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PREFACE

Since the first detection of a Gravitational Wave, the LIGO-Virgo Collaboration has
worked to improve the sensitivity of their detectors. This continuous effort paid off in
the last scientific run, in which the collaboration detected an average of one gravitational
wave per week and collected 74 candidates in less than one year.

This result was also possible due to the Frequency Independent Squeezing (FIS)
implementation, which improved the Virgo detection range for the coalescence between
two Binary Neutron Start (BNS) of 5-8%. However, this incredible result was dramati-
cally limited by different technical issues, among which the most dangerous was the
mismatch between the squeezed vacuum beam and the resonance mode of the cavities.

The mismatch can be modelled as a simple optical loss in the first approximation. If
the beam shape of squeezed vacuum does not match the resonance mode, part of its
amplitude is lost and replaced with the incoherent vacuum. However, this modelisation
is valid only in simple setups, e.g. if we study the effect inside a single resonance cavity
or the transmission of a mode cleaner. In the case of a more complicated system, such
as a gravitational wave interferometer, the squeezed vacuum amplitude rejected by
the mismatch still travels inside the optical setup. This component accumulates an
extra defined by the characteristics of the mismatch, and it can recouple into the main
beam reducing the effect of the quantum noise reduction technique[1]. This issue will
become more critical in the implementation of the Frequency Dependent Squeezing.
This technique is an upgrade of the Frequency Independent Squeezing one. The new
setup will increase the complexity of the squeezed beam path.

The characterisation of this degradation mechanism requires a dedicated wavefront
sensing technique. In fact, the simpler approach based on studying the resonance
peak of the cavity is not enough. This method can only estimate the total amount of
the optical loss generated by the mismatch, but it cannot characterise the phase shift
generated by the decoupling. Without this information is impossible to estimate how
the mismatched squeezed vacuum is recoupled into the main beam, and this limits the
possibility to foreseen the degradation of the Quantum Noise Reduction technique.

For this reason, the Padova-Trento Group studied different techniques for character-
ising Mode Matching. In particular, we proposed implementing the Mode Converter
technique developed by Syracuse University[2]. This technique can fully characterise
the mismatch of a spherical beam, and it can be the first approach to monitoring the
mismatch. However, this method is not enough for the Frequency Dependent Squeezer
source since it cannot detect the mismatch generated by the astigmatism of the incoming
beam.

In fact, the Frequency Dependent Squeezer Source case uses off-axis reflective tele-
scopes to reduce the power losses generated by transmissive optics. This setup used
curved mirrors that induce small astigmatic aberrations as a function of the beam inci-
dent angle. These aberrations are present by design, and the standard Mode Converter
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Technique will not detect them. To overcome this issue, I proposed an upgrade of the
Mode Converter technique, which can extend the detection to this kind of aberration.

The Quantum Noise Reduction system is currently implementing the standard Mode
Converter Technique, while the astigmatic wavefront sensing is foreseen for the next
detector upgrades and is still under review.

The manuscript is divided into seven chapters:

Chapter 1 I briefly introduce the reader to the gravitational wave detector with a
specific focus on quantum noise. Here, We discuss the main ideas of the Quantum
Noise Reduction system and why it is necessary to have real-time detection of the
Mode Matching.

Chapter 2 This chapter contains all the theoretical frameworks at the foundation of
the Mode Matching sensing. I start with an introduction to the resonant cavities
and their transverse mode. After that, I formalise the mode matching in the case
of a Simple Astigmatic Gaussian Beam and extend the standard representation
proposed by Anderson[3].

Chapter 3 This chapter is dedicated to the Astigmatic Mode Matching Sensing tech-
nique. Here, I will present the detection setup required for the measurement of
the mismatch, and I will discuss its experimental limits.

Chapter 4 The Mode Matching Technique was validated using a dedicated tabletop
experiment built from the ground up. In this chapter, we report the full character-
isation of each component.

Chapter 5 This chapter reports validating the Mode Matching Sensing technique. I
first describe the experimental protocol and then discuss the measurement and
the validation of the method.

Chapter 6 In this chapter, I presented the general setup of the Frequency Depen-
dent Squeezing source and the design of the wavefront sensors dedicated to
the squeezed vacuum beam. The installation of the Mode Converter Technique in
the Quantum Noise Reduction System is still ongoing.

Chapter 7 We conclude the thesis with a summary of themain results and a description
of the next steps of these experiments.
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I GRAVITATIONAL WAVE DETECTION

Figure I.1: Stellar Graveyard. Graphic representation of the source of the gravitational wave
signal detected by the LIGO-Virgo Collaboration. The Black holes are represented in
blue, while the Neutron stars are in orange. This version contains all events through
the end of O3 with p_astro1> 0.5. Credit: LIGO-Virgo, Aaron Geller, Northwestern
University.

During the last scientific run, the LIGO-Virgo Collaboration detected 79 candidates of
Gravitational Wave events: 44 in the first six months2, and 35 in the second five months3.
These numbers correspond to a detection rate of more than one event per week and
define a new era for the gravitational wave community.

This milestone was the result of different activities performed between the second
and the third observing runs. From August 2017 until April 2019, different aspects
of the detectors were improved: LIGO-Hanford and LIGO-Livingston improved the
quality of their mirrors, while Virgo upgraded the suspension system of the external
input bench and of the interferometer mirrors. On top of these specific upgrades, all
the detectors increased the input power and implemented the Frequency Independent
Squeezing technique[6].

With the conclusion of the third scientific run in March 2022, the detector of the
1p_astro is the probability of astrophysical origin assuming a compact binary coalescence source.
2Between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC[4].
3Between 1 November 2019 15:00 UTC and 27 March 2020 17:00 UTC[5].
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LIGO-Virgo collaboration started the installation and commissioning of a new package
of upgrades. These activities are still ongoing at the time of writing, but we expect a
dramatic increase in the detector performance. In particular, the Virgo interferometer
is going to: increase the input optical power up to 40W, install the Signal Recycling
Mirror, and implement the Frequency Dependent Squeezing technique[7]. Similar
improvements are foreseen for the LIGO interferometers[8].

The implementation of these upgrades is based on a multitude of Research and
Development projects. The new hardware and the new experimental techniques are
first tested in the various laboratories of the Collaboration before they are installed in
the detectors.

In particular, the Frequency Dependent Squeezing was first validated on a tabletop
experiment[9][10] and after in a full-scale experiment at TAMA, in Japan[11] and at
LIGO[12], in U.S.A. . The information obtained from these two experiments, together
with the expertise obtained during the installation of Frequency Independent Squeezing,
made it possible to identify different technical issues which limit the efficiency of the
technique. This upgrade is strongly limited by power losses that have to be identified
and compensated everywhere possible. The work presented in this thesis is focused on
one specific loss mechanism called Mode Mismatch.

This chapter will be a small introduction to the scientific context. In the first part, I will
briefly introduce gravitational wave detectors and the fundamental noise generated by
the quantum nature of light. Inside this background, I will present how the Frequency
Dependent Squeezing technique improves the detector sensitivity and how the optical
losses limit the method.

I.1. Advanced Virgo Plus
In order to understand how a gravitational wave detector works, we first need to
introduce what a gravitational wave is. The formal derivation of this phenomenon
arises from studying the linearised equation of the gravitational field. This analysis is
beyond the scope of this thesis; however, we can use the results described in [13] to
define some properties of the gravitational wave. First, the gravitational wave is the
space-time metric’s deformation, which changes the distance between objects. Second,
the gravitational wave is transverse, so this deformation takes place orthogonal to the
wave propagation. Third, the deformation is oriented along two orthogonal axes, and
it is intrinsically differential, meaning that if one axis is stretched, the other one is
compressed. Fourth, the gravitational waves have two polarization, rotated by 45° one
with respect to the other.

The effect of a gravitational wave can be pictured by considering a set of free-falling
masses arranged as in Figure I.2 and assuming a gravitational wave that crosses perpen-
dicular to the page with polarisation oriented as +. The deformation of the space-time
changes the distance between the masses, and the diameter along the two axes x̂ and ŷ
will evolve as

Lx(t) = L
(

1 +
1
2

h(t)
)

Ly(t) = L
(

1 − 1
2

h(t)
) (I.1)

where h(t) is the amplitude of the gravitational wave and L is the circle diameter at
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Figure I.2: Time Evolution of a gravitational wave. The effect of a gravitational wave is the
deformation of the space-time metric.

time t = 0.
The differential nature of the deformation is at the foundation of the last generation

of gravitational wave detectors. This pattern matches the structure of a Michelson
interferometer, an optical setup designed to convert the difference between the two
orthogonal paths into an optical signal. Using Figure I.3 as a reference, we have an
incoming beam Ein that is divided by a beam splitter into two fields:

E1 = Ein
i√
2

and E2 = Ein
1√
2

(I.2)

where E1 is reflected and sent to the y Arm and E2 is transmitted and sent to the x Arm.
They respectively travel for a distance Ly and Lx and their amplitude collects a phase
shift of

E3 = E1eikLy and E4 = E2eikLx (I.3)
where k is the wave vector k = 2π/λ and λ is the beam wavelength. After that, they
are reflected by the two end mirrors,

E5 = E3i and E6 = E4i (I.4)

and they travel back to the beam splitter, collecting a phase shift proportional to the
arm lengths, Ly and Lx again:

E7 = E5eikLy and E8 = E6eikLx (I.5)

These two are divided by the beam splitter:

E9 =
E7√

2
and E11 = i

E7√
2

E10 =
E8√

2
and E12 = i

E8√
2

(I.6)

and the final four beams superimpose at the two outputs of the interferometer. At the
symmetric port(left), we have:

Esym = E11 + E10 =
−1
2

(
ei2kLx + eik2Ly

)
Ein (I.7)
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Figure I.3: Optical Scheme of a Michelson interferometer. If the gravitational wave polarisation
is perfectly alignedwith the interferometer arms, the space-time deformation induces
a differential variation of the arm lengths detected at the output.

while at the anti-symmetric port(bottom):

Easy = E9 + E12 =
i
2

(
ei2kLx − eik2Ly

)
Ein (I.8)

The amplitude of the gravitational wave, h(t), is encoded in the difference between the
phases accumulated along the two arms. This information is most clearly represented
using

L =
Lx + Ly

2
and δL =

Lx − Ly

2
(I.9)

which divide the common arms length, L, from the differential one δL. The first param-
eter represents the interferometer size, while the second contains the signal of interest.
By combining E.q. I.1 with Eq. I.9, we can see that the effect of a gravitational wave
changes the differential length:

δL(t) =
Lx(t)− Ly(t)

2
=

(
Lx +

1
2 Lxh(t)

)
−
(

Ly(t)− 1
2 Lyh(t)

)
2

= δL +
1
2

h(t)L (I.10)

while it leaves the common length unperturbed:

L(t) =
Lx(t) + Ly(t)

2
=

(
Lx +

1
2 Lxh(t)

)
+
(

Ly(t)− 1
2 Lyh(t)

)
2

= L (I.11)

In this way, we can rewrite the beam amplitude at the asymmetric output of the
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interferometer as:

Easy =
1
2

Ein

(
eik2(L+δL(t)) + eik2(L−δL(t))

)
=

1
2

Eineik2L
(

e+ik 2δL(t) + e−ik 2δL(t)
)
=

Eineik2L cos(k 2δL + kh(t)L) (I.12)

where we highlighted the dependency on the gravitational wave amplitude, h(t).
The output beam is recordedwith a photodiodewhich generates a signal proportional

to the optical power:

Pasy = |Easy|2 = |Ein|2 cos2(k2δL + kh(t)L) (I.13)

and assuming that the displacement produced by the gravitational wave is smaller
compared to the laser wavelength, h(t)L/λ � 1, we can approximate the output power
as

Pasy ' |Ein|2
[
cos2(k2δL) + cos(k2δL) sin(k2δL) kh(t)L

]
(I.14)

that is composed of two contributions: one that depends on the detector configuration
and another that contains the gravitational wave signal. The optimisation of the detector
working point is formalised in the DC readout scheme[14], and it depends on multiple
technical parameters. The general approach is to limit the effect of the constant signal
generated by the detector configuration, and this is obtained by reducing the offset on
the differential arm length, δL, at the minimum and considering only the signal

S(h(t)) ∝ LPin
2π

λ
h(t) (I.15)

where we replaced |Ein|2 with the input optical power, Pin.
From this simple model, we can see that the gravitational wave signal is proportional

to the input power of the laser, Pin, and the length of the interferometer arms, L. These
are the key parameters in amplifying the gravitational wave signal and should be
maximised in every possible way. As we can see from the complete scheme reported
in Figure I.4, Advance Virgo Plus is far more complicated than a simple Michelson
interferometer. The arm length is increased with a trick: instead of moving the optics
far away from the beam splitter, we can install two semi-reflective mirrors, called Input
mirrors, at the beginning of each path. In thisway, when the beams return after travelling
along the arms, they are partially reflected by the new optics and forced to travel again.
The beams bounce back and forward between the arm mirrors, and for each round
trip, they collect the phase delay proportional to the arm length. When the beams are
transmitted from the input mirrors, they will arrive at the beam splitter with a phase
proportional to multiple round trips, equivalent to an effective increase of arm lengths.

We can recycle the optical power reflected back by the Michelson interferometer to
boost the input power. In fact, The DC-offset configuration exploits the destructive
interference to reduce the output signal, and all the optical power is reflected from
the symmetric port. All this waste can be reused by installing a semi-reflective mirror
between the laser source and the beam splitter. This optics, called Power Recycling
Mirror, collects the reflected optical power and sends it back to the interferometer.

These two modifications and the Signal Recycling Mirror installed at the interferom-
eter output allow for reshaping the detector frequency response and optimising the
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sensitivity to the gravitational waves. This optical setup is generally called dual-recycled
Fabry-Pérot-Michelson interferometer and is the typical layout for the second generation of
gravitational wave detectors. The analytical study of all these components is beyond
the purpose of this introduction, and it does not add any relevant information to the
discussion on quantum Noise. More information can be found in [15].

I.2. Quantum Noise
The performance of the gravitational wave detector is normally described by the residual
noise coupled to the detected signal. In a nutshell, there are a lot of different phenomena
that are not gravitational waves but which generate a similar signal inside the interfer-
ometer. These processes, called noise, define the limits to a detectable signal. If the
amplitude of the gravitational wave is comparable to the residual noise, it is impossible
to determine if the signal is coming from a gravitational wave or another phenomenon.

The residual noise is generally described using the sensitivity curve. This plot repre-
sents the amplitude spectral density of the background noise converted in the equivalent
gravitational wave amplitude, h(t). An example can be found in Figure I.5, representing
the best sensitivity curve of Advance Virgo obtained during the last observing run.
This plot collects all the different contributions to the detector background. Each noise
source was modelled to identify the coupling mechanism and project the individual
contribution to the detector sensitivity.

Among the different noise sources, the quantum noise dominates the whole spectrum.
This noise is an intrinsic property of the detector scheme inasmuch is generated by
the quantum nature of the light. In fact, the optical beam is not a continuum, but it is
composed of a flux of photons that are randomly separated. The time delay between
two different photons follows an Exponential distribution, and its fluctuation affects
the interferometer. The quantum noise contribution to the sensitivity curve of a simple
Michelson is reported in Fig. I.6. This plot shows the two basic mechanisms that connect
the quantum fluctuation to gravitational wave detectors, which are:

The Quantum Shot Noise: It couples at the interferometer output, where the uncer-
tainties generate a signal fluctuation proportionally to the square root of the
optical power. This noise is time-uncorrelated, and its amplitude spectral density
does not depend on the frequency. We can express its contribution as equivalent
gravitational wave amplitude4[15, p.294]:

hsn( f ) =
1
L

√
h̄cλ

2πParms
(I.16)

where L is the arm length, Parms the optical power in the interferometer arms(2 Parms =
Pin), λ is the laser wavelength, c is the speed of light, h̄ is the reduced Plank con-
stant, and f is the noise frequency.

The Quantum Radiation Pressure: It is generated by an opto-mechaniced coupling
between the optical beam and the suspended mirrors. When the optical beam
is reflected, each photon transfers its momentum to the mirror. The resulting

4This is valid only for a Michelson interferometer, the full design of a gravitational wave detector has a
more complicated frequency response that manipulates the final shape of the shot noise. This correction
does not change the main results discussed in this chapter.
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Figure I.4: Complete Scheme of Advanced Virgo Plus. From left to right, the beam is generated
in the laser source, prepared, and sent to the main interferometer. The first mirror is
the Power Recycling, which collects all the optical power reflected by the Michelson
interferometer. After that, a beam splitter divides the beam and sends the new field
to the two arms, North and West. The Arms are composed of Linear Cavities used
to extend the effective length and amplify the gravitational wave signal. At the
Asymmetric Port(bottom), there is another mirror called the Signal Recycling Mirror,
which is used to modify the frequency response of the interferometer. After that, we
can find the Output Mode Cleaner, an optical Cavity used to filter out the spurious
component of the beam and improve the ratio between the gravitation wave signal
and the background noise.
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Figure I.5: Sensitivity curve of Advance Virgo with noise budget generated at a time of near
best sensitivity of the detector (February 8th, 2020)(From [16]). Among the dif-
ferent noise sources, we notice how the Quantum Vacuum(dotted green line) is
predominant over the spectrum. This is one of the main results of the Advance Virgo
commissioning that improved the detector sensitivity up to the intrinsic limit defined
by the quantum nature of the light.

pressure, called radiation pressure, is affected by the temporal inhomogeneity
of photon flux and changes over time. For this reason, the mirror is randomly
pushed away from its resting position and generates a false gravitational signal.
This effect depends on the frequency, f , and generates an equivalent noise of

hrp( f ) =
1

πM f 2
1
L

√
h̄Parms
πcλ

(I.17)

where we assumed that both the end mirrors have the same mass, M, and the
other parameters are equivalent to the ones used to estimate the shot noise.

These mechanisms are combined, and they form the quantum noise: the radiation
pressure is responsible for the low-frequency component that falls as 1/ f 2, while the
shot noise is dominant at high-frequency:

hQN( f ) =
1
L

√
h̄cλ

2πP
+

(
1

πM f 2

)2 h̄P
πcλ

(I.18)

The shot noise and the radiation pressure are a function of the optical power. We can
use this parameter to control the coupling of the quantum noise to the interferometer
signal. However, the power has a complementary effect on the coupling mechanism,
and it is impossible to reduce the quantum noise arbitrarily. If we attenuate one noise
source, we will automatically amplify the other. The minimum quantum noise can be
obtained by balancing the two contributions as a function of the laser power

hsn(PSQL) = hrp(PSQL) ⇒ PSQL = f 2Mcπλ (I.19)
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Figure I.6: Quantum Noise in a Michelson interferometer. The radiation pressure noise dom-
inates at low frequency, amplified by a factor 1/ f 2. The shot noise dominates at
the high frequency, where the radiation pressure noise becomes negligible. The
dependency of the quantum noise from the input laser power is highlighted by the
colours of the line: brown line low optical power; green high optical power. The
black line represents the quantum noise limit which cannot be overcome by changing
only the optical power.

but this optimisation is still frequency dependent. We identify the absolute minimum
of the quantum noise

hSQL =
√

h2
sn(PSQL) + h2

rp(PSQL) =
1

L f π

√
h̄
M

(I.20)

that is also called Quantum Standard Limit.

I.2.1. Source of the Quantum Noise: The Quantum Vacuum

The debate about the origin of the quantum noise fluctuation has kept the scientific
community busy for a long time, and it was resolved by Caves in their papers[17],
[18]. In particular, they demonstrated that radiation pressure noises are generated by
the quantum vacuum, which leaks into the interferometer from the asymmetric port.
This field superimposes with the laser beam and generates the amplitude fluctuation
responsible for both the radiation pressure noise inside the arms and the shot noise at
the output.

The quantitative analysis of this phenomenon requires the introduction of the quan-
tum optics theory. Without going into details, the quantisation of the light describes the
optical beam as composed of multiple quanta of light, also called photons. The electric
filed can be described as[19, p.16]:

Ê(x, y, z, t) = u(x, y, z)

√
h̄ω0

cε0

(
X̂1(t) cos(ω0t) + X̂2(t) sin(ω0t)

)
(I.21)
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where ω0 = 2πc/λ is the laser frequency, ε0 is vacuum permittivity and u(x, y, z) is
the beam shape, that will be discussed in Chapter II. The operator X̂1,2(t) are called
quadrature operator, and they describe the evolution of the electric field around the
principal oscillation component with frequency ω0. In the classic limit, they correspond
to the beam amplitude and phase modulation, and their fluctuation can be interpreted
as field noise. These operators are bounded by the Heisenberg principle, so their
uncertainties respect the following inequality:

∆X1∆X2 > 1 with (∆Xi)
2 =

√
〈(X̂i − 〈X̂i〉)2〉 (I.22)

that imposes a natural limit to the estimation of the optical beam amplitude.
In the case of high-intensity fields, it is a common practice to separate the steady state

of the quadrature from their time-dependent fluctuation and write:

X̂i(t) = X̂i + δX̂i(t) (I.23)

where the operator X̂i represent the steady state,

〈X̂i〉 = 〈X̂i(t)〉 = Xi (I.24)

while the time dependent fluctuation are collected in δX(t):

〈δX̂i(t)〉 = 0 and ∆Xi = 〈(X̂i(t)− Xi)
2〉 = 〈(X̂i(t))2〉 (I.25)

From the analysis done in [17], the model of the Michelson interferometer should be
based on the propagation of two beams, one for each input port of the beam splitter.
In particular, we have a laser beam entering from the symmetric port and the quan-
tum vacuum entering from the asymmetric port. These two beams present particular
properties, and they are described by the following states of the electric field:
Coherent state The laser light used in the gravitational wave detector is described by

the coherent state. In the case of a high-power field, the electric field of a coherent
state can be represented by [20, p.28]:

ÊL = u(x, y, z)

[(√
2Pin

h̄ω0
+ δXL

1 (t)

)
cos(ω0t) + δXL

2 (t) sin(ω0t)

]
(I.26)

the quadrature uncertainty is equally distributed and corresponds to theminimum
values defined by the uncertainty principle:

∆X1 = ∆X2 =
1
2

(I.27)

Quantum Vacuum The vacuum state is a special electric field state representing the
complete absence of photons. This is the ground state and it carries an expected
energy 〈Ĥ〉0 = 1/2h̄ω, called zero-point energy. In the case of vacuum, the
electric field is represented only by the quadrature fluctuations:

ÊV = u(x, y, z)
[
δXV

1 cos(ω0t) + δXV
2 sin(ω0t)

]
(I.28)

that are still bounded by the uncertainty principle. The zero-point energymanifest
itself as fluctuation of the quadrature:

∆X1 = ∆X2 =
1
2

(I.29)

even in the absence of an average field 〈ÊV〉 = 0.
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We can use this formulation of the optical fields to translate the calculation presented
in the previous section into the framework of quantum optics. We can follow the same
steps presented in [21] and rewrite the optical power at the asymmetric port as:

P̂asy(Ω) = 4Pin

(
ω0δL

c

)[
xs(Ω)eiΩτ − eiΩ 2τ

√
h̄

2MΩ2

[√
KMiX̂V

1 (Ω) +
X̂V

2 (Ω)√
KMi

]]
(I.30)

where xs = Lh(Ω)/2 is the differential movement of the mirror induced by a gravita-
tional wave, Ω is the fluctuation frequency, 2τ = L/c is the travel time of a photon across
the interferometer arms, δL is the difference between the two arm lengths required by
the DC-offset, Pin is the input power, and

KMi =
4ω0Pin

c2MΩ2 (I.31)

represent the response of a simple Michelson to the quantum noise. It is important to
notice that the fluctuation of the output power depends only on the vacuum quadrature
to demonstrate that the quantum noise is generated only by the fluctuation of the
vacuum field.

This formulation of the output power leads to the following power spectral density
of the quantum noise:

Shnhn =
2h̄

ML2Ω2

Radiation Pressure︷︸︸︷
KMi +

Shot Noise︷︸︸︷
K−1

Mi


=

1
L2

(
1

πM f 2

)(
h̄P

πcλ

)
+

1
L2

(
h̄cλ

2πP

) (I.32)

where we substituted Ω = 2π f .

I.3. Quantum Noise Reduction
In the previous section, we show that the quantum noise is intrinsically coupled with
the gravitational way signal generated by aMichelson interferometer. This fundamental
connection is based on two mechanisms that limit the detection sensitivity, and their
effect is unavoidable due to the Heisenberg principle. In the last decades, different
efforts have been made to circumvent these limitations and push the gravitational wave
detectors behind the limit imposed by the quantum noise.

Among the different approaches for reducing the quantum noise, Advance Virgo
and Advance LIGO have implemented the squeezing injection technique[22][23]. This
approach was proposed by Caves[18] and is based on manipulating the quantum
vacuum before entering the interferometer. Instead of changing the laser power to
control the coupling of the vacuum field to the gravitational wave signal, the squeezing
technique directly acts on the two quadrature fluctuations, δX̂1 and δX̂2. The uncertainty
principle still limits this approach, and a reduction of one coupling mechanism (e.g.
shoot-noise) will again correspond to the enhancement of the other (e.g. radiation
pressure); it is also way more flexible in manipulating the vacuum fluctuation as a
function of the frequency. This property allows the reduction of the shot noise in the
high-frequency bandwidth of the spectrum and the radiation pressure noise in the low
one.
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I.3.1. Squeezing Technique

The basic principle of the squeezing technique is the manipulation of the vacuum
fluctuation before entering the interferometer. This principle can be described by
representing the amplitude of the electric field with the two quadrature operators,
X̂1 and X̂2. Their expected values are presented by a probability distribution in the
space X1 × X2. In Figure I.7, we can find two examples: on the left, a coherent state
is represented by a circular distribution with 1σ diameter of ∆X1 = ∆X2 = 1/2 and
centred in (〈X̂1〉 , 〈X̂2〉). In particular, the position can be defined using the polar
coordinates:

|α| =
√
〈X̂1〉

2
+ 〈X̂2〉

2
=

√
2P
h̄ω

φ = Arg
[
〈X̂1〉+ i 〈X̂2〉

] (I.33)

where |α| is the amplitude module and φ is the phase. On the right, the quantum
vacuum state is represented again by a circular distribution with 1σ diameter of ∆X1 =
∆X2 = 1/2, but in this case, the distribution is centred at 〈X̂1〉 = 〈X̂2〉 = 0.

X2

X1

ϕ

|α|

∆X2

∆X1

X2

X1

∆X2

∆X1

Figure I.7: Ball on a Stick representation of the Electric field. The multiple measurements of
the Electric field can be represented as points in the phase-space defined by the
two quadratures X̂1 and X̂2. On the left, it is represented as a coherent state with
amplitude |α| and phase |φ|. On the right, it represents the vacuum state.

The same circular cloud represents the fundamental uncertainty on the amplitude
of the two states. The uncertainty principle limits the dimension of this ball, and it
cannot be reduced at will. On the other hand, the shape is defined by the uncorrelation
between the photons, and it can be changed by coupling their evolution. The most
efficient way to obtain this electric field manipulation is based on Optical Parametric
Amplification[24].

This method can induce a phase-sensitive amplification: the quantum vacuum is
de-amplified and amplified as a function of its phase, which results in a reduction of
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the fluctuation on one quadrature and the expansion of the other. In this case, the
uncertainty ball becomes similar to an ellipse, with one axis stretched and the other
compressed.

The result of this process is a new quantum state of the electric field called squeezed
vacuum. In this case, the quadrature fluctuations are described by [21]

(
∆Xsqz

1

)2
=
[
e2ξ sin2(θ) + e−2ξ cos2(θ)

]
(I.34)(

∆Xsqz
2

)2
=
[
e−2ξ sin2(θ) + e2ξ cos2(θ)

]
(I.35)

where, ξ represents the magnitude of the fluctuation reduction and θ the phase angle
of this state. It is common practice to call squeezing the reduction of a fluctuation
and anti-squeezing the amplification. The representation of this state is reported in
Figure I.8(left) and it corresponds to an ellipse rotated by an angle θ and with the two
axis ∆Y1 and ∆Y2:

∆Y1 = e−ξ and ∆Y2 = eξ (I.36)

∆Y2

∆Y1

X2

X1

θ

Figure I.8: Squeezed Vacuum. On the left, a representation of the squeezing ellipse in the
X1 × X2 space is shown. The uncertainty ball becomes an ellipse with two axes
defined by the parameter ξ, and the orientation is defined by the phase θ. On
the right, the effect of squeezing injection in a Michelson Interferometer is shown.
Top right Frequency Independent Squeezing, Bottom Right Frequency Dependent
Squeezing.

The generation of the squeezed vacuum state is the first step towards the quantum
noise reduction in a gravitational wave detector. Once we prepare the vacuum field
in this new state, we need to inject it into the asymmetric port of the interferometer in
order to replace the quantum vacuum. The quantum noise is not randomly generated
but is defined by the properties of the squeezing state, which can be controlled in order
to reduce the effects on the gravitational wave detector. We can estimate the quantum
noise by combining the squeezing quadrature reported in Eq. I.34 in the output power
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of Eq. I.30. The power spectral density of the quantum noise becomes[21]:

Shnhn =
2h̄

ML2Ω2

(
KMi +

1
KMi

)
(cosh(2ξ)− cos[2(θ + Θ(Ω))] sinh(2ξ)) (I.37)

where
Θ(Ω) = arccot(KMi) (I.38)

In particular, the squeezing technique is divided into two different versions. The
first approach, Frequency Independent Squeezing(FIS), consists of the injection of
the vacuum-squeezed beam with a constant squeezing phase, θ = 0, over the whole
spectrum. In this case, the quantum noise of the interferometer can be written as:

Shnhn =
2h̄

ML2Ω2

(
KMie−2ξ +

e+2ξ

KMi

)
(I.39)

where we can see that the squeezing injection acts on the radiation pressure and the
shot noise in two opposite ways. The anti-squeezing will amplify the first one, and the
squeezing will reduce the second one.

The second approach, called Frequency Dependent Squeezing(FDS), is based on
the manipulation of the squeezing phase as a function of the frequency based on the
dispersion law:

θ(Ω) = −Θ(Ω) (I.40)

In this way, the squeezed vacuum adapts its phase to the requirement of the interferom-
eter, and we can reduce the quantum noise over the whole spectrum. If we substitute
Eq. I.40 in Eq. I.37, we obtain:

Shnhn =
2h̄

ML2Ω2

(
KMi +

1
KMi

)
e−2ξ (I.41)

that indicates a reduction of the quantum noise over the whole spectrum. The effect is
reported in Figure I.8, bottom right.

I.3.2. Limitation of the Vacuum Squeezing technique

The Squeezing techniques are strongly limited by different classical phenomena, and
their effects can be separated into two main categories: the Optical Losses collected
along the path of the vacuum squeezed and the Phase noise between the vacuum
squeezed and the laser field of the interferometer.

Optical Losses

In the quantum optics theory, the optical losses are directly connected to an uncorrelated
injection of vacuum in the optical beam. Each time a portion of the amplitude leaves
the beam, a corresponding amount of quantum vacuum enters. This phenomenon can
be modelled using a beam splitter, with a reflectance of

√
1 − η and a transmittance

of √η. Following the scheme in Figure I.9, part of the beam amplitude is removed by
the reflection, and the same amount of quantum vacuum is injected into the path and
superimposed with the remaining beam. In the case of a squeezed beam, we can focus
only on the quadrature fluctuation and estimate the output as follows:

δXout
1,2 =

√
ηδXsqz

1,2 +
√

1 − ηXvac
1,2 (I.42)
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Figure I.9: Optical Losses. The effects of an optical loss can be modelled with a beam split-
ter that removes a portion 1 − η of the beam amplitude and replaces it with the
equivalent amount of quantum vacuum. The effect of an optical loss on the vacuum-
squeezed path is represented on the left plot. We assumed a generation of 10 dB of
squeezing(20 log(ξ) = 10) for the brown lines and 5dB for the green ones. Simple
dashed lines represent the squeezing, while dashed-dotted lines represent the anti-
squeezing.

