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Abstract. We classify states of four rebits, that is, we classify the orbits of the group Ĝ(R) = SL(2,R)4 in the
space (R2)⊗4. �is is the real analogon of the well-known SLOCC operations in quantum information theory. By
constructing the Ĝ(R)-module (R2)⊗4 via a Z/2Z-grading of the simple split real Lie algebra of type D4, the orbits
are divided into three groups: semisimple, nilpotent and mixed. �e nilpotent orbits have been classi�ed in Dietrich
et al. (2017), yielding applications in theoretical physics (extremal black holes in the STU model of N = 2, D = 4
supergravity, see Ruggeri and Trigiante (2017)). Here we focus on the semisimple and mixed orbits which we classify
with recently developed methods based on Galois cohomology, see Borovoi et al. (2021). �ese orbits are relevant
to the classi�cation of non-extremal (or extremal over-rotating) and two-center extremal black hole solutions in the
STU model.

1. Introduction

In a recent paper [27], we obtained a complete and irredundant classi�cation of the orbits of the group Ĝ =
SL(2,C)4 acting on the space (C2)⊗4 = C2 ⊗ C2 ⊗ C2 ⊗ C2. �is is relevant to �antum Information �eory
because it amounts to the classi�cation of the entanglement states of four pure multipartite quantum bits (qubits)
under the group Ĝ of reversible Stochastic Local �antum Operations assisted by Classical Communication
(SLOCC). Here we obtain the classi�cation of the orbits of the real group Ĝ(R) = SL(2,R)4 on the space (R2)⊗4.
�is is relevant to real quantum mechanics, where the elements of (R2)⊗4 are called four-rebit states. Via the
“black hole /qubit correspondence” our classi�cation has also applications to high-energy theoretical physics. We
refer to Section 2 for a short introduction into rebits and their relevance to extremal black holes in string theory.

�e main idea behind the complex classi�cation is to construct the representation of Ĝ on (C2)⊗4 using a
Z/2Z-grading g = g0 ⊕ g1 of the simple Lie algebra g of type D4 (see Section 3 for more details). In this
construction the spaces (C2)⊗4 and g1 are identi�ed, yielding a Jordan decomposition of the elements of (C2)⊗4.
�is way the elements of (and hence the orbits in) the space (C2)⊗4 are divided into three groups: nilpotent,
semisimple, and mixed. �e main result of [27] is a classi�cation of the semisimple and mixed elements; the
classi�cation of the corresponding nilpotent orbits was already completed a decade earlier by Borsten et al. [11].

Analogously to the complex case, the representation of Ĝ(R) on (R2)⊗4 can be constructed using a Z/2Z-
grading g(R) = g0(R)⊕g1(R) of the split real form g(R) of g. Also here the nilpotent orbits have been classi�ed
in previous work, see Dietrich et al. [28]: �ere are 145 nilpotent orbits, and 101 of these turned out to be relevant
to the study of (possibly multi-center) extremal black holes (BHs) in the STU model (see [6,32]); this application
was discussed in full detail in a subsequent paper by Ruggeri and Trigiante [53]. While in various papers, such
as Bossard et al. [15, 16], the classi�cation of extremal BH solutions had been essentially based on the complex
nilpotent Ĝ-orbits in g1, a more intrinsic, accurate and detailed treatment was provided in [28, 53].

�e present paper deals with the real Ĝ(R)-orbits of semisimple and mixed elements in (R2)⊗4. Such non-
nilpotent orbits are relevant for the classi�cation of non-extremal (or extremal over-rotating) as well as of two-
center extremal BH solutions in the STU model of N = 2, D = 4 supergravity, see Section 2. A detailed
discussion of the application of our classi�cation to the study of BHs goes beyond the scope of the present
investigation and we leave it for future work. From now on we focus on the mathematical side of this research.
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�e methods that we use to classify the Ĝ(R)-orbits in (R2)⊗4 are based on [8, 9] and employ the theory of
Galois cohomology. One of the main implications of this theory is the following: Let v ∈ (R2)⊗4 and consider
its complex orbit Ĝv ⊂ (C2)⊗4. �en the Ĝ(R)-orbits contained in Ĝv∩ (R2)⊗4 are in bijection with the Galois
cohomology set H1(Z

Ĝ
(v)), where Z

Ĝ
(v) = {g ∈ Ĝ : gv = v} is the stabiliser of v in Ĝ. So in principle the

only thing one has to do is to compute H1(Z
Ĝ

(v)) for each Ĝ-orbit in (C2)⊗4 that has a real representative v.
�is works well for the nilpotent orbits because they are �nite in number and all have real representatives (we
do not discuss the nilpotent case here since a classi�cation is already given in [28]). However, for the orbits
of semisimple and mixed elements this is not straightforward: �rstly, there is an in�nite number of them and,
secondly, it is a problem to decide whether a given complex orbit has a real representative or not.

Our approach to classifying semisimple elements is described in Section 5 and analogous to the method de-
veloped in [9]. However, the work in [9] relies on some speci�c preliminary results that do not apply to our case;
as a �rst step, we therefore need to establish the corresponding results for the situation discussed here. Mixed
elements are considered in Section 6; also here the methods are similar to those in [9]. �e main di�erence is
that in the case treated in [9], the stabilisers of semisimple elements all have trivial Galois cohomology. �is is
far from being the case in the situation discussed here, which requires signi�cant amendments. For example,
we will work with sets of 4-tuples (p, h, e, f), which do not explicitly appear in [9].

In the course of our research we have made frequent use of the computer algebra system GAP4 [41]. �is
system makes it possible to compute with the simple Lie algebra g of type D4. We have used additional GAP
programs of our own, for example to compute de�ning equations of the stabilisers of elements in the group Ĝ.

Our main result is summarised by the following theorem, it is proved with �eorems 5.9 and 6.3.

�eorem 1.1. �e following is established.

a) Up to Ĝ(R)-conjugacy, the nonzero semisimple elements in (R2)⊗4 are the elements in Tables 6–11.

b) Up to Ĝ(R)-conjugacy, the mixed elements in (R2)⊗4 are the elements in Tables 13– 27

c) Up to Ĝ(R)-conjugacy, the nilpotent elements in (R2)⊗4 are given in [28, Table I].
�e notation used in these tables is explained in De�nition 1.

Structure of this paper. In Section 2 we brie�y comment on applications to real quantum mechanics and
non-extremal black holes. In Section 3 we introduce more notation and recall the known classi�cations over
the complex �eld; these classi�cations are the starting point for the classi�cations over the real numbers. In
Section 4 we discuss some results from Galois cohomology that will be useful for spli�ing a known complex
orbit into real orbits. Section 5 presents our classi�cation of real semisimple elements; we prove our �rst main
result �eorem 5.9. In Section 6 we prove �eorem 6.3, which completes the classi�cation of the real mixed
elements. �e Appendix contains tables listing our classi�cations.

2. Rebits and the black hole/qbit correspondence

2.1. On rebits. Real quantum mechanics (that is, quantum mechanics de�ned over real vector spaces) dates
back to Stückelberg [55]. It provides an interesting theory whose study may help to discriminate among the
aspects of quantum entanglement which are unique to standard quantum theory and those aspects which are
more generic over other physical theories endowed with this phenomenon [17]. Real quantum mechanics is
based on the rebit, a quantum bit with real coe�cients for probability amplitudes of a two-state system, namely
a two-state quantum state that may be expressed as a real linear combination of |0〉 and |1〉 (which can also be
considered as restricted states that are known to lie on a longitudinal great circle of the Bloch sphere correspond-
ing to only real state vectors). In other words, the density matrix of the processed quantum state ρ is real; that
is, at each point in the quantum computation, it holds that 〈x|ρ|y〉 ∈ R for all |x〉 and |y〉 in the computational
basis.

As discussed in [1], [44], and [10, Appendix B], quantum computation based on rebits is qualitatively di�erent
from the complex case. Following [17], some entanglement properties of two-rebit systems have been discussed
in [4], also exploiting quaternionic quantum mechanics. Moreover, as recalled in [22], rebits were shown in [52]
to be su�cient for universal quantum computation; in that scheme, a quantum state of n qubits

|ψ〉 =
∑

v∈Zn
2

rve
iθv |v〉 (rv ∈ R+, θv ∈ R)
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can be encoded into a state of n+ 1 rebits,

|ψ〉 =
∑

v∈Zn
2

(rv cos θv |v〉 ⊗ |R〉+ rv sin θv |v〉 ⊗ |I〉) ,

where the additional rebit (which has been also named universal rebit or ubit [2]), with basis states |R〉 = |0〉
and |I〉 = |1〉, allows one to keep track of the real and imaginary parts of the unencoded n-qubit state.

It should also be remarked that in [59] the three-tangle for three rebits has been de�ned and evaluated,
resulting to be expressed by the same formula as in the complex case, but without an overall absolute value sign:
thus, unlike the usual three-tangle, the rebit three-tangle can be negative. In other words, by denoting the pure
three rebits state as

|φ〉 =
∑

i,j,k∈Z2

aijk |ijk〉 ,

where the binary indices i, j, k correspond to rebits A, B, C, respectively, the three-tangle is simply four times
the Cayley’s hyperdeterminant [18] of the cubic 2× 2× 2 matrix aijk, see [59].

2.2. Rebits and black holes. In recent years, the relevance of rebits in high-energy theoretical physics was
highlighted by the determination of striking relations between the entanglement of pure states of two and three
qubits and extremal BHs holes in string theory. In this framework, which has been subsequently dubbed as
the “black hole / qubit correspondence” (see for example [12–14] for reviews and references), rebits acquire the
physical meaning of the electric and magnetic charges of the extremal BH, and they linearly transform under
the generalised electric-magnetic duality group (named U-duality group in string theory) G(R) of the Maxwell-
Einstein (super)gravity theory under consideration.1 �is development started with the seminal paper [29], in
which Du� pointed out that the entropy of the so-called extremal BPS STU BHs can be expressed in a very
compact way in terms of Cayley’s hyperdeterminant [18], which, as mentioned above, plays a prominent role as
the three-tangle in studies of three-qubit entanglement [59]. Crucially, the electric and magnetic charges of the
extremal BH, which are conserved due to the underlying Abelian gauge invariance, are forced to be real because
they are nothing but the �uxes of the two-form �eld strengths of the Abelian potential one-forms, as well as of
their dual forms, which are real. Later on, for example in [43], [45, 46], [30, 31] and subsequent developments,
Du�’s observation was generalised and extended to non-BPS BHs (which thus break all supersymmetries), also
in (N > 2)-extended supergravity theories in four and �ve space-time dimensions. Further mathematical simi-
larities were thoroughly investigated by Lévay, which for instance showed that the frozen values of the moduli in
the calculation of the macroscopic, Bekenstein-Hawking BH entropy in the STU model are related to �nding the
canonical form for a pure three-qubit entangled state, whereas the extremisation of the BPS mass with respect
to the moduli is connected to the problem of �nding the so-called optimal local distillation protocol [48, 49].

Another application of rebits concerns extremal BHs with two-centers. Multi-center BHs are a natural gen-
eralisation of single-center BHs. �ey occur as solutions to Maxwell-Einstein equations in 4D, regardless of
the presence of local supersymmetry, and they play a prominent role within the dynamics of high-energy the-
ories whose ultra-violet completion aims at describing �antum Gravity, such as 10D superstrings and 11D
M-theory. In multi-center BHs the a�ractor mechanism [33–36, 56] is generalised by the so-called split a�ractor
�ow [5, 23, 24], concerning the existence of a co-dimension-one region - the marginal stability wall - in the tar-
get space of scalar �elds, where a stable multi-center BH may decay into its various single-center constituents,
whose scalar �ows then separately evolve according to the corresponding a�ractor dynamics.

In this framework, the aforementioned real �uxes of the two-form Abelian �eld strengths and of their duals,
which are usually referred to as electric and magnetic charges of the BH, �t into a representation R of the 4D

U -duality group G (R). In the STU model ofN = 2, D = 4 supergravity, G (R) = SL(2,R)3 and R =
(
R2
)⊗3,

and each SL(2,R)3-orbit supports a unique class of single-center BH solutions. In general, in presence of a multi-
center BH solution with p centers, the dimension Ip of the ring of G (R)-invariant homogeneous polynomials
constructed with p distinct copies of the SL(2,R)3-representation charge R is given by the general formula [37]
(2.1) p dimRR = dimROp + Ip,

whereOp = G (R) /Hp (R) is a generally non-symmetric coset describing the generic, openG (R)-orbit, spanned
by the p copies of the charge representation R, each pertaining to one center of the multi-center solution. A
crucial feature of multi-center (p > 1) BHs is that the various (Ip > 1) G (R)-invariant polynomials arrange into

1In supergravity, the approximation of real (rather than integer) electric and magnetic charges of the BH is o�en considered, thus
disregarding the charge quantization.
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multiplets of a global, “horizontal” symmetry group2 SLhor(p,R) [37], encoding the combinatoric structure of
the p-center solutions of the theory, and commuting with G (R) itself. �us, by considering two-center BHs (that
is, p = 2 – an assumption which does not imply any loss of generality due to tree structure of split a�ractor
�ows in the STU model), it holds that dimRR = 8 and the stabiliser of Op=2 has trivial identity connected
component. �e two-center version of formula (2.1) in the STU model yields

(2.2) STU : Ip=2 = 2 dimR

((
R2
)⊗3
)
−dimR

(
SL(2,R)3

)
= 2 · 8− 9 = 7,

implying that the ring of SL(2,R)3-invariant homogeneous polynomials built out of two copies of the tri-funda-
mental representation

(
R2
)⊗3 has dimension 7. As �rstly discussed in [37] and then investigated in [3,19,38,39],

the seven SL(2,R)3-invariant generators of the aforementioned polynomial ring arrange into one quintuplet (in
the spin-2 irreducible representation 5) and two singlets 1⊕1′ of the “horizontal” symmetry group SLhor(2,R):
(2.3) Ip=2 = 7 = 5

deg 4
⊕ 1

deg 2
⊕ 1′

deg 4

under SLhor(2,R)

,

where the degrees of each term (corresponding to one or more homogeneous polynomials) has been reported.
�e overall semisimple global group providing the action of theU -duality as well as of the “horizontal” symmetry
on two-center BHs is
(2.4) SLhor(2,R)⊗ SL(2,R)3 ' SL(2,R)4 = Ĝ(R),

acting on the SLhor(2,R)-doublet of G-representations R’s, namely

(2.5) R2 ⊗R = R2 ⊗
(
R2
)⊗3 '

(
R2
)⊗4

.

Since the “horizontal” factor SLhor stands on a di�erent footing than the U -duality group SL(2,R)3, only
the discrete group Sym3 of permutations of the three tensor factors in R =

(
R2
)⊗3 should be taken into

account when considering two-center BH solutions in the STU model, to which a classi�cation invariant under
Sym3 n SL(2,R)3 thus pertains. Clearly, the two singlets in the right hand side of (2.3) are invariant under the
whole SLhor(2,R) ⊗ SL(2,R)3; on the other hand, when enforcing the symmetry also under the “horizontal”
SLhor(2,R), one must consider its non-transitive action on the quintuplet 5 occurring in the right hand side of
(2.3). As explicitly computed (for example, in [37]) and as known within the classical theory of invariants (see
for example [58] as well as the Tables of [42]), the spin-2 SL2-representation 5 has a two-dimensional ring of
invariants, �nitely generated by a quadratic and a cubic homogeneous polynomial :
(2.6) Ispin-2 = dimR (5)−dimR SLhor(2,R) = 5− 3 = 2 = 1′′

deg 2
⊕ 1′′′

deg 3

under SLhor(2,R)

.

�is results into a four-dimensional basis of (Sym3n
(
SLhor(2,R)⊗ SL(2,R)3

)
)-invariant homogeneous poly-

nomials, respectively of degree 2, 4, 8 and 12 in the elements of the two-center BH charge representation space(
R2
)⊗4. However, as discussed in [37], a lower degree invariant polynomial of degree 6 can be introduced and

related to the degree-12 polynomial, giving rise to a 4-dimensional basis of (Sym3n
(
SLhor(2,R)⊗ SL(2,R)3

)
)-

invariant homogeneous polynomials with degrees 2, 4, 6 and 8, respectively, see [37].
We recall that the enforcement of the whole discrete permutation symmetry Sym4 (as done in �antum In-

formation �eory applications) allows for the degrees of the four (Sym4n
(
SLhor(2,R)⊗ SL(2,R)3

)
)-invariant

polynomial generators to be further lowered down to 2, 4, 4 and 6; this is explicitly computed in [50, 57] and
then discussed in [47] in relation to two-center extremal BHs in the STU model. In all cases, the lowest-order
element of the invariant basis, namely the homogeneous polynomial quadratic in the BH charges, is nothing
but the symplectic product of the two copies of the single-center charge representation R =

(
R2
)⊗3; such a

symplectic product is constrained to be non-vanishing in non-trivial and regular two-center BH solutions with
mutually non-local centers [37]. �is implies that regular two-center extremal BHs are related to non-nilpotent
orbits of the whole symmetry SLhor(2,R) ⊗ SL(2,R)3 (with a discrete factor Sym3 or Sym4, as just speci�ed)
on
(
R2
)⊗4. �e application of the classi�cation of such orbits (which are the object of interest in this paper)

to the study of two-center extremal BHs in the prototypical STU model goes beyond the scope of the present
investigation, and we leave it for further future work.

2Actually, the “horizontal” symmetry group is GL(p,R), where the additional scale symmetry with respect to SL(p,R) is encoded
by the homogeneity of the G(R)-invariant polynomials in the BH charges. �e subscript “hor” stands for “horizontal” throughout.
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3. Notation and classifications over the complex field

O�aviani and Reichenbach [51, Section 2] provide an overview of results related to the action of the group
H = GL(V1) × · · · ×GL(Vr) on the space V = V1 ⊗ · · · ⊗ Vr , where each Vi is a �nite dimensional complex
vector space. We refer to [51] and the references therein for a detailed discussion of these tensor classi�cations
and applications.

If r = 2, then V can be identi�ed with the matrix space CdimV1×dimV2 , and G-orbits on V correspond to
equivalence classes of matrices (which are parametrised by matrix rank), see [51, �eorem 1.1]. In particular,
there are only �nitely many G-orbits in V . For r > 3 the situation changes drastically and a full classi�cation
of orbits is, in general, a wild problem, see [51, Section 2]. However, for certain V explicit classi�cations exist,
the easiest being GL(2,C) × GL(2,C) × GL(2,C) acting on C2 ⊗ C2 ⊗ C2; see [10], [51, Section 3.1] for a
discussion of the la�er.

�e classi�cation of the orbits of H = SL(2,C)4 on V = (C2)⊗4 described in [27] uses a di�erent approach
and employs Lie algebras: the simple Lie algebra g of type D4 has a Z/2Z grading g = g0⊕ g1 such that there is
an algebraic group G0 with Lie algebra isomorphic to g0, acting as H on the space g1

∼= V (see Section 3.1 for
details). �e identi�cation g1

∼= V allows us to partition the elements of V into semisimple, nonzero nilpotent,
and mixed elements. Having described the H-action on V via a so-called symmetric pair, the rich theory of
and powerful computational methods for so-called θ-groups can be used to approach the orbit classi�cation; we
refer to [25, 26] for more details on orbit classi�cations in complex θ-groups. �e determination of the orbits of
the group SL(2,R)4 on (R2)⊗4 is the aim of the present paper; similar to the complex case, our approach is to
use a suitable description in terms of symmetric pairs. �ese classi�cations (over C and R) have applications in
theoretical physics [28,53], quantum information theory [27], and are of interest in the general context of tensor
rank and classi�cations, see [51].

We note that for m 6 4 the representations of the groups SL(2,C)m on the spaces (C2)⊗m are visible: �is
means that the nullcone has �nitely many orbits. Here we do not go into this concept, but refer to [42], where
the visible representations of reductive complex algebraic groups are classi�ed. From this classi�cation it also
follows that the representations are no longer visible for m > 5. �erefore, for m > 5 it becomes much more
complicated to classify the orbits; to the best of our knowledge, no detailed orbit classi�cations exist for these
cases.

3.1. �e grading. �ere are several ways to construct a suitable Z/2Z-grading of the simple Lie algebra of type
D4. Here d we brie�y describe two of them.

3.1.1. First construction. Let U = W = C2⊗C2 and set V = U ⊕W . LetQ denote the bilinear form on V such
that U and W are orthogonal, and such that the matrix of Q restricted to U and W (with respect to �xed bases
of these spaces) is (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
.

As shown in [40, p. 303], it is possible to de�ne a Lie bracket on ∧2V such that the resulting Lie algebra g is
isomorphic to

so(Q) = {X ∈ gl(V ) : Q(Xv1, v2) +Q(v1, Xv2) = 0 for all v1, v2 ∈ V },

which is the simple Lie algebra of type D4. Furthermore we have the vector space isomorphism

g ∼= ∧2V ∼= (∧2U)⊕ (∧2W )⊕ (U ⊗W ).

