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A psychometric scale reports experiences in terms of items/sentences rated by individuals. In 

this study, we investigate whether psychometric item ratings reflect semantic/syntactic as-

sociations between concepts in items. To this aim, we introduce semantic loadings as a se-

mantic counterpart of psychometric factors, i.e. clusters of items obtained by correlations be-

tween item ratings. Semantic loadings quantify how clusters of semantically related con-

cepts, as expressed in the texts of items, are allocated across psychometric factors as identi-

fied by ratings. As a case study, we focus on 39775 individual responses to the Depression 

Anxiety and Stress Scale (DASS) with 42 items on a 4-point Likert scale. To identify communi-

ties of semantically related concepts, we exploit the cognitive network framework of Textual 

Forma Mentis Networks (TFMNs), which reconstruct semantic/syntactic links encoded in the 

texts of items (e.g. "feel" and "sad" in the item "I usually feel sad"). To identify factors we com-

pare eigenvector-based exploratory analysis with Graph Exploratory Analysis (EGA), which 

can both cluster items (and their texts) according to user ratings. We find that EGA is better 

at reconstructing the psychometric structure of DASS along the dimensions of anxiety, stress 

and depression. Following dual coding theory and the Deep Lexical Hypothesis, we posit that 

the act of reading items activates interconnected concepts and this influences user ratings 

and their expressed psychological constructs. Our results show a quantitative match: TFMN-

based semantic loadings can identify specific aspects of emotional dysregulation, emotional 

exhaustion, physical distress and tension states of EGA-based psychometric factors, in non-

random ways. We discuss our results in view of relevant mental distress literature, psycho-

metric scale designing and links with episodic and semantic memories. 
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1. INTRODUCTION 

The methodological framework of network 
psychometrics has been gaining increasing 

traction in recent years as it offers a nuanced 

view of psychological phenomena (Christen-

sen & Golino, 2021; Christensen et al., 2018; 

Epskamp et al., 2018; Golino & Epskamp, 2017). 

Predicated upon the principle of conceptualis-

ing psychological constructs as a network of in-

teracting components (Christensen et al., 2020; 

Costantini et al., 2019; Epskamp & Fried, 2018), 

rather than latent variables (Lovibond & Lov-

ibond, 1995), it offers a unique perspective that 

challenges conventional understanding. This 

perspective allows researchers to model com-

plex psychological constructs, such as anxiety, 

stress, and depression (Lovibond & Lovibond, 

1995; Van den Bergh et al., 2021), not merely as 

individual, distinct entities, but as intercon-

nected symptom networks wherein each 

symptom can potentially influence and be in-

fluenced by others (Costantini et al., 2019; Go-

lino et al., 2020; Van den Bergh et al., 2021). Such 

an approach, while respecting the multidimen-

sionality of these constructs, provides a more 

detailed representation of their intricate struc-

ture (Borsboom et al., 2021). Exploratory Graph 

Analysis (EGA) provides results that are in-

formative about the presence and number of 

psychological factors at work in determining 

correlations in psychometric data (Christensen 

et al., 2020; Epskamp et al., 2018; Golino & 

Epskamp, 2017). In this way, EGA can be an al-

ternative solution to standard factor analysis.  

Another methodological framework that has 

been gaining traction in psychology is the field 

of cognitive network science (Siew et al., 2019; 

Stella, 2022). Cognitive networks encode rela-

tionships between concepts and thus give 

structure to human knowledge in terms of as-

sociative links between concepts, ideas and 

words (Baker et al., 2023; Castro & Siew, 2020). 

Notice that cognitive psychology usually as-

sumes words are expressions of concepts 

(which can be more specific instances of gen-

eral ideas; Aitchison, 2012; Siew et al., 2019). 

In cognitive networks, nodes work at the repre-

sentation of individual ideas, expressed 

through words, so that concepts and words can 

thus be used interchangeably, like we do in the 

following (Siew et al., 2019). Unveiling the net-

worked structure between concepts plays a 

critical role in enhancing our understanding of 

the interactions between different cognitive 

components associated with these constructs, 

in particular in human representations of 

knowledge (Baker et al., 2023; Hills & Kenett, 

2022) and their interplay with personality traits 

(Samuel et al., 2023). Drawing upon graph the-

ory and complex systems science (Newman, 

2012), cognitive network science provides a 

means to visualise and quantify the complex 

web of relationships among various concepts. 

Here we focus on a particular type of cognitive 

networks that has been recently developed by 

Stella (2020): Textual Forma Mentis Networks 

(TFMNs). These specific networks represent the 

structure of knowledge embedded in text via 

either syntactic specifications, e.g. "love" is 

specified as being a "weakness" in the sentence 

"love is weakness", or through overlap in mean-

ing, e.g. "weakness" and "issue" can be syno-

nyms in the sentence "love is a weakness and 

an issue". Importantly, TFMNs can map these 

relationships without resorting to word co-oc-

currences, i.e. words co-occurring within a 

given number of words in a sentence or text. To 

overcome this limit, TFMNs adopt a unique 

combination of AI and psychological data: The 

AI identifies syntactic relationships in text and 

matches syntactically related or synonymous 

words, whereas psychological data (S. M. Mo-

hammad & Turney, 2013) is used to identify 

which words elicit a positive/negative/neutral 

valence or a given emotion. In this way, TFMNs 

can reconstruct how a given set of texts or com-

municative intentions framed one or more con-

cepts and which specific emotion-conveying 

words were used to describe key ideas, cf. Stella 

(2022). 

Textual forma mentis networks can be relevant 

for psychometric questionnaires, where a 
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respondent has to read an item and then rate 

it according to one’s own personal experience 

(Rattray & Jones, 2007). In accordance with 

dual coding theory (Paivio, 1991), we consider 

the content of a given item as a cue stimulating 

both an emotional and cognitive reaction in 

the respondent, whose semantic memory 

deals with understanding the content of the 

item itself (Aitchison, 2012; Ciaglia et al., 2023) 

and whose autobiographical memory can get 

activated for producing a rating of the same 

item (Meléndez et al., 2018; Rubin, 2005). 

Several recent studies have shown how the se-

mantic and autobiographical memories are 

not independent but rather interact in com-

plex ways (Irish & Piguet, 2013; Mace & Unlu, 

2020), e.g. emotions and events in the autobio-

graphical memory can influence or alter search 

and retrieval from semantic memory. This in-

terplay means that there is a relationship be-

tween how a respondent rates a given series of 

items and the items’ semantic/syntactic con-

tent. In our approach with semantic loadings, 

some of the semantic memories necessary for 

understanding the content of the question-

naire’s items are explicitly modelled using the 

forma mentis network representation (Stella, 

2022). 

According to the recently postulated Deep Lex-
ical Hypothesis, which builds on past ap-

proaches for building psychometric personal-

ity scales based on language use in communi-

cative intentions (Wood, 2015), the presence of 

psychological constructs percolates through 

language use (Cutler & Condon, 2023). This per-

colation makes it possible to observe changes 

in both expressed and understood semantic 

memories, based on the presence or absence 

of specific psychological constructs. Here we 

do not have access to alterations on the acti-

vated memories after an individual reads a 

given item. However, we can posit that the 

presence of a given psychological construct, 

e.g. anxiety, interacts with both semantic and 

autobiographical memory levels, which are 

entwined, as mentioned above (see also Mace 

& Unlu, 2020). Whereas semantic memories are 

coded in TFMNs, the autobiographical compo-

nent that modulates the way a specific individ-

ual predisposes their self-report response is im-

plicitly captured by the observed Likert-type 

values without an explicit direct semantic rep-

resentation. Following the Deep Lexical Hy-

pothesis (Cutler & Condon, 2023) we can exploit 

the relationship between item ratings and as-

sociated semantic memories to construct a se-

mantic characterisation of psychometric fac-

tors, representing specific psychological con-

structs. 