This mixture between the squeezed vacuum and the uncorrelated one leads to a
reduction of the effective manipulation of the Vacuum fluctuation[21]:

(
∆Xout

1
)2

= 1 + η
(

e−2ξ − 1
)

(I.43)(
∆Xout

2
)2

= 1 + η
(

e+2ξ − 1
)

(I.44)

where we assumed the squeezing phase θ = 0. The effective noise reduction is generally
defined as the ratio between the quadrature fluctuation under measurement, ∆Xout

i ,
and the one of uncorrelated vacuum, ∆XV

i = 1:

rsqz = 20 log
(

∆Xout
1

∆XV
1

)
(I.45)

rasqz = 20 log
(

∆Xout
2

∆XV
2

)
(I.46)

where we can distinguish the effect of noise reduction, rsqz < 0, represented by the
squeezing and of noise amplification, rasqz > 0, represented by the anti-squeezing.
From the plots in Figure I.9, we can see how the squeezing is more affected that the
anti-squeezing.

Phase Noise

The noise reduction obtained by the squeezing injection depends on the phase between
the squeezed vacuum and the laser field. If this phase is not stable in time, its fluctuation
will mix the effect of squeezing and anti-squeezing. In order to quantify the effect, we
can write θ(t) = θ0 + δθ(t), where we extract the phase noise fluctuation δθ(t) � 1
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Figure I.10: Phase Noise. The random fluctuation of the phase of the squeezed vacuum will
average the effect of squeezing and anti-squeezing, with a corresponding degra-
dation of the effective noise reduction. The effect of phase noise on the vacuum-
squeezed path is represented on the left plot. We assumed an generation of 10 dB
of squeezing(20 log(ξ) = 10) for the brown lines and 5dB for the green ones. Sim-
ple dashed lines represent the squeezing, while dashed-dotted lines represent the
anti-squeezing.

from the average value of the phase 〈θ〉 = θ0. In this way, we can average Eq. I.34
around θ0 = 0 and obtain:(

∆Xout
1
)2

=
[
e2ξδθ2(t) + e−2ξ

(
1 − δθ2(t)

)]
(I.47)(

∆Xout
2
)2

=
[
e−2ξδθ2(t) + e2ξ

(
1 − δθ2(t)

)]
(I.48)

(I.49)

We reported the effect of the phase noise in Figure I.10, where we can see how the phase
noise effect is stronger on the squeezing than on the anti-squeezing.

Mismatch and squeezing technique

Among the different sources of optical losses, the work presented in this thesis is
focused on the Mismatch. This choice was based on the information collected during
the last observing run in which the Virgo collaboration implemented the Frequency
Independent Technique. That experience allowed us to characterise the different issues
that limited the noise reduction efficiency and identified the main source of optical
losses right in the Mismatch between the squeezed vacuum and the detector[22]. A
precise description of the Mismatch will be introduced in Chapter II, but here we can
give a general idea of the problem.

The definition of the electric field given in Eq. I.21 contains a spacial distribution
factor, u(x, y, z). This coefficient represents how the amplitude is distributed over space.
It defines the shape of the beam, and it can be used to describe its location. Moreover, it
is directly connected to the interaction between two different beams, inasmuch as only
two fields that overlap can couple together, and the difference in the factors reflect this,
u(x, y, z). If two beams are in two different places, they will interact less than when
they share the same space.



i.3 quantum noise reduction 17

The difference in the spatial distribution of two beams is generally described as
Mode Matching, and it could also affect the efficiency of the squeezing injection. If
the squeezed vacuum beam does not overlap with the interferometer beam, the two
fields will not be perfectly coupled. Part of the laser will interact with the quantum
vacuum, and the efficiency of the quantum noise reduction will be spoiled. This effect
is equivalent to an optical loss, estimated as:

ηmm = 1 −
∣∣∫∫ ulas(x, y, z)usqz(x, y, z)dxdy

∣∣2∫∫
dxdy |ulas(x, y, z)|2

∫∫
|ulas(x, y, z)|2

(I.50)

where ulas(x, y, z) is the profile of the laser beam and usqz(x, y, z) of the squeezed vac-
uum. As we will see in Chapter II, a similar phenomenon happens when a beam
interacts with an optical cavity. In order to circulate inside the cavity, the beam shape
has to match the geometry of the cavity. If the incoming beam does not meet this
requirement, part of the amplitude does not enter, leading to particular optical loss.

One of the main problems in dealing with Mode Mismatch is its characterisation.
For example, the analysis reported in [22] indicates that the Mismatch is not only the
principal source of losses but also the one with the main uncertainty. This lack of
information about mode matching is connected to different practical issues, which
require the implementation of dedicated sensors that allow the characterisation of the
Mismatch in real-time.

Moreover, the implementation of the Frequency Dependent Squeezing requires a
specific characterisation of the modematching. As we will see in Chapter VI, the control
over the squeezing angle is obtained with a detuning cavity. If there is a mismatch
between the squeezed vacuum beam and this cavity, only part of the amplitude will
obtain the dispersion rule, θ( f ) = Θ( f ). This incomplete manipulation will generate a
degradation of the squeezed beam that is in between the phase noise and the optical
loss, and it requires a full characterisation of the mismatch.

In the following chapter, we will introduce the theory required for the formalisation
of the Mismatch and for the development of the sensing technique.
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The main contributions presented in this thesis are the characterisation of a Mode
Matching sensing technique and its upgrade for Astigmatic Aberrations. In order to
discuss these results, it is mandatory to introduce beam optic theory, among which
the more important is the Mode Matching itself. The first example of what we mean
by Mode Matching was given in the introduction, where we described the effect of
the mismatch between the squeezed vacuum beam and the interferometer beam. In
that case, we focused the analysis only on the optical loss generated by the beam shape
difference. As we will see later, that effect is only a part of the phenomenology of Mode
Matching, and its full study requires different theoretical instruments.

In this Chapter, we will introduce the mismatch in the context of resonant cavities.
This choice is based on two reasons: first, the theoretical framework of resonant cavities
covers most of the topics required for the characterisation of the beam amplitude and to
study its evolution; second, the techniques used for the characterisation of the mismatch
are based on the interaction between a cavity and an optical beam.

In the first part, we will briefly describe what is a resonant cavity and its main
properties, with a specific focus on the Transverse Resonance Mode. In the second
part, we will present the Mode Mismatch between an Astigmatic beam and a cavity. In
the third one, we will use this theoretical framework to present the Wavefront Sensing
technique used to characterise the mismatch.
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II.1. Optical Resonator
The simplest optical resonator is composed of two mirrors, with reflectance r1 and r2,
facing each other and separated by a distance of L. When we inject laser light from the
backside of a mirror, namely the input mirror, part of it is promptly reflected, and part
of the light enters the cavity. The inner cavity light bounces between the two reflective
surfaces until it reaches a steady state regime. If some conditions are met, the optical
field interferes constructively with itself, resonating inside the cavity. This will amplify
the optical power between the two mirrors. The strong field is partially leaked out in
transmission, through the end mirror, and in reflection, through the input mirror. This
phenomenon, called resonance, is the core of the properties of an optical cavity, and
it is ruled by the mirror characteristics, the cavity geometry, and the properties of the
optical beam.

We can distinguish between two distinct modes in a cavity, Longitudinal and Transver-
sal, that describe the resonance conditions. The first modes are strictly connected to the
phase accumulated along with the longitudinal propagation, and they fix the relation-
ship between the light wavelength and the cavity length. The second kind is connected
to the diffraction phenomenon that happens along the transverse plane, defining the
shape of the resonant beams.

II.1.1. Longitudinal and Transversal modes

The Longitudinal Modes of a cavity are naturally described in the plane-wave approxi-
mation. In this approach, we can describe the optical field by the complex amplitude
and ignore the transverse plane XY evolution. The amplitude evolves only along the z
direction, and it is described by:

E(z) = a0ei kz

where k = 2π/λ is the spatial angular frequency representing the spatial periodicity,
we highlight the complex amplitude in the plane-wave approximation with the small
letter a0.

The interaction between a plane wave and a resonant cavity is described by Figure II.1.
In this case, we consider an incoming beam with amplitude E(0) = a0 that enters an
optical cavity (left) composed of two mirrors with reflectance ri and transmittance ti,
separated by a distance, L. When this beam interacts with the input mirror, it is reflected
(ar

0 = r1 a0) and transmitted (aa
0 = it1 a0). The transmitted component travels along

the distance L between the two mirrors (ab
0 = aa

0eikL) and is reflected back (ac
0 = ab

0 r2).
After travelling through the cavity again (ad

0 = ac
0 eikL), it is reflected from the first

mirror (aa
1 = r1ad

0), interacts with the original light transmitted by the input mirror, and
restarts another round trip.

This process will repeat over and over, so we could describe the light after the n-th
round as:

aa
n = aa

0

(
ei k2Lr1r2

)n
(II.1)

Each time the light is reflected from the input mirror, it will superimpose with the field
of the other round trip. This interference will generate a new field, called intracavity
field:

acav =
+∞

∑
n=0

aa
n = aa

0

+∞

∑
n=0

(
r1r2 ei k2L

)n
=

it1a0

1 − r1r2 ei k2L (II.2)
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Figure II.1: Conceptual scheme of an optical cavity. Two mirrors, called respectively Input and
End Mirrors, are separated by a distance L. The optical beam that enters the cavity
circulates in a steady state round trip. The light transmitted throughout the End
Mirror generates the Transmitted beam at, while the light transmitted throughout
the Input Mirror is combined with the promptly reflected component and generates
the Reflected beam ar.

where we replaced aa
0 = it1 a0. The acav obtained here loses the dependency from

the round trip number, and it describes the steady state of the light inside the optical
cavity. This field will leak throughout the mirrors, and it will produce two beams:
the Transmitted beam, at, generated by the beam leaked by the End Mirror, and the
Reflected Beam, ar, generated by the superposition of the light transmitted by the Input
Mirror and the promptly reflected component, r1a0. Their amplitudes are given by:

at = a0
−t2t1 ei kL

1 − r1r2 ei k2L (II.3)

ar =
r1 − (r2

1 + t2
1)r2 ei k2L

1 − r1r2 ei k2L (II.4)

where we assume the input mirror with a loss mirrors ρi = 1 − (r2
1 + t2

1). We can use
Eq. II.2, Eq. II.3, and Eq. II.4 to investigate the spectral properties of the resonance cavity.

Resonance condition

We can define resonance as the condition that maximises the power inside the cavity

Pcav = |acav|2 =
T1

(1 − r1r2)2 + 4r1r2 sin2(kL)
P0 (II.5)

where T1 = t2
1 is the transmissitvity of the cavity and P0 = |a0|2 is the optical power of

the incoming beam. This maximum is met for sin2(kL) = 0, and it defines a specific
relation between the wavelength and the cavity length:

kL = arcsin(0) ⇒ L = l
λ

2
(II.6)
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where l ∈ N. This relationship is generally expressed as a function of thewave frequency
f = c/λ:

fres = l
c

2L
(II.7)

where we can identify the fundamental resonance frequency, called Free Spectral Range

∆ ffsr =
c

2L
(II.8)

In general, we can identify a family of plane waves called Longitudinal Mode with a
frequency multiple of ∆ ffsr:

El = E0 exp[(il ∆ ffsr)t] (II.9)

Linewidth

The resonance linewidth gives important information about the frequency response as
much as it defines the “near” resonance conditions. This parameter is defined as the
Full-Width Half Maximum, ∆ fFWHM, of the internal cavity power and it indicates the
boundaries of the resonance peak, f±1/2 as

f−1/2 = fl −
1
2

∆ fFWHM ≤ f ≤ fl +
1
2

∆ fFWHM = f+1/2 (II.10)

where fl is the closer Longitudinal mode to the incoming beam frequency f :

fl = l∆ ffsr where l = min
l∈N

(| f − l∆ ffsr|) (II.11)

The Full-Width Half Maximum can be estimated using the intracavity power defined
in Eq. II.5:

Pcav = |acav|2 =
T1

(1 − r1r2)2 + 4r1r2 sin2
(

π
f

∆ ffsr

)P0 (II.12)

where we highlight the frequency response kL = π f /∆ ffsr. The maximum is given for
f = n∆ ffsr and it is equal to

Pmax
cav =

T1

(1 − r1r2)2 P0 (II.13)

Using these results we can impose the Half Maximum condition as

T1

(1 − r1r2)2 + 4r1r2 sin2
(

π
f±1/2

∆ ffsr

)P0 =
1
2

T1

(1 − r1r2)2 P0 (II.14)

and estimate the boundaries of the resonance peak:

f±1/2 = l∆ ffsr ± ∆ ffsr
1
π

arcsin

√ (1 − r1r2)2

4r1r2

 (II.15)

By combining Eq. II.10 with Eq. II.15, we obtain the Full-Width Half Maximum of the
resonance peak:

∆ fFWHM = f+1/2 − f−1/2 = ∆ ffsr

(
1
π

arcsin
(

1 − r1r2

2
√

r1r2

))
(II.16)
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which is proportional to the Free Spectral Range. The importance of this relationship is
highlighted by the definition of another parameter, the cavity Finesse:

F =
∆ ffsr

∆ fFWHM
=

(
arcsin

(
1 − r1r2

2
√

r1r2

)
1
π

)−1

(II.17)

which is in a one-to-one relation with the product of the reflectance of the mirrors (r1r2).
In the case of high reflectivity mirrors, where we have that |ri|2 ' 1, the Finesse can be
approximated as

F ' π
√

r1r2

1 − r1r2
(II.18)

Reflectance, transmittance, and gain

The optical response of the cavity can be described by three different fields: the reflected,
the transmitted, and the internal fields. From this point of view, we can reduce the
cavity to a special mirror that is fully described by the reflectance, transmittance, and
internal gain:

rcav =
ar

a0
=

r1 − (r2
1 + t2

1)r2 ei 2π f / ffsr

1 − r1r2 ei 2π f / ffsr
(II.19)

tcav =
at

a0
=

t2t1 ei 2π f / ffsr

1 − r1r2 ei 2π f / ffsr
(II.20)

Gcav =
|acav|2
|a0|2

=
|t1|2

(1 − r1r2)2 + 4r1r2 sin2
(

π
f

ffsr

) (II.21)

These parameters of the equivalent mirror strongly depend on the frequency of the
incoming beam and we can distinguish two different regimes:

Anti-Resonance When the cavity is in anti-resonance, f = ∆ ffsr(n + 1/2), the power
inside the cavity is at the minimum and the cavity act as a simple mirror, with

rcav = r1 + r2
t2
1

1 + r1r2
and tcav = i

t2t1

1 + r1r2
(II.22)

The reflectance is given by the input mirror ones plus a small contribution of the
second mirror. The transmittance is lower than the single mirrors, and there is a
90 deg phase shift.

Resonance When the cavity is in resonance, f = ∆ ffsrn, we have the opposite situation.
The external parameters are given by

Gcav =
|t1|2

(1 − r1r2)2 (II.23)

tcav =
t2t1

1 − r1r2
=
√

Gcavt2 (II.24)

rcav =
r1 − (r2

1 + t2
1)r2

1 − r1r2
(II.25)
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The cavity amplification increases the transmittance, and the phase shift disap-
pears. On the other hand, the reflectance has a complicated behaviour: its sign
change continuously as a function of [r1 − (r2

1 + t2
1)r2]:

rcav > 0 if r1 > (1 − ρ1)r2

rcav = 0 if r1 = (1 − ρ1)r2

rcav < 0 if r1 < (1 − ρ1)r2

(II.26)

where ρ1 = 1 − (r2
1 + t2

1) is the input mirror optical loss.

II.1.2. Transversal Mode of a Resonance Cavity

The study of Transversal Modes requires a different approach. In this case, we need
to consider the diffraction phenomenon on the transverse plane and represent the
amplitude of an optical beam as

E(x, y, z) = U(x, y, z)e−ikz (II.27)

where we separated the beam shape U(x, y, z) from the plane wave contribution. The
first approach to the study of the beam amplitude across the transverse plane XY can
be based on the ray optics theory. In this framework, the beam amplitude U(x, y, z) is
represented as a superposition of plane waves with different directions:

E(x, y, z) = U(x, y, z)e−ikz = ∑
i

Eie−i~k·~r (II.28)

where~k represent the direction of component, Ei, and~r = (x, y, z)T the position where
the field is evaluated. This model allows us to decompose the profile into single plane
waves and focus the study on the evolution of their direction. Each sub-wave is reduced
to a single ray which is defined by its origin (x, y, z) and direction (θx, θy). The evolution
of this ray is defined by the interaction with diffracting objects (lens, curved mirror, …)
and it is formalised using the ABCD matrix formalism:

x2
y2
θx2

θy2

 '
(

A B

C D

)
·


x1
y1
θx1

θy1

 (II.29)

where the ray matrix, ABCD, is formalized by
Ax Axy Bx Bxy
Ayx Ay Byx By
Cx Cxy Dx Dxy
Cyx Cy Dyx Dy

 (II.30)

The estimation of the ray matrix for typical optical components is beyond the scope
of this thesis. It can be found in [25].
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II.1.3. Resonant cavities in Ray Optics

When we want to study the diffraction effect in the resonance cavity, we must consider
the mirror curvature radius, R1 and R2. We can use the approach described in Sec. II.1.1
and apply the ray matrix theory to the beam evolution. This analysis will assume a
circular symmetry of a linear cavity so that the corresponding 4 × 4 ABCD matrix can
be decomposed into two identical 2 × 2. In this way, we can focus the calculation on
one plane and extend the results at the end.

Input
Mirror

End
Mirror

Figure II.2: Conceptual scheme of an optical cavity. Two mirrors, separated by a distance L, are
called respectively Input and End Mirrors, and they have a radius of curvature R1
and R2. After each reflection, the beam is focused by the mirrors back and forward.
The diffraction evolution after a round trip can be represented by an ABCD matrix
labelled as Mr.t..

As a first approach, we can focus only on the beam inside the cavity and study the
round trip made by the beam. We can use the Figure II.2 to define an ABCD matrix
that represents the diffraction evolution after one loop:

Mr.t. =

(
1 0

− 2
R1

1

)(
1 L
0 1

)(
1 0

− 2
R1

1

)(
1 L
0 1

)
(II.31)

which leads to

Mr.t. =

(
2g2 − 1 2Lg2

2(2g1g2−g1−g2)
L 4g1g2 − 1 − 2g2

)
with gi = (1 − L/Ri) (II.32)

After N round trip, the ray matrix is given by MN
r.t. and we can estimate it using

Sylvester’s formula1

MN
r.t. = (Λ2 − Λ1)

−1
(

Mr.t.(ΛN
2 − ΛN

1 )− i(ΛN−1
2 − ΛN−1

1 )
)

(II.33)

where Λi are the eigenvalues of M:

Λi = (2g1g2 − 1)±
√
(2g1g2 − 1)2 − 1 (II.34)

1Note that this solution holds only for Λ1 6= Λ2
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Only by looking at the round trip matrix, we can classify the cavity as a function of
its diffraction effects. As the longitudinal study of the cavity, the intracavity field is
defined as the steady state of the cavity, so we want to analyse the diffraction evolution
for N → +∞. In this case, the ray-matrix MN

r.t. defines three different evolution as
functions of its eigenvalues:

Marginally stable cavity |2g1g2 − 1| = 1 The eigenvalues are degenerate Λ1,2 = 1 and
we cannot use the Sylvester’s formula. Moreover, the M is not diagonalizable, so
the stability of the steady state regime is defined by the initial ray parameters.

Unstable Cavity |2g1g2 − 1| > 1 In this case, we have |Λ1| > 1, and the ray parameters
will increase exponentially after each round trip. In particular, the ray angle will
increase until the paraxial approximation does not hold anymore.

Stable cavity |2g1g2 − 1| < 1 We cannot estimate a steady state solution for the ray
parameters because this case leads to complex eigenvalues. However, Sylvester’s
formula still gives a real matrix for MN

r.t. and it is possible to show that at each
round trip, the ray parameters are limited, and the beam does not diverge outside
the paraxial approximation.

This thesis will work only with a stable cavity so that we can focus only on |2g1g2 −
1| < 1. However, this case does not have a steady state solution that can be described
using the ray optic theory, so we need to extend the analysis of our tools. In particular,
we need to consider the evolution of the amplitude profile U(x, y, z) defined by the
wave equation.

Paraxial Wave Equation and Beam Optics

In order to model the beam amplitude inside a cavity, it is more useful to start from
the general case of the Free-space evolution. The first step will be the study of the
beam shape, U(x, y, z) in the paraxial approximation, which assumes that the beam
amplitude E(x, y, z) evolves slowly along the transverse plane. In this case, the beam
shape U(x, y, z) must follow the Paraxial Helmholtz Equation[25, p. 628]:(

∂2

∂x2 +
∂2

∂y2

)
U(x, y, z) = −i2k

∂U
∂z

(x, y, z) (II.35)

The general approach used to resolve Eq.II.35 is based on the decoupling the ampli-
tude along two planes XZ and YZ:

U(x, y, z) = ux(x, z)× uy(y, z) (II.36)

that allows decomposing the differential equation into:
(

∂2

∂x2 + i2k
∂

∂z

)
ux(x, z) = 0(

∂2

∂y2 + i2k
∂

∂z

)
uy(y, z) = 0

(II.37)

In this way, we can focus on the amplitude evolution along the XZ plane :(
∂2

∂x2 − i2k
∂

∂z

)
u(x, z) = 0 (II.38)
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where we drop the x subscript to highlight the generality of the solutions. Subsequently,
we will extend the results to the plane YZ by replacing x → +y.

The solutions of Eq. II.38 define the transverse modes of the electric field, un(x, z),
which are a complete set of functions that describes the bi-dimensional amplitude of the
beam. These functions are defined as a combination of the Fundamental mode, n = 0:

u0(x, z) = 4

√
2

πw2
x(z)

exp
[
−x2

w2
x(z)

]
exp

[
i
2 ∆ψx − ik

x2

2Rx(z)

]
(II.39)

and the Hermite-Polynomial defined by the recursive rule:

Hn[τ] = 2τHn−1[τ]− 2nHn−2[τ] (II.40)

where τ =
√

2x/w(z) and H0[τ] = 1. The amplitude of a general mode is described by
the function:

un(x, z) =

1√
2nn!

Hn

[ √
2x

wx(z)

]
4

√
2

πw2
x(z)

exp
[
−x2

w2
x(z)

]
︸ ︷︷ ︸

Magnitude

Phase︷ ︸︸ ︷
exp

[
i∆ψx

( 1
2 + n

)
− ik

x2

2Rx(z)

]
(II.41)

where the polynomial, Hn, manipulates the profile along the transverse direction, x,
and defines the shape of the mode as a function of the index, n.

The Fundamental mode is described by the parameters w(z) and R(z). The first
one, w(z), can be considered as the beam radius inasmuch as it defines the magnitude
profile. The second one, R(z) defines the phase profile of the beam, and it describes the
curvature of the beam wavefront. The beam radius w(z) and the beam curvature R(z)
are generally combined together in the complex parameter:

1
q(x)(z)

= ((z − zx0) + izxR)
−1 :=

1
Rx(z)

− iλ
πw2

x(z)
(II.42)

and can be defined as function of the Rayleigh length zR and z0 that is the position of
the minimum radius w0 = minz(w(z)):

wx(z) = w0

√
1 +

(
z−zx0

zxR

)2
(II.43)

Rx(z) = (z − zx0)
[
1 +

(
zR

z−zx0

)]
(II.44)

wx0 =

√
λzxR

π
or zxR =

πw2
x0

λ
(II.45)

Another essential parameter is the Gouy Phase, ∆ψx which represents the phase delay
accumulated by the propagation of the paraxial wave with respect to the corresponding
plane wave. As we will see later, this phase lag depends on the diffraction effects and,
in the case of free space evolution, we can evaluate it as:

∆ψx = Arg[qx(0)/qx(z)] = arctan
(

z−zx0
zxR

)
(II.46)
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The different transverse modes are distinguished by the Hermite-Polynomial, Hn
which manipulated the beam shape. Moreover, these factors impose an important
property on the modes inasmuch they induce an orthogonality rule with respect to the
following product:

〈un(x, z)|um(x, z)〉 =
∫

R
un(x, z)um(x, z)dx = δn,m (II.47)

The functions described in Eq. II.41 represent the amplitude profile along the plane
XZ and they can be extended to the YZ plane by changing x with y. These results are
combined together by the Eq.II.36 and generate the three-dimensional solutions:

Unm(x, y, z) = un(x, z|q(x))× um(y, z|q(y)) (II.48)

The two plane components can have different complex parameters q(i) with i = x, y for
each couple of (q(x), q(y)). They define a complete base for the solution for the Paraxial
Helmholtz Equation, Eq. II.35. This property allows describing any general solution as
a unique linear combination of these modes:

U(x, y, z) = ∑
nm

cmnun(x, z|q(x))um(y, z|q(y)) (II.49)

In themajority of the cases, we consider only the TransverseMode defined by a unique
complex factor for both the plane,qx = q = qy. These modes are called Hermite-Gauss
Modes and they will be indicated in this thesis as:

HGnm(x, y, z|q) = un(x, z|q)× um(y, z|q) (II.50)

and they are classified as a function of their mode order, N = n + m. The amplitude
profile of the Hermite-Gauss modes of the first two orders, N ≤ 2 are reported in
Fig. II.3.

HG01 HG00 HG10

HG02 HG11 HG20

Figure II.3: Amplitude profile of the Hermite Gauss Modes from the Fundamental Mode, HG00
up to second order modes. The two colours indicate the amplitude sign, green
positive and yellow negative.

Diffraction propagation of a Paraxial Beam

The solution of the Paraxial Helmholtz equation defined in Eq. II.41 describes the
amplitude of a beam which propagates in free space. To extend this result to a general
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optical system, we need to base the analysis on the “Huygens’ construction principle” [26].
In this framework, the diffraction is described as an integral propagation

E(x2, y2|z2) =
∫∫

dx1dy1E(x1, y1|z1)K(x2, y2, z2; x1, y1, z1) (II.51)

where E(x1, y1|z1) is the amplitude shape at the plane z = z1 and the E(x2, y2|z2) at
z = z2. These shapes are connected by the Kernel Function K(~r2;~r1) which is defined
as the propagation of an optical field at~r2 generated by a point source at~r1.

This approach can be applied to the solution of the Paraxial Helmholtz Equation by
following the Collins’ work[27]. The author was able to connect the optical ray theory
with the paraxial wave equation and to define a kernel function based on the ABCD

matrix of the optical system:

K(x2, y2, z2; x1, y1, z1) =
ikeiktildeL0

2π(BxBy − BxyByx)
exp

[
ik

~vTL~v
2(BxBy − BxyByx)

]
(II.52)

where the matrix L is defined by the coefficient of the ABCD matrix of the optical
system:

L =


By Ax − Bxy Ayx −By AxyBy − Bxy Ay Bxy

−By DxBy − DxyByx Byx BxDxy − DxBxy
AxyBy − AyBxy Byx Bx Ay − AxyByx −Bx

Bxy BxDxy − DxBxy −Bx BxDy − BxyDyx

 (II.53)

the vector ~v = (x1, x2, y1, y2)T contains the transverse coordinates, and L̃0 is the optical
length of the system:

L̃0 = ∑
i
(ni∆zi) (II.54)

which collects all the phase shifts generate by the passing through each medium with
refractive indices ni and lengths ∆zi.,

The diffraction evolution of a general paraxial beam can be estimated by the combi-
nation of Eq. II.51 and Eq. II.52. However, the application of this method to a general
paraxial beam can be simplified using the Transverse mode representation.

Propagation of Hermite-Gauss modes through an optical system

We can combine the Collins integral with the free-space solution of the Helmholtz
equation and trace back the evolution of a general paraxial beam to Hermite-Gauss
modes behaviour. In case we want to describe the evolution of the beam shape from the
plane z1 to z2, we can decompose the general optical beam and represent it as a linear
combination of Transverse modes:

E(x1, y1|z1) = ∑
mn

cmnUmn(x1, y1|z1, q(x,y)
1 ) (II.55)

where Umn(x1, y1|z1, q(x,y)
1 ) are the amplitudes of the modes defined by the beam param-

eters, q(x,y)
1 at the longitudinal position z = z1

2, and the cnm are the linear coefficients
that characterise the decomposition.
2When we proceed with this decomposition, the choice of the Transverse Mode base is completely free

and it can use optimises in order to simplify the calculations.
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Using this representation, we can exploit the linearity of the Collins Integral and
divide the integral propagation as

E(x, y, z2) = eikL̃0 ∑
mn

cmn

∫∫
R2

K(x, y, z2; x1, y1, z1)Umn(x1, y1, z1; q(x,y)
1 )dxdy (II.56)

and focus the calculation only on the propagation of the Transverse Mode.
For the calculation used in this thesis, we can limit the resolution of the integral for an

optical system that is simple astigmatic 3. In this case, we can always define a reference
system (x, y) in which the ABCD matrix can be decomposed in two components, one
for plane XZ and another for YZ:

(
A B

C D

)
=


Ax 0 Bx 0
0 Ay 0 By

Cx 0 Dx 0
0 Cy 0 Dy

 =

(
Ax Bx
Cx Dx

)
×
(

Ay By
Cy Dy

)
(II.57)

In this case, the Collins Kernel can be divided into

K(x, y, z2; x1, y1, z1) = ikeikL̃0 Kx(x, z2; x1, z1)× Ky(y, z2; y1, z1) (II.58)

where the single plane kernel function Kx and Ky have the same form:

Kτ(τ, z2; τ1, z1) =
1√

2πBτ

exp
[

ik
Aττ2

1 − 2τ1τ + Dττ2

2Bτ

]
where τ = x, y (II.59)

The decomposition done in Eq. II.55 does not have any particular requirement and we
can choose the transverse modes Umn(x1, y1, z1; q(x,y)

1 ) that are aligned with the ABCD

matrix reference system. In this way, we can decompose the amplitude as

Umn(x1, y1, z1; q(x,y)
1 ) = um(x1, z1; q(x)

1 )× un(y1, z1; q(y)1 ) (II.60)

and completely divide Eq. II.56 into two separates integrals:∫∫
R

K(x, z2; x1, z1)um(x1, z1; q(x)
1 )dx∫∫

R
K(y, z2; y1, z1)un(y1, z1; q(y)1 )dy

(II.61)

In particular, we will first focus the analysis on the plane XZ and extend the results to
the plane YZ later. The calculations are presented in [28]4 and the final result is∫

R
K(x, z2; x1, z1)un(x1, z1; q1)dx1 =

1√
2nn!

Hn

[ √
2x

w2(z)

]
4

√
2

πw2
2(z)

exp
[
− ik

2
x2

q2
2

]
exp

[
−i
( 1

2 + n
)

Arg[Axq1 + Bx]
]
=

un(x, z2; q2) exp
[
i( 1

2 + n)Arg[Cxq1 + Dx]
]

(II.62)
3A simple astigmatic system is an optical system in which the beam evolution can be globally divided

into two planar evolution. E.g. A system of cylindrical lenses with their focal axis always parallels one
to each other.

