
Citation: Zhang, W.; Zeni, M.;

Passerini, A.; Giunchiglia, F. Skeptical

Learning—An Algorithm and a

Platform for Dealing with

Mislabeling in Personal Context

Recognition. Algorithms 2022, 15, 109.

https://doi.org/10.3390/a15040109

Academic Editors: Jan Friso Groote

and Arun Kumar Sangaiah

Received: 24 January 2022

Accepted: 22 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Skeptical Learning—An Algorithm and a Platform for Dealing
with Mislabeling in Personal Context Recognition
Wanyi Zhang * , Mattia Zeni, Andrea Passerini and Fausto Giunchiglia

Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy;
mattia.zeni.1@unitn.it (M.Z.); andrea.passerini@unitn.it (A.P.); fausto.giunchiglia@unitn.it (F.G.)
* Correspondence: wanyi.zhang@unitn.it

Abstract: Mobile Crowd Sensing (MCS) is a novel IoT paradigm where sensor data, as collected by
the user’s mobile devices, are integrated with user-generated content, e.g., annotations, self-reports,
or images. While providing many advantages, the human involvement also brings big challenges,
where the most critical is possibly the poor quality of human-provided content, most often due to the
inaccurate input from non-expert users. In this paper, we propose Skeptical Learning, an interactive
machine learning algorithm where the machine checks the quality of the user feedback and tries to fix
it when a problem arises. In this context, the user feedback consists of answers to machine generated
questions, at times defined by the machine. The main idea is to integrate three core elements, which
are (i) sensor data, (ii) user answers, and (iii) existing prior knowledge of the world, and to enable a
second round of validation with the user any time these three types of information jointly generate
an inconsistency. The proposed solution is evaluated in a project focusing on a university student life
scenario. The main goal of the project is to recognize the locations and transportation modes of the
students. The results highlight an unexpectedly high pervasiveness of user mistakes in the university
students life project. The results also shows the advantages provided by Skeptical Learning in dealing
with the mislabeling issues in an interactive way and improving the prediction performance.

Keywords: machine learning; ubiquitous and mobile computing; mobile information process;
learning of the situational context; fixing mislabeling

1. Introduction

In recent years, with the fast paced development of mobile devices, Mobile Crowd
Sensing (MCS) has become an emerging sensing paradigm where, as from [1], ordinary
citizens contribute data sensed or generated from their mobile devices. Such data are
then aggregated for crowd intelligence extraction and people-centric service delivery.
Human involvement is one of the most important characteristics of MCS, especially in
applications where participatory sensing applies. One such example is the applications
that are designed for environmental monitoring. The work in [2] applies the MCS-RF
model to infer the real-time and fine-grained PM2.5 throughout Beijing. In their application,
users can upload images with a time stamp and GPS information. The users’ input is
used along with other official data sources, such as meteorological data and traffic data
published by relevant agencies to carry out the environmental monitoring. Another kind of
application are those designed to monitor the user’s health status. The TrackYourTinnitus
(TYT) project tracks the user’s tinnitus by their answers to questionnaires and the sensor
data collected by their phone. Similarly, TrackYourHearing (TYH), TrackYourDiabetes
(TYD), and TrackYourStress (TYS) keep track of the progress of users’ hearing loss, diabetes,
or stress level, respectively [3]. This helps the users to be more aware of symptom changes
in specific contexts. Finally, there are other applications that collect urban data, such as
the reports of damaged infrastructures, with the final goal of monitoring urban safety [4,5].
In this case, the user is asked to report observations by answering questionnaires or
uploading images.

Algorithms 2022, 15, 109. https://doi.org/10.3390/a15040109 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15040109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3952-0826
https://orcid.org/0000-0002-5903-6150
https://doi.org/10.3390/a15040109
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15040109?type=check_update&version=2

Algorithms 2022, 15, 109 2 of 22

These examples above are just some among many MCS applications that collect both
the sensor data generated by the mobile phone and the subjective data generated by users.
However, normal (non-expert) users might provide an incorrect report or annotations due
to the users’ response biases, cognitive bias, carelessness [6,7], and even malicious behavior.
Moreover, these MCS systems cannot detect whether the information given by the users are
correct or not, while the correctness of the user’s input is important to the MCS applications
or systems, especially the ones that using machine learning algorithms in the back-end.
This is because most of the existing MCS applications do not have access to the knowledge.

We propose Skeptical Learning, which is a platform running an interactive learning
algorithm to detect the user’s incorrectness and to deal with the mislabeling issues. The key
idea is that the machine is enabled to use available knowledge to check the correctness of its
own prediction and of the label provided by the user. The machine is trained with the user’s
label and the sensor data collected from the user’s phone. Meanwhile, by keeping track
of the sequence of wrong and right answers, the machine builds a measure of confidence
towards itself and towards the user. When the machine detects that the user’s input is not
compatible with its prediction and the machine is confident enough, it will challenge the
user by sending another question to them to obtain a confirmed input. This interactive
learning strategy will help to improve the quality of the user’s input and, hence, to improve
the machine learning performance. In this context, by available knowledge, we mean both the
knowledge inductively built out of the previous learning activity and the knowledge that
may come from third parties or may be built-in as a priori knowledge. In particular, the
prior knowledge is used to perform Description Logic (DL) reasoning [8] over the known
facts, as they are expressed in a language with no negations and no disjunctions.

The two main contributions of this work are:

• An algorithm for Skeptical Learning (SKEL), which interacts with the user and chal-
lenges him/her when his/her feedback is not consistent with what it has learned
about the world. The key component is an algorithm for managing conflicts that uses
a confidence measure applied to both humans and machines;

• A general MCS platform for integrating, at scale, sensor data and user’s generated
data in the form of labels, together with the static knowledge of the world. The
former informs SKEL about the world evolution whereas the latter codifies the prior
knowledge, which is used in the conflict resolution phase.

The algorithm and platform have been tested and evaluated as part of a long-term
series of experiments aimed at studying the university student life in various campuses
worldwide. In this setting, users are asked to provide feedback about their situational con-
text, thus acquiring information about their personal activities, as well as the surroundings.
Since the beginning, it was clear that a certain percentage of the annotation labels provided
by students would be somewhat unreliable. As detailed in the evaluation section, this
percentage turned out to be very high, and much higher than originally expected. This
fact, plus the fact that the validation results show that SKEL substantially improves over
an approach relying only on the noise-robustness of the underlying learning algorithm,
provides evidence of the work described in this paper. This paper describes SKEL and the
platform in their final form. A preliminary version of the main SKEL algorithm was used
and described in [9,10], where the main goal was to understand the student mislabeling
behavior. With respect to this earlier work, the main novelties are: (1) the MCS architecture
and application are completely novel, (2) the SKEL algorithm has evolved substantially
with the predictor now implemented as a hierarchy of classifiers matching the prior knowl-
edge, and, finally, (3) the experiments and evaluation have been substantially extended by
comparing our algorithm with three alternative strategies for dealing with conflicts.

The remainder of this paper is organized as follows. In Section 2, we describe the
SKEL main algorithm and most important components. In particular, in Section 2.1, we
shortly describe the organization of the prior knowledge; in Section 2.2 we introduce
the main algorithm; in Section 2.3 we describe the prediction algorithm, whereas, finally,
in Section 2.4, we specify the algorithm that manages the conflicts between the human

Algorithms 2022, 15, 109 3 of 22

and the machine. Next, in Section 3, we introduce the MCS platform. This section is
organized in three parts: the main functionalities of the front-end (Section 3.1), of the back-
end (Section 3.2), and how the data are organized in the storage (Section 3.3). Section 4
describes the experiments inside which SKEL and the platform have been evaluated.
Section 5 describes the evaluation that is focused on the pervasiveness of the user mistakes
(Section 5.1) and of the performance of the machine learning algorithm (Section 5.2). Finally,
we close with the related work and conclusions, respectively, in Sections 6 and 7.

2. The Skeptical Learning Algorithm

Figure 1 depicts a high-level view of the functionalities of the SKEL main algorithm, as
presented in Algorithm 1. On the right side, a set of n sensors S1, . . . , Sn sense the world
and produce a set of streams {xt}Si , where xt is the value collected by the sensor Si at time
t. The function sensorReading generates Xt, which represents the set of all of the sensor
data streams at time t. On the left side, the user is asked to provide a label yt as his/her
annotation to a certain property Pj at time t. The function askUser generates the stream of
labels Yt. All these functionalities are implemented as an APP, called i-Log [11], which can
be downloaded from the PlayStore. The sensor data and user’s labels are used to train a
machine learning predictor PRED. PRED consists of a repertoire of m learning algorithms
f1, . . . , fm, each taking a stream of data xt as an input and producing a score fk(xt, y) for
the labels, which are possible values of a certain property Pj. Similarly to the user, PRED
provides its internally predicted labels Ŷ.

Sensor
Reading

Ask
User

Challenge
User

PRED

Solve
Conflict

Interaction
with user

User

SKEL

... ...

World

SK

i-Log i-Log

Backend

Figure 1. The main components of the system.