Because of the choice of Q, we have that ∧2U and ∧2W are subalgebras of ∧2V isomorphic to so(4,C) ∼=
sl(2,C) ⊕ sl(2,C). Let g0 denote the subalgebra ∧2U ⊕ ∧2W , which is isomorphic to the direct sum of four
copies of sl(2,C). Let g1 = U ⊗ W ; since U and W are orthogonal under Q, the space g1 is stable under
le� multiplication by g0. �ere is an isomorphism g1

∼= (C2)⊗4 of vector spaces, and it turns out that this
isomorphism is also an isomorphism of g0-modules. �e analogous construction can be done over R with U =
W = R2⊗R2. Our choice ofQ implies that the subalgebras∧2U ,∧2W are both isomorphic to sl(2,R)⊕sl(2,R),
and the module U ⊗W is isomorphic to (R2)⊗4.
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3.1.2. Second construction. �e second construction is more abstract and starts with the simple Lie algebra g
of type D4 de�ned over the complex numbers. Let Ψ denote its root system with respect to a �xed Cartan
subalgebra t. Let γ1, . . . , γ4 be a �xed choice of simple roots such that the Dynkin diagram of Ψ is labelled as
follows

1 2 3

4

We now construct a Z/2Z-grading of g: let g0 be spanned by t along with the root spaces gγ , where γ =
∑

i kiγi
has k2 even, and let g1 be spanned by those gγ where γ =

∑
i kiγi has k2 odd. Let γ0 = γ1 + 2γ2 + γ3 + γ4 be

the highest root of Ψ. �e root system of g0 is {±γ0,±γ1,±γ3,±γ4}, hence

g0
∼= sl(2,C)4 = sl(2,C)⊕ sl(2,C)⊕ sl(2,C)⊕ sl(2,C).

Taking−γ0, γ1, γ3, γ4 as basis of simple roots of g0 we have that−γ2 is the highest weight of the g0-module g1,
which therefore is isomorphic to (C2)⊗4. We �x a basis {e0, e1} of C2 and denote the basis elements of (C2)⊗4

by
|i1i2i3i4〉 = ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4 .

Mapping any nonzero root vector in g−γ2 to |0000〉 extends uniquely to an isomorphism g1 → (C2)⊗4 of
sl(2,C)4-modules. We denote by G the adjoint group of g, and we write G0 for the connected algebraic sub-
group of G with Lie algebra adgg0

∼= sl(2,C)4. �e isomorphism sl(2,C)4 → g0 li�s to a surjective morphism
π : Ĝ→ G0 of algebraic groups, which makes g1 into a Ĝ-module isomorphic to (C2)⊗4.

In order to de�ne a similar grading over R we take a basis of g consisting of root vectors and basis elements
of t, whose real span is a real Lie algebra (for example, we can take a Chevalley basis of g). We denote this real
Lie algebra by g(R). We set g0(R) = g0 ∩ g(R) and g1(R) = g1 ∩ g(R), so that

g(R) = g0(R)⊕ g1(R).

If G0(R) denotes the group of real points of G0, then π restricts to a morphism π : Ĝ(R)→ G0(R) that makes
g1(R) a Ĝ(R)-module isomorphic to (R2)⊗4.

3.1.3. Nilpotent, semisimple, and mixed elements. A �rst consequence of these constructions is the existence of
a Jordan decomposition of the elements of the modules (C2)⊗4 and (R2)⊗4. Indeed, the Lie algebras g and g(R)
have such decompositions as every element x can be wri�en uniquely as x = s + n where ads is semisimple,
adn is nilpotent, and [s, n] = 0. It is straightforward to see that if x lies in g1 or g1(R), then the same holds
for its semisimple and nilpotent parts. �us, the elements of (C2)⊗4 and (R2)⊗4 are divided into three groups:
semisimple, nilpotent and mixed. Since the actions of Ĝ and Ĝ(R) respect the Jordan decomposition, also the
orbits of these groups in their respective modules are divided into the same three groups.

We note that nilpotent and semisimple orbits in (C2)⊗4 can also be characterized di�erently. A SL(2,C)4-
orbit in (C2)⊗4 is nilpotent if and only if its (Zariski-) closure contains 0. For example, u = |0000〉 is nilpotent
as it is straightforward to �nd gt ∈ SL(2,C)4 (for t ∈ C×) such that gt · u = tu, which converges to 0 for
t → 0. Furthermore, an orbit is semisimple if and only if it is closed. However, this characterization does not
yield straightforward examples of semisimple elements.

A second consequence is that we can consider sl2-triples instead of nilpotent elements; we use these in Sec-
tion 6 when considering mixed elements: the classi�cation of the orbits of mixed elements with a �xed semisim-
ple part p reduces to the classi�cation of the nilpotent orbits in the centraliser of p, which in turn reduces to the
classi�cation of orbits of certain sl2-triples. We provide more details in Section 6.

3.2. Notation. We now we recall the notation used in [27] to describe the classi�cation of Ĝ-orbits in (C2)⊗4.
A Cartan subspace of g1 is a maximal space consisting of commuting semisimple elements. A Cartan subspace

h of g1 (and in fact a Cartan subalgebra of g) is spanned by

u1 = |0000〉+ |1111〉, u2 = |0110〉+ |1001〉, u3 = |0101〉+ |1010〉, u4 = |0011〉+ |1100〉.

We denote by Φ the corresponding root system with Weyl groupW . �is group acts on Φ and h in the following
way. For α ∈ Φ let sα ∈W be the corresponding re�ection. If β ∈ Φ and h ∈ h, then sα(β) = β− β(hα)α and
sα(h) = h−α(h)hα where hα is the unique element of [gα, g−α] 6 h with α(hα) = 2. �is de�nes aW -action
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on h and we write Wp = {α ∈ W : α(p) = p} for the stabiliser of p ∈ h in W ; the la�er is generated by all sα
with α ∈ Φp where Φp = {α ∈ Φ : α(p) = 0}, see [27, Lemma 2.4]. For a root subsystem Π ⊆ Φ de�ne

hΠ = {p ∈ h : α(p) = 0 for all α ∈ Π}, WΠ = 〈sα : α ∈ Π〉,
h◦Π = {p ∈ hΠ : α(p) 6= 0 for all α ∈ Φ \Π}, ΓΠ = NW (WΠ)/WΠ.

Let ζ be a �xed primitive 8-th root of unity; for A =
(
a b
c d

)
and u ∈ C× we write

(3.1)
A# =

(
d c
b a

)
, D(u) =

(
u 0

0 u−1

)
, I =

(
1 0
0 1

)
, J =

(
0 1
−1 0

)
, K =

(
0 ı
ı 0

)
,

F =
(

1/2 ı/2
ı 1

)
, L =

(
ı 0
0 −ı

)
, M =

(
ζ3 0
0, −ζ

)
, N =

(
ζ 0
0 −ζ3

)
.

�roughout this paper, we freely identify the spaces g1
∼= (C2)⊗4 and g1(R) ∼= (R2)⊗4 and we write elements

of Ĝ and Ĝ(R) as 4-tuples (A,B,C,D), with A,B,C,D in SL(2,C), respectively in SL(2,R).

3.3. Complex classi�cations. In [27, Section 3.1] we have determined 11 subsystems Π1, . . . ,Π11 to classify
the semisimple Ĝ-orbits in g1; these sets are also described in Table 1. �e following result summarises [27,
Proposition 2.5, Lemma 2.9, �eorem 3.2, Lemma 3.5, Proposition 3.6].

�eorem 3.1 (Complex classi�cation of semisimple elements [27]).
a) Each semisimple Ĝ-orbit in (C2)⊗4 intersects exactly one of the sets h◦Πi

nontrivially. Two elements of h◦Πi
are

Ĝ-conjugate if and only if they are ΓΠi-conjugate. Each ΓΠi can be realised as complement subgroup toWΠi

inNW (WΠi), so as a matrix group relative to the basis u1, . . . , u4 of h. �e group ΓΠ2
∼= (Z/2Z)3 is generated

by all 4×4 diagonal matrices that have two 1s and two−1s on the diagonal; the groups ΓΠ4 ,ΓΠ5 ,ΓΠ6
∼= Dih4

are isomorphic to the dihedral group of order 8 and de�ned as

ΓΠ4 = 〈
1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

,
0 0 0 −1

0 0 1 0
0 1 0 0
1 0 0 0

〉, ΓΠ5 = 〈
1 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 1

,
0 0 −1 0

0 0 0 −1
1 0 0 0
0 −1 0 0

〉, ΓΠ6 = 〈
−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

,
0 −1 0 0

1 0 0 0
0 0 0 −1
0 0 −1 0

〉.
Furthermore, ΓΠ1 = W and the remaining ΓΠi are equal to {±1}.

b) If x, y ∈ h◦Πi
, then Z

Ĝ
(x) = Z

Ĝ
(y), and the group Z

Ĝ
(x) is given in Row i of Table 2.

See [27, Remark 3.3] for a comment on the ΓΠi-orbits in h◦Πi
; this yields a complete and irredundant classi-

�cation of the semisimple Ĝ-orbits in g1, see Table 1. �e zero orbit is covered by the case i = 11. �e next
theorem is [27, �eorem 3.7].

�eorem 3.2 (Complex classi�cation of mixed elements [27]). For i ∈ {2, . . . , 10} let Σi be a set of Ĝ-conjugacy
representatives of semisimple elements in h◦Πi

as speci�ed in Table 1. Up to Ĝ-conjugacy, the mixed elements in g1

are the elements s+ ni,j where i ∈ {2, . . . , 10}, s ∈ Σi, and ni,j as speci�ed in Table 3.

�e nilpotent Ĝ-orbits in g1 and the nilpotent Ĝ(R)-orbits in g1(R) are determined in [11] and [28], respec-
tively, see also [27, Table 7]; therefore we do not recall these classi�cations here. We conclude this section by
mentioning [27, Remark 3.1]; the symmetries described in this remark allow us to simplify our classi�cations.

Remark 3.3. If σ ∈ Sym4, then the linear map πσ : g1 → g1 that maps each |i1i2i3i4〉 to |i1σ i2σ i3σ i4σ 〉 extends
to a Lie algebra automorphism of g that preserves g0 and g1. �e group generated by all these πσ �xes u1 and
permutes {u2, u3, u4} as Sym3. Speci�cally, π(2,3) swaps u3 and u4, and π(2,4) swaps u2 and u4.

4. Galois cohomology

We describe some results from Galois cohomology that we use for determining the real orbits within a complex
orbit; see [8, Section 3] for a recent treatment of Galois cohomology in the context of orbit classi�cations.

In this section only we consider the following notation. Let G be a group with conjugation σ : G → G, that
is, an automorphism of G of order 2; o�en σ is the complex conjugation of a complex group. An element c ∈ G
is a cocycle (with respect to σ) if cσ(c) = 1; write Z1(G, σ) for the set of all cocycles. Two cocycles c, c′ are
equivalent if c′ = acσ(a)−1 for some a ∈ G; the equivalence class of c is denoted [c], and the set of equivalence
classes is denoted H1(G, σ). We also write Z1(G) and H1(G) if it is clear which conjugation is used; these
de�nitions are an adaption of the de�nitions in [54, I.§5.1] to the special case of an acting group 〈σ〉 of size 2.
We now list a few results that help to determineH1(G, σ). In the following we writeGσ = {g ∈ G : σ(g) = g}.
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Let X be a set on which G acts. We suppose that X has a conjugation, also denoted σ (that is, a map
σ : X → X with σ2 = IdX ), such that σ(gx) = σ(g)σ(x) for all x ∈ X and g ∈ G. Let O be a G-orbit in X
that has a real point, that is, there is x0 ∈ O with σ(x0) = x0. In this situation, O is stable under σ, and we are
interested in listing the Gσ-orbits in Oσ = {y ∈ O : σ(y) = y}. For this we consider the stabiliser

ZG(x0) = {g ∈ G : gx0 = x0}
and the exact sequence

1→ ZG(x0)
i−−→ G

j−−→ O → 1

resulting from the orbit-stabiliser theorem; here j maps g to gx0. �is sequence gives rise to the exact sequence

1→ (ZG(x0))σ
i−−→ Gσ

j−−→ Oσ δ−−→ H1(ZG(x0), σ)
i∗−−→ H1(G, σ),

see [54, Proposition 36]: the map i∗ sends the class de�ned by g ∈ Z1(ZG(x0), σ) to its class in H1(G, σ);
moreover, δ(gx0) is the class of the cocycle g−1σ(g). �e following is one of the main theorems in Galois
cohomology, see [54, §5.4, Corollary 1 to Proposition 36].

�eorem 4.1. �e map δ induces a bijection between the orbits of Gσ in Oσ and the set ker i∗.

Remark 4.2. It is known for the usual complex conjugation ∗̄ that H1(GL(n,C)) = 1 = H1(SL(n,C)) for all
n > 1, see for example [7, Proposition III.8.24 and Corollary III.8.26], in particular, H1(C×) = 1. Moreover, if ∗̄
acts entry-wise on a complex matrix group G = X × Y , then H1(X × Y ) ∼= H1(X) ×H1(Y ). Since a torus
T 6 G is a direct product of copies of C×, we have that H1(T, ∗̄) = 1.

4.1. Cartan subspaces. Recall that h is the �xed Cartan subspace spanned by {u1, . . . , u4}. Semisimple ele-
ments that lie in h are represented as a linear combination of these basis elements, however, most of our real
orbit representatives lie in a Cartan subspace di�erent to h. To simplify the notation in our classi�cation tables,
we classify all Cartan subspaces and then represent our semisimple orbit representatives with respect to �xed
bases of these spaces.

It follows from Galois cohomology that the real Cartan subspaces in g1 are, up to Ĝ-conjugacy, in bijection
with H1(N) where N = N

Ĝ
(h), see [8, �eorem 4.4.9]. �e group N �ts into an exact sequence

1→ Z
Ĝ

(h)→ N →W → 1.

Since Z
Ĝ

(h) and W are �nite groups of orders 32 and 192, respectively, N is a �nite group of order 32 · 192 =
6144. Because we know Z

Ĝ
(h) and W (for the former see the �rst line of Table 2), we can determine N . Since

N is �nite, a brute force calculation determines H1(N), and we obtain |H1(N)| = 7.
For a �xed [n] ∈ H1(N) de�ne τ : h→ h by τ(u) = nū. Since τ is an anti-involution of h, the R-dimension

of the �xed space hτ = {u ∈ h : τ(u) = u} equals the C-dimension of h. Let g ∈ Ĝ be such that g−1ḡ = n;
if u ∈ hτ , then u = nū, and the element gu = gnn−1u = gu is real. �us, the real span of all gu with u ∈ hτ

gives a real Cartan subspace. Iterating this procedure for all [n] ∈ H1(N) gives all real Cartan subspaces up to
G(R)-conjugacy; we �x the notation in the following de�nition.

De�nition 1. �ere are seven classes in H1(N) corresponding to cocycles n∗1, . . . , n∗7 ∈ Z1(N); for each
i ∈ {1, . . . , 7} choose g∗i ∈ Ĝ such that (g∗i )

−1ḡ∗i = n∗i and ci = g∗i (h
τ ). Speci�cally, using the notation

introduced in (3.1), we choose
g∗1 = (I, I, I, I), g∗2 = (L, I, I, I), g∗3 = (D(η5), D(η5),−D(η3),−D(η7)), g∗4 = (M, I, I,M)
g∗5 = (I,M, I,M), g∗6 = (I, I,M,M), g∗7 = (D(η5), D(η5), D(η5), D(η5)),

where η is a primitive 16-th root of unity with η2 = ζ . Moreover, we �x the following bases for the seven Cartan
subspaces c1, . . . , c7 constructed above:

{u1 = |0000〉+ |1111〉, u2 = |0110〉+ |1001〉, u3 = |0101〉+ |1010〉, u4 = |0011〉+ |1100〉}
{v1 = |0000〉− |1111〉, v2 = |0110〉− |1001〉, v3 = |0101〉− |1010〉, v4 = |0011〉− |1100〉}
{w1 = |0000〉− |1111〉, w2 = |0110〉− |1001〉, w3 = |0101〉− |1010〉, w4 = |0011〉+ |1100〉}
{x1 = |0000〉− |1111〉, x2 = |0110〉− |1001〉, x3 = |0101〉+ |1010〉, x4 = |0011〉+ |1100〉}
{y1 = |0000〉− |1111〉, y2 = |0110〉+ |1001〉, y3 = |0101〉− |1010〉, y4 = |0011〉+ |1100〉}
{z1 = |0000〉− |1111〉, z2 = |0110〉+ |1001〉, z3 = |0101〉+ |1010〉, z4 = |0011〉− |1100〉}
{t1 = |0000〉− |1111〉, t2 = |0110〉+ |1001〉, t3 = |0101〉+ |1010〉, t4 = |0011〉+ |1100〉}.
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5. Real semisimple elements

�roughout this section, we �x one of the subsystems Π = Πi of �eorem 3.1 and abbreviate C = h◦Π. We �x
a complex Ĝ-orbit O = Ĝt for some nonzero t ∈ C. We now discuss the following problems related to the
orbit O:
1) Decide whether O ∩ g1(R) is nonempty, that is, whether O has a real point.
2) If O has real points, how can we �nd one?
3) Determine representatives of the real Ĝ(R)-orbits contained in O.

We prove a number of results that help to decide these questions. �ese results as well as the proofs are
similar to material found in [9]. However, the results in [9] concern a speci�c Z/3Z-grading of the Lie algebra
of type E8. Since here we consider a di�erent situation, we have included the new proofs.

In the following, the centraliser and normaliser of C in Ĝ are denoted by

Z
Ĝ

(C) = {g ∈ Ĝ : gx = x for all x ∈ C}

N
Ĝ

(C) = {g ∈ Ĝ : gx ∈ C for all x ∈ C}.

Lemma 5.1. Let t1, t2 ∈ C. If gt1 = t2 for some g ∈ Ĝ, then g ∈ N
Ĝ

(C).

Proof. �eorem 3.1a) shows that w(t1) = t2 for some w ∈ NW (WΠ). If ŵ ∈ N
Ĝ

(h) is a preimage of w, then
g−1ŵ ∈ Z

Ĝ
(t1). �eorem 3.1b) shows that g−1ŵ ∈ Z

Ĝ
(x) for every x ∈ C, so gx = ŵx = w(x) for all x ∈ C.

Since w ∈ NW (WΠ), we have Π = wΠ and hence w(C) = C, see [27, Lemma 2.3 and Proposition 2.5]. �

Now we de�ne a map ϕ : N
Ĝ

(C) → ΓΠ: If g ∈ N
Ĝ

(C), then gq = x ∈ C, hence w(q) = x for some
w ∈ NW (WΠ), and we de�ne ϕ(g) = wWΠ ∈ ΓΠ. �is is well-de�ned: if w′ ∈ NW (WΠ) satis�es w′(q) = x,
then w−1w′ ∈WΠ, so w′WΠ = wWΠ.

Lemma 5.2. �e map ϕ : N
Ĝ

(C) → ΓΠ is a surjective group homomorphism with kernel Z
Ĝ

(C). Moreover, if
g ∈ N

Ĝ
(C) and x ∈ C, then gx = ϕ(g)x.

Proof. We start with a preliminary observation. If g ∈ N
Ĝ

(C) and w ∈ NW (WΠ) such that gq = w(q), then
gy = w(y) for all y ∈ C: indeed, if ŵ ∈ N

Ĝ
(h) is a preimage of w, then ŵ−1g ∈ Z

Ĝ
(q) and ŵ−1g ∈ Z

Ĝ
(y)

by �eorem 3.1b). Now let g1, g2 ∈ NĜ
(C) and let w1, w2 ∈ NW (WΠ) be such that each wi(q) = giq. By the

made observation, g1g2q = w1(w2(q)); this implies that that ϕ is a group homomorphism. If wWΠ ∈ ΓΠ with
preimage ŵ ∈ N

Ĝ
(h), then ŵ ∈ N

Ĝ
(C) and ϕ(ŵ) = wWΠ, which shows that ϕ is surjective. If g ∈ ker(ϕ),

then gq = q and the �rst part of the proof shows that g ∈ Z
Ĝ

(C). �

By abuse of notation, we also write
ϕ : N

Ĝ
(C)/Z

Ĝ
(C)→ ΓΠ

for the induced isomorphism. �e next theorem provides solutions to Problems 1) and 2); it is similar to [9,
Proposition 5.2.4]. Recall that we �xed Π = Πi and O = Ĝt with t ∈ C.

�eorem 5.3. Write H1(ΓΠ) = {[γ1], . . . , [γs]}. Suppose that for each γi ∈ Z1(ΓΠ) there is ni ∈ Z1(N
Ĝ

(C))
with ϕ(ni) = γi. �enO has a real point if and only if there exist q′ ∈ O ∩ C and i ∈ {1, . . . , s} with q̄′ = γ−1

i q′.
If the la�er holds, then gq′ is a real point of O, where g ∈ Ĝ is such that g−1ḡ = ni.