4The starting equation used in [28] have a different definition for the Hermite-Gauss mode. The solution
reported here is the evolution of a normalised Hermite-Gauss mode.
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where we can see that the optical system maps a bi-dimensional transverse mode into
the same one but defined by a new complex radius, q2. In this way, the diffraction
evolution is summarised by the ABCD rule:

q(x)
2 =

Axq(x)
1 + Bx

Cxq(x)
1 + Dx

(II.63)

Moreover, between z1 and z2, the beam accumulates a phase delay with respect to
the plane wave evolution that can be decomposed as:

−Arg
[

Axq(x)
1 + Bx

]
= −Arg

[
Axq(x)

1 +Bx

Cxq(x)
1 +Dx

]
+ Arg

[
Cxq(x)

1 + Dx

]
= Arg[(q(x)

2 )−1] + Arg
[
Cxq(x)

1 + Dx

] (II.64)

The first term is the Gouy phase for free space evolution, and it should be included in
the definition of un(x|z2, q2) used in Eq. II.62. The second one is the extra Gouy phase
generated by the diffraction effects produced by the optical system. The evolution of
the transverse mode, um(y, z), can be obtained by replacing x → y and n → m.

Estimation of the Transverse mode of a resonant Cavity

The first approach to estimating the Transverse Mode of a cavity was based on the ray
optics theory, and it was unable to describe the beam evolution for a stable cavity. The
hidden problem was to consider each ray separately and try to find a stable solution
for each of them. This limitation is overcome by the Collins integral, which considers
the beam whole amplitude, U(x, y, z). In this way, it is possible to analyse the beam
evolution and find a stable solution for the Transverse Mode of a cavity.

The approach used to estimate these modes is similar to the one used for the longitu-
dinal study. We are still interested in the cavity steady state, so we need to identify a
shape for the beam amplitude that does not change after N → ∞ round trips. This can
be formalised by imposing that the amplitude E(x, y, z) at the input mirror should have
the same profile after travelling inside the cavity. From the point of view of Collin’s
integral, this corresponds to

En(x, y, z1) = eiγn

∫
En(x1, y1, z1)Kr.t(x, y, z1; x1, y1, z1)dx0 (II.65)

where Kr.t is the kernel function defined by the round trip ABCD matrix, Eq.II.32, and
we impose that the beam amplitude estimated after the propagation, En(x, y, z1) is
equivalent to the original one, En(x1, y1, z1), multiplied by a phase eiγn . This problem is
equivalent to find the eigenfunctions, En, of the Collins integral. Once we obtain the
formulation for both γn and En(x, y, z0), we can proceed with the same approach done
for the plane wave approximation and estimate the internal field as superimposing of
the amplitude after each round trip.

The symmetry of a linear cavity used to estimate the ABCD matrix in Eq.II.32 can be
extended to the beam shape, E(x, y, z). In this case, we can write the amplitude as:

Enm(x, y, z) = E(x)
n (x, z)× E(y)

m (y, z) (II.66)
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where we assumed that E(x)
n and E(x)

n can be different. Using the same arguments, the
Collins Kernel can be factorised as

K(x, y, z; x0, y0, z0) = eikL̃0

√
ik

2πC2
x

exp
[

ik
~vT

x L~vx

2Cx

]
︸ ︷︷ ︸

Kx(x,z;x0,z0)

√
ik

2πC2
y

exp

[
ik
~vT

y L~vy

2Cy

]
︸ ︷︷ ︸

Ky(y,z;y0,z0)

(II.67)

where we keep the plane-wave phase propagation eikL̃0 outside. The requirements for
the steady state are now imposed on the two bi-dimensional amplitude En(x, z) and
Em(y, z)

E(x)
n (x, z1) = eiγ(x)

n

∫
E(x)

n (x1, z1)Kx(x, z1; x1, z1)dx1 (II.68)

E(y)
m (y, z1) = eiγ(y)

m

∫
E(y)

m (y1, z1)Ky(y, z1; y1, z1)dy1 (II.69)

where the Kernel, Kx and ky have the same form defined by the combination of Eq. II.52
and the ABCD matrix defined in in Eq. II.32.

Due to the similarity between Eq. II.68 and Eq. II.69, we can focus the calculation on
the plane XZ and extend the result by replacing x → y and n → m.

A similar equation, Eq. II.62, was obtained for the diffraction evolution of Hermite-
Gauss modes, and it suggests these functions as a possible solution of Eq. II.68. Starting
from this observation, we can impose the requirement of Eq. II.68 to the propagation of
a Hermite-Guass mode:

un(x, z1; q2) = eiγ(x)
n

∫
un(x, z1; q1)K(x; x1)dx1 = un(x, z1; q1) eiγ(x)

n e−i Arg[Cq+D](n+1/2)

(II.70)
This equation is solved for the conditions

q1 = q2 and γ
(x)
n = Arg[Cq + D](n + 1/2) (II.71)

that can be resolved using the ABCD rule

q2 = q1 =
Aq1 + B
Cq1 + D

→ q1 =
A − D

2C
+

1
C

√(
D + A

2

)2

− 1 (II.72)

In particular, we can use the ABCD matrix given in Eq ,II.32 and estimate

qc = q1 =
(2g1g2 − 1)

2g2L
+

i
2g2L

√
1 − (2g1g2 − 1)2 (II.73)

The complex parameter qc in Eq. II.73 defines a specific set of solutions of the Paraxial
Wave equations which fulfil the requirements of Eq. II.68. For this reason, the planar
steady state of a linear cavity can be expressed as

un(x, z) =
1√
2nn!

Hn

[ √
2x

wc(z)

](
2

πw2
c (z)

) 1
4

exp
[
−ikx2

qc

]
exp

[
−i Arg[qc(z)]

( 1
2 + n

)]
(II.74)
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The second requirement in Eq. II.71 allows estimating the eigenvalue from the Gouy
phase collected after a round trip:

γ
(x)
n = −(1/2 + n) 2 arccos(

√
g1g2) (II.75)

These results can be directly extended to the YZ plane and combined together in order
to estimate the Three-dimensional modes of a cavity. Using Eq. II.66 and considering
that the cylindrical symmetry imposes the same complex parameter, qc, for both the
planes, the Transverse Mode of a Linear cavity is given by the Hermite-Gauss Mode:

HGnm(x, y, z|qc) = un(x, z|qc)um(y, z|qc) (II.76)

while the round trip phase is given by:

γnm = k2L − (1 + n + m) 2 arccos(
√

g1g2) (II.77)

where we readd the plain wave phase eikL̃0 that was ingored in the calculation of Eq. II.68
and Eq. II.69.

We can combine the information obtained so far with the same calculations done in
Sec. II.1.1 and estimate the intracavity field. We can assume that the beam amplitude
at the beginning of the first round trip is represented by a Hermite-Gauss mode with
amplitude E0 and indices n, m:

E(0)
nm = E0HGnm(x, y, z|qc) (II.78)

while the beam amplitude after a l round trip is given by the recursive relationship:

E(l)
nm(x, y, z) = eiγnm(r1r2)E(l−1)

nm (x, y, z) (II.79)

where γnm is the round trip phase described by Eq. II.77 and (r1r2) is the amplitude
reduction given by the reflectance of the two mirrors. This equation can be resolved as

E(l)
nm(x, y, z) =

[
eiγnm(r1r2)

]l
E0HGnm(x, y, z) (II.80)

that is similar to Eq. II.1. These electric fields will superimpose one with each another
and generate the intracavity amplitude

Ein.
nm(x, y, z) =

+∞

∑
j

E(j)(x, y, z) =

E0HGnm(x, y, z|qc)
+∞

∑
j
(r1r2 exp[−ik2L − i2(1 + m + n) arccos(

√
g1g2)])

l (II.81)

where we expand γnm using the definition in Eq. II.76. This result is similar to the
solution obtained with Eq. II.2, but with a correction to the round trip phase:

E(in)
nm (x, y, z) = E0HGnm(x, y, z|qc)

1
1 − r1r2eiγnm

(II.82)

γnm = 2k2L − 2(1 + m + n) arccos(
√

g1g2) (II.83)
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In particular, the new formulation for the round trip phase modifies the resonance
frequency that now depends on both the Longitudinal mode order l and the Transverse
mode order N = (m + n):

fN = l∆ ffsr + (1 + N)∆ fHOM with ∆ fHOM =
∆ ffsr

π
arccos(

√
g1g2) (II.84)

where we defined the coefficient ∆ fHOM, called High Order Mode separation. In order
to highlight this new frequency response, we can rewrite the round trip phase, γnm, as
the normalised frequency:

ν( f , N) = π
f − f0

∆ ffsr
= π

f − l∆ ffsr + (1 + N)∆ fHOM
∆ ffsr

(II.85)

This coupling between the resonance condition and the beam shape leads to a complex
diffraction phenomenon that is at the foundation of the Mode Mismatch.

II.2. Mismatch of a Simple Astigmatic Gaussian Beam
In the previous section, we saw how the resonance frequency changes as a function
of the Transverse Mode order, (n + m) = N. This phenomenon has a considerable
effect when we look at the reflectance, transmittance and internal gain of a cavity. The
combination of Eq. II.84 and Eq. II.19 shows how the cavity response is now defined as
a function of the mode order, N:

rcav( f , N) =
ar

a0
=

r1 − (1 − ρ1)r2 ei ν( f ,N)

1 − r1r2 ei ν( f ,N)
(II.86)

tcav( f , N) =
at

a0
=

t2t1 e(i ν( f ,N))

1 − r1r2 ei ν( f ,N)
(II.87)

ν( f , N) = π
f − f0

∆ ffsr
= π

f − l∆ ffsr + (1 + N)∆ fHOM
∆ ffsr

(II.88)

This dependency imposes special care when we study the interaction between an
incoming beam and a cavity. In particular, we can distinguish two cases: we will talk
about Mode Matched beam if the amplitude profile of the incoming beam corresponds
to one of the Cavity Transverse Modes, and about Mode Mismatched beam in the other
cases.

In the first case, the interaction between the beam and the cavity can be analysed in
plane-wave approximation, assuming the set of parameters of the corresponding mode
order. In the second case, we have to represent its amplitude using the cavity base:

EIn.(x, y) = ∑
i,j

ci,jHGi,j(x, y|qc) (II.89)

and evaluate each Transverse Mode, HGi,j(x, y|qc), separately. The decomposition,
together with the relationship between the cavity parameters and the order of the
modes, generates diffractive effects and changes the beam shape of both the reflected
and transmitted beams.

The cavity reflectance, rcav( f , N), changes as a function of the order of the Transverse
Mode, so the amplitude, ci,j, of each mode component, HGi,j(x, y|qc), will be reflected
with different coefficients:

dij = ci,jrij where rij = rcav( f , i + j) (II.90)
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The reflected beam amplitude, ERe f . will results in a new linear combination defined by
dij:

EIn. = c00U0,0 + c10U1,0 + c01U0,1 + · · ·yr0,0
yr1,0

yr0,1

ERe f . =d00U0,0 + d10U1,0 + d01U0,1 + · · · 6= EIn.

that will correspond to a different shape.
A similar effect happens to the cavity transmission: when the incoming beam is not

matched with the resonance mode (e.g HG00), the optical power carried by the other
components is filtered out. If we consider the analysis done in Eq. II.22 and Eq. [II.24,
II.25], we can assume that only the amplitude of the resonant mode will be transmitted:

b00 = c00t00 where t00 =
√

Gcavt2 (II.91)

while the other coefficients are suppressed by the ”out of resonance“ condition5:

bij = cijtij where tij = i
t2t1

1 + r1r2
' 0 (II.92)

Using these results, the effect of the Resonant Cavity can be described as a transverse
mode filter suppressesing the not resonant component

EIn. = c00HG0,0 + c10HG1,0 + c01U0,1 + · · ·yt0,0
yt1,0

yt0,1

ETran. =b00HG0,0 + �����b10HG1,0 + �����b01HG0,1 + · · ·

and transmiting only the resonant one ETran. = d00U0,0.
In this thesis, we want to present a new method to measure the mismatch between

a Simple Astigmatic Gaussian Beam and a Linear Cavity. The main characteristic of
the Astigmatic Gaussian beam is the elliptic shape of the power profile. In the case of
Simple Astigmatism, this ellipse maintains a fixed orientation during the z propagation
and defines an internal reference system,(x̃, ỹ), in which the beam amplitude can be
represented with two bi-dimensional Gaussian Mode. These two modes will have
different complex parameters and the normalised amplitude profile is

Ψin = U00
(
qx̃, qỹ) = √ 2

π

√
ei
(
∆ψx̃(z)+∆ψỹ(z)

)
wx̃(z)wỹ(z)

e
ik
2

(
x̃2

qx̃ +
ỹ2

qỹ

)

qx̃/ỹ(z) =
(

z − zx̃/ỹ
0

)
+ i

πwx̃/ỹ
0

λ

(II.93)

where U00 is the fundamental mode in the base defined by the complex parameters
(qx̃, qỹ).

On the other hand, the resonance mode of the cavity should be described using
the experimental reference system, (x, y), and the complex parameter of the cavity
5Here we assume that the Cavity Finesse, F and the High Order mode spacing ∆ fHOM are chosen in

order to have only one resonant mode at the time.
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defined using Eq. II.73. The connection between the beam reference system and the
experimental one is given by a rotation of an angle θ:{

x̃ = x cos(θ)− y sin(θ)
ỹ = x sin(θ) + y cos(θ)

(II.94)

while the beam shape of the resonant mode is defined by:

U00(x, y, z; qc) = HG00(x, y, z; qc) = u0(x, z; qc)u0(y, z; qc) =

√
2
π

1
wc(z)

e
ik r2

2qc e∆ψ(z)

qc(z) = z − z̄0 + i
πw̄0

λ
(II.95)

where r2 = x2 + y2, qc is the complex parameter of the cavity, and we assumed that the
cavity is tuned to be resonant with the fundamental mode, ij = 00.

As we introduced at the beginning of this section, the interaction between a resonant
cavity and a beam has to be studied using the cavity Transverse mode basis. For this
reason, we need to represent the Simple Astigmatic Gaussian Beamdescribed in Eq. II.93
using the Transverse mode of the cavity, defined by the parameter, qc.

In order to simplify the calculation, we can exploit the circular symmetry of the linear
cavity and study the mode matching using an astigmatic reference system, (x̃, ỹ). After
this first approach, we can extend the results for an arbitrary experimental reference
system by using the relationship defined in Eq. II.94. In this way, we can factorise the
Transverse modes into the product of two bi-dimensional profiles and study one at a
time. In particular, we will present the calculation for the plane X̃Z and extend the
results to the three-dimensional case.

The main advantage of focusing the study on one plane at a time is that the bi-
dimensional Gaussian mode is completely defined by two parameters: the beam shape
using the waist dimension w0 and the waist position z0. This allows connecting the
amplitude shape of the incoming beam to the Fundamental Resonant Mode by using
the same approach presented by Anderson[3]. Both these amplitudes have the same
shape defined by Eq. II.39, reported here

u0(x, z, w0, z0) =
4

√
2

πw2
x(z)

exp
[
−x2

w2
x(z)

]
exp

[
i
2 ∆ψx − ik

x2

2Rx(z)

]
(II.96)

but with different beam parameters, (w0, z0).
In this way, the mismatch between the incoming beam and the resonance mode can

be describe by the difference of the beam paramters. We will indicate the Fundamental
Resonant Mode parameter with w̄0 and z̄0, while the incoming beam shape is defined
as small perturbation:

w(x̃)
0 = w̄0 + δw(x̃)

0

z(x̃)
0 = z̄0 + δz(x̃)

0

(II.97)

This representation is schematised in Figure II.4, where the beam shape along the XZ
plane is reported: The incoming beam is indicated by the dashed line, and the resonance
one by the continued lines. The two mode have differente waist radius and different
waist position.
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γx
βx

Input
Mirror

End
Mirror

Incoming
Beam

Figure II.4: Mismatch between the incoming beam and the cavity mode. The lines represent
the evolution of w(z) of the two different beam shapes: the incoming beam (dotted
lines) and the cavity mode (continued line). The difference between the two beams
is represented by γx̃ = δz(x̃)/2z̄R and βx̃ = δw(x̃)

0 /w̄0 which are respectively the
difference in position and dimension of the waist.

Starting from the relationship between the beam parameters described in Eq. II.97, we
can represent the shape of the incoming beam as the Taylor expansion of the parameters,
w(x̃)

0 and z(x̃)
0 around the values, w̄0 and z̄0

u0

(
w̄0 + δw(x̃)

0 , z̄0 + δz(x̃)
0

)
'

u0(w̄0, z̄0) + δw(x̃)
0 (∂w0 u0(w0, z̄0)|w0=w̄0

+ δz(x̃)
0 (∂z0 u0(w̄0, z0)|z0=z̄0

(II.98)

In order to estimate the decomposition factor, we need to rewrite the Eq. II.98 as a
function of bi-dimensional Hermite-Gauss modewith complex parameter qc, un(x, z|qc).
We can evaluate the derivatives in any z position, sowewill choose themore comfortable
one, z = z0.

II.2.1. Waist Radius Perturbation

In order to study the effect of a waist radius perturbation, we can assume that the
incoming beam and the resonance mode share the same waist position z(x̃)

0 = ẑ0 and
estimate the Eq. II.98:

u0

(
w̄0 + δw(x̃)

0 , z̄0

)
' u0(w̄0, z̄0) + δw(x̃)

0 (∂w0 u0(w0, z̄0)|w̄0
. (II.99)

Moreover, we can simplify the calculation by studying the Taylor expansion around
z = z(x̃)

0 where the beam amplitude described by Eq.II.96 becomes:

u0(x̃, ẑ0|w0, z̄0) =
4

√
2
π

1√
w(x̃)

0

exp

(
− x̃2

(w(x̃)
0 )2

)
(II.100)
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In this configuration, the derivative required in Eq. II.99 is given by

∂u0(x, ẑ0|w0, ẑ0)

∂w0

∣∣∣∣
w0=w̄0

=
4

√
2
π

−1
2

1√
w̄3

0

e
− x̃2

w̄2
0 +

1√
w̄0

(
2x̃2

w̄3
0

e
− x̃2

w̄2
0

)
=

1
w̄0

[
−1

2
+

2x̃2

w̄2
0

]
4

√
2
π

1√
w̄0

e
− x̃2

w̄2
0

(II.101)

The next step is to rewrite these results as Hermite-Gauss modes. We need to factorise
Eq. II.101 to the following structure:

un(x̃ẑ0|ẑ0, w̄0) =

(
2
π

) 1
4

Hn

(√
2x̃

w̄0

)√
1

2n n! w̄0
e
− x̃2

w̄2
0 (II.102)

by rewriting the coefficients between square brackets as Hermite polynomials. In
particular, we can proceed as

(
−1

2
+

2x̃2

w̄2
0

)
=

1
4

4

(√
2x̃

w̄0

)2

− 2

 =
1
4

H2

(√
2x̃

w̄0

)
=

1√
2

1
2
√

2
H2

(√
2x̃

w̄0

)
(II.103)

where we highlight the normalisation factors for the Hermite-Gauss Mode of order 2,
(
√

2nn!)−1.
Using the factoring obtained in Eq. II.103, we can rewrite the derivative of Eq. II.100

as

∂u0(x|w0, ẑ0)

∂w0

∣∣∣∣
w0=w̄0

=
1

w̄0

1√
2

u2(x̃, z0|w̄0) (II.104)

and combine this results with Eq. II.99 in order to obtain:

u0(x̃|w̄0 + δw(x̃)
0 ) = u0(x̃|w̄0) +

1√
2

δw(x̃)
0

w̄0
u2(x̃|w̄0) (II.105)

II.2.2. Waist Position Perturbation

The study of the waist position, z0, is a little bit more complicated than the previous
one, inasmuch this parameter acts as reference along the ẑ axis. This is clearer if we
consider the general formulation of a fundamental Gaussian beam:

u0(x̃, z|ŵ0, z0) =
4

√
2
π

ei
∆ψx̃(z−z0)

2√
wx̃(z − z0)

e
− ik

2

(
x̃2

q(z−z0)

)
(II.106)

where we highlight the z0 dependency.
In this case, we cannot put z = z0 and calculate the derivative as we will artificially

remove z0 from the equation. For this reason, we need an intermediate variable and to
rewrite the Gaussian mode as a function of ∆z = z − z0. The perturbation of the waist
position can be written as ∆z = 0 + δz(x̃)

0 and the derivative as:

∂z0 u0(x̃|z0)|ẑ0
=
(
∂∆zu0(x̃|∆z) · ∂z0 ∆z

∣∣
∆z=0 = −

(
∂∆zu0(x̃|∆z)

∣∣
∆z=0 (II.107)
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We can identify three different components and estimate their independent contribu-
tions: the Gouy Phase ∆ψx̃ Eq. II.46, the complex parameter q Eq. II.42, and the beam
waist w(x̃), Eq. II.44. The single contribution are given by

(∂∆z∆ψx̃(∆z)|∆z=0 =

 1
zR

1

1 +
(

∆z
z̄R

)2

∣∣∣∣∣∣∣
∆z=0

=
1

zR
(II.108)

(
∂∆zq−1(∆z)

∣∣∣
∆z=0

=

(
− 1
(∆z + izR)2

∣∣∣∣
∆z=0

=
1

z2
R

(II.109)

(∂∆zw̄x̃(∆z)|∆z=0 =

 ∆zw̄0

z2
R

√
1 +

(
∆z
zR

)2

∣∣∣∣∣∣∣∣
∆z=0

= 0 (II.110)

Using these results, we can rewrite the derivative of u0(x̃|z0) as:

∂∆zu0(x̃|∆z)|∆z=0 =

4

√
2
π

1√
w̄0

(
+i
2zR

ei
∆ψx̃(0)

2 e
− ik

2

(
x̃2

q(0)

)
+ ei

∆ψx̃(0)
2

(
−ik

2
x̃2

z2
R

)
e
− ik

2

(
x̃2

q(0)

))
=

(
i

2zR
− ik

2
x̃2

z2
R

)
4

√
2
π

1√
w̄0

ei
∆ψx̃(0)

2 e
− ik

2

(
x̃2

q(0)

)
(II.111)

As we did in the previous section, we need to re-organise the coefficient as a second
order Hermite polynomial:(

i
2zR

− ik
2

x̃2

z2
R

)
=

−i
zR

(
−1
2

+
x̃2

w̄2
0

)
=

−i
8zR

(
−2 − 2 + 4

2x̃2

w̄2
0

)
=

−i
8zR

(−2 + H2

(
x̃
√

2
w̄0

)
) (II.112)

and add the the normalisation factor of a second order Hermite-Gauss beam (2
√

2)−1:

∂∆zu0(x̃|∆z)|∆z=0 =

2
√

2
−i
8zR

1
2
√

2

(
H2

(
x̃
√

2
w̄0

)
− 2

)
4

√
2
π

1√
¯̄w0

ei
∆ψx̃(0)

2 e
− ik

2

(
x̃2

q(0)

)
=

1√
2
−i
2zR

u2(x̃|z̄0) +
1
2

i
2zR

u0(x̃|z̄0) (II.113)

The final result for the waist position perturbation is given by the combination of the
factoring in Eq. II.113 and Eq. II.1076:

u0(x̃|z̄0 + δz(x̃)
0 ) = u0(x̃|z̄0) +

i√
2

δz(x̃)
0

2zR
u2(x̃|z̄0)(x, y|qc)−

(
i
2

δz(x̃)
0

2zR
u0(x̃|z̄0)

)
(II.114)

6The result presented by Anderson[3] does not contain the−2u0 in the perturbation of the waist position.
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Combining Eq. II.98 Eq. II.105 and Eq.,II.114 we can represent the mismatch between
the bi-dimensional Gaussian mode and a linear cavity as7

u0(x̃|w̄0 + δw(x̃)
0 , z̄0 + δz(x̃)

0 ) = u0(x̃|w̄0, z̄0) +

(
δw(x̃)

0
w̄0

+ i
δz(x̃)

0
2z̄R

)
︸ ︷︷ ︸

εx̃

u2(x̃|w̄0, z̄0)√
2

(II.115)

where all the information about the difference between the two modes is collected in
the amplitude coefficient:

εx̃ =

(
δwx̃

0
w̄0

+ i
δzx̃

0
2z̄R

)
(II.116)

II.2.3. Astigmatic Mismatch in the three dimensional space

We can now extend this representation to the three dimensional incoming beam using
the cavity base. We can combine Eq. II.115 with Eq. II.93:

Ψin = U00
(
qx̃, qỹ) ' (u0(x̃) + εx̃

u2(x̃)√
2

)
·
(

u0(ỹ) + εỹ
u2(ỹ)√

2

)
(II.117)

and consider only coefficients that are linear with the perturbation. In particular, the
bi-dimensional amplitude share the same complex parameter, qc and they are combined
into the Hermite-Gauss modes HGnm using Eq. II.50:

u0(x̃)u0(ỹ) = HG00

εx̃u0(x̃)u2(ỹ) = εx̃HG02

εỹu2(x̃)u0(ỹ) = εỹHG20

εx̃εỹu2(x̃)u2(ỹ) = εx̃εỹHG22

(II.118)

We can consider only the contribution that are linear with the perturbations to the εx̃
and εỹ and, we can ignore HG22. In this way, Eq. II.117 is simplified to

Ψin ' HG00(x̃, ỹ|qc) + 〈ε〉 1√
2
(HG20(x̃, ỹ|qc) + HG02(x̃, ỹ|qc)) +

δε
1√
2
(HG20(x̃, ỹ|qc)− HG02(x̃, ỹ|qc)) (II.119)

where we have defined the common and differential mismatch as

Common 〈ε〉 =
(εx̃ + εỹ)

2
(II.120)

Differential δε =
(εx̃ − εỹ)

2
(II.121)

II.2.4. Astigmatic Axis Angle

After the formalisation of the mismatch in the astigmatic reference system, we need to
extend Eq. II.119 to the experimental reference one. In this case, we need to impose a
7Here, we ignore the correction to the fundamental mode present in Eq. II.114.
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rotation of the reference system (x, y) by applying:

x̃ = x cos(θ)− y sin(θ) (II.122)
ỹ = x sin(θ) + y cos(θ) (II.123)

to each mode in Eq. II.119. Only the modes HG02 and HG20 are not invariant by this
transformation. If we look their general form defined using the rule in HGnm with the
amplitude shape define in Eq. II.41:

HG20(x̃, ỹ) =

√
2
π

H2

(√
2x̃

w(z)

)√
1

22 2!
1

w(z)
e−

x̃2+ỹ2

q(z) ei3∆ψ(z) (II.124)

we can see that the only coefficient that change under rotation is theHermite polynomial:

H2

(√
2x̃

w(z)

)
= 4

(√
2x̃

w(z)

)2
− 2

= 4
(√

2(x cos(θ)−y sin(θ))
w(z)

)2
− 2

= 4
( √

2)
w(z)

)2
[x2 cos2(θ) + y2 sin2(θ)− 2xy cos(θ) sin(θ)]

− 2(cos2(θ) + sin2(θ))

= [4
( √

2)
w(z)

)2
x2 − 2] cos2(θ) + [4

( √
2)

w(z)

)2
y2 − 2] sin2(θ)

− 2 · 2x
( √

2)
w(z)

)
cos(θ)2y

( √
2)

w(z)

)
sin(θ)

= H2

(√
2x

w(z)

)
cos2(θ) + H2

(√
2y

w(z)

)
sin2(θ)

− 2H1

(√
2x

w(z)

)
cos(θ)H1

(√
2y

w(z)

)
sin(θ)

(II.125)

If we recombine this result into Eq. II.124, we obtain

HG20(x̃, ỹ) =
( 2

π

) 1
2
√

1
22 2!

1
w(z) exp

(
− x2+y2

q2(z)

)
exp (−i3Φ(z)) ·[

H2

(√
2x

w(z)

)
cos2(θ) + H2

(√
2y

w(z)

)
sin2(θ)

−2H1

(√
2x

w(z)

)
cos(θ)H1

(√
2y

w(z)

)
sin(θ)

]
(II.126)

that is composed by three terms: one proportional to H2

(√
2x

w(z)

)
, one proportional

to H2

(√
2y

w(z)

)
, and a third proportional to H1

(√
2x

w(z)

)
H1

(√
2y

w(z)

)
. The first two can be

factorised into the HG02(x, y) and HG20(x, y):

√
2
π

√
1

22 2!
1

w(z) e
− x2+y2

q(z) e3∆ψ(z)H2

(√
2x

w(z)

)
= HG20(x, y) (II.127)√

2
π

√
1

22 2!
1

w(z) e
− x2+y2

q(z) e3∆ψ(z)H2

(√
2y

w(z)

)
= HG02(x, y) (II.128)
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while the last one corresponds to an Hermite-Gauss, HG11(x, y):

√
2
π

√
1

22 2!
1

w(z) e
− x2+y2

q(z) ei3∆ψ(z)H1

(√
2y

w(z)

)
H1
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1
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u1(x, z|qc) · u1(y, z|qc) =

√
1
2

HG11(x, y) (II.129)

In conclusion, the rotation of the reference system transforms the Transverse Modes as

HG20(x̃, ỹ) = HG20(x, y) cos2 θ + HG02(x, y) sin2 θ −
√

2HG11(x, y) cos θ sin θ

(II.130)

HG02(x̃, ỹ) = HG20(x, y) sin2 θ + HG02(x, y) cos2 θ +
√

2HG11(x, y) cos θ sin θ
(II.131)

Combining all these results, we obtain the expansion of a Simple Astigmatic Gaussian
beam using an arbitrary reference system for the Astigmatic axis:

Ψin = U00(x, y|qc)+

δε ·
[

HG20(x, y|qc)− HG02(x, y|qc)√
2

cos 2θ − HG11(x, y|qc) sin 2θ

]
+

〈ε〉 · HG20(x, y|qc) + HG02(x, y|qc)√
2

(II.132)

where we can see that the change in reference system (x̃, ỹ) → (x, y) generates a third
high order mode, HG11 which carries the information on the ellipse orientation, θ.

Connection to the standard representation

The linear combination of the Hermite-Gauss mode HG02(x, y) and HG20(x, y) is com-
monly described using a different set of solutions of the paraxial wave equation. The
spherical mismatch represented by the 〈ε〉, is naturally formalised using the cylindrical
coordinates that lead to Laguerre-Gauss modes. These two families of Transverse mode
are connected to each other by unique conversion rules[29], which leads to

HG20(x, y|qc) + HG02(x, y|qc)√
2

= LG01(x, y|qc) (II.133)

where LG01 is a Laguerre Gauss mode 01:

LG01(x, y|qc) =
√

2
π

ei3δψ(z)

w(z)
L0

1

(
2(x2+y2)

w2(z)

)
exp

[
− (x2+y2)

w(z)
− i (x2+y2)

2R(z)

]
(II.134)

that is shaped by the Laguerre Polynomial Ll
m. This conversion can be visualised in

Fig. II.5 where we can notice how the constructive interference between the two Hermite
Gauss modes presents the same circular symmetry of the Laguerre-Gauss Mode.
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Figure II.5: Composition of HG20 and HG02. Left we can see the amplitude profiles of an
LG01(a.) and HG45

11(c.). On the right, we have their decomposition into the two
Hermite-Gauss modes.

On the other hand, the astigmaticmismatch, represented by δε, can be described using
only the Hermite-Gauss mode 11. Following the same calculation done in Eq. II.126,
we obtain:

HG20(x, y|qc)− HG02(x, y|qc)√
2

= HG11

(
x − y√

2
,

x + y√
2

∣∣qc

)
= HG45

11(x, y|qc) (II.135)

that is equivalent to representing the difference between the two Hermite-Gauss modes
HG02(x, y) and HG20(x, y) as a Hermite-Gauss Mode 11 rotated by 45°, HG45

11. This
conversion is visualised in Fig. II.5, where we can see that the two modes have a
destructive interference in the centre and along the diagonals.