Both the user’s label yt and the predictor’s label ŷt are used by SKEL during the
comparison phase. We can also see yt as the user’s perception of the world, whereas ŷt is
the prediction generated by the machine with the knowledge learned so far from data. The
conflict between the two labels happens when the predictor is not trained enough or the
user provides an incorrect label. The main idea of SKEL is to check the correctness of the
predicted label and the user’s annotation by leveraging its prior knowledge. This step is
carried out by the function solveConflict. This function first checks whether the two labels are
compatible and, when a conflict arises, two situations are possible. The first one is when the
predictor has low confidence. In this situation, the user’s label is selected and the predictor
is retrained with the new data. The second situation is when the predictor’s confidence
is high enough: solveConflict calls function challengeUser to have another round of the
interaction by asking again for the user’s annotation. As we are assuming a collaborative

Algorithms 2022, 15, 109 4 of 22

rather than adversarial user, his/her second annotation y∗ is taken as the correct label and
added to the training set to retrain the predictor. The predictor can improve its performance
after rounds of training.

Algorithm 1 Skeptical Learning (SKEL)

1: procedure SKEL(θ)
2: init cu = 1, cp = 0
3: while TRAINMODE(cp, cu, θ) do
4: xt = SENSORREADING()
5: yt = ASKUSER()
6: ŷt = PRED(xt)
7: TRAIN(xt, yt)
8: UPDATE(cp, ŷt, yt)

9: while REFINEMODE(cp, cu, θ) do
10: xt = SENSORREADING()
11: yt = ASKUSER()
12: ŷt = PRED(xt)
13: SOLVECONFLICT(cp, cu, xt, ŷt, yt)

14: while True do
15: xt = SENSORREADING()
16: ŷt = PRED(xt)

17: if min
ŷ′t∈SMERS(ŷt)

CONF(xt, ŷ′t, cp
ŷ′t
) ≤ θ then

18: yt = ASKUSER()
19: SOLVECONFLICT(cp, cu, xt, ŷt, yt)

The following subsections provide a detailed view of the main components imple-
mented in the back-end.

2.1. The Prior Knowledge

To integrate the user labels and the predictor labels, we exploit a knowledge com-
ponent called SK, for Schematic Knowledge, containing general prior knowledge about the
world (see Figure 1). As described in detail below, SK is exploited during conflict resolution
(see Figure 1). A detailed description of SK is outside the main focus of this paper; the
interested reader can read [12] for a detailed account of the approach and the resource.

Here, it is worth noting that SK is a hierarchy; more precisely, it is a multi-rooted
DAG, where each node is labeled with a concept and where a child–parent link codifies a
subsumption axiom between a more specific and a more general concept. This hierarchy
has more than 100 thousand nodes and codifies a few million subsumption axioms. One
trivial example of SK content is a subsumption axiom stating that vehicle is a more general
concept than bus: in DL formulas, bus v vehicle. Another example is any general statement
about locations and sub-locations; for instance, the fact that department buildings are
always inside (they are partOf) the university premises. The hierarchy in Figure 2, which
has been exploited in the evaluation, is a very minor portion of the SK hierarchy itself.

Figure 2. Ontology of the labels used in the experiment. Bold contours correspond to classifiers in
the PRED procedure.

Algorithms 2022, 15, 109 5 of 22

From a technical point of view, it is worth noting how the hierarchy in Figure 2
is (partially) a part Of hierarchy rather than an is-a hierarchy, the latter being directly
codified into a set of subsumption axioms. PartOf relations on locations can be codified
as subsumption relations by seeing locations as sets of points. Under this assumption, the
points in a part are always a subset of the points in the whole. The SK encompasses both
isa-like and partOf -like relations (the first being called hyponym, the second, meronym) [12].

2.2. The Main Algorithm

The pseudocode of SKEL is reported in Algorithm 1. To keep the description simple,
and without a loss of generality, we assume below that there is a single property of interest
P, e.g., the location or the transportation means of the user at a certain time. We represent
by Y the set of possible values for this property. SKEL can be in one of three modalities
that, for simplicity, we assume are activated sequentially, namely: Train mode performed
in usual supervised learning, Refine mode, where it checks the quality of the user answers
and, under certain conditions, it challenges them, and the Regime mode, where it starts
being autonomous and only queries the user for particularly ambiguous instances.

The algorithm takes as an input a confidence threshold θ. It starts by initializing
the user confidence cu to one and the predictor confidence cp to zero for all classes
(|cu| = |cp| = |Y|). Then, the training phase begins. The algorithm collects sensor readings
(xt) to be used as an input for the predictor. The system then asks the user for a label (yt),
with the goal of using it as ground truth. The input–output pair trains the predictor by
following the TRAIN procedure. This can be carried out either via batch learning (where
the predictor is retrained from scratch) or via an online learning step [13], where the new
input–output pair is used to refine the current predictor. The choice between these learning
modalities depends on the specific implementation and constraints, e.g., the storage capac-
ity; see the experiment described below. After training, the confidence of the predictor is
modified via the UPDATE procedure, which takes as an input the ground truth label and the
one predicted before the training step. The UPDATE procedure takes as an input a confidence
vector, a tentative label (ŷt), and a ground truth label (yt), and updates the confidence
vector according to the relationship between the two labels. The new confidence vector
computed is as a label-wise running average accuracy over the current and past predictions,
for a certain window size d. Notice that the confidence updates are applied not only to the
predicted and ground truth label pair, but also to all implied label pairs according to the
SK, i.e., those from the root to the predicted (respectively) ground truth label.

The training stage stops when the system is confident enough to challenge the user
label. Equation (1) shows the computation of the confidence in a prediction label y. cp

y is
the confidence that the predictor has in label y. Since the predictor is implemented as a set
of classifiers matching the hierarchy shown in Figure 2 (the details of the predictor will be
introduced in the next section), we use function fPARENT(y)(x, y) to present the score of the
prediction label y generated by the classifier on y’s parent node.

CONF(x, y, cp
y) := cp

y · fPARENT(y)(x, y) (1)

when a predicted label is compared with a user-provided label, care must be taken in
making a sensible comparison. If the two labels belong to different branches of the hierarchy
(e.g., Train and On foot in Figure 2), they cannot be directly compared, as confidences are
normalized across siblings. Therefore, the system recovers all of the labels in the hierarchy
up to the first common root, i.e., the least common subsumer [8], and compares them instead
of the original ones. Thus, for instance, in the previous example, Train implies In vehicle,
which is then compared to On foot, as they are both children of On the move.

The system stays in training mode until the expected probability of contradicting the
user becomes bigger than the threshold:

TRAINMODE(cp, cu, θ) := E[1(CONF(x, ŷ, cp
ŷ) > cu

y · θ)] ≤ θ (2)

Algorithms 2022, 15, 109 6 of 22

where 1(ϕ) evaluates to one if ϕ is true and zero otherwise, and the expectation is taken over
all inputs seen so far. The E[1(ϕ)] is the expected probability of the zero and one list generated
by 1(ϕ). The labels to be compared are obtained as (ŷ, y) = LCS_CHILDREN(PRED(x), yu),
where PRED(x), the predicted label for input x, yu is the label provided by the user for that
input, and the LCS_CHILDREN procedure outputs a pair of implied predicted/user labels,
which are children of the least common subsumer (see Section 2.3 for more details about this
procedure). The user is contradicted when the confidence in the predicted label exceeds a
factor θ of the confidence of the user in his/her own label.

When it enters into refine mode, the system keeps asking the user for labels while
comparing them with its own predictions. SOLVECONFLICT manages this comparison and
its consequences, as described below. This refinement phase ends when the predictor
is confident enough and stops asking for user feedback for every input, and selectively
queries the user on those labels that are highly “difficult” to decide upon. In the general,
production level of the system, it will be the user who decides when to switch modes,
thus there is a trade-off between the system maturity and cognitive load. A simple fully
automated option, similar to the one used for the train mode, consists of staying in refine
mode as long as the expected probability of querying the user exceeds the threshold:

REFINEMODE(cp, cu, θ) := E[1(CONF(x, ŷ, cp
ŷ) ≤ θ)] ≥ θ (3)

again, with the expectation taken over all inputs seen so far. Note that, given that the
system has no access to the user label here, it takes a conservative approach and considers
the smallest confidence among the ones of the subsumers (SMERS) of its (leaf) prediction;
see line 17 in Algorithm 1.

After leaving the refine mode, the system enters the regime, where it stays indefinitely.
While in regime mode, the system stops asking feedback for all inputs and starts an active
learning strategy [14]. In particular, it will query the user only if the confidence computed
for a certain prediction is below the “safety” threshold θ. When it decides to query the
user, the system includes the tentative label in the query, and then behaves as in refinement
mode, calling SOLVECONFLICT to deal with the comparison between the predicted and the
user labels.