Proof. �e elements ni exist by Lemma 5.2. If O has a real point, say p = gt for some g ∈ Ĝ, then gt = gt,
and so t̄ = n−1t for n = g−1ḡ; note that n is a cocycle since nn̄ = 1. Because t, t̄ ∈ C, Lemma 5.1 shows that
n ∈ N

Ĝ
(C), so we can de�ne γ = ϕ(n). Since γ ∈ Z1(ΓΠ), there is i ∈ {1, . . . , s} and β ∈ ΓΠ with γ = β−1γiβ̄.

Now Lemma 5.2 shows that t̄ = γ−1t = β̄−1γ−1
i βt, so if we set q′ = βt, then q′ ∈ O ∩ C and q̄′ = γ−1

i q′, as
claimed. Conversely, let q′ ∈ O ∩ C and γi be such that q̄′ = γ−1

i q′. By hypothesis there is ni ∈ Z1(N
Ĝ

(C))
with ϕ(ni) = γi, hence q̄′ = n−1

i q′ by Lemma 5.2. Because nin̄i = 1 in Ĝ and H1(Ĝ) = 1, there is a g ∈ Ĝ
with ni = g−1ḡ. Now p = gq′ is a real point of O, as can be seen from p̄ = ḡq̄′ = gnin

−1
i q′ = p. �

Remark 5.4. �e real point gq′ mentioned in �eorem 5.3 might lie in a Cartan subspace di�erent to h. �e
real points corresponding to the class [γ1] = [1] can be chosen to lie in the Cartan subspace h.
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Remark 5.5. One of the hypotheses of the theorem is that for each γi there is a cocycle ni ∈ Z1(N
Ĝ

(C)) such
that ϕ(ni) = γi. We cannot prove this a priori, but for the cases that are relevant to the classi�cation given in
this paper we have veri�ed it.

Galois cohomology also comes in handy for a solution to Problem 3): the next theorem follows from �eo-
rem 4.1, taking into account that H1(Ĝ) = 1, see Remark 4.2.
�eorem 5.6. Let p ∈ O be a real representative. �ere is a 1-to-1 correspondence between the elements of
H1(Z

Ĝ
(p)) and the Ĝ(R)-orbits of semisimple elements inO that are Ĝ-conjugate to p: the real orbit corresponding

to [z] ∈ H1(Z
Ĝ

(p)) has representative bp where b ∈ Ĝ is chosen with z = b−1b.

5.1. Classi�cation approach. Now we explain the classi�cation procedure in full detail. For i ∈ {1, . . . , 10}
we compute some information related to Row i of Table 1; recall that the case i = 11 corresponds to the zero
orbit: First, we construct the cohomology setsH1(ΓΠi); the ΓΠi are �nite groups with trivial conjugation, so the
cohomology classes coincide with the conjugacy classes of elements of order dividing 2. �ese can be computed
brute-force. If the complex orbit of a semisimple element q has a real point, then �eorem 5.3 shows that there
is some γj and some q′ in the orbit of q such that q′ = γ−1

j q′; now gq′ is a real point in the orbit of q, where g
is de�ned in �eorem 5.3. We therefore proceed by looking at each [γj ] ∈ H1(ΓΠi) and determining all q′ such
that q′ = γ−1

j q′; this will eventually determine the orbits of elements in h◦Πi
that have real points, along with

a real point in each such orbit. �e next lemma clari�es that the elements determined for di�erent j yield real
orbit representatives of di�erent orbits.

Lemma 5.7. With the above notation, if j 6= k, then the real orbit representatives obtained for [γj ] are not Ĝ-
conjugate to those representatives obtained for [γk].

Proof. Suppose in the above process we construct qj , qk ∈ hΠ◦i
such that q̄j = γ−1

j qj and q̄k = γ−1
k qk. If qj and

qk lie in the same Ĝ-orbit, then �eorem 3.1 shows that qk = βqj for some β ∈ ΓΠi , that is, q̄k = γ−1
k βqj , and

solving for qj yields qj = β−1γkβ̄q̄j = β−1γkβ̄γ
−1
j qj . Since qj , qk ∈ h◦Πi

, we have Wqj = Wqk , see Section 3.2,
and so β−1γkβ̄γ

−1
j ∈WΠi . Since ΓΠi = NW (WΠi)/WΠi , it follows that [γj ] = [γk] in H1(ΓΠi) . �

Our algorithm now proceeds as follows; recall that each of our ΓΠi is realised as a subgroup of W :
(A) For each component C = h◦Πi

and each cohomology class [γj ] ∈ H1(ΓΠi) with γj ∈ W , we determine all
q′ ∈ C that satisfy q̄′ = γ−1

j q′ (using Table 4, this condition on q′ is easily obtained). We then determine gj ∈ Ĝ
such that nj = g−1

j ḡj (using Table 5), and set p = gjq
′. �eorem 5.3 shows that p is a real representative in the

complex orbit Ĝq′ of q′. We note that in this approach we do not �x a complex orbit O and look for q′ ∈ O ∩ C
as in �eorem 5.3, but we �rst look for suitable q′ ∈ C and then consider the reduction up to ΓΠi-conjugacy.
(B) Next, we determine the real orbits contained in Ĝp = Ĝq′. Using �eorem 5.6, we need to consider
Z = Z

Ĝ
(p) and determine H1(Z) with respect to the usual complex conjugation ∗̄. Note that Z is one of the

centralisers in Table 2 and Z = gjZĜ(q)g−1
j . It will turn out that in most cases we can decompose Z = Z̃ ×H

whereH is abelian of �nite order; thenH1(Z) = H1(Z̃)×H1(H) by Remark 4.2, which is useful for determin-
ingH1(Z). We will see that the component group Z̃/Z◦ is of order at most 2; if it is nontrivial, then is generated
by the class of (J, J, J, J) where J is as in (3.1). �e connected component Z◦ is in most cases parametrised by
a torus or by SL(2,C), and we show that H1(Z◦) is trivial (see Remark 4.2). To compute H1(Z) it remains to
consider the cohomology classes of elements of the form u = w(J, J, J, J) ∈ Z̃ \ Z◦ where w ∈ Z◦. We deter-
mine conditions on w such that u is a 1-cocycle, and then solve the equivalence problem. All these calculations
can be done by hand, but we have also veri�ed them computationally with the system GAP.
(C) Finally, given γj , nj , gj and H1(Z), �eorem 5.6 shows that a real orbit representative corresponding to
[zk] ∈ H1(Z) is bkp where bk ∈ Ĝ is chosen such that b−1

k bk = zk (using the elements ε(M) given in Table 5);
speci�cally, we obtain the following real orbits representatives, recall that p = gjq

′:
{(ε(A), ε(B), ε(C), ε(D))(gjq

′) : [(A,B,C,D)] ∈ H1(Z) and q′ ∈ h◦Πi
with q′ = γ−1

j q′}.(5.1)

Remark 5.8. Some real points and some real orbit representatives computed in (A) and (C) lie outside our �xed
Cartan subspaces c1, . . . , c7 as de�ned in De�nition 1. If this is the case, then we rewrite these elements by
following steps (A’) and (C’) a�er (A) and (C), respectively:
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(A’) If the real point p in (A) is not in one of our �xed Cartan spaces c1, . . . , c7, then we search for g ∈ g∗kNĜ
(h)

for some k ∈ {1, . . . , 7} such thatnj = g−1ḡ; recall the de�nition of g∗k andn∗k from De�nition 1; we then replace
gj by g. �is is indeed possible: by construction, there is g0 ∈ NĜ

(h) and k ∈ {1, . . . , 7} with g0nj ḡ
−1
0 = n∗k =

(g∗k)
−1ḡ∗k, so g = g∗kg0 ∈ g∗kNĜ

(h) is a suitable element, and p = gq′ lies in ck.
(C’) If one of the bkp in Step (C) is not in our Cartan spaces c1, . . . , c7, then we proceed as follows (using
De�nition 1). Note that bkp is Ĝ(R)-conjugate to one of our Cartan spaces, say b′kbkp ∈ cj for some b′k ∈ Ĝ(R)

and j ∈ {1, . . . , 7}. Since b′k is real, (b′kbk)
−1b′kbk = zk, and it follows that b0 = b′kbk ∈ Ĝ satis�es b−1

0 b̄0 = zk
and b0p ∈ cj , as required. Since (g∗j )

−1b0p ∈ h is Ĝ-conjugate to q ∈ h, there exists w ∈ N
Ĝ

(h) such that
(g∗j )

−1b0p = wq = wg−1p, where p = gq as in (A’); we always succeed �nding b0 in g∗jNĜ
(h)g−1.

To simplify the exposition, in our proof below we do not comment on the rewriting process (A’) and (C’), but
only describe the results for (A), (B), and (C).

5.2. Classi�cation results. �e procedure detailed in Section 5.1 leads to the following result; we prove it in
this section.

�eorem 5.9. Up to Ĝ(R)-conjugacy, the nonzero semisimple elements in g1(R) are the elements in Tables 6–11
in Appendix A.2; see De�nition 1 for the notation used in these tables.

It follows from �eorem 3.1 and �eorem 5.9 that there are many complex semisimple orbits that have no real
points. For example, consider the Case i = 10 and let us �x q = λu1 with λ = a+ ıb and a, b 6= 0. According to
the description given in Case 10 of the proof of �eorem 5.9, there exists a real point in that orbit if and only if
there is q′ with q′ = γ−1

10 q
′; this is equivalent to requiring that λ is either a real or a purely imaginary number,

which is a contradiction; thus the complex semisimple orbit determined by q has no real points.
We now prove �eorem 5.9 by considering each case i ∈ {1, 2, 3, 4, 7, 10} individually; due to Remark 3.3,

the classi�cations for the cases i ∈ {5, 6, 8, 9} can be deduced from those for i ∈ {4, 7}. For each iwe comment
on the classi�cation steps (A), (B), (C) as explained in the previous section; we do not comment on the rewriting
process (A’) and (C’). In Case i below we write Z = Z

Ĝ
(pi) as in Table 2. �roughout, we use the notation

introduced in (3.1).

Case i = 1i = 1i = 1. �ere are 7 equivalence classes of cocycles in ΓΠ1 = W , with representatives γ1 = I , γ2 = −I ,
γ3 = diag(−1,−1,−1, 1), γ4 = diag(−1,−1, 1, 1), γ5 = diag(−1, 1,−1, 1), γ6 = diag(−1, 1, 1,−1), and
γ7 = diag(−1, 1, 1, 1). �e centraliser Z is �nite so the cohomology can be easily computed, and H1(Z) has 12
classes with representatives

z1 = (I, I, I, I), z2 = (I, I,−I,−I), z3 = (I,−I, I,−I), z4 = (I,−I,−I, I),
z5 = (K,K,K,K), z6 = (K,K,−K,−K), z7 = (K,−K,K,−K), z8 = (K,−K,−K,K),
z9 = (L,L,L, L), z10 = (L,L,−L,−L), z11 = (L,−L,L,−L), z12 = (L,−L,−L,L).

We follow the procedure outlined in Section 5.1 and consider the various [c] ∈ H1(ΓΠ1). We note that in all
cases (1, j) below we start with a complex semisimple element λ1u1 + . . .+λ4u4 as in Table 1, with (λ1, . . . , λ4)
reduced up to ΓΠ1-conjugacy, where ΓΠ1 = W is the Weyl group.

(i, j) = (1, 1)(i, j) = (1, 1)(i, j) = (1, 1): Let [c] = [γ1] = [diag(1, 1, 1, 1)]. We �rst determine all q′ ∈ h◦Π1
with q′ = q′; by �eorem 3.1,

these are the elements q′ = λ1u1 +. . .+λ4u4 ∈ hΠ1 with λ1, . . . , λ4 ∈ R\{0} and λ1 /∈ {±λ2±λ3±λ4}. Since
γ1 = I , we can choose n1 = g1 = (I, I, I, I), and obtain p = g1q

′ = q′ as real point in the complex Ĝ-orbit of q′.
Since the �rst cohomology group ofZ

Ĝ
(q′) = Z

Ĝ
(p) has 12 elements, it follows from �eorem 5.6 that Ĝq′ splits

into 12 real orbits with representatives determined as in (5.1). For z1 = (I, I, I, I) we have b1 = (I, I, I, I),
with real orbit representative b1p = b1q

′ = q′. For z2 = (I, I,−I,−I) we choose b2 = (I, I, L, L), with real
orbit representative b2p = b2q

′ = −λ1u1 + λ2u2 + λ3u3 − λ4u4 ∈ hΠ1 . In the same way we obtain the orbit
representatives for z3, . . . , z12, which we summarise in Table 11 in the block j = 1.
(i, j) = (1, 2)(i, j) = (1, 2)(i, j) = (1, 2): Now let [c] = [γ2] = [diag(−1,−1,−1,−1)]. As before we determine all q′ ∈ h◦Π1

with q′ = −q′;
these are the elements q′ = λ1u1 + . . .+ λ4u4 ∈ hΠ1 with λ1, . . . , λ4 ∈ ıR \ {0} and λ1 /∈ {±λ2 ± λ3 ± λ4}.
Table 4 shows that diag(−1,−1,−1,−1) ∈W is induced byn2 = (−I, I, I, I). An element g2 with g−1

2 g2 = n2

is g2 = (L, I, I, I). Now p = g2q
′ is a real point in the complex orbit of q′. Since Z

Ĝ
(p) = g2ZĜ(q′)g−1

2 is �nite,
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we can directly compute H1(Z
Ĝ

(p)) and obtain 12 classes with the following representatives

z1 = (I, I, I, I), z2 = (−I,−I, I, I), z3 = (I,−I, I,−I), z4 = (−I, I, I,−I),
z5 = (K,K,K,−K), z6 = (−K,−K,−K,K), z7 = (K,−K,K,K), z8 = (−K,K,K,K),
z9 = (−L,−L,−L,−L), z10 = (L,L,−L,−L), z11 = (−L,L,−L,L), z12 = (L,−L,−L,L).

Real orbits representatives are now determined as in Equation (5.1), see Table 11. Note that here every λi is
purely imaginary, but each product (ε(A), ε(B), ε(C), ε(D))g2(λ1u1 + . . .+ λ4u4) is a real point.

We repeat the same procedure for γ3, · · · , γ7; for each case we only summarise the important data, and we
refer to Table 11 for the list of real orbits representatives.

(i, j) = (1, 3)(i, j) = (1, 3)(i, j) = (1, 3): If [c] = [γ3], then q′ ∈ h◦Π1
satis�es q′ = γ−1

3 q′ if and only if q′ = λ1u1 + . . . + λ4u4

with ıλ1, ıλ2, ıλ3, λ4 ∈ R \ {0} and λ1 /∈ {±λ2 ± λ3 ± λ4}; we have n3 = (M,M,−N,N) and g3 =
(D(η5), D(η5),−D(η3),−D(η7)); the �rst cohomology of Z

Ĝ
(p) = g3ZĜ(q′)g−1

3 consists of four classes de-
�ned by the representatives

z1 = (−I,−I,−I,−I), z2 = (−I,−I, I, I), z3 = (−I, I,−I, I), z4 = (−I, I, I,−I).

(i, j) = (1, 4)(i, j) = (1, 4)(i, j) = (1, 4): If [c] = [γ4], then q′ ∈ h◦Π1
satis�es q′ = γ−1

4 q′ if and only if q′ = λ1u1 + . . . + λ4u4 with
ıλ1, ıλ2, λ3, λ4 ∈ R \ {0} and λ1 /∈ {±λ2 ± λ3 ± λ4}. We have n4 = (L, I, I, L), g4 = (M, I, I,M), and the
�rst cohomology of Z

Ĝ
(p) = g4ZĜ(q′)g−1

4 consists of four classes de�ned by the representatives

z1 = (I, I, I, I), z2 = (I, I,−I,−I), z3 = (L,L,L, L), z4 = (L,L,−L,−L).

(i, j) = (1, 5)(i, j) = (1, 5)(i, j) = (1, 5): If [c] = [γ5], then q′ ∈ h◦Π1
satis�es q′ = γ−1

5 q′ if and only if q′ = λ1u1 + . . . + λ4u4 with
ıλ1, λ2, ıλ3, λ4 ∈ R \ {0} and λ1 /∈ {±λ2±λ3±λ4}. We get n5 = (I, L, I, L), g5 = (I,M, I,M), and the �rst
cohomology of Z

Ĝ
(p) = g5ZĜ(q′)g−1

5 consists of four classes de�ned by the representatives

z1 = (I, I, I, I), z2 = (I, I,−I,−I), z3 = (L,L,L, L), z4 = (L,L,−L,−L).

(i, j) = (1, 6)(i, j) = (1, 6)(i, j) = (1, 6): If [c] = [γ6], then q′ ∈ h◦Π1
satis�es q′ = γ−1

6 q′ if and only if q′ = λ1u1 + . . . + λ4u4 with
ıλ1, λ2, λ3, ıλ4 ∈ R \ {0} and λ1 /∈ {±λ2 ± λ3 ± λ4}. Now n6 = (I, I, L, L), g6 = (I, I,M,M), and the �rst
cohomology of Z

Ĝ
(p) = g6ZĜ(q′)g−1

6 consists of four classes de�ned by the representatives

z1 = (I, I, I, I), z2 = (I,−I, I,−I), z3 = (L,L,L, L), z4 = (L,−L,L,−L).

(i, j) = (1, 7)(i, j) = (1, 7)(i, j) = (1, 7): If [c] = [γ7], then q′ ∈ h◦Π1
satis�es q′ = γ−1

7 q′ if and only if q′ = λ1u1 + . . . + λ4u4

with ıλ1, λ2, λ3, λ4 ∈ R \ {0} and λ1 /∈ {±λ2 ± λ3 ± λ4}. We have n7 = (M,M,M,M) and g7 =
(D(η5), D(η5), D(η5), D(η5)); the �rst cohomology of Z

Ĝ
(p) = g7ZĜ(q′)g−1

7 consists of four classes de�ned
by the representatives

z1 = (I, I, I, I), z2 = (I, I,−I,−I), z3 = (I,−I, I,−I), z4 = (I,−I,−I, I).

Case i = 2i = 2i = 2. Since ΓΠ2 is elementary abelian of order 8, there are 8 equivalence classes of cocycles in H1(ΓΠ2),
with representatives
γ1 = diag(1, 1, 1, 1), γ2 = diag(1,−1,−1, 1), γ3 = diag(1,−1, 1,−1), γ4 = diag(−1,−1, 1, 1),
γ5 = diag(1, 1,−1,−1), γ6 = diag(−1, 1,−1, 1), γ7 = diag(−1, 1, 1,−1), γ8 = diag(−1,−1,−1,−1).

�e centraliser decomposes as Z = Z̃ × H where H is abelian of order 4, generated by (−I,−I, I, I) and
(−I, I,−I, I). Furthermore Z̃/Z◦ has size 2, generated by the class of (J, J, J, J), and Z◦ is a 1-dimensional
torus consisting of elements T1(a) = (D(a−1), D(a−1), D(a), D(a)) with a ∈ C \ {0}. �e main di�erence to
the Case i = 1 is that here Z is not �nite; we include some details to explain our computations. First, a direct
calculation shows that H1(H) consists of four classes de�ned by the representatives

z1 = (I, I, I, I), z2 = (−I,−I, I, I), z3 = (−I, I,−I, I), z4 = (I,−I,−I, I).

Next, we look at H1(Z̃). Since Z◦ is a 1-dimensional torus, a direct computation (together with Remark 4.2)
shows that H1(Z◦) is trivial. It remains to consider the cohomology classes of elements in Z̃/Z◦. Let u = wj∗

where w ∈ Z◦ and
j∗ = (J, J, J, J).
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A short calculation shows that u is a 1-cocycle if and only if there is a ∈ R \ {0} with

u =
(

0 −ıa−1

−ıa 0

)
×
(

0 −ıa−1

−ıa 0

)
×
(

0 ıa

ıa
−1

0

)
×
(

0 ıa

ıa
−1

0

)
.

Moreover, every such u is equivalent to k = (−K,−K,K,K), thus H1(Z̃) = {[1], [k]}. Indeed, we can
verify (by a short calculation or with the help of GAP) that two 1-cocycles u, u′ satisfying u′ = gug−1 where
g = (D(c−1), D(c−1), D(c), D(c)) ∈ Z◦ for some c ∈ C× if and only if a′ = a|c|2, thus we can assume a = ±1.
Now u′ = gj∗u(gj∗)−1 for some g ∈ Z◦ if and only if aa′ = (c/|c|)2, then the 1-cocycles corresponding to a = 1

and a′ = −1 are equivalent. Since H1(Z) = H1(Z̃)×H1(H), representatives of the classes in H1(Z
Ĝ

(p)) are
z1, . . . , z4 and

z5 = z1k = (−K,−K,K,K), z6 = z2k = (K,K,K,K),
z7 = z3k = (K,−K,−K,K), z8 = z4k = (−K,K,−K,K).