Using these two conversion rules, it is possible to represent the Mismatch in a more
elegant way

Ψin = U00(z, x, y|qc)+

δε ·
[
HG45

11(x, y|qc) cos 2θ − HG11(x, y|qc) sin 2θ
]
+ 〈ε〉 · LG01 (II.136)

This result is limited to a Simple Astigmatic Gaussian Beam in which the ellipse of
constant phase and the ellipse of constant intensity are always orthogonal to each
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other[30]. In particular, this expansion defines four different parameter

β =
〈w0〉(x̃,ỹ) − ŵ0

ŵ0
with 〈w0〉 =

w(x̃)
0 + w(ỹ)

0
2

γ =
〈z0〉(x̃,ỹ) − ẑ0

2ẑR
with 〈z0〉(x̃,ỹ) =

z(x̃)
0 + z(ỹ)0

2

α =
w(x̃)

0 − w(ỹ)
0

2ŵ0

η =
z(x̃)

0 − z(ỹ)0
4ẑR

〈ε〉 = β + iγ and δε = α + iη

(II.137)

that, together with the ellipse angle θ, fully define the simple astigmatic mismatch.
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This Chapter contains the core of this thesis. Starting from the results of the previus
chapter, I present a wavefront sensing technique that can characterise the mismatch
between a Simple Astigmatic Gaussian Beam and a linear cavity. This method is an
upgrade of the Mode Converter Telescope technique proposted by Magaña-Sandoval,
Vo, Vander-Hyde, et al.[2] and it is based on the detection of the second order mode
aplitude which carrier the mismatch information.

Here, I first present how we can extract a signal propoportional to the Astigmatic
Mismatch parameter and after I will discuss some of the technical limitation of this new
method.

III.1. Theoretical Model
From Eq. II.136, we know that the Astigmatic Mismatch parameters are encoded in
the amplitude of the second order modes LG10, HG11, and HG45

11. We can measure
this amplitude using a Heterodyne detection based on a special split photodiode. This
approach was first demonstrated by Mueller, Shu, Adhikari, et al. [31] and techni-
cally improved in the Mode Conversion Technique proposed by Magaña-Sandoval, Vo,
Vander-Hyde, et al.[2]. However, both methods were designed to detect the Laguerre-
Gauss 10 mode amplitude, and they can only measure the variation of the spherical
mismatch. This limitation can be overcome by a small change in the detector setup that
allows characterizing two Hermite-Gauss modes, HG11 and HG45

11 and measuring the
astigmatic mismatch parameters. This upgrade works around the Mode Conversion
Technique, so we will first describe this method, and after we present our proposal.
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III.1.1. Heterodyne detection

All the techniques mentioned before, such as the one proposed here, are based on
Heterodyne detection. This method exploits the beat note generated by two fields
with different frequencies to measure the product of their amplitudes. The detection
scheme is divided into two parts: in the first one, we superimpose the signal field Es =
As exp(iωt) and the reference one, ELO = ALO exp(i(ω + Ω)t), generally called Local
Oscillator. We measure the interference between these two beams with a photodiode
and record a signal, S, proportional to the total power:

S ∝ |Es + ELO|2 = |As|2 + |ALO|2 +
(

As ALOe−iΩt + ALO AseiΩt
)

(III.1)

In the second part, we demodulate the signal generated by the photodiode by mixing it
with an electronic oscillator SLO = VLOe−i(Ωt+φ0) :

Smix =
[
|As|2 + |ALO|2 +

(
As ALOe−iΩt + ALO AseiΩt

)]
· VLOe−iΩ+φ0

= (|As|2 + |ALO|2)VLOe−i(Ωt+φ0) + VLO As ALOe−i2Ωt+φ0 + VLO ALO Aseiφ0

(III.2)

and extracting the low-frequency component with a Low Pass filter:

Sdem =
(((((((((((((((

(|As|2 + |ALO|2)VLOe−i(Ωt+φ0) +((((((((((
As ALOVLOe−i2Ωt+φ0 + ALO AsVLOeiφ0 (III.3)

The measured signal is given by the Real part of Sdem:

<[Sdem] = VLO
(
<
[
As ALO

]
cos(φ0) +=

[
As ALO

]
sin(φ0)

)
(III.4)

where the local oscillator phase φ0, is generally called demodulation phase. If we
assume that ALO is Real, we can estimate the complex amplitude As by measuring the
demodulated signal, Sdem, at φ =0° and φ = 90°.

We can implement the same scheme to characterize the amplitude of Transverse
Modes reflected by the cavity. In this case, the local oscillator is generated by phase
modulation of the main optical beam. This process creates two sidebands that travel
together with the original beam:

Ψin = Û(x, y, z)
(

eiωt + m
2 ei(ω+Ωt) − m

2 ei(ω−Ωt)
)

(III.5)

where m and Ω are, respectively, the modulation depth and the frequency of the oscilla-
tor, while Û(x, y, z) is the amplitude profile of the beam.

In order to detect the mismatch parameters, we need to force the decomposition of
the beam amplitude, Û(x, y, z), into the cavity Transverse Modes described in Eq. II.136.
This is naturally done by the cavity reflectance that decomposes the incoming beam into
the cavity mode and re-scales each component with the corresponding value defined in
Eq. II.86:

FN(ω) = rcav( f , N) =
r1 − (1 − ρ1)r2 ei ν( f ,N)

1 − r1r2 ei ν(
ω
π ,N)

, (III.6)

wherewe consider the definition of ν( f , N) given in Eq. II.85 and ω = 2π f . In particular,
the amplitude of the reflected beam is described by:

Ψre f =Û0

(
F0(ω)eiωt + F0(ω + Ω)m

2 ei(ω+Ωt) − F0(ω − Ω)m
2 ei(ω−Ωt)

)
+

Û2(δε, 〈ε〉 , θ)
(

F2(ω)eiωt + F2(ω + Ω)m
2 ei(ω+Ωt) − F2(ω − Ω)m

2 ei(ω−Ωt)
)
(III.7)
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where Û0 is the fundamentalmode of the cavity, and Û2(δε, 〈ε〉 , θ) collects all the second
order contribution defined in Eq. II.136:

Û2(δε, 〈ε〉 , θ) = δε ·
[
HG45

11 cos 2θ − HG11 sin 2θ
]
+ 〈ε〉 · LG10 (III.8)

Once we have the Mode decomposition, the Heterodyne scheme requires to detect of
the interference between the signal and the local oscillator. This information is contained
in the power profile of the reflected beam defined by

Pre f(x, y, z) =|Û0(x, y, z)|2
(

F0
0 + F+

0 e+iΩt − F−
0 e−iΩt

) (
F0

0 + F+
0 e+iΩt − F−

0 e−iΩt
)
+

|Û2(x, y, z)|2
(

F0
2 + F+

2 e+iΩt − F−
2 e−iΩt

) (
F0

2 + F+
2 e+iΩt − F−

2 e−iΩt
)
+[

Û0Û2(x, y, z)
(

F0
0 + F+

0 e+iΩt − F−
0 e−iΩt

) (
F0

2 + F+
2 e+iΩt − F−

2 e−iΩt
)
+ c.c.

]
(III.9)

where we contract the notation using:

F0
i = Fi(ω) and F±

i =
m
2

Fi(ω ± Ω) (III.10)

The power profile in Eq. III.9 is divided into three components, one for each line.
The first line is proportional to the power of the fundamental mode, |Û0(x, y, z)|2 and
corresponds to the Pound–Drever–Hall[32] signal of the FundamentalMode; the second
line is proportional to the power of the second-order modes and contains the mismatch
magnitude:

∣∣Û2(x, y, z)
∣∣2 = |δε|2

(∣∣∣HG45
11

∣∣∣2 cos2(2θ) + |HG11|2 sin2(2θ)

)
+ |〈ε〉|2 |LG10|2 +

−
[
|δε|2 HG45

11HG11 cos(2θ) sin(2θ) + c.c.
]
+

+
[
δε〈ε〉

(
HG45

11LG10 cos(2θ)− HG11LG10 sin(2θ)
)
+ c.c.

]
(III.11)

while the third line is proportional to the beats between the second-order modes and
the fundamental oneand it carries the complex information of 〈ε〉 and δε:

Û0Û2 = δε ·
[
Û0HG

45
11 cos 2θ − Û0HG11 sin 2θ

]
+ 〈ε〉 · Û0LG10 (III.12)

All these components are summed together and we need to separate them in order
to extract only the mismatched parameters. This can be done by exploiting the charac-
teristic of the power profiles that compose Eq. III.9. In particular, we have ten different
profiles:

|HG00|2 ,
∣∣∣HG45

11

∣∣∣2 , |HG11|2 , |LG10|2 (III.13)

HG45
11HG11, HG45

11LG10, HG11LG10 (III.14)

HG00HG
45
11, HG00HG11, HG00LG10 (III.15)

among which we can distinguish three groups: in Eq. III.13 we collected the Transverse
mode power profiles, in Eq. III.14 the beat-note between second-order modes, and in
Eq. III.15 the beat-note between different second order and fundamental modes.
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These groups can be separated using the structures of the profile amplitude. The first
group is always positive, while each element of the second and third groups changes
the sign as a function of the Transverse Mode polynomial, Hermite for the HGij and
Laguerre for LGij. These features can be exploited by using split photodiodes. These
devices are composed of multiple sensors and we can optimise their shapes to match
the power profile of interest. After that, we can recombine each sensor signal and
discriminate the single beat-note contribution.

III.1.2. Spherical mismatch and Mode Converter Technique

The first step towards Astigmatic Mismatch Sensing is the Mode Converter Technique.
This method was designed only for the spherical mismatch and it is not sensitive to
astigmatic aberrations. In this case, we need to focus the analysis only on the transverse
mode proportional to 〈ε〉 in Eq. II.136, and put δε = 0:

Ûspher.
2 ∝

u02(qc) + u20(qc)√
2

= LG01(qc) (III.16)

This approach was tested by Mueller, Shu, Adhikari, et al. et all.[31], who designed a
split photodiode following the shape of the HG00LG10, Fig. III.1.However, this profile
shape requires special care in the sensor design and it strongly limits the implementation
of wavefront sensing.
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Figure III.1: The beat-note between a LG10 and a U00 (a) is defined by the LG10 mode. We can
identify the two areas with opposite signs that suggest the sensor division (b) in
two annular areas. The beat-note between a HG45

11 and a U00 (c) is defined by the
HG45

11 mode. We can identify the four areas with opposite signs that suggest the
sensor division (d) in four sub-sensors Ai defined in Eq. III.34.

This issue was resolved byMagaña-Sandoval, Vo, Vander-Hyde, et al. in their work[2].
They implemented a Mode Converter Telescope in order to manipulate the phase
between HG02 and HG20 and to convert the Laguerre-Gauss into a Hermite-Gauss one



iii.1 theoretical model 49

f1 f2

l

qS

qT

q0

Figure III.2: Mode Convert Telescope. A Mode Converter Telescope is a telescope composed of
two cylindrical lenses. The first one is used to change the beam shape along one
plane and accelerate the Gouy phase evolution with respect to the other plane. The
second lens is used to recover a circular symmetry on the beam profile. In this
way, the Gouy phase stops evolving separately along the two planes. By using the
difference in Gouy phase accumulated along the two planes, it is possible to convert
the HG45

11 into a LG10.

rotated by 45°, HG45
11. The amplitude profile of this mode, represented in Figure III.1,

shows a distribution with a perfect planar symmetry which simplifies the sensor design.
This shape is easier to reproduce in the detector, and it does not have any requirement
imposed by the beam shape.

Mode Converter Telescope

The conversion between the Laguerre-Gauss mode and the 45° rotated Hermite-Gauss
11, requires two steps. First, the initial beam shape has to be decomposed into two
Hermite Gauss modes HG02 and HG20. Second, we need to add a phase shift of π
between them. We can obtain this effect with an astigmatic telescope composed of two
cylindrical lenses aligned one to the other.

The astigmatic nature of the telescope breaks the cylindrical symmetry of the optical
setup and defines a specific reference system. For simplicity, we will assume that the
lenses are aligned with the Sagittal plane of the optical setup. The first lens reduces
the Rayleigh Range, zR,s, along the Sagittal plane and accelerates the evolution of the
Gouy phase; The second one rematches the beam shape along the Sagittal plane with
the Transverse one and freezes the evolution of the phase difference.

This diffraction evolution can be represented by two separated ABCD matrices:

JS =

(
1 − l

f1
l

l− f1− f2
f1 f2

1 − l
f2

)
and JT =

(
1 l
0 1

)
(III.17)

and its action can be formalised using the Collins’s rules introduced in Eq. II.62. If we
focus the analysis on the Hermite-Gauss modes HG02 and HG20, we have that:

HG02(x, y, q0) → HG02(x, y|qT, qS)ei∆ψ0,2

HG20(x, y, q0) → HG20(x, y|qT, qS)ei∆ψ2,0
(III.18)
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where the extra Gouy phase induced by the telescope is:

∆ψnT ,nS = (nT + 1
2 )ψT + (nS +

1
2 )ψS with ψi = Arg[Ciq0 + Di] (III.19)

and it depends directly on the order mode along the two planes, nS and nT.
This discrepancy is the core of the mode conversion, inasmuch it allows to act sepa-

rately on the two modes and to change their relative phase. In particular, the telescope
should satisfy two requirements: first, the difference between the Gouy phase accumu-
lated by two modes should fulfil the conversion requirement:

∆ψ0,2 − ∆ψ2,0 = −2 (ψT − ψS) = π (III.20)

Second, after the beam evolution after the Mode Converter, the beam should not be
astigmatic, qT = qS otherwise, the difference in Gouy Phase ∆ψ0,2 − ∆ψ2,0 will continue
to change. The first requirement given by Eq. III.20 is equivalent to impose

Arg [CS q0 + DS] =
π

2
(III.21)

while the second one is equivalent to qT = qS, and it can be estimated using the ABCD
rule:

qS =
ASq0 + BS

CSq0 + DS
= q0 + BT = qT (III.22)

The combination of Eq. III.20 and Eq. III.22 leads to

l = 1 + f1
∆z
zR

f2 =
f1∆z + zR

f1 + zR

∆z = z − z0

(III.23)

which are the minimum requirements for the Mode Converter Telescope design. On top
of these requests, we impose f = f1 = f2 to simplify the construction: the focal length
becomes the only free parameter and it defines the beam shape and the lenses position

w(MCT)
0 =

√(
1 +

1√
2

)
λ f
π

z − z(MCT)
0 =

l
2

l =
√

2 f

(III.24)

Once the conditions for the Mode Conversion are met, the amplitude of the beam
that passes across the telescope should be decomposed in the Hermite-Gauss modes
aligned as the Cylindrical lens axis and with a waist of w(MCT)

0 at the position z(MCT)
0 . In

case of the Laguerre-Gauss mode, LG01, we have to consider the decomposition defined
in Eq. II.133:

LG01 =
HG20(x, y|qc) + HG02(x, y|qc)√

2
(III.25)

and propagate the two modes separately

LG01 = ei∆ψ2,0
HG20(x, y|qc) + ei(∆ψ0,2−∆ψ2,0)HG02(x, y|qc)√

2
=

ei∆ψ2,0
HG20(x, y|qc)− HG02(x, y|qc)√

2
= HG45

11ei∆ψ2,0 (III.26)
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Same approach should be followed fro the HG45
11, which is converted back to a

Laguerre-Gauss mode:

HG45
11 = ei∆ψ2,0

HG20(x, y|qc)− ei(∆ψ0,2−∆ψ2,0)HG02(x, y|qc)√
2

=

ei∆ψ2,0
HG20(x, y|qc) + HG02(x, y|qc)√

2
= LG01ei∆ψ2,0 (III.27)

The Transverse modes with are already represented in the Hermite-Gauss base
aligned with respect to the cylindrical lens axis are not decomposed by the telescope;
therefore, they do not change their shape. In particular, the conversion rules for the
Transverse mode of interest for this thesis are:

U00 → U00 (III.28)
HG11 → HG11 (III.29)
LG01 → HG45

11 (III.30)
HG45

11 → LG01 (III.31)

Spherical mismatch error signal

When the beam reflected by the cavity passes through the Mode Converter Telescope,
each component is converted using Eq. [III.28, III.29,III.30, III.31]. In this case, the power
profile becomes that reaches the sensors becomes:

Pconv
re f (x, y, z) =|Û0(x, y, z)|2

(
F0

0 + F+
0 e+iΩt − F−

0 e−iΩt
) (

F0
0 + F+

0 e+iΩt − F−
0 e−iΩt

)
+

|Ûconv
2 (x, y, z)|2

(
F0

2 + F+
2 e+iΩt − F−

2 e−iΩt
) (

F0
2 + F+

2 e+iΩt − F−
2 e−iΩt

)
+[

Û0Û
conv
2 (x, y, z)

(
F0

0 + F+
0 e+iΩt − F−

0 e−iΩt
) (

F0
2 + F+

2 e+iΩt − F−
2 e−iΩt

)
+ c.c.

]
(III.32)

where the second order modes Ûconv
2 are now:

Ûconv
2 (δε, 〈ε〉 , θ) = δε ·

[
LG10 cos 2θ − HG11(x′, y′|qc) sin 2θ

]
+ 〈ε〉 · HG45

11 (III.33)

As we introduced before, the Mode converter Technique is designed for Spherical
Mismatch, 〈ε〉, so we need to focus on the detection of the new corresponding mode,
HG45

11. Its amplitude profile presents a planar symmetry, andwe can divide its wavefront
into four different areas as reported in Fig. III.1-d:

A1 = {y > |x|}, A2 = {x < −|y|}, Orange area
A3 = {y < −|x|}, A4 = {x > |y|} Green area

(III.34)

with different sign of the the beat-note Û0HG
45
10: in areas A1 and A3, it is positive, while

in the other two, A2 and A4, it is negative. This pattern suggests the shape of the
wavefront sensor: we can use four square photodiodes as in Fig. III.1 and measure the
optical power of each area. After that, we will recombine the signal generated in order
to extract only the mismatch signal.
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Each photodiode integrates the power profile over its corresponding region, Ai, and
generates a signal proportional to

Si = |F0|
∫

Ai

|Û0(x, y, z)|2dxy + |F2|
∫

Ai

|Ûconv
2 (x, y, z)|2dxy+(

F0F2

∫
Ai

Û0Ûconv
2 (x, y, z)dxy + c.c.

)
(III.35)

where we collect the reflectance factors, Fi. In particular, we need to expand the contribu-
tion of the second-ordermodes and consider each profile collected in Eq.[III.13,. . . ,III.15]
that corresponds to ten different integrals for each sensor.

In this section, we focused the analysis only on the spherical mismatch so that we
can consider δε = 0 and study only three contributions of Eq. III.35:∫

Ai

|Û0(x, y, z)|2dxy =
∫

Ai

|U00(x, y, z)|2dxy (III.36)∫
Ai

|Ûconv
2 (x, y, z)|2dxy = |〈ε〉|2

∫
Ai

|HG45
11(x, y, z)|2dxy (III.37)∫

Ai

Û0Ûconv
2 (x, y, z)dxy = 〈ε〉

∫
Ai

U00HG45
11(x, y, z)dxy (III.38)

and simplify the calculation using the definition of Ai. In particular, we can rotate the
reference system in order to align these areas with the Cartesian quadrant:

x → x′ =
x + y√

2

y → y′ =
−x + y√

2

(III.39)

and we can consider the relationship among the areas of the detector:{
A1 → A2

(x′, y′) → (−x′, y′)

} {
A1 → A3

(x′, y′) → (−x′,−y′)

} {
A1 → A4

(x′, y′) → (x′,−y′)

}
(III.40)

The Foundamental mode U00 is completely symmetric under the transformation
defined in Eq. III.40:

U0(±x′,∓y′) = U0(∓x′,±y′) = U0(x′, y′) (III.41)

while HG11, is even between A1 and A3 and between A2 and A4, and odd in the other
cases:

HG45
11(±x′,∓y′) = −HG45

11(x′, y′)

HG45
11(±x′,±y′) = HG45

11(x′, y′)
(III.42)

If we combine these symmetry rules, we obtain that |U00|2 and |HG45
11|2 are symmetric

on each sensor areas and we can write that∫
R2

|U00(x, y, z)|2dxy = 4
∫

A1

|U00(x, y, z)|2dxy = 1 (III.43)∫
R2

|HG45
11(x, y, z)|2 dxy = 4

∫
A1

|HG45
11(x, y, z)|2dxy = 1 (III.44)
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The last therm, U00HG45
11(x, y, z) follows the symmetry of the HG45

11 mode, so we can
reduce the calculation of the beat-note to only one integral:∫

A1

U00HG45
11(x, y, z)dxy =

∫
A3

U00HG45
11(x, y, z)dxy = −

∫
A2,4

U00HG45
11(x, y, z)dxy

(III.45)
that can be evaluated in the area A1. Moreover, we can use the change of coordinate
defined in Eq. III.39 to write:∫

A1

HG00HG
45
11(x, y, z)dxy =

∫∫ +∞

0
HG00HG11(x′, y′, z)dx′dy′ (III.46)

that leads to the following results:∫
A1

HG00HG
45
11(x, y, z)dxy =

1
πw2(z) e−i2∆ψ

∫∫ +∞

0
H1

[√
2x′

w(z)

]
H1

[√
2y′

w(z)

]
e
−2 x′2+y′2

w2(z) dx′dy′ =
e−i2∆ψ

2π
(III.47)

where the ∆ψ is the Gouy phase at the sensor position.
We can recombine the signal Si in order to eliminate the contribution of the power

profile, Eq. III.43 and Eq. III.47, and to maximise the mode matching signal, Eq. III.47.
The optical combination is given by:

SM.M = (S1 + S3)− (S2 + S4) (III.48)

that results in

SMCT =
2〈ε〉

π
F0F2e−i2∆ψ + c.c. (III.49)

III.1.3. Mode Converter Robustness to Astigmatic Aberrations

The first step toward Astigmatic Mismatch wavefront sensing is the validation of the
Mode Converter Technique. In particular, the upgrade presented here works around
this technique, so we need to verify if the results of Eq. III.49 are valid even if we assume
δε 6= 0.

In this case, we need to consider all the contributions in Eq. III.33 and calculate the
integral of each power profile listed in Eq. [III.13, III.14, III.15]. We can reduce the
calculation by exploiting the properties of the power profiles. In particular, the new
modes LG10 and HG11, follows the same symmetry described in Eq. III.41:

LG01(±x′,∓y′) = LG01(∓x′,±y′) = LG01(x′, y′)
HG11(±x′,∓y′) = HG11(∓x′,±y′) = HG11(x′, y′)

(III.50)

and this symmetry is conserved in their beat-notes: |HG11|2, |LG10|2, (HG11LG10),
(U00HG11), and (U00LG10). The signals generated are equivalent for each area Ai, and
they are eliminated in the recombination defined in Eq. III.48.

The reaming beat-notes (HG11HG
45
11) and (LG10HG

45
11) can be evaluated combining

the symmetry of the HG45
11, described in Eq. III.42. Even in this case, we can reduce the

calculation to only one integral for (HG11HG
45
11):∫

A1

HG11HG45
11(x, y, z)dxy =

∫
A3

HG11HG45
11(x, y, z)dxy = −

∫
A2,4

HG11HG45
11(x, y, z)dxy

(III.51)
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and an other one for (LG10HG
45
11)∫

A1

LG10HG45
11(x, y, z)dxy =

∫
A3

LG10HG45
11(x, y, z)dxy = −

∫
A2,4

LG10HG45
11(x, y, z)dxy

(III.52)
The first integral is resolved by using the odd symmetry of HG11:

HG11HG45
11(x, y, z) = −HG11HG45

11(−x, y, z) (III.53)

and by splitting the area A1 as

B1 = {y > |x| ∧ x > 0} ∪ B2 = {y > |x| ∧ x < 0} = A1 (III.54)

In this way, we can decompose the integral into two components that cancel each other:∫
A1

HG11HG45
11(x, y, z)dxy =∫
B1

HG11HG45
11(x, y, z)dxy +

∫
B2

HG11HG45
11(x, y, z)dxy =∫

B1

HG11HG45
11(x, y, z)dxy −

∫
B1

HG11HG45
11(x, y, z)dxy = 0 (III.55)

The last integral, Eq. III.52, requires to be evaluated, and it is the only new contribution
to the final signal. We can use the same parameterisation of Eq. III.38 which leads to:∫

A1

LG10HG45
11dxy =

∫∫ +∞

0
LG10HG11dx′dy′

= 1
πw2(z) e−i2∆ψ

∫∫ +∞

0
H1

[√
2x′

w(z)

]
H1

[√
2y′

w(z)

]
e
−2 x′2+y′2

w2(z) dx′dy′ =
e−i2∆ψ

2π
(III.56)

In the case of an astigmatic beam, we have the signal recorded by the Quadrant
Photodiode is:

SMCT =
2〈ε〉

π
F0F2e−i2∆ψ +

2〈ε〉 δε cos(2θ)

π
|F2|2e−i2∆ψ + c.c. (III.57)

The new coefficient generated by the beat note LG10HG45
11 is proportional to |F2|. As we

will discuss later, the component proportional to this therm is ruled out if the second
order modes are in anti-resonance, so it will not affect the demodulated signal.

III.1.4. Astigmatic Mismatch Error Signal

There is amore important result behind the robustness of theModeConverter Technique
to the Astigmatic Aberration. In fact, we demonstrated that the combination of the
signals of a Quadrant Photodiode defined in Eq. III.48 is proportional only to the beat-
note between aHermite-GaussMode 11 oriented as the sensor axes and the Fundamental
Mode. All the other contributions, except LG10HG45

11, are ruled out by the symmetry of
the sensor or the signal recombination itself.

If we look at the representation of Simple Astigmatic Gaussian Beam before the mode
converter:

Û2 = 〈ε〉 LG10 + δε cos(2θ)HG45
11 − δε sin(2θ)HG11
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we can see that the Astigmatic parameter, δε, is proportional to two HG11, one oriented
as the experimental reference and another one rotated by 45°. This observation is all
we need to design the Astigmatic Wave-front Sensing.

Using the results obtained before, we know that a Quadrant Photodiode oriented as a
plus cross, +, will generate a signal proportional to the U00HG11, S+

M.M., while a Quad-
rant Photodiode oriented as an x-shaped cross,×, will generate a signal proportional to
U00HG

45
11, S×M.M..

The precise formulation of these signals can be obtained from Eq. III.57 by replacing
〈ε〉 with the amplitude of the corresponding mode: δε cos(2θ) for S×M.M. and δε sin(2θ)
for S+

M.M.. Moreover, we need to consider the cross-talk generated by the beat-note
estimated in Eq. III.56. The final result is given by

S×M.M. = δε cos(2θ)
2ei∆ψ(z)

π
F0F2 +

2〈ε〉 δε cos(2θ)

π
|F2|2e−i2∆ψ + c.c. (III.58)

S+
M.M. = −δε sin(2θ)

2e−i2∆ψ

π
F0F2 +

2〈ε〉 δε sin(2θ)

π
|F2|2e−i2∆ψ + c.c. (III.59)

III.1.5. Signal Demodulation

The last setup towards the Wave-front sensing is the demodulation of the signals
Eq. III.49, Eq. III.58, and Eq. III.59. In order to simplify the calculation, we can rewrite
these signals as

S(i)
M.M. =

ε̂i

π
e−i2∆ψF0F2 +

2a(〈ε〉 δε)

π
|F2|2e−i2∆ψ + c.c. (III.60)

where i = ×,+,MCT with the corresponding value ε̂i = δε cos(2θ), −δε sin(2θ) and
〈ε〉, and a indicate the scaling factor of the second order modes beat note.

The demodulation of the Quadrant Photodiode signals is similar for each detector,
i = ×,+,MCT. Moreover, the demodulation is linear, so we can demodulate the
Eq.III.60 orwe can demodulate the signal generated by each sector, Sj defined in Eq.III.35.
In both cases, we can focus the calculation only on the components proportional to eiΩt

and ignore the other factors. Moreover, this method maintains the linearity of the initial
signal so that we can analyse the two components of Eq. III.60 separately.

We can start with the first one:

ε̂i

π
e−i2∆ψF0F2 =

ε̂i

π
e−i2∆ψ

[ (
F0

0 F0
2 + F+

0 F+
2 + F−

0 F−
2

)
+
(

F0
0 F+

2 e−iΩt − F0
0 F−

2 e+iΩt + F+
0 F0

2e+iΩt − F−
0 F0

2e−iΩt
)
+

−
(

F−
0 F+

2 e−i2Ωt + F+
0 F−

2 e+i2Ωt
)
+ c.c.

] (III.61)

where we can isolate the coefficient proportional to eiΩt:

ε̂i

π
e−i2∆ψF0F2(Ω) =

1
π

[
ε̂ie−i2∆ψ

(
F+

0 F0
2 − F0

0 F−
2

)
+ ε̂ie−i2∆ψ

(
F0

0 F+
2 − F−

0 F0
2

)]
e+iΩt + c.c. (III.62)
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This technique is designed to work with a cavity in resonance, so we use Eq. II.22 and
Eq. II.25 and assume that:

F0
0 =

r1 − (1 − ρ1)r2

1 − r1r2
= rres (III.63)

F±
0,2 = −m

2

(
r1 + r2

t2
1

1 + r1r2

)
' −m

2
(III.64)

F0
2 = rcav = r1 + r2

t2
1

1 + r1r2
' 1 (III.65)

to reduce the Ω component of Eq. III.61:

ε̂i

π
e−i2∆ψF0F2(Ω) =

m
2π

[
ε̂e−i2∆ψ (−1 + rres) + ε̂e−i2∆ψ (−rres + 1)

]
e+iΩt + c.c. =

i m
π

=
[
(rres − 1)ε̂e−i2∆ψ

]
e+iΩt + c.c. (III.66)

After that, we can proceed with the second term in Eq. III.60:

2a(〈ε〉 δε)

π
e−i2∆ψ|F2|2 =

2a(〈ε〉 δε)

π
e−i2∆ψ

(
|F0

2 |2 + |F+
2 |2 + |F−

2 |2
)

+
[ (

F0
2 F+

2 e−iΩt − F0
2 F−

2 e+iΩt
)
+ c.c.

]
−
(

F−
2 F+

2 e−i2Ωt + F+
2 F−

2 e+i2Ωt
) (III.67)

where we can use Eq. III.64 and Eq. III.65 to see that the coefficients proportional to eiΩt

are ruled out in case the second order modes are out of resonance:(
F0

2 F+
2 e−iΩt − F0

2 F−
2 e+iΩt

)
=
(
−m

2
e−iΩt +

m
2

e+iΩt
)
= 0 (III.68)

In this way, we demonstrated that the component of Eq. III.60 proportional to eiΩt are
only:

S(i)
M.M.(Ω) =

i m
π

=
[
(rres − 1)ε̂e−i2∆ψ

]
e+iΩt + c.c. (III.69)

and the corresponding demodulated signal is:

V(i)
M.M. =

m
π

χi(rres − 1)=
[
ε̂e−i2∆ψ

]
sin(φ0) (III.70)

where we collect the electronic conversion factors in χi.
As we can see, the signal generated from the Quadrant Photodiode is always pro-

portional to the Imaginary part of the beat note between the High Order Modes and
the Fundamental one. In this case, the demodulation phase φ0 can be used only to
maximise the detected signal:

V(i)
M.M. =

m
π

χi(rres − 1)=
[
ε̂e−i2∆ψ

]
(III.71)

while the decoupling of the Real and the Imaginary part of the parameter ε̂i can be
obtained only by tuning the Gouy phase, ∆φ(z) accumulated between the cavity and
the sensor:

Ṽ(i)
M.M.(∆ψ) =

m
π
(rres − 1)χi (<[ε̂i] sin(2∆ψ)−=[ε̂i] cos(2∆ψ)) (III.72)
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To obtain signals proportional to the mode matching degree of freedom, we need
two different sensors for each Quadrant photodiode orientation, and they have to be
separated by 2∆ψ(z2)− 2∆ψ(z1) = 90°. This leads to six sensors organised as in Fig. III.3
that characterise all the astigmatic mismatch parameters listed in Table III.1.