2.3. The Predictor

The prediction procedure PRED is implemented as a hierarchy of classifiers matching
the SK ontology for the property to be predicted. There is one multiclass classifier for each
internal node in the ontology (bold contour nodes in Figure 2), discriminating between its
children. The prediction starts from the root classifier and progresses down in the hierarchy
following the highest scoring class at each node, until a leaf node is reached, which is
the class that is eventually predicted. In the first iteration, when no training has been
performed yet, each classifier returns a random label. See Algorithm 2 for the pseudocode
of PRED, where fy(x, y′) is the classifier at node y and yroot is the most general value for the
property (e.g., a generic Location in Figure 2). The input of the predictor algorithm is the
sensor data.

Algorithm 2 Hierarchical predictor

1: procedure PRED(x)
2: init y = yroot
3: while not IS_LEAF(y) do
4: y = argmaxy′∈CHILDREN(y) fy(x, y′)

5: return y

Note that, thanks to the fact that the transitive closure over the SK axioms is pre-
computed, the system can infer, at run time, all of the labels that subsume those provided

Algorithms 2022, 15, 109 7 of 22

by the user, i.e., all those from the root to the user label. Each classifier in the path is thus re-
trained with the addition of its corresponding input–output pair during a TRAIN procedure.

2.4. The Conflict Management Algorithm

The SOLVECONFLICT procedure is described in Algorithm 3. SOLVECONFLICT takes
as an input the predictor and the user confidence vectors cp and cu, the input x with its
predicted label (ŷ), and the label given by the user (y). The first step is to compare the
two labels according to the ISCOMPATIBLE procedure. As the SK encodes a subsumption
hierarchy for the property of interest, the procedure returns as true if the two labels are the
same or if one subsumes the other. When the two labels are compatible, a consensus label is
taken as the ground truth, and the predictor and user confidences are updated accordingly.
As a natural choice for the consensus, the system chooses the more general among the two
labels, this being the choice also used in the experiments. The motivation is that both the
user and the system are taken to be truthful and, therefore, the system chooses the label
that carries more meaning.

Algorithm 3 Procedure for solving labeling conflicts

1: procedure SOLVECONFLICT(cp, cu, x, ŷ, y)
2: if ISCOMPATIBLE(ŷ, y) then
3: y∗ = CONSENSUS(ŷ, y)
4: UPDATE(cp, ŷ, y∗)
5: UPDATE(cu, y, y∗)
6: else
7: (ŷ′, y′) = LCS_CHILDREN(ŷ, y)
8: if CONF(x, ŷ′, cp

ŷ′) ≤ cu
y′ · θ then

9: TRAIN(f , x, y)
10: UPDATE(cp, ŷ, y)
11: else
12: y∗ = CHALLENGEUSER(ŷ)
13: if not ISCOMPATIBLE(ŷ, y∗) then
14: TRAIN(xt, y∗)
15: UPDATE(cp, ŷ, y∗)
16: UPDATE(cu, y, y∗)

If the two labels are not compatible, a conflict management phase starts. In particular,
when the confidence of the prediction is not large enough, the user label is taken as ground
truth, the predictor is retrained with this additional feedback, and its confidence is updated
accordingly. Otherwise, the system contradicts the user, advocating its own prediction
as the right one. (In order to support its argument, the machine could provide some sort
of explainable critique to the user feedback, in terms of counter-examples or evidence of
inconsistencies with respect to the SK. This is a promising direction for future research.)
The user is now responsible for solving the conflict. They can decide to stick to their own
label, realize that the machine is right and converge on the predicted one, or provide a
third label as a compromise. Note that the user can, and often will because of imperfect
memories, make a prudent choice and return an intermediate node of the label hierarchy
rather than a leaf. As we are assuming a non-adversarial setting, and we aim to provide
support to the user rather than a replacement for the user, eventually the system will trust
the latest provided label (even if unchanged), which, in turn, will become the ground truth.
As a last step, a compatibility check is performed to verify whether there is a need for
retraining and the predictor and user confidences are updated.

3. The Skeptical Learning Platform

The SKEL platform is depicted in Figure 3. To better understand it, the reader should
assume that all processes between components run asynchronously. This platform combines

Algorithms 2022, 15, 109 8 of 22

two parts: the i-Log front-end interacting with the world in terms of user and device (left)
and a back-end implementing, among others, the SKEL logic (right). There is an instance of
i-Log, and corresponding back-end, per user, while there is a single storage for all of the
users. Below, we analyze these three components.

Backend N
Backend ...

i-Log N

i-Log ...
i-Log 1

Sensor Interface

xt

sensorReadingxt

Backend 1

xt

External messaging
service

yt, y*

User Interface

yt?, y*?

yt, y*

User

y*?

yt?, y*?

yt

yt

Legend

Data
Questions

xt

askUser

yt?
y*

askUser

y*

Question
dispatcher

sensorReading
Backend

yt?

y*?
y*?

yt?, y*?

StreamBase

Sensors

challengeUser

yt?, y*?

xt

yt

y*?

SKEL

 Predictor
 Train
 Update

Figure 3. The platform architecture.

3.1. Front-End: i-Log

One of the core functionalities provided by the platform is the ability to acquire
knowledge about the world via both sensors and users, and to make these data available
for later processing and data analysis. Since the users of the platform are ordinary citizens
in the mobile crowd sensing scenarios and may have unreliable behaviors, obtaining
information or data with high quality becomes more challenging. As seen in Figure 3,
i-Log has two main input elements: the user on one side, which provides annotations in
the form of answers yt, y∗ to questions yt?, y∗?. The former is a type of question sent at
fixed time instants, whose answers are mainly used as standard annotations, whereas the
latter is sent on demand, when the system decides to challenge the user. On the other side,
there is the world, which is captured through sensors embedded in the smartphone and
wearables, generating sensor readings xt. i-Log is composed of four high level components:
(1) askUser, (2) sensorReading, (3) the user interface, and (4) the sensor interface. Let us analyze
these components in turn.

3.1.1. askUser

The main functionalities of askUser are related to the collection of feedback from the
user in the form of answers to questions. Its responsibilities are end-to-end, meaning
that it has to deliver the questions yt?, y∗? to the user (dashed lines in Figure 3), but
also to deliver the answers yt, y∗ to the back-end system (continuous lines in Figure 3).

Algorithms 2022, 15, 109 9 of 22

The questions are received from the back-end through an external messaging system,
such as Google’s messaging service Firebase (https://firebase.google.com accessed on
24 January 2022), or Baidu Messaging (https://push.baidu.com/ accessed on 24 January
2022), among others. The advantages of using such external services can be summarized
in four elements: (1) battery optimization, (2) time to deliver, (3) size of the message, and
(4) caching. Concerning battery optimization, Google Firebase has a functionality built in
that is responsible for delivering messages in an efficient way in “windows”. It basically
consists of a mechanism that groups together messages coming from different applications
and delivers all of them together, i.e., to wake up the phone only once when in sleep mode.
This leads to important savings in terms of battery life on the device side, since the phone
does not need to listen to incoming messages continuously. At the same time, messages are
usually delivered in a short time frame, in most cases within few seconds, which is perfect,
even for real-time use cases.

Another important aspect to keep under control on mobile devices is the network cost,
especially in some countries. If it is true that nowadays it is not uncommon to see data
plans for tens of GB, this is not true in all countries around the world. For this reason, the
transmission of data should always be optimized and compressed. Firebase helps in this
regard since every message has a size limit of 4 KB, which forces the developer to transmit
only essential information. Moreover, sending all messages together and compressed
reduces the amount of bytes that need to be transferred.

Finally, the last advantage of using an external delivering message system is that,
in most situations, i.e., with Firebase and Baidu, a caching system is provided. In fact,
smartphones are characterized by intermittent network connections that can leave the
device disconnected from the internet multiple times a day for an arbitrary amount of
time. Consider, for example, when the user enters a building with no signal, or when the
devices switches between cellular networks. In such situations, it is important to have a
caching system in place when delivering messages, since, if the message is delivered at the
wrong moment in time, when the phone is disconnected, it could get lost. Services such as
Firebase provide a robust caching mechanism that can be customized on a per-message
basis. We can specify the amount of minutes according to which the message should be
delivered, as soon as the device is connected. If this time interval expires and the message
has not been delivered, the message itself is discarded. This mechanism is perfect in the
situations mentioned above, when the phone disconnects for short periods of time, but it
also applies when the user turns off the phone for a period of hours, i.e., during the night.

It is important to underline that this component works in an asynchronous fashion:
the questions are received as soon as they are generated by the back-end, but the answers
are collected asynchronously, since they involve an action from the user. Finally, this
component collects two types of answers: yt, which are time diaries asked at fixed time
intervals by the askUser back-end component, and y∗, which, instead, are answers to a
challenge request by SKEL.

3.1.2. sensorReading

The main functionality of sensorReading is to collect sensor readings xt from the edge
device and synchronize them with the back-end system. Similarly to the askUser component,
it also works asynchronously: the front-end collects sensor readings from the device
continuously, without any input from the back-end, and synchronizes them only at specific
moments in time in order to make them available to the back-end and SKEL. This is carried
out for different reasons, the most important ones being the battery life of the edge device
and the network costs for the user. In fact, depending on the MCS task, xt can be big in
size, considering that it can collect up to 30 different sensor streams simultaneously, with
frequencies up to 100 Hz . A list of the supported sensor streams is available in Table 1 .

https://firebase.google.com
https://push.baidu.com/

Algorithms 2022, 15, 109 10 of 22

Table 1. Sensors and sampling rate, as used in the experiment.