Importantly, a core assumption about the ap-

plication of TFMNs for psychometric question-

naires entails that the semantic and emotional 

representations behind the items are under-

stood to be homogeneous across (a population 

of) individuals (see also Stella, 2020), whose cog-

nitive memories are partly mimicked by the 

network component of the TFMN structure ex-

tracted from the questionnaire through AI syn-

tactic parsing  and semantic enrichment (see 

the Methods for more details). However, psy-

chometric scales are usually composed by 

items that should be fully understandable and 

accessible by the largest portion of a target 

population. This property of the psychometric 

scales is usually called "face validity" (Anastasi, 

1988; Markus & Borsboom, 2013). Consequently, 

the above assumption appears to be naturally 

justified by the way psychometricians normally 

construct psychometric scales (Cutler & Con-

don, 2023; Lovibond & Lovibond, 1995; Wood, 

2015). 

Very importantly, the relationship between self-

reported respondent rates and their seman-

tic/syntactic content can be exploited by intro-

ducing the concept of semantic loadings. This 

novel concept characterises psychometric fac-

tors through the lens of textual forma mentis 

networks. To this aim, we represent a whole 

questionnaire as a textual forma mentis net-

work, unveiling the 
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syntactic/semantic/emotional patterns em-

bedded in the texts of all items. On this struc-

ture, we extract semantic communities, i.e. 

clusters of words more tightly connected with 

each other than with other concepts (Newman, 

2012) and which, in the context of a TFMN, all 

share a given semantic set of features and thus 

belong to the same semantic context 

(Aitchison, 2012). Differently put, these seman-

tic communities represent key interconnected 

topics of ideas being syntactically or semanti-

cally related across the whole text of a psycho-

metric questionnaire. We then devote our at-

tention to psychometric factors. When ob-

tained either through either factor analysis or 

network psychometrics, psychometric factors 

are clusters of individual items (Christensen et 

al., 2018; Golino & Epskamp, 2017), grouped to-

gether to explain unique aspects of the vari-

ance present in the multivariate data of re-

sponses to the whole questionnaire (Gorsuch, 

2013). Historically, emphasis has been given to 

the numerical aspects of identifying variance 

patterns (Costantini et al., 2019; Gorsuch, 2013), 

thus focusing on the numerical responses 

given to items themselves within psychomet-

ric factors. Only recently some attention was 

devoted to identifying the semantic infor-

mation in items via artificial neural networks 

(Rosenbusch et al., 2020), although only to con-

sider and reduce semantic overlap between 

items, i.e. items coding similar experiences. 

Here, we rather focus on the semantic nature 

of the interconnected wording of a given item, 

considering all the words adopted across items 

in a given psychometric factor as a semantic 

factor: We define semantic loadings as the 

overlaps between semantic factors (from factor 

analysis or EGA) and semantic communities 

(from the TFMN of the questionnaire). Seman-

tic loadings can thus pinpoint how semantic 

contexts or topics, as encoded by experiment 

designers in the questionnaire, distribute 

across semantic factors, i.e. collections of words 

coming from items clustered together not be-

cause of semantic patterns but rather because 

of  numerical ratings provided by participants 

involved in the psychometric questionnaire. 

Similarly to how factor loadings indicate the rel-

evance of a given item to the identified factor 

(Gorsuch, 2013), semantic loadings can indicate 

how prominently its ideas were mentioned in a 

given psychometric factor and thus character-

ised it. Surely psychometricians designing a 

given psychometric scale do encode different 

psychological constructs across items when 

wording items themselves or structuring them 

along subscales. However, psychometricians do 

not know a priori how these ideas will spread 

across psychometric factors since the latter are 

due to individuals’ responses. Semantic load-

ings unveil this relationship between numeri-

cal/categorical responses and clusters of ideas 

in items. 

Adopting the Depression, Anxiety and Stress 
Scales (DASS) by Lovibond and Lovibond (1995), 

we show the presence of several semantic 

communities within and among scales, relative 

to different facets of neuroticism and to physi-

cal symptoms. We further show how these 

communities are not spread uniformly across 

the identified factors but rather concentrate or 

load only on specific factors, in line with rele-

vant psychological findings. 

These factors can greatly automate the inter-

pretation of psychometric factors themselves 

by attributing them to more semantic content, 

which can better inform users (e.g., experi-

menters and practitioners adopting) of a spe-

cific psychometric questionnaire. In case large 

language models get better and better at iden-

tifying commonalities in semantic communi-

ties, we consider this process as becoming 

completely automated and powerfully high-

lighting more detailed and multidimensional 

semantic descriptions of relevant factors. 

We introduce our specific methodology in the 

Methods Section, which is followed by a Results 

Section focused on the DASS case study. We 

conclude this manuscript with a detailed Dis-

cussion of our results and a reflection on the 
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pros and cons of our novel methodological 

pipeline. 

2. METHODS 

2.1 Data Processing 

As a case study to showcase the potential of 

our methodology, we here used the Depres-
sion, Anxiety, and Stress Scales (DASS; Lov-

ibond & Lovibond, 1995). This questionnaire is a 

set of 3 self-report scales, designed to quantify 

depression, anxiety and stress. Each of these 

DASS scales contains 14 items, allocated into 

subscales of 2-5 items with similar content. For 

the original structure of DASS please refer to 

Lovibond and Lovibond (1995). The responses 

to the DASS questionnaire are given on a 4-

point Likert scale, ranging from 0 (did not apply 
to me at all) to 3 (applied to me very much, or 
most of the time). Every participant has to read 

a given item and rate it according to how fre-

quently the experience described in the item 

applies to the participant’s life experience. The 

scores for depression, anxiety and stress are 

calculated by summing the scores for the rele-

vant items. Higher scores indicate a higher de-

gree of emotional distress. 

Here we used pre-collected data for DASS as 

stored on openpsychometrics.org and as avail-

able on Kaggle (Last Accessed: 17/07/23). This 

dataset consists of 39775 survey responses 

from individuals who completed the DASS 

questionnaire.  

No missing data were found in the dataset, 

thus no data imputation was required. Since 

we focused on exploratory analyses, we aggre-

gated all available data together, without strat-

ifying it for different demographics (Veltri, 

2023). Notice that the methodology imple-

mented in this paper is general enough to be 

applied to different socio-demographic strata 

of this or other scale datasets, e.g. reconstruct-

ing psychometric factors for different demo-

graphic subgroups. Hence, we here proceed 

with the aggregated data and outline how we 

extract psychometric factors and semantic 

communities for defining and computing se-

mantic loadings in the following subsections. 

A correlation analysis with Spearman ρ correla-

tions is reported in Figure 1.  When considering 

items as sequences of numerical/categorical 

responses, e.g. Q1 = {1, 2, 4, 4, ..., 2}, they correlate 

positively with each other. The correlogram also 

provides a visual impression that items in sub-

scales tend to correlate more positively with 

other items in the same subscale. This phenom-

enon is stronger for items in the Depression 

subscale and more nuanced for items in the 

Anxiety and Stress subscales. We expect these 

patterns to be reflected in Exploratory Factor 

Analysis (EFA) and in EGA, which are outlined in 

the following subsection. All p-values reported 

in this article are two-tailed.  

2.2 Extracting psychometric factors with EFA 
or EGAnet 

2.2.1 Exploratory Factor Analysis of the DASS 
subscales 

Exploratory Factor Analysis (EFA) is a statistical 

technique used to determine the latent struc-

ture of a set of observed variables (Costello & 

Osborne, 2005). It functions by decomposing 

the correlation matrix of the observed variables 

into specific and common variance. The com-

mon variance, referred to as psychometric fac-

tors, demonstrates shared variance among var-

iables, while specific variance is the residual var-

iance unique to each variable (Fabrigar et al., 

1999). The objective of EFA is to simplify the 

structure of the data by reducing the dimen-

sionality and identifying clusters of interrelated 

variables, thus providing a theoretical frame 

work for further analysis (Thompson, 2004).  

In executing EFA, several steps are crucial. The 

process starts with factor extraction, using esti-

mation methods like Maximum Likelihood or 

Principal Axis Factoring. These methods aim to 

extract the smallest number of factors that ac-

count for the common variance in the data 

(Costello & Osborne, 2005). Factor rotation fol-

lows, aiming to provide a simpler and more in-

terpretable factor structure (Thompson, 2004). 

https://www.kaggle.com/datasets/lucasgreenwell/depression-anxiety-stress-scales-responses
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This stage requires a decision between oblique 

and orthogonal rotations, depending on 

whether the factors are assumed to be corre-

lated or not, respectively. Finally, factor inter-

pretation is conducted by analysing the factor 

loading matrix, where higher loadings indicate 

a stronger relationship between a variable and 

a factor (Costello & Osborne, 2005) and thus 

motivate the allocation of that variable to that 

cluster of variables, i.e. to that psychometric 

factor. Here, we performed EFA using the 
lavaan package in R (version 0.6-15, documen-

tation available here, Last Accessed: 17/07/23) 

by Rosseel (2012). 