Gouy Phase 2∆ψ MCT with QD× QD× QD +

0° 〈z0〉(x,y)−ẑ0

2ẑR

z(x)
0 −z(y)0

4ẑR
cos(2θ)

z(x)
0 −z(y)0

4ẑR
sin(2θ)

90° 〈w0〉(x,y)−ŵ0

ŵ0

w(x)
0 −w(y)

0
2ŵ0

cos(2θ)
w(x)

0 −w(y)
0

2ŵ0
sin(2θ)

Table III.1: List of Quadrant Photodiode Sensor required for the characterisation of the Astig-
matic Mismatch. We need six sensors divided into three couples. The first one
comprises 2 Quadrant Sensors aligned as×cross, and they measure the wavefront
after the Mode Converter Telescope(MCT). The second couple is again aligned as
a×cross but measures before the MCT. The last one is oriented as a + cross and
measures before the MCT.

Astigmatic
MCT Sensors Mode

Converter
Telescope

As�gma�c
Mismatch

Sensors

Spherical
Mismatch

Sensors

Figure III.3: Simplified optical scheme of Astigmatic Mode Matching Wavefront sensor. The
beam reflected by the cavity is split and Analysed with three different Quadrant
Photodiodes. Before the Mode Converter Telescope, two sensors are dedicated to
the Astigmatic Parameters: one aligned as×cross, Eq. III.58, and one aligned as +
cross, Eq. III.59. After the Mode Converter Telescope, we have the other Quadrant
Photodiode dedicated to the Spherical Mismatch, Eq. III.49. For each sensor in the
schematic, an extra sensor must be considered for the Gouy Phase tuning.

III.2. Experimental Limits
The calculations presented in Section II.II.2 and SectionIII are based on theoretical
assumptions that are not always fulfilled by the Experimental setup. In particular, we
assumed that:

• The Fundamental Mode of the Cavity is perfectly matched with the Mode Con-
verter Telescope

• The Mode Converter Telescope imposes a phase shift of 90° between the modes
HG20 and HG02;

• The optical gains of each photodiode are equivalent;

Any deviation from these assumptions generates a technical noise in the final Mode
Matching signal. From an experimental point of view, it is impossible to avoid these
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issues completely, but we can estimate their action and, when it is possible, reduce their
contribution to the final Mode Matching Signal.

This section will formalize the effect of deviation from each requirement listed before
and describe our approach to technical noise reduction.

III.2.1. Installation of Mode Converter Telescope

The Mode Converter Telescope has to be installed along the path of cavity reflection,
and it has to be tuned with respect to the cavity fundamental mode. When, in Eq. III.32,
we applied the conversion rule to the reflected beam from the cavity, we implicitly
assumed that the fundamental mode was fulfilling the requirements imposed on the
shape of the converted beam. In fact, only the Laguerre-Gauss Mode LG01 with the
beam parameter qMCT defined in Eq. III.24:

qMCT = zMCT
0 +

iπ
λ
(wMCT

0 )2 where


wMCT

0 =

√(
1 +

1√
2

)
λ fCyl

π

z0 =
l
2

respect to the first Cyl lens
(III.73)

is perfectly converted into an Hermite-Gauss Mode HG45
11.

From the experimental point of view, the requirements imposed by Eq. III.24 is
obtained by installing a telescope between the cavity and theMode Converter, called Pre-
converter. This telescope is used to couple the cavity mode qc with the Mode Converter
one qMCT, and it guarantees that the Mode Converter acts on the modes of the cavity
base.

Even if the requirements for the pre-converter are simple, the implementation hides
some pitfalls. The operative procedure for the telescope installation requires tuning
the lens positions with respect to an optical beam. This reference should represent the
cavity fundamental mode from the cavity, which propagates from the cavity itself up
to the Mode Converter. In this way, it is possible to fine-tune the mode matching and
fulfill the requirement imposed by Eq. III.24.

There are two possible approaches to generating a reference for the pre-converter. The
first method is based on the filter action of a resonant cavity. An auxiliary beam is
injected from the end mirror and is kept in resonance with the cavity. In this way, the
cavity transmittance will select only the fundamental mode, which will be leaked from
the front mirror. This reference will propagate along the cavity reflection path and will
represent the effective propagation of the cavity fundamental mode.

The second approach is based on the incoming beam that we want to match to the
resonant cavity. In this case, we will use the reflection of the input-mirror. The cavity
is kept out of resonance to avoid possible deformation of the beam shape, and the
pre-converter lenses are fine-tuned on the beam shape of the incoming beam. This
approach has an intrinsic limitation: the relationship between the reflected beam and
the fundamental mode is based on the initial Mode Matching between the incoming
beam and the cavity. For this reason, this method cannot lead to a perfect tuning of the
pre-converter and induces intrinsic errors on the Mode Matching Sensing.

If the pre-converted is tuned on a generally reflected beam, we obtain a telescope that
maps the wrong beam parameter, q̃c, into the Mode Converter mode one, qMCT. In this
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case the ABCD matrix, will be defined by a new requirement:

qMCT =
ÃΛq̃c + B̃Λ

C̃Λq̃c + D̃Λ
(III.74)

that will generate a mismatch between the cavity fundamental mode, qc, and the Mode
Converter one.

The relationship defined in Eq. III.74 suggests using the Transverse Mode defined
by q̃ as a basis for the evolution of the beam across the telescope. In particular, we can
use the same approach described for the cavity mismatch in Eq.II.119 to represent the
cavity modes defined by qc as a perturbation of the ones defined by q̃. In this way, we
can estimate the evolution of the reflected beam defined in Eq. III.7:

Ψre f =Û0(qc)
(

F0(ω)eiωt + F0(ω + Ω)m
2 ei(ω+Ωt) − F0(ω − Ω)m

2 ei(ω−Ωt)
)
+

Û2(qc)(δε, 〈ε〉 , θ)
(

F2(ω)eiωt + F2(ω + Ω)m
2 ei(ω+Ωt) − F2(ω − Ω)m

2 ei(ω−Ωt)
)

(III.75)

where Û2 is defined by Eq. II.136:

Û2(δε, 〈ε〉 , θ) = δε ·
[
HG45

11 cos 2θ − HG11 sin 2θ
]
+ 〈ε〉 · LG10 (III.76)

and we highlight the dependency from qc, and the general mismatch is indicated by δε
and 〈ε〉.

In order to rewrite the beam in the q̃c basis we need to study the perturbation of each
transverse mode that composes Eq. III.75. We can assume that the initial mismatch
between the linear cavity and the reference beam is represented by

β0 =
〈w0〉0 − ŵ0

ŵ0

γ0 =
〈z0〉0 − ẑ0

2ẑR

(III.77)

where 〈w0〉0 and 〈z0〉0 are the waist parameters that define the reference beam, and ŵ0,
ẑ0, and ẑR defines the cavity fundamental mode.

Starting from this assumption and using the results obtained in Section II.II.2, we can
write the fundamental mode as:

U(qc) ' U0(q̃c) + 〈ε̃0〉 LG10(q̃c) (III.78)

where 〈ε̃0〉 = β̃ + iγ̃ is the residual mismatch defined using the incoming beam as a
reference. β̃ and γ̃ are defined as:

β̃ =
ŵ0 − 〈w0〉0

〈w0〉0

γ̃ =
ẑ0 − 〈z0〉0

2 〈zR〉0

(III.79)

Similar calculations can be done for the second ordermode, but they require extending
the analysis done in Section. II.II.2. This study is beyond the purpose of this Thesis, but
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we can make an educated guess about their Taylor expansion1 and we can assume that
the high order modes excitation is linear in 〈ε̃0〉:

Ui(qc) ' Ui(x, q̃c) + 〈ε̃0〉 Ûn(q̃c) (III.80)

If we apply this perturbation to the Û2(qc) term in Eq. III.75, we have:

Û2(q̃c)(δε, 〈ε〉 , θ) =

δε ·
[ (

HG45
11(x, y|q̃c) + 〈ε̃0〉 ÛHG45

11
(q̃c)

)
cos 2θ−(

HG11(x, y|q̃c) + 〈ε̃0〉 ÛHG11(q̃c)
)

sin 2θ
]
+

〈ε〉 ·
(
LG01(x, y|q̃c) + 〈ε̃0〉

(
ÛLG01(q̃c)

))
(III.81)

where the effect of the imperfect reference is always combined with the mismatch of a
general incoming beam. These two values are mainly small, and their product can be
considered negligible2. Using these results, we can rewrite the cavity reflected beam
using the q̃c basis as:

Ψre f =
(
Û0(q̃c) + 〈ε̃0〉 LG01(q̃c)

)
F0 + Û2(q̃c)(δε, 〈ε〉 , θ)F2 (III.82)

where we collect the Frequency contribution:

Fi =
(

Fi(ω)eiωt + Fi(ω + Ω)m
2 ei(ω+Ωt) − Fi(ω − Ω)m

2 ei(ω−Ωt)
)

(III.83)

In this way, the beam propagation across the pre-converter telescope can be estimated
using the Collins integral rules defined in Eq.III.74. In this way, the beam amplitude
before the Mode Converter can be written as:

Ψre f =
(

Û0(q̃MCT) + 〈ε̃0〉 ei2 Arg
[
C̃Λ q̃c+D̃Λ

]
LG01(q̃MCT)

)
F0+

Û2 〈ε̃0〉 ei2 Arg
[
C̃Λ q̃c+D̃Λ

]
(q̃MCT)(δε, 〈ε〉 , θ)F2 (III.84)

where we consider the extra Gouy phase shift induced by the pre-converter ∆φ =
Arg

[
C̃Λq̃c + D̃Λ

]
.

The tuning of the pre-converter using an imperfect reference creates a new coefficient
proportional to LG01(qMCT). This contribution will be coupled with the Spherical
Mode Matching signal. In fact, the calculation done in Section III demonstrated that
a Quadrant Photodiode Sensor combined with the Mode Converter is sensitive to the
LG01(qMCT) amplitude. For this reason, the detector will generate a signal

S̃MCT = F0

(
〈ε〉 F2 + ε̃0F0

) e−i2∆ψ

π
+ c.c

=
(

F0F2〈ε〉+ |F0|2〈ε̃0〉
) e−i2∆ψ

π
+ c.c

= SMCT + |F0|2
(

e−i2∆ψ

π
〈ε̃0〉+ c.c

)
= SMCT + |F0|2<

[
e−i2∆ψ

π
〈ε̃0〉

]
(III.85)

1The effective calculation can be found in [33].
2Even if this assumption could be reasonable, the experimental measurements indicate a possible coupling

effect generated by these terms.
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composed by two terms: the spherical mode matching signal, SMCT, and a systematic
error proportional to |F0|2:

|F0|2 =
∣∣∣F0

0 eiωt + F+
0 ei(ω+Ωt) − F−

0
m
2 ei(ω−Ωt)

∣∣∣2
The new term is exactly Eq. 3.3 of [32] that is used to derive the Pound-Drever-Hall

signal. We can use the results of this paper to estimate its component proportional to
eiΩt. In particular, we can write

|F0|2(Ω) = i=[mF0] e−iΩt + c.c. ' i
m
2π

δ f
∆ fFWHM

e−iΩt + c.c. (III.86)

where δ f is the difference between the laser frequency, flaser in Eq.IV.30, and the reso-
nance one, f0 in Eq.II.84:

δ f = flaser − (l∆ ffsr + ∆ fHOM) (III.87)

This term is in phase with the Spherical Mode Matching signal, SMCT and it con-
tributes to the signal demodulated from the Quadrant Photodiode Sensors:

ṼMCT
M.M. =

(
=
[
ε̂e−i2∆ψ

]
+

1
2

δ f
∆ fFWHM

<
[
〈ε̃0〉e−i2∆ψ

]) mχi

π
sin(φ0) (III.88)

In conclusion, we demonstrated that the tuning of the pre-converter based on an
imperfect reference generates a cross-talk between the Spherical Mismatch error sig-
nal and the Longitudinal one. The coupling coefficient is proportional to the initial
mismatch and depends on the Gouy phase of the sensor

κ = <
[
〈ε̃0〉e−i2∆ψ

]
(III.89)

We can estimate the maximum value of κ from the initial mismatch between the
reference beam and the cavity. We can use the definition in Eq. III.77 and Eq. III.79, to
estimate the parameters, β̃ and γ̃ as a function of the initial mismatch

β̃ = − β0

(1 + β0)

γ̃ = − γ0

(1 + β0)2

and 〈ε̃0〉 = β̃ + iγ̃ = −
(

β0

(1 + β0)
+

iγ0

(1 + β0)2

)
(III.90)

In this way, the maximum coupling can be estimated as

κ < |〈ε̃0〉|2 =
1

(1 + β0)2

√
β2

0(1 + β0) + γ2
0 . |ε0|+ |ε0|2, (III.91)

where |ε0|2 is the optical loss generated by the mismatch between the reference beam
and the liner cavity. This parameter can be obtained by studying the cavity transmission
and using the peak amplitude, Pi, associated with the mode i:

|ε0|2 =
P2

P0
(III.92)
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III.2.2. Partial conversion of the Hermite Gauss Mode

In the previous part, we discussed the effect of a mismatch between the Cavity Funda-
mental mode and the Mode Converter, and we estimated the effects on the Spherical
Mode Matching Sensing. That approach can precisely estimate the effects of the mistun-
ing, and it is able to quantify the crosscoupling of the external error signals. However,
it requires complicated calculations that hide the effects on the converted beam.

Another approach to characterising a mistuned Mode Converter can be based on the
simple model described in Section III.1.2. In particular, we can relax the requirement
on the phase shift and describe the effect of the astigmatic telescope as

φ = 2 Arg [CS q0 + DS] = π + δφ, (III.93)

but assuming that the Transversal and Saggital modes are still matched at the output,
qT = qS.

In this case, the conversion rules defined in Eq. III.31 are not valid anymore and we
need to consider the evolution of each Hermite-Gauss Mode. In particular, we can focus
the analysis only on HG45

11 and LG01 inasmuch these Modes are the only ones that are
affected by the Gouy Phase detuning, ∆ψnT ,nS defined in Eq.III.20.

The first step is to rewrite them as the overlap of the HG02 and HG20:

Û2 = 〈ε〉 LG01 + δε cos(2θ)HG45
11 =

〈ε〉 (HG02 + HG20) + δε cos(2θ) (HG02 − HG20) =

HG02 (〈ε〉+ δε cos(2θ)) + HG20 (〈ε〉 − δε cos(2θ)) . (III.94)

The two Hermite-Gauss Modes HG02 and HG02 will gain a phase difference of φ =
π + δφ

Ûconv
2 = HG02 (〈ε〉+ δε cos(2θ)) + eiδφHG20 (〈ε〉 − δε cos(2θ)) =(

〈ε〉 1
2 (1 + eiφ) + δε cos(2θ) 1

2 (1 − eiφ)
)

LG01+(
〈ε〉 1

2 (1 − eiφ) + δε cos(2θ) 1
2 (1 + eiφ)

)
HG45

11 (III.95)

and the information on 〈ε〉 and δε will be mixed and carried by the new Hermite-Gauss
Mode HG45

11.
Using the same calculation done in Section III, we can demonstrate that the Quadrant

Photodiode Sensor after a detuned Mode Converter Telescope will generate a signal
proportional to the amplitude of the HG45

11:

eiφ/2
(
〈ε〉 1

2 (e
−iφ/2 − eiφ/2) + δε cos(2θ) 1

2 (e
−iφ/2 + eiφ/2)

)
=

eiφ/2 (〈ε〉 i sin(−φ/2) + δε cos(2θ) sin(φ/2)) =[
〈ε〉 cos

(
δφ
2

)
+ iδε cos(2θ) sin

(
δφ
2

)]
eiδφ/2. (III.96)

The signal generated by the sensor will be a mixture of twomismatch parameters, where
the astigmatic contribution, δε, is rotated by a 90° phase, with respect to the spherical
one, 〈ε〉. This rotation connects the complementary degree of freedom. The spherical
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waist dimension will couple with the astigmatic waist position and the other way round:

Ṽ(i)
M.M.(∆ψ) =

m
π

χi

((
β cos(δ δφ

2 ) + (η cos(2θ)) sin( δφ
2 )
)

sin(2∆ψ)−(
γ cos(δ δφ

2 ) + (α cos(2θ)) sin( δφ
2 )
)

cos(2∆ψ)
)

. (III.97)

The incomplete phase shift, δφ, can be connected to the mistuning of the pre-converter
telescope, 〈ε̃〉. The precise calculations require considering all the Transverse Mode
in Eq. III.81 and comparing the final signal with Eq. III.96. These calculations are
beyond this thesis goal, but we can expect that sin( δφ

2 ) and 〈ε̃〉 are on the same order of
magnitude.

III.2.3. Unbalanced Signal Reconstruction

TheModeMatching signal is based on the combination of the four signals, Si, generated
by the Active Area, Ai of a Quadrant Photodiode. These signal were defined in Eq.III.35
as

Si = |F0|
∫

Ai

|Û0(x, y, z)|2dxdy + |F2|
∫

Ai

|Ûconv
2 (x, y, z)|2dxdy+(

F0F2

∫
Ai

Û0Ûconv
2 (x, y, z)dxdy + c.c.

)
and, for the sake of clarity, these signals were first recombined as

SM.M = (S1 + S3)− (S2 + S4)

and after they were demodulated as

Ṽ(i)
M.M.(2∆ψ) =

m
π

χi (<[ε̂i] sin(2∆ψ)−=[ε̂i] cos(2∆ψ))

However, this flow can be inverted: we can first demodulate the signals, Si:

Ṽj(2∆ψ) = mχjSj(2∆ψ) (III.98)

where χj is the dedicated conversion factor, and then recombine together to extract the
Mismatch signal

ṼM.M.(2∆ψ) = (V1 + V3)− (V2 + V4). (III.99)

This approach is generally more flexible than the first one inasmuch as the demodu-
lated signals are easier to manipulate and there are more methods to obtain the signal
recombination of Eq. III.993. Moreover, this scheme simplifies the analysis of the Mode
Matching signal reconstruction.

In the real case scenario, different imperfection leads to an unbalance between the
signals, Si. The active areas of Quadrant Photodiodes can have different responsivity,
or the operational circuit can diverge from the ideal operation. If we consider the
demodulation-recombination, we can collect all these effects on the conversion factor, χj,
and study the degradation of the Mode Matching Signal generated by their unbalance,
χj 6= χi.
3e.g., we can first record the demodulated signals Vi and perform the linear operations off-line.
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In the general case, the reconstructed signal presents different contributions:

ṼM.M.(2∆ψ) = m
(χ1 + χ3) + (χ2 + χ4)

4
(S1(2∆ψ) + S3(2∆ψ))− (S2(2∆ψ) + S4(2∆ψ))

+ m
(χ1 + χ3)− (χ2 + χ4)

4
(S1(2∆ψ) + S2(2∆ψ)) + (S3(2∆ψ) + S1(2∆ψ))

+ m
(χ1 + χ4)− (χ2 + χ3)

4
(S1(2∆ψ) + S2(2∆ψ))− (S3(2∆ψ) + S4(2∆ψ))

+ m
(χ1 + χ2)− (χ3 + χ4)

4
(S1(2∆ψ) + S4(2∆ψ))− (S2(2∆ψ) + S3(2∆ψ)),

(III.100)

where the first line corresponds to the Mode Matching Signal defined in Eq.III.48, the
second one is the Longitudinal Error signal, and the last two are the Angular Error
signals[34]. In particular, we can reorganize the conversion factor as

χMM =
(χ1 + χ3) + (χ2 + χ4)

4

χL =
(χ1 + χ3)− (χ2 + χ4)

4

χH =
(χ1 + χ4)− (χ2 + χ3)

4

χV =
(χ1 + χ2)− (χ3 + χ4)

4

(III.101)

and rewrite the reconstructed signal as

ṼM.M.(2∆ψ) = mχMM

(
SM.M(2∆ψ) +

χL

χMM
SL +

χV

χMM
SV +

χV

χMM
SV+

)
(III.102)

here we highlight the coupling coefficient of the Horizontal and Vertical Alignment
signals, SH/V , and of the Longitudinal one, SL.
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The Mode Matching Sensing Technique validation was designed around the Fre-
quency Dependent Squeezing Source requirement. It was focused on three different
properties: dynamic range, linearity of the error signals, and decoupling estimation of
the mismatch parameters.

The validation was based on the direct estimation of the sensor response to the
variation of mismatch parameters. This approach has the double advantage of being
independent of any assumptions and characterising the three key properties with one
measurement. The linearity is verified by testing the linear model directly on the data,
while the decoupling is validated by studying the response to the mode matching
parameter β, γ, α, and η, defined in Eq. II.137, and reported here:

β =
〈w0〉(x̃,ỹ) − ŵ0

ŵ0
with 〈w0〉 =

w(x̃)
0 + w(ỹ)

0
2

γ =
〈z0〉(x̃,ỹ) − ẑ0

2ẑR
with 〈z0〉(x̃,ỹ) =

z(x̃)
0 + z(ỹ)0

2

α =
w(x̃)

0 − w(ỹ)
0

2ŵ0

η =
z(x̃)

0 − z(ỹ)0
4ẑR

〈ε〉 = β + iγ and δε = α + iη

The dynamic range was compared with the requirement for optical losses. In par-
ticular, the Quantum Noise Reduction system imposed a maximum mismatch of 2%
in power for each cavity in the system[35]. This limit was inherited by the dynamic
range of the Mode Matching Sensors. In fact, this sensing method will be used during
the Scientific Run, and it has to monitor the evolution of mismatch when the system is
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working within the requirement. For this reason, the method was characterised inside
the region

Loss = |ε|2 = | 〈ε〉+ δε| = β2 + γ2 + α2 + η2 ≤ 2 % (IV.1)

In order to study the detector response to the beam parameters evolution, I designed
and installed an optical setup composed of a resonant linear cavity and the Mode
Matching Sensing scheme described in Section III.III.1. The apparatus is described in
this chapter, where I present the characterisation of the main components and I verified
that the imperfection did not spoil the Mode Matching measurements.

IV.1. Optical Setup
The Optical setup is represented by the simplified layout in Fig.IV.1, while the detailed
information is collected in Appendix B.II.1. The spatial constraints precluded the
implementation of a complete setup for the Astigmatic Mismatch sensing technique as
it was presented in Section III. The optical layout was upgraded during the experimental
activity to meet the measurement requirements. These modifications changed only the
Mode Matching Telescope and the configuration of the Wavefront Sensor Scheme.

In particular, we can distinguish two experimental phases: The first part was the
validation of the Spherical Mode Matching sensing based on the Mode Converter
technique[31]. In this case, the Mode Matching Telescope was composed only of two
spherical lenses while the Wavefront Sensors setup was based on the design of the
standard Mode Converter Technique, two Quadrant Photodiode Sensors after the Mode
Converter Telescope (continued red line in Figure IV.1).

The second part was the validation of the AstigmaticWavefront sensing. In this phase,
I modified the Mode Matching Telescope and the Wavefront sensor setup. I installed a
Cylindrical lens inside the Spherical Telescope to induce an astigmatic aberration. I used
the auxiliary line (dashed line red line in Figure IV.1) to measure the beam wavefront
before the Mode Converter Telescope.

Each component of the optical setup was individually characterised and optimised
to improve the quality of the Mode Matching Measurement. Here, I reported a detailed
description of these components and the characterisation results.

IV.1.1. Electro-Optical Modulator

The sidebands used by thewavefront sensing techniquewere generated by the periodical
modulation of the beam phase. The basic idea is to induce an oscillation with frequency,
Ωmod, and modulation depth, m, to the beam phase, ψ:

ψ(t) ' m sin(Ωmodt) + ψ0 (IV.2)

to manipulate the amplitude as

Ψin = Û(x, y, z)ei(ωt+m sin(Ωmodt)+ψ0). (IV.3)

In case of small modulation depths, m < 1, we can expand the exponential

Ψin ' Û(x, y, z)ei(ωt+ψ0) (1 + i m sin(Ωmodt))

= Û(x, y, z)ei(ωt+ψ0)
(

1 +
m
2

eiΩmodt − m
2

e−iΩmodt
) (IV.4)
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Figure IV.1: Experimental Optical Setup. This scheme represents the layout used for validating
the Mode Converter Technique and the two upgrades required for the Astigmatic
Mismatch sensing. The scheme comprises (top to bottom): the LASER source, an
Electro-optical modulator, the Mode Matching Telescope(orange box), the Linear
Cavity, the Mode Converter(light blue box) with the pre-converter(green box), and
the wavefront sensors(blue and yellow boxes). The two upgrades for the astigmatic
wavefront sensing were:(1) the installation of a cylindrical lens inside the Mode
Matching Telescope(with box in the orange one), and (2) the modification of the
wave front sensor setup(dashed line), required to by-pass the Mode Converter
Telescope. Detailed information about the positioning and the optical elements is
summarised in Appendix B.II.1.

and describe the amplitude as the sum of three different oscillating components: the
original one with frequency, ω, called the carrier, and the new ones with frequency,
ω + Ωmod and ω − Ωmod, called sidebands.

The phase modulation was obtained with a commercial Electro-Optical Modulator.
This object is based on a nonlinear crystal that can manipulate the beam phase by
changing the effective optical path. When the beam passes through the crystal, it
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accumulates a phase shift

∆ψ =
2π

λ
· ∆z′ (IV.5)

where ∆z′ is the effective optical path defined as the product of the geometrical length
of the crystal, ∆L, and the medium refractive index, n:

∆z′ = ∆Ln (IV.6)

In particular, the Electro-Optical Modulator exploits the Pockels effect to change the
refractive index as a function of the electric potential applied to the crystal[36, p.837]:

n(V) =' n0 +
1
2

r n3
0

V
d

(IV.7)

where n0 is the refractive index at rest, r is the electro-optics coefficient, d is the crystal
thickness, and V is the voltage difference field applied to the crystal. Combing all these
equations, we can write the phase shift as:

ψ(V) = ψ0 +
π

λ

rn3
0∆L
d

· V (IV.8)

where we have the phase shift at rest, ψ0, summed with a coefficient which is a function
of the potential, V. In general, the relationship between the phase modulation and the
voltage applied is collected in a single parameter called Half-wave Voltage:

Vπ =
d

∆L
λ

rn3
0

(IV.9)

that represents the voltage difference required to induce a phase shift of half wavelength,
∆ψ = π.

The phase modulation described in Eq.IV.2 can be obtained by applying a periodical
signal with amplitude V0 and frequency Ω0:

V(Ωmod) = V0 sin(Ωmod)t) (IV.10)

that induces an accumulated phase after the Electro-Optical Modulator of

ψ(V)ψ0 + π
V0

Vπ
sin(Ωmodt) (IV.11)

The comparison between this expression and Eq.IV.2 allows to connect the amplitude
of the Voltage signal, V0, to the modulation depth, m, as:

m = π
V0

Vπ
(IV.12)

The Electro-Optical Modulator used in optical setup1 has a typical half-wave voltage
of Vπ = 210 rad V−1, while the requirement for the deep modulation was m ' 0.2.
Using Eq. IV.12, we can estimate an amplitude of

V0 =
m
π

Vπ ' 10 Vp(30dBm) (IV.13)

1EOM 4004, produced by New Focus™. The principal specifications are reported in Table IV.1.
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Parameter Value

Modulation Depth(mradV−1 15
Vπ (V) 210
Material MgO:LiNbO3

Optical Aperture (mm) 2×2
Input Impedance (pF) 20
Max RF Power (W) 10

Table IV.1: Manufacture Parameters of EOM 4004 from New Focus™.

However, this value is outside the dynamic range of our Signal Generator2 and I had to
amplify the Voltage signal before injecting it into the crystal. In particular, I collaborated
with the Electronic Workshop of the European Gravitational Observatory to produce
an LC resonator Circuit.

LC Resonant Circuit

The passive resonant circuit is divided into three components: the effective LC circuit
used to amplify the signal, a transformer used to decouple the input impedance, and a
probe used to monitor the effective Voltage applied to the crystal.

Cvar Cpar Ccab

Input LcabL

CEOM
V

Tunable
LC Circuit

RG-174/U
Cable

Transformer Electro Optical ModulatorV Probe Circuit

Figure IV.3: LC Circuit from EGO. From left to right: the input for the Voltage signal; the
transformer to decouple the input Independence; the LC resonant circuit, composed
by the Inductance, L and the variable Capacitor, Cvar; the parasite Capacitor, Cvar;
and the RG-174/U cable,Ccab and Lcab; the Electro-OpticalModulator Crystal, CEOM.

The effective LC circuit is based on the schematic described in Fig. IV.3, and its
resonance frequency can be estimated by[38, p.52]

fLC =
1

2π

1√
LC

In particular, we considered all the capacitance contributions:

• Variable capacitor (Cvar = 3 pF to 28 pF )
2The experiment used a Direct Digital Synthesis produced by the Electronic Workshop of the INFN-

Padova [37, p91] that can generate an electronic Local Oscillator with Frequency from 4MHz to
500MHz and maximum amplitude of 0.7Vp (7 dBm)



iv.1 optical setup 71

• MgO:LiNbO3 crystal of the 4004 EOM from New Focus™ (Ccry = 22 pF)

• Cables from the LC case to the Electro-optical Modulator (6 cm of RG-174/U:
Ccab = 6.0(6)pF and Lcab = 12(1)pH)

• Other parasite components (case, connectors, . . . ) Cpar = 5.0(5)pF

that correspond to a total capacitance of Ctot between 36pF and 51pF, and we produced
a hand-made inductor in order to have a resonance frequency around 17MHz. We
wrapped 16 rounds of capton-silver-coated wire around a powdered iron toroid (T80-
6), and we obtained an inductance of L = 2.0(2)µH. The theoretical value for the
resonance frequency was

14.4(53)MHz ≤ fLC ≤ 18.8(34)MHz (IV.14)

that was experimentally verified by measuring the Transfer Function of the resonant
circuit. Using the multi-function tool Moku:lab, we studied the resonant frequency as a
function of the variable capacitor, Cvar and we identified the maximum and minimum
resonance frequency of the circuit, respectively 15MHz to 17MHz. Moreover, we
calibrated the probe circuit with a conversion factor of 1:1733 and a voltage Gain of
27 dB on resonance.

Optimisation of the Electro-optical modulator

I optimised the Electro-Optical Modulator during the installation to compensate for two
main side effects: the Residual Amplitude Modulation and the Acoustic Resonance.

Residual Amplitude Modulation

The Residual Amplitude Modulation was generated by the birefringent nature of the
Pockels cell. The refractive index of the MgO:LiNbO3 crystal is anisotropic, and it
changes as a function of the beam polarisation. In particular, the crystal geometry
defines two axes, extraordinary and ordinary, associated with two refractive indexes,
n(0)

e and n(0)
o , and two electro-optical coefficients re and ro. When the crystal is excited

with a Voltage difference, V, applied parallel to the extraordinary axis, the Pockel effect
defines different evolution for the two effective refractive indexes, ne,o(V):

no(V) = n(0)
o − 1

2
ro(n

(0)
o )3 V

d
(IV.15)

ne(V) = n(0)
e − 1

2
re(n

(0)
e )3 V

d
(IV.16)

This anisotropy is visible when the polarisation of the incoming beam is not aligned
with the crystal axes. In this case, the beam amplitude is split into two polarisation
components parallel to the crystal axes, which will accumulate two different phase
shifts:

ψo(V) = ψ
(0)
o − π

λ

ro(n
(0)
o )3∆L
d

· V (IV.17)

ψe(V) = ψ
(0)
e − π

λ

re(n
(0)
e )3∆L
d

· V (IV.18)

(IV.19)
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The two amplitudes are recombined at the crystal end, and their phase difference
δψ = ψe − ψo bound together the output beam polarisation and the external Voltage.
The amplitude at the output can be described by [39]:

Ψin = Û(x, y, z)eiωt
(

sin(β)êordeiψo(V) + cos(β)êexeiψe(V)
)

(IV.20)

where β is the angle of the input polarisation with respect to the extraordinary axis and
êex/ord represent the polarisation components parallel to the two crystal axis.