Sensor Frequency Sensor Frequency Sensor Frequency

Acceleration 20 Hz Screen Status On change Proximity On change

Linear Acceleration 20 Hz Flight Mode On change Incoming Calls On change

Gyroscope 20 Hz Audio Mode On change Outgoing Calls On change

Gravity 20 Hz Battery Charge On change Incoming Sms On change

Rotation Vector 20 Hz Battery Level On change Outgoing Sms On change

Magnetic Field 20 Hz Doze Modality On change Notifications On change

Orientation 20 Hz Headset plugged in On change Bluetooth Device Available Once every
minute

Temperature 20 Hz Music Playback On change Bluetooth Device Available
(Low Energy)

Once every
minute

Atmospheric Pressure 20 Hz WIFI Networks Available Once every
minute Running Application Once every

5 s

Humidity 20 Hz WIFI Network Connected to On change Location Once every
minute

3.1.3. User Interface

The user interface is the component that the user interacts with directly on his/her
smartphone when it comes to collecting the user answers to askUser and challengeUser in
SKEL. Its main responsibilities are to display a user interface tailored for the specific device
that contains the corresponding questions yt?, y∗?. In the current implementation, there are
different question formats that are usable by the system. They all have the question field in
common, which is text based. Some of them have additional graphical elements that can
support the question, such as images, among others. Finally, the answer field is diverse for
each type. The most relevant question formats are: text question with a multiple choice
answer (with (1) single and (2) multiple selection allowed), (3) text question with a free
text input allowed, (4) text question supported by a map view and a pointer displayed on
it with a multiple choice answer, (5) text question supported by a map view and a path
displayed on it with a multiple choice answer, and (6) a text question with the possibility
for the user to take a picture. An example of the usage of the latter format is presented
in [5].

An important feature of the user interface is that it keeps track of the time that the
user spends answering each question, i.e., the time duration between when a question is
received and when it is answered, and the time taken by the user to answer it, namely
the elapsed time between when the user opens a question and when they press the finish
button. These two parameters are important because they allow us to filter out invalid
answers during the analysis. In [15], the researchers use these two parameters to measure
the biases and carelessness in the users’ respondents.

Finally, this component is also in charge of implementing the logic of dependency
between questions and answers. This feature is crucial in that it allows us to customize the
next question based on the previous answer given by the user. For example, if the user
replies to the question “What are you doing?” with “I’m travelling”, then the next question
will be “Where are you going?” rather than “Where are you?”. These types of dependencies
must be set up in the back-end while generating the sequence of questions.

3.1.4. Sensor Interface

This is the component that interacts directly with the hardware of the edge device,
e.g., the accelerometer and the gyroscope. Its main goal is to abstract the hardware from
the higher level processes and to generate the streams of sensors data xt. A second main
functionality of this component is also to generate streams of what we call “software sensors”.

Algorithms 2022, 15, 109 11 of 22

Software sensors are software modules that generate data generated by monitoring the
various software modules running on the device. One example of a software sensor is the
one that monitors the status (ON/OFF) of the screen, and another one detects the name of
the application that is running in foreground, every 5 s, among others.

The sensor interface component is of primary importance to enable a systematic sensor
data collection on different edge devices. This applies to both hardware and software
sensors. In fact, in each MCS task, we will have multiple smartphone models with different
operating system’s versions, since the user uses his/her own personal smartphone. These
aspects affect the sensor data collection in two ways: (1) different smartphones have
different sensors and (2) even if the sensor set is the same, those sensors will generate
data differently on each device. The sensor interface component addresses both. First of
all, for each device, it enables only the sensor streams that are present on the smartphone
automatically, disabling the other ones. Secondly, it collects data in such a way so that the
generated streams are consistent, with a similar collection frequency, amplitude, precision,
and so on.

3.2. Back-End

The back-end, as shown in Figure 3, works paired with the front-end part to provide an
end-to-end user experience. This is why each user has an instance of the back-end, as well
as the front-end. In fact, each user has different parameters that customize the dynamics
in the back-end to deliver a tailored user experience. Three out of five components map
directly between the front-end and back-end—(1) askUser (and (2) challengeUser), and (3)
sensorReading—whereas the other two—(4) Question Dispatcher and (5) SKEL—are only
available in the back-end.

3.2.1. askUser

askUser performs two tasks: (1) it accepts answers yt from the device, processing and
storing them in the StreamBase database (see the next subsection), while, at the same time
(2) triggering questions yt? at fixed time intervals, tailored on the user. The time interval
can vary because different users behave differently: some of them are more reliable in
replying and have less variance in their activities throughout the day, whereas others may
have a lot of variance or may be unreliable. For the former ones, the system requires less
annotations/ answers and the time interval can be kept in the order of 30–60 min, whereas,
for the latter, more annotations are required. The content of each question is configurable
in the system and is usually experiment-based. Since every MCS task has a different goal,
the questions may differ every time. An example of such questions is presented in Table 5
for the evaluation experiment carried on for this paper.

3.2.2. challengeUser

challengeUser, similarly to askUser, accepts answers y∗ from mobile devices and gen-
erates questions y∗? to be sent to the the user. Differently from askUser, the questions are
not generated at fixed time intervals but rather on demand, whenever a conflict in the
SKEL component arises. When this happens, this component takes the prediction ŷt from
StreamBase, which is generated by SKEL. Then, asynchronously, this component detects a
new question and triggers question y∗? to the user.

3.2.3. sensorReading

sensorReading is a component responsible for accepting sensor data xt from the mobile
device. The operations it performs are (1) pre-processing the data, (2) normalizing them,
and, finally, (3) pushing such data in StreamBase. Due to the size of the data, this component
is the one in the back-end that needs the biggest resources.

Algorithms 2022, 15, 109 12 of 22

3.2.4. Question Dispatcher

The question dispatcher is the component that is responsible for efficiently delivering
questions yt?, y∗? to the mobile devices. To carry this out, it relies on external services
depending on the need: the system can be easily configured in this regard. Using external
services removes an important overhead on our side and allows us to send content to
mobile devices efficiently, as previously explained in the front-end part.

3.2.5. SKEL

SKEL is the architectural component that embeds an implementation of the SKEL
algorithm. It takes sensor data xt and the user’s answers yt as an input to train the predictor.
When new sensor data are generated by the edge devices and synchronized with the server,
it generates a prediction label ŷt. SKEL can detect a conflict by comparing the user’s answer
and predictor’s label. When this happens, and the predictor’s confidence is high enough, it
triggers challengeUser to generate an additional question to be sent to the user. The user’s
answer y∗ is asynchronously collected and considered as ground truth. It is used to retrain
the predictor and to update the confidence value of the user and predictor accordingly.

3.3. StreamBase

StreamBase is the storage solution that is in charge of storing all of the information
collected from smart phones. As can be seen in Figure 3, it is part of the back-end system,
but it is logically separated from it. In fact, while the back-end has an instance per user,
we can consider the database as a unique entity where all of the data are stored, logically
separated for privacy reasons. The technology at the core of it is a NoSQL database called
Apache Cassandra (https://cassandra.apache.org/ accessed on 24 January 2022). The
reason why we decided to adopt it is that the amount of information and the growth rate
can be significant, even with a limited amount of users for our use-cases. For this reason,
standard solutions based on SQL could not satisfy the requirements in terms of latency and
scalability. In the current configuration, Cassandra is distributed on multiple nodes in the
cloud, thus allowing us to handle huge bursts in the number of requests. Three main types
of information are stored in Cassandra, all as streams of data with an attached timestamp:
(1) sensor values xt, (2) questions yx?, and (3) answers yt. Let us analyze these types of data
in turn.

Sensor values are the biggest in size, mainly due to their frequency. Depending on
the configuration of the MCS task, we can have the inertial sensors generating values that
add up to 100 Hz. All such data are stored in the database as time series. There are two
columns common to every other sensor: the timestamp and day. The former is used to
allow temporal queries, whereas the latter is used as a partition key in Cassandra to balance
the data in the different distributed nodes composing the cluster. The remaining columns
are different for every sensor. For example, in Table 2, we present the structure of the
inertial sensors used to identify the movement of the smartphone, the accelerometer.

Table 2. Accelerometer sensor data stored in StreamBase.

Day Timestamp X Y Z

20200118 20200118100500 9.18 0.00 0.01

20200120 20200120125603 0.89 6.18 4.04

20200120 20200120120500 2.74 2.01 9.20

20200120 20200120131836 2.94 0.32 15.86

The second type of data stored is the questions that are asked to the user. It is important
to keep track of them with the proper provenance information in order to reconstruct the
flow from the system to the user. In this regard, the question IDs are essential to the SKEL
algorithm. An additional field present is the status of the question, which can be either

https://cassandra.apache.org/

Algorithms 2022, 15, 109 13 of 22

DELIVERED, SENT, or DISCARDED. Apart from these, we have the “question” field,
which contains the text that was shown to the user, and the “timestamp”, which is the time
when the question was generated in the back-end. An example of questions stored in the
database can be seen in Table 3.

