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A B S T R A C T

In order to improve sustainability and transparency in the decision making for inventory control, this paper
presents a reorder-level model that considers product perishability. Conversely to most inventory control
policies, the classical economic perspective is paired with an environmental one for a stochastic bi-objective
optimization approach to reduce inventory logistics emissions and costs. In order to contrast stockouts, lost-sale
costing and a service level constraint are integrated for a more comprehensive approach. Results show how
the two objectives may be in contrast, and how Pareto-efficient solutions can help to analyze and select the
proper trade-offs during decision making. Experiments indicate, for a case-study application, how the most
relevant aspects affecting system performance are product shelf life and the possible need of temperature
control during storage. Moreover, considering multiple sustainability perspectives in inventory management
can help businesses consolidate and future-proof their operations, as well as meet environmental standards
and customer demand for greener products and processes.
1. Introduction

In the current global context, logistics continues to play a key role
in many types of supply chains. Due to the high business costs for
maintaining reliable flows of goods, totaling near to 7.9% of GDP
in the US in 2015 (Monahan et al., 2016), both practitioners and
researchers strive for making such processes efficient in order to keep
businesses economically sustainable. From the coexisting standpoint of
environmental sustainability, logistics buildings and related transport
activities are responsible for up to 15% of the total greenhouse gas
(GHG) emissions in the life cycle of a product (World Economic Forum,
2009). In this multi-sustainability context, implementing quantitative
measures for environmental efficiency is an essential step to reduce
emissions (World Economic Forum, 2021).

Additionally, some supply chains are strongly characterized by the
economic and environmental driver of waste. For example, the distri-
bution of food produce is responsible for waste at different echelons,
adding up to nearly 300 kilograms of food losses per capita each
year both in Europe and in North America (Gustavsson et al., 2011).
Regarding waste reduction, Gore et al. (2022) reported how only about
one third of the surveyed producers and retailers adopt sustainability-
related metrics to reduce wastage. In addition, Gustavsson et al. (2011)
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pointed out that waste is directly related to GHG emissions, as they
are not beneficial to any actor in the (food) supply chain. Businesses
should therefore implement the environmental sustainability aspect
in addition to the economic one, especially when waste is a major
factor. Inventory control policies catered to this multi-objective outlook
can serve as a major tool for decarbonizing supply chains, bringing
also other benefits, such as attracting new clients, improving customer
opinion of a brand, and motivating employees who might embrace
such values, thus possibly allowing for more sustainable practices
for future-proofing businesses (van der Veen and Venugopal, 2014).
Within this context, continuous review policies allow for effective and
easily-interpretable inventory programs that can benefit the decision
making of multiple conflicting sustainability objectives, considering
also that order quantity approaches are already commonly adopted in
real applications (Andriolo et al., 2014).

In the last decade, environmental sustainability has become an
increasingly considered topic in the inventory control literature, as it
provides important opportunities for enhancing different perspectives.
In particular, the space utilization for storing products is responsible
for GHG emissions due to energy usage to maintain a warehouse
operational (Fichtinger et al., 2015), and inventory replenishments
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require recurring transport activities. Although efforts have been made
to integrate inventory policies with these environmental aspects, most
of the proposed models deal with deterministic problems (Daryanto
et al., 2021) by considering cost emission factors (e.g., Battini et al.,
2014; Bonney and Jaber, 2011; Kazemi et al., 2018) or by following
a multi-objective approach. Including GHG emissions as costs may be
representative of carbon tax scenarios, nevertheless, businesses should
seek environmental sustainability regardless of external regulations.
Conversely, the less used multi-objective approaches, aim at increasing
transparency in the decision making process by formulating distinct
objective functions (van der Veen and Venugopal, 2014).

Moreover, inventory choices may be directly related to the amount
of discarded products. The necessity for discarding items can be caused
by physical degradation, loss of functionality, or perceived loss in value
of items that need to be discarded (Pahl and Voß, 2014). Products with
a best-before date, such as medicine or food items, can cause waste due
to degradation and are often present in both brick-and-mortar and e-
commerce retail stores. Within this scenarios, where the final customer
does not have to pick the product, FIFO policy is often considered when
dealing with perishable items. Regarding policies for perishables with
fixed lifetimes and non-negligible lead times, Berk and Gürler (2008)
have suggested how reorder policies of fixed size represent a reasonable
policy class, taking into account their potential applicability to real
scenarios. Efforts have also been made to approximate optimal inven-
tory policies for perishable products. For example, Haijema (2013)
proposed a new hybrid policy class with a mix of base stock and fixed
quantity replenishments and optimized it with the use of simulation.
Hybrid policies for perishables can bring benefits compared to base
stock policies, while for large ratios between lead time and shelf life
constant order quantity models have been shown to reduce inventory
costs (Haijema and Minner, 2016). Implementing waste in a reordering
policy is a key aspect to allow for a holistic model that considers this
additional driver from both economic and environmental perspectives.
Moreover, careful modeling of outdating items during lead times is
especially necessary when lead time grows.

This paper follows the proposal of Andriolo et al. (2014) to pair
economic performance with the environmental one following a multi-
objective approach by presenting a stochastic reorder-level inventory
policy, with the aim of optimizing the management of a perishable
product by considering both costs and GHG emissions through quantita-
tive measures. Demand during the lead time is considered as stochastic
and modeled with a continuous distribution function, which may in-
clude lead time variability other than the one related to demand.
The relevance of both sustainability aspects is key especially when
dealing with perishable items such as food or medicines, as this product
characteristic introduces an additional component for the economic and
environmental performance. Additionally, products with shelf lives are
often linked to different storing requirements, for example allowing
for frozen products to be stored longer with respect to chilled ones.
Outdating items, i.e. products that exceed their fixed shelf life, are
estimated under the assumption of a single outstanding order per
inventory cycle depending on the realization of demand random vari-
ables, namely, either if a portion of the reorder quantity outdates in
the current or in subsequent reorder cycles. In particular, these two
estimations depend on the demand during the cycle, other than during
the product shelf life, since if customer request for the product is high
enough, no items will perish. This proposed estimation is validated via
comparison with a discrete event simulation model, which shows the
quality of the estimation of outdated products for several scenarios of
input factors and the relation with economic performance. Moreover,
the decision process for multiple sustainability in a lost-sale stochastic
context requires increased transparency, obtained thanks to the explicit
multi-objective identification of efficient solutions. This approach does
not appear to be yet addressed in the inventory management literature
with stochastic demand. In addition, the considered problem deals with
2

products with limited shelf life and is constrained by customer service l
level. Increased awareness of the negative impacts of inventory choices
is given by the interaction between the two perspectives depending
on the system variables, considering that perishability also affects the
estimation of the other inventory performance components.

The remainder of this paper is organized as follows. The next
section is dedicated to a literature review on reorder-level inventory
policies, with a particular focus on stockout modeling, perishability,
and sustainability. Section 3 sets the problem context and assump-
tions by describing the model characteristics. Then, Section 4 is ded-
icated to presenting the mathematical formulation for the objective
functions and the estimation of each component that constitute the
objective functions, followed by the multi-objective approach for the
constrained optimization problem. To provide managerial insights, Sec-
tion 5 is catered at presenting relevant results and related analysis for
a case study that allowed the estimation of cost and emission factors
for the proposed inventory policy. Closing with Section 6, additional
considerations and possible future developments are discussed.

2. Literature review

Due to the wide contexts in which inventory is held and the many
possible approaches to make this component of supply chain manage-
ment efficient, the literature on inventory control policies is vast. This
section focuses first on scientific contributions regarding continuous-
review policies, and more specifically on reorder-level approaches.
Then, the focus shifts to how the literature has modeled environmental
metrics for inventory management. Finally, the main contributions
regarding the inclusion of perishability in reorder-level approaches are
analyzed by focusing mainly on inventory models with fixed-lifetime
products.

In reorder-level policies, the inventory level is reviewed continu-
ously, and whenever it reaches the reorder level, a fixed-size replen-
ishment is issued to the supplier and received after a lead time. These
approaches to inventory control are often referred to as (𝑟, 𝑄) policies,

here 𝑟 is the reorder level, or point, and 𝑄 the reorder quantity.
eorder-level models are developed to adapt the concept of economic
rder quantity to a stochastic setting (Eksioglu, 2008). Andriolo et al.
2014) provided a detailed review on the state of the art of different
xtensions for order-quantity models, categorizing contributions based
n deterministic, stochastic, or fuzzy approaches. This work suggested
lack of environmental sustainability focus in stochastic models.