When we apply a periodical Voltage signal, V(t) = V0 sin(Ωt), to induce the phase
modulation described in Eq.IV.2, we also obtain the polarisation modulation described
in Eq. IV.20. This extra effect can be converted into amplitude modulation using a
polariser installed after the crystal. In that case, the output optical power is described
by[39]

|Ψin|2 = P0

(
cos2(β − γ) + cos2(β + γ) +

sin(2β) cos(2γ)

2
cos (M sin(Ωmodt) + ∆ψ0)

)
,

(IV.21)
where β is the orientation of the polarisation at the input of the Electro-Optical Modula-
tor and γ is the orientation of the polariser installed after the crystal.

To reduce this effect, I followed the approach presented in [40], optimising the input
polarisation, β, and the output polariser, γ. Using Fig. IV.1 as a reference, I added a
dumper between the cavitymirrors to avoid spurious signals generated by the resonance.
I measured the amplitude modulation with the fast photodiode PD2 and optimised
the polarisation before and after the Electro-optical modulator by rotating HW_03 and
HW_4 to minimise the spurious signal at frequency Ωmod.

Piezo Mechanic Resonance of the Crystal
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Figure IV.4: Modulation Frequency Tuning. I used the Quadrant Photodiode sensor to estimate
the alignment jitter and optimised the modulation Frequency Ωmod to minimise the
crystal mechanical oscillation. The final best frequency was 18.75MHz.

The other effect was the alignment jitter induced by the mechanical oscillation of the
crystal. This effect was generated by the acoustic stress induced by the piezoelectric
response to the MgO:LiNbO3[41]. This phenomenon makes the crystal mechanically
oscillate, generating a fluctuation in the beam alignment. When the beam is divided
by the split areas of the Quadrant Photodiode Sensors, this beam jitter is converted
into amplitude modulation and can spoil the Mode Matching Signal recorded by the
sensors.
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Even if the piezoelectric effect is small and the beam deflection is generally negligible,
this phenomenon can be amplified by the crystal mechanical resonance. Unfortunately,
this was the case during the first configuration of the Electro-Optical Modulator, when
I chose a modulation frequency of Ωmod = 2π × 17 MHz. To minimise this effect, I
modified the optical setup described in Fig. IV.1: as before, I added a dumper between
the mirrors cavity to avoid spurious signal generated by the resonance; after that, I took
a pick-off of the beam before the Mode Converter, and I centred it on the Quadrant
Photodiode Sensor 2. With this optical setup, I recorded the signal generated by one of
the active areas and minimised the component at Ωmod by changing the modulation
frequency. The data are collected in Fig IV.4, where we can see how the initial choice
was the worst one. The final modulation frequency was set to Ωmod = 2π × 18.75 MHz.

IV.1.2. Laser Source

The Laser source used for the experiment was a Mephisto Laser produced by Coherent.
The typical characteristics of this source are listed in Table IV.2. The characterisation
was focused on two key parameters for the validation measurement: the shape of the
output beam and the actuator on the laser frequency.

The initial beam shape defines the best Mode Matching achievable between the
incoming beam and the resonant cavity. In fact, if the beam cannot be represented as
a Gaussian mode, we need to assume the presence of extra Tranveserse modes in the
beam shape. Moreover, the estimation of the initial beam shape was necessary for the
design of the optical setup.

The characterisation of the frequency actuator is not directly connected to the valida-
tion of the Mode Matching sensing technique, but it gives an important tool for other
studies. In particular, the actuation range of the frequency controller imposes some
constrain on the design of the linear cavity, Section IV.1.3, and the calibration of the
actuator response is necessary for the characterisation of the residual motion of the
Logitundal Error Signal, Section IV.2.2.

Parameter Value

Beam Quality M2 < 1.1
Thermal Tuning Coefficient ((GHzK−1) KV−1) −3 (1)

Thermal Response Bandwidth (Hz) 1
PTZa tuning Coefficient (Hz) 2.4b

PTZa maximum input voltage (V) ±100
PTZa Response Bandwidth (kHz) 100

Spectral line (kHzms−1) 100
Waist location w.r.t laser Head (mm) −105

Table IV.2: Manufactures parameters for the Mephisto Laser Source. Model Mephisto 500NE,
SN Laser System: HDP.1235936.110-140001; SN Electronic: MEPH14010001;
a Piezo electric Transducer; b Manufacturer Characterisation in 2014.

Beam Shape

The beam generated by the Mephisto laser was characterised by two different measure-
ments of the shape: the first one was used to estimate the initial beam parameters, and
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the second one was used to characterise the beam quality.
In both cases, I used the beam profiler BC106N-VIS/M produced by Thorlabs™ to

measure the beam shape at different longitudinal positions, zi. These measurements
were done at the beginning of the installation, and the optical setup was composed only
of the LASER and two mirrors MIR_01 and MIR_02 with low reflectivity R < 0.02, used
to reduce the optical power from Plaser350 mW to less than 1mW.

Initial Beam Parameters

In the first measurement, I used the method described in Appendix A.I.1 to characterise
the beam shape at the output of the LASER head. I measured the evolution of the beam
radius along the two axes of the iso-power ellipse, and I interpolated these values to
obtain the beamparameter. The data are presented in Fig. IV.5, and the beamparameters
are reported in Table. IV.3. These values were used to design the optical setup described
in Fig. IV.1.

Beam
Pro�ler

0 5 10 15 20 25 30 35 40

MIR_02

MIR_01

45

Figure IV.5: Mephisto Laser Beam Characterisation. The Beam was characterised using the
procedure described in Appendix A.I.1. The point represents the estimation of the
beam radius along the two axes of the iso-power ellipse, while the two continuous
lines represent the fit used to estimate the beam parameters. The beam shape was
measured usingMIR_02 as z = 0 reference. ThisMirrorwas installed approximately
20 cm after the laser output.
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Axis w(i)
0 [µm] z(i)0 [cm]

x′-axis 120.1(7) −31.3(4)
y′-axis 131.7(3) −31.6(2)

Table IV.3: Mephisto Laser Beam Characterisation. The Beam Parameters are estimated in the
internal reference of the beam. The reference z = 0 was MIR_02 that was installed at
20 cm after the laser output port. The data are reported in Fig. IV.5.

Beam Quality Measurement

In the secondmeasurement, I characterise the beam quality using the procedure defined
by the ISO Standard 11146. I installed a lens L1 with focal length f1 = 230(1)mm after
MIR_02, and I measured the beam profile with the 4σ method3. In this case, the beam
diameter is defined as :

2w(z) = dσ(z) = 2
√

2
√

σ2
x + σ2

y (IV.22)

where σ2
i is the second order momentum of the power density distribution of the beam

shape long the i-axis[42, p.93]:

σ2
x =

∫∫
R2(x − x̄)2 P(x, y, z)dxy∫∫

R2 P(x, y, z)dxdy
(IV.23)

and x̄ is the centroid position[42, p.94]:

x̄ =

∫∫
R2 x P(x, y, z)dxdy∫∫
R2 P(x, y, z)dxdy

(IV.24)

The ISO Standard 11146 describes the beam shape using the diameter dσ(z) and
defines its evolution on the longitudinal axis, z, as:

d2
σ(z) = a + b · z + c · z2 (IV.25)

where the polynomial coefficients, (a, b, c), are directly connected to the beam parame-
ters:

z0 =
−b
2c

and w0 =
1

4
√

c

√
4ac − b2 (IV.26)

Moreover, the ISO standard defines a figure of merit for the beam quality, called M2,
that can be estimated by the beam evolution in Eq. IV.25:

M2 =
π

8λ

√
4ac − b2 (IV.27)

This parameter corresponds to the Beam propagation parameter[42, p. 605]:

M2 =
λ

π
w0 · θ0 (IV.28)

where λ is the wavelength, w0 is the waist radius, and θ0 is the beam divergence defined
as

θ0 = lim
(z−z0)→∞

(
2w̃(z)
z − z0

)
(IV.29)

3This estimation is compatible with the standard definition of w(z) given in Eq. II.42[42, p.94].
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Using this definition, we can see that the condition M2 = 1 are verified only for a perfect
Gaussian Beam, while for a general beam shape, we will have M2 > 1.

The measurements are reported in Fig. IV.6 and the estimated beam parameters are
reported in Table IV.4. In particular, I estimated M2 = 1.1(4) that is compatible with
the manufacturer specification M2 < 1.1.
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Figure IV.6: Mephisto Laser Beam Quality. Beam profile Measurement. The beam generated by
theMephisto Laser was focused using a lens with Effective Focal Length 230(1)mm
in order to measure the beam shape around the waist position. The beam diameter
was estimated using the ISO 11146 method, and the data were interpolated using
Eq. IV.22. The estimated parameters are reported in Table IV.4.

Parameter Value

2w0 (µm) 282.1(7)
z0 (cm) 68.1(2)

M2 1.1(4)

Table IV.4: Mephisto Laser Beam Quality. Beam Parameter estimated using the model described
in Eq. IV.22 on the data reported in Fig. IV.6.

Frequency Tuning

The frequency of the laser beam was controlled using two actuators installed on the
Mephisto itself. Both these actuators change the length of the resonant cavity inside the
LASER source, and their actions are always combined. The effective frequency of the
laser can be described by

ω = ω0 + δωslow + δω f ast (IV.30)

where ω0 is the frequency at rest, δωslow is controlled by the temperature actuator and
δω f ast by the Piezo Electric Transducer. The differences between the two actuators
are the response time and the dynamic range. The thermal actuator is slower with a
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Bandwidth of 1Hz, but it has a large actuation range between 6GHz and 9GHz. The
Piezo Electric Transducer has a fast response, and bandwidth around 100 kHz, but it
has a smaller actuation range of 200MHz.

For most applications, I used the fast actuator to control the laser frequency. In
particular, I used a signal generator and a High Voltage Amplifier4, to generate a
Voltage signal from 0V to 100V5 that was sent to the Piezo Electric Transducer.

The conversion factor between the applied voltage and the effective frequency shift
of the laser was characterised using the Linear cavity described in Section IV.1.3. I
generated two sidebands using the Electro-Optical Modulator to add a fixed reference,
and I used the power transmitted by the cavity to study the frequency components of
the beam.

From the calculation done in Section IV.1.1, the two sidebands have the frequency

ω± = ω ± Ωmod (IV.31)

where ω is the laser frequency, and Ωmod is the modulation frequency. These two
frequency components can be detected by measuring the power transmitted by the
cavity as a function of the voltage applied to the Piezo Electric Transducer. In particular,
I recorded a spectrum reported in Figure IV.7, and I identified the voltage signal required
to have the two side-bands resonance with the cavity:

ω± = ω0 + δω f ast(Vf±)± Ωmod = 2π l∆ ffsr (IV.32)

where l is the longitudinal mode order. If frequency modulation is lower than the free
spectral range, ∆ ffsr, the two peaks will have a frequency distance of ∆ f± = 2Ωmod, and
we can use their peak as a frequency reference.

I interpolated the resonance peak with a Lorentzian function6, and I estimated the
voltage corresponding to the peak position, Vf± . The calibration factor was estimated
by:

κ =
1

2π

2Ωmod

Vf+ − Vf−
(IV.33)

In general, a Piezo Electric Transducer response is not linear and changes as a function
of the DC offset. For this reason, the calibration factor is trustful only around the piezo
voltage used for the estimation:

κ(〈V〉) = 1
2π

2Ωmod

Vf+ − Vf−
where 〈V〉 =

Vf+ + Vf−

2
(IV.34)

In order to study this behaviour, I used the temperature control to move the frequency
scan done using the Piezo Electric Transducer and estimate the κ(〈V〉) at different DC
Voltage 〈V〉. The data are shown in Fig. IV.7, where we can see a linear dependency
between the voltage 〈V〉 and the calibration factor. In order to marginalise this effect, I
used the temperature actuation to keep the resonance mode always around 〈V〉 ' 50 V,
and I considered the calibration factor:

κ(50 V) = 2.55(5)MHz V−1 (IV.35)
4SVR150/3 produced by Piezomechanik. Output range from −30V to 150V
5It is a common rule not to excite a piezoelectric transducer with a bi-polar signal.
6See Section IV.1.3 for details
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Figure IV.7: Cavity Spectrum near Resonance of the Fundamental Mode. (top plot) I used the
cavity transmission to measure the voltage difference between the two sidebands
peak. I used Eq. IV.33 to estimate the calibration factor, κ. (bottom plot) I recorded
multiple spectra with different set-point for the Piezo Electric Transducer and
estimated the dependency between the calibration factor and the average voltage,
〈V〉.
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IV.1.3. Optical Cavity

Geometry Optimisation

The design of the optical cavity was based on the experimental constraints defined by
the available hardware and by the requirements of the wavefront sensing technique. In
particular, the hardware limitations were:

Maximum Free Spectral Range In order to characterise the cavity spectrum, I needed
to scan the laser frequency over a Free Spectral Range, ∆ ffsr. In this way, I could
record the transmitted power by the cavity as a function of the laser frequency
and detect all the High Order Mode Components of the incoming beam. The com-
bination of the Mephisto Specification7 and the HV amplifier defined a maximum
dynamic range of 240MHz. I decided to imposed a conservative requirement
on the Free Spectral Range and set a maximum value of ∆ ffsr ≤ 200 MHz. This
corresponds to a minimum cavity length of Lcav ≥ 75 cm.

Cavity Stability At the time of the installation, I had only two mirrors available with
Radius of Curvature, RoC = 1.00(5)m. The requirement on the cavity stability
discussed in Section II.1.3 imposes 0 < (1 − Lcav/RoC1)(1 − Lcav/RoC2) < 1.
This corresponds to a limit to the cavity length, Lcav ≤ 200 cm.

Optical Table size The experiment was installed on a small optical bench with size
1.5m×0.9m. The small space limited the possible configurations for the optical
layout and imposed a limit to the maximum cavity length of Lcav ≤ 100 cm.

These three aspects directly constrained the cavity length, Lcav, and they defined a
possible range Lcav ∈ [0.75 m; 1.0 m]. On top of these requirements, the wavefront
sensing theory imposed two other constraints:

Wave-front sensing The Eq. III.62 obtained in Section III assumes that all the frequency
components (carrier and side-bands) of the second order modes are not resonant
with the cavity. This request was necessary to neglect the beat note between the
different second-order modes and to generate a signal proportional only to the
mismatch parameters.

Pound-Drever-Hall Error Signal Each Transverse Mode generates an error signal for
the longitudinal control. In order to reduce the coupling, the resonance frequency
of the High Order Modes is kept outside the range defined by the Modulation
frequency [+ fMod;− fMod]

Following these guidelines, I optimised the cavity length to avoid the resonance of
the first ten order modes and their sidebands. In particular, I estimated the distance
between the resonance frequency of N-th order mode and the fundamental one using:

∆ fN = fN − f 0 = N∆ fHOM = N
∆ ffsr

π
arccos(

√
g1g2) (IV.36)

where

g1 ∗ g2 =

(
1 − Lcav

RoC

)2

and ∆ ffsr =
c

2Lcav
(IV.37)

7See Table IV.2 for more details.
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Figure IV.8: Optimisation of the Cavity Length, study on the High Order Mode Separation. This
plot represents the resonance frequency of the first tenHighOrderModes as a cavity
length function. These frequencies are estimated with respect to the Fundamental
Mode one, see Eq. IV.36. The zero line is highlighted with a dashed line, and the
possible side-bands are indicated with two grey boxes at the centre frequency of
EOM resonant Circuit, 16.6MHz and −16.6MHz. If a Higher Order Mode line
crosses the zero(dashed line), that mode is co-resonance with the fundamental
mode. If a Higher Order Mode line crosses the Modulation frequency region (grey
boxes), one of its sidebands is co-resonance with the fundamental mode.

and I represented their dependency from the cavity length, Lcav in Fig. IV.8. I considered
a region centred around the fundamental resonance frequency. Inside this area, I
represented ∆ fN module ffsr as function of Lcav. Each High Order Mode frequency is
labelled with its mode order, N, while the fundamental Mode is indicated with a black
dashed line. Moreover, I highlighted the possible modulation frequencies using two
grey boxes. This plot can be read as follow:

• If a Higher Order Mode line crosses the zero, that Mode is co-resonant with the
fundamental Mode;

• If a Higher Order Mode line crosses the Modulation frequency region(two grey
boxes), the side-bands of the corresponding Mode can be co-resonant with the
Fundamental one8

From Plot in Fig. IV.8, we can see that around Lcav ' 77.5 cm and Lcav ' 84 cm the 7-th
and 9-th order transverse modes are co-resonant with the fundamental one, and at
Lcav ' 82.5 cm the second order modes cross the EOM modulation frequency.
8If the resonance frequency of the mode UN has an offset comparable with the modulation frequency

2πN∆ fHOM ' ±Ωmod, the corresponding side-bands is shifted by ∓Ωmod and it will be co-resonant
with the Carrier of the Fundamental Mode.
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I chose a cavity length of Lcav = 80 cm inasmuch as it is the longest cavity with the
second order mode outside the sidebands region. Once I defined the cavity length, I
used the equation derived in Section II.II.1 to estimate the theoretical parameters of the
cavity. The values are collected in the second column of Table IV.5.

Parameter Theoretical Value Measured Value

Lcav (cm) 80 80.1(1)b

RoC1 (m) 1 1.00(5)c

RoC2 (m) 1 1.00(5)c

F 1046 1.2(2) k d

∆ ffsr (MHz ) 187 187.2(3)
∆ fFWHM (kHz ) 180 152(34)
∆ fHOM (MHz ) 82 82.7(4)e

w(c)
0 (µm) 407 None

z(c)0 (cm) 40 a None

Table IV.5: Linear Cavity Parameters. Column two reports the parameters estimated by theory.
Column three reports the values experimentally estimated. a Reference z = 0 at the
input mirror; b Estimate from the ∆ ffsr; c From manufacture; d Estimate from the
∆ ffsr and ∆ fFWHM; e Average between two estimation describe in Eq. IV.46

Experimental Characterisation

The linear cavity was experimentally characterized using the cavity spectrum, defined
as the relationship between the transmitted optical power and the laser frequency.

Resonance Line Width

The cavity LineWidthwas estimated by studying the resonance peak of the Fundamental
Mode. From Eq. II.19, we have that the transmitted power from the cavity is given by

Pt(ω) = |tcav|2 = P0|t1t2|2
1

(1 − r1r2)2 + 4r1r2 sin2(ν(ω, 0))
(IV.38)

where ti and ri are the transmittance and reflectance of the cavity mirrors, and

ν(ω, N) = π
ω − fN

∆ ffsr
(IV.39)

is the normalised frequency defined as the difference between the laser frequency, ω,
and the cavity resonance fN , Eq. II.84 divided by the Free spectral Range, ∆ ffsr. The
transmitted power in Eq. IV.38 can be rewritten as function of its maximum value Pmax:

Pt(ω) =
P0|t1t2|2

(1 − r1r2)2︸ ︷︷ ︸
Pmax

1
1 + 4 r1r2

(1−r1r2)2 sin2(ν(ω, 0))
(IV.40)

that, in case of high Finesse, can be approximated as

Pt(ω) = Pmax
1

1 + 4
(F

π

)2
sin2(ν(ω, 0))

(IV.41)
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Figure IV.9: Calibrated Cavity Spectrum with HOM. The first two High Order Modes, U1 and
U2, where artificially exited by misaligning and mismatching the input beam. This
spectrum was used to estimate the Free Spectral Range, ∆ ffsr, and the High Order
Mode Separation, ∆ fHOM. The frequency calibration is discussed in Section IV.1.2.

On top of this, near resonance ν(ω) ' 0, we can highlight the difference between the
laser frequency and the resonance one

ω − f0 = δω + l∆ ffsr (IV.42)

where δω is the remainder of the division ω/∆ ffsr. In this case, we can assume δω � 1
and approximate the normalised frequency as

ν(ω, N) = π
δω

∆ ffsr
+ lπ → sin2(ν( f , 0)) '

(
π δω

∆ ffsr

)2

that allows expanding the power peak as

Pt(δω) ' Pmax
1

1 +
(

2F δω
∆ ffsr

)2 =
Pmax

1 +
(

2 δ f
∆ fFWHM

)2 (IV.43)

where in the last passage, we use the definition of Finesse given in Eq. II.17, F =
∆ ffsr/∆ fFWHM.

I used this model to study the cavity spectrum represented in Fig. IV.9. These mea-
surements were obtained using the calibration factor estimated in Section IV.1.2 to study
the transmitted power as a function of the laser frequency. In particular, I collected
multiple spectra of the cavity, and for each one, I fitted the resonance peak using the
Lorentzian function:

L(x) =
Imax

1 +
(

2 f− f0
∆ fFWHM

)2 (IV.44)
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The line widths, ∆ fFWHM, of the fundamental Mode were averaged in order to obtain
the following estimation:

∆ fFWHM = 152(34) kHz (IV.45)

.

Free Spectral Range and High Order Mode Separation

The Free Spectral Range and High Order Separation were estimated by studying the
distance among the resonance peaks of the Transverse Modes of different orders. I
misaligned and mismatched the cavity to excite the first and second order mode com-
ponents, and I measured the spectrum reported in Fig. IV.9. During the measurement,
I verified the correspondence between the resonance peaks and the mode order by
recording the transmitted beam shape with the infrared camera, CAM in Fig IV.1. I
used the first occurrence of the Fundamental Mode as zero reference and estimated
the relative frequency shift using the interpolation of the Lorentzian function. I used
these data to estimate the experimental values in Table IV.5. The distance between the
two peaks of the fundamental Mode, U0, is the Free Spectral Range, ∆ ffsr; the distances
between the first fundamental Mode and the High Order Modes give the High Order
Mode Separation, ∆ fHOM:

f1 − f0 = ∆ f (1)HOM = 83.5(3)MHz

f2 − f0 = 2∆ f (2)HOM = 163.9(3)MHz
(IV.46)

where f1 is the resonance frequency of the first High Order Mode and f2 of the second
one.

IV.1.4. Mode Matching Telescope

The validation of theWave-front sensor techniquewas focused on three different aspects:
the ability to discriminate the mismatch parameters, the linearity of the error signals
and the dynamic range of the sensor. These goals impose specific requirements on the
manipulation of the incoming beam shape. In particular, we need to independently
control each mismatch degree defined in Eq. II.137, and this actuation should scan a
large region of the parameters space.

These requirements are directly imposed on theModeMatching telescope that should
be able to separately control the mismatch parameters of the incoming beam, defined
in Eq. II.137. The experimental activities were divided into two separate steps: First,
I validated the Spherical mode matching sensing based on the Mode Converter; after
that, I upgraded the optical setup to validate the Astigmatic mode matching sensing.

Spherical Mode Matching Telescope

The first step was the design of a Spherical Mode Matching telescope able to separately
actuate on the mode matching parameters, β and γ, defined in Eq. II.137, and explore
a large region of their phase space. The telescope is represented in the Orange box
in Figure IV.1, and it was composed of two lenses with Effective Focal Length9 f3 =

9The Effective Focal Length was estimated using the substrate geometry and the refractive index of the
material.
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226mm and f4 = 282mm mounted on two linear translation stages.10 The telescope
was controlled by changing the lenses positions, L3 and L4, with two veneer screws.

The analytical relationship between the position of the lenses and the beamparameters
inside the cavity can be estimatedwith the ABCD rule defined in Eq. II.63. In particular,
I considered the beam shape before the telescope, wb

0 and zb
0, and I propagated these

values by taking into account the complete diffraction system: Lens_3, Lens_4 and the
input mirror of the cavity, IM_cav. The effective ABCD is defined by:

ABCD(L3, L4) =(
1 0

− 1
fmir

1

)(
1 ∆La f ter
0 1

)(
1 0

− 1
f4

1

)(
1 ∆Lmid
0 1

)(
1 0

− 1
f3

1

)(
1 L3
0 1

)
(IV.47)

where L3 is the position of Lens_3 with respect to the beam waist position, zb
0; Lmid =

L4 − L3 is the distance between the two lenses; La f ter = Lmir − L4 is the distance between
Lens_4 and the input mirror, and fmir is the effective focal length of the input mirror:

fmir = −1 − n1

RoC1
' 450(20)mm (IV.48)

estimated by the Mirror Radius of Curvature RoC = 1.00(5)m and the refractive index
n1 = 1.45 of the substrate.

Using this ABCD matrix and knowing the beam parameters before the telescope
(zb

0, wb
0), we can estimate the analytical relationship between the lens positions (L3, L4)

and the shape of the beam injected inside the cavity, z(cav)
0 (L3, L4) and w(cav)

0 (L3, L4).
Combining these values with the beam parameters of the resonance mode, ẑ0 and ŵ0,
estimated using Eq. II.73, we can estimate the normalised mismatch parameters:

γ(L3, L4) =
z0(L3, L4)− ẑ0

2zR
(IV.49)

β(L3, L4) =
w0(L3, L4)− ŵ0

2w0
(IV.50)

ε =
√

β2(L3, L4) + γ2(L3, L4) (IV.51)

as a function of the telescope configuration, (L3, L4). However, this relationship is not
trivial, and it hides important information. For this reason, I decided to linearise this
model: (

γ
β

)
'
(

γ0
β0

)
+

(
∂L3 γ ∂L4 γ
∂L3 β ∂L4 β

)
(L0

3,L0
4)

·
(

δL3
δL4

)
(IV.52)

where δL3 and δL4 are the lenses movement with respect to the initial position (L0
3, L0

4).
In this way, all the relevant information about the telescope actuation is contained in
the Jacobian matrix:

Γ =

(
∂L3 γ ∂L4 γ
∂L3 β ∂L4 β

)
(IV.53)

generally called Driving Matrix.

10The choice of the focal length was imposed by the table dimension and by the availability of lenses at
the time of installation.
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Themain advantage of this approximation is the invertibility of the linear relationship
between lens movements (δL3, δL4) and mode matching parameters, (γ, β). By invert-
ing this matrix, we can estimate the required movements in order to have a specific
combination of γ and β: (

δL3
δL4

)
= Γ−1

(
δγ
δβ

)
(IV.54)

andwe can separately control the beamparameters by defining two sets of lens positions,
one that induces a change on γ but keeps β constant and another one that does the
opposite: (

δLγ
3

δLγ
4

)
= Γ−1

1 δγ and
(

δLβ
3

δLβ
4

)
= Γ−1

2 δβ (IV.55)

where Γ−1
i is the (i) column of the matrix Γ−1, ∆Lγ

j and ∆Lβ
j are the variation of lens j

positions to induce a variation of ∆γ and ∆β, separately.
The estimation of this linearised model was obtained in two different way. First,

I used the tool FINESSE [43] to simulate the function Eq. IV.49 and Eq. IV.50, and
I numerically estimated the linearized model of the telescope, defined in Eq. IV.53.
Second, I experimentally characterised the telescope action setup by measuring the
beam shape between the cavity mirrors as a function of L3 and L4.

Simulation of the Spherical Telescope actuation

Using the software FINESSE [43], I simulated the optical setup described in Fig. IV.1. I
design the kat file11 reported in Appendix B.II.1 and I implemented a code to control
the telescope by changing the positions of the lenses, δLi, reported in Appendix B.II.2.

In this way, I estimated Eq. [IV.49, IV.50, IV.51] over the telescope range12. The results,
reported in Fig. IV.10, give an overview of the telescope actuation. In particular, we can
see that the telescope action is not linear over the whole range and the linearization
described in Eq. IV.52 can be generally applied. For this reason, I focused the analysis
in the identification of a region of the space (L3 × L4) in which the linearized model is
trustable.

In order to define the limit of the linearized model, I estimated the Jacobian using the
gradient function of the numpy package[44]:

~∇γ[L3, L4] =

(
∂L3 γ
∂L4 γ

)T

and ~∇β[L3, L4] =

(
∂L3 β
∂L4 β

)T

(IV.56)

that can be use to estimate the Driving matrix as:

Γ =

(
~∇γ[L3, L4]
~∇β[L3, L4]

)
(IV.57)

This matrix has been calculated for each point (δL(i)
3 , δL(j)

4 ) obtained by the simulation
and the results are reported in Figure IV.11. In particular, the vectors, ~∇γ[L3, L4] and
11A kat file is a file which contains all the relevant information of the layout of the optical setup. It defines

the properties of the optics and their reciprocal distances.
12I simulated the first version of the setup in which the lenses where mounted on two linear stages with

dynamic range of 50mm.
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Figure IV.10: Simulation of the Mode Matching telescope. The two plots represent the telescope
actuation on the mismatch parameters β(right) and γ(left) for each configuration
of the lenses, (δL3, δL4)

.

~∇β[L3, L4] are represented with their orientation angles, Θγ and Θβ:

Θγ = arctan
(

∂L3 γ

∂L4 γ

)
and Θβ = arctan

(
∂L3 β

∂L4 β

)
(IV.58)

and their module, |∇γ| ans |∇β|:

|∇γ| =
√
(∂L3 γ)2 + (∂L4 γ)2

|∇β| =
√
(∂L3 β)2 + (∂L4 β)2

(IV.59)

The implementation of the control described in Eq. IV.55, required to estimated a
driving matrix, Γ, that represent thelinearization over a wide areas in the (δL3 × δL4)
space. However, the maps in Figure IV.11 show that the gradients are constant only if
the distance between the lenses does not change, δL3 ' δL4.

Starting from this consideration, I decided to proceed as follow. First, I defined
an arbitrary region around the best mode matching configuration and I forced the
linearization inside it. After that, I numerically verified the difference between the
linearized model and the effective evolution of the mismatch.

The linearization was obtained by averaging the gradient inside the dashed region in
Figure IV.11. In particular, I estimated:

Γsim =
1

nxny
∑
i,j

Γ(xi, yj) =

(
−7.8 6.0
11.7 −14.8

)
10−2mm (IV.60)

with δL(i)
3 ∈ [−10 mm, 10 mm] and δL(j)

4 ∈ [−10 mm, 10 mm], and n3n4 are the normal-
isation factors. I considered the average matrix, Γsim as the linearized model of the
telescope actuation.

In order to validate this linearized model, I estimated the response of the telescope
based on the matrix in Eq. IV.60:(

δγ̃
δβ̃

)
= Γsim

(
δL3
δL4

)
, (IV.61)
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Figure IV.11: Representation of∇γ (top plots) and∇β (bottom plots) estimated from Fig. IV.10.
The vectors are presented using their orientation angle with respect to the δL3
direction (Θβ/γ left plots) and their module, (|∇(β/γ)| right plots). The region
used for the estimation of Eq. IV.60 is highlighted by the dashed square.

and I estimated the normalised residuals with the response estimated by the ABCD

model, γ(δL3, δL4) and β(δL3, δL4):

Σγ = 1 − 1
γ(δL3, δL4)

(
∇γ ·

(
δL3
δL4

)
+ γ0

)
(IV.62)

Σβ = 1 − 1
β(δL3, δL4)

(
∇β ·

(
δL3
δL4

)
+ β0

)
(IV.63)

The absolute module of the residual represents the distance of the linearised model
with respect to the effective actuation and quantifies the systematic error induced by
a forced linearization. The data are represented in Fig. IV.12 where we see that the
residuals are minimised in the brown area around δL3 ' δL4. We can assume that in
this region the linearization is a good approximation of the effective response.