Given the presence of positive correlations 

across items of different subscales, we resorted 

to an oblimin rotation with ∆ = 0.0001, which al-

lows for correlations across different factors to 

be accounted for when loading them across 

factors. Factor loadings and EFA statistics are 

reported in Tables A1 and A2, respectively. The 

3-factor model reported in these tables was rel-

ative to an AIC of 3942530, a BIC of 3943948, a 

Comparative Fit Index (CFI) of 0.927 (values ≥ 

0.9 indicate a good fit; Costello & Osborne, 2005) 

and a Root Mean Square Error of Approxima-

tion (RMSEA) of 0.052 (values ≤ 0.06 indicate a 

good fit; Kline, 2016). The cumulative variances 

explained by factors were 0.211 (factor 1), 0.394 

(factors 1 and 2), and 0.525 (factors 1, 2, and 3). 

The sums of the squared oblique loadings (ei-

genvalues) were 8.87 (factor 1), 7.69 (factor 2), 

and 5.50 (factor 3). Considering only loadings 

significant at a .01 level, the EFA identified the 

following non-overlapping allocation of items 

across factors, identified by allocating one item 

to the factor with the highest loading (where S 

Figure 1 
Correlogram Based on Spearman ρ Correlations for the 42 Items in the DASS Scale. Notice that 
consecutive items are clustered according to the subscales found by (Lovibond & Lovibond, 
1995): Depression (Q3, ..., Q42), Anxiety (Q2, ..., Q41), and Stress (Q1, ..., Q39). 
 

https://cran.r-project.org/web/packages/lavaan/index.html
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indicates the stress subscale, D the depression 

subscale and A the anxiety subscale in the orig-

inal DASS): 

• Factor 1: {S = {1, 6, 8, 11, 14, 18, 22, 27, 29, 32, 35, 
39}, A = {9, 30, 40}, D = ∅}; 

• Factor 2: {S = {12, 33}, A = {2, 4, 7, 15, 19, 20, 23, 
25, 28, 36, 41}, D = ∅}; 

• Factor 3:  {S = ∅, A = ∅, D = {3, 5, 10, 13, 16, 17, 21, 
24, 26, 31, 34, 37, 38, 42}}. 

The above notation can be read in the follow-

ing way: Factor 1 was allocated with items {1, 6, 
..., 39} from the Stress subscale of DASS, to-

gether with items {9, 30, 40} from the Anxiety 

subscale and no item from the Depression sub-

scale, etc. The Cronbach’s alphas for the above 

clusters were .956, .923, and .921, respectively, all 

above the .80 threshold defining good-quality 

partitioning (Costello & Osborne, 2005). 

We can assess the quality of this partitioning in 

terms of the ground truth based on the sub-

scales of the original DASS scale. In quantita-

tive terms, we can use purity as an evaluation 

metric that compares the results of a given 

clustering (i.e. allocation of items across fac-

tors) with a given ground truth. Let X = {x1, x2, ..., 
xN } be a set of N elements that have been clus-

tered into k clusters C = {C1, C2, ..., Ck}. Also, let G 
= {G1, G2, ..., Gl} be the known (ground truth) as-

signments of X into l classes. Purity P is given 

by: 

𝑃(𝐺, 𝐶) =
1

𝑁
∑ max

𝑗
|𝐶𝑖 ∩ 𝐶𝑗|       ∈ [0,1]𝑘

𝑖=1 . (1) 

In our case, the EFA produced a clustering of 

items across three factors with a purity score of 

.88. The EFA retrieved the Depression subscale 

perfectly but it also contained small allocation 

errors between the Stress and the Anxiety 

scales, due to the fact that some items loaded 

on both relative factors with standardised load-

ings ≥ .30. 

 

We investigated whether a 4-factor model 

could improve things. The 4-factor EFA did in-

deed reduce AIC and BIC (3917.8 and 3919.6, re-

spectively) while increasing the CFI to 0.949, 

however, it also produced a squared total factor 

loading of 0.631 for factor 4 and an increase in 

the cumulative variance of only 0.015 compared 

to the 3-factor model. For these reasons, we 

considered the 4-factor model as being only 

marginally better than the 3-factor model, 

while providing a less clear partitioning of items 

across factors, and thus discarded it from the 

rest of the analysis. 

We thus focus on the 3-factor model from EFA, 

which however suffers from two limitations: (i) 

this model cannot fully reconstruct the original 

subscale system, (ii) more crucially, in the 

model it is not trivial to identify why items 9, 30, 

and 40 - situations of fear and anxiety - should 

be merged with items from the Stress subscale. 

For these reasons, we proceed with the identi-

fication of psychometric factors through an al-

ternative technique: Exploratory Graph Analy-

sis. 

2.2.2 Exploratory Graph Analysis 

 Exploratory Graph Analysis (EGA) is a novel 

technique proposed by Golino and Epskamp 

(2017) that provides a data-driven method to 

determine the number of factors in exploratory 

factor analysis. EGA utilizes a graphical  repre-

sentation  of  data  and community detection 

algorithms to delineate the underlying latent 

variable structure. As already mentioned in the 

Introduction, in a psychometric network where 

items are nodes, the edges represent associa-

tions between items after controlling for all 

other items (Costantini et al., 2019; Epskamp et 

al., 2018). 

In the first step of EGA - see for references 

(Christensen et al., 2018; Golino & Epskamp, 

2017; Golino et al., 2020) - a network is con-

structed by employing filtering methods like 

graphical lasso (GLASSO). Graphical lasso uti-

lizes a lasso penalty to shrink small partial cor-

relations towards zero, thus resulting in a 
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sparse network, whereas TMFG (Triangulated 

Maximally Filtered Graph) (Golino et al., 2020; 

Massara et al., 2016) is an algorithm that selects 

the three-variable cliques (triangles) with the 

highest mutual information in the network. 

Both methods aim to capture only substantial 

relationships among variables (items), allowing 

the reduction of spurious edges due to sample 

fluctuations. The next step is to identify com-

munities (clusters) of nodes, which is achieved 

by employing the walktrap algorithm - a com-

munity detection method based on random 

walks (Newman, 2018). 

Communities identified in EGA are regarded as 

potential factors, with items (nodes) belonging 

to the same community loading onto the same 

latent factor. In this regard, the walktrap algo-

rithm facilitates the detection of clusters within 

the network by performing short random 

walks and by not requiring the number K of 

factors as an input.  

The underlying rationale is that these walks are 

more likely to stay within the same community 

because there are more edges within commu-

nities than between communities. The out-

come of this analysis is a suggested factor solu-

tion (Epskamp & Fried, 2018), with a number of 

factors determined by the walktrap algorithm 

itself, that maximally represents the structure 

inherent in the data. The walktrap algorithm is 

stochastic so its results can change unless the 

network structure is strongly clustered. This 

poses the attention to the need to check for ro-

bust item allocations across factors, as evi-

denced in Figure A2 (bottom). Consequently, 

the EGA approach offers a robust and intuitive 

methodology for exploratory factor analysis, 

particularly advantageous when there is no a 
priori theory to guide factor extraction 

(Epskamp & Fried, 2018). 

The network was obtained using the cor_auto 
parameter, which automatically computes a 

correlation matrix based on polychoric, polyse-

rial and/or Pearson correlations (we used the 

latter). Then, a GLASSO approach was used for 

discarding spurious correlations, followed by a 

walktrap algorithm for detecting psychometric 

factors as network communities. 

We comment on the results of this technique in 

the Results section, where we present results as 

obtained from the EGAnet package in R, ver-

sion 1.2.3, available here (Last Accessed: 

17/07/2023). 