A relevant distinction to be made when considering an inventory
ystem is the customer behavior whenever a stockout happens. Cus-
omers may wait until the requested product becomes available again,
r their demand may be lost (Musalem et al., 2010). These scenarios are
ften referred to as backlogging and lost sales respectively. Although
acklogging is widely used in industrial environments, unmet demand
s often lost in retail (Bijvank and Vis, 2011), or whenever customers
re impatient (Babiloni and Guijarro, 2020). The impact of a stockout
s quite different in these two scenarios, since the lost-sales context is
eeply related to customer retention other than short-term effects (Jing
nd Lewis, 2011), and this should be reflected in the quantification of
nventory model features. In particular, Bijvank and Vis (2011) focused
n lost sales by performing a literature review of different inventory
ontrol policies, pointing out how both backorders and lost sales has
een included in some contributions by considering probabilities of
ackordering an order whenever in stockout. Whenever a stockout
appens, customers may wait until the requested product becomes
vailable again, or their demand may be lost (Musalem et al., 2010).
ncluding lost sales or backorders in an inventory model can be per-
ormed via stockout costing and service level constraints. Liberopoulos
t al. (2010) referred to the former as penalized backorder models,
nd the same concept was adopted for lost sales (e.g., Kouki et al.,
015; Berk and Gürler, 2008). Due to the complexity of assessing
tockout-related costs (Chen and Krass, 2001), given by both short- and

ong-term effects (Andersen et al., 2006), service level measures have
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been developed to tackle stockout occurrence via constraints. Chen
and Krass (2001) define two kinds of service level measures depending
on whether average or worst case performance is quantified, namely
through mean or minimal service levels. They refer to a service level
constrained model as partial costing, stating how minimal measures
cannot be directly declined to a full cost model where backorders or
lost sales are economically penalized. In this work, the focus will be put
on integrating a type I service level measure within a bi-objective opti-
mization framework, computed as the probability of avoiding stockout
at every reorder cycle. In particular, Escalona et al. (2021) show how
ensuring a low probability of stockouts at any reorder cycle also ensures
high values of other service level measures.

2.1. Environmental considerations

Starting from the 2000s, environmental sustainability started to play
an important role in inventory policies (Drake and Marley, 2014). Absi
et al. (2013), D’Urso et al. (2018) underlined how the majority of
order-quantity model extensions include environmental aspects within
the total cost objective function. For example, regarding continuous-
review policies, Battini et al. (2014) presented a deterministic economic
lot-sizing model that includes cost factors for storing, waste, and trans-
port. Similarly, Bonney and Jaber (2011) included waste and transport
environmental cost factors in an illustrative model by associating an
additional cost factor for each replenishment that depends on supply
transport time, and Daryanto et al. (2021) incorporated average carbon
emission costs for both storing and transport. Additionally, Kazemi
et al. (2018) considered an emission cost for obsolescence disposal for
imperfect quality items, and repartitioned storing emission costs with
respect to volume occupied by the average inventory.

On the other hand, other researchers consider the environmental
perspective as an integral part of the optimization models by develop-
ing multi-objective formulations. Similarly to the bi-objective formula-
tion of van der Veen and Venugopal (2014) and Bouchery et al. (2012)
developed a 𝑛-criteria interactive decision making procedure aimed at
identifying all the non-dominated solutions to a deterministic lot sizing
model with storage and transport components for the selection of the
reorder quantity. The goal for explicit multi-objective optimization is
to identify the efficient frontier of the considered objectives. Arıkan
et al. (2014) proposed a simulation of a two-echelon supply chain and
different freight modes to highlight the effect of lead time variations.
Furthermore, Bozorgi et al. (2014), Bouchery et al. (2016) proposed
a bi-objective approach by modeling two objective functions for eco-
nomic and environmental performance separately, depending on the
reorder quantity variable, by focusing on the deterministic problems of
limited storage and transport capacities for cold items and of different
transport modes respectively. Moreover, based on the available litera-
ture, there do not appear to be any contributions tackling a stochastic
reorder-level inventory problem with explicit multi-objective modeling.
The proposed optimization model builds on the consideration of the
sustainability aspects of inventory costs and GHG emissions as separate
for a reorder-level policy. More specifically, the environmental effects
of products that need to be disposed of due to perishability are con-
sidered. In addition, the environmental drawbacks of order issue and
product storage are integrated, in relation with required number of
shipments and average space occupied respectively, considering how
different products might not only have different shelf lives but how they
might require different storage conditions with different environmental
impact.

2.2. Product perishability

Integrating perishability is a further relevant aspect in inventory
control. In their literature survey about lifetime considerations in sup-
ply chain management, Pahl and Voß (2014) defined perishable goods
as products that maintain quality during their shelf life, but need to be
3

discarded afterwards with related economic drawbacks. Moreover, the
authors stated that this kind of waste is also related to greenhouse gas
emissions and energy consumption. Additionally, Kouki et al. (2013)
distinguished between fixed lifetime, stochastic lifetime, and continu-
ous deterioration inventory models, while Janssen et al. (2016) offered
a literature review on perishability and deteriorating inventory models,
highlighting how service level has been hardly included, even though
it plays a relevant role in retail or food sectors. Moreover, regarding
continuous-review systems, they underlined how perishability is re-
lated to an additional economic component for long-run costs due to
outdating products. This product characteristic has been investigated
also for multi-period inventory approaches, see for example Haijema
and Minner (2019) for a review on stock-age dependent policies, also
by considering service level constraints per fixed period (e.g., Minner
and Transchel, 2010; Transchel and Hansen, 2019; Kouki et al., 2014).
Multi-period problems have also been integrated with other decision
problems, such as the inventory routing problems (IRPs), where routing
decisions are sometimes paired with perishability considerations. For
example, Soysal et al. (2015) studied an IRP that considers a type I
service level measure for perishable products, as well as emissions of
transport as additional cost components. In a similar perishability set-
ting, where products are characterized by a limited shelf life, Biuki et al.
(2020) included sustainability implications in IRP decisions related to
supplier selection with the objective of minimizing costs. Since these
categories of problems deal with a periodic review setting, product shelf
life needs to be considered also for continuous systems. In addition,
sustainability considerations should not be limited to the transport
component.

Regarding inventory policies and variable lot sizes, one of the
approaches in the literature deals with Markov chain representations of
inventory. In particular Baron et al. (2020) considered stochastic lead
time and shelf life, both distributed as exponential, and the assump-
tion that the inventory drops to zero whenever end-of-life is reached,
while Gong et al. (2022) considered the objective function of profit
rates under zero lead time and a Brownian demand model. Neverthe-
less, the impact of perishables on inventory performance should be also
considered for (𝑟, 𝑄) policies for non-zero lead times and taking into
account that, if there is safety stock, the impact of products that outdate
can be only partial on the available inventory level. For additional
details on other categories and policies see, for example, Nahmias
(2011) for state-of-the-art inventory models for perishable products,
and Karaesmen et al. (2011) for future directions in inventory models
with perishability by encompassing aspects such as multi-echelon and
multi-products considerations. Additionally, Baron (2010) focused on a
taxonomy on continuous-review policies.

Regarding reorder-level policies with known shelf lives, for exam-
ple, Muriana (2016) considers a (𝑟, 𝑄) policy modeled through dif-
ferential equations, where stock decreases due to customer demand
rate and the safety stock is computed a priori depending on the stan-
dard deviation of demand and by setting a safety factor. On another
note, Berk and Gürler (2008) model a Markov process where demand
follows a Poisson distribution, highlighting that reorder-level policies
can perform generally well also with respect to more complex time-
based policies. Barron and Baron (2020) also employ a Markov chain
approach for a single outstanding order per cycle, where optimal values
of the decision variables are identified for the lost sales scenario where
lead time is random. The proposed estimation regarding perishability
builds on the similar idea of considering the effect of outdating items
on the performance of an inventory system, with the goal of optimizing
not only costs, but also GHG emissions while constrained by service
level. In particular, the random variable of demand during lead time
is modeled as a continuous distribution that might include variability
in lead time duration and a single outstanding order is permitted per
reorder cycle.

Other approaches focus directly on the demand distribution in order

to quantify the items that exceeded their shelf life. In this regard, Chiu



International Journal of Production Economics 274 (2024) 109309F. Pilati et al.
Fig. 1. Representation of a (𝑟, 𝑄) policy with identification of the model components, variables, and parameters used to produce a transparent output for sustainable inventory
control decisions.
(1995) models the expected value of outdating products per cycle in
a backorder setting, where they assume no products can perish during
lead time. Their estimation for outdating units is modeled, as a function
of 𝑟 and 𝑄, by considering different scenarios where products can
outdate. Moreover, they point out the impact that lost sales would
have on the expected length of a reorder cycle. Following a similar
approach and assumption, Kouki et al. (2015) consider the demand
during stockouts as lost and include the possibility of multiple outstand-
ing supply orders. Both full-costing formulations estimate outdating
products depending on demand distributions during lead time and shelf
life, assuming that no product may outdate during the resupply lead
time. On the other hand, the model proposed in this work takes into
account the possibility of product perishability during the lead time.
The estimation is centered on the modeling of all the possible scenarios
in which product may outdate, which are based on the distributions
of demand during a reorder cycle and during product shelf life. In
particular, a more accurate modeling of the amount of products that
outdate due to perishability should lead to lower inventory costs with
respects to literature benchmarks for an (r,Q) policy. In addition, a min-
imal service level constraint is considered as well within a bi-objective
optimization framework.