The next step was the estimation of the inverse of the driving matrix, Γ. This was
done numerically using the numpy library[44], and it resulted in:

Γ−1 =

(
−0.32 −0.13
−0.25 −0.17

)
102mm (IV.64)

I tested this matrix with a second simulation in order to validate if the matrix in
Eq. IV.64 is able to guide the telescope actuation. I defined two auxiliary parameters, γ̃
and β̃, which represent the desired mismatch coefficients and I used Γ−1 as proxy to
control the telescope. In particular, I simulated the telescope action described by:{

γ(δL̃3, δL̃4)

β(δL̃3, δL̃4)
where

(
δL̃3
δL̃4

)
= Γ−1 ·

(
γ̃
β̃

)
(IV.65)
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Figure IV.12: Normalised Residual between the ABCD model and the linearized one. Top plots
describes the difference between the estimation of the mismatch parameters β(left)
and γ(right). Bottom plot represent the difference between total mismatch. We
can identify a region where the residual is less than 10% around δL3 ' δL4.

and β(δL̃3, δL̃4) and γ(δL̃3, δL̃4) are the telescope response simulated using the Finesse
software with the code in Appendix B.II.3.

The results of this simulation are reported in Fig. IV.13(top) where the mismatch
degree of freedom are visible decoupled by the inverted driving matrix. The evolution
of β(δL̃3, δL̃4) is represented by horizontal level curves, whiel the evolution of γ is
reprensented by vertical ones.

Moreover, I used this results to study the compatibility between the ABCD model
and the linearized one. I estimated the normalised residual defined in Eq. IV.62 and
Eq. IV.63 and I represented the results in Fig. IV.13(bottom), together with the not
normalised residual(black lines):

∆γ = γ − γ̃ (IV.66)
∆β = β − β̃ (IV.67)

Using the inverted driving matrix, Eq.IV.64, and the Eq. IV.55, I defined two paths
for the telescope lenses in order to control the two parameters separately: (L3, L4)γ,
in which γ changes between ±10%, and (L3, L4)β in which β changes between ±10%.
These two paths are represented in Fig. IV.14, where I highlighted the possible dynamic
range defined by the actuators.

Experimental Characterisation of the Telescope

The Finesse simulations and the experimental setup are not perfectly equivalent. These
differences are generated by the uncertainty in the input parameters as optics positions or
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Figure IV.13: Validation of Drivingmatrix - Simulation of theModeMatching telescope response.
I used the Matrix Γ−1, in Eq. IV.64, to control the telescope as a function of γ̃ and
β̃ that represent the requested values of mismatch parameters γ and β. Top plots
describe the telescope control on the mismatch parameters β(right) and γ(left).
Bottom plots describes the difference between the estimation of the mismatch
parameters β(left) and γ(right). We can identify a region where the residual is
less than 10% around δL3 ' δL4. The black lines represent the effective residuals,
∆γ = γ − γ̃ and ∆β = β − β̃ in % unit.

initial beam parameters. A perfect match between the simulations and the experiment is
beyond the scope of this Thesis, inasmuch we used the simulation only as a preliminary
investigation and all the results were experimentally validated and optimised.

Validation of the Telescope Simulation

The first step was the validation of the FINESSE simulation. I used the two configu-
rations defined in Fig. IV.14 to control the telescope, and I estimated the beam profile
inside the Linear Cavity. In particular, the measurement protocol was:

1. Set the telescope in the requested configuration (L3, L4)i;

2. Alignment of the cavity, in order to reduce the amplitude of 1-st order modes |U1|
to less than 3%13

3. Characterise the beam shape between the Cavity mirror using the method de-
scribed in Appendix A.I.1.

4. Change of the telescope configuration (L3, L4)i+1;

13The amplitude of the mode was estimated as |U1| =
√

P1
P0
, where Pi is the peak height of the mode ith

in the cavity spectrum.
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Figure IV.14: Telescope Paths to control β and γ, separately. Based on the Eq. IV.55, I used
two driving matrices to define the telescope configurations that allow a decouple
action on the mismatch parameters. The paths estimated from the simulated
driving matrix, Eq. IV.73, are represented from Diamond/Green markers for the
(L3, L4)γ and Star/Brown markers for the (L3, L4)β. The paths estimated from the
simulated driving matrix, Eq. IV.73, are represented from Dots/Green markers
for the (L̃3, L̃4)γ and from Cross/Brown markers for the (L̃3, L̃4)β. In both cases, I
scanned γ and β between ±10%. The black dashed lines represent the actuation
range given by the first design of the telescope, while the dotted lines represent
the actuation range of the final setup.

In this way, I was able to estimate the beam parameters inside the cavity for each
telescope configuration. After that, I normalised these values using the Eq. IV.49 and
Eq. IV.50, reported here for simplicity:

γ(L3, L4) =
〈z0(L3, L4)〉 − ẑ0

2ẑR
(IV.68)

β(L3, L4) =
〈w0(L3, L4)〉 − ŵ0

2ŵ0
(IV.69)

where ŵ0 and ẑ0 are the theoretical values estimated in Section IV.1.3 and 〈z0(L3, L4)〉
and 〈w0(L3, L4)〉 are the common waist position and waist dimension of the beam that
enters into the cavity measured for the (L3, L4) configuration of the mode matching
telescope. Moreover, I used the standard approach for the error propagation [45] to
estimate the variance of these parameters:

σβ =
1

2ŵ0

σ2
w(x̃)

0

+ σ2
w(ỹ)

0

2
and σγ =

1
4ẑR

σ2
z(x̃)

0

+ σ2
z(ỹ)0

2
(IV.70)

The measured mismatch were represented in the parameter space (γ × β), Fig. IV.15,
where I distinguished two different data sets: (L3, L4)k is the data-set in which only k =
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Figure IV.15: Validation of the Theoretical DrivingMatrix. I used thematrix in Eq. IV.60 as proxy
to control the telescope and I move the lenses in order to change one parameter
at the time. I reported the data in the parameter space (γ × β) and I separated
them in two sets: brown dots are moving only β and green diamonds are moving
only γ. I fit the models described in Eq. IV.71 to quantify the decoupling on the
telescope actuation: continued line for β(γ) and dashed line for γ(β).

β, γ should be changed. In case of a perfect separation, the data should be distributed
along two lines: one parallel to the γ axis and another one parallel to the β axis. This
behaviour can be quantified by interpolating the two data set with:

β = aβ,γ ∗ γ + β0 for (L3, L4)γ

γ = aγ,β ∗ β + γ0 for (L3, L4)β

(IV.71)

where the coefficients |aβ,γ| and |aβ,γ| can be considered as figures of merit for the
decoupling. In case of perfect decoupling, these parameters should be zero and they
grow proportionally to the coupling between γ and β.

pi(bj) api ,bj [none] p0,i [%] R2-value

β(γ) −0.60(8) −6.0(2) 0.87
γ(β) 0.11(2) −0.2(2) 0.89

Table IV.6: Interpolation parameters from Fig. IV.15. The slope parameters, api ,bj
are used as

a figure of merit of the decoupling between the actuation on the two mismatch
parameters, β and γ. R2-value is defined as the proportion of the variation in the
dependent variable that is predictable from the independent variables[46, p. 344].

The data reported in Figure IV.15 and the corresponding interpolation parameters
reported in Table IV.6 show that the telescope dynamic range is compatible with the
expected one: γ between−6%and 2%and β between−17.5% and 0%, but the telescope
was not working around β = 0 and the control of γ is not perfectly decoupled from β.
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Starting from these results, I improved the telescope with two minor modifications.
I kept the same lenses but changed the linear stages to increase the dynamic from
45mm to 90mm, and I moved the lens positions in order to have the centre of the
linear stage around β ' γ ' 0. After these upgrades, I proceed with an experimental
characterisation of the telescope based on the same approach used for the simulation
analysis.

Measurement and validation of the Driving Matrix

The experimental estimation of the telescope driving matrix was obtained by moving
one lens at the time and estimating the mismatch parameters as described in Eq. IV.68
and Eq. IV.69. In this way, I was able to decouple the action of the lenses and consider
the linear relationship:

β(δL3, 0) = β3(δL3) =
∂β

∂L3
· δL3 + β0,3 and β(0, δL4) = β4(δL4) =

∂β

∂L4
· δL4 + β0,4

γ(δL3, 0) = γ3(δL3) =
∂γ

∂L3
· δL3 + γ0,3 and γ(0, δL4) = γ4(δL4) =

∂γ

∂L4
· δL4 + γ0,4

(IV.72)
where we defined βi and γi as mismatch parameters as function of only lens i = 3, 4
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Figure IV.16: Experimental characterisation of the Mode Matching Telescope. I measured the
telescope response by moving one lens at the time. For each point, I measured the
beam shape inside the cavity and I estimated the mismatch parameters, β and γ.
The data are represented in the (γ × β) parameter space: the path along δL3 is
represented by the diamond markers and the one along δL4 by the circle markers.
We assume the response inside the dashed square as linear and select this region
for the experimental estimation of the Driving matrix Fig IV.17.

The data recorded in Fig. IV.16 show a not linear trend over the whole range. This
behaviour was expected inasmuch I moved the telescope outside the linear region
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identified in simulation analysis, δL3 ' δL4. I focused the analysis only in the area
indicated by the dashed box in Fig. IV.16, Those points satisfy the condition β < 20 %
and can be considered inside the linear response region. I interpolated these data inside
using the model described in Eq. IV.72. The results, collected in Table IV.7, were used
to define the new inverted driving matrix:

Γ̃−1
exp =

(
0.67(2) 0.76(4)
−0.65(1) −1.10(5)

)
102mm (IV.73)

that defines the new paths, (L3, L4)γ and (L3, L4)β for the telescope.
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Figure IV.17: Experimental Driving Matrix for the Spherical Telescope. I considered the data
highlighted in Fig. IV.16 and I fit the model described by Eq. IV.72. I used the
linear coefficients to estimate the experimental driving matrix Γ̃.

pLj(δLi) ∂Li p [10−2mm] p0,i [%] r-value

γ(δL3) 0.67(2) 1.3(4) 0.99
γ(δL4) −0.65(1) 0.83(20) 1.00
β(δL3) 0.76(4) 2.7(7) 0.98
β(δL4) −1.10(5) 2.9(7) 0.99

Table IV.7: Experimental Driving Matrix for the Spherical Telescope. Interpolation Parameter of
the linear model, pLj(δLi) = ∂Li p + p0, where p are the measurements of the mode
matching parameter p = γ, β, with lens Lj fixed.

The new driving matrix was validated using the same procedure describe before. The
data are collected in Fig. IV.18 and the interpolation parameters in Table IV.8. As we
can see from both the plot and the interpolation, the new matrix gives a better control
of the telescope and it extend the actuation to the required dynamic range.



94 experimental test of the mode matching sensing

−15 −10 −5 0 5 10 15 20

β [%]

−15

−10

−5

0

5

10

15

γ
[%

]
Mismatch Parameters - Decoupled Path from experiment

β = γ ∗ 0.23 + 1.9

γ = β ∗ −0.29 + 0.29

Moving only γ

Moving only β

Figure IV.18: Validation of the Experimental Driving Matrix. I used the matrix in Eq. IV.73
as proxy to control the telescope and I moved the lenses in order to change one
parameter at the time. I reported the data in the parameter space (γ × β) and I
separated them in two sets: brown dots are moving only β and green diamond are
moving only γ. I fit the models described in Eq. IV.71 to quantify the decoupling
on the telescope actuation: continued line for β(γ) and dashed line for γ(β).

IV.1.5. Astigmatic Mode Matching Telescope

The validation of the Astigmatic Mode Matching sensing requires a Matching Telescope
which can control the astigmatic parameters, α, η and θ, defined in Eq. II.137. This
cannot be done with the Spherical telescope described before and it requires a dedicated
study.

Astigmatic Telescope Schemes

In order to control the astigmatic beam parameters, we need to break the cylindrical
symmetry of the Gaussian beam and separately manipulate the beam shape along two
orthogonal axes. This aberration should be induced around the spherical condition in

pi(bj) api ,bj [none] p0,i [%] R2-valuea

β(γ) 0.20(3) 1.9(3) 0.88
γ(β) −0.29(4) 0.3(5) 0.86

Table IV.8: Interpolation parameters used in Fig. IV.18. The slope parameters, api ,bj
are used

as figures of merit of the decoupling between the actuation on the two mismatch
parameters, β and γ. a R2 is defined as the proportion of the variation in the depen-
dent variable that is predictable from the independent variables[46, p. 344].
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such a way that the resting position of the astigmatic telescope results in a not astigmatic
Gaussian beam. Similar behaviour can be obtained with the general structure of the
Mode Converter Telescope, described in Section III.1.2. In this case, there are two
approaches to the design of the Astigmatic Mode Matching Telescope that is discussed
in Appendix A.I.2

Unfortunately, the optical table did not have enough space to implement either of
those solutions, so I had to proceed with a sub-optimal implementation of an astigmatic
Telescope. Instead of using a full astigmatic telescope, I induced the astigmatic aber-
ration by installing a single cylindrical lens. The Astigmatic Telescope was composed
only of three lenses, the two spherical previously used for the Spherical Mode Matching
Telescope and a new cylindrical one. The telescope actuation was strongly limited: it is
not possible to remove the residual astigmatism induced by the single cylindrical lens,
and the four degrees of actuation14, that is not enough to control the five degrees of
freedom of the Simple Astigmatic Mismatch, Eq. II.137. In particular, only the angle θ
of the astigmatic axis is decoupled from the other parameters.

The position of the cylindrical lens was optimised to induce the minimum astigmatic
aberration. Following the calculation done in [47], the insertion of a lens with focal
length15 f can be represented as a perturbation of the Gaussian beam:

Ψ = U0 +
kw2(z)

4
1
f

LG01 = U0 +
πw2(z)

2λ

1
f

LG01

where w(z) is the beam radius at the lens position, z. Starting from these calculations, I
assume similar results for the installation of a cylindrical lens, with the only difference
that the mode excited is the corresponding Hermite Gauss, HG20:

Ψ = U0 +
πw2(z)

2λ

1
f

HG20(x̃, ỹ) (IV.74)

This equation indicates that the effect of the lens is proportional to the squared times
the beam dimension, w(z), so the aberration will be minimised by installing the lens
near a beam waist.

The only available solution was the installation of the cylindrical lens inside the
Mode Matching telescope, where the waist was w0 = 100µm16. In particular, I used a
cylindrical lens with effective focal lenght of 100mm .

Characterisation of the Astigmatic Telescope

The three-lens configuration was characterised by the same approach used for the Spher-
ical Mismatch Telescope. In particular, the action of the telescope can be represented
by two ABCD matrices, one for the plane orientated as the axis of the cylindrical lens,
and another one for the plane orthogonal to the first one. Following the scheme in

14Position of the three lenses, and the angle of the cylindrical lens axis.
15The calculation presented in the paper uses the diopters defined as S = 1

f .
16This value corresponds to the Spherical Telescope in the lower mismatch configuration.
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Figure IV.19: Astigmatic Mode Matching Telescope based on the three lens configuration. The
beam is coming from the right, and it passes thought the spherical lens, Lens_3,
the cylindrical lens, and the lens Lens_4. After that, it enters the linear cavity
passing through the input mirror, MIRcav.

Figure IV.19, we have that:

ABCD(Cyl, L3, L4)Cyl =(
1 0

− 1
fmir

1

)(
1 ∆La f ter
0 1

)(
1 0

− 1
f4

1

)(
1 ∆Lmid2

0 1

)
·(

1 0
− 1

fCyl
1

)(
1 ∆Lmid1

0 1

)(
1 0

− 1
f3

1

)(
1 L3
0 1

)
(IV.75)

and an other one for the orthogonal axis:

ABCD(Cyl, L3, L4)0 =(
1 0

− 1
fmir

1

)(
1 ∆La f ter
0 1

)(
1 0

− 1
f4

1

)(
1 ∆Lmid
0 1

)(
1 0

− 1
f3

1

)(
1 L3
0 1

)
(IV.76)

where fi is the effective focal lens of the cavitymirror( fmir), the spherical lens Lens_3( f3)
and Lens_4( f4), and the cylindrical lens,Cyl, ( fCyl); La f ter is the distance between the
Lens_4 and the cavity, Lmid2 = L4 − LCyl between Cyl and Lens_4, Lmid1 = LCyl − L3
between Cyl and Lens_3, Lmid = L4 − L3 the distance between Lens_4 and Lens_3, and
L3 the position of Lens_3 with respect to the waist position before the telescope.

These two matrices define the evolution of the mismatch parameters defined as:

γ(LCyl , L3, L4) =
〈z0〉 (L3, L4)− ẑ0

2ẑR
(IV.77)

β(LCyl , L3, L4) =
〈w0〉 (L3, L4)− ŵ0

ŵ0
(IV.78)

η(LCyl , L3, L4) =
(z(x̃)

0 − z(ỹ)0 )(LCyl , L3, L4)

4ẑR
(IV.79)

α(LCyl , L3, L4) =
(w(x̃)

0 − w(ỹ)
0 )(LCyl , L3, L4)

ŵ0
(IV.80)

ε =
√

β2 + γ2 + α2 + η2 (IV.81)
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where 〈z0〉 and 〈w0〉 are the spherical waist parameters defined in Eq. II.137, and w(x̃/ỹ)
0

and z(x̃/ỹ)
0 are the waist parameters along the internal astigmatic reference defined in

Eq. II.93. This model was analysed with a simulation based on FINESSE. In particular, I
considered only the movement of two lenses: (L3, Cyl), (LCyl , L4), and (L3, L4), and I
simulated their action on the Mode Matching parameters. The results are reported in
Fig. IV.20. The three sets of maps did not present any specific feature, so I decided to
maintain the control only on (L3, L4).

In this case, I assume the linearity of the action (L3, L4) :
γ
β
η
α

 '


γ0
β0
η0
α0

+


∂L3 γ ∂L4 γ
∂L3 β ∂L4 β
∂L3 η ∂L4 η
∂L3 α ∂L4 α


(L0

3,L0
4)

·
(

δL3
δL4

)
(IV.82)

and I estimated the driving matrix with the same approach used for the Spherical Mode
Matching Telescope. I measured the telescope action by moving one lens at a time and
I interpolated the data with the linear model:

pLj(δLi) = ∂Li p + p0 (IV.83)

where p are the measurements of the mode matching parameters (p = γ, β, η, α), with
lens Lj fixed. The data are reported in Fig IV.21, while the interpolation parameters are
in Table IV.9. In this way, I estimated the full driving Matrix:

Γastig. =


1.03 −0.51
0.80 −1.39
0.14 0.29
−0.52 −0.14

 10−2mm (IV.84)

pLj(δLi) ∂Li p [10−2mm] p0,i [%] r-value

γ(δL3) 1.03(4) 2.8(3) 1.00
γ(δL4) −0.51(4) 2.0(3) 0.98
β(δL3) 0.80(3) 7.1(3) 1.00
β(δL4) −1.39(5) 7.0(4) 1.00
α(δL3) 0.14(1) −13.2(1) 1.00
α(δL4) 0.29(1) −13.4(1) 0.99
η(δL3) −0.52(3) −5.9(3) 0.99
η(δL4) −0.14(5) −5.6(4) 0.70

Table IV.9: Experimental estimation of the Driving Matrix for the Astigmatic Telescope. In-
terpolation Parameter of the linear model, pLj(δLi) = ∂Li p + p0, where p are the
measurement of the mode matching parameter p = γ, β, η, α, with lens Lj fixed.

In this case, I could not change one mismatch parameter while keeping constant the
others because the driving matrix does not allow to control all the degrees of freedom
together. This imposed a different approach to the characterisation of the Astigmatic
Mode Matching Technique.

First, I identified the twomismatch parameters that are more sensitive to the telescope
actuation, which are the spherical waist dimension, β and the astigmatic waist position,
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Figure IV.20: Simulation of the Astigmatic Mode Matching telescope. The plots describe the
telescope control on the mismatch parameters(Top to bottom): β, γ, α, and η.
The simulation were done by moving two lenses at the time(left to right) (L3, L4),
(L3, LCyl), (LCyl , L4).
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Figure IV.21: Experimental Driving Matrix of the Astigmatic Telescope. I measured the re-
sponses of the Astigmatic Telescope by moving δL3 and δL4 separately. For each
point, I measured the beam shape and I estimated the mismatch parameters. I fit
the model described by Eq. IV.83 and I used the linear coefficient to estimate the
experimental driving matrix Γ̃, Eq. IV.84.

η. After that, I used the same approach described in Section IV.1.4 to estimate the
telescope configurations for the measurement. In particular, I considered the driving
matrix associated to, β and η:

Γβ,η

(
∂L3 β ∂L4 β
∂L3 η ∂L4 η

)
(L0

3,L0
4)

=

(
0.80 −1.39
−0.52 −0.14

)
10−2mm (IV.85)

and I estimated its inverse:

Γ−1
β,η =

(
16.8 −167
−62.2 −96

)
102mm (IV.86)

Using this inverted matrix, I was able to define two telescope configurations, one
with β constant and one with η constant.

IV.1.6. Wavefront Sensors

The setup for the Astigmatic Wavefront Sensor presented in Section III can be divided
into two sectors: one dedicated to the Spherical Mode Matching and based on the
Mode Converter Technique, and another one dedicated to the Astigmatic mismatch and
composed of four Quadrant Photodiode Sensors installed in reflection from the cavity.

Due to the contingency limitation, it was impossible to install the full setup and I had
to base the validation only on two Quadrants Photodiode Sensors. In order to overcome
this problem, I had to divide the validation measurement in two steps to accordingly
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adapt the wavefront sensor setup. In the first phase, I installed the complete setup for
the Spherical Mode Matching Sensing, composed of two Quadrant Photodiode Sensors
installed after the Mode Converter Telescope and I used this setup to validate the Mode
Converter Technique.

In the second Phase, I used an auxiliary optical path to detect the beam after the
cavity reflection. In particular, I shuttered the path between the Mode Converter Tele-
scope and the Quadrant Photodiode Sensor 2, and I aligned the auxiliary beam to this
sensor(dashed line in Fig. IV.1). This way, I obtained a Hybrid setup to validate the
Astigmatic Mismatch Wavefront Sensing.

Spherical Mode Matching Sensors

The setup for Spherical Mode Matching sensing was validated in the same condition
foreseen for the installation in Advance Virgo Plus. In that case, we cannot inject an
auxiliary beam from the back side of the cavities, so the installation of the pre-converter
has to be based on the reflection of the incoming beam.

As we described in Section III.2.1, this approach leads to an imperfect tuning of the
pre-converter telescope, which generates crosstalk between the Mode Matching signal
and the Logitundal Error. This cross-talk is defined by the mismatch between the cavity
and the incoming beam, and its maximum value can be estimated using Eq. III.91.
In particular, I imposed a requirement on the initial Mismatch of |ε0|2 < 2 % that
corresponds to a maximum coupling of κmax ' 16 %.

This result also defines a constraint on the residual maximum residual noise on
the Longitudinal control. From the Mode Matching Telescope characterization, we
expected to control the mismatch parameter with the precision of δε ' 1 %. This
imposes a maximum on the motion of the Longitudinal control:

κmax ·
1
2

δ f
∆ fFWHM

� 1 % → δ f
∆ fFWHM

� 2
κmax

' 0.1 % (IV.87)

that will be discussed in Section IV.2.2.

Installation of the Mode Converter Telescope

The Mode converter telescope was based on two identical cylindrical lenses with focal
length 100mm, which correspond to a Mode Converter Telescope waist of 240µm. The
installation was done after optimizing the mode matching based on the amplitude of
the second-order peak. Once I obtained an optical loss smaller than 2%, I used the
reflected beam as a reference and proceeded to install the Mode Converter Setup. The
operations were divided into three steps:

Pre-converter Telescope I designed the Pre-converter telescope in order to match the
reflected beam with the Mode Converter Mode, and I used f8 = 170mm and f9 =
−70mm. The beam was characterized, and the measurement of the beam profile
after the telescope is reported in Fig. IV.22. From the interpolation of the data, I
estimated a waist dimension of 241(3)µm.

Mode Converter Telescope The installation of the Mode Converter Telescope was
donewith aminormodificationwith respect to the standard design. In particular, I
exploited the cylindrical symmetry of the linear cavity, and I rotated the cylindrical
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axis of the two lenses by 45°. In this way, I could use the Quadrant Photodiode
with the standard orientation +. The installation of the mode converter was
divided into two main steps:

1. Installation of the first lens. The design of a symmetrical mode converter
requires that the waist position of the two axes, z(x′)

0 and z(y
′)

0 has to be the
same. For this reason, I optimized the first Cylindrical lens by looking at the
difference between these two parameters. Fig. IV.22 and Table IV.10 report
the beam profile measurement after these optimizations.

2. Installation of the second lens. The second lens position can be identified
using the beam shape. In particular, the cylindrical lens should be installed
where the power profile is spherical. I used this position initial reference
and optimized the second lens using the beam profile after the telescope to
minimize the residual astigmatism.

Tuning Step w(x′)
0 [µm] w(y′)

0 [µm] z(x′)
0 [cm] z(y

′)
0 [cm] w(c)

0 [µm] z(c)0 [cm]

Pre-converter 250(2) 234(3) 41.0(2) 39.4(2) 242(2) 40.2(1)
After Cyl1 110(1) 253(4) 40.7(2) 38.3(3) 181(2) 39.5(2)
After Cyl2 268(6) 261(6) 37.7(3) 32.9(5) 264(4) 35.3(3)

Table IV.10: Tuning of the Mode Converter Telescope. Beam Parameters estimated at each step.

Gouy Phase tuning

The decoupled readout of the Mismatch parameters requires the fine-tuning of the
Gouy Phase of the reflected beam on the Quadrant Photodiode Sensors. The theoretical
parameters are collected in Table III.1, where we can distinguish two cases: The sensor
corresponding to the waist position parameters requires a Gouy phase of ∆ψ = 0°,
while the one corresponding to the waist dimension requires ∆ψ = 45°. These values
correspond to the Gouy phase accumulated by the Fundamental mode propagated
from the cavity up to the sensor. They can be tuned using a suitable telescope called
Gouy Phase Telescope. In particular, we can use Eq. II.64 and define the requirement of
the telescope:

∆ψ(γ,η) = −Arg
[

A(γ,η)qc + B(γ,η)

]
= 0° (IV.88)

∆ψ(β,α) = −Arg
[

A(β,α)qc + B(β,α)

]
= 45° (IV.89)

where Ai and Bi are the elements of the corresponding ABCD matrix.
The tuning of the Gouy phase was obtained by installing a lens with f10 = 282mm

after the Mode Converter and by using the distance between the sensors and the beam
waist. I adjusted the two sensors to impose a difference between their Gouy Phase,
∆Ψ2 − ∆Ψ1 ' 45°. In particular, I installed the Quadrant Photodiode Sensor 1 in the far
field area and the Quadrant Photodiode Sensor 2, near the end of the Rayleigh range.
After that, I used the FINESSE simulation to estimate the effective Gouy Phases, ∆Ψi,
and I optimized the sensor position to have 2∆Ψ1 = 148° and 2∆Ψ2 = 96°. In this way,
the Quadrant Photodiode Sensor 1 will be mainly sensitive to the beam dimension:

Ṽ(1)
M.M.(148°) =' m

π
χ1(−0.99β + 0.05γ) (IV.90)
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Figure IV.22: Tuning of the Mode Converter Telescope. Beam Profile Measurements used during
the installation of the telescope. The Beam was characterized using the procedure
described in Appendix A.I.1. The point represents the beam radius estimation
using the Beam internal reference, while the two continuous lines represent the
model used to estimate the beam parameters. Top to Bottom: Beam after the Pre-
converter; BeamAfter the First Cylindrical Lens; BeamAfter the second cylindrical
lens.
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and the Quadrant Photodiode Sensor 2 mainly to the beam position:

Ṽ(2)
M.M.(96°) =' m

π
χ1(−0.03β − 0.99γ) (IV.91)
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Figure IV.23: Spherical ModeMatching Sensor - Gouy Phase Tuning. I reported the beam profile
after the Lens_10, f10 = 282mm, used to tune the Gouy phase of the Spherical
Mismatch Sensors. The Quadrant Photodiode Sensor 1, was installed at a Gouy
phase of 2∆Ψ1 = 148°. The Quadrant Photodiode Sensor 2, was installed at a
Gouy phase of 2∆Ψ1 = 96°.

Astigmatic Mode Matching Sensors

The Astigmatic Wavefront sensors setup was obtained as a variation of the Spherical
one. In this case, the Quadrant Photodiode Sensor 2 used a different path that started
before the pre-converter and it bypassed the Mode Converter Telescope. I had to tune
only the Gouy phase of the Quadrant Photodiode Sensor 2 and I designed a telescope
in order to have sensitivity over both the astigmatic mismatch parameters. In particular,
the Gouy phase telescope is based on two lenses, f11 = 170 mm and f12 = −70 mm.
The resulting beam shape was characterized by a beam profile, and I adjusted the sensor
position to obtain 2∆Ψ2 = 44°.

In this configuration, the detection is composed of two sensors: Quadrant Photodiode
Sensor 1 was sensitive to the beamwaist parameters, β andQuadrant Photodiode Sensor
2 to:

Ṽ(2)
Asti(44°) =' m

π
χast

2 (0.71η cos(2θ) + 0.69γ cos(2θ)) (IV.92)

where θ is the astigmatic angle.
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Figure IV.24: Astigmatic Mode Matching Sensor - Gouy Phase Tuning. I reported the beam
profile after the Lens_12, f12 = −70mm, used to tune the Gouy phase of the
Spherical Mismatch Sensors.

IV.2. Electronic Setup

The electronic setup used in the experiment is represented in Fig. IV.25, and it was
composed of two parts: the Readout of theWavefront Sensors, used for themeasurement
of the Mode Matching Signals, and the Longitudinal Control Loop used to maintain the
Laser beam resonant with the cavity. These two parts used the same Signal Generator
that produces the Local Oscillator signals in order to synchronize the phase of the
different demodulation schemes. I will first present the readout system and describe its
main limitations in measuring the Mode Matching signal. After that, I will introduce
the Longitudinal control and discuss both the requirements and its characterization.

IV.2.1. Wavefront Sensors Readout

The wavefront sensors readout was used to process the signals in order to extract the
Mode Matching Signal. In particular, I installed two electronic chains, one for each
Quadrant Photodiode Sensor. These setups share the same structure which is composed
by:

Quadrant Photodiode Sensor The Quadrant Photodiode sensors were produced by
Nikhef for the Frequency Depended Squeezing Source of Virgo Advance Plus.
These sensors are based on a split photodiodes, QP45-Q TO, produced by First
Sensor and represented in Fig. IV.26. The active areas are four squares separated
by a gap of 70(1)µm and with a width of 3.31(1)mm. The diodes were internally
pre-amplified in order to produce two signals for each active area, one with
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Temp

PTZ

Driver
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Loader
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DAQ

Wavefront
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Longitudinal Control

Figure IV.25: Electronic Scheme of the Experiment. The setup is divided into two main compo-
nents: The Longitudinal Control highlighted in green and the Wavefront Sensors
Readout in brown. These two systems share a Common Signal generator, that
guarantees a phase synchronisation between the Electro-Optical Modulator and
the different demodulation setups.
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low bandwidth, DC, and one at high bandwidth17. The channel are named as
QD[n]_ch[m]_DC/RF, where n is the identification number of the Quadrant
Photodiode and m of the active area;

Demodulation Setup Each RF signal generated from the Quadrant Photodiode sensors,
QD[n]_ch[m]_RF, was separately demodulated with an analogic setup described
in Fig. IV.27. The scheme was based on a mixer, ADE-6, and a passive Low Pass
Filter, LPF-B0R3, with a cut-off frequency of fLP = 300 kHz. The local oscillator
signals were produced by the same Signal Generator used for the Electro-Optical
Modulator. In particular, we used a single signal for each Quadrant Photodiode
Sensor, which was divided in four by a power splinter ZB4PD1-500+18;

Recombination and Readout The demodulated signals were recombined using an
FPGA board produced by National Instruments. The recombined signals were
Digitally Filtered with a 2-th order Low Pass Filter and cut-off frequency of fc =
30 Hz.