Table 3. Questions stored in StreamBase.

Day Question Timestamp Id Status

20200118 {“q”: “What are. . .”} 20200118100500 aDFQivswqA delivered

20200119 {“q”: “What are. . .”} 20200119200500 ELYs/3HeJY delivered

20200120 {“q”: “Were you. . .”} 20200120125603 pmQXTjxrLA delivered

20200120 {“q”: “What are. . .”} 20200120120500 tLN6iIQpdz delivered

20200120 {“q”: “Were you. . .”} 20200120131836 Yw6q7KXw3c sent

The last type of data in the StreamBase storage system is the answers to the questions
generated by the askUser and challengeUser components. An example of such data can be
seen in Table 4. The “day” field is common to the other types of data. We then have the
“answer” and “payload”, which, respectively, contain the text response and any additional
response element that the user provided, i.e., a picture, information on a map, etc. We
then have the “question id”, which links the answer to the corresponding question, as
presented in Table 3. Finally, we have multiple columns that define time variables: “question
timestamp” is the same as in the question table, which refers to the time at which the
question was generated and sent to the device; “notification timestamp” refers to the time
when the front-end received the question (usually within a few seconds if the phone is
turned on and connected), and, finally, the “answer timestamp”, which is the time when
the user answers the question. Two additional fields are present, delta and duration, which
map to the answering behavior of the users, as explained in the front-end part previously
in the paper.

Table 4. Answers stored in StreamBase.

Day Answer Payload Question Timestamp Notification
Timestamp ...

20200118 {“a”: “Eating”} {} 20200118100500 20200118100509

20200119 {“a”: “Sport”} {} 20200119200500 20200119200505

20200120 {“a”: “Yes”} {} 20200120125603 20200120125612

20200120 {“a”: “TV”} {} 20200120120500 20200120120601

20200120 {“a”: “No”} {} 20200120131836 20200120132834

Answer Timestamp Question Id Delta Duration

20200118101009 aDFQivswqA 300 65

20200119201505 ELYs/3HeJY 600 5

20200120131612 pmQXTjxrLA 1200 98

20200120120701 tLN6iIQpdz 60 23

20200120132849 Yw6q7KXw3c 15 304

Obviously, most of the data in the storage system that refer to the user are sensitive
information. However, in the contest of GDPR and personal data, none of them are
considered to be a personal identifier, except for the user email, which we store for technical
purposes. In fact, the email is used to authenticate all of the requests coming from the

Algorithms 2022, 15, 109 14 of 22

front-end applications. In the i-Log application, the user is required to login with Google
Identity (https://developers.google.com/identity accessed on 24 January 2022) anywhere
in the world except for China (where Baidu Login (https://login.bce.baidu.com/ accessed
on 24 January 2022) is used instead.). At every request, a token is sent and the server
uses it to extract the user email, which is then used to understand under which user to
store the data in the main database. To comply with the regulations, we split the email
identifier from the main storage system through an intermediate table in MySQL. This
table has only two columns: the personal identifier (email) and a uuid. Whenever a user
registers in the system, a random uuid is generated and a row is added to this table. All of
the data in the StreamBase system based on Cassandra are then stored according to that
uuid. Whenever the need to link the data to the email address expires, the corresponding
line in the intermediate table is removed and the data in Cassandra immediately become
anonymous and cannot be linked back to the user who generated it.

4. The Experiment on the SKEL Platform

The platform has been used and tested in a large number of experiments. Thus,
for instance, in the work described in [16], crowdsensing and crowdsourcing have been
combined in order to identify and localise WiFi networks. In the work described in [5], the
platform has been used to implement two hybrid human–machine workflows for solving
two mobility problems: modal split estimation and mapping mobility infrastructure. Last
but not least, the platform has been used in a large scale personal data collection experiment,
run by Eurostat, aimed at feeding a Europe-wide big data hackathon [17]. In this paper, we
concentrate on one of a series of MCS experiments run at the University of Trento whose
goal was to study the effects of students’ behavior and habits on their academic performance.
The main reason for this choice relates to the fact that, in the case of personal data, it is
easier to collect feedback, as this activity involves only the user of each single device.

The highlights of the experiment are as follows. Out of an initial population of
312 students, 72 were selected who satisfied three specific criteria, namely, their willingness
to share personal information, the fact that they were actively attending classes, and that
their phone could support the i-Log application. The cohort was designed to reflect the
general population of students in terms of gender and field of study. The experiment lasted
two weeks. During the first week, students were asked to answer a specific questionnaire
every half an hour, and the answers were the labels used by SKEL. Meanwhile, i-Log
would keep collecting the sensor data from their smartphone. During the second week,
students only needed to keep the application running in the background for the sensor
data collection. The sensors used in the experiment are those listed in Table 1. The resulting
dataset has a total size of 110 GB, containing 20 billion sensor values plus the user answers
to the time diaries’ questions, which are considered as an annotation to the sensor data.
The total number of answers generated during the experiment is 17,207 out of 27,111 sent.

Table 5 shows the questionnaire that users had to answer during the first week. The
design of the questionnaire follows the context model from [18]. It is composed of three
questions, namely “What are you doing?”, “Where are you?”, and “Who is with you?”.
Notice that, if the user’s answer of the activity was “En route”, the user was further
asked about the transportation mode. The user could choose, as his/her answer, one of
a pre-selected list of labels. The user’s answers were meant to help in the understanding
of the user situational context and its aspects relating to his/her activity, location, and
social relations.

https://developers.google.com/identity
https://login.bce.baidu.com/

Algorithms 2022, 15, 109 15 of 22

Table 5. The questionnaire. (* When the user’s answer to activity is “En route”, the next question to
the user will be “How are you traveling?” instead of “Where are you?”)

What Are You Doing? Where Are You? Who Is with You?

Lesson Class Alone

Study Study hall Classmate(s)

Eating Library Friend(s)

Personal care Other university place Roomate(s)

En route (*) Canteen Partner(s)

Social life Bar/Pub/etc. . . Relative(s)

Social media and internet Home Colleague(s)

Cultural activities Other home Other

Sport Workplace

Shopping Outdoors

Hobbies Gym

Other free time Shop

Work Other place

Housework (*) How Are You Traveling?

Volunteering By foot

Others By bus

By train

By car

By motorbike

By bike

Other

5. Evaluation

In the evaluation, we only focus on the user’s annotation to the location and transporta-
tion means, namely, the labels generated as answers to the questions in the second column
in Table 5. The evaluation consists of two parts: proving (1) that annotation mistakes from
non-expert users are a quantitatively major problem (Section 5.1), and proving that (2)
SKEL is able to detect and mitigate the effect of such mistakes (Section 5.2). This evaluation
is based on the following assumptions:

• The SKEL algorithm is evaluated asynchronously, at the end of each day;
• The SKEL algorithm uses, in any moment, all of the data previously collected, without

an explicit “forget” mechanism for old data. This is because removing old data helps
in adapting to users’ changes in behavior and patterns. However, since the data were
generated from an experiment lasting 2 weeks, this was not needed;

• The knowledge of the world SK available to the SKEL algorithm was a simplified
sub-set of the available one, with elements related to only the use-case (see Figure 2).
Moreover, we considered it to be static for the whole duration of the experiment, and
not evolving over time.

5.1. Pervasiveness of Annotation Mistakes

The analysis of the collected answers is performed by comparing them with a ground
truth. To have a ground-truth independent of both the predictor and the user annotation,
we focus on predicting the locations participants visited during the two weeks of the

Algorithms 2022, 15, 109 16 of 22

experiment and those transportation activities related to movements across such locations.
We use a hierarchy of labels from SK that accounts for both the user location and the user
transportation means, as reported in Figure 2. We have computed ground-truth labels for
university by using maps of university buildings. The ground-truth of the user’s home has
been computed by clustering locations via DBSCAN [19]. We choose the coordinates of
locations that the user labels as “home” as the inputs to the DBSCAN algorithm, and it
outputs a set of clusters according to the density of these coordinates on the map. The
distance we choose for clustering locations is 108.27 m, as it is the average accuracy of the
considered locations. Then, the cluster on which the user spends most of the time during
the night will be chosen as the ground-truth of the user’s home. Using Google data (for
users that agreed to provide them, i.e., 32 out of 72), we have also been able to detect if the
user was on the move, and whether he/she was moving on foot, by bike, or in vehicle. Finally,
the Other location label has been assigned to the cases in which none of the other three main
locations were detected. Note that SKEL has no access to the information used to compute
the ground truth.

The analysis in Table 6 provides evidence that a surprisingly high proportion of
labels were inconsistent. Table 6 shows some statistics on the percentage of users with
different amounts of labeling noise. The results in Table 6 validate, beyond our initial
expectations, our hypothesis that non-expert users consistently and systematically makes
mistakes while providing annotations, with only 21.6% of the users having less than 10%
of labeling mistakes.

Table 6. Percentage of users with each label noise level.