3. Problem description

The problem addressed in this study is the inventory control of a
perishable product through a reorder-level policy. The classical eco-
nomic perspective is coupled with an environmental one within a
bi-objective optimization framework aimed at increasing transparency
in the decision making process in a (𝑟, 𝑄) policy. In particular, the
decision variables are the reorder level 𝑟 and the reorder quantity 𝑄.
Namely, whenever the available inventory level reaches 𝑟, or surpasses
it due to the fact that products have outdated, a fixed-quantity order
of size 𝑄 is issued to the supplier. This approach for inventory control
results in possibly different reordering cycle durations, defined as the
difference between the arrival times of two subsequent reorders, due to
the variability of the customer demand. A stationary stochastic problem
is considered, where uncertain product demand is modeled thanks to
probability density functions (PDFs) that remain constant within the
planning horizon.

Product perishability is modeled as shelf life, which is representative
of products with a best-before date. Unmet customer demand due to
inventory shortages is considered as lost, with an incurred cost for each
lost-sale unit. Furthermore, a minimal customer service level restricts
inventory-control decisions by taking into account the probability of
stockouts.

The model considers that economic costs and negative environmen-
tal externalities have four main determinants: (i) issuing and transport
of resupply orders, (ii) storing of items in the warehouse or dedicated
storage space, (iii) quantity of lost sales, and (iv) amount of perishable
4

products that can outdate during inventory holding. The latter compo-
nent, in particular, is related to both reduction in available stock and to
waste management, which can have an impact on both the considered
objectives.

The goal is thus to support the decision making for managing the
inventory of a product by minimizing the related long-term average
costs and emissions. Following the modeling of each component and the
objective functions, the bi-objective constrained minimization process
increases transparency and communicability in the optimal selection of
the decision variables 𝑟 and 𝑄.

Dealing with the proposed reorder-level policy, it is assumed that
the inventory position is reviewed continuously and that only one order
can be outstanding per each reorder cycle. Perishable products have a
fixed shelf life that begins upon their arrival in stock. In order to meet
customer demand, items are then picked with a FIFO policy.

The notation used in the remainder of the paper is listed in Ta-
ble 1, where the previously-described components, their related costs,
and environmental factors are reported, in addition to the notation
regarding customer demand. In particular, the unit measure considered
for the environmental objective function is the mass of equivalent
carbon dioxide, which allows for evaluating the global warming po-
tential of different greenhouse gasses over a given timeframe relative
to CO2 (Allen and Pentland, 2011).

A visual interpretation of the modeled system is given by Fig. 1,
which shows a possible realization of inventory level and highlights
the relationship between the previously introduced (four) components
of the system and cost or emission factors. Such a realization depends
on customer parameters, which also affect inventory decisions. In
particular, an informed sustainable decision of system variables can be
performed only with a clear and easily-interpretable understanding of
their impact on the considered objective functions. More specifically,
the output given to the decision maker is composed of all the pairs of
(𝑟, 𝑄) associated with Pareto efficient solutions, of which the economic
and environmental anchor points are but two. The final selection of
reorder level and quantity, restricted by the service level, will then
determine the progression of the inventory level.

4. Optimization model

This section presents first the model components’ baseline estima-
tion by accounting for product perishability. This preliminary step
enables the formulation of the total costs and the total emissions
objective functions, denoted by 𝑍𝐶 and 𝑍𝐸 respectively. In addition,
some insights are provided on the relevance and interpretation of en-
vironmental factors. Finally, the bi-objective constrained minimization
problem is approached with the aim of maintaining the economic
and environmental objective functions as independent as possible in
order to provide the decision maker with a quantitative and clear
understanding of inventory choices with respect to both the considered

perspectives.
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Table 1
Notation of objective functions’ components and parameters for the proposed reorder-level policy of perishable goods.
Objective functions
𝑍𝐶 (𝑟, 𝑄) Economic objective function of total costs in the considered planning horizon [€]
𝑍𝐸 (𝑟, 𝑄) Environmental objective function of total equivalent carbon-dioxide emissions in the considered planning horizon [kgCO2e]
Decision variables
𝑟 Reorder level [items]
𝑄 Reorder quantity [items]
Components of objective functions
𝑅(𝑟, 𝑄) Expected number of replenishments in the considered planning horizon
𝐴(𝑟, 𝑄) Expected average inventory [items]
𝑆(𝑟, 𝑄) Expected lost sales per reordering cycle [items]
𝑂(𝑟, 𝑄) Expected outdating products per reordering cycle [items]
Parameters
𝛼 Minimal service level to be maintained [%]

Demand parameters
𝑚,𝐿, 𝑃 Duration of shelf life [weeks], of lead time, and planning horizon [days] respectively
𝑑𝑚 , 𝑑𝐿 , 𝑑𝑇 Demand during shelf life, replenishment lead time, and reordering cycle (r.v.)
𝑑𝑇 , 𝑑𝑃 Expected value of demand during reordering cycle and planning horizon respectively
𝑓𝑚 , 𝑓𝐿 Probability density functions of demand during shelf life and lead time respectively
𝐹𝐿 Cumulative distribution function of demand during replenishment lead time

Cost and emission factors
𝑘𝐶 Cost of a replenishment [€]
ℎ𝐶 Cost of inventory holding per item in the considered planning horizon [e/item]
𝑙𝐶 Cost of a lost sale [e/item]
𝑤𝐶 Cost per outdated unit [e/item]
𝑘𝐸 Emissions of a replenishment [kgCO2e]
ℎ𝐸 Emissions of inventory holding per item in the considered planning horizon [kgCO2e/item]
𝑤𝐸 Emissions per outdated unit [kgCO2e/item]
Fig. 2. Visual representation of the possible perishability realizations depending on the demand random variables 𝑑⋅.c.
p

b

.1. Estimation of inventory components due to perishability

The shelf life of items can lead to outdated items in a reorder-
ng cycle, which need to be discarded. This product characteristic
nfluences the estimation of other often-considered components for in-
entory control, for example, related to lost sales quantities or average
nventory level. The modeling of such elements serves as a baseline
or the economic and environmental objective functions presented in
ection 4.2.

.1.1. Outdating products
The estimation of the amount of outdating quantity per reordering

ycle takes into account, other than the shelf life of the products, the
olatility of customer demand during both their useful lifespan and
upply lead time. Demand is modeled with PDFs 𝑓𝐿, 𝑓𝑚 for demand
uring lead time, and shelf life respectively.

Due to the stochasticity of the problem, products can perish both
n the same inventory cycle in which they arrive or a subsequent
ne, depending on different realizations of demand. Under the single
utstanding order assumption and FIFO policy, items with fixed shelf
ife from a reorder quantity cannot be in the inventory for more than
wo inventory cycles. It is thus sufficient to model the number of items
hat can outdate within these two cycles. Specifically, if 𝑇 > 0 is the
xpected value of cycle length, then items can outdate both within
5

t

Fig. 3. Possible realizations and related estimations of expected values of outdating
products per reordering cycle, depending on the random variables of demand during
shelf life 𝑑𝑚 and reordering cycle time 𝑑𝑇 .

the cycle (𝑚 ≤ 𝑇 ) or after the end of the cycle (𝑚 > 𝑇 ). This is
shown in Fig. 3, where, given an order 𝑄 and a level 𝑟, the expected
value of outdated products, 𝑂 is the sum of those expected to expire
within the same cycle (𝑂1) and those expected to expire in the next one
(𝑂2). The differentiation between these two quantities is based on the
relationship between the random variables of demand during shelf life
𝑑𝑚 and during the reordering cycle 𝑑𝑇 to identify the possible scenarios
that results in the quantities reported in Fig. 2, where 𝐵 is the buffer
stock and notation (⋅)+ = max{⋅, 0} indicates the estimation of solely
ositive values.