2.2.3 Creation of the Textual Forma Mentis 
Network (TFMN) 

We harness Textual Forma Mentis Networks 

(TFMNs) to cognitively map beliefs and atti-

tudes from textual data, where words (nodes) 

are interconnected by semantic and syntactic 

relationships (edges; Stella, 2020). Here, syntac-

tic relationships explore grammatical depend-

encies between words (e.g. "love" and "weak-

ness" in "love is weakness"), while semantic re-

lationships probe meanings and their overlap 

(e.g. "weakness" and "issue" being synonyms in 

some contexts). 

EmoAtlas, the tool we used here, combines AI 

and psychological lexicons to construct TFMNs 

(Semeraro et al., 2023). The tool is available on 

GitHub (https://github.com/alfon-

sosemeraro/emoatlas) in Python and we used 

its first version (Last Accessed: 12/07/2023). 

Firstly, EmoAtlas tokenises text into discrete 

units or "tokens", i.e. words and punctuation in 

any given sentence. Then, by examining the 

text’s grammatical architecture, EmoAtlas 

identifies syntactic relationships in each and 

every sentence of a text. These relationships 

form a syntactic tree, i.e. a dependency model 

illustrating word interactions. For instance, in 

the sentence "this network rocks", the words 

"this" and "network" are syntactically depend-

ent on "rocks". EmoAtlas constructs these trees 

using a multilayer perceptron model in spaCy 

(cf. spaCy dependency parser: 

https://spacy.io/api/dependencyparser, Last Ac-

cessed: 12/07/2023). 

What sets TFMNs apart from other co-occur-

rence networks (Joseph et al., 2023; Quispe et 

https://cran.r-project.org/web/packages/EGAnet/index.html
https://github.com/alfonsosemeraro/emoatlas
https://github.com/alfonsosemeraro/emoatlas
https://github.com/alfonsosemeraro/emoatlas
https://spacy.io/api/dependencyparser
https://spacy.io/api/dependencyparser
https://spacy.io/api/dependencyparser
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al., 2021)? Unlike typical text analyses, which fo-

cus on word co-occurrences, TFMNs do not link 

words close in sentences, since their proximity 

might be an effect of grammar rules rather 

than cognitive associations (Aitchison, 2012; 

Quispe et al., 2021). Instead, textual forma men-

tis networks focus on syntactically related 

words, thus close on the undirected syntactic 

dependency tree (Stella, 2020, 2022). Thus, co-

occurring but syntactically disconnected 

words are not linked. This approach ensures 

flexibility and a more accurate representation 

of syntactic meanings (Semeraro et al., 2022). 

TFMNs only link words that are at a syntactic 

tree distance (D) less than a set value (T), usu-

ally 3, based on studies showing most meaning 

processing in English occurs below such syn-

tactic distances because of feature economy in 

language processing (Ferrer i Cancho & Diaz-

Guilera, 2007). 

Next, EmoAtlas introduces synonym links from 

WordNet (Miller, 1995), creating semantic con-

nections between words with overlapping 

meanings. Semantic enrichment is performed 

by only building semantic links between any 

two words pre-existing in the syntactic struc-

ture of a text, i.e. no synonyms are added ex 
novo in the network (Semeraro et al., 2023; 

Stella, 2020). Lastly, the resulting network is en-

riched with psycholinguistic data from vali-

dated psychological lexicons - the National Re-
search Council Emotion Lexicon (S. M. Moham-

mad & Turney, 2013) and the National Research 
Council Valence, Arousal, and Dominance Lex-
icon (S. Mohammad, 2018). 

This hybrid AI/lexicon approach is particularly 

powerful because it allows TFMNs to leverage 

the strengths of both AI and psychological lex-

icons (Stella, 2022). The AI component facili-

tates the processing of large amounts of text 

and the identification of complex syntactic and 

semantic relationships. On the other hand, the 

psychological lexicons provide a solid empirical 

foundation for interpreting the perceptions of 

clusters of words, e.g. did negative words tend 

to cluster together? This information is inte-

grated into the TFMN, enriching the network 

representation with emotional information and 

thereby creating a more comprehensive map 

of the text’s knowledge (Semeraro et al., 2023). 

To improve readability, TFMNs can make larger 

the font size of words that are more central in 

the network structure. Centrality can be deter-

mined in different ways, be it semantic rich-

ness/degree (the number of links a concept en-

gages in, see also Semeraro et al., 2022) or close-

ness centrality (which captures the semantic 

prominence of a word across different contexts; 

see also Stella, 2022). Closeness centrality cap-

tures centrality as the inverse average network 

distance separating one node from all its con-

nected ones (Newman, 2018). Thus, the more 

central a node is, the closer it is to all other 

nodes. For a given node/concept v, in a con-

nected TFMN G with N nodes, the closeness 

centrality (C(v)) is defined as: 

𝐶(𝑣) =
𝑁−1

∑ 𝑑(𝑣,𝑢)𝑢≠𝑣
,   (2) 

where d(v, u) is the shortest path distance be-

tween nodes v and u, i.e. the smallest number 

of links that connect nodes u and v. In Figure 3, 

node sizes are directly proportional to closeness 

centrality. 

2.2.4 Community Detection in TFMNs for 
Identifying Semantic  Communities 

Here we are interested in extracting key topics 

or the so-called semantic clusters or communi-

ties from the knowledge structured in a given 

TFMN. These communities represent key ideas 

or semantic areas described across items of a 

given questionnaire and which we want to re-

construct through an automatic approach, re-

lying on TFMNs (Stella, 2020) and community 

detection (Newman, 2012). 

Network science conceptualises communities 

as clusters of nodes that are densely connected 

internally, while sparingly linked with nodes 

from other clusters (Citraro & Rossetti, 2020; 

Newman, 2012). In the context of TFMNs and  
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cognitive networks, these communities can 

generally represent semantic frames or key 

topics surrounding prominent ideas in texts 

and have been explored in past studies for un-

derstanding key perceptions in social media 

data about the gender gap in science (Stella, 

2020), key feelings as expressed by online users 

in mental health discussion on Reddit (Joseph 

et al., 2023), and in reconstructing semantic 

frames of specific concepts in the mental lexi-

con (Citraro & Rossetti, 2020). To the best of our 

knowledge, this work is the first application of 

semantic community finding through TFMNs 

in psychometric scales. 

The problem of partitioning a network in non-

overlapping communities can be quantified in 

terms of modularity. Modularity is a quantita-

tive measure used to evaluate the quality of 

community structure in a network. It gauges 

the density of links inside communities as com-

pared to the links between communities. In es-

sence, modularity quantifies the degree to 

which a network can be subdivided into clearly 

delineated communities. It can be formally de-

fined as the fraction of the edges that fall 

within the given network groups minus an ex-

pected fraction relative to what would happen 

if edges were distributed at random (Newman, 

2012, 2018): 

𝑄 =
1

2𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
) 𝛿(𝑐𝑖 , 𝑐𝑗)𝑖𝑗 , (3) 

where Aij denotes the presence or weight of the 

edge between i and j, ki represents the sum of 

the weights of the edges incident to vertex i, ci 
is the community to which vertex i is assigned 

in the community partition, the delta function 

δ(u, v) is 1 if u = v and 0 otherwise, and m is the 

number of all of the edges/connections in the 

graph. Maximising modularity is only one way 

among many others for finding an appropriate 

set of communities for a given network. Other 

variables that need to be checked in our cogni-

tive approach rely on size consistency, e.g. all 

communities should have the same order of 

magnitude of words, and on the absence of sin-

gletons, i.e. communities made of one 

word/node only. Different algorithms for com-

munity detection can be tested across these 

measurements, including the Louvain algo-

rithm, the centrality-based method, clique per-

colation, hierarchical clustering and spectral 

partitioning. We compared these algorithms in 

Table 1, where we select the Louvain algorithm 

as the model with the highest modularity, the 

smallest number of different semantic commu-

nities and the only model avoiding singletons. 

We thus focus on explaining only this method 

and refer the interested reader to (Newman, 

2018) for the other methods. 

The Louvain algorithm is a widely used method 

for detecting communities in large networks 

(Blondel et al., 2008). It operates as a two-phase 

iterative process. In the first phase, the algo-

rithm optimises modularity locally. Each node 

is initially considered a community in itself. 

Then, for each node, the change in modularity 

Q is calculated when it is removed from its cur-

rent community and placed in the community 

Table 1 

Measures for Each Community Detection Algorithm, Identifying Semantic Communities in the TFMN. For 
each set of communities, we test: (i) the resulting modularity, (ii) the number of communities, (iii) the average 
community size, i.e. how many words are there in average in a community, and (iv) the number of singletons, 
i.e. communities made of one word only. 