With the same approach we obtain H1(gjZg
−1
j ) for all γj for j = 1, . . . , 8. Representatives of the real orbits

are listed in Table 10; below we only list the important data.
(i, j) = (2, 1)(i, j) = (2, 1)(i, j) = (2, 1): If [c] = [γ1], then q′ ∈ hΠ2 satis�es q′ = q′ if and only if λ1, λ2, λ3 ∈ R are nonzero and
λ1 /∈ {±λ2 ± λ3}. We have n1 = g1 = (I, I, I, I), and H1(Z) was computed above.
(i, j) = (2, 2)(i, j) = (2, 2)(i, j) = (2, 2): If [c] = [γ2], then q′ ∈ hΠ2 satis�es q′ = γ−1

2 q′ if and only if λ1, ıλ2, ıλ3 ∈ R \ {0} and
λ1 /∈ {±λ2 ± λ3}. We have n2 = (I, I, L,−L) and g2 = (I, I,M,D(ζ)), with real point p = g2q

′. A direct
calculation shows that u = g2wj

∗g−1
2 with w = (D(a)−1, D(a)−1, D(a), D(a)) ∈ Z◦ for some a ∈ C× is a

1-cocycle if and only if a = −a and a = a, which is a contradiction. �is shows that there is no 1-cocycle with
representative u = g2wj

∗g−1
2 , so H1(Z) = H1(H).

For γ3, . . . , γ7 we also deduce that H1(Z) = H1(H); the case of γ8 is similar to γ1.

(i, j) = (2, 3)(i, j) = (2, 3)(i, j) = (2, 3): If [c] = [γ3], then the condition on q′ = λ1u1 +λ2u2 +λ3u3 ∈ hΠ2 is λ1, ıλ2, λ3 ∈ R \ {0}, and
λ1 /∈ {±λ2 ± λ3}. In this case n3 = (I, L, I,−L) and g3 = (I,M, I,D(ζ)).
(i, j) = (2, 4)(i, j) = (2, 4)(i, j) = (2, 4): If [c] = [γ4], then the condition on q′ = λ1u1 +λ2u2 +λ3u3 ∈ hΠ2 is ıλ1, ıλ2, λ3 ∈ R \ {0} and
λ1 /∈ {±λ2 ± λ3}. We have n4 = (L, I, I, L) and g4 = (M, I, I,M).
(i, j) = (2, 5)(i, j) = (2, 5)(i, j) = (2, 5): If [c] = [γ5], then the condition on q′ = λ1u1 + λ2u2 + λ3u3 ∈ hΠ2 is λ1, λ2, ıλ3 ∈ R \ {0} and
λ1 /∈ {±λ2 ± λ3}; we have n5 = (L, I, I,−L) and g5 = (M, I, I,N).
(i, j) = (2, 6)(i, j) = (2, 6)(i, j) = (2, 6): If [c] = [γ6], then the condition on q′ = λ1u1 +λ2u2 +λ3u3 ∈ hΠ2 is ıλ1, λ2, ıλ3 ∈ R \ {0} and
λ1 /∈ {±λ2 ± λ3}; we have n6 = (I, L, I, L) and g6 = (I,M, I,M).
(i, j) = (2, 7)(i, j) = (2, 7)(i, j) = (2, 7): If [c] = [γ7], then the condition on q′ = λ1u1 + λ2u2 + λ3u3 ∈ hΠ2 is ıλ1, λ2, λ3 ∈ R \ {0} and
λ1 /∈ {±λ2 ± λ3}; we have n7 = (I, I, L, L) and g7 = (I, I,M,M).
(i, j) = (2, 8)(i, j) = (2, 8)(i, j) = (2, 8): If [c] = [γ8], then the condition on q′ = λ1u1 +λ2u2 +λ3u3 ∈ hΠ2 is ıλ1, ıλ2, ıλ3 ∈ R\{0} and
λ1 /∈ {±λ2 ± λ3}; we have n8 = (−I, I, I, I) and g8 = (L, I, I, I). A short calculation shows that u = wj∗

with w = (D(a)−1, D(a)−1, D(a), D(a)) ∈ Z◦ is a 1-cocycle if and only if a is purely imaginary. Moreover,
every such u is equivalent to k = (K,−K,K,K), thus |H1(Z̃)| = 2. In conclusion, H1(Z) has 8 classes with
representatives z1, . . . , z4 and

z5 = z1k = (K,−K,K,K), z6 = z2k = (−K,K,K,K),
z7 = z3k = (−K,−K,−K,K), z8 = z4k = (K,K,−K,K).

Case i = 3i = 3i = 3. Since H1(ΓΠ3) = {[I], [−I]}, there are 2 equivalence classes of cocycles with representatives
γ1 = diag(1, 1, 1, 1) and γ2 = diag(−1,−1,−1,−1). We decompose Z = Z◦ ×H , where H is the same as in
the case i = 2 and

Z◦ = {(A#, A#, A,A) : A ∈ SL(2,C)}.
A short calculation and Remark 4.2 show that H1(Z◦) = 1, so H1(Z) = H1(H) = {[z1], [z2], [z3], [z4]} as
determined for i = 2. Representatives of the real orbits are listed in Table 9; below we give some details.

(i, j) = (3, 1)(i, j) = (3, 1)(i, j) = (3, 1): If [c] = [γ1], then q′ = λ1(u1−u2)+λ2(u1−u3) ∈ h◦Π3
satis�es q′ = q′ if and only if λ1, λ2 ∈ R

and λ1λ2(λ1 + λ2) 6= 0; we have n1 = g1 = (I, I, I, I).
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(i, j) = (3, 2)(i, j) = (3, 2)(i, j) = (3, 2): If [c] = [γ2], then the condition on q′ = λ1(u1 − u2) + λ2(u1 − u3) ∈ hΠ3 is λ1, λ2 ∈ ıR
and λ1λ2(λ1 + λ2) 6= 0; we have n2 = (−I, I, I, I) and g2 = (L, I, I, I). A short calculation shows that
H1(g2Z

◦g−1
2 ) is in bijection with H1(SL(2,C)) = 1; in conclusion, H1(Z

Ĝ
(p)) = H1(H).

Case i = 4i = 4i = 4. �is case is similar to i = 2. Here H1(ΓΠ4) consists of the classes of

γ1 = diag(1, 1, 1, 1), γ2 = diag(−1, 1, 1, 1), γ3 = diag(−1, 1, 1,−1), γ4 =

 0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

.
We have Z = Z̃ × H where H is abelian of order 2 and generated by (−I, I,−I, I). Furthermore Z̃/Z◦ has
order 2, generated by the class of (J, J, J, J), and Z◦ is a 2-dimensional torus consisting of elements T2(a, b) ={

(D(a)−1, D(a), D(b)−1, D(b)) : a, b ∈ C×
}

. First,H1(H) consists of 2 classes de�ned by the representatives

z1 = (I, I, I, I), z2 = (−I, I,−I, I).

Since Z◦ is parametrised by a 2-dimensional torus, a direct computation and Remark 4.2) shows that H1(Z◦)

is trivial. Now consider the cohomology classes of elements in Z̃/Z◦, that is, u = wj∗ where w ∈ T2(a, b).
Computations similar to the ones in Case i = 2 show that u is a 1 cocycle if and only if a, b ∈ ıR. Moreover, such
a 1-cocycle u is equivalent to either (−K,K,−K,K) or (−K,K,K,−K), thus |H1(Z̃)| = 3. In conclusion,
H1(Z) has 6 classes with representatives z1, z2 and

z3 = (−K,K,−K,K), z4 = (−K,K,K,−K), z5 = (K,K,K,K), z6 = (K,K,−K,−K).

Real orbit representatives are listed in Table 8; we summarise the important data below.
(i, j) = (4, 1)(i, j) = (4, 1)(i, j) = (4, 1): If [c] = [γ1], then q′ = λ1u1 + λ4u4 ∈ hΠ4 satis�es q′ = q′ if and only if λ1, λ4 ∈ R and
λ1λ4(λ1 + λ4)(λ1 − λ4) 6= 0. We have n1 = g1 = (I, I, I, I) and p = g1q

′ = q′

(i, j) = (4, 2)(i, j) = (4, 2)(i, j) = (4, 2): If [c] = [γ2], then the condition on q′ = λ1u1 + λ4u4 ∈ hΠ4 is ıλ1, λ4 ∈ R \ {0}; we have
n2 = (M,M,M,M) and g2 = (D(η5), D(η5), D(η5), D(η5)). Let u = g2wj

∗g−1
2 with w ∈ Z◦. As in Case

i = 2, a short calculation shows that there is no 1-cocycle with representative u, soH1(Z) = H1(H) has size 2.
(i, j) = (4, 3)(i, j) = (4, 3)(i, j) = (4, 3): If [c] = [γ3], then the condition on q′ is q′ = λ1u1 + λ4u4 ∈ hΠ4 with λ1, λ4 ∈ ıR and
λ1λ4(λ1 +λ4)(λ1−λ4) 6= 0; we have n3 = (I, I, L, L) and g3 = (I, I,M,M). A direct calculation shows that
a 1-cocycle u = g3wj

∗g−1
3 with w ∈ Z◦ is equivalent to (−K,K,−K,−K) or (−K,K,K,K). In conclusion

H1(g3Zg
−1
3 ) consists of 6 classes with representatives z1, z2 and

z3 = (−K,K,−K,−K), z4 = (K,K,K,−K), z5 = (−K,K,K,K), z6 = (K,K,−K,K).

(i, j) = (4, 4)(i, j) = (4, 4)(i, j) = (4, 4): Let [c] = [γ4], then the condition on q′ = λ1u1 +λ4u4 ∈ hΠ4 is λ1 = −λ4; we have λ1−λ4 ∈ R
and λ1 + λ4 ∈ ıR. We have g4 = (M,M,F,LF ), and a direct calculation (assisted by GAP) shows that
H1(g4Zg

−1
4 ) has size 4 with representatives z1, z2 and z3 = (−K,−K,−L,−L) and z4 = (K,−K,L,−L).

Case i = 7i = 7i = 7. Since H1(ΓΠ7) = {[I], [−I]}, we have the same γ1, γ2 as in the Case i = 3. We decompose
Z = Z◦×H whereH has order 2, generated by (−I, I,−I, I), and Z◦ is parametrised by SL(2,C)×SL(2,C).
As before, H1(Z◦) = 1, so H1(Z) = H1(H) consists of the classes of z1 = (I, I, I, I) and z2 = (−I, I,−I, I).
Table 7 lists the real orbit representatives.
(i, j) = (7, 1)(i, j) = (7, 1)(i, j) = (7, 1): If [c] = [γ1], then q′ ∈ h◦Π7

satis�es q′ = q′ if and only if q′ = λ(u1− u4) with λ ∈ R and λ 6= 0;
we have n1 = g1 = (I, I, I, I).
(i, j) = (7, 2)(i, j) = (7, 2)(i, j) = (7, 2): If [c] = [γ2], then the condition on q′ = λ(u1−u4) is λ ∈ ıR\{0}; we haven2 = (−I, I, I, I) and
g2 = (L, I, I, I). A direct computation shows that H1(g2Z

◦g−1
2 ) = 1, so H1(g2Zg

−1
2 ) = H1(H) determines 2

real orbits.

Case i = 10i = 10i = 10. Here we have H1(ΓΠ10) = {[1], [−1]} and Z = Z̃ , where Z◦ is a 3-dimensional torus consisting
of elements T3(a, b, c) =

{
(D(abc)−1, D(a), D(b), D(c)) : a, b, c ∈ C×

}
and Z̃/Z◦ is of order 2, generated by

the class of (J, J, J, J). As before, H1(Z◦) = 1, and elements of the form u = wj∗ with w = T3(a, b, c) ∈ Z◦
are 1-cocycles if and only if a, b, c ∈ ıR. Moreover, every such 1-cocycle u is equivalent to (K,K,K,K),
(−K,K,K,−K), (−K,K,−K,K), or (K,K,−K,−K), thus H1(Z) has 5 classes with representatives
z1 = (I, I, I, I), z2 = (K,K,K,K), z3 = (−K,K,K,−K), z4 = (−K,K,−K,K), z5 = (K,K,−K,−K).
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Table 6 lists the real orbits representatives.
(i, j) = (10, 1)(i, j) = (10, 1)(i, j) = (10, 1): If [c] = [γ1], then the condition on q′ = λu1 is λ ∈ R \ {0}; we have n1 = g1 = (I, I, I, I).
(i, j) = (10, 2)(i, j) = (10, 2)(i, j) = (10, 2): If [c] = [γ2], then the condition on q′ = λu1 ∈ hΠ10 is λ ∈ ıR\{0}; we have n2 = (−I, I, I, I)
and g2 = (L, I, I, I). Since L commutes with diagonal matrices, H1(g2Z

◦g−1
2 ) = H1(Z◦). On the other hand,

every 1-cocycle u = wj∗ with w ∈ Z◦ is equivalent to (K,K,K,K), (−K,K,K,−K), (−K,K,−K,K), or
(K,K,−K,−K); thus H1(Z) has 5 classes with representatives

z1 = (I, I, I, I), z2 = (−K,K,K,K), z3 = (K,K,K,−K), z4 = (K,K,−K,K), z5 = (−K,K,−K,−K).

6. Real elements of mixed type

An element of mixed type is of the form p + e where p is semisimple, e is nilpotent and [p, e] = 0. From the
uniqueness of the Jordan decomposition it follows that two elements p + e and p′ + e′ of mixed type are Ĝ-
conjugate if and only if there is a g ∈ Ĝ with gp = p′ and ge = e′. So if we want to classify orbits of mixed
type then we may assume that the semisimple part is one of a �xed set of orbit representatives of semisimple
elements. For K ∈ {R,C} we de�ne

M(K) = {p+ e : p+ e is of mixed type in g1(K)}.

We know the Ĝ-orbits inM(C) and we want to classify the Ĝ(R)-orbits inM(R). Applying the general Galois
cohomology approach will lead to additional challenges. To avoid these, instead of working with M(K), we
will consider 4-tuples (p, h, e, f), where p + e is a mixed element and (h, e, f) is a suitable sl2-triple. �is has
the advantage that the stabiliser of such a 4-tuple in Ĝ is smaller than the stabiliser of p + e, and secondly it
is reductive. �is makes it easier to compute the Galois cohomology sets. We now explain the details of this
approach.

Let p ∈ g1(K) be a semisimple element. �e nilpotent parts of mixed elements with semisimple part p lie in
the subalgebra

a = zg(K)(p) = {x ∈ g(K) : [x, p] = 0}.
�is subalgebra inherits the grading from g, that is, if we set ai = a ∩ gi(K) then a = a0 ⊕ a1. Moreover, the
possible nilpotent parts of mixed elements with semisimple part p correspond, up to Ĝ(K)-conjugacy, to the
Z
Ĝ(K)

(p)-orbits of nilpotent elements in a1. �e la�er are classi�ed using homogeneous sl2-triples, which are
triples (h, e, f) with h ∈ a0 and e, f ∈ a1 such that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

By the Jacobson-Morozov �eorem (see [8, Proposition 4.2.1]), every nonzero nilpotent e ∈ a1 lies in some
homogeneous sl2-triple. Moreover, if e, e′ ∈ a1 lie in homogeneous sl2-triples (h, e, f) and (h′, e′, f ′), then e
and e′ are Z

Ĝ(K)
(p)-conjugate if and only if the triples (h, e, f) and (h′, e′, f ′) are Z

Ĝ(K)
(p)-conjugate. For this

reason we consider the set of quadruples

Q(K) = {(p, h, e, f) : p ∈ g1(K) is semisimple and (h, e, f) is a homogeneous sl2-triple in zg(K)(p)}.

We have just shown that there is a surjective map Q(K) → M(K), (p, h, e, f) 7→ p + e. By the next lemma,
this map de�nes a bijection between the Ĝ(K)-orbits in the two sets.

Lemma 6.1. Let K ∈ {R,C}. Let p, p̂ ∈ g1(K) be semisimple and let (h, e, f) and (ĥ, ê, f̂) be homogeneous
sl2-triples in zg(K)(p) and zg(K)(p̂), respectively. �en p+ e and p̂+ ê are Ĝ(K)-conjugate if and only if (p, h, e, f)

and (p̂, ĥ, ê, f̂) are Ĝ(K)-conjugate.

Proof. Only one direction needs proof. If g(p+e) = p̂+êwith g ∈ Ĝ(K), then gp = p̂ and ge = ê by uniqueness
of the Jordan decomposition. Now (gh, ê, gf) is a homogeneous sl2-triple in zg(K)(p̂). By [8, Proposition 4.2.1],
there is g1 ∈ ZĜ(K)

(p̂) such that g1(gh, ê, gf) = (ĥ, ê, f̂), so (g1g)(p, h, e, f) = (p̂, ĥ, ê, f̂). �

Our approach now is to classify the Ĝ(R)-orbits in Q(R); the main tool for this is the following theorem
which follows directly from �eorem 4.1 and the fact that Ĝ has trivial cohomology.



16 Dietrich-de Graaf-Marrani-Origlia

�eorem 6.2. Let (p′, h′, e′, f ′) be a real point in the Ĝ-orbit of (p, h, e, f) ∈ Q(C). �ere is a 1-to-1 corre-
spondence betweenH1(Z

Ĝ
(p′, h′, e′, f ′)) and the Ĝ(R)-orbits in Ĝ(p, h, e, f): the orbit corresponding to the class

[z] ∈ H1(Z
Ĝ

(p′, h′, e′, f ′)) has representative b(p′, h′, e′, f ′) where b ∈ Ĝ satis�es z = b−1b.

�e complex semisimple and mixed orbits are parametrised as follows. For each i ∈ {1, . . . , 10} let Σi be
a set of Ĝ-orbit representatives of semisimple elements in h◦Πi

as speci�ed in Table 1. By �eorem 3.2, up to
Ĝ-conjugacy, the complex elements in g1 of mixed type are s + n where s ∈ Σi for some i and n = ni,r for
some r, as speci�ed in Table 3. In the following we write

Σ = Σ1 ∪ . . . ∪ Σ10.

�e �rst problem is to decide which orbits in Q(C) have real representatives, but we know already which
semisimple orbits have real representative. So let us consider p ∈ Σ such that p′ ∈ g1(R) is a real element in
its Ĝ-orbit. We de�ne a = zg(C)(p

′) as above, with the induced grading a = a0 ⊕ a1. It remains to determine
which nilpotent Z

Ĝ(C)
(p′)-orbits in a1 have real representatives. In the case that the real point p′ also lies in Σ,

this is straightforward; we discuss this case in Section 6.1. We treat the case p′ 6∈ Σ in Section 6.2.
In conclusion, our e�orts lead to the following theorem.

�eorem 6.3. Up to Ĝ(R)-conjugacy, the mixed elements in g1(R) are the elements in Tables 13– 27 in Appen-
dices A.4 and A.5; see De�nition 1 for the notation used in all tables.

6.1. Classi�cation for the case p′ ∈ Σ. Here we suppose that the Ĝ-orbit of p has a real point p′ in Σ. As
before set a = zg(C)(p

′). If p′ ∈ Σi, then we can assume that p′ corresponds to an element in the �rst row of
block j = 1 in the table for Case i (see Tables 6–10). With this assumption, it follows from �eorem 3.2 that
every nilpotent Z

Ĝ(C)
(p′)-orbit in a1 has a real representative; in particular, we can assume that e′ = ni,r for

some r, as speci�ed in Table 3. �is then yields a real 4-tuple (p′, h′, e′, f ′) ∈ Q(R).
We start by computing the centralisers Z

Ĝ
(p′, h′, e′, f ′), similarly to how we computed Z

Ĝ
(p′) before; the

result is listed in Table 12. Due to �eorem 3.1b), we can always take one explicit element for our computations;
for example, in Case i = 2, we can always take p′ = u1 + u2 + u3.

We now consider the di�erent cases i = 2, . . . , 10; for i = 1 and i = 11 there are no elements of mixed type.
(Recall that i = 11 covers the zero orbit.) As before, cases i ∈ {5, 6} and i ∈ {8, 9} follow from i = 4 and i = 7,
respectively. We compute the �rst cohomology of each centraliser by using the same approach as described in
Section 5.2; all the centralisers in this section can be found in Table 12.
Case i = 2i = 2i = 2. We can assume p′ corresponds to the �rst element in block j = 1 in Table 10. By �eorem 3.2, there
is only one nilpotent element e′ = |0011〉 such that p′ + e′ has mixed type; this is the real point we use. First,
we compute a real sl2-triple associated to e′. A direct calculation shows that H1(Z) for Z = Z

Ĝ
(p′, h′, e′, f ′)

has 8 classes with representatives

(6.1) z1 = (I, I, I, I), z2 = (−I,−I, I, I), z3 = (−I, I,−I, I), z4 = (−I, I, I,−I),
z5 = (L,L,L, L), z6 = (L,L,−L,−L), z7 = (−L,L,−L,L), z8 = (L,−L,−L,L).

�is shows that the complex orbit Ĝ(p, h, e, f) splits into 8 real orbits: each [z] ∈ H1(Zi) determines some
b ∈ Ĝ with z = b−1b, and then b(p′ + e′) is the real representative of the mixed type orbit corresponding to [z];
the resulting orbit representatives are listed in Table 13.
Case i = 3i = 3i = 3. We proceed as before and the resulting real orbit representatives are exhibited in Table 14. Here we
have to consider the nilpotent elements n3,1 and n3,2. �e case e′ = n3,1 yields the same centraliser Z1 = Z as
in Case i = 2. �e centraliser Z2 for the case e′ = n3,2 leads to a �rst cohomology H1(Z2) with 8 classes, given
by representatives

(6.2) z1 = (I, I, I, I), z2 = (−I,−I, I, I), z3 = (−I, I,−I, I), z4 = (−I, I, I,−I),
z5 = (I,−I,−I, I), z6 = (I,−I, I,−I), z7 = (I, I,−I,−I), z8 = (−I,−I,−I,−I).