The expected number of items expiring within the cycle, 𝑂1, is given
y all the items remaining after demand 𝑑𝑚 has been satisfied, as per
he first portion of Fig. 3. The expected value of 𝑂 can be computed
1
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Fig. 4. Possible realizations and related estimations of expected values of lost sales
per reordering cycle, depending on the random variables of demand during shelf life
𝑑𝑚 and reordering cycle time 𝑑𝑇 .

as:

𝑂1 = ∫

𝐵

0
𝑄𝑓𝑚(𝑥)d𝑥 + ∫

𝑑𝑇

𝐵
(𝑄 − 𝑥 + 𝐵)𝑓𝑚(𝑥)d𝑥 (1)

where 𝐵 is the leftover buffer of safety stock of the previous reorder
and 𝑑𝑇 is the expected value of the random variable of demand during
an inventory cycle, with cycle length equal to the expected value of
𝑇 assuming no product perish. This assumption allows to estimate
𝑑𝑇 as the expected demand value during this cycle length, and thus
the other estimations of the related objective function components
that depend on it. As per Fig. 2-a, the initial portion of demand is
satisfied by the buffer stock according to the FIFO policy. Therefore,
if all the customer demand received during the new batch shelf life is
fully satisfied from buffer stock, all the reorder batch will perish. In
particular, 𝐵 is estimated as the steady-state remaining inventory level
given by the difference between reorder level and demand during lead
time as per the inner integral of Eq. (5). It is important to note that this
estimation for 𝑂1 assumes that the buffer stock does not outdate in this
time. This estimation is conservative since if outdating of 𝐵 happened,
then less outdating of the current batch would happen.

The other portion of outdating items considers instead the possible
perishability in a subsequent cycle with respect to the arrival in stock,
estimated as per the second part of Fig. 3. If there is sufficient customer
demand, namely if 𝑑𝑚 −𝑑𝑇 ≥ 𝑟−𝑑𝐿, every item in the remaining buffer
stock is sold before the shelf life is reached (Fig. 2-b). On the other
hand, if 𝑑𝑚 − 𝑑𝑇 < 𝑟 − 𝑑𝐿, then some items will outdate. This portion
an be estimated depending on the remaining buffer stock:

2 = ∫

𝑟

0 ∫

𝑑𝑇 +𝑟−𝑦

𝑑𝑇

(

𝑑𝑇 + 𝑟 − 𝑦 − 𝑥
)

𝑓𝑚(𝑥)𝑓𝐿(𝑦)d𝑥d𝑦 (2)

This estimation refers to the scenario of Fig. 2-c, where it can be seen
that some products can outdate due to the difference between buffer
stock (𝑟−𝑑𝐿)+ and demand during the remainder of the shelf life of the
order batch (𝑑𝑚 − 𝑑𝑇 )+.

4.1.2. Lost sales
Following the same process used for outdating items, the estimation

of lost sales depends on to the relation between demand during shelf
life 𝑑𝑚 and reordering cycle time 𝑑𝑇 .

Regarding the number of lost sales per cycle 𝑆, whose estimation is
summarized in Fig. 4 as the sum of components 𝑆1 and 𝑆2, the second
term 𝑆2 is modeled by adapting the widely-used formula for stockout
size per reordering cycle (Silver et al., 2016, p. 261) to the perishable
case:

𝑆2 = ∫

∞

𝑟 ∫

∞

𝑑𝑇
(𝑦 − 𝑟)𝑓𝑚(𝑥)𝑓𝐿(𝑦)d𝑥d𝑦 (3)

On the other hand, whenever 𝑑𝑚 < 𝑑𝑇 the number of lost sales is the
total demand of the reordering cycle other than the one during shelf life
that cannot be covered due to the fact that products outdate, as shown
in Fig. 5, which can be estimated as:

𝑆1 = ∫

𝑑𝑇

0
(𝑑𝑇 − 𝑥)𝑓𝑚(𝑥)d𝑥 (4)
6

Fig. 5. Visual representation of the lost sale quantity 𝑆1.

Fig. 6. Possible realizations and related estimations of expected values of average
inventory, depending on the random variables of demand during shelf life 𝑑𝑚 and
reordering cycle time 𝑑𝑇 .

4.1.3. Average inventory
As mentioned above, perishability affects the inventory level too,

and thus the estimation of the expected average inventory. Similarly
to the lost-sales estimation, Fig. 6 summarizes the two realizations for
average inventory, which depend on 𝑟 and 𝑄.

The second of the two realizations is derived from the
non-perishable case as follows:

𝐴2 = ∫

∞

𝑑𝑇

(𝑄
2

+ ∫

𝑟

0
(𝑟 − 𝑦)𝑓𝐿(𝑦)d𝑦 − 𝑆

)

𝑓𝑚(𝑥)d𝑥 (5)

where the inner portion of the integral represents, in relation to the
PDF of demand during lead time, the average inventory for a reorder-
level policy of a non-perishable product. Conversely, the estimation
of the term 𝐴1 of the average inventory should take into account the
outdating of products in the current reordering cycle. In this scenario,
it is assumed that storage space is used only during the shelf life
of the product, after which outdated items are discarded. The factor
(𝑄−𝑑𝑚)+𝑑𝑚∕2 of Fig. 6 represents the average inventory during 𝑚, which
is then scaled with respect to the overall reordering cycle duration 𝑇
as follows:

𝐴1 =
𝑚
𝑇 ∫

𝑑𝑇

0

(

𝑄 − 𝑥
2

)

𝑓𝑚(𝑥)d𝑥 (6)

4.1.4. Number of reorders
The frequency of supply orders needed to replenish the inventory of

the product is itself dependent on perishability, as well as on the lost
sale setting. For this reason, the estimation of the number of reorders
takes into account the expected number of lost sales and outdating
products per cycle. This results in the estimation of 𝑅 of Eq. (7),
btained by adapting the formulation of Kouki et al. (2015) for the
xpected cycle length.

(𝑟, 𝑄) =
𝑑𝑃

𝑄 + 𝑆(𝑟, 𝑄) − 𝑂(𝑟, 𝑄)
(7)

4.2. Objective functions

The economic and environmental perspectives are modeled as sep-
arate objective functions that depend on the decision variables 𝑟 and
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Fig. 7. Relationship between macroscopic model components and objective functions. Numbers refer to the equations for their estimation.
, on cost and emission factors, and on probability distributions of
he demand. These objective functions become the baseline of an ex-
licit multi-objective approach. Fig. 7 shows how the estimated model
omponents are considered for formulating both objective functions.
n particular, lost sales 𝑆 and outdated items 𝑂 are estimated per

reordering cycle, which allows for obtaining total expected lost sales
and outdating items in the planning horizon through the expected
number of replenishment orders 𝑅.

From a high-level perspective, referring to the notation of Table 1,
he total costs of managing the inventory of a perishable product in the
onsidered planning horizon are given by:

𝐶 (𝑟, 𝑄) =
(

𝑘𝐶 + 𝑙𝐶 𝑆(𝑟, 𝑄) +𝑤𝐶 𝑂(𝑟, 𝑄)
)

𝑅(𝑟, 𝑄)

+ ℎ𝐶 𝐴(𝑟, 𝑄)
(8)

where the estimation of the objective function of total cost encompasses
all the previously-defined components depicted in Fig. 7, which also
references the equations for their estimation. In particular, a cost is
incurred for every replenishment order (𝑘𝐶 ), and for each lost sale (𝑙𝐶 )
and outdated item (𝑤𝐶 ). Storage costs (ℎ𝐶 ) are instead related to the
average inventory occupied during the optimization horizon by one
item.

Similarly to the economic perspective, the total-emission objective
function can be written as:

𝑍𝐸 (𝑟, 𝑄) =
(

𝑘𝐸 +𝑤𝐸 𝑂(𝑟, 𝑄)
)

𝑅(𝑟, 𝑄) + ℎ𝐸 𝐴(𝑟, 𝑄) (9)

where the lost sales do not have a direct impact on emissions related
to the inventory control of a product, but they affect the estimation of
the other model elements.

Focusing on the emission factors, the environmental objective func-
tion takes into account the CO2e emissions for transport and issuing
of every reorder quantity through the parameter 𝑘𝐸 . Holding products
in stock yields emissions due to energy usage needed to keep the
warehouse operational, such as lighting, air conditioning, and heating.
Perishable products might also require temperature control during
storing and/or transport, which is strictly related both to costs and
emissions. Furthermore, the factor ℎ𝐸 can consider the embodied car-
bon related to the warehouse as fixed overhead emissions that depend
on building characterization and useful lifetime. Finally, when products
outdate they need to be disposed of, which requires further potentially-
polluting actions such as transport to a landfill site. Perished products
lead to emissions due to the need for disposal (Tiwari et al., 2018).
Each outdated item is responsible for 𝑤𝐸 emissions, both due to waste
disposal and considering the emissions related to the portion of the
product life cycle prior to outdating, since they were incurred without
any benefit to customers or the organization.
7

4.3. Constraints

Although the proposed formulation is general enough to consider
lost sales through a full-costing approach, to guarantee a lower bound
on the quality of the service, it may be desirable to constrain the
problem. In practice, this can be done by imposing the following
minimal service level constraint:

𝐹𝐿(𝑟) = ∫

𝑟

0
𝑓𝐿(𝑥)d𝑥 ≥ 𝛼 (10)

which guarantees that the ready rate, defined as the probability of
avoiding a stockout in every reordering cycle, exceeds the desired
threshold of 𝛼 > 0. Note that the definition of average inventory of
Eq. (5) assumes that the desired service level 𝛼 or the lost sales cost 𝑙𝐶
are sufficient for non-negative safety stock.