Label Noise Level ≤10% 10–25% ≥25%

Users 21.6% 51.4% 27.0%

5.2. The Algorithm

The next component to be evaluated is the SKEL algorithm. As discussed in Section 2,
the PRED procedure of SKEL consists of a hierarchy of multiclass classifiers, one for each
internal node in the hierarchy. Each classifier implemented a random forest [20], which is
known to be robust to labeling noise [21], to evaluate the ability of SKEL to improve over
an already noise-robust baseline. The confidence parameter θ of SKEL has been set to 0.2,
which has resulted in a reasonable trade-off between accurate training and cognitive effort
for the user. For simplicity, we have used an infinite queue (d = ∞) for the confidence
update due to the relatively short duration of the experiment. This being an experiment
built on previously collected data, we could not query users in real-time in case of conflicts.
To simulate a collaborative, non-adversarial user, we assumed that the user returns the
ground truth label when his/her initial label is contested.

The evaluation of SKEL is performed by comparing it with three alternative algorithms:

• NONSKEL, which never contradicts the user (obtained by replacing SOLVECONFLICT

with a train and update step, as occurs in the training phase);
• IGNORE, which simply ignores any example for which a conflict arises (obtained by

removing everything from the ELSE onwards in Algorithm 3);
• BOTHER, which always contradicts the user (obtained by calling CHALLENGEUSER

after all ASKUSER calls, and removing SOLVECONFLICT).

As presented in the previous section, a surprisingly high proportion of labels present
inconsistencies. To estimate the effect of this large and very diverse proportion of labeling
errors on the performance of the system, we divided the set of users in the three groups
reported in the table. Figure 4 reports the results of SKEL and of the three alternatives for
an increasing number of iterations. Each row represents the results for a different group
of users: at most 10% labeling errors (top), 10% to 25% (middle), more than 25% (bottom).
The left column reports f1 scores averaged over all users in the corresponding group with a

Algorithms 2022, 15, 109 17 of 22

number of training samples greater than 200. The score for each user is computed on a fixed
test set, namely the latest 15% of all of the data available for that user that were not used
for training. This score provides an estimate of the performance of the algorithms when
making predictions on future data. Note that we consider a label as correctly predicted
if it is compatible with the ground-truth label, because this is the only type of reliable
supervision we have access to. Results clearly indicate that our skeptical algorithm (red
curve) consistently outperforms a non-skeptical alternative (blue curve). As expected, the
advantage is moderate for users with a relatively small fraction of labeling errors (top
figure), and grows with the unreliability of the users, reaching a gap of 0.20 for users with
more than 25% labeling errors (bottom figure). Ignoring conflicting cases (brown curve) is
clearly not an option, as it achieves the worst performance in all cases. On the other hand,
when always having access to correct supervision, BOTHER (green curve) clearly achieves
the highest performance. However, SKEL is capable of getting reasonably close to this
upper bound when enough iterations are provided, at a fraction of the cost in terms of user
effort. The right column reports the number of times the user is contradicted for SKEL (red
curve) and for BOTHER (green curve), for which, they are simply the number of iterations.
SKEL clearly contradicts more when facing increasingly unreliable users. However, the
cost remains substantially lower than that of BOTHER, going from 13% (top figure) to 23%
(bottom figure).

Figure 5 reports the confusion matrices of the location classifier (the root of the hierarchy
in Figure 2) for the last time instant of the different algorithms shown in Figure 4. Results
are normalized over the sum of all of the elements in the matrix. In each matrix, rows
are ground truth labels and columns are predicted labels. Matrix entries are colored, with
darker shades corresponding to larger entries. Each row represents the results for a different
group of users who have, at most 10%, from 10% to 25%, and more than 25% labeling
errors, respectively. The matrices in the first column report results of the SKEL algorithm,
the second column report results of the NONSKEL one, the third column report results of
the BOTHER one, and the last column report results of the IGNORE one.

Clearly, BOTHER has the best performance, as can be seen by the dark coloring of the
main diagonal (corresponding to correct predictions), and shows the upper limit one can
reach by always having access to the ground truth during training. While not as accurate,
SKEL has a similar qualitative behavior, with on-diagonal entries typically larger than
off-diagonal ones. The bad performance of IGNORE and NONSKEL are due to the fact that
they tend to overpredict certain classes (as shown by the dark columns): University and On
the Move for IGNORE, University and Home for NONSKEL.

The first row represents the results of the users with fewer labeling errors. Given that
these users tend to provide high-quality labels, SKEL is only slightly better than NONSKEL.
This is consistent with the F1 score in the first row of Figure 4, where the red curve and
blue curve are close to each other. However, SKEL manages to substantially improve the
recognition ability for On the move and Other location, the classes for which the user feedback
is least frequent, at the cost of a (smaller) decrease in accuracy for the most popular ones,
University and Home. This behavior is even more evident when considering users with a
higher fraction of errors (middle row, from 10% to 25% labeling errors), where the fraction
of times On the move and Other location get predicted and the prediction is correct increases
from 2.64% to 10.96% and from 1.52% to 5.69%, respectively. The third row reports results
for the least reliable users, with more than 25% labeling errors. While the distance to
the “ideal” (for the machine) setting represented by BOTHER increases, the advantage of
SKEL over NONSKEL (and IGNORE) also widens. The tendency of the user to always
reply with Home and University does affect SKEL, which starts to show a similar behavior
(dark columns in the matrix). On the other hand, despite the substantial unreliability of
the user feedback, it still manages to recover a large fraction of the On the Move (from
6.63% to 14.70%) and the Other location (from 0.62% to 8.28%) classes, both virtually lost
by NONSKEL.

Algorithms 2022, 15, 109 18 of 22
Version March 22, 2022 submitted to Journal Not Specified 15 of 18

0 25 50 75 100 125 150 175 200
Time

0.0

0.2

0.4

0.6

0.8

F1
 sc

or
e

SkeL
NonSkeL

Bother
Ignore

0 25 50 75 100 125 150 175 200
Time

0

25

50

75

100

125

150

175

200

#

SkeL Bother

0 25 50 75 100 125 150 175 200
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 sc

or
e

SkeL
NonSkeL

Bother
Ignore

0 25 50 75 100 125 150 175 200
Time

0

25

50

75

100

125

150

175

200

#

SkeL Bother

0 25 50 75 100 125 150 175 200
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 sc

or
e

SkeL
NonSkeL

Bother
Ignore

0 25 50 75 100 125 150 175 200
Time

0

25

50

75

100

125

150

175

200

#

SkeL Bother

Figure 4. Results averaged over users with at most 10% (top row), from 10% to 25% (middle row) and more
than 25% (bottom row) labelling errors. Left colume: F1 scores on left-out data. Right column: number of
times user is contradicted.

The results in Table 6 validate, beyond our initial expectations, our hypothesis that non-expert users 520

consistently and systematically makes mistakes while providing annotations, with only 21.6% of the 521

users having less than 10% of labelling mistakes. 522

5.2. The algorithm 523

The next component to be evaluated is the SKEL algorithm. As discussed in Section 2, the 524

PRED procedure of SKEL consists of a hierarchy of multiclass classifiers, one for each internal node 525

in the hierarchy. Each classifier implemented a random forest [?], which is known to be robust to 526

labeling noise [?], to evaluate the ability of SKEL to improve over an already noise-robust baseline. 527

The confidence parameter θ of SKEL has been set to 0.2, which has resulted in a reasonable trade-off 528

between accurate training and cognitive effort for the user. For simplicity, we have used an infinite 529

queue (d = ∞) for the confidence update due to the relatively short duration of the experiment. 530

Being the experiment built on previously collected data, we could not query users in real-time in 531

case of conflicts. To simulate a collaborative, non-adversarial user, we assumed that the user returns 532

the ground truth label when his/her initial label is contested. 533

The evaluation of SKEL is done by comparing it with three alternative algorithms: 534

• NONSKEL, that never contradicts the user (obtained by replacing SOLVECONFLICT with a train 535

and update step, as happens in the training phase); 536

• IGNORE, that simply ignores any example for which a conflict arises (obtained by removing 537

everything from the ELSE onwards in Algorithm 3); 538

• BOTHER, that always contradicts the user (obtained by calling CHALLENGEUSER after all 539

ASKUSER calls, and removing SOLVECONFLICT). 540

Figure 4. Results averaged over users with at most 10% (top row), from 10% to 25%
(middle row), and more than 25% (bottom row) labeling errors. Left column: F1 scores on left-out
data. Right column: number of times user is contradicted.