Community Detection  
Algorithm 

Modularity # Communities Average Community Size # Singletons 

Louvain 0.44 9 12 ± 3 0 

Centrality-Based 0.44 19 6 ± 1 6 

Clique Percolation 0.12 16 7 ± 5 11 

Hierarchical Clustering 0.28 15 7 ± 3 5 

Spectral Partitioning 0.42 15 7 ± 1 2 
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of each of its neighbours. If a positive gain in 

modularity is possible, then the node is placed 

in the community for which the gain is maxim-

ised. This process is repeated iteratively until no 

further increase in modularity is possible. In the 

second phase, a new network is constructed 

where each node represents a community 

from the first phase. Self-loops are then created 

to represent intra-community edges. 

Weighted edges, representing the number of 

links between communities, are built across 

communities. Once this new aggregated net-

work is built, it goes through the first phase. 

The entire process is then repeated until there 

is no further improvement in modularity. The 

final outcome can be stochastic or determinis-

tic, according to the specific implementation of 

the algorithm, in case random fluctuations to 

achieve more quickly local maxima of Q are 

considered or not (Newman, 2012, 2018). In our 

case, we used the deterministic implementa-

tion of the algorithm in Mathematica 13.1 (see 

documentation here, Last Accessed: 

18/07/2023). 

2.3 Introducing semantic loadings: Bridging 
the semantics of TFMN with network psy-
chometrics 

As described in the above sections, from a 

given psychometric dataset with a scale it is 

possible to extract two types of complex net-

works: 

• cognitive networks such as textual forma 

mentis networks (Stella, 2020) encode se-

mantic/syntactic/emotional associations be-

tween concepts as described in the word-

ings of specific items. This network structure 

comes unweighted and undirected but with 

links of multiple types (i.e. syntactic specifi-

cations and synonyms). This network is a 

proxy for the structure of knowledge which 

stimulated the semantic and autobiograph-

ical memories of respondents to items in the 

questionnaire (Aitchison, 2012). Such struc-

ture of knowledge is independent of the 

questionnaire responses. From such a net-

work, we extracted semantic communities 

{Sa} as clusters of prominent ideas in the nar-

ratives of items. 

• psychometric networks in the form of ex-

ploratory graph analysis (Golino & Epskamp, 

2017) encode non-spurious correlations be-

tween items in the questionnaire, outlining 

how participants tended to rate different ex-

periences, e.g. in similar or in contrastive 

ways. This network structure comes 

weighted but undirected and it has been fil-

tered through model selection (Costantini et 

al., 2019). This network is a proxy for the struc-

ture of psychological constructs influencing 

the responses of respondents (Christensen 

et al., 2020; Golino et al., 2020). Such psycho-

logical structure evidently depends on the 

questionnaire responses. From such a net-

work, we extracted psychometric factors {Pb} 

as clusters of items whose responses tended 

to be the most similar to each other and thus 

reflected latent psychological variables or di-

mensions. 

Notice that, in the end, semantic communities 
{Sa} are collections of words, as reported also in 

Figure 3. Instead, psychometric factors {Pb} are 

collections of items, as reported in Figure 2 

(top). However, these factors can be mapped 

into collections of words too by tokenising and 

then joining the wordings of the items they are 

made of. For instance, if in a fictional factor, 

there were three items with the wordings "I feel 

angry", "I feel sad", and "I feel enraged", respec-

tively, the corresponding semantic factors 
would be {“I”, “feel”, “angry”, “sad”, ”enraged”}.  

We introduce semantic loadings Lab as the Jac-

card index between semantic communities {Sa} 

and semantic factors {Fb}, as constructed from 

psychometric factors {Pb} through tokenisation 

and joining duplicates: 

𝐿𝑎𝑏 =
|𝑆𝑎 ∩ 𝐹𝑏|

|𝑆𝑎 ∪ 𝐹𝑏|
,   (4) 

where the numerator represents the number of 

common concepts between a semantic com-

munity in the TFMN Sa and the group of words 

https://reference.wolfram.com/language/ref/FindGraphCommunities.html
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Fb induced by a psychometric factor Pb, while 

the denominator represents the total number 

of concepts mentioned in both Sa and Pb. The 

Jaccard Index thus ranges between 0 and 1, 

where 0 indicates no overlap and 1 indicates 

complete overlap or identical sets. In order to 

maximise overlap, we compute semantic load-

ings between sets of words that are stemmed, 

i.e. whose suffixes or declinations have been re-

moved, so that concepts like "happiness" or 

"happy" and "worse" or "bad", among many oth-

ers, are counted as being the same. 

Notice that in the above description, we fo-

cused on psychometric factors as being ob-

tained from an exploratory graph analysis, be-

cause of the emphasis of this manuscript be-

tween cognitive and psychometric networks. 

However, the above definition of semantic load-

ings still applies also in the case of factor anal-

yses or other ways to cluster psychometric 

items together. 

Once empirical semantic loadings are meas-

ured for a given TFMN and set of psychometric 

factors, semantic communities can be reshuf-

fled at random, while fixing their lengths, to 

produce sets of random semantic loadings 

{L∗ab}.  Such simulation data can be used 

through direct sampling for producing statisti-

cal estimates of the probability of getting the 

empirically observed semantic loadings by 

mere chance, due to fluctuations in the under-

lying data. Here we simulated 1000 random al-

locations of the same empirical concepts across 

semantic communities and then resorted to a 

location hypothesis test (i.e. signed rank test) to 

check whether the observed semantic loading 

{Lab} was compatible with the resulting random 

semantic loadings {L∗ab}, fixing a .05 signifi-

cance level.   

3. RESULTS 

This section outlines our main findings along 

three stages: (i) comparing psychometric fac-

tors from network psychometrics with those 

from factor analysis, (ii) highlighting semantic 

communities in the DASS scale with textual 

forma mentis networks, and (iii) testing the 

presence and loadings of semantic communi-

ties across the most easily interpretable 

Figure 2 
Psychometric Network as Obtained from the 
EGANet Package (Top) and Item Stability Anal-
ysis (Bottom). In a psychometric network, 
nodes represent items and connections repre-
sent correlations surviving a graphical lasso 
feature selection. Green links indicate positive 
correlations. 
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psychometric factors. 

3.1 Comparing Factor Analysis and Network 
Psychometric Results 

Figure 2 reports the factor analysis as obtained 

from EGA in the form of a psychometric net-

work (top) and its item robustness analysis 

(bottom). The EGA identified four psychometric 

factors, different from factor analysis (see 

Methods): 

• Network Factor 1: {D = {31, 42, 24, 16, 5, 3, 10, 
26, 13, 37, 38, 21, 34, 17}, A = ∅, D = ∅}; 

• Network Factor 2:  {S = {14, 35, 32, 29, 27, 6, 1, 
11, 18, 39, 22, 8}, A = ∅, D = ∅}; 

• Network Factor 3:  {S = ∅, A = {19, 2, 23, 7, 41, 4, 
25, 15}, D = ∅}; 

• Network Factor 4: {S = {12, 33}, A = {9, 40, 30, 
20, 36, 28}, D = ∅}. 

The network factors reproduce the DASS sub-

scales with a purity P ≈ 0.95, superior to the pu-

rity score obtained by factor analysis. For this 

quantitative comparison, considering both 

EFA and EGA provided similarly sized factors, 

we considered network psychometrics as 

providing a better allocation of items across 

factors. Noticeably, by investigating the spe-

cific items, one can spot that EGA produces a 

finer structure for the Anxiety subscale, split-

ting it into two factors that could not be identi-

fied with EFA. In EGA, these two factors corre-

spond with two separate aspects of Anxiety, or-

ganised along different sub-subscales, namely 

Physical Anxiety (relative to psycho-somatic 

symptoms of anxious states, Network Factor 3) 

and Emotional Anxiety (relative to emotional 

aspects of anxious states, Network Factor 4). 

EGA reproduced the whole Depression sub-

scale (Network Factor 1) and 12 out of 14 items 

in the Stress subscale (Network Factor 2). 