Case i = 4i = 4i = 4. Here we have four nilpotent elements n4,r with r ∈ {1, 2, 3, 4}; the real orbit representatives for
this case are given in Table 15. �e centralisers for r = 1 and r = 2 coincide with Z as in Case i = 2; if
r ∈ {3, 4}, then the centraliser is in�nite; its �rst cohomology has 4 classes with representatives
(6.3) z1 = (I, I, I, I), z2 = (−I,−I, I, I), z3 = (−I, I,−I, I), z4 = (−I, I, I,−I).
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Case i = 7i = 7i = 7. �ere are six nilpotent elements n7,r with r ∈ {1, . . . , 6}; the real orbit representatives are exhibited
in Table 16. �e centraliser for r = 1, 2, 3 is the same as Z2 as in Case i = 3; the centraliser for r = 6 is as in
Case i = 4 and n4,4. It therefore remains to consider r ∈ {4, 5}; we use the approach described in Section 5.1.
For r = 4, a short calculation shows that k = (−L,L,K,K) is the only 1-cocycle arising from (−L,L,−J, J);
it follows that the �rst cohomology has 8 classes with representatives zi as in (6.3) along with zik, that is

(6.4) z1 = (I, I, I, I), z2 = (−I,−I, I, I), z3 = (−I, I,−I, I), z4 = (−I, I, I,−I),
z5 = (−L,L,K,K), z6 = (L,−L,K,K), z7 = (L,L,−K,K), z8 = (L,L,K,−K).

For r = 5, the �rst cohomology has representatives z1, . . . , z4 as above along with zi(K,K,−L,L):

(6.5) z1 = (I, I, I, I), z2 = (−I,−I, I, I), z3 = (−I, I,−I, I), z4 = (−I, I, I,−I),
z5 = (K,K,−L,L), z6 = (−K,−K,−L,L), z7 = (−K,K,L, L), z8 = (−K,K,−L,−L).

Case i = 10i = 10i = 10. �ere are 12 nilpotent elements; the real orbit representatives are exhibited in Tables 17 and 18.
Cases r = 1, 3, 7, 9 lead to centralisers that have the same �rst cohomology as in Case i = 2; Cases r =
2, 4, 6, 8, 10, 12 yield the same �rst cohomology as Case (i, r) = (4, 4), see (6.3). For r ∈ {5, 11} we obtain the
following cohomology representatives:

(6.6) z1 = (I, I, I, I), z2 = (−I,−I, I, I).

For j = 13 the �st cohomology has 2 classes with representatives

(6.7) z1 = (I, I, I, I), z2 = (−I, I,−I, I).

Remark 6.4. �e semisimple parts of the real orbit representatives arising from cocycles involving K or −K
are not in our �xed Cartan subspaces c1, . . . , c7, and we use Remark 5.8 to replace these elements by elements
in our spaces. For example, consider the cocycle z = (−L,L,K,K) in Case (i, r) = (7, 4). �ere is b ∈ Ĝ with
b−1b̄ = z, and we compute bp′, so that b(p′ + e′) is a real point; in this case, bp′ /∈ c1 ∪ . . . ∪ c7. However, bp′
is Ĝ(R)-conjugate to an element in some space cj , so there is b′ ∈ Ĝ(R) such that (b′b)p′ ∈ cj . Since b′ is real,
(b′b)−1b′b = z. �us, there is b0 ∈ Ĝ with b−1

0 b̄0 = z and b0p′ ∈ cj . Now (b′b)e′ is real and b0(p′ + e′) is a real
point.

6.2. Classi�cation for the case p′ /∈ Σ. As before, we consider a complex semisimple element p. By �eo-
rem 3.2, we can assume that p ∈ Σi. Let p′ be a real point in Ĝp as in �eorem 5.9. �is time we consider the
case p′ /∈ Σ, so if a = zg(C)(p

′) = a0 ⊕ a1, then we do not know which nilpotent Z
Ĝ

(p′)-orbits in a1 have real
points. We now discuss how decide this question. �e method that we describe is borrowed from [9, Section 5.3].
However, some di�culties that occurred in the case considered in [9] do not appear here, see Remark 6.8.

Recall that our proof of �eorem 5.9 has exhibited an explicit g ∈ Ĝ such that p′ = gp; this construction used
�eorem 5.6 and a 1-cocycle n = g−1g ∈ N

Ĝ
(h◦p). In the following write

Up′ = zg(p
′) ∩ g1 and Up = zg(p) ∩ g1.

Since Z
Ĝ

(p′) = gZ
Ĝ

(p)g−1, the next lemma allows us to determine the nilpotent Z
Ĝ

(p′)-orbits in Up′ from the
known Z

Ĝ
(p)-orbits in Up, cf. �eorem 3.2.

Lemma 6.5. �e map ϕ : Up → Up′ , x 7→ gx, is a bijection that maps Z
Ĝ

(p)-orbits to Z
Ĝ

(p′)-orbits.

Having determined the Z
Ĝ

(p′)-orbits in Up′ , it remains to decide when such a complex orbit has a real point.
Note that if e′ is a real nilpotent element in a1 then e′ = ϕ(x) for some x ∈ Up lying in the Z

Ĝ
(p)-orbit of some

e = ni,r . Motivated by this observation, we proceed as follows: we �x p ∈ Σi and p′ = gp, and for each e = ni,r
we look for x in the complex Z

Ĝ
(p)-orbit of e such that ϕ(x) is real. Note that the condition that ϕ(x) is real is

equivalent to nx = x where n = g−1g as above. �us, we de�ne

µ : Up → Up, x 7→ nx;(6.8)

note that µ2 = 1 since nn = 1 and, by construction, ϕ(x) is real if and only if µ(x) = x. �e following lemma
is analogous to [8, Lemma 5.3.1].

Lemma 6.6. Let Y = Z
Ĝ

(p)e. �en µ(Y ) = Y if and only if µ(y) ∈ Y for some y ∈ Y .
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Proof. It follows from �eorem 3.1b) that Z
Ĝ

(p) = Z
Ĝ

(h◦Π), where h◦Π is the component containing p. Suppose
there is y ∈ Y such that µ(y) ∈ Y ; we have to show µ(Y ) = Y . Write y = he with h ∈ Z

Ĝ
(p). We know that

µ(y) = ny = nhe = ke for some k ∈ Z
Ĝ

(p); note that he = he because e is real. Since h ∈ Z
Ĝ

(p) = Z
Ĝ

(h◦Π)

and the la�er is normal in N
Ĝ

(h◦Π), we have nh = zn for some z ∈ Z
Ĝ

(p), and the previous equation yields
ne = z−1ke. Now let w ∈ Y , say w = te with t ∈ Z

Ĝ
(p). �ere is some s ∈ Z

Ĝ
(p) such that nt = sn. We have

µ(w) = nte = sne = sz−1ke and, since sz−1k ∈ Z
Ĝ

(p), we deduce that µ(w) ∈ Y , so µ(Y ) = Y . �e other
implication is trivial. �

Corollary 6.7. If there is x ∈ Z
Ĝ

(p)e such that ϕ(x) is real, then µ(e) is Z
Ĝ

(p)-conjugate to e.

If e = ni,r does not satisfy µ(e) ∈ Z
Ĝ

(p)e, then we can discard the pair (p, e). If µ(e) is Z
Ĝ

(p)-conjugate
to e, then we a�empt to compute x ∈ Z

Ĝ
(p)e such that µ(x) = x; then e′ = ϕ(x) is a real nilpotent element

commuting with p′. Once this real point is found, we construct a real 4-tuple (p′, h′, e′, f ′) and apply �eorem 6.2
to compute the Ĝ(R)-orbits in Ĝ(p′, h′, e′, f ′).

Remark 6.8. In our classi�cation, using ad hoc methods, we always found suitable elements x as above. We
note that if such ad hoc methods would not have worked, then we could have used a method described in
[9, Section 5.3] for �nding such elements (or for deciding that none exists). �is method is based on computations
with the second cohomology set H2(Z

Ĝ
(p)).

Classi�cation approach. We summarise our approach for classifying the real mixed orbits in Ĝ(p+ e), where
the real point p′ in Ĝp (as in �eorem 5.9) does not lie in Σ.
(1) Recall that Tables 6–11 list our real semisimple orbits; each table corresponds to a case i ∈ {1, . . . , 10} and
has subcases j = 1, 2, . . ., where j = 1 lists elements in Σ. For each i ∈ {2, . . . , 10} and each j > 1 listed in
the corresponding table, choose the �rst real element p′ in the block labelled j. �e proof of �eorem 5.9 shows
that p′ = gp where p ∈ Σi as given in Table 1; in particular, the element g is determined by our classi�cation,
and we de�ne n = g−1g.
(2) For each p ∈ Σi as determined in (1) we consider each e = ni,r (r = 1, 2, . . .) such that the elements p+ni,r
are the mixed orbit representatives as determined in �eorem 3.2. Using (6.8), we then de�ne µ with respect to
n, and check whether µ(e) ∈ Z

Ĝ
(p)e. If true, then we compute x ∈ Z

Ĝ
(p)e with µ(x) = x by computing the

1-eigenspace Uµp = {u ∈ Up : µ(u) = u} and looking for some x ∈ Uµp that is Z
Ĝ

(p)-conjugate to e. Note that
dimR U

µ
p = dimC Up; this follows from the fact that µ is an R-linear map of order 2, so Up is the direct sum of

the±1-eigenspaces. Since multiplication by ı is a bijective R-linear map swapping these eigenspaces, they have
equal dimension. In our classi�cation, this search is always successful, and we set e′ = ϕ(x).
(3) We determine a real 4-tuple (p′, h′, e′, f ′) and apply �eorem 6.2 to �nd the real Ĝ(R)-orbits in the Ĝ-orbit
of this 4-tuple. If (p′′, h′′, e′′, f ′′) is a representative of such an orbit then p′′ + e′′ is the corresponding element
of mixed type. �is is a representative of a Ĝ(R)-orbit contained in Ĝ(p+ e).

We now discuss the individual cases in detail. �e following case distinction determines the relevant real
points ni,j,r for Case i and the cohomology class [γj ] of H1(Γpi) with γj as determined in the proof of �eo-
rem 5.9; note that we do not have to consider the trivial class [γ1] because this class produces elements in Σ.
Case i = 2i = 2i = 2. We have to consider cocycles γ2, . . . , γ8, with corresponding elements nj given by (see Section 6)

n2 = (I, I, L,−L), n3 = (I, L, I,−L), n4 = (L, I, I, L),
n5 = (L, I, I,−L), n6 = (I, L, I, L), n7 = (I, I, L, L), n8 = (−I, I, I, I).

For this case there is only one nilpotent element e = n2,1. A�er a short calculation we can see that µ(e) = nje is
conjugate to e for all j = 2, . . . , 8. For n2 = (I, I, L,−L) we obtain g2 = (I, I,M,D(ζ)); following Remark 5.8,
we replace g2 by g2 = (−I,−J,−M,−MJ). We then compute Uµp and verify that e ∈ Uµp , thus x = e is the
element we are looking for, and therefore we set e′ = ϕ(x) = g2e = −|0110〉; we denote the la�er by n2,2,1. For
n3 we obtain g3 = (I,M, I,D(ζ)). Again, to get elements in one of the seven Cartan subspaces, it is necessary to
replace it by g3 = (−I,−M,−J,−MJ). A�er computing Uµq we have that x = ıe ∈ Uµp , which is conjugate to
e under the action of Z

Ĝ
(p) via g = (D(ı), D(ı), D(ı−1), D(ı−1)). �erefore we set e′ = ϕ(x) = g3e = |0000〉;

the la�er is denoted by n2,3,1. �e other cases j > 3 are computed along the same way.
Case i = 3i = 3i = 3. We have to consider the cocycle γ2 with n2 = (−I, I, I, I). �ere are two nilpotent elements
n3,1 and n3,2. We compute Uµp and see that x = ı|0011〉 is a nilpotent element in Uµp conjugate to n3,1 via
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(D(a)−1, D(a)−1, D(a), D(a)) with a−4 = ı. �us, the real nilpotent element is e′ = ϕ(x) = −|0011〉, denoted
n3,2,1. Similarly, we �nd x ∈ Uµp such that x is conjugate to n3,2, see ϕ(x) = n3,2,2 in Table 19.
Case i = 4i = 4i = 4. We have to consider cocycles γ2, . . . , γ4, with corresponding elements

n2 = (M,M,M,M), n3 = (I, I, L, L), n4 = (L,L,−K,K).

For each of them, we have to consider four nilpotent elements n4,1, . . . , n4,4. A�er computing Uµp for n2, we
observe that each n4,` ∈ Uµp , thus the real representatives are n4,2,1, . . . , n4,2,4, de�ned as n4,2,` = g2n4,` = n4,`

with g2 = (D(η5), D(η5), D(η5), D(η5)). �e case n3 is similar, so now let us consider n4. We obtain that
µ(n4,`) is not conjugate to n4,` for ` ∈ {3, 4}, thus we have to only consider n4,1 and n4,2. For n4,1 there is no
x ∈ Uµq such that x is conjugate to n4,1. �is is seen by acting on n4,1 by a general element g of Z

Ĝ
(p) which

is g = h(D(a−1), D(a), D(b−1), D(b)) where a, b ∈ C∗ and h lies in the component group (see Table 2). From
the expressions obtained it is straightforward to see that the image can never lie in Uµp .

On the other hand, we observe that n4,2 lies inUµp and therefore we set e′ = ϕ(n4,2) = g4n4,2 = 1
2(−|1110〉−

|1101〉 + |1010〉 + |1001〉 + |0110〉 + |0101〉 − |0010〉 − |0001〉). In this case it is necessary to replace g4 in order
to get elements in one of the seven Cartan subspaces.
Cases i ∈ {7, 10}i ∈ {7, 10}i ∈ {7, 10}. �e nilpotent elements for the remaining cases i = 7 and i = 10 are computed analogously.

�e next step is to compute the centralisers Z = Z
Ĝ

(p′, h′, e′, f ′) of the 4-tuples (p′, h′, e′, f ′), and then the
�rst cohomology H1(Z) as we did in Table 12. �e di�erence here is that p′ /∈ Σ and e′ is a nilpotent element
from Table 19, with corresponding sl2-triple (h′, e′, f ′) in zg(p

′). We exemplify the details with a few examples:

Example 6.9. For (i, j) = (2, 2) let p′ be the �rst element in the second block of Table 10 and let e′ = n2,2,1 =
−|0011〉. We compute an sl2-triple with nilpotent element e′ in the whole Lie algebra and then check that
it centralises p′. Since the centralisers of semisimple elements in the same component are equal, in order to
compute Z

Ĝ
(p′) we can assume that the parameters de�ning p′ are λ1 = λ3 = 1 and λ2 = ı. Using Groebner

basis techniques, we determine that Z
Ĝ

(p′, h′, e′, f ′) is the same as in the �rst row of Table 12, hence H1(Z)
has 8 classes with representatives given by (6.1). �e results are listed in the �rst block of Table 20.

In fact, in most of the cases, the centraliser Z = Z
Ĝ

(p′, h′, e′, f ′) for Case i, cohomology class [γj ], and
nilpotent element e′ = ni,j,r is exactly the same given in Table 12 for parameters i and r. For example, if i = 2
and e′ = n2,j,1 with j ∈ {2, 3, 4, 5, 6, 7, 8}, then Z

Ĝ
(p′, h′, e′, f ′) is always given in the �rst row of Table 12.

�e only exceptions where this behaviour was not observed are the following two cases.

Example 6.10. For (i, j) = (4, 4) let p′ be the �rst element in the second block of Table 8 and let e′ = n4,4,1 as in
Table 19. Here the centraliser Z = Z

Ĝ
(p′, h′, e′, f ′) is generated by (−I,−I, I, I), (−I, I,−I, I), (K,K, J, J),

therefore di�erent from the centraliser given in Table 12 for parameters (i, r) = (4, 1). �e �rst cohomology
H1(Z) has 4 classes with representatives
(6.9) z1 = (I, I, I, I), z2 = (−I,−I, I, I), z3 = (−I, I,−I, I), z4 = (−I, I, I,−I).

For (i, j) = (7, 2) and e′ = n7,2,5 the centraliser is generated by (−I, I,−I, I), (−I, I, I,−I), (−J, J, L, L),
and

{
(D(a)−1, D(a), I, I) : a ∈ C×

}
, and therefore is di�erent from the centraliser given in Table 12 for pa-

rameters (i, r) = (7, 5); its �rst cohomology has 8 classes with representatives

(6.10) z1 = (I, I, I, I), z2 = (−I, I,−I, I), z3 = (−I, I, I,−I), z4 = (I, I,−I,−I),
z5 = (K,K,L, L), z6 = (−K,K,−L,L), z7 = (−K,K,L,−L), z8 = (K,K,−L,−L).

Having found all real points and having determined the corresponding cohomology class representatives, the
last step is to employ the usual Galois theory approach to obtain a real representative for each of the mixed
orbits obtained above. We exhibit the results in Tables 13– 27. �is proves �eorem 6.3.
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Appendix A. Tables

A.1. Complex classi�cation.

iii type of Πi roots of Πi elements of hΠi
hΠihΠi condition for being in h◦Πi

h◦Πi
h◦Πi

ΓΠi
ΓΠiΓΠi zg(pi)

′zg(pi)
′zg(pi)
′

1 ∅ λ1u1 + · · ·+ λ4u4 λi 6= 0 and λ1 /∈ {±λ2 ± λ3 ± λ4} W 0
2 A1 α4 λ1u1 + λ2u2 + λ3u3 λi 6= 0 and λ1 /∈ {±λ2 ± λ3} (Z/2Z)3 sl(2,C)
3 A2 α2, α4 λ1(u1 − u2) + λ2(u1 − u3) λu 6= 0 and λ1 6= −λ2 〈−I4〉 sl(3,C)
4 2A1 α1, α3 λ1u1 + λ2u4 λi 6= 0 and λ1 /∈ {±λ2} Dih4 sl(2,C)2

5 2A1 α1, α4 λ1u1 + λ2u3 λi 6= 0 and λ1 /∈ {±λ2} Dih4 sl(2,C)2

6 2A1 α3, α4 λ1u1 + λ2u2 λi 6= 0 and λ1 /∈ {±λ2} Dih4 sl(2,C)2

7 A3 α1, α2, α3 λ1(u1 − u4) λ1 6= 0 〈−I4〉 sl(4,C)
8 A3 α1, α2, α4 λ1(u1 − u3) λ1 6= 0 〈−I4〉 sl(4,C)
9 A3 α2, α3, α4 λ1(u1 − u2) λ1 6= 0 〈−I4〉 sl(4,C)

10 3A1 α1, α3, α4 λ1u1 λ1 6= 0 〈−I4〉 sl(2,C)3

11 D4 α1, . . . , α4 0 0 1 so(4,C)

Table 1. �is is [27, Table 2]: Complete root subsystems Πi of Φ and related data, with param-
eters λ1, . . . , λ4 ∈ C; the last column displays the derived algebra of the centraliser zg(pi) for
pi ∈ h◦Πi

. Elements in h◦Πi
are not Ĝ-conjugate to elements in h◦Πj

if i 6= j; two elements in the
same component h◦Πi

are Ĝ-conjugate if and only if they are ΓΠi-conjugate.

iii identity component Z
Ĝ

(s)◦Z
Ĝ

(s)◦Z
Ĝ

(s)◦ preimages of generators of Z
Ĝ

(s)/Z
Ĝ

(s)◦Z
Ĝ

(s)/Z
Ĝ

(s)◦Z
Ĝ

(s)/Z
Ĝ

(s)◦

1 1 (J, J, J, J), (−I,−I, I, I), (−I, I,−I, I), (K,K,K,K)

2
{

(D(a)−1, D(a)−1, D(a), D(a)) : a ∈ C×
}

(−I,−I, I, I), (−I, I,−I, I), (J, J, J, J)

3
{

(A#, A#, A,A) : A ∈ SL(2,C)
}

(−I,−I, I, I), (−I, I,−I, I)

4
{

(D(a)−1, D(a), D(b)−1, D(b)) : a, b ∈ C×
}

(−I, I,−I, I), (J, J, J, J)

5
{

(D(a)−1, D(b)−1, D(a), D(b)) : a, b ∈ C×
}

(−I,−I, I, I), (J, J, J, J)

6
{

(D(a)−1, D(b), D(b)−1, D(a)) : a, b ∈ C×
}

(−I, I,−I, I), (J, J, J, J)

7
{

(A#, A,B#, B) : A,B ∈ SL(2,C)
}

(−I, I,−I, I)

8
{

(A#, B#, A,B) : A,B ∈ SL(2,C)
}

(−I,−I, I, I)

9
{

(A#, B,B#, A) : A,B ∈ SL(2,C)
}

(−I, I,−I, I)

10
{

(D(abc)−1, D(a), D(b), D(c)) : a, b, c ∈ C×
}

(J, J, J, J)

Table 2. �is is [27, Table 3]; the groupsZ
Ĝ

(s): the entry i is the label of the canonical semisim-
ple set h◦Πi

that contains s, as in Table 1; the notation is explained in (3.1).
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iii nilpotent elements
2 n2,1 = |0011〉
3 n3,1 = |0011〉, n3,2 = |0111〉+ |1011〉+ |0010〉+ |0001〉
4 n4,1 = |0110〉+ |1010〉, n4,2 = |0110〉+ |0101〉, n4,3 = |0110〉, n4,4 = |0101〉
5 n5,1 = |0110〉+ |1100〉, n5,2 = |0110〉+ |0011〉, n5,3 = |0110〉, n5,4 = |0011〉
6 n6,1 = |0011〉+ |1010〉, n6,2 = |0011〉+ |0101〉, n6,3 = |0011〉, n6,4 = |0101〉
7 n7,1 = |1101〉+ |1011〉+ |1000〉+ |0001〉, n7,2 = |1101〉+ |1010〉+ |0001〉,

n7,3 = |1011〉+ |1000〉+ |0101〉,n7,4 = |1011〉+ |1000〉, n7,5 = |1101〉+ |0001〉, n7,6 = |1001〉
8 n8,1 = |1011〉+ |1101〉+ |1000〉+ |0001〉, n8,2 = |1011〉+ |1100〉+ |0001〉,

n8,3 = |1101〉+ |1000〉+ |0011〉, n8,4 = |1101〉+ |1000〉, n8,5 = |1011〉+ |0001〉, n8,6 = |1001〉
9 n9,1 = |1101〉+ |1110〉+ |1000〉+ |0100〉, n9,2 = |1101〉+ |1010〉+ |0100〉,

n9,3 = |1110〉+ |1000〉+ |0101〉, n9,4 = |1110〉+ |1000〉, n9,5 = |1101〉+ |0100〉, n9,6 = |1100〉
10 n10,1 = |1100〉+ |1010〉+ |0110〉, n10,2 = |1010〉+ |0110〉, n10,3 = |1010〉+ |0110〉+ |0011〉,

n10,4 = |1100〉+ |0110〉, n10,5 = |0110〉, n10,6 = |0110〉+ |0011〉, n10,7 = |1100〉+ |0110〉+ |0101〉,
n10,8 = |0110〉+ |0101〉, n10,9 = |0110〉+ |0101〉+ |0011〉, n10,10 = |1100〉+ |1010〉,
n10,11 = |1010〉, n10,12 = |1010〉+ |0011〉, n10,13 = |0011〉.

