, the difference image between the two CHMs is com-
puted. Second, a threshold is applied to the resulting image
to obtain a binary map. Then, a morphological erosion filter
is applied to remove the noise and the area of the remaining
regions is evaluated to remove small object. Finally, a dilation
filter (using the same structuring element of the erosion filter)
is applied. By analyzing separately positive and negative val-
ues of the difference image it is possible to discriminate be-
tween positive changes (e.g., new trees) and negative changes
(e.g., harvested trees). Moreover, we use the computed binary
map in the detection of minor changes phase to focus only on
the areas which are not affected by the major changes.

2.3. Canopy characterization

The object-based change detection aims to compare the same
canopy between the two considered dates in order to mon-
itor the growth of each individual tree. To this end, the
canopy structure has to be accurately characterized. First,
the tree tops are identified separately in the two CHMs by
using a level set method, thus obtaining the tree tops po-
sitions at the two times. Let us define the resulting sets as
S1 = {s1,k1

}N1

k1=1 at time t1 and S2 = {s2,k2}
N2

k2=1 at time t2,
where s1,k1 = (xk1 , yk1) and s2,k2 = (xk2 , yk2) represent the
2D position of the tree tops at the two dates. For each point
s1,k1

∈ S1 the nearest tree top in S2 is selected according to:

s2,nearest = min
k2∈[1 ,.., N2]

‖ s1,k1
− s2,k2

‖ . (1)

If the distance between s2,nearest and s1,k1 is smaller than a
given threshold the two tree peaks are matched. At the end
of this step we obtain a single set of N seeds, defined as
S = {sk}Nk=1, representing the trees present at both dates.
For each detected tree sk ∈ S we need to delineate the
crown in the two LiDAR data. To this end, we apply to
CHM1 and CHM2 the segmentation method presented in
[6]. For each seed, the crown boundaries are delineated by
searching for the local minima along the eight main direc-
tions (0◦, 45◦, . . . , 270◦, 315◦). The resulting segmentation
regions obtained are used to identify the individual crowns
in the two data. Thus, for each tree sk we obtain two point
clouds C1,k and C2,k representing the canopy of the consid-
ered tree at time t1 and t2, respectively. As anticipated in
Section 1, it is highly unlikely that the laser hits the same
parts of the canopy at the two acquisition dates. In order
to overcome this problem, we reconstruct the canopy struc-
ture by fitting a 3D ellipsoid [7] on the two segmented point
clouds C1,k and C2,k. Let us focus the attention on the gen-
eral tree kth. For the sake of simplicity, in the following we
consider the same xk, yk coordinates of the tree top at the
two dates while the tree top heights are defined as H1,k and
H2,k. The ellipsoid model is defined by the tree top positions
(xk, yk, Ht,k), the crown radius crt,k, the crown height cht,k

and the crown curvature cct,k with t = 1, 2. It is described as
follows:

(z + cht,k −Ht,k)
cct,k

cht,k
cct,k +

[
(x− xk)

2
+ (y − yk)

2
]cct,k

crt,kcct,k
= 1

Ht,k − cht
t,k < z < Ht,k, t = 1, 2

(2)

First, the base heights bh1,k and bh2,k of the canopy at the
two dates are detected by analyzing the vertical profile of the
two point clouds. It is reasonable to assume that there are
no significant changes in the base height between the two
dates. Hence, we select the minimum of the two quantities
in order to obtain bhk = min {bh1,k, bh2,k}, thus reduc-
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Fig. 2: 3D models fitted on the segmented point clouds.

ing the probability of overestimating the base height due to
missing LiDAR points in the lower part of the canopy. Fi-
nally, the crown heights at the two dates can be estimates as
cht,k = Ht,k − bhk, t = 1, 2. The crown radius and crown
curvature are estimated by means of a least square method
which fits the 3D model to the points of the segmented LiDAR
data. It is worth noting that due to the fact that the 3D ellip-
soid represents the external surface of the canopy, the fitting
has to be performed using only the external points of the point
clouds. In order to better exploit the information of the two
point clouds, first we carry out the fitting on the point cloud
with the highest number of points and subsequently we apply
the least square method to the other data adding a constraint
based on the previous estimation. The constraint is based on
the assumption that cr1,k ≤ cr2,k. This operation uses the
information of the data with higher density to improve the es-
timation on the point cloud with lower density. The computed
parameters are then used to define the 3D ellipsoids E1,k and
E2,k that represent the structure of tree sk at times t1 and t2,
respectively. Figure 2 shows a real example of the 3D models
defined for the segmented point clouds of a given tree.