Algorithms 2022, 15, 109 19 of 22Version March 22, 2022 submitted to Journal Not Specified 16 of 18

Ho
me

On
 th

e m
ov

e

Oth
er

loc
ati

on

Un
ive

rsi
ty

Home

On the move

Other location

University

40.91 1.77 1.26 3.54

1.52 3.54 0.00 3.79

3.54 3.79 5.30 10.35

1.01 0.51 3.54 15.66

Location_SKEL_<10%

Ho
me

On
 th
e m

ov
e

Oth
er
loc
ati
on

Un
ive

rsi
ty

Home

On the move

Other location

University

42.42 0.76 1.01 3.28

3.28 0.51 0.00 5.05

3.28 5.56 2.27 11.87

0.25 1.26 1.01 18.18

Location_Non_SKEL_<10%

Ho
me

On
 th
e m

ov
e

Oth
er
loc
ati
on

Un
ive
rsi
ty

Home

On the move

Other location

University

40.66 3.03 1.52 2.27

0.51 8.33 0.00 0.00

3.03 0.00 17.93 2.02

0.25 0.51 5.05 14.90

Location_Bother_<10%

Ho
me

On
 th

e m
ov

e

Oth
er

loc
ati

on

Un
ive

rsi
ty

Home

On the move

Other location

University

17.42 9.09 0.25 20.71

0.00 0.00 0.00 8.84

1.01 3.54 0.25 18.18

0.00 1.77 0.25 18.69

Location_Ignore_<10%

Ho
me

On
 th
e m

ov
e

Oth
er
loc
ati
on

Un
ive

rsi
ty

Home

On the move

Other location

University

31.88 1.52 2.64 4.67

8.02 10.96 0.91 8.53

3.65 3.25 5.69 2.74

0.30 0.20 0.51 14.52

Location_SKEL_10%-25%

Ho
me

On
 th

e m
ov

e

Oth
er

loc
ati

on

Un
ive

rsi
ty

Home

On the move

Other location

University

36.95 1.22 1.32 1.22

13.30 2.64 1.22 11.27

4.26 4.87 1.52 4.67

0.30 0.00 0.20 15.03

Location_Non_SKEL_10%-25%

Ho
me

On
 th
e m

ov
e

Oth
er
loc
ati
on

Un
ive
rsi
ty

Home

On the move

Other location

University

33.40 3.25 3.65 0.41

2.23 25.79 0.41 0.00

2.84 0.30 10.66 1.52

0.00 0.81 1.12 13.60

Location_Bother_10%-25%

Ho
me

On
 th

e m
ov

e

Oth
er

loc
ati

on

Un
ive

rsi
ty

Home

On the move

Other location

University

9.24 7.21 3.76 20.51

5.08 4.26 2.44 16.65

1.02 4.97 0.91 8.43

0.10 3.15 0.00 12.28

Location_Ignore_10%-25%

Ho
me

On
 th
e m

ov
e

Oth
er
loc
ati
on

Un
ive

rsi
ty

Home

On the move

Other location

University

14.91 0.21 0.41 5.18

17.18 14.70 0.62 17.18

4.97 1.66 8.28 6.00

0.83 0.62 0.41 6.83

Location_SKEL_>25%

Ho
me

On
 th
e m

ov
e

Oth
er
loc
ati
on

Un
ive

rsi
ty

Home

On the move

Other location

University

18.84 0.00 0.21 1.66

23.60 6.63 1.24 18.22

13.25 1.86 0.62 5.18

1.04 0.00 0.21 7.45

Location_Non_SKEL_>25%

Ho
me

On
 th
e m

ov
e

Oth
er
loc
ati
on

Un
ive
rsi
ty

Home

On the move

Other location

University

14.91 3.93 1.86 0.00

1.04 47.83 0.83 0.00

1.45 1.66 17.18 0.62

0.62 0.21 2.07 5.80

Location_Bother_>25%

Ho
me

On
 th

e m
ov

e

Oth
er

loc
ati

on

Un
ive

rsi
ty

Home

On the move

Other location

University

2.28 2.07 0.21 16.15

10.97 8.28 0.21 30.23

0.21 8.70 0.00 12.01

0.00 0.21 0.00 8.49

Location_Ignore_>25%

Figure 5. Confusion matrices for the evaluation on modified: ground truth labels at the last iteration of the
algorithms. modified: Ground truth labels are on the rows, predicted labels are on the columns. All the
matrices refer to the Location classifier and are normalized over all entries.

As presented in the previous section, a surprisingly high proportion of labels present inconsistencies. 541

To estimate the effect of this large and very diverse proportion of labelling errors on the performance 542

of the system, we divided the set of users in the three groups reported in the table. Figure 4 reports 543

the results of SKEL and of the three alternatives for an increasing number of iterations. Each row 544

represents the results for a different group of users: at most 10% labelling errors (top), 10% to 25% 545

(middle), more than 25% (bottom). The left column reports f1 scores averaged over all users in the 546

corresponding group with a number of training samples greater than 200. The score for each user 547

is computed on a fixed test set, namely the latest 15% of the all data available for that user, which 548

was not used for training. This score provides an estimate of the performance of the algorithms 549

when making predictions on future data. Note that we consider a label as correctly predicted if it is 550

compatible with the ground-truth label, because this is the only type of reliable supervision we have 551

access to. Results clearly indicate that our skeptical algorithm (red curve) consistently outperforms 552

a non-skeptical alternative (blue curve). As expected, the advantage is moderate for users with a 553

relatively small fraction of labelling errors (top figure), and grows with the unreliability of the users, 554

reaching a gap of 0.20 for users with more than 25% labelling errors (bottom figure). Ignoring 555

conflicting cases (brown curve) is clearly not an option, as it achieves the worst performance in 556

all cases. On the other hand, having always access to correct supervision, BOTHER (green curve) 557

clearly achieves the highest performance. However SKEL is capable of getting reasonably close 558

to this upper bound when enough iterations are provided, at a fraction of the cost in terms of user 559

effort. The right column reports the number of times the user is contradicted for SKEL (red curve) 560

and for BOTHER (green curve), for which they are simply the number of iterations. SKEL clearly 561

contradicts more when facing increasingly unreliable users. However, the cost remains substantially 562

lower than the one of BOTHER, going from 13% (top figure) to 23% (bottom figure). 563

Figure 5 reports the confusion matrices of the Location classifier (the root of the hierarchy 564

in Figure 2) for the last time instant of the different algorithms shown in Figure 4. Results are 565

normalized over the sum of all the elements in the matrix. In each matrix, rows are ground truth 566

labels, columns are predicted labels. Matrix entries are coloured, with darker shades corresponding 567

Figure 5. Confusion matrices for the evaluation on ground truth labels at the last iteration of the
algorithms. Ground truth labels are on the rows, predicted labels are on the columns. All of the
matrices refer to the location classifier and are normalized over all entries.

6. Discussion

Whereas traditional approaches assume perfectly labeled training sets, most recent
supervised learning techniques can tolerate a small fraction of mislabelled training instances
(see, for instance, [22]). A common solution consists of designing learning models that are
robust to (some) label noise [23]. In particular, by averaging predictions of multiple learners,
ensemble methods usually perform well in terms of noise robustness [24,25]. In this line of
thought, the robustness of random forests, the ensemble method used in this paper, has
recently been shown both theoretically and empirically [21]. Nonetheless, label noise badly
affects the performance of learning algorithms [26]. Our approach diverges from existing
solutions since it involves an interactive error correction phase. This process allows for the
tolerating of a much larger amount of noise, achieving substantial improvements over the
previous work.

The field of statistical relational learning [27] deals with the integration of symbolic and
sub-symbolic approaches to learning. Frameworks such as Markov logics [28], semantic-
based regularization [29], or learning modulo theories [30] combine logical rules or other
types of constraints with learnable weights to encourage predictions consistent with the
available knowledge. Our main difference is that we use knowledge in an interactive way
to identify potential errors in the user feedback, and activate a conflict resolution phase to
solve such controversies.

Algorithms 2022, 15, 109 20 of 22

As already pointed out in the introduction, in MCS systems, a major problem is the
quality of the data. Inconsistent data could have a negative effect on the accuracy and per-
formance of machine learning systems, even leading to a decrease in the intelligence of the
system [31]. In [32], the authors deal with this problem by computing the reputation score
of the device as a reflection of the trustworthiness of the contributed data. Dually, in [33],
the reputation system focuses on the reputation of the human participants. Differently
from this work, we propose a hybrid approach, where we evaluate both the users and the
machine and deal with personal data, and our metrics leading to reputation are the result
of a machine learning activity.

Concerning the experiment used to construct the evaluation data set, the closest and
most relevant research work is the Student Life study [34], where the authors have developed
a continuous sensing app called StudentLife running on smartphones. This experiment
was carried at the Dartmouth College for 10 weeks and it involved 48 students. The
researchers assessed the impact of workload on stress, sleep, activity, mood, sociability,
mental well-being, and academic performance. A similar work is the SmartGPA study [35],
which performed a time series analysis on the dataset published in [34]. The goal of this
work was to find which behavior had the highest impact on the students’ GPA. Moreover,
they proposed a linear regression model that was used to predict the student’s GPA based
on their behavior. However, in none of these research studies did the authors evaluate
the quality of the annotations from the students, and, therefore, did not deal with the
mislabeling problem.

7. Conclusions

In this paper, we have introduced a general MCS platform that, together with the i-Log
application, can be used to collect sensor data and user’s annotations. On top of them, the
platform runs SKEL, a machine learning algorithm that deals with the unreliability of non-
expert users when providing labels. The fundamental idea is to use the available knowledge
when deciding what is more reliable between the output of the machine learning algorithms
and the user input, and to engage in a conflict resolution phase when a controversy
arises. The experimental results show the pervasiveness of mislabeling when dealing with
feedback from non-expert users, as well as the effectiveness of SKEL in addressing the
problem, as compared to existing approaches that deal with noisy labels.