Table 3. �is is from [27, �eorem 3.7]: �e nilpotent elements ni,j used in �eorem 3.2.

A.2. Semisimple elements.

w ∈Ww ∈Ww ∈W cocycle in Ĝ̂ĜG
diag(−1,−1,−1,−1) (−I, I, I, I)

diag(−1,−1,−1, 1) (M,M,−N,N)

diag(−1,−1, 1, 1) (L, I, I, L)

diag(−1, 1,−1, 1) (I, L, I, L)

diag(−1, 1, 1,−1) (I, I, L, L)

diag(1,−1,−1, 1) (I, I, L,−L)

diag(1,−1, 1,−1) (I, L, I,−L)

diag(1, 1,−1,−1) (L, I, I,−L)

diag(−1, 1, 1, 1) (M,M,M,M)

diag(1,−1, 1, 1) (N,M,M,N)

diag(1, 1,−1, 1) (M,N,M,N)

diag(1, 1, 1,−1) (M,M,N,N)

diag(1,−1,−1,−1) (−N,N,N,N)

w ∈Ww ∈Ww ∈W cocycle in Ĝ̂ĜG
0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 (L,L,−K,K)


0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

 (I,K, I,K)


0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0

 (K, I, I,K)

Table 4. Cocycles in Ĝ that induce the cocycles in W whose equivalence classes form the var-
ious sets H1(ΓΠi): these will be the elements ni that map under ϕ to γi as described in �e-
orem 5.3. Matrices I, J,K,L,M,N are from (3.1) and elements in H1(ΓΠi) are considered as
elements in W .

AAA −I M −M N −N L −L K −K
ε(A)ε(A)ε(A) L D(η5) D(η) D(η7) −D(η3) M D(ζ) LF F

Table 5. Matrices F, I, J,K,L,M,N are from (3.1), and η is a primitive 16-th root of unity
with η2 = ζ ; if A ∈ SL(2,C), then ε(A) ∈ SL(2,C) satis�es ε(A)−1ε(A) = A.
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jjj kkk real orbit representatives (semisimple)
1 1, 2 λ1(1, 0, 0, 0) (−2, 2, 2, 2)/λ1

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: λ1 up to ΓΠ10

-conjugacy, λ1 ∈ R×

2 1, 2 ıλ1(1, 0, 0, 0) (−2, 2, 2, 2)/(ıλ1)
Coe�cients: with respect to the basis {v1, v2, v3, v4}
Conditions: λ1 up to ΓΠ10

-conjugacy, λ1 ∈ ıR×

Table 6. Case i = 10i = 10i = 10: �e table lists real orbit representatives corresponding to γj and [zk] ∈ H1(Z).

jjj kkk real orbit representatives (semisimple)
1 1, 2 λ1(1,−1) −λ1(1, 1)

Coe�cients: with respect to the basis {u1, u4}
Conditions: λ1 up to ΓΠ7-conjugacy, λ1 ∈ R×

2 1, 2 ıλ1(1,−1) −ıλ1(1, 1)

Coe�cients: with respect to the basis {v1, v4}
Conditions: λ1 up to ΓΠ7

-conjugacy, λ1 ∈ ıR×

Table 7. Cases i = 7, 8, 9i = 7, 8, 9i = 7, 8, 9: �e table lists real orbit representatives corresponding to γj and
[zk] ∈ H1(Z) for h◦Π7

; the real representatives for Cases i ∈ {8, 9} are obtained via Remark 3.3

jjj kkk real orbit representatives (semisimple)
1 1, 2 (λ1, 0, 0, λ4) (−λ1, 0, 0, λ4)

3 (−λ1 + λ4,−λ1 − λ4, λ1 + λ4,−λ1 + λ4)/2

4 (−λ1 + λ4, λ1 + λ4,−λ1 − λ4,−λ1 + λ4)/2

5 (−λ1 − λ4, λ1 − λ4, λ1 − λ4, λ1 + λ4)/2

6 (−λ1 − λ4,−λ1 + λ4,−λ1 + λ4, λ1 + λ4)/2

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: (λ1, λ4) up to ΓΠ4-conjugacy, λ1, λ4 ∈ R×, λ1 /∈ {±λ4}

2 1, 2 (ıλ1, λ4) (−ıλ1, λ4)

Coe�cients: with respect to the basis {t1, t4}
Conditions: (λ1, λ4) up to ΓΠ4

-conjugacy, λ4 ∈ R×, λ1 ∈ ıR×

3 1, 2 ı(−λ1, 0, 0, λ4) ı(λ1, 0, 0, λ4)

3 ı(−λ1 − λ4,−λ1 + λ4,−λ1 + λ4, λ1 + λ4)/2

4 ı(−λ1 + λ4, λ1 + λ4,−λ1 − λ4,−λ1 + λ4)/2

5 ı(−λ1 − λ4, λ1 − λ4, λ1 − λ4, λ1 + λ4)/2

6 ı(−λ1 + λ4,−λ1 − λ4, λ1 + λ4,−λ1 + λ4)/2

Coe�cients: with respect to the basis {v1, v2, v3, v4}
Conditions: (λ1, λ4) up to ΓΠ4

-conjugacy, λ1, λ2 ∈ ıR×, λ1 /∈ {±λ2}
4 1 1

2 (−ı(λ1 + λ4), λ1 − λ4,−λ1 + λ4,−ı(λ1 + λ4))

2 1
2 (ı(λ1 + λ4), λ1 − λ4, λ1 − λ4,−ı(λ1 + λ4))

3 1
2 (ı(λ1 + λ4), λ1 − λ4,−λ1 + λ4,−ı(λ1 + λ4))

4 1
2 (−ı(λ1 + λ4), λ1 − λ4, λ1 − λ4,−ı(λ1 + λ4))

Coe�cients: with respect to the basis {z1, z2, z3, z4}
Conditions: (λ1, λ4) up to ΓΠ4

-conjugacy, ı(λ1 + λ4), λ1 − λ4 ∈ R×, λ1 /∈ {±λ4}

Table 8. Cases i = 4, 5, 6i = 4, 5, 6i = 4, 5, 6: �e table lists real orbit representatives corresponding to γj and
[zk] ∈ H1(Z) for h◦Π4

; the real representatives for Cases i ∈ {5, 6} are obtained via Remark 3.3.
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jjj kkk real orbit representatives (semisimple)
1 1, . . . , 4 (λ1 + λ2,−λ1,−λ2) (−λ1 − λ2,−λ1,−λ2) (−λ1 − λ2,−λ1, λ2) (−λ1 − λ2, λ1,−λ2)

Coe�cients: with respect to the basis {u1, u2, u3}
Conditions: (λ1, λ2) up to ΓΠ3-conjugacy, each λi ∈ R×, λ1 6= −λ2

2 1, . . . , 4 ı(λ1 + λ2,−λ1,−λ2) −ı(λ1 + λ2, λ1, λ2) −ı(λ1 + λ2, λ1,−λ2) −ı(λ1 + λ2,−λ1, λ2)

Coe�cients: with respect to the basis {v1, v2, v3}
Conditions: (λ1, λ2) up to ΓΠ3

-conjugacy, each λi ∈ ıR×, λ1 6= −λ2

Table 9. Case i = 3i = 3i = 3: �e table lists real orbit representatives corresponding to γj and [zk] ∈ H1(Z).

jjj kkk real orbit representatives (semisimple)
1 1, . . . , 4 (λ1, λ2, λ3, 0) (−λ1, λ2, λ3, 0) (−λ1, λ2,−λ3, 0) (−λ1,−λ2, λ3, 0)

5 (−λ1 + λ2 + λ3,−λ1 + λ2 − λ3,−λ1 − λ2 + λ3, λ1 + λ2 + λ3)/2

6 (−λ1 − λ2 − λ3, λ1 + λ2 − λ3, λ1 − λ2 + λ3, λ1 − λ2 − λ3)/2

7 (−λ1 − λ2 + λ3, λ1 + λ2 + λ3,−λ1 + λ2 + λ3,−λ1 + λ2 − λ3)/2

8 (−λ1 + λ2 − λ3,−λ1 + λ2 + λ3, λ1 + λ2 + λ3,−λ1 − λ2 + λ3)/2

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2

-conjugacy, each λi ∈ R× and λ1 /∈ {±λ2 ± λ3}
2 1, . . . , 4 (−ıλ3, 0, λ1,−ıλ2) (ıλ3, 0, λ1, ıλ2) (ıλ3, 0,−λ1,−ıλ2) (ıλ3, 0, λ1,−ıλ2)

Coe�cients: with respect to the basis {z1, z2, z3, z4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2-conjugacy, λ1 ∈ R×, λ2, λ3 ∈ ıR×

3 1, . . . , 4 (0,−λ3,−ıλ2, λ1) (0,−λ3,−ıλ2,−λ1) (0,−λ3, ıλ2, λ1) (0, λ3,−ıλ2, λ1)

Coe�cients: with respect to the basis {y1, y2, y3, y4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2-conjugacy, λ1, λ3 ∈ R×, λ2 ∈ ıR×, and λ1 /∈ {±λ3}

4 1, . . . , 4 (−ıλ1,−ıλ2, λ3, 0) (ıλ1,−ıλ2, λ3, 0) (ıλ1,−ıλ2,−λ3, 0) (ıλ1, ıλ2, λ3, 0)

Coe�cients: with respect to the basis {x1, x2, x3, x4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2

-conjugacy, λ3 ∈ R×, λ1, λ2 ∈ ıR×, and λ1 /∈ {±λ2}
5 1, . . . , 4 (0, ıλ3,−λ2, λ1) (0, ıλ3,−λ2,−λ1) (0, ıλ3, λ2, λ1) (0,−ıλ3,−λ2, λ1)

Coe�cients: with respect to the basis {x1, x2, x3, x4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2

-conjugacy, λ1, λ2 ∈ R×, λ3 ∈ ıR×, and λ1 /∈ {±λ2}
6 1, . . . , 4 (−ıλ1, λ2, ıλ3, 0) (ıλ1, λ2, ıλ3, 0) (ıλ1, λ2,−ıλ3, 0) (ıλ1,−λ2, ıλ3, 0)

Coe�cients: with respect to the basis {y1, y2, y3, y4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2-conjugacy, λ2 ∈ R×, λ1, λ3 ∈ ıR×, and λ1 /∈ {±λ3}

7 1, . . . , 4 (−ıλ1, λ2, λ3, 0) (ıλ1, λ2, λ3, 0) (ıλ1, λ2,−λ3, 0) (ıλ1,−λ2, λ3, 0)

Coe�cients: with respect to the basis {y1, y2, y3, y4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2

-conjugacy, λ2, λ3 ∈ R×, λ1 ∈ ıR×, and λ1 /∈ {±λ3}
8 1, . . . , 4 ı(−λ1,−λ2,−λ3, 0) ı(λ1,−λ2,−λ3, 0) ı(λ1,−λ2, λ3, 0) ı(λ1, λ2,−λ3, 0)

5 ı(λ1 − λ2 − λ3, λ1 − λ2 + λ3, λ1 + λ2 − λ3,−λ1 − λ2 − λ3)/2

6 ı(λ1 + λ2 + λ3,−λ1 − λ2 + λ3,−λ1 + λ2 − λ3,−λ1 + λ2 + λ3)/2

7 ı(λ1 + λ2 − λ3,−λ1 − λ2 − λ3, λ1 − λ2 − λ3, λ1 − λ2 + λ3)/2

8 ı(λ1 − λ2 + λ3, λ1 − λ2 − λ3,−λ1 − λ2 − λ3, λ1 + λ2 − λ3)/2

Coe�cients: with respect to the basis {v1, v2, v3, v4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2

-conjugacy, each λi ∈ ıR× and λ1 /∈ {±λ2 ± λ3}

Table 10. Case i = 2i = 2i = 2: �e table lists real orbit representatives corresponding to γj and [zk] ∈ H1(Z).
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jjj kkk real orbit representatives (semisimple)
1 1, . . . , 4 (λ1, λ2, λ3, λ4) (−λ1, λ2, λ3,−λ4) (−λ1, λ2,−λ3, λ4) (−λ1,−λ2, λ3, λ4)

5 (−λ1 − λ2 − λ3 − λ4, λ1 + λ2 − λ3 − λ4, λ1 − λ2 + λ3 − λ4, λ1 − λ2 − λ3 + λ4)/2

6 (−λ1 + λ2 + λ3 − λ4,−λ1 + λ2 − λ3 + λ4,−λ1 − λ2 + λ3 + λ4, λ1 + λ2 + λ3 + λ4)/2

7 (−λ1 + λ2 − λ3 + λ4,−λ1 + λ2 + λ3 − λ4, λ1 + λ2 + λ3 + λ4,−λ1 − λ2 + λ3 + λ4)/2

8 (−λ1 − λ2 + λ3 + λ4, λ1 + λ2 + λ3 + λ4,−λ1 + λ2 + λ3 − λ4,−λ1 + λ2 − λ3 + λ4)/2

9, . . . , 12 (−λ1, λ2, λ3, λ4) (λ1, λ2, λ3,−λ4) (λ1, λ2,−λ3, λ4) (λ1,−λ2, λ3, λ4)

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: (λ1, . . . , λ4) up to W -conjugacy, each λi ∈ R× and λ1 /∈ {±λ2 ± λ3 ± λ4}

2 1, . . . , 4 ı(λ1, λ2, λ3, λ4) ı(−λ1, λ2, λ3,−λ4) ı(−λ1, λ2,−λ3, λ4) ı(−λ1,−λ2, λ3, λ4)

5 ı(−λ1 − λ2 + λ3 + λ4, λ1 + λ2 + λ3 + λ4,−λ1 + λ2 + λ3 − λ4,+− λ1 + λ2 − λ3 + λ4)/2

6 ı(−λ1 + λ2 − λ3 + λ4,−λ1 + λ2 + λ3 − λ4, λ1 + λ2 + λ3 + λ4,−λ1 − λ2 + λ3 + λ4)/2

7 ı(−λ1 + λ2 + λ3 − λ4,−λ1 + λ2 − λ3 + λ4,−λ1 − λ2 + λ3 + λ4, λ1 + λ2 + λ3 + λ4)/2

8 ı(−λ1 − λ2 − λ3 − λ4, λ1 + λ2 − λ3 − λ4, λ1 − λ2 + λ3 − λ4, λ1 − λ2 − λ3 + λ4)/2

9, . . . , 12 ı(−λ1, λ2, λ3, λ4) ı(λ1, λ2, λ3,−λ4) ı(λ1, λ2,−λ3, λ4) ı(λ1,−λ2, λ3, λ4)

Coe�cients: with respect to the basis {v1, v2, v3, v4}
Conditions: (λ1, . . . , λ4) up to W -conjugacy, each λi ∈ ıR× and λ1 /∈ {±λ2 ± λ3 ± λ4}

3 1, . . . , 4 (ıλ1, ıλ2,−ıλ3, λ4) (−ıλ1, ıλ2,−ıλ3,−λ4) (−ıλ1, ıλ2, ıλ3, λ4) (−ıλ1,−ıλ2,−ıλ3, λ4)

Coe�cients: with respect to the basis {w1, w2, w3, w4}
Conditions: (λ1, . . . , λ4) up to W -conjugacy, λ1, λ2, λ3 ∈ ıR× and λ4 ∈ R× and λ1 /∈ {±λ2 ± λ3}

4 1, . . . , 4 (−ıλ1,−ıλ2, λ3, λ4) (ıλ1,−ıλ2, λ3,−λ4) (ıλ1,−ıλ2, λ3, λ4) (−ıλ1,−ıλ2, λ3,−λ4)

Coe�cients: with respect to the basis {x1, x2, x3, x4}
Conditions: (λ1, . . . , λ4) up to W -conjugacy, λ1, λ2 ∈ ıR× and λ3, λ4 ∈ R× and λ1 /∈ {±λ2}

5 1, . . . , 4 (−ıλ1, λ2, ıλ3, λ4) (ıλ1, λ2, ıλ3,−λ4) (ıλ1, λ2, ıλ3, λ4) (−ıλ1, λ2, ıλ3,−λ4)

Coe�cients: with respect to the basis {y1, y2, y3, y4}
Conditions: (λ1, . . . , λ4) up to W -conjugacy, λ1, λ3 ∈ ıR× and λ2, λ4 ∈ R× and λ1 /∈ {±λ3}

6 1, . . . , 4 (−ıλ1, λ2, λ3, ıλ4) (ıλ1, λ2,−λ3, ıλ4) (ıλ1, λ2, λ3, ıλ4) (−ıλ1, λ2,−λ3, ıλ4)

Coe�cients: with respect to the basis {z1, z2, z3, z4}
Conditions: (λ1, . . . , λ4) up to W -conjugacy, λ1, λ4 ∈ ıR× and λ2, λ3 ∈ R× and λ1 /∈ {±λ4}

7 1, . . . , 4 (ıλ1, λ2, λ3, λ4) (−ıλ1, λ2, λ3,−λ4) (−ıλ1, λ2,−λ3, λ4) (−ıλ1,−λ2, λ3, λ4)

Coe�cients: with respect to the basis {t1, t2, t3, t4}
Conditions: (λ1, . . . , λ4) up to W -conjugacy, λ1 ∈ ıR× and λ2, λ3, λ4 ∈ R×

Table 11. Case i = 1i = 1i = 1: �e table lists real orbit representatives corresponding to γj and [zk] ∈ H1(Z).
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A.3. Mixed elements: Centralisers.

iii rrr identity component Z◦Z◦Z◦ preimages of generators of Z/Z◦Z/Z◦Z/Z◦ H1H1H1 ref.