Noticeably, the EGA added to Emotional Anxi-

ety also two items from the "Nervous Arousal" 

Stress subscale. Considering that in models like 

the circumplex model of affect (Posner et al., 

2005), nervousness is mapped into negative va-

lence and arousal is obviously mapped into 

high arousal, the resulting region where items 

with wordings about "Nervous Arousal" should 

appear, in the circumplex model, would be the 

quadrant for anxiety. Hence, it is expected for 

items 12 and 33 to belong to anxiety-focused 

factors even from non-clinical but relevant psy-

chology literature. Notice that the current re-

sults remain unchanged even after updating 

EGAnet to its newer version (as of December 

2023). 

Last but not least, over 50 random iterations of 

the walktrap items, i.e. when performing a 

Bootstrap Graph Exploratory Analysis (Chris-

tensen & Golino, 2021), always 4 factors were 

identified and retrieved. 40 out of 42 items were 

furthermore allocated always to the same fac-

tors, whereas items Q22A and Q8A (“A” stand-

ing for "answers" in the original dataset) were 

allocated to factors different from 2 for 8% of 

the times.  

This is expected since, from the network layout, 

those two items are bridges (Epskamp et al., 

2018) connecting factors 1, 2 and 4. Notice that 

we tried bootstrapping with 50, 100, 500 and 

1000 iterations and we did not notice qualita-

tive differences, i.e. items 8 and 22 were placed 

in other factors more than 5% but less than 25% 

of the times. Since our allocation rates were 

higher than the 75% rate mentioned in a past 

investigation with the reduced DASS-21 scale 

(Van den Bergh et al., 2021), relative to the inves-

tigation of the same psychological constructs 

investigated in here, we decided to retain items 

Q22A ("I found it hard to wind down") and Q8A 

("I found it hard to relax") in Network Factor 2, 

overlapping mostly with Stress. 

3.2 Community Structure of the TFMN for the 
DASS Scale 

Figure 3 reports the textual forma mentis net-

work for all items in the DASS scale (see Meth-

ods). Synonym relationships are highlighted in 

green. Syntactic relationships between con-

cepts/nodes are highlighted in grey (between 
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neutral words), in cyan (between positive 

words), in red (between negative words), or in 

purple (between negative and positive words). 

Communities are encircled in black bubbles. 

Although the Louvain algorithm identified 9 

semantic communities, we clustered together 

the trivial community {”enthusiastic”, ”unable”} 

with the one mentioning ”state”, for improving 

interpretability. 

As mentioned in the Methods, in Figure 3 node 

sizes are directly proportional to closeness cen-

trality. The word with the highest closeness is 

"I" in the centre community, i.e. "I" is the most 

prominent concept across all different contexts 

mentioned in the psychometric scale (close-

ness score C ≈ .76), as expected from test design 

methods (Paulhus & Vazire, 2007). In fact, DASS 

is a self-reported assessment which focuses on 

personal evaluation about one’s self and per-

sonal symptoms of emotional distress (Lov-

ibond & Lovibond, 1995): It is thus expected for 

"I" to be central in the narrative of items here.  

Whereas "I" is a rather general concept, related 

to the concept of the self, its syntactic 

Figure 3 
Textual Forma Mentis Network (TFMN) Representing Syntactic/Semantic  Associations Between 
Concepts as Expressed in the DASS Items. Nodes are highlighted in red (cyan, black) if perceived 
with negative (positive, neutral) valence by participants in a psychological mega-study (cf. Stella 
(2020)). Syntactic links between positive (negative, neutral) words are in cyan (red, grey). Syntac-
tic links between a positive and a negative word are in purple. Green links indicate synonyms. 
Words are clustered in communities as obtained from the Louvain method. 
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associates can better provide insights into the 

context where "I" is mentioned, across DASS 

items. These associates, within the same se-

mantic community of "I", include negative con-

cepts like "upset", "impatient", "agitated", "fear", 

"unfamiliar" and "difficult", as well as positive 

concepts linked to a negation ("not") such as 

(not) "relax" and (not) "calm". The same com-

munity features also neutral concepts men-

tioning social contexts ("work") and blander 

concepts like "tolerate", "thrown" or "wind". 

Given the presence of these contrasting emo-

tional states related to the self, we discussed 

the content of this semantic community and 

related it to past  relevant  literature  about  

emotional dysregulation (Hofmann et al., 2012), 

based on a combination of human coding and 

lexical search on the APA Dictionary of Psychol-

ogy (available at https://dictionary.apa.org/, 

Last Accessed: 18/07/2023). 

GPT4 from OpenAI (available at 

https://chat.openai.com/, Last Accessed: 

18/07/2023) confirmed the same summary of 

the semantic/emotional content of this com-

munity, i.e. labelling it as "Emotional Dysregu-

lations". Words in this "Emotional Dysregula-

tion" community did not display higher close-

ness centralities compared to words outside of 

this semantic community (α = 0.05, Kruskal − 

Wallis test, KW = 1.91, p = .164). Three other se-

mantic communities, on the left in Figure 3, 

mentioned mostly physical symptoms of anxi-

ety, stress or depression, but clustered seman-

tically around the key ideas of breathing issues, 

sweating and physiological arousal. The occur-

rence of these physical manifestations of emo-

tional distress is well-known in clinical psychol-

ogy, hence their inclusion in the DASS scale 

(Lovibond & Lovibond, 1995). These symptoms 

were mentioned also by social media users en-

gaging in mental health discourse on Reddit 

(Joseph et al., 2023). 

The semantic community at the center bottom 

of Figure 3 includes mostly positive experiential 

concepts ("feeling, experience, find", "go") and 

negative mentions about irritability and physi-

cal weakness ("irritable", "faintness", "shaki-

ness"). Analogously to the APA-assisted process 

used for Emotional Dysregulation, we termed 

this semantic community "Feeling Irritable" to 

sum up the experiential and faint-related men-

tions. 

The other semantic community at the left bot-

tom of Figure 3 combined positive but negated 

mentions like (not) "good" and "reason", (not) 

"pretty", (not) "worthwhile" and (not) "interest". 

These aspects were syntactically linked with 

negative concepts like "sad", "depressed", 

"scared", "terrified", "meaningless" and "worth-

less". These concepts all combine the expres-

sion of meaninglessness with more fear-

ful/alarmed feelings of emotional exhaustion. In 

line with the APA Dictionary  for  these terms  

and with  ChatGPT,  we termed this community 

as "Emotional Exhaustion", which was found to 

be a key manifestation of neuroticism in past 

psychological inquiries (Alarcon et al., 2009; 

Alessandri et al., 2018). The semantic communi-

ties "Tension State" and "Panic State" were eas-

ier to get semantically identified, since they re-

spectively mentioned "tension" and "panic" to-

gether with synonym jargon. According to the 

APA Dictionary, panic is a more negative state, 

relative to higher levels of arousal, whereas ten-

sion is a more nuanced condition, relative to 

psychological or physical strain. This is reflected 

in relevant clinical psychology research, which 

distinguishes between these two states (Van 

den Bergh et al., 2021). 

3.3 Semantic Loadings for Network Psycho-
metric Factors 

Figure 4 shows the relation between the se-

mantic factors extracted by means of the psy-

chometric network approach and the semantic 

communities extracted by the TFMN. As it can 

be seen through the inspection of the semantic 

loadings, the latent factor of Depression as 

identified from network psychometrics over-

laps with 5 semantic communities (L > 0) but 

only three semantic loadings are statistically 

significant: The highest value is "Emotional 

https://dictionary.apa.org/
https://dictionary.apa.org/
https://chat.openai.com/
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Exhaustion" (L = .36, p < .001), followed by "Emo-

tional Dysregulation" (L = .21, p < .001) and "Feel-

ing Irritable" (L = .14, p < .001). Furthermore, 

Stress, as identified by EGA, significantly over-

laps with three semantic communities, with 

the highest value being the one of "Emotional 

Dysregulation" (L = .38, p < .001) (differently 

from Depression), followed by "Feeling Irrita-

ble" (L = .19, p < .001) and "Panic State" (L = .09, p 
< .001). The EGA-identified facet of Physical 
Anxiety overlaps with 6 semantic communities, 

although only 4 semantic loadings are 

statistically significant: "Sweating" (L = .30, p < 
.001), "Physiological Arousal" (L = .24, p < .001), 

"Briefing Issues" (L = .18, p < .001), all ideas rela-

tive to physical symptoms and followed closely 

by "Feeling Irritable" (L = .18, p < .001). Last but 

not least, the EGA-identified facet of Emotional 
Anxiety overlaps with four semantic communi-

ties, although only three semantic loadings are 

statistically significant: "Panic State" (L = .36, p < 
.001), "Tension State" (L = .20, p < .001) and "Emo-

tional Dysregulation" (L = .11, p < .1).  