Moreover, since only one order can be outstanding for the consid-
ered policy, the reorder level 𝑟 must be lower than the reorder quantity
𝑄 (Bijvank and Vis, 2011), further restricting the minimization of both
objective functions.

4.4. Multi-objective optimization approach

Following the definition of the objective functions for both eco-
nomic and environmental perspectives, it is possible to approach the
minimization of total costs and emissions related to the inventory
control of a perishable product. This approach to multi-objective opti-
mization for the reorder-level policy enables explicit sensitivity analysis
and exploration of the trade-off between economic and environmental
as functions of the variables and parameters of the problem. The
aim is thus to identify all feasible and relevant solutions to support
environmentally-responsible decision making for the inventory control
of a perishable product. Feasible solutions are the combinations of 𝑟
and 𝑄 that comply with the constraints detailed in Section 4.3. Since
the goal is to minimize costs and emissions, the focus is laid only on
a portion of the feasible solutions, in particular on the non-dominated
ones. In general, a solution is defined as non-dominated if there are
no other solutions that improve the performance in every considered
objective function. Identifying such combinations of system variables
is essential for a decision maker to select the appropriate trade-off
solution based on quantitative information on the effect of 𝑟 and 𝑄 on
the objective functions.

The problem can be therefore written as:

minimize
𝑟,𝑄∈N

⟨𝑍𝐶 (𝑟, 𝑄), 𝑍𝐸 (𝑟, 𝑄) ⟩ (11)

subject to ∫

𝑟

0
𝑓𝐿(𝑥)d𝑥 ≥ 𝛼, (12)

𝑟 < 𝑄, (13)
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Table 2
Case-study warehouse storage parameters, made anonymous with bias and random
noise.

Annual storage costs Storage capacity
[e/year] [m3]

Standard 106 379 8742
Cold 431 194 4464
Frozen 519 537 4802

Note that, as non-negative quantities of non-divisible products are
onsidered, it is necessary to also specify that the variables are natural
umbers. Eqs. (12) and (13) refer respectively to the constraints of
inimal ready rate and single outstanding replenishment order and

dentify the feasibility region 𝛺 =
{

(𝑟, 𝑄) ∣ 𝑟 < 𝑄, 𝐹𝐿(𝑟) ≥ 𝛼
}

of the
decision space for the selection of reorder level and quantity.

The set of non-dominated solutions  ⊆ 𝛺 to be identified is then
given by all the combinations of decision variables that do not perform
worse in one or both objective functions. As better shown visually in
the results of Section 5, non-dominated solutions can be represented
by focusing on the objective space through the Pareto front relating all
⟨𝑍𝐶 (𝑟∗, 𝑄∗), 𝑍𝐸 (𝑟∗, 𝑄∗)⟩ ∀ (𝑟∗, 𝑄∗) ∈  , thus giving a decision maker all
the relevant information needed for a clear selection of the appropriate
variables.

5. Results and discussion

The proposed model and bi-objective resolution approach for the
sustainable reordering of perishable products are applied in representa-
tive scenarios for an industrial case study, presented in the first portion
of this section. In particular, by focusing first on a single instance of
the problem, the aim is to show the outputs of the model. Finally, by
comparing different realistic and relevant scenarios, further results and
considerations are obtained for analysis. Impactful considerations are
drawn to support the decisions making for the inventory control at a
managerial level.

5.1. Case study

The considered case study is a European company specializing in
the distribution of food products and operates at a multi-regional
level from a single distribution center. The company’s warehouse is
mainly responsible for receiving, storing, and distributing to retailers,
restaurants, and final customers. Over the span of the years 2017 to
2019, the company has managed about five-thousands stock keeping
units, accounting for more than 45’000 inventory replenishment orders
performed by the procurement office. In order to keep the distribution
center running, the company incurs yearly storage costs related to
energy consumption and depreciation of the warehouse building and
material handling equipment. Moreover, further costs are incurred for
procurement due to personnel and overhead costs. Since the business
deals mostly with food items, some require temperature control during
storage. For this reason, produce categories are defined as standard
products, which are shelf-stable items that can be stored in a regular
environment, cold products that require refrigeration at 4–8 ◦C, and
frozen products at minus 20 ◦C. These storage cost values are listed,
together with storage capacities in Table 2, depending on the product
category.

Overall storage and procurement costs, can be used to derive cost
factors for the optimization model. In particular, considering one of
the most representative standard products managed by the company,
Table 3 lists the available and computed parameters for optimizing
its inventory choices in a sustainable manner. The considered product,
stored at ambient temperature, has a shelf life of two weeks and its de-
mand distribution has been estimated from the historical company data,
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which results as an exponentially distributed daily customer demand
with rate parameter 𝜆 = 3.46 items per day, while its procurement lead
time is estimated to be of four days. Moreover, each unit of product has
a value of 15e, occupies 0.008 m3 during storage, and has a mass of
0.7 kg. The company incurs costs for each lost sale equal to 20% of the
item value and 70% for each outdated item due to purchase cost and
waste management. Additionally, the input of minimal service level 𝛼
is set by management to be of 70%.

Similarly to the economic perspective, emission factors related to
storage are computed starting from data on yearly energy consumption.
Such values are estimated thanks to relevant literature contributions re-
garding similar warehousing scenarios and assuming a carbon footprint
related to the energy mix of the company of 0.6 kgCO2e/kWh (Allen
and Pentland, 2011). More specifically, the energy profile of a ware-
house is mainly driven by temperature control for thermal comfort and
by lighting (Ries et al., 2017) for standard products. The considered
parameters are listed in Table 3. In particular, supply is by road via
truck, and the emission factor 𝑘𝐸 is estimated depending on the order
quantity, since this variable impacts both the number of required
shipments ⌈𝑄∕𝑄𝑚𝑎𝑥⌉ and the fuel consumption, i.e., more emissions are
incurred for an heavier vehicle and for multiple resupply trips (Bozorgi
et al., 2014). The emission factor is computed, depending on the travel
distance 𝐷, as:

𝑘𝐸 (𝑄) =
(

𝑒0 + 𝑒𝑤 ⋅𝑄
/⌈

𝑄
𝑄𝑚𝑎𝑥

⌉)

⋅𝐷
⌈

𝑄
𝑄𝑚𝑎𝑥

⌉

(14)

where 𝑒0 is the emission fact per traveled distance for an empty vehicle,
𝑒𝑤 the factor per item per transport distance that contributes to the
increase in transport emissions due to an increase in shipped weight.
𝑄𝑚𝑎𝑥 is the transport capacity for the considered product. In particular,
each transshipment can carry 300 units of product, and it is assumed
that each unit contributes to 1 gCO2e per unit distance. Moreover, the
emission factor is related to a medium-speed diesel truck (Grigoratos
et al., 2019) for a travel route of 62.8 kilometers. Additionally, Eriksson
et al. (2015) allow estimating emissions per item of equivalent food
product taking into account the carbon-equivalent emissions due to
waste management, assuming a landfill end-of-life scenario.

5.2. Validation

This section is dedicated to comparing the results of the proposed
model, in particular by focusing on the validity of the estimation of
outdating products due to perishability. The comparison is performed
with both a simulation model built in Arena Simulation Software 16.2
and with the estimation of Kouki et al. (2015) due to its connection
with the presented work. In order to enable the comparison and to
reflect on the quality of the estimate of outdating products, the bi-
objective setting and service level constraint are disregarded in the
current section.

The discrete simulation event experiments consider the shelf life
and its effect on inventory level both if the products outdate in the
same inventory cycle in which they are received at inventory, or in
one of the subsequent cycles. Each result is the average value over
25 replication runs, each with a duration equivalent to four years of
stochastic demand and inventory simulation in which an order of fixed
size is issued whenever the reorder level is reached or surpassed, and
received after a constant lead time. Whenever in stockout, demand
is lost, and when shelf life of products in a batch is reached, the
remaining items, if any, are discarded. For the comparison with the
model of Kouki et al. (2015), their estimations for lost sales, outdating
products, and average inventory were implemented within the total
cost function assuming a planning horizon of one year.