2 1 1 (−I,−I, I, I), (−I, I,−I, I), (−L,−L,L,L) (6.1)
3 1 1 (−I,−I, I, I), (−I, I,−I, I), (−L,−L,L,L) (6.1)
3 2 1 (−I,−I, I, I), (−I, I,−I, I), (−I,−I,−I,−I) (6.2)
4 1 1 (−I,−I, I, I), (−I, I,−I, I), (−L,−L,L,L) (6.1)
4 2 1 (−I,−I, I, I), (−I, I,−I, I), (−L,−L,L,L) (6.1)
4 3

{
(D(a)−1, D(a), D(a)−1, D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I) (6.3)

4 4
{

(D(a), D(a)−1, D(a)−1, D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I) (6.3)
7 1 1 (−I,−I, I, I), (−I, I,−I, I), (−I,−I,−I,−I) (6.2)
7 2 1 (−I,−I, I, I), (−I, I,−I, I), (−I,−I,−I,−I) (6.2)
7 3 1 (−I,−I, I, I), (−I, I,−I, I), (−I,−I,−I,−I) (6.2)
7 4

{
(I, I,D(a)−1, D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I), (−L,L,−J, J) (6.4)

7 5
{

(D(a)−1, D(a), I, I) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I), (−J, J,−L,L) (6.5)
7 6

{
(D(a)−1, D(a), D(a)−1, D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I) (6.3)

10 1 1 (−I,−I, I, I), (−I, I,−I, I), (−L,−L,L,L) (6.1)
10 2

{
(D(a)−1, D(a)−1, D(a), D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I) (6.3)

10 3 1 (−I,−I, I, I), (−I, I,−I, I), (−L,−L,L,L) (6.1)
10 4

{
(D(a)−1, D(a), D(a)−1, D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I) (6.3)

10 5
{

(D(a)−1, D(b)−1, D(b), D(a)) : a, b ∈ C×} (−I,−I, I, I) (6.6)
10 6

{
(D(a)−1, D(a), D(a)−1, D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I) (6.3)

10 7 1 (−I,−I, I, I), (−I, I,−I, I), (−L,−L,L,L) (6.1)
10 8

{
(D(a)−1, D(a)−1, D(a), D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I) (6.3)

10 9 1 (−I,−I, I, I), (−I, I,−I, I), (−L,−L,L,L) (6.1)
10 10

{
(D(a), D(a)−1, D(a)−1, D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I) (6.3)

10 11
{

(D(b)−1, D(a)−1, D(b), D(a)) : a, b ∈ C×} (−I,−I, I, I) (6.6)
10 12

{
(D(a), D(a)−1, D(a)−1, D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I) (6.3)

10 13
{

(D(b)−1, D(b), D(a)−1, D(a)) : a, b ∈ C×} (−I, I,−I, I) (6.7)

Table 12. Centralisers Z = Z
Ĝ

(p, h, e, f) for each p ∈ Σi and e = ni,r as in �eorem 3.2. �e
last column lists reference labels for the equations describing the representatives of the classes
in H1(Z); the notation used in the third and fourth columns is from (3.1).
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A.4. Mixed elements, case p ∈ Σ.

iii rrr kkk semisimple part nilpotent part
2 1 1 (λ1, λ2, λ3, 0) |0011〉

2 (−λ1, λ2, λ3, 0) −|0011〉
3 (−λ1, λ2,−λ3, 0) |0011〉
4 (−λ1,−λ2, λ3, 0) |0011〉
5 (−λ1, λ2, λ3, 0) |0011〉
6 (λ1, λ2, λ3, 0) −|0011〉
7 (λ1, λ2,−λ3, 0) |0011〉
8 (λ1,−λ2, λ3, 0) |0011〉

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2

-conjugacy, each λi ∈ R× and λ1 /∈ {±λ2 ± λ3}

Table 13. Case i = 2i = 2i = 2 and p ∈ Σp ∈ Σp ∈ Σ: Real representatives corresponding to [zk] ∈ H1(Z) and ni,r .

iii rrr kkk semisimple part nilpotent part
3 1 1 (λ1 + λ2,−λ1,−λ2, 0) |0011〉

2 (−λ1 − λ2,−λ1,−λ2, 0) −|0011〉
3 (−λ1 − λ2,−λ1, λ2, 0) |0011〉
4 (−λ1 − λ2, λ1,−λ2, 0) |0011〉
5 (−λ1 − λ2,−λ1,−λ2, 0) |0011〉
6 (λ1 + λ2,−λ1,−λ2, 0) −|0011〉
7 (λ1 + λ2,−λ1, λ2, 0) |0011〉
8 (λ1 + λ2, λ1,−λ2, 0) |0011〉

3 2 1 (λ1 + λ2,−λ1,−λ2, 0) |1011〉+ |0111〉+ |0010〉+ |0001〉
2 (−λ1 − λ2,−λ1,−λ2, 0) |1011〉+ |0111〉 − |0010〉 − |0001〉
3 (−λ1 − λ2,−λ1, λ2, 0) −|1011〉+ |0111〉+ |0010〉 − |0001〉
4 (−λ1 − λ2, λ1,−λ2, 0) −|1011〉+ |0111〉 − |0010〉+ |0001〉
5 (−λ1 − λ2, λ1,−λ2, 0) |1011〉 − |0111〉+ |0010〉 − |0001〉
6 (−λ1 − λ2,−λ1, λ2, ) |1011〉 − |0111〉 − |0010〉+ |0001〉
7 (−λ1 − λ2,−λ1,−λ2, 0) −|1011〉 − |0111〉+ |0010〉+ |0001〉
8 (λ1 + λ2,−λ1,−λ2, 0) −|1011〉 − |0111〉 − |0010〉 − |0001〉

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: (λ1, λ2) up to ΓΠ3

-conjugacy, each λi ∈ R×, λ1 6= −λ2

Table 14. Case i = 3i = 3i = 3 and p ∈ Σp ∈ Σp ∈ Σ: Real representatives corresponding to [zk] ∈ H1(Z) and ni,r .
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iii rrr kkk semisimple part nilpotent part
4 1 1 (λ1, 0, 0, λ4) |1010〉+ |0110〉

2 (−λ1, 0, 0,−λ4) |1010〉+ |0110〉
3 (−λ1, 0, 0, λ4) −|1010〉+ |0110〉
4 (−λ1, 0, 0, λ4) |1010〉 − |0110〉
5 (−λ1, 0, 0, λ4) |1010〉+ |0110〉
6 (λ1, 0, 0,−λ4) |1010〉+ |0110〉
7 (λ1, 0, 0, λ4) −|1010〉+ |0110〉
8 (λ1, 0, 0, λ4) |1010〉 − |0110〉

4 2 1 (λ1, 0, 0, λ4) |0110〉+ |0101〉
2 (−λ1, 0, 0,−λ4) |0110〉+ |0101〉
3 (−λ1, 0, 0, λ4) |0110〉 − |0101〉
4 (−λ1, 0, 0, λ4) −|0110〉+ |0101〉
5 (−λ1, 0, 0, λ4) |0110〉+ |0101〉
6 (λ1, 0, 0,−λ4) |0110〉+ |0101〉
7 (λ1, 0, 0, λ4) |0110〉 − |0101〉
8 (λ1, 0, 0, λ4) −|0110〉+ |0101〉

4 3 1 (λ1, 0, 0, λ4) |0110〉
2 (−λ1, 0, 0,−λ4) |0110〉
3 (−λ1, 0, 0, λ4) |0110〉
4 (−λ1, 0, 0, λ4) −|0110〉

4 4 1 (λ1, 0, 0, λ4) |0101〉
2 (−λ1, 0, 0,−λ4) |0101〉
3 (−λ1, 0, 0, λ4) −|0101〉
4 (−λ1, 0, 0, λ4) |0101〉

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: (λ1, λ4) up to ΓΠ4-conjugacy, λ1, λ4 ∈ R×, λ1 /∈ {±λ4}

Table 15. Case i = 4i = 4i = 4 and p ∈ Σp ∈ Σp ∈ Σ: Real representatives corresponding to [zk] ∈ H1(Z) and ni,r .
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iii rrr kkk semisimple part nilpotent part
7 1 1 λ1(1, 0, 0,−1) |1101〉+ |1011〉+ |1000〉+ |0001〉

2 λ1(−1, 0, 0, 1) −|1101〉+ |1011〉+ |1000〉− |0001〉
3 λ1(−1, 0, 0,−1) |1101〉− |1011〉+ |1000〉− |0001〉
4 λ1(−1, 0, 0,−1) −|1101〉− |1011〉+ |1000〉+ |0001〉
5 λ1(−1, 0, 0,−1) |1101〉+ |1011〉− |1000〉− |0001〉
6 λ1(−1, 0, 0,−1) −|1101〉+ |1011〉− |1000〉+ |0001〉
7 λ1(−1, 0, 0, 1) |1101〉− |1011〉− |1000〉+ |0001〉
8 λ1(1, 0, 0,−1) −|1101〉− |1011〉− |1000〉− |1, 1, 1, 2〉

7 2 1 λ1(1, 0, 0,−1) |1101〉+ |1010〉+ |0001〉
2 λ1(−1, 0, 0, 1) −|1101〉+ |1010〉− |0001〉
3 λ1(−1, 0, 0,−1) |1101〉− |1010〉− |0001〉
4 λ1(−1, 0, 0,−1) −|1101〉+ |1010〉+ |0001〉
5 λ1(−1, 0, 0,−1) |1101〉+ |1010〉− |0001〉
6 λ1(−1, 0, 0,−1) −|1101〉− |1010〉+ |0001〉
7 λ1(−1, 0, 0, 1) |1101〉+ |1010〉+ |0001〉
8 λ1(1, 0, 0,−1) −|1101〉+ |1010〉− |0001〉

7 3 1 λ1(1, 0, 0,−1) |1011〉+ |1000〉+ |0101〉
2 λ1(−1, 0, 0, 1) |1011〉+ |1000〉+ |0101〉
3 λ1(−1, 0, 0,−1) −|1011〉+ |1000〉− |0101〉
4 λ1(−1, 0, 0,−1) −|1011〉+ |1000〉+ |0101〉
5 λ1(−1, 0, 0,−1) |1011〉− |1000〉+ |0101〉
6 λ1(−1, 0, 0,−1) |1011〉− |1000〉− |0101〉
7 λ1(−1, 0, 0, 1) −|1011〉− |1000〉+ |0101〉
8 λ1(1, 0, 0,−1) −|1011〉− |1000〉+ |0101〉

7 4 1 λ1(1, 0, 0,−1) |1011〉+ |1000〉
2 λ1(−1, 0, 0, 1) |1011〉+ |1000〉
3 λ1(−1, 0, 0,−1) −|1011〉+ |1000〉
4 λ1(−1, 0, 0,−1) |1011〉− |1000〉
5 λ1(0, 1, 1, 0) 1

2(−|1111〉+ |1100〉+ |1011〉− |1000〉− |0111〉+ |0100〉+ |0011〉− |0000〉)
6 λ1(0, 1, 1, 0) 1

2(|1111〉− |1100〉− |1011〉+ |1000〉+ |0111〉− |0100〉− |0011〉+ |0000〉)
7 λ1(0, 1,−1, 0) 1

2(|1111〉+ |1100〉+ |1011〉+ |1000〉+ |0111〉+ |0100〉+ |0011〉+ |0000〉)
8 λ1(0,−1, 1, 0) 1

2(|1111〉+ |1100〉+ |1011〉+ |1000〉+ |0111〉+ |0100〉+ |0011〉+ |0000〉)
7 5 1 λ1(1, 0, 0,−1) −|1101〉− |0001〉

2 λ1(−1, 0, 0, 1) −|1101〉− |0001〉
3 λ1(−1, 0, 0,−1) |1101〉− |0001〉
4 λ1(−1, 0, 0,−1) −|1101〉+ |0001〉
5 λ1(0,−1,−1, 0) 1

2(−|1111〉− |1110〉+ |1101〉+ |1100〉+ |0011〉+ |0010〉− |0001〉− |0000〉)
6 λ1(0, 1, 1, 0) 1

2(−|1111〉− |1110〉+ |1101〉+ |1100〉+ |0011〉+ |0010〉− |0001〉− |0000〉)
7 λ1(0,−1, 1, 0) 1

2(|1111〉− |1110〉− |1101〉+ |1100〉+ |0011〉− |0010〉− |0001〉+ |0000〉)
8 λ1(0, 1,−1, 0) 1

2(|1111〉− |1110〉− |1101〉+ |1100〉+ |0011〉− |0010〉− |0001〉+ |0000〉)
7 6 1 λ1(1, 0, 0,−1) |1001〉

2 λ1(−1, 0, 0, 1) |1001〉
3 λ1(−1, 0, 0,−1) |1001〉
4 λ1(−1, 0, 0,−1) −|1001〉

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: λ1 up to ΓΠ7-conjugacy, λ1 ∈ R×

Table 16. Case i = 7i = 7i = 7 and p ∈ Σp ∈ Σp ∈ Σ: Real representatives corresponding to [zk] ∈ H1(Z) and ni,r .
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iii rrr kkk semisimple part nilpotent part
10 1 1 (λ1, 0, 0, 0) |1100〉+ |1010〉+ |0110〉

2 (−λ1, 0, 0, 0) −|1100〉+ |1010〉+ |0110〉
3 (−λ1, 0, 0, 0) |1100〉− |1010〉+ |0110〉
4 (−λ1, 0, 0, 0) |1100〉+ |1010〉− |0110〉
5 (−λ1, 0, 0, 0) |1100〉+ |1010〉+ |0110〉
6 (λ1, 0, 0, 0) −|1100〉+ |1010〉+ |0110〉
7 (λ1, 0, 0, 0) |1100〉− |1010〉+ |0110〉
8 (λ1, 0, 0, 0) |1100〉+ |1010〉− |0110〉

10 3 1 (λ1, 0, 0, 0) |1010〉+ |0110〉+ |0011〉
2 (−λ1, 0, 0, 0) |1010〉+ |0110〉− |0011〉
3 (−λ1, 0, 0, 0) −|1010〉+ |0110〉+ |0011〉
4 (−λ1, 0, 0, 0) |1010〉− |0110〉+ |0011〉
5 (−λ1, 0, 0, 0) |1010〉+ |0110〉+ |0011〉
6 (λ1, 0, 0, 0) |1010〉+ |0110〉− |0011〉
7 (λ1, 0, 0, 0) −|1010〉+ |0110〉+ |0011〉
8 (λ1, 0, 0, 0) |1010〉− |0110〉+ |0011〉

10 7 1 (λ1, 0, 0, 0) |1100〉+ |0110〉+ |0101〉
2 (−λ1, 0, 0, 0) −|1100〉+ |0110〉+ |0101〉
3 (−λ1, 0, 0, 0) |1100〉+ |0110〉− |0101〉
4 (−λ1, 0, 0, 0) |1100〉− |0110〉+ |0101〉
5 (−λ1, 0, 0, 0) |1100〉+ |0110〉+ |0101〉
6 (λ1, 0, 0, 0) −|1100〉+ |0110〉+ |0101〉
7 (λ1, 0, 0, 0) |1100〉+ |0110〉− |0101〉
8 (λ1, 0, 0, 0) |1100〉− |0110〉+ |0101〉

10 9 1 (λ1, 0, 0, 0) |0110〉+ |0101〉+ |0011〉
2 (−λ1, 0, 0, 0) |0110〉+ |0101〉− |0011〉
3 (−λ1, 0, 0, 0) |0110〉− |0101〉+ |0011〉
4 (−λ1, 0, 0, 0) −|0110〉+ |0101〉+ |0011〉
5 (−λ1, 0, 0, 0) |0110〉+ |0101〉+ |0011〉
6 (λ1, 0, 0, 0) |0110〉+ |0101〉− |0011〉
7 (λ1, 0, 0, 0) |0110〉− |0101〉+ |0011〉
8 (λ1, 0, 0, 0) −|0110〉+ |0101〉+ |0011〉

10 5 1 (λ1, 0, 0, 0) |0110〉
2 (−λ1, 0, 0, 0) |0110〉

10 11 1 (λ1, 0, 0, 0) |1010〉
2 (−λ1, 0, 0, 0) |1010〉

10 13 1 (λ1, 0, 0, 0) |0011〉
2 (−λ1, 0, 0, 0) |0011〉

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: λ1 up to ΓΠ10-conjugacy, λ1 ∈ R×

Table 17. Case i = 10i = 10i = 10 andp ∈ Σp ∈ Σp ∈ Σ (Part I): Real representatives corresponding to [zk] ∈ H1(Z)
and ni,r .
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iii rrr kkk semisimple part nilpotent part
10 2 1 (λ1, 0, 0, 0) |1010〉+ |0110〉

2 (−λ1, 0, 0, 0) |1010〉+ |0110〉
3 (−λ1, 0, 0, 0) −|1010〉+ |0110〉
4 (−λ1, 0, 0, 0) |1010〉− |0110〉

10 4 1 (λ1, 0, 0, 0) |1100〉+ |0110〉
2 (−λ1, 0, 0, 0) −|1100〉+ |0110〉
3 (−λ1, 0, 0, 0) |1100〉+ |0110〉
4 (−λ1, 0, 0, 0) |1100〉− |0110〉

10 6 1 (λ1, 0, 0, 0) |0110〉+ |0011〉
2 (−λ1, 0, 0, 0) |0110〉− |0011〉
3 (−λ1, 0, 0, 0) |0110〉+ |0011〉
4 (−λ1, 0, 0, 0) −|0110〉+ |0011〉

10 8 1 (λ1, 0, 0, 0) |0110〉+ |0101〉
2 (−λ1, 0, 0, 0) |0110〉+ |0101〉
3 (−λ1, 0, 0, 0) |0110〉− |0101〉
4 (−λ1, 0, 0, 0) −|0110〉+ |0101〉

10 10 1 (λ1, 0, 0, 0) |1100〉+ |1010〉
2 (−λ1, 0, 0, 0) −|1100〉+ |1010〉
3 (−λ1, 0, 0, 0) |1100〉− |1010〉
4 (−λ1, 0, 0, 0) |1100〉+ |1010〉

10 12 1 (λ1, 0, 0, 0) |1010〉+ |0011〉
2 (−λ1, 0, 0, 0) |1010〉− |0011〉
3 (−λ1, 0, 0, 0) −|1010〉+ |0011〉
4 (−λ1, 0, 0, 0) |1010〉+ |0011〉

Coe�cients: with respect to the basis {u1, u2, u3, u4}
Conditions: λ1 up to ΓΠ10-conjugacy, λ1 ∈ R×

Table 18. Case i = 10i = 10i = 10 and p ∈ Σp ∈ Σp ∈ Σ (Part II): Real representatives corresponding to [zk] ∈
H1(Z) and ni,r .
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A.5. Mixed elements, case p /∈ Σ.

iii jjj nilpotent elements
2 2 n2,2,1 = −|0110〉

4, 6, 7, 8 n2,j,1 = |0011〉
3, 5 n2,j,1 = |0000〉

3 2 n3,2,1 = −|0011〉, n3,2,2 = −|0111〉+ |1011〉− |0010〉− |0001〉
4 2, 3 n4,j,1 = |0110〉+ |1010〉, n4,j,2 = |0110〉+ |0101〉, n4,j,3 = |0110〉, n4,j,4 = |0101〉

4 n4,4,1 = −1
2(−|1110〉− |1101〉+ |1010〉+ |1001〉+ |0110〉+ |0101〉− |0010〉− |0001〉)

7 2 n7,2,1 = −|1101〉− |1011〉− |1000〉+ |0001〉, n7,2,2 = −|1101〉− |1010〉+ |0001〉,
n7,2,3 = −|1011〉− |1000〉+ |0101〉, n7,2,4 = −|1011〉− |1000〉,
n7,2,5 = −|1101〉+ |0001〉, n7,2,6 = −|1001〉

10 2 n10,2,1 = −|1100〉− |1010〉+ |0110〉, n10,2,2 = −|1010〉+ |0110〉,
n10,2,3 = −|1010〉+ |0110〉+ |0011〉, n10,2,4 = −|1100〉+ |0110〉, n10,2,5 = |0110〉,
n10,2,6 = |0110〉+ |0011〉, n10,2,7 = −|1100〉+ |0110〉+ |0101〉, n10,2,8 = |0110〉+ |0101〉,
n10,2,9 = |0110〉− |0101〉− |0011〉, n10,2,10 = −|1100〉− |1010〉, n10,2,11 = −|1010〉,
n10,2,12 = −|1010〉+ |0011〉, n10,2,13 = |0011〉.