Figure 4 
Semantic Loadings Obtained as the Overlap (Jaccard index) Between the Psychometric Seman-
tic Factors and the TFMN Semantic Factors. Each semantic loading was compared against nu-
merical simulations randomising psychometric semantic factors. Statistically significant load-
ings were highlighted with one (p-value ∈].1, .01]), two (p-value <∈].01, .001]) or three (p-value < 
.001) stars. 
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4. DISCUSSION 

The linchpin of our study resides in the explora-

tion of a potential interplay between the se-

mantic/syntactic associations in the items of a 

psychometric scale (DASS) and the correlations 

between item responses provided by individu-

als. Grounded in the theoretical perspective 

that an individual’s interaction with an item in-

troduces a web of networked conceptual asso-

ciations (Stella, 2022), we hypothesise that 

these associations play a significant role in the 

subsequent appraisal and response to the 

item. This premise manifests in two primary as-

sertions: One, the semantic/syntactic associa-

tions potentially cluster concepts together; and 

two, these concept clusters directly can influ-

ence the individual’s perceived item response 

(Y. Li et al., 2020; Mace & Unlu, 2020). In this con-

text, we posit that the network structure of se-

mantic/syntactic relationships, such as those 

existing between “I” and “feel” or “feel” and 

“sad” in “I feel sad”, might shed psychological 

insights into the way semantic clusters of ideas 

characterise specific psychometric factors. 

To examine our hypotheses, we have employed 

the cognitive network framework of textual 

forma mentis networks (Semeraro et al., 2023; 

Stella, 2020) along with graph exploratory anal-

ysis for psychometric networks (Christensen et 

al., 2020; Epskamp & Fried, 2018; Epskamp et al., 

2018; Golino & Epskamp, 2017). The powerful 

combination of these methodologies allows us 

to undertake an in-depth quantitative analysis 

of the collected data. Remarkably, our findings 

corroborate our initial conjecture: DASS items 

do tend to cluster in factors that group con-

cepts in a non-random manner to the network 

communities unearthed within syntactic/se-

mantic forma mentis networks. This pattern 

was observed consistently across the 39775 in-

dividual responses we analysed, offering a ro-

bust statistical foundation for our findings from 

a statistical perspective. Let us outline our re-

sults and interpret them in view of their poten-

tial impact from a psychologically substantive 

perspective. 

Our data-driven psychometric approach offers 

several insights that can be interpreted for the 

advancement of theoretical literature. The 

loadings of semantic communities over seman-

tic factors have the potential to advance psy-

chopathology literature tracking similarities 

and differences between mood-, stress-, and 

anxiety-related phenomena (e.g., Sharma et al., 

2016) in several ways. In what follows, we pro-

vide a thorough interpretation of the findings 

reported in Figure 4. First, we focus on a row-

wise reading of semantic loadings from Figure 

4 and then proceed with a column-wise inter-

pretation. Lastly, we outline potential future ap-

plications and limitations of our proposed ap-

proach. 

4.1 Interpretation of Semantic Communities 
with Respect to Semantic Factors 

We have found that those items having seman-

tic contents related to "Emotional Dysregula-

tion" proved to significantly overlap with 3 out 

of 4 latent dimensions. This empirical result is 

consistent with a previous theoretical review, 

which highlighted the pivotal role played by 

emotion regulation in affecting mood and anx-

iety disorders (Hofmann et al., 2012). In other 

words, our automatic process is able to detect 

and inform the experimenter about the central-

ity of emotional dysregulation, i.e. the inability 

to manage and regulate emotions (Vogel et al., 

2021), across several manifestations of malad-

justment and emotional distress indicators, fur-

ther confirming previous theoretical reviews in 

psychology (Hofmann et al., 2012). Despite this 

spreading of "Emotional Dysregulation" across 

aspects of depression, stress, and anxiety, it has 

to be noted that semantic loadings for this se-

mantic idea are stronger for depression and 

stress compared to emotional aspects of anxi-

ety. This might indicate differences still present 

among these three manifestations of emo-

tional distress. 

Furthermore, we have found that those items 

relative to "Sweating", "Breathing Issues", and 

"Physiological Arousal" are significantly associ-

ated only with the psychometric factor of 
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"Physical Anxiety": This finding offers the op-

portunity to specifically map these symptoms 

as main characteristics of physical manifesta-

tions of anxiety itself (Keogh et al., 2001), poten-

tially coming from psycho-somatic reactions to 

anxious states. Conversely, "Tension State" 

showed to be semantically related to the psy-

chometric dimension of Emotional Anxiety, 

consistently with previous literature (Li et al., 

2022). 

In this way, semantic loadings provide discrimi-

nant elements that may be used to unravel dif-

ferences between physical vs. emotional traits 

of anxiety. Note that this aspect was not cap-

tured by the output of our EFA: Results from 

the psychometric network analysis provided a 

finer description of anxiety as encoded in our 

current dataset (N = 39775). 

In addition, we have found that items having 

semantic contents related to "Feeling Irritable" 

are significantly associated with all dimensions 

but Emotional Anxiety. Differently from other 

semantic communities, the range of significant 

semantic loadings for "Feeling Irritable" across 

the 4 network factors is narrow (range: .14 − .19), 

suggesting that the component of irritability 

encoded in DASS provides similar aspects of 

maladjustment across depression, stress and 

physical aspects of anxiety. In other words, 

these findings may point out that some as-

pects of irritability - e.g., getting upset rather 

easily, being touchy, getting agitated, having 

difficulties in relaxing (Lovibond & Lovibond, 

1995) - are transversal semantic ideas that char-

acterise depression, stress and physical anxiety, 

but not emotional anxiety. This further under-

lines the necessity to separate physical vs. emo-

tional aspects of anxiety. This distinction is an 

output that the EFA did not reach, while it was 

obtained by our synergistic combination of 

psychometric and cognitive networks, thus 

supporting the utility of our proposed ap-

proach. Interestingly, a study that applied a 

CFA to the DASS, more than 20 years ago raised 

the issue that, despite some competing 

models sharing the same irritable/over-reactive 

items, "differences in model fit can be at-

tributed to the different items that composed 

the Anxiety component" (Clara et al., 2001, p. 

66), hence supporting the value of our finding 

about the finer structure of DASS anxiety-re-

lated items. Last but not least, we have found 

that those items having semantic contents re-

lated to Emotional Exhaustion mainly over-

lapped with the dimension of Depression. This 

finding is consistent with previous studies that 

linked Emotional Exhaustion and Depression 

(e.g. Bianchi et al., 2021). 

4.2 Interpretation of Semantic Factors with 
Respect to Semantic Communities 

Looking at the semantic factors, we found that 

Depression significantly overlaps particularly 

with the semantic communities of Emotional 

Exhaustion, followed by Emotional Dysregula-

tion and Feeling Irritable. Our semantic find-

ings indicate that depression is mainly charac-

terised by semantic communities that are re-

lated to a "negative" system of emotions, which 

is consistent with common research attesting 

how "people with depression are more likely to 

suffer from negative emotions than the general 

population" (Bian et al., 2023, p. 230). 

Second, in terms of semantic loadings, stress 

overlaps particularly with Emotional Dysregula-

tion, followed by Feeling Irritable and Panic 

State. This finding is consistent with research 

attesting how emotional dysregulation in posi-

tive and negative affect may negatively impact 

overall functioning (Li et al., 2020; Vogel et al., 

2021), thus creating the so-called "roller-coaster 

of emotions", where the individual is unable to 

exert control on the variability of their emotions 

(Madsgaard et al., 2022). 