Model validation is performed starting from the input parameters
presented in the previous section, for which the economic anchor point
(APC) is computed by minimizing total expected costs of Eq. (8). This
minimization results in the optimal values of the variables of reorder
level and quantity 𝑟 = 14, 𝑄 = 29. Table 4 presents the results of
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Table 3
Case study input parameters. (C) indicates case-study data, while the citations allowed the estimation of the related parameters.
Param. Value Unit measure Source

𝛼 70 % (C)
𝑚 14 days (C)
𝑃 365 days (C)
𝐿 4 days (C)
𝜆 3.46 items/day (C)
𝑘𝐶 11.2 e (C); Bortolini et al. (2016)
ℎ𝐶 0.0973 e/item (C)
𝑙𝐶 3.0 e/item (C)
𝑤𝐶 10.5 e/item (C)
𝐷 62.8 km (C)
𝑒0 0.528 kgCO2e/km Grigoratos et al. (2019)
𝑒𝑤 10-3 kgCO2e/item/km
𝑄𝑚𝑎𝑥 300 items (C)
ℎ𝐸 0.484 kgCO2e/item Ries et al. (2017)
𝑤𝐸 1.47 kgCO2e/item Eriksson et al. (2015)
Table 4
Total outdated products per year for economic anchor point and related variation
of parameters. Positive differences with respect to simulation are related to an
overestimation.

𝑂 × 𝑅 𝑂(𝑘) × 𝑅(𝑘) 𝑂(𝑠𝑖𝑚)
𝑡𝑜𝑡 %𝛥𝑠𝑖𝑚 %𝛥(𝑘)

𝑠𝑖𝑚 %𝛥

APC 12.3 17.6 8.8 40.7 100.8 −59.6
𝑄 + 5 26.0 39.7 22.7 14.5 74.7 −80.6
𝑄 + 10 50.7 74.9 46.1 9.9 62.3 −84.1
𝑄 + 15 88.1 122.9 83.7 5.2 46.8 −88.9
𝑚 = 7 272.1 370.3 260.4 4.5 42.2 −89.3
𝑚 = 9 129.1 190.7 118.3 9.1 61.2 −85.2
𝑚 = 11 53.2 83.3 118.3 −55.0 −29.6 85.6
𝑐𝑣2 = .25 0.2 0.1 0.0 351.2 180.6 94.4
𝑐𝑣2 = .50 2.6 2.6 1.2 111.5 114.0 −2.2
𝑐𝑣2 = .75 7.0 8.9 4.7 48.7 87.6 −44.4

the comparison in terms of total outdating products for the proposed
model, the model of Kouki et al. (2015) denoted by (𝑘), and the simula-
tion results denoted by (𝑠𝑖𝑚). In particular, the difference with respect
to simulation for both models, %𝛥𝑠𝑖𝑚 and %𝛥(𝑘)

𝑠𝑖𝑚 respectively, is shown
for each test, where only one parameter is changed starting from APC
parameters and variables. Additionally, the percentage difference %𝛥
between the two models for each parameter variation is also reported.
Since it is to be expected that ordering more leads to more wasted
items, the effect of increasing order quantity on total outdated products
is tested. The other parameters subject to study are the product shelf
life, and coefficient of variation of daily demand 𝑐𝑣 with same demand
mean. In particular, the starting point of APC is computed with unitary
coefficient of variation and with a shelf life of two weeks. The results
of Table 4 show an accuracy of the presented model for almost every
instance of input variation. On average, the proposed formulation for
outdating products is over 35% more accurate compared to Kouki
et al. (2015). Moreover, a better estimation is achieved for all varying
order quantities, ranging from close to 60% of error difference for the
economic anchor point to over 88%.

Other validation tests on the quality of the outdating estimate are
performed taking into account the anchor point obtained with the
model and the input parameters of Kouki et al. (2015). In particular,
following their work, two main scenarios with shelf life 𝑚 = 3 are
compared by varying the lead time between 1 or 2 days. In addition, the
cost parameters used are {𝑘𝐶 , ℎ𝐶 , 𝑤𝐶} = {200, 1, 5}, and daily demand
follows a gamma distribution with mean 10 and unitary coefficient of
variation. Regarding this, Table 5 presents the results for the anchor
point APC(𝑘)

1 with 𝑛𝐿 = 1 and APC(𝑘)
2 with 𝑛𝐿 = 2 respectively.

Starting from these anchor points, the effect of variation of cost per
outdating unit and of coefficient of variation on the estimates of total
outdated items are analyzed. For each variation of waste cost and
demand variability the anchor points are recomputed and tested in the
simulation model. Within these scenarios, the presented model leads
to underestimation of outdating products for higher lead time and
9

Table 5
Total outdated products per year for anchor points obtained with variation of
parameters. Positive differences with respect to simulation are related to an
overestimation.

𝑂 × 𝑅 𝑂(𝑘) × 𝑅(𝑘) 𝑂(𝑠𝑖𝑚)
𝑡𝑜𝑡 %𝛥𝑠𝑖𝑚 %𝛥(𝑘)

𝑠𝑖𝑚 %𝛥

APC(𝑘)
1 834.5 1123.6 865.0 −3.5 29.9 −111.8

𝑤𝐶 = 10 584.5 770.7 576.2 1.4 33.8 −95.7
𝑤𝐶 = 15 415.4 565.1 410.9 1.1 37.5 −97.1
𝑤𝐶 = 20 332.2 472.5 340.5 −2.4 38.8 −106.3
𝑐𝑣2 = 0.23 256.3 379.7 202.7 26.5 87.3 −69.7
𝑐𝑣2 = 0.4 416.0 560.2 364.9 14.0 53.5 −73.9
𝑐𝑣2 = 0.63 628.8 800.7 608.6 3.3 31.6 −89.5

APC(𝑘)
2 663.2 877.8 671.4 −1.2 30.8 −104.0

𝑤𝐶 = 10 404.9 597.7 437.7 −7.5 36.5 −120.5
𝑤𝐶 = 15 272.8 473.2 330.2 −17.4 43.3 −140.1
𝑤𝐶 = 20 161.8 382.1 270.5 −40.2 41.2 −197.5
𝑐𝑣2 = 0.23 264.1 448.6 159.2 65.9 181.8 −63.7
𝑐𝑣2 = 0.4 322.2 530.1 232.0 38.9 128.5 −69.8
𝑐𝑣2 = 0.63 446.3 659.4 375.2 19.0 75.7 −75.0

Fig. 8. Percentage difference on simulated total costs between the proposed model
anchor point and the one of Kouki et al. (2015). Dotted horizontal lines depict the
average value for each shelf life. Negative values are related to lower actual inventory
costs for the proposed formulation.

high-variability demand. Nevertheless, the accuracy of the estimation
is closer to simulation results for every instance compared with the
results obtained with Kouki et al. (2015) estimates. It is important to
note that all the studied scenarios lead to the optimal choice of a single
outstanding order per cycle.

The third set of tests for validation is centered on showing the
effects of the difference in estimation of the components of the objective
functions on total economic performance. For showing the impact of
inventory decisions on total costs, the economic anchor point was
computed starting from case study parameters for the two different
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Fig. 9. Contour plots of objective functions at varying values of decision variables reorder level 𝑟 and quantity 𝑄. The dashed line identifies the lower bound for 𝑟 due to service
level. Blue and red points represent optimal pairs of 𝑄 and 𝑟 with respect to the unconstrained and constrained problem respectively.
models for varying demand variability and for several values of shelf
life and subsequently plugged in the simulation model. Fig. 8 shows
the difference between the presented model and the one of Kouki et al.
(2015), where negative values mean that the proposed model of this
study leads to lower inventory costs. Results show that, on average with
respect to demand variability, an improvement of up to almost 11%
of total yearly inventory costs compared to Kouki et al. (2015) can be
achieved. This is especially prevalent for low demand variability, where
resulting inventory costs are more than 27% lower over the different
shelf lives.

5.3. Multi-objective results

The proposed optimization model is applied along with the multi-
objective approach to the perishable product described previously,
whose model parameters are summarized in Table 3. The goal is to
minimize yearly costs and emissions while maintaining the desired
minimal service level.

Starting from the daily demand distribution, the other required
demand distributions are obtained through convolution, resulting in
skewed gamma density functions (e.g., for demand during the lead
time or shelf life). Fig. 9 depicts the resulting contours from the
numerical computation of such performance for economic and envi-
ronmental objectives, evaluated using Eqs. (8) and (9) respectively.
The two performance metrics behave differently for varying values of
the decision variables 𝑟 and 𝑄 in the decision space allowed by the
single outstanding order assumption. For example, a higher variation
in total emissions is observed for lower values of 𝑟 while maintaining
the reorder quantity constant.

The constrained problem requires the identification of a lower
bound for reorder-level. This value is given by the minimum amount
of items that guarantees the required minimal service level, defined as
ready rate 𝛼. The service level function for this scenario is depicted
in Fig. 10, together with the requested service level. This results in
a lower-bound value of 𝑟 = 17 units, which is related to a service
level of 72.3% and allows the identification of the feasibility region 𝛺,
thus restricting the selection of the optimal values for each objective
function by reducing the decision space as presented in Fig. 9 for both
the considered perspectives.