Q4Q3

Q1 Q2

Part Description QP45-Q TO

Figure IV.26: Quadrant Photodiode QP45-Q
TO installed in the wavefront Sen-
sors used in the experiment. The
four active areas are oriented as
+ cross. They are 3.31mm width
and separated by a gap of 70µm.

Ipunt LO
P1 P4
P7 P10

IC1 IC2
IC3 IC7

IC4 IC5
IC6 IC8

ADE-6 LPF-B0R3

Input RF 
P2  P5
P8  P11

Output
P3 P5
P9 P12

Figure IV.27: Demodulation Board composed
by four separated demodulation
setups(top scheme). The demod-
ulatorwas based on amixer, ADE-
6, and a passive Low Pass Fil-
ter, LPF-B0R3, with a cutoff fre-
quency fLP = 300 kHz.

This readout scheme was based on the demodulation-recombination approach in
which each Active Area of the Quadrant Photodiode is individually demodulated
before the recombination. This approach was imposed by the design of the Quadrant
Photodiode Sensors that pre-amplify each channel separately. The signals, Si, were first
demodulated:

Ṽj(2∆ψ) = mχjSj(2∆ψ) (IV.93)

17At the time of writing, the official characterisation was not published.
18All the electronic components were produced by Mini-Circuits®.
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where χj is the dedicated conversion factor, and after they were recombined together to
extract the Mismatch signal

ṼM.M.(2∆ψ) = (V1 + V3)− (V2 + V4) (IV.94)

Characterisation of the readout system

As described in Section III.2.3, the unbalance between the χj generates crosstalk between
different signals and leads to the degradation of the Mode Matching one. In order to
quantify the coupling coefficient defined in Eq. III.101, I characterized each readout
chain from the Quadrant Photodiode Sensor up the signal recombination.

The measurement was based on the amplitude modulation of the beam, which was
obtained by exploiting the Residual Amplitude Modulation of the Electro Optical
Modulator. I rotated the Half Wave Plate (HW_3 in Figure IV.1) installed before the
Electro Optical Modulater. In this way I de-tuned the polarization and created a line at
Ωam = 2π × 18.75 MHz and amplitude mam:

Ψ = Ψ0(1 + mam sin(Ωamt) (IV.95)

After that, I added a beam dumper between the cavity mirrors to avoid extra signals,
and I aligned the beam to the Quadrant Photodiode to measure the whole power profile
with a single active area, Ai. In this way, the RF channel was proportional only to the
modulation of the beam power:

Si = χsens
i |Ψ|2 = χsens

i |Ψ0|2(2mam sin(Ωamt + φ0) +
m
2

sin(2Ωamt)) (IV.96)

where χsens
i is the optical gain of the channel i of the Quadrant Photodiode Sensor, and

I ignored the DC component.
This signal was demodulated using the analogic board in Fig. IV.27. In these mea-

surements, I used a demodulation frequency, Ωdem = Ωam + ∆Ω, shifted of ∆Ω =
2π × 1 kHz with respect to the modulation frequency, Ωam = 2π × 18.75 MHz. In this
way, the signal in Eq. IV.96 was down-converted into a signal with Frequency ∆Ω:

VQD
i = χdemod

i χsens
i |Ψ0|22mam cos(φ0 − φdem + ∆Ωt)

= χi|Ψ0|22mam cos(φ0 − φdem + ∆Ωt)
(IV.97)

where χdemod
i is the conversion factor of the demodulator, φdem is the demodulation

phase, and, in the last step, I collected the two conversion factors into χi
19. The down-

converted signal was measured with lock-in amplifier20 in order to characterize both the
amplification and the phase shift of each conversion factor, χi. The final measurements
are reported in Table IV.11, where the values of each Quadrant Sensor was normalised
with respect to the first channel:

χ̃j =
χj

χ0
=

|χj|
|χ1|

ei Arg[χj]−Arg[χ1] = |χ̃j|eiδψ̃j (IV.98)

19I assumed that both χdemod
i and φdem are not frequency dependent inside the Low Pass Filter Bandwidth,

of 130 kHz.
20SR 830 produced by Stanford Research Systems.
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Quadrant Photodiode channel δψ̃j [deg] |χ̃j| [a.u] DC signal [mV]

QPD 1

1 0.0 1.0 1064(3)
2 7.3(5) 1.48(1) 1110(1)
3 7.6(5) 1.51(1) 1118(1)
4 4.9(3) 1.32(1) 1126(1)

QPD 2

1 0.0 1.0 1750(3)
2 1.3(1) 0.90(1) 1783(2)
3 2.1(1) 0.90(1) 1793(2)
4 0.6(1) 0.83(1) 1826(2)

Table IV.11: Measurement of the conversion factors, χi of each RF chain. I reported the normal-
ized values with respect to channel 0 of each Quadrant Photodiode sensor, Eq. IV.98,
and the DC signal generated by the corresponding active area.

Quadrant Photodiode
∣∣∣ χL

χMM

∣∣∣ [%]
∣∣∣ χH

χMM

∣∣∣ [%]
∣∣∣ χV

χMM

∣∣∣ [%]

QPD 1 6.0(7) 14.0(7) 7.0(7)
QPD 2 4.0(2) 1.0(2) 4.0(2)

Table IV.12: Maximum Cross talk coefficient of the Alignment and Longitudinal Error signal in
the reconstruction of the Mode Matching Signal.

With that information, I estimated the conversion factors defined in Eq. III.101, and
I used them to estimate the maximum cross-talk in the reconstruction of the Mode
Matching. The values, reported in Table IV.12, were used to define the cavity align-
ment requirement and residual motion of the Longitudinal control. The maximum
misalignment was defined as the relative amplitude of the first-order mode:

|U1| =

√
P1

P0
(IV.99)

where Pj is the peak height of the transmission optical power when the mode j is in
resonance with the cavity. For this value, I imposed the following requirement:

|U1| ≤ 3 % (IV.100)

The coupling of the Longitudinal control imposed by the reconstruction unbalance
is lower than the one induced by the mistuning of the pre-converter, 16% defined in
Eq. IV.87. I considered only the greater value to impose the requirement on the residual
noise of the Longitudinal Control loop.

IV.2.2. Longitudinal Control Loop

The Mode Matching Sensing technique is designed to work around the resonance
condition of the cavity. This requirement has different aspects that need to be taken
into consideration. On one side, the demodulated signal estimated in Section III.1.5
was based on the matching between the laser frequency flaser and the resonance one, f0,
defined in Eq.II.84; On the other, Section III.III.2 describes two mechanisms that couple
the difference between these two frequencies, δ f = flaser − f0, into the Mode Matching
signal.
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The resonance condition was guaranteed with a Longitudinal Control loop based
on the Pound–Drever–Hall technique[32]. This method is based on estimating the
imaginary part of the cavity reflectance that shows two interesting properties. It nods
at resonance and is linear with the frequency difference, δ f , so that it can be used as
feedback for the stabilisation loop. Moreover, this signal can be calibrated and it can be
used to characterise the residual motion of the frequency difference, δ f .

The Experimental implementation is based on the same scheme of the wavefront
sensing technique presented in Section III. In this case, the incoming beam is phase
modulated with the Electro-Optical Modulator, and the cavity reflection is measured
with a Fast photodiode. The detected signal is proportional to the following:

SPDH ∝ |Φ|2
∣∣∣F0

0 eiωt + F+
0

m
2 ei(ω+Ωt) − F−

0
m
2 ei(ω−Ωt)

∣∣∣2 (IV.101)

where F0 and F±
0 are the cavity responses defined in Eq. III.6 and Eq. III.6. The Lon-

gitudinal Error Signal is obtained by the demodulation of the signal, SPDH and it is
proportional to[32]:

εPDH ' − 2
π

mP0
δ f

∆ fFHMW
(IV.102)

where m the the phase modulation, P0 the amplitude of the incoming beam carrier,
∆ fFWHM is the cavity line-width, and δ f is the difference between the laser frequency,
flaser in Eq.IV.30, and the resonance one, f0, defined in Eq.II.84:

δ f = flaser − (l∆ ffsr + ∆ fHOM)︸ ︷︷ ︸
f0

(IV.103)

The error signal εPDH can also also be used to monitor the residual motion of the laser
frequency, flaser, with respect to the resonance one, f0. This measurement requires a
calibration of the signal which is discussed in Section IV.2.2.

This error signal stabilised the laser frequency and maintained the incoming beam
resonant with the cavity. The control scheme is represented in Figure IV.25, and it is
composed of two different sections:

Sensor The power of the reflected beam was measured with the fast photodiode PD_02
in Fig IV.1. These photodiodes are internally pre-amplified and provide a demod-
ulated signal[37]21. The local oscillator used for the demodulation was generated
by the common Signal Generator.

Driver The Error signal generated by the photodiode was processed by the digital
PID filter implemented with the Moku:lab board and used to control the Laser
Frequency. The driver was composed of two loops:
Fast Loop This loop was based on the Error signal generated by the Pound–Dr-

ever–Hall scheme and it acted on the Piezo Electric Transducer, characterised
in Section IV.1.2, to control the laser Frequency. The Filter parameters are
collected in Table IV.13a.

Off-Load This loopwas used tomaintain the average Voltage on the Piezo Electric
Transducer around 50V. It used the actuation signal generated by the Fast

21The photodiode used for the demodulation scheme are the same used in the OPLL setup for Frequency
Independent Squeezing source of Advanced Virgo.
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Loop as input and it removed the DC offset applied to the Piezo Electric
Transducer by changing the laser temperature. The Filter parameters are
collected in Table IV.13b.

Fast Loop

Proportional gain (dB) −60.0
Integrator crossover (kHz) 125.0
Integrator saturation (dB) 32.9
(a) Fast Loop. Filter Parameters used for the

actuation on the Piezo Electric Transducer.
It was composed of a Saturated Integrator
and a Proportional Gain.

Off-Load

Unity gain frequency(mHz) 14.4
(b) Off-Load. Filter Parameters used for the ac-

tuation on the Crystal Temperature. It was
composed by a Integrator Filter.

Table IV.13: Longitudinal Loop. Filter Parameter used for the laser stabilisation described in
Fig. IV.25. The controller was based on two loops, with different Bandwidths.

Optimisation of the Longitudinal Control Loop

The Longitudinal control loop was optimised in two different ways. First, the Fast
Loop parameters were optimised in order to reduce the residual Frequency noise, σεPDH ,
defined as:

σ2
εPDH =

√√√√ 1
∆t

(∫
∆t
(εPDH)2dt −

(∫
∆t
(εPDHdt

)2
)

(IV.104)

Second, the Pound-Drever-Hall error signal was adjusted in order to compensate for
systematic errors in the estimation of the frequency difference, δ f . This optimisation
was based on the injection of a dither line with frequency Ωdith in the Piezo Electric
Transducer in order to modulate the laser Frequency as

ω = ω0 + δωslow + δω f ast + mdith sin(Ωdith) (IV.105)

When the laser is kept in resonance by the Longitudinal control loop, this line was
visible in the power transmitted by the cavity:

Pt(δ f (Ω)) ' Pmax

1 +
(

2 δ f (Ω)
∆ fFWHM

)2 (IV.106)

where δ f (Ω) is the difference between the laser frequency, ω, and the resonance one,
f0. This value is kept around zero by the Fast Loop and it can be represented as:

δ f (Ω) = δ f0 + mdith sin(Ωdith) (IV.107)

where δ f0 is the systematic error in the set point of the control loop. If we assume that
δ f (Ω)/∆ fFWHM � 1, we can approximate the transmitted power as:

Pt(δ f (Ω)) ' Pmax(1 −
(

2
δ f0 + mdith sin(Ωdith)

∆ fFWHM

)2

) =

= Pmax −
4Pmax

∆ f 2
FWHM

(
δ f 2

0 + m2
dith

1
2
(1 + cos(2Ωt)) + 2δ f0mdithsin2(Ωt)

)
(IV.108)
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where in the last step we expanded the frequency component. From this equation, we
can see that the signal at frequency Ω is directly proportional to the systematic error δ f0,
and it can be used to tune the set-point of the Longitudinal control. In particular, each
time I engaged the Longitudinal Control, I injected a dither frequency Ωdith = 270 Hz
and I optimised the Error signal offset by minimising the line at Ωdith in the spectrum
of the transmitted optical power.

Stability of the Control Loop
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Figure IV.28: Longitudinal Control Loop - Open Loop Transfer Function. I estimated a Phase
Margin of 26.7° and Gain Margin of 4.8 , moreover we can see that the unity gain
frequency is 29.8 kHz.

In order to verify the stability of the Longitudinal control Loop, I measured the
Open Loop Transfer Function of the Fast-driver and I characterised it using the Bode
criterion. This method is based on the Phase Margin and Gain margin parameters.
Using the frequency response function of the Moku:lab, I injected a probe line with
frequency Ωprop in the Piezo Electric Transducer signal and I recorded its amplitude
and phase after the propagation around the full loop. I collected the electronic response
at different frequencies from 400 kHz to 40Hz, the data are represented with a Bode
Plot in Figure IV.28. Using this measurement, I estimated a Phase Margin of 26.7° and a
Gain Margin of 4.8 , moreover, we can see that the Unity Gain Frequency is 29.8 kHz.

Characterisation of the Longitudinal Control Loop

Once I obtained a stable resonance cavity, I verified that the residual fluctuation of the
frequency difference, δ f was compatible with the requirement imposed in Eq. IV.87,
δ f /∆ fFWHM � 0.1 %. In particular, I first calibrated the Pound–Drever–Hall error
signal, and after, I studied the residual motion of δ f .
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Calibration Error Signal
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Calibration of the Longitudinal Control Error Signal

Longitudinal Error Signal

εPDH(δf) = κ−1
ε ∗ δf + b0

Figure IV.29: Calibration of the Longitudinal Error Signal. In order to estimate the calibration
factor, I fitted the linear region of the Error signal and I estimated the relationship
between the demodulated signal and the frequency detuning. This figure represent
one of the 100 measurement of the error signal sued for the estimation of the κ−1

ε
factor.

The error signal of the Pound–Drever–Hall was calibrated using the information
collected in Section IV.1.2. I measured the error signal as a function of the laser frequency
and, I fitted the linear part with the model:

εPHD = κ−1
ε δ f + b0 (IV.109)

In Figure IV.29, I reported one of the signal measurements with the corresponding linear
model. I recorded multiple scans of the laser frequency, and estimate the calibration
factor for each one. The final value was obtained by averaging them:

〈κε〉 = −202.0(50)Hz mV−1 (IV.110)

Residual Frequency noise

After optimising the Fast-Loop loop, I recorded the error signal of the Longitudinal
Control and calibrated it using the factor, 〈κε〉. The spectrum of the residual noise, ρ( f ),
is represented in Figure IV.30, while the total RMS is:

σf = 10.5 kHz (IV.111)

The main contributions are given by a line at 60 kHz generated by environmental noise
and the servo bump around 50 kHz. If we consider the fFWHM estimated in Section IV.1.3,
we have:

σf

fFWHM
= 7 % (IV.112)
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that is outside the requirement imposed in Eq.IV.87.
In order to reduce the residual noise coupled into theModeMatching Signal, I decided

to filter the reconstructed signal, VQD
i , in order to remove the contribution at High

frequency. I chose a cut-off frequency of fc = 30 Hz based on the spectrum in Fig. IV.30.
The residual Frequency noise in this bandwidth can be estimated by the integration of
the power spectrum, ρ( f ):

σf (50 Hz =
∫ 50 Hz

0
ρ( f )d f = 23 Hz (IV.113)

This value is compatible with the requirement imposed from the cross talk :

σf ((50 Hz)
fFWHM

=
23 Hz

152 kHz
= 0.02 % (IV.114)

inasmuch is lower than the requirement imposed Eq. IV.87.
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Figure IV.30: Longitudinal Control Loop - Residual Frequency noise. The spectrum described
the different contributions to the residual Frequency noise of the Longitudinal
Control Loop. We can identify: a line at 60 kHz coupled by the environment; the
servo bump around 50 kHz; a group of structures around 250Hz generated by the
mechanical resonances of the Optical Breadboard and the mechanic holders. The
total residual noise is σf = 10.5 kHz.
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The validation study of the Mode Matching Sensing techniques was based on the
absolute estimation of the mismatch parameter, which was estimated in two different
ways. The total mismatch |ε|2 = | 〈ε〉+ δε|2 was measured using the cavity spectrum.
Form Eq.II.136, we have that:

|ε|2 =
P2

P0
(V.1)

where P2 is the integral of the resonance peak of the second order mode and P0 of
the fundamental one. The parameters β, γ, α, and η were estimated by a beam shape
measurement. Using the method described in Appendix A.I.1, I characterized the beam
parameters between the two cavity mirrors, and I combined these measurements with
the parameters of the resonant mode estimated in Section IV.1.3.

The decoupling of the Mode Matching signal was validated by changing one beam
parameter at a time. The beam shape manipulation was based on the characterization
of the Mode Matching Telescopes, which is collected in the driving matrix reported in
Eq. IV.72 for the Spherical Mode Matching, and in Eq. IV.84 for the Astigmatic one.

Themain challenge in the linearity studywas themarginalization of all the cross-talks
that affected the Mode Matching Signals. The characterizations of the Mode Converter
Telescope and of the electronic detection chains define two main requirements: the
residual motion of the Longitudinal control should be less than 0.1% of the cavity
linewidth, Eq. IV.87, and the residual misalignment should not exceed 3%, Eq. IV.100.
Moreover, I recorded the demodulated Mode Matching signals using four different
demodulation phases, φj = 0°, 90°, 180°, 270°. These signals were combined in order to
remove electronic offsets:

ṼQD_i
0 = SQD_i

0 − SQD_i
180° (V.2)

ṼQD_i
90 = SQD_i

90 − SQD_i
270° (V.3)

After that, the two quadratures ṼQD_i
0 and ṼQD_i

90 were rotated

ṼQD_i
I = ṼQD_i

0 sin(∆φi)− ṼQD_i
90 cos(∆φi) (V.4)

ṼQD_i
Q = ṼQD_i

0 cos(∆φi) + ṼQD_i
90 sin(∆φi) (V.5)
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and the phase ∆phii was optimised in order to minimise the variance of ṼQD_i
Q :

∆ψ̄i = min
∆φi

[
∑
(

ṼQD_i
Q − 〈ṼQD_i

Q 〉
)2
]

(V.6)

All these requirements were combined in a standardised measurement protocol. The
steps are:

Telescope Tuning Configuration of the telescope following the path indicated in Sec-
tion IV.1.4 and Section IV.1.5

Cavity Alignment Alignment of the cavity in order to reduce the amplitude of the first
order mode to less than 3%.

Tuning Set Point of Piezo actuator Tuning of the Laser temperature in order tomatch
the resonance frequency of the Fundamental Mode with 〈V〉 = 50 V applied to
the Piezo Electric Transducer.

Longitudinal Control Engaged Engaging of the Longitudinal control and optimization
of the locking point using the dither method described in Section IV.2.2

Alignment Quadrant Photodiode Sensors Alignment of the cavity reflected beam to
the Quadrant Photodiode Sensors. This optimisation was obtained by looking at
the Low-frequency channel of the Sensors and by equally distributing the Power
over each active area.

Mode Matching Signal Recording Measurement of the Mode Matching signal, SQD_i
ψj

with four different demodulation phases, φj = 0°, 90°, 180°, 270°.

Beam Profile Measurement The beam inside the cavity was characterised using the
same measurement procedure used for the characterisation of the ModeMatching
Telescope, Section IV.1.4

The Validation measurement was divided into two steps:

Validation of the Mode Converter Technique I used the Mode Matching Telescope
characterised in Section IV.1.4 to manipulate the spherical Mismatch between the
incoming beam and the cavity and recorded the Mode Matching signal using the
Mode Converter Technique.

Validation of Astigmatic Mismatching Sensing I used the three-lense solution for the
Astigmatic Telescope described in Section IV.1.5 and I modified the detection
setup as described in Section IV.1.6. I measured the Quadrant Photodiode signal
as a function of two astigmatic parameters: the ellipse angle, θ and the astigmatic
waist position, η.

V.1. Validation of the Mode Converter Technique
The first validation of theMode Converter Techniquewas done byMagaña-Sandoval, Vo,
Vander-Hyde, et al., and it was based on the comparison between the signal generated
by the Quadrant Photiodes and the one generated by the Bull’s eye Phodotiode[2]. That
work confirmed the similarity between the two signals and confirmed the possibility of
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detecting the mismatch. However, they did not investigate the linearity of the signal
nor the possibility of decoupling the Mode matching degree of freedom.

The measurement presented here represents a step forward in characterising the
Mode Matching technique. Thanks to the protocol defined at this chapter beginning,
I was able to study the Error signal response as a function of the absolute value of
the Spherical Mismatch parameter. This was made possible by three factors: first, the
ability to control the beam shape based on the characterisation of the Telescope driving
matrix; second, the absolute estimation of themismatch parameters; third, the Quadrant
Photodiode Gouy tuning that maximises the decoupling between the sensors’ response.

The control of the beam shape and the decoupling of the sensors made it possible
to simplify the relationship between the error signal and the effective mismatch. In
particular, I could study it with two separate linear models: one representing the effect
of the normalised variation of the waist dimension and the other one of the normalised
variation of the waist position. In particular, I compared the measurement with the
functions:

ṼQD_i
M.M. (β) = κ

β
i β + Vβ

0,i (V.7)

ṼQD_i
M.M. (γ) = κ

γ
i γ + Vγ

0,i. (V.8)

where i = 1, 2 represents the Quadrant Photodiode number, ṼQD_i
M.M. is the corresponding

Mode Matching signal, κ
(β/γ)
i represents the sensitivity to the mismatch parameter,β or

γ, and Vβ/γ
0,i is the residual offset.

The mismatch parameters were spanned between −15% and 25% for β and −15%
and 17% for γ, that correspond to a maximum optical loss of 2% in power. The data
are reported in Figure V.1 and the interpolation factors in Table V.1.

QD Mismatch
parameter κb

i [mV%−1] V0,i [mV] R2

QD_1 γ 12.6(22) −46.0(220) 0.82
β 48.0(13) −270.0(160) 1.00

QD_2 γ 46.9(12) −96.0(120) 1.00
β −3.0(13) −50.0(170) 0.41

Table V.1: Validation Measurement of the Mode Converter Technique. Fit parameters of the
model described in Eq. V.7 and Eq. V.8.

The detector sensitivity verifies the decoupling of the mismatch degrees of freedom,
and it matched the expectation: Quadrant Phodotiode 1 (Gouy Phase 90°) was mainly
sensitive to the variation of β and Quadrant Phodotiode 2 (Gouy Phase 45°) was mainly
sensitive to the variation of γ. Moreover, we can use the ratio between κ

β
i and κ

γ
i to

estimate the effective Gouy phase between the cavity and the sensor i = 1, 2:

∆Ψ1 =
1
2

arctan

(
κ

γ
1

κ
β
1

)
= 7.4(12)° (V.9)

∆Ψ2 =
1
2

arctan

(
κ

γ
1

κ
β
1

)
= 43.2(8)° (V.10)
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Ṽ QDMM = 12.7 · γ − 46[mV ]

QD Channel I

QD Channel Q

−10 0 10 20

β [%]

−1000

−750

−500

−250

0

250

500

750

1000

Q
D

1
[m

V
]

Changing only Waist dimension w0
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Figure V.1: Validation Measurement of the Mode Converter Technique. Mode Matching Signal
as a function of the Spherical Mismatch parameters. The y-axis reports the signal
generated by the Quadrant Phodiode after the full read-out chain. The two x-axes
described the mismatch, the bottom labels report the amplitude of the mismatch
parameter in %. On the opposite, the top labels report the corresponding optical loss
induced by the mismatch in % of the input power. Green represents the In-phase
signal proportional to the Mode Matching Error signal, while the brown dots are the
constant Quadrature signal. The green line represents the linear model described in
Eq. V.8 for the left plots and in Eq. V.7 for the right ones. The interpolation Parameter
are reported in Table V.1.
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This estimation of the sensor Gouy Phase was used to tune the position of Quadrant
Photodiode 2 and to optimise the decoupling between the two parameters. I could not
optimise Quadrant Photodiode 1 due to the spatial constraint of the optical table.

The linearity of the signal was verified using the coefficient of determination, R2. This
indicator can be estimated as

R2 = 1 − RSS
TSS (V.11)

where RSS is the Residual Square Sum

RSS = ∑ yi − f (xi), (V.12)

and TSS is the Total Square Sum:

TSS = ∑ (yi − 〈yi〉). (V.13)

The value of R2 is the proportion of the variation in the dependent variable that is
predictable from the independent variables[46, p. 344], and it is closer to 1 when the
model, f (x) fully describes the relationship between the independent variable x and
dependent variable y. In particular, the model in Eq. V.7 indicates a good linearity on
the relationship between Quadrant Photodiode 1 and β, and Quadrant Photodiode 2
and γ.

V.2. Validation of Astigmatic Mismatching Sensing
The validation of the Astigmatic Mode Matching Sensing technique required two small
modifications of the Optical Setup. First, the Mode Matching Telescope was upgraded
to the Astigmatic configuration. In this way, it was possible to control the Astigmatic
mismatch parameters using the driving matrix estimated in Eq. IV.84. Second, the
Wavefront Sensor setupwas rearranged tomonitor both the Spherical and theAstigmatic
Mismatch. Quadrant Photodiode 1 was left after the Mode Converter in order to detect
variation of spherical waist radius, β = (wx′

0 +wy
0)/(2wcav

0 ), while Quadrant Photodiode
2, was moved before the Mode Converter and the Gouy phase was tuned in order to
detect the astigmatic waist position, η = (zx′

0 − zy′
0 )/(4zcav

R ).
The validation study was divided into two steps. First, I studied the relationship

between the orientation of the astigmatic ellipse, θ, and the Quadrant Photodiodes.
Second, I characterised the response to the variation of the Astimatic waist position, η.

V.2.1. Astigmatic Ellipse Angle

The relationship between the astigmatic ellipse and the Quadrant Photodiodes 1 is
described in Eq.III.72. Due to the tuning of Quadrant Photodiode 2, I expected the
following:

ṼQD_2
M.M. (θ) =

m
π
(rres − 1)χi cos(2θ)<[δεi] (V.14)

and a constant signal on Quadrant Photodiode 2.
In order to test this model, I induce strong astigmatism, η = 20 %, to maximise the

corresponding signals, and I controlled the orientation of the astigmatic ellipse by
rotating the cylindrical lens of the Astigmatic Mode Matching Telescope. I recorded the
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signal with both Quadrant Photodiode Sensors for each angle of the cylindrical lens.
The data are reported in Fig. V.2, and they were interpolated with the linear models:

ṼQD_i
M.M. (θ) = κi cos(2θ + θi

0) + Vθ
0,i (V.15)

where θ is the orientation angle of the cylindrical lens, and κi collects the contribution
of the mismatch parameters. The fit results are reported in Table. V.2.

ṼQD_i
M.M. (θ) κi [mV] θ0 [deg] Vθ

0,i [mV] R2

ṼQD_1
M.M. (θ) −113(5) 11(2)° 171(3) 0.84

ṼQD_2
M.M. (θ) −261(7) 6(2)° 10(5) 0.89

Table V.2: Validation Measurement of the Astigmatic Wavefront Sensing - Ellipse Rotation. Fit
parameters of the model described in Eq. V.15.

The signal recorded from the Quadrant Photodiode Sensor 2 demonstrates the cosine
dependency from the ellipse angle, θ. However, we have a similar dependency on the
Quadrant Photodiode 1. This behavior is not compatible with the ideal model and it can
be justified with crosstalk between the astigmatic mismatch and the Spherical sensor.
This hypothesis will be deepened in Section III.2.2.

V.2.2. Waist parameters

The second validation test was based on the same approach used for the Spherical
Mismatch with one main difference. The astigmatic telescope based on the three-lens
configuration cannot control all the mismatch parameters at once, so I approached the
measurement differently. I used the driving matrix in Eq. IV.84 to define two paths for
the astigmatic telescope: one in which the variation of β was maximised, and η kept
constant and another one in which β was constant and the variation of η maximised.

The evolution of the mismatch parameters is reported in Fig. V.3, where we can see
that all the parameters, except the controlled one, span between −20% and 20%. The
moving parameters are strongly correlated, and it is possible to discriminate only when
β or η are constant. For this reason, the validation of the Astigmatic Mode Matching
Sensing technique is based on the following hypothesis: The Quadrant Photodiode 2 is
tuned to detect only changes of η, so the corresponding error signals should change
only if η changes.

The Mismatch signals are reported in Fig. V.4, and they were interpolated with the
linear models:

ṼQD_i
M.M. (β) = κ

β
i β + Vβ

0,i (V.16)

ṼQD_i
M.M. (η) = κ

η
i η + Vη

0,i (V.17)

In this case, κ
(β/η)
i does not directly represent the Quadrant Photodiode sensitivity to

the β/η, but they collect the effect to all the other parameters that are not controlled. In
particular, κ

(β)
i does not consider the variation of η and κ

(η)
i the variation of β. The fit

results are reported in Table. V.3
The measurements show two important results. First, the Quadrant Photodiode

Sensor 1 is still sensitive to the variation of β, and the astigmatic aberration does not
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Figure V.2: Validation Measurement of the Astigmatic Mismatch Sensors - Ellipse Rotation. The
y-axis reports the signal generated by the Quadrant Phodiode after the full read-out
chain. The x-axis represents the orientation angle of the Cylindrical Lens. Green
lines represent the In-phase signals extracted by the demodulation scheme and
are proportional to the Mode Matching Error signal, while the brown dots are the
constant Quadrature signals. The green line represents the linear model described
in Eq. V.15. The interpolation Parameters are reported in Table V.2.
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Figure V.3: Evolution of theModeMatching Paratemers as a function of theAstigmatic Telescope.
All the parameters, except the controlled one, span between −20% and 20%.

change the calibration factor. In fact, Table V.1 reported a κ
(β)
1 = 48.0(13)mV %−1

which is compatible with the estimation obtained here κ
(β)
1 = 49.0(10)mV %−1. Second,

the Quadrant Photodiode 2 is sensitive only to the variation of η inasmuch κ
(β)
2 =

0(1)mV %−1, while κ
(η)
2 = 28.0(20)mV %−1.

On the other hand, the signal of Quadrant Photodiode 2 changes when β is kept
constant. This behaviour is justified by the crosstalk between the astigmatic mismatch
on the Spherical Mismatch Sensor. This coupling can be quantified as follows:

κ
(η)
1

κ
(β)
1

= −14(2)% (V.18)

The origin of this crosstalk can be generated by an imperfect conversion of the Hermite-
Guass Mode, HG45

11. From the analysis done in Section III.2.2, we know that in case the
pre-converter is mistuned, the Mode Converter Telescope does not guarantee a perfect
conversion of the mode HG45

11 and LG01. This imperfection could generate a coupling
of the astigmatic parameters into the Spherical Mode Matching Signals. Using the
model of Eq. III.97, we can estimate an upper bound to the Mode Converter Telescope
detuning, given by

δψ = 2 arctan

(
κ

η
1

κ
β
1

)
= 16(2