Third, Physical Anxiety significantly overlaps 

with 3 physical semantic communities (Sweat-

ing, Physiological Arousal, and Breathing Is-

sues), as well as with Feeling Irritable. Instead, 

Emotional Anxiety overlaps mostly with psy-

chological, rather than physical, symptoms of 

mental distress, namely states of tension, 
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emotional dysregulation and, most im-

portantly, with mentions of panic states. How-

ever, despite this semantic distinction of these 

two sub-components of anxiety, the de-facto 
standards of the DSM-5-TR indicate how cen-

tral both emotional and physical symptoms are 

for a variety of anxiety disorders (American Psy-

chiatric Association, 2022). This means that de-

spite the finer structure for the psychological 

construct of Anxiety unveiled by psychometric 

networks and corroborated by semantic load-

ings, clinical practitioners should focus on both 

emotional and physical aspects of anxiety 

when dealing with anxiety disorders, such as 

panic disorder (American Psychiatric Associa-

tion, 2022).  

4.3 Limitations and Future Applications 

As mentioned in the Introduction, one of the 

primary limitations noted in the structure of 

TFMNs is their inability to directly link its se-

mantic structure with the processing compo-

nent of an item-based response (Cutler & Con-

don, 2023). Essentially, the TFMN’s design lends 

itself to a representation of the overall seman-

tic structure across the entire set of items and 

their tokens (see also Stella, 2022), rather than 

an understanding of how the cognitive pro-

cessing of individual responses occurs. This dis-

tinction essentially categorises the TFMN as a 

descriptive-phenomenological representation, 

sidelining it from cognitive processing models 

of individual responses but still providing valid 

results in the presence of texts that can be 

clearly understood by large populations, like 

most psychometric scales can do by design 

(Christensen et al., 2023; Christensen et al., 

2020).  

However, future investigations might address 

this aspect by building text appendices of psy-

chometric questionnaires, adapting to the cog-

nitive memory of individuals, and providing 

greater resolution in the presence of more de-

tailed data, always within the cognitive frame-

work of forma mentis networks (Stella, 2020). 

Another challenge arises from the 

interpretation of semantic communities 

(Semeraro et al., 2022). The integration or ag-

gregation of meaning across semantically var-

ied tokens — ranging from nouns and verbs to 

qualifiers — requires considerable human ex-

pertise. This limitation implies that without a re-

fined level of human expertise, the derived 

meaning could potentially skew or be misinter-

preted (Citraro & Rossetti, 2020). We here sug-

gest two viable solutions to overcome this limi-

tation: (i) integrate the semantic structure with 

external data structures or databases to enrich 

its context; (ii) employ a distributional semantic 

model or a generative AI to spot similarities 

among words contained in a specific commu-

nity. With the current improvements of large 

language models and their spreading in psy-

chology (Semeraro et al., 2023), both options 

could produce analyses where the labelling of 

semantic communities is corroborated by both 

humans and knowledge modelling systems. 

Despite the above limitations, it is important to 

underline that, from a scale validation perspec-

tive, semantic loadings (as introduced here)  al-

low  experimenters  to better inspect validity is-

sues, such as the discriminant validity of the di-

mensions (e.g. testing whether some factors 

would not overlap with hypothesised different 

semantic contents), external validity (e.g. test-

ing whether some factors would overlap with 

hypothesised correlated semantic contents), 

and – maybe most important – content validity 

(e.g. testing whether the items supposed to re-

flect an unobserved construct effectively reflect 

the hypothesised semantic underlying con-

tent). Thus, our approach is consistent with re-

cent proposals, advancements, and integration 

between machine learning techniques and 

personality assessment, in case the resulting AI 

models are framed within a rich psychological 

theoretical framework (Bleidorn & Hopwood, 

2019) and/or can be interpreted in view of cru-

cial cognitive theories thanks to explanaible AI 

approaches (Baker et al., 2023; Samuel et al., 

2023). 
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Another intriguing direction for future research 

would be investigating how semantic overlap 

might influence overlap or correlations be-

tween psychometric scores, violating the local 

independence assumption (Christensen et al., 

2023). Both Unique Variable Analysis - and its 

weighted topological overlap (Christensen et 

al. 2023) - and the O-information (Marinazzo et 

al., 2022) represent intriguing techniques for 

quantifying and potentially enable a tuning of 

score correlations due to semantic similarity, in 

view of additional data gatherings and experi-

ments with human respondents. 

5. CONCLUSIONS 

This contribution offers a novel automatic ap-

proach, grounded in cognitive science and psy-

chometrics, for understanding how the ideas 

described across items of a certain psychomet-

ric scale correspond to psychological dimen-

sions/factors, as identified from participants’ 

responses to that same scale. Our semantic 

loadings can describe multiple features and 

nuances present in psychometric factors. The 

currently introduced methodological combi-

nation of textual forma mentis networks and 

exploratory graph analysis may be used in fu-

ture research to explore research questions 

akin to the following one: "Are the dimensions 

extracted by data (factors) consistent with the 

semantic content of their items (TFMNs)?". We 

are confident that this synergistic approach 

can further open the way to better understand-

ing psychometric scales and their resulting fac-

tors through automatic, yet psychologically in-

formed, combinations of cognitive and psycho-

logical networks. We envision these tech-

niques to further grow and better describe 

how semantic and experiential aspects of psy-

chological constructs influence thought, lan-

guage, and meaning understanding. 
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Appendix 

Factor Analysis 
 

Table A1 

Exploratory Factor Analysis Results as Obtained with Lavaan and a Varimax Ro-
tation. 

 
Number of factors: 3 Standardized loadings λ: (* = significant at 1% level) 

Items f1 f2 f3 unique.var communalities 

Q1A 0.835*   0.401 0.599 

Q2A  0.381*  0.751 0.249 

Q3A   0.645* 0.407 0.593 

Q4A  0.693*  0.483 0.517 

Q5A   0.533* 0.457 0.543 

Q6A 0.790*   0.495 0.505 

Q7A  0.767*  0.430 0.570 

Q8A 0.449*   0.501 0.499 

Q9A 0.429* 0.343*  0.526 0.474 

Q10A   0.827* 0.316 0.684 

Q11A 0.871*   0.372 0.628 

Q12A 0.382* 0.446*  0.456 0.544 

Q13A 0.309*  0.568* 0.345 0.655 

Q14A 0.649*   0.661 0.339 

Q15A  0.551*  0.579 0.421 

Q16A   0.681* 0.400 0.600 

Q17A   0.708* 0.346 0.654 

Q18A 0.645*   0.630 0.370 

Q19A  0.546*  0.662 0.338 

Continued on next page 
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  Table A1 – continued from previous page 
 

Items f1 f2 f3 unique.var communalities 

Q20A 0.303* 0.411*  0.480 0.520 

Q21A   0.858* 0.261 0.739 

Q22A 0.495*   0.517 0.483 

Q23A  0.549*  0.639 0.361 

Q24A   0.608* 0.438 0.562 

Q25A  0.625*  0.550 0.450 

Q26A   0.530* 0.409 0.591 

Q27A 0.795*   0.440 0.560 

Q28A  0.547*  0.414 0.586 

Q29A 0.708*   0.447 0.553 

Q30A 0.396*   0.575 0.425 

Q31A   0.622* 0.460 0.540 

Q32A 0.658*   0.565 0.435 

Q33A 0.364* 0.451*  0.441 0.559 

Q34A   0.720* 0.329 0.671 

Q35A 0.618*   0.577 0.423 

Q36A  0.371*  0.471 0.529 

Q37A   0.814* 0.354 0.646 

Q38A   0.873* 0.272 0.728 

Q39A 0.648*   0.487 0.513 

Q40A 0.412* 0.329*  0.535 0.465 

Q41A  0.745*  0.476 0.524 

Q42A   0.431* 0.587 0.413 
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Table A2 

Summary Statistics for the EFA with 3 Factors as Performed in Lavaan, with 

an Oblimin Rotation. 
 

 
 

  
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

*p ≤ .01. 

 f1 f2 f3 total 

Sum of sq (obliq) loadings 8.873 7.685 5.502 22.060 

Proportion of total 0.402 0.348 0.249 1.000 

Proportion var 0.211 0.183 0.131 0.525 

Cumulative var 0.211 0.394 0.525 0.525 

Factor correlations: 

 f1 f2 f3 

f1 1.   

f2 .703* 1.  

f3 .707* .540* 1. 
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