By implementing initially a single-objective optimization, it is pos-
sible to minimize separately the two objective functions. This results
in the anchor points (𝑟∗𝐶 , 𝑄

∗
𝐶 ) = (17, 27) and (𝑟∗𝐸 , 𝑄

∗
𝐸 ) = (17, 51),

that are related to the economic minima (915.6e) and environmental
minima (1144.3 kgCO2e). These results are also shown graphically in
Fig. 9, where the constrained optima points are distinguished from
unconstrained ones and it can be clearly seen how they vary due
to the introduced minimal service level requirement. Each of these
anchor points is related to different values of model components, which
would result in different inventory patterns. For example, the resulting
average inventory of a solely-economic choice is 16.9 items, while an
10
Fig. 10. Ready rate service level function at varying values of reorder level 𝑟.

Fig. 11. Pareto fronts for total costs and emissions in the case of varying minimal
service level 𝛼.

environmentally responsible optimization would result in a value of
26.2.

Since the considered problem is bi-objective, it is necessary to follow
the approach described in Section 4.4 for multi-objective optimization
in order to obtain an efficient solution in terms of both total costs and
emissions. The set  of non-dominated solutions is derived numerically,
and the resulting Pareto front in the decision space is shown in Fig. 11
for the service level of 70%.

The performance of each point of this frontier is reported in
Table A.1. This information about the economic and environmental
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Fig. 12. Environmental performance and emission components depending on each
Pareto frontier pair. Percentages indicate the relative contribution of outdating products
on total emissions.

performance for each identified efficient pair of variables allows for
the quantitative information needed to make an informed decision
regarding the inventory control of the considered product. Moreover,
due to the relevance of the performance measure of the number of
wasted products due to perishability, Fig. 12 depicts the absolute
environmental performance depending on the selected efficient pair.
In addition, the inventory components of total emissions are distin-
guished, including the relative contribution of outdating products on
the environmental performance.

5.4. Scenario analysis

To further investigate the tackled problem, several realistic scenar-
ios are considered in order to analyze the optimization model outcomes
in different conditions. By focusing on variations of the baseline setting
solved above, further results and considerations can be drawn.

5.4.1. Minimal service level
Adopting the same input parameters and optimization approach

used above, different service levels are tested for the considered prod-
uct. Input values of 𝛼 affect the resulting Pareto front of the bi-objective
optimization. In this regard, Fig. 11 shows such frontiers, which are not
only shifted to higher values of emissions and costs, but also change the
trade-off behavior. Whereas the environmental anchor point is always
affected by the service level, low-enough values of 𝛼 do not affect the
economic anchor point. Moreover, the degree of change between the
frontiers due to different service levels can be analyzed through the
metric of (standard) hypervolume (Zitzler et al., 2007). In particular,
the hypervolume indicator is computed for each frontier and scaled to
the value of the initial Pareto front, given by 𝛼 = 70%. By shifting from a
service level of 60% to 70%, a relative change of 4.2 of hypervolume is
observed, while from 50% to 60% the change is of 3.7. Similarly, from
70% to 80% the change of hypervolume is 8.4, and from 80% to 90%
of 17.3. As a result of the restricted selection of decision variables, the
service level to be maintained at each reordering cycle plays a huge
role in the inventory system performance, with increasing impact for
large enough minimal ready rate values.
11
5.4.2. Shelf life
Since the proposed optimization model considers product perisha-

bility, the effect of the shelf life 𝑚 on the anchor point computation
is tested. Specifically, an increase is experienced in both economic
and environmental order quantities, while only the reorder level of
the economic objective function is affected by a variation of 6 items
between one and four week shelf lives (Fig. 13).

Additionally, Fig. 14 depicts the estimation of average inventory
and outdating products per cycle for each of the anchor points as
𝑚 changes. Due to the increase of both economic and environmental
reorder quantities, that happen at a different trends with respect to
shelf life as shown in Fig. 13, the resulting average inventory increases.
On the other hand, the outdating products per inventory cycle decrease
with shelf life, especially prominent for the environmental anchor
points at varying 𝑚.

5.4.3. Product category
Whenever specific temperature control is needed in order to pre-

serve product quality and safety requirements, additional costs and
emissions are caused by inventory storage. Additionally, due to the
need to maintain temperature control over the whole supply chain,
transport factors are also influenced. In particular, Tassou et al. (2009)
suggested how the fuel consumption during transport can increase
of 20.1% and 26.7% with respect to ambient for chilled and frozen
products respectively, and similarly how carbon dioxide emissions
can increase of 19.9% and 27.1% . These parameters related to each
product category are listed in Table 6, where the difference estimated
from the case study data about shelf life and lead time per product
category is also reported.

As products in different categories are related to different input
parameters, the computation of the anchor points for both objective
functions and their performance needs to consider the different factors
also for cold items and for frozen items reported in Table 6. Results
show that there is an increase in total emissions and total costs due
to different product requirements and characteristics, as it can be
expected. Moreover, the relative contribution of different objective
function components on total costs and emissions, computed in the
respective anchor points, shift depending on product category. For
example for the economic performance, an increase in transport costs
is observed from around 55% to more than 71% (Fig. 15). On the other
hand, for environmental performance the increase related to transport
emissions is not true for cold items, possibly to the greater effect of
perishability given by the shorter shelf life. The resulting performance
of both objective functions are thus considerably affected by the type of
product, since they require different holding and transport conditions,
which are related to different economic and environmental factors, and
are characterized by different shelf lives and procurement lead times.

Additionally, Fig. 16 depicts the estimation of lost sales for each
product category as both lead time and shelf life change. Starting from
the data related to each category, the economic anchor points are
computed for increasing values of lead time and shelf life respectively
via a multiplication factor. These results show how the lost sales per
inventory cycle decrease with shelf life, while an opposite trend is
observable for increasing lead time durations.

Focusing now only on the frozen product type, the results in Fig. 17
show the impact of different transport environmental factors on the
expected number of reorders for the environmental anchor point. In
particular, different waste emission factors are tested, starting from the
case study emissions per outdated product. For each, it can be observed
how the trend is an increase in the number of reorders. Moreover, for
a given waste factor, a greater emission per unit distance is related to
a lower number of reorders. In particular, different values of emissions
per travel distance 𝑒0 are tested, scaled with respect to the case study
emission factor.
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Fig. 13. Effect of shelf life on the economic and environmental anchor point variables.
Table 6
Case study input parameters per product category. (C) indicates case-study data, while the citations allowed the estimation of the related
parameters.

Standard Cold Frozen Unit measure Source

𝑘𝐶 11.2 13.5 14.2 e (C); Bortolini et al.
(2016) and Tassou
et al. (2009)

ℎ𝐶 0.0973 0.7723 0.866 e/item (C)
𝑒0 0.528 0.634 0.671 kgCO2e/km Grigoratos et al. (2019)

and Tassou et al.
(2009)

ℎ𝐸 0.484 1.53 1.71 kgCO2e/item Ries et al. (2017),
Nunes et al. (2014) and
Gil-Lopez et al. (2014)

𝑚 14 10 28 days (C)
𝐿 4 2 5 days (C)
Fig. 14. Effect of shelf life on the average inventory value and on the number of
outdating items per cycle for economic and environmental anchor points.

5.5. Managerial insights

The identification of the Pareto front is an essential tool for a simple
but quantitative analysis of trade-offs in inventory control and the
interplay among decision variables and each objective function of the
considered optimization problem. The proposed model and methodol-
ogy suggests that focusing only on the economic objective can have
strong negative environmental drawbacks, which could be the result of
the different behavior of the objective functions due to cost and emis-
sion factors. Other than the economic and environmental anchor points,
the other non-dominated solutions are the key to make a sustainable
decision for inventory management in a more transparent setting,
12

where losses and gains of switching from one point of the frontier to the
other can be quantitatively estimated and used for an evidence-based
selection of the decision variables. For example, it could be possible
to considerably reduce emissions related to the inventory control of a
product at virtually no deprecation of the economic objective function,
but further increasing costs would lessen such environmental gains.
This consideration is in fact true in the case-study results presented in
Table A.1, where, by moving away from the economic anchor point, an
improvement almost 8% in emission can be obtained at less about 3%
of total costs. Moreover, the Pareto front allows for identifying efficient
solutions, meaning that a possible choice of 𝑟 and 𝑄 that is not based on
the proposed multi-objective optimization approach might be far from
the identified efficient solutions.