2.4. Detection of minor changes

The use of a mathematical model to describe the 3D structure
of the canopy allows us to compare the characteristics of the
same tree between the two dates irrespectively of the point
densities. For the generic kth tree we have the tree top heights
H1,k and H2,k and the two 3D ellipsoids E1,k and E2,k. The
vertical growth is computed as dHk = H2,k−H1,k. The vol-
ume growth analysis is carried out computing the difference
of the volume of E1,k and E2,k defined as:

dVk = volume(E2,k)− volume(E1,k) (3)

It is worth noting that dVk is a metric of the crown volume
change and not of the variation of biomass. This is due to
the fact that the 3D ellipsoids represent the external surface
of the canopy. By applying this operation to each tree sk ∈ S
we obtain two sets dH = {dHk}Nk=1 and dV = {dVk}Nk=1

representing the vertical growth and crown volume growth of
all the individual trees of the analysed forest.

3. EXPERIMENTAL RESULTS

The proposed method has been tested on a coniferous forest
located in the southern Italian Alps in the Trento Province.
The species composition is mainly of Larix decidua (Euro-
pean Larch) and Picea abies (Norway Spruce). Tests have
been conducted on 3 stands. Stands 1 and 3 have similar char-
acteristics of vegetations densities and tree heights, whereas
stand 2 is characterized by younger trees and a denser forest
structure. The used airborne LiDAR data were acquired in
2010 and 2014 by the same ALTM 3100EA sensor with an
average point density of 10pts/m2 and 15pts/m2, respec-
tively. No multitemporal ground truth was available, thus we
validated the results with the help of a team of experts by
photo interpretation.
Table 1 shows the numerical results related to the detection
of major changes. We manually defined a binary map by
visually identifying the areas affected by major changes and
compared it with the automatically generated one. The accu-
racy of the change detection is very high, with only a small
percentage of pixel wrongly classified.
Subsequently, according to the proposed hierarchical ap-
proach, we moved to the characterization of the canopies.
First we evaluated the accuracy of the tree identification by
visually identifying the trees present in both data and compar-
ing the resulting set with the one computed by the proposed
method. Table 2 shows the obtained numerical results. While
the tree detection applied to a single LiDAR acquisition
identifies much more trees than the existing ones (i.e., high
number of false alarms), the results of the matching between
the sets S1 and S2 show that the number of false alarms is
strongly reduced. Indeed, the matching exploits the infor-
mation of both the acquisitions thus improving the detection
accuracy. Some false and missed alarms are still presents but
the number of them is relatively small.
After having identified and characterized the single trees in
the two LiDAR data acquisitions, it is possible to perform the
detection of minor changes by identifying the vertical growth
and crown volume growth. Table 3 shows the statistics of
the vertical growth. As expected, the second stand shows a
higher vertical growth (both in absolute and relative terms)
since it is characterized by the youngest trees. This is con-
sistent with the fact that the youngest trees are also the ones
that grow the most. Figure 3 and Table 4 show the results re-
garding the crown volume growth. We discarded the negative
volume variations that were due to small shrubs. Moreover,
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Fig. 3: Occurencies of volume variation for stand 1.

Estimated
Change No change

True Change 531 34
No change 19 54172

Table 1: Error matrix related to the major change detection in
terms of classified pixels in the CHM.

the trees with volume variation greater than the the original
crown volume were not considered. These cases are due to
segmentation errors and thus they do not represent consis-
tent results. It is worth noting that for each stand there are
maximum 3 of such errors. Figure 3 shows the occurrences
of volume changes for stand 1. As one can see, most of the
trees are characterized by a crown volume variation smaller
than 200 m3. Table 4 shows the statistic regarding the crown
volume growth of stands 1 and 3. Stand 2 was discarded for
this analysis because it is characterized by a very dense forest
that limits the penetration of the LiDAR sensor. This strongly
affects the base height estimation making the crown volume
estimation less reliable.

4. CONCLUSIONS

In this paper we have presented a hierarchical approach to the
detection of major and minor changes in bitemporal LiDAR
acquisitions having different point densities. The obtained re-
sults show that the proposed method detected major and mi-
nor changes with high accuracy. In greater detail, the major

Stand Tree peaks S1
(2010)

Tree peaks S2
(2014)

Matched trees Manual
detectionCorrect

False
alarms

Missed
alarms

1 150 148 124 3 2 126
2 218 234 193 4 4 197
3 143 149 131 2 4 133

Table 2: Numerical results of the tree top identification and
matching.

Stand Median tree height
2010 [m]

dH [m]
Median [%]

1 34.9 1 2.8
2 24.1 2 8.1
3 34 0.9 2.9

Table 3: Statistics of the tree vertical growth.

Stand Median tree volume
2010 [m3]

dV [m3]
Median [%]

1 850 52 8.4
3 600 46 9.2

Table 4: Statistics of the tree crown volume growth.

changes are detected correctly with small false and missed
alarms rates. The tree detection is accurate thanks to the use
of the information of both LiDAR acquisitions. Moreover,
the single tree analysis is capable of characterizing both the
vertical and crown volume growth of the canopy. As future
developments we plan to convert the measures of overall vol-
ume change in a measure of biomass variation.
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