Author Contributions: Data curation, M.Z.; Methodology, W.Z., M.Z., A.P. and F.G.; Software, M.Z.;
Supervision, A.P. and F.G.; Validation, W.Z.; Writing—original draft, W.Z. and M.Z.; Writing—review
& editing, A.P. and F.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union’s Horizon 2020 FET Proactive project
“ WeNet—The Internet of us”, grant agreement No. 823783, and the “DELPhi—DiscovEring Life
Patterns” project funded by the MIUR progetti di Ricerca di Rilevante Interesse Nazionale (PRIN)
2017—DD n. 1062 del 31.05.2019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, B.; Yu, Z.; Zhou, X.; Zhang, D. From participatory sensing to mobile crowd sensing. In Proceedings of the 2014 IEEE

International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), Budapest,
Hungary, 24–28 March 2014; pp. 593–598.

2. Feng, C.; Tian, Y.; Gong, X.; Que, X.; Wang, W. MCS-RF: Mobile crowdsensing–based air quality estimation with random forest.
Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718804702.

3. Kraft, R.; Schlee, W.; Stach, M.; Reichert, M.; Langguth, B.; Baumeister, H.; Probst, T.; Hannemann, R.; Pryss, R. Combining mobile
crowdsensing and ecological momentary assessments in the healthcare domain. Front. Neurosci. 2020, 14, 164. [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/32184708

Algorithms 2022, 15, 109 21 of 22

4. Zhao, X.; Wang, N.; Han, R.; Xie, B.; Yu, Y.; Li, M.; Ou, J. Urban infrastructure safety system based on mobile crowdsensing. Int. J.
Disaster Risk Reduct. 2018, 27, 427–438.

5. Maddalena, E.; Ibáñez, L.D.; Simperl, E.; Gomer, R.; Zeni, M.; Song, D.; Giunchiglia, F. Hybrid Human Machine workflows
for mobility management. In Proceedings of the 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019;
pp. 102–109.

6. West, B.T.; Sinibaldi, J. The quality of paradata: A literature review. Improv. Surv. Parad. 2013, 339–359.
7. Tourangeau, R.; Rips, L.J.; Rasinski, K. The Psychology of Survey Response; Cambridge University Press: Cambridge, UK, 2000.
8. Baader, F.; Calvanese, D.; McGuinness, D.; Patel-Schneider, P.; Nardi, D. The Description Logic Handbook: Theory, Implementation and

Applications; Cambridge University Press: Cambridge, UK, 2003.
9. Zeni, M.; Zhang, W.; Bignotti, E.; Passerini, A.; Giunchiglia, F. Fixing Mislabeling by Human Annotators Leveraging Conflict

Resolution and Prior Knowledge. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 32.
10. Zhang, W.; Passerini, A.; Giunchiglia, F. Dealing with Mislabeling via Interactive Machine Learning. Ki-KÜNstliche Intell. 2020,

34, 271–278.
11. Zeni, M.; Zaihrayeu, I.; Giunchiglia, F. Multi-device activity logging. In Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Seattle, WA, USA, 13–17 September 2014; pp. 299–302.
12. Giunchiglia, F.; Batsuren, K.; Bella, G. Understanding and Exploiting Language Diversity. In Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25 August 2017; pp. 4009–4017.
13. Shalev-Shwartz, S. Online Learning and Online Convex Optimization. Found. Trends Mach. Learn. 2012, 4, 107–194. [CrossRef]
14. Settles, B. Active Learning Literature Survey; Computer Sciences Technical Report 1648; University of Wisconsin–Madison: Madison,

WI, USA, 2009.
15. Giunchiglia, F.; Zeni, M.; Gobbi, E.; Bignotti, E.; Bison, I. Mobile Social Media and Academic Performance. In International

Conference on Social Informatics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–13.
16. Maddalena, E.; Ibáñez, L.D.; Simperl, E.; Zeni, M.; Bignotti, E.; Giunchiglia, F.; Stadler, C.; Westphal, P.; Garcia, L.P.; Lehmann, J.

QROWD: Because Big Data Integration is Humanly Possible. In Proceedings of the Project Showcase Track of KDD2018, London,
UK, 19–23 August 2018.

17. Zeni, M.; Bison, I.; Gauckler, B.; Reis, F.; Giunchiglia, F. Improving time use measurement with personal big data collection— The
experience of the European Big Data Hackathon 2019. arXiv 2019, arXiv:2004.11940.

18. Giunchiglia, F.; Bignotti, E.; Zeni, M. Personal context modelling and annotation. In Proceedings of the 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017;
pp. 117–122.

19. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
KDD 1996, 96, 226–231.

20. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
21. Ghosh, A.; Manwani, N.; Sastry, P.S. On the Robustness of Decision Tree Learning Under Label Noise. In Advances in Knowledge

Discovery and Data Mining; Kim, J., Shim, K., Cao, L., Lee, J.G., Lin, X., Moon, Y.S., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 685–697.

22. Frénay, B.; Kabán, A. A comprehensive introduction to label noise. In Proceedings of the ESANN 2014: European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 23–25 April 2014.

23. Folleco, A.; Khoshgoftaar, T.M.; Hulse, J.V.; Bullard, L. Identifying learners robust to low quality data. In Proceedings of the
2008 IEEE International Conference on Information Reuse and Integration, Las Vegas, NV, USA, 13–15 July 2008; pp. 190–195.
[CrossRef]

24. Dietterich, T.G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting,
and Randomization. Mach. Learn. 2000, 40, 139–157. [CrossRef]

25. Rätsch, G.; Schölkopf, B.; Smola, A.J.; Mika, S.; Onoda, T.; Müller, K.R. Robust Ensemble Learning for Data Mining. In Knowledge
Discovery and Data Mining. Current Issues and New Applications; Terano, T., Liu, H., Chen, A.L.P., Eds.; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 341–344.

26. Nettleton, D.F.; Orriols-Puig, A.; Fornells, A. A study of the effect of different types of noise on the precision of supervised
learning techniques. Artif. Intell. Rev. 2010, 33, 275–306. [CrossRef]

27. Bakir, G.H.; Hofmann, T.; Schölkopf, B.; Smola, A.J.; Taskar, B.; Vishwanathan, S.V.N. Predicting Structured Data (Neural Information
Processing); The MIT Press: Cambridge, MA, USA, 2007.

28. Richardson, M.; Domingos, P. Markov logic networks. Mach. Learn. 2006, 62, 107–136. [CrossRef]
29. Diligenti, M.; Gori, M.; Saccà, C. Semantic-based regularization for learning and inference. Artif. Intell. 2017, 244, 143–165.

[CrossRef]
30. Teso, S.; Sebastiani, R.; Passerini, A. Structured learning modulo theories. Artif. Intell. 2017, 244, 166–187. [CrossRef]
31. Iantovics, L.B.; Iakovidis, D.K.; Nechita, E. II-Learn—A Novel Metric for Measuring the Intelligence Increase and Evolution of

Artificial Learning Systems. Int. J. Comput. Intell. Syst. 2019, 12, 1323.
32. Huang, K.L.; Kanhere, S.S.; Hu, W. Are you contributing trustworthy data? The case for a reputation system in participatory

sensing. In Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile
Systems, Bodrum, Turkey, 17–21 October 2010; pp. 14–22.

http://doi.org/10.1561/2200000018
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/IRI.2008.4583028
http://dx.doi.org/10.1023/A:1007607513941
http://dx.doi.org/10.1007/s10462-010-9156-z
http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.1016/j.artint.2015.08.011
http://dx.doi.org/10.1016/j.artint.2015. 04.002

Algorithms 2022, 15, 109 22 of 22

33. Yang, H.; Zhang, J.; Roe, P. Using reputation management in participatory sensing for data classification. Procedia Comput. Sci.
2011, 5, 190–197.

34. Wang, R.; Chen, F.; Chen, Z.; Li, T.; Harari, G.; Tignor, S.; Zhou, X.; Ben-Zeev, D.; Campbell, A.T. StudentLife: Assessing mental
health, academic performance and behavioral trends of college students using smartphones. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13–17 September 2014; pp. 3–14.

35. Wang, R.; Harari, G.; Hao, P.; Zhou, X.; Campbell, A.T. SmartGPA: How smartphones can assess and predict academic
performance of college students. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, Osaka, Japan, 7–11 September 2015; pp. 295–306.

	Introduction
	The Skeptical Learning Algorithm
	The Prior Knowledge
	The Main Algorithm
	The Predictor
	The Conflict Management Algorithm

	The Skeptical Learning Platform
	Front-End: i-Log
	askUser
	sensorReading
	User Interface
	Sensor Interface

	Back-End
	askUser
	challengeUser
	sensorReading
	Question Dispatcher
	SkeL

	StreamBase

	The Experiment on the SkeL Platform
	Evaluation
	Pervasiveness of Annotation Mistakes
	The Algorithm

	Discussion
	Conclusions
	References