Table 19. �e nilpotent elements ni,j,r used in the classi�cation of mixed elements with
semisimple part p′ /∈ Σ, sorted by Case i and cohomology class [γj ].
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iii jjj kkk semisimple part nilpotent part
2 2 1 (−ıλ3, 0, λ1,−ıλ2) −|0110〉

2 (ıλ3, 0, λ1, ıλ2) −|0110〉
3 (ıλ3, 0,−λ1,−ıλ2) −|0110〉
4 (ıλ3, 0, λ1,−ıλ2) |0110〉
5 (ıλ3, 0, λ1,−ıλ2) −|0110〉
6 (−ıλ3, 0, λ1, ıλ2) −|0110〉
7 (−ıλ3, 0,−λ1,−ıλ2) −|0110〉
8 (−ıλ3, 0, λ1,−ıλ2) |0110〉

Coe�cients: with respect to the basis {z1, z2, z3, z4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2-conjugacy, λ1 ∈ R×, λ2, λ3 ∈ ıR×

2 3 1 (0,−λ3,−ıλ2, λ1) |0000〉
2 (0,−λ3,−ıλ2,−λ1) −|0000〉
3 (0,−λ3, ıλ2, λ1) −|0000〉
4 (0, λ3,−ıλ2, λ1) −|0000〉
5 (0,−λ3,−ıλ2, λ1) −|0000〉
6 (0,−λ3,−ıλ2,−λ1) |0000〉
7 0,−λ3, ıλ2, λ1 |0000〉
8 (0, λ3,−ıλ2, λ1) |0000〉

Coe�cients: with respect to the basis {y1, y2, y3, y4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2-conjugacy, λ1, λ3 ∈ R×, λ2 ∈ ıR×, and λ1 /∈ {±λ3}
2 4 1 (−ıλ1,−ıλ2, λ3, 0) |0011〉

2 (ıλ1,−ıλ2, λ3, 0) −|0011〉
3 (ıλ1,−ıλ2,−λ3, 0) |0011〉
4 (ıλ1, ıλ2, λ3, 0) |0011〉
5 (ıλ1,−ıλ2, λ3, 0) |0011〉
6 (−ıλ1,−ıλ2, λ3, 0) −|0011〉
7 (−ıλ1,−ıλ2,−λ3, 0) |0011〉
8 (−ıλ1, ıλ2, λ3, 0) |0011〉

Coe�cients: with respect to the basis {x1, x2, x3, x4}
Conditions:(λ1, λ2, λ3) up to ΓΠ2-conjugacy, λ3 ∈ R×, λ1, λ2 ∈ ıR×, and λ1 /∈ {±λ2}

Table 20. Cases i = 2i = 2i = 2 and p /∈ Sp /∈ Sp /∈ S (Part I): Mixed real representatives corresponding to γj ,
[zk] ∈ H1(Z), and n2,j,1.
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iii jjj kkk semisimple part nilpotent part
2 5 1 (0, ıλ3,−λ2, λ1) |0000〉

2 (0, ıλ3,−λ2,−λ1) −|0000〉
3 (0, ıλ3, λ2, λ1) −|0000〉
4 (0,−ıλ3,−λ2, λ1) −|0000〉
5 (0, ıλ3,−λ2, λ1) −|0000〉
6 (0, ıλ3,−λ2,−λ1) |0000〉
7 (0, ıλ3, λ2, λ1) |0000〉
8 (0,−ıλ3,−λ2, λ1) |0000〉

Coe�cients: with respect to the basis {x1, x2, x3, x4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2-conjugacy, λ1, λ2 ∈ R×, λ3 ∈ ıR×, and λ1 /∈ {±λ2}
2 6 1 (−ıλ1, λ2, ıλ3, 0) |0011〉

2 (ıλ1, λ2, ıλ3, 0) −|0011〉
3 (ıλ1, λ2,−ıλ3, 0) |0011〉
4 (ıλ1,−λ2, ıλ3, 0) |0011〉
5 (ıλ1, λ2, ıλ3, 0) |0011〉
6 (−ıλ1, λ2, ıλ3, 0) −|0011〉
7 (−ıλ1, λ2,−ıλ3, 0) |0011〉
8 (−ıλ1,−λ2, ıλ3, 0) |0011〉

Coe�cients: with respect to the basis {y1, y2, y3, y4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2-conjugacy, λ2 ∈ R×, λ1, λ3 ∈ ıR×, and λ1 /∈ {±λ3}
2 7 1 (−ıλ1, λ2, λ3, 0) |0011〉

2 (ıλ1, λ2, λ3, 0) −|0011〉
3 (ıλ1, λ2,−λ3, 0) |0011〉
4 (ıλ1,−λ2, λ3, 0) |0011〉
5 (ıλ1, λ2, λ3, 0) |0011〉
6 (−ıλ1, λ2, λ3, 0) −|0011〉
7 (−ıλ1, λ2,−λ3, 0) |0011〉
8 (−ıλ1,−λ2, λ3, 0) −|0011〉

Coe�cients: with respect to the basis {y1, y2, y3, y4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2-conjugacy, λ2, λ3 ∈ R×, λ1 ∈ ıR×, and λ1 /∈ {±λ3}
2 8 1 (ıλ1, ıλ2, ıλ3, 0) |0011〉

2 (−ıλ1, ıλ2, ıλ3, 0) −|0011〉
3 (−ıλ1, ıλ2,−ıλ3, 0) |0011〉
4 (−ıλ1,−ıλ2, ıλ3, 0) |0011〉
5 (−ıλ1, ıλ2, ıλ3, 0) |0011〉
6 (ıλ1, ıλ2, ıλ3, 0) −|0011〉
7 (ıλ1, ıλ2,−ıλ3, 0) |0011〉
8 (ıλ1,−ıλ2, ıλ3, 0) |0011〉

Coe�cients: with respect to the basis {v1, v2, v3, v4}
Conditions: (λ1, λ2, λ3) up to ΓΠ2-conjugacy, each λi ∈ ıR× and λ1 /∈ {±λ2 ± λ3}

Table 21. Cases i = 2i = 2i = 2 and /∈ S/∈ S/∈ S (Part II):Mixed real representatives corresponding to γj , [zk] ∈
H1(Z), and n2,j,1.
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iii rrr kkk semisimple part nilpotent part
3 1 1 (ıλ1 + ıλ2,−ıλ1,−ıλ2, 0) |0011〉

2 (−ıλ1 − ıλ2,−ıλ1,−ıλ2, 0) −|0011〉
3 (−ıλ1 − ıλ2,−ıλ1, ıλ2, 0) |0011〉
4 (−ıλ1 − ıλ2, ıλ1,−ıλ2, 0) |0011〉
5 (−ıλ1 − ıλ2,−ıλ1,−ıλ2, 0) |0011〉
6 (ıλ1 + ıλ2,−ıλ1,−ıλ2, 0) −|0011〉
7 (ıλ1 + ıλ2,−ıλ1, ıλ2, 0) |0011〉
8 (ıλ1 + ıλ2, ıλ1,−ıλ2, 0) |0011〉

Coe�cients: with respect to the basis {v1, v2, v3}
Conditions: (λ1, λ2) up to ΓΠ3-conjugacy, each λi ∈ ıR×, λ1 6= −λ2

3 2 1 (ıλ1 + ıλ2,−ıλ1,−ıλ2, 0) |1011〉− |0111〉− |0010〉− |0001〉
2 (−ıλ1 − ıλ2,−ıλ1,−ıλ2, 0) |1011〉− |0111〉+ |0010〉+ |0001〉
3 (−ıλ1 − ıλ2,−ıλ1, ıλ2, 0) −|1011〉− |0111〉− |0010〉+ |0001〉
4 (−ıλ1 − ıλ2, ıλ1,−ıλ2, 0) −|1011〉− |0111〉+ |0010〉− |0001〉
5 (−ıλ1 − ıλ2, ıλ1,−ıλ2, 0) |1011〉+ |0111〉− |0010〉+ |0001〉
6 (−ıλ1 − ıλ2,−ıλ1, ıλ2, 0) |1011〉+ |0111〉+ |0010〉− |0001〉
7 (−ıλ1 − ıλ2,−ıλ1,−ıλ2, 0) −|1011〉+ |0111〉− |0010〉− |0001〉
8 (ıλ1 + ıλ2,−ıλ1,−ıλ2, 0) −|1011〉+ |0111〉+ |0010〉+ |0001〉

Coe�cients: with respect to the basis {v1, v2, v3}
Conditions: (λ1, λ2) up to ΓΠ3-conjugacy, each λi ∈ ıR×, λ1 6= −λ2

Table 22. Cases i = 3i = 3i = 3 and p /∈ Sp /∈ Sp /∈ S: Mixed real representatives corresponding to γ2, [zk] ∈
H1(Z), and n3,2,r .
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iii rrr kkk semisimple part nilpotent part
7 1 1 (ıλ, 0, 0,−ıλ) −|1101〉− |1011〉− |1000〉+ |0001〉

2 (−ıλ, 0, 0, ıλ) |1101〉− |1011〉− |1000〉− |0001〉
3 (−ıλ, 0, 0,−ıλ) −|1101〉+ |1011〉− |1000〉− |0001〉
4 (−ıλ, 0, 0,−ıλ) |1101〉+ |1011〉− |1000〉+ |0001〉
5 (−ıλ, 0, 0,−ıλ) −|1101〉− |1011〉+ |1000〉− |0001〉
6 (−ıλ, 0, 0,−ıλ) |1101〉− |1011〉+ |1000〉+ |0001〉
7 (−ıλ, 0, 0, ıλ) −|1101〉+ |1011〉+ |1000〉+ |0001〉
8 (ıλ, 0, 0,−ıλ) |1101〉+ |1011〉+ |1000〉− |0001〉

7 2 1 −|1101〉− |1010〉+ |0001〉
2 |1101〉− |1010〉− |0001〉
3 −|1101〉+ |1010〉− |0001〉
4 same as r = 1 |1101〉− |1010〉+ |0001〉
5 −|1101〉− |1010〉− |0001〉
6 |1101〉+ |1010〉+ |0001〉
7 −|1101〉− |1010〉+ |0001〉
8 |1101〉− |1010〉− |0001〉

7 3 1 −|1011〉− |1000〉+ |0101〉
2 −|1011〉− |1000〉+ |0101〉
3 |1011〉− |1000〉− |0101〉
4 same as r = 1 |1011〉− |1000〉+ |0101〉
5 −|1011〉+ |1000〉+ |0101〉
6 −|1011〉+ |1000〉− |0101〉
7 |1011〉+ |1000〉+ |0101〉
8 |1011〉+ |1000〉+ |0101〉

7 4 1 (ıλ, 0, 0,−ıλ) |1011〉+ |1000〉
2 (−ıλ, 0, 0, ıλ) |1011〉+ |1000〉
3 (−ıλ, 0, 0,−ıλ) −|1011〉+ |1000〉
4 (−ıλ, 0, 0,−ıλ) |1011〉− |1000〉
5 (−ıλ, 0, 0, ıλ) 1

2(−|1110〉− |1101〉+ |1010〉+ |1001〉− |0110〉− |0101〉+ |0010〉+ |0001〉)
6 (ıλ, 0, 0,−ıλ) 1

2(−|1110〉− |1101〉+ |1010〉+ |1001〉− |0110〉− |0101〉+ |0010〉+ |0001〉)
7 (−ıλ, 0, 0,−ıλ) 1

2(|1110〉− |1101〉+ |1010〉− |1001〉+ |0110〉− |0101〉+ |0010〉− |0001〉)
8 (−ıλ, 0, 0,−ıλ) 1

2(−|1110〉+ |1101〉− |1010〉+ |1001〉− |0110〉+ |0101〉− |0010〉+ |0001〉)
7 5 1 (ıλ, 0, 0,−ıλ) −|1101〉+ |0001〉

2 (−ıλ, 0, 0,−ıλ) −|1101〉− |0001〉
3 (−ıλ, 0, 0,−ıλ) +|1101〉+ |0001〉
4 (−ıλ, 0, 0, ıλ) −|1101〉+ |0001〉
5 (ıλ, 0, 0, ıλ) 1

2(−|1011〉− |1010〉+ |1001〉+ |1000〉− |0111〉− |0110〉+ |0101〉+ |0100〉)
6 (ıλ, 0, 0,−ıλ) 1

2(|1011〉− |1010〉− |1001〉+ |1000〉− |0111〉+ |0110〉+ |0101〉− |0100〉)
7 (ıλ, 0, 0,−ıλ) 1

2(−|1011〉+ |1010〉+ |1001〉− |1000〉+ |0111〉− |0110〉− |0101〉+ |0100〉)
8 (−ıλ, 0, 0,−ıλ) 1

2(−|1011〉− |1010〉+ |1001〉+ |1000〉− |0111〉− |0110〉+ |0101〉+ |0100〉)
7 6 1 (ıλ, 0, 0,−ıλ) |1001〉

2 (−ıλ, 0, 0, ıλ) |1001〉
3 (−ıλ, 0, 0,−ıλ) |1001〉
4 (−ıλ, 0, 0,−ıλ) −|1001〉

Coe�cients: with respect to the basis {v1, v4}
Conditions: λ up to ΓΠ7-conjugacy, λ ∈ ıR×

Table 23. Cases i = 7i = 7i = 7 and p /∈ Sp /∈ Sp /∈ S: Mixed real representatives corresponding to γ2, [zk] ∈
H1(Z), and n7,2,r .
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iii rrr kkk semisimple part nilpotent part
10 1 1 (ıλ, 0, 0, 0) −|1100〉− |1010〉+ |0110〉

3 −|1010〉+ |0110〉+ |0011〉
7 −|1100〉+ |0110〉+ |0101〉
9 |0110〉− |0101〉− |0011〉
1 2 (−ıλ, 0, 0, 0) |1100〉− |1010〉+ |0110〉
3 −|1010〉+ |0110〉− |0011〉
7 |1100〉+ |0110〉+ |0101〉
9 |0110〉− |0101〉+ |0011〉
1 3 (−ıλ, 0, 0, 0) −|1100〉+ |1010〉+ |0110〉
3 |1010〉+ |0110〉+ |0011〉
7 −|1100〉+ |0110〉− |0101〉
9 |0110〉+ |0101〉− |0011〉
1 4 (−ıλ, 0, 0, 0) −|1100〉− |1010〉− |0110〉
3 −|1010〉− |0110〉+ |0011〉
7 −|1100〉− |0110〉+ |0101〉
9 −|0110〉− |0101〉− |0011〉
1 5 (−ıλ, 0, 0, 0) −|1100〉− |1010〉+ |0110〉
3 −|1010〉+ |0110〉+ |0011〉
7 −|1100〉+ |0110〉+ |0101〉
9 |0110〉− |0101〉− |0011〉
1 6 (ıλ, 0, 0, 0) |1100〉− |1010〉+ |0110〉
3 −|1010〉+ |0110〉− |0011〉
7 |1100〉+ |0110〉+ |0101〉
9 |0110〉− |0101〉+ |0011〉
1 7 (ıλ, 0, 0, 0) −|1100〉+ |1010〉+ |0110〉
3 |1010〉+ |0110〉+ |0011〉
7 −|1100〉+ |0110〉− |0101〉
9 |0110〉+ |0101〉− |0011〉
1 8 (ıλ, 0, 0, 0) −|1100〉− |1010〉− |0110〉
3 −|1010〉− |0110〉+ |0011〉
7 −|1100〉− |0110〉+ |0101〉
9 −|0110〉− |0101〉− |0011〉

Coe�cients: with respect to the basis {v1, v2, v3, v4}
Conditions: λ up to ΓΠ10-conjugacy, λ ∈ ıR×

Table 24. Cases i = 10i = 10i = 10 and p /∈ Sp /∈ Sp /∈ S (Part I): Mixed real representatives corresponding to γ2,
[zk] ∈ H1(Z), and n10,2,r .
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iii rrr kkk semisimple part nilpotent part
10 2, 4, 6, 8, 10, 12 1 (ıλ, 0, 0, 0) −|1010〉+ |0110〉

−|1100〉+ |0110〉
|0110〉+ |0011〉
|0110〉+ |0101〉
−|1100〉− |1010〉
−|1010〉+ |0011〉

2 (−ıλ, 0, 0, 0) −|1010〉+ |0110〉
|1100〉+ |0110〉
|0110〉− |0011〉
|0110〉+ |0101〉
|1100〉− |1010〉
−|1010〉− |0011〉

3 (−ıλ, 0, 0, 0) |1010〉+ |0110〉
−|1100〉+ |0110〉
|0110〉+ |0011〉
|0110〉− |0101〉
−|1100〉+ |1010〉
|1010〉+ |0011〉

4 (−ıλ, 0, 0, 0) −|1010〉− |0110〉
−|1100〉− |0110〉
−|0110〉+ |0011〉
−|0110〉+ |0101〉
−|1100〉− |1010〉
−|1010〉+ |0011〉

10 5, 11 1 (ıλ, 0, 0, 0) |0110〉
−|1010〉

2 (−ıλ, 0, 0, 0) |0110〉
−|1010〉

10 13 1 (ıλ, 0, 0, 0) |0011〉
2 (−ıλ, 0, 0, 0) |0011〉

Coe�cients: with respect to the basis {v1, v2, v3, v4}
Conditions: λ up to ΓΠ10-conjugacy, λ ∈ ıR×

Table 25. Cases i = 10i = 10i = 10 and p /∈ Sp /∈ Sp /∈ S (Part II): Mixed real representatives corresponding to γ2,
[zk] ∈ H1(Z), and n10,2,r .
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iii jjj rrr kkk semisimple part nilpotent part
4 2 1 1 (ıλ1, 0, 0, λ4) |1010〉+ |0110〉

2 (−ıλ1, 0, 0,−λ4) |1010〉+ |0110〉
3 (−ıλ1, 0, 0, λ4) −|1010〉+ |0110〉
4 (−ıλ1, 0, 0, λ4) |1010〉− |0110〉
5 (−ıλ1, 0, 0, λ4) |1010〉+ |0110〉
6 (ıλ1, 0, 0,−λ4) |1010〉+ |0110〉
7 (ıλ1, 0, 0, λ4) −|1010〉+ |0110〉
8 (ıλ1, 0, 0, λ4) |1010〉− |0110〉

4 2 2 1 |0110〉+ |0101〉
2 |0110〉+ |0101〉
3 |0110〉− |0101〉
4 −|0110〉+ |0101〉
5 same as r = 1 |0110〉+ |0101〉
6 |0110〉+ |0101〉
7 |0110〉− |0101〉
8 −|0110〉+ |0101〉

4 2 3 1 (ıλ1, 0, 0, λ4) |0110〉
2 (−ıλ1, 0, 0,−λ4) |0110〉
3 (−ıλ1, 0, 0, λ4) |0110〉
4 (−ıλ1, 0, 0, λ4) −|0110〉

4 2 4 1 |0101〉
2 |0101〉
3 same as r = 3 −|0101〉
4 |0101〉

Coe�cients: with respect to the basis {t1, t4}
Conditions: (λ1, λ4) up to ΓΠ4-conjugacy, λ4 ∈ R×, λ1 ∈ ıR×

Table 26. Cases i = 4i = 4i = 4 and p /∈ Sp /∈ Sp /∈ S (Part I): Mixed real representatives corresponding to γj ,
[zk] ∈ H1(Z), and n4,j,r .
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iii jjj rrr kkk semisimple part nilpotent part
4 3 1 1 (−ıλ1, 0, 0, ıλ4) |1010〉+ |0110〉

2 (ıλ1, 0, 0,−ıλ4) |1010〉+ |0110〉
3 (ıλ1, 0, 0, ıλ4) −|1010〉+ |0110〉
4 (ıλ1, 0, 0, ıλ4) |1010〉− |0110〉
5 (ıλ1, 0, 0, ıλ4) |1010〉+ |0110〉
6 (−ıλ1, 0, 0,−ıλ4) |1010〉+ |0110〉
7 (−ıλ1, 0, 0, ıλ4) −|1010〉+ |0110〉
8 (−ıλ1, 0, 0, ıλ4) |1010〉− |0110〉

4 3 2 1 |0110〉+ |0101〉
2 |0110〉+ |0101〉
3 |0110〉− |0101〉
4 −|0110〉+ |0101〉
5 same as r = 1 |0110〉+ |0101〉
6 |0110〉+ |0101〉
7 |0110〉− |0101〉
8 −|0110〉+ |0101〉

4 3 3 1 (−ıλ1, 0, 0, ıλ4) |0110〉
2 (ıλ1, 0, 0,−ıλ4) |0110〉
3 (ıλ1, 0, 0, ıλ4) |0110〉
4 (ıλ1, 0, 0, ıλ4) −|0110〉

4 3 4 1 |0101〉
2 |0101〉
3 same as r = 3 −|0101〉
4 |0101〉

Coe�cients: with respect to the basis {z1, z2, z3, z4}
Conditions: (λ1, λ4) up to ΓΠ4-conjugacy, λ1, λ2 ∈ ıR×, λ1 /∈ {±λ2}
4 4 1 1 1

2(−ı(λ1 +λ4), λ1−λ4,−λ1 +λ4,−ı(λ1 +λ4)) 1
2(|1110〉+ |1101〉+ |1010〉+ |1001〉
+|0110〉+ |0101〉+ |0010〉+ |0001〉)

2 1
2(ı(λ1 + λ4), λ1 − λ4,−λ1 + λ4, ı(λ1 + λ4)) 1

2(|1110〉+ |1101〉+ |1010〉+ |1001〉
+|0110〉+ |0101〉+ |0010〉+ |0001〉)

3 1
2(ı(λ1 + λ4), λ1 − λ4, λ1 − λ4,−ı(λ1 + λ4)) 1

2(|1110〉− |1101〉− |1010〉+ |1001〉
−|0110〉− |0101〉+ |0010〉+ |0001〉)

4 1
2(ı(λ1 +λ4),−λ1 +λ4,−λ1 +λ4,−ı(λ1 +λ4)) 1

2(−|1110〉+ |1101〉+ |1010〉− |1001〉
−|0110〉+ |0101〉+ |0010〉− |0001〉)

Coe�cients: with respect to the basis {z1, z2, z3, z4}
Conditions: (λ1, λ4) up to ΓΠ4-conjugacy, ı(λ1 + λ4), λ1 − λ4 ∈ R×, λ1 /∈ {±λ4}

Table 27. Cases i = 4i = 4i = 4 and p /∈ Sp /∈ Sp /∈ S (Part II): Mixed real representatives corresponding to γj ,
[zk] ∈ H1(Z), and n4,j,r .
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