As might be expected, the performance of economic and environ-
mental objective functions depending on the decision variables can be
quite different, meaning that optimizing either objective would lead
to poor performance of the other. In addition to this, the constrained
problem causes a great degree of control on the reorder level variable,
which restricts the decision space for the selection of the variables 𝑟
and 𝑄. In fact, the inclusion of the service level does not only change
the value of 𝑟 due to the related lower bound, but makes the anchor
points shift also to different values of 𝑄, which can be quite different
from the non-constrained case, for example for the economic anchor
point. Even though the double inclusion of stockouts in terms of both
lost sale cost and service level constraint might seem redundant, from
the environmental perspective it would not make sense to deprecate
customer satisfaction even if prioritizing emissions was the main objec-
tive. This behavior is due to the lack of connection between lost sales
and emissions, since there is no drawback in emissions of not being
able to meet customer demand from available inventory. Moreover, the
integrated service level and stockout-costing approach is valuable also
from the economic point of view due to the difficulty often connected
with measuring accurately lost sale costs (Andersen et al., 2006). Based
on this connection between the two objective functions and service
level, it is possible to notice that an increase in service level is always
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Fig. 15. Percentage of each model component on total costs (left) and emissions (right) computed in the relative anchor points for each product category.
Fig. 16. Effect of lead time shelf life increase on the number of the expected lost sales per cycle for economic anchor points.
Fig. 17. Effect of variation in waste and transport emissions on the expected number
f reorders in the planning horizon for environmental anchor points.

elated to increased emissions since the constraint limits the selection of
ecision variables in a way that directly affects the objective functions.
n the other hand, solely optimal economic performance might not be
ffected by different service levels, since the cost component of lost
ales already allows to comply with the constraint. The opposite results
rue for very high service level values, that require both high costs and
missions in order to be guaranteed.

A further hint from the managerial perspective is that perishability
as an important effect on the inventory control problem components.
n fact, products with short shelf lives tend to require smaller and thus
13
more frequent replenishments, forcing the optimal choice of decision
variables to deviate from the non-perishable case. On the other hand, as
perishability decreases, more stock can be kept in inventory, including
higher values of safety stock. In particular, an highly perishable product
leads to overall higher values of total costs and emissions since this
component highly influences also the others, in addition to begin a
driver for costs and emissions itself.

Finally, it is important to consider that practitioners often deal with
many food products that are not only characterized by perishability,
but also by the requirement of temperature control during storage and
transport. This feature of products, paired with other characteristics
that might be specific of a product category such as lead time or shelf
life, influences the inventory choices also in multi-objective setting, due
for example to the rise in cost and emission factors for storage and
transport. While increasing total cost and emissions, the optimization
of these different product categories leads to a greater impact of the
storing component on total performance. In particular, both storage
costs and emissions play a bigger role on total performance for products
that require temperature control during storage. Such variation in
characteristics and factors per product category also leads in a shift in
relative importance of other components, such as on the contribution of
lost sales and outdating products on total costs or emissions. Moreover,
over different product types the effect of lead time is also relevant.
As products with longer shelf lives might be characterized also by
larger procurement lead times in a realistic scenario, it is important
to consider how this aspects play a contrasting role in the number of
lost sales, which is closely connected with the fact that products can
outdate due to perishability.

6. Conclusion

This paper presents a model to manage the inventory by consid-

ering multiple sustainability perspectives. Perishability is tackled via



International Journal of Production Economics 274 (2024) 109309F. Pilati et al.

s

Table A.1
Pareto front decision variables combinations with relative value of total economic and environmental performance, losses and gains with respect
to anchor points, and component of objective functions values.
𝑟 𝑄 𝑍𝐶 (𝑟, 𝑄) 𝑍𝐸 (𝑟, 𝑄) 𝑍𝐶 loss [%] 𝑍𝐸 gain [%] 𝑍𝐸 loss [%] 𝑍𝐶 gain [%] 𝑅 𝐴 𝑆 × 𝑅 𝑂 × 𝑅

17 27 915.6 1592.0 0.0 −0.0 39.1 65.5 44.7 16.9 74.6 18.1
17 28 920.0 1547.1 0.5 2.8 35.2 65.4 43.2 17.5 73.5 20.4
17 29 929.2 1505.5 1.5 5.4 31.6 65.0 41.8 18.0 72.8 22.9
17 30 943.2 1467.1 3.0 7.8 28.2 64.5 40.5 18.5 72.6 25.7
17 31 962.3 1431.6 5.1 10.1 25.1 63.8 39.3 19.1 72.9 28.7
17 32 986.8 1398.8 7.8 12.1 22.2 62.9 38.2 19.6 73.7 32.0
17 33 1017.0 1368.5 11.1 14.0 19.6 61.7 37.1 20.1 75.0 35.7
17 34 1053.1 1340.5 15.0 15.8 17.1 60.4 36.0 20.6 76.9 39.7
17 35 1095.3 1314.9 19.6 17.4 14.9 58.8 35.1 21.1 79.5 44.0
17 36 1144.0 1291.3 25.0 18.9 12.8 57.0 34.1 21.5 82.6 48.7
17 37 1199.3 1269.8 31.0 20.2 11.0 54.9 33.3 22.0 86.3 53.9
17 38 1261.4 1250.3 37.8 21.5 9.3 52.5 32.4 22.4 90.7 59.4
17 39 1330.4 1232.7 45.3 22.6 7.7 49.9 31.6 22.8 95.7 65.4
17 40 1406.3 1216.9 53.6 23.6 6.3 47.1 30.8 23.2 101.3 71.9
17 41 1489.2 1202.8 62.7 24.4 5.1 44.0 30.1 23.5 107.5 78.8
17 42 1578.9 1190.5 72.5 25.2 4.0 40.6 29.4 23.9 114.3 86.1
17 43 1675.4 1179.8 83.0 25.9 3.1 37.0 28.7 24.2 121.7 93.9
17 44 1778.4 1170.6 94.2 26.5 2.3 33.1 28.1 24.5 129.6 102.2
17 45 1887.7 1162.9 106.2 27.0 1.6 29.0 27.5 24.7 138.1 110.8
17 46 2003.1 1156.7 118.8 27.3 1.1 24.6 26.9 25.0 147.0 119.9
17 47 2124.1 1151.8 132.0 27.7 0.7 20.1 26.3 25.3 156.4 129.3
17 48 2250.5 1148.2 145.8 27.9 0.3 15.3 25.7 25.5 166.2 139.1
17 49 2381.8 1145.8 160.1 28.0 0.1 10.4 25.2 25.7 176.4 149.3
17 50 2517.6 1144.5 175.0 28.1 0.0 5.3 24.7 26.0 186.9 159.8
17 51 2657.4 1144.3 190.3 28.1 0.0 −0.0 24.2 26.2 197.7 170.5
the estimation of outdating products and it is shown how this aspect
affects other objective functions components, allowing for assessing
the dual performance of the proposed reorder-level policy. The bi-
objective nature of the problem was evaluated with the identification
of the Pareto front while considering lost sales and the service level
constraint. In particular, the identification of Pareto-efficient solutions
is key for increased awareness at the decision level.

One of the more significant findings of this study is that merely
considering lost sales through costing could have a major effect on
the probability of stockouts, highlighting the importance of constrain-
ing the minimization through service level. Moreover, shelf life and
product category emerged as important factors affecting the choice of
decision variables and the related performance. The findings suggest
that, in general, environmental performance is not only related to the
efficiency of emission factors but also to the inventory choices taken
at the tactical level. In addition, evidence shows how optimal reorder
level and quantity values differ from cost and emission perspectives.
Without the multi-objective approach to sustainability, it would not be
possible to estimate the effect of decision variables on economic and
environmental performance simultaneously for a perishable product in
a stochastic setting. The insights gained from this research could help to
improve awareness of inventory choices and enhance the understanding
of their impact on the considered objectives.

To conclude, further research might explore different service level
measures, and how they affect, for example, perishability estimations.
Moreover, extending the model to two or more outstanding orders
could improve the applicability of the model in other real scenarios.
The performance of the reorder level policy could be also further stud-
ied by comparing it to other approaches, such as base stock policies,
for the multi-objective problem. Another possible progression of this re-
search could be the analysis of environmental drivers in order to assess
emission factors, for example by modeling storage emissions as a result
of warehouse characterization, location, and energy sources. Continued
efforts are hence needed to encourage more sustainable decisions in
logistics via quantitative implications of managerial decisions.
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Appendix

Detailed data on each of the identified Pareto pairs of decision
variables for the single product analysis is given in Table A.1, where
for each pair of 𝑟 and 𝑄 the total performance is computed, as well as
the estimation of each objective functions component. In addition, the
percentage gains and losses obtained from moving from the economic
and environmental respectively anchor points are tabulated as well,
showing how, for example, optimizing solely for emissions would come
at a worsening in economic performance of more than 190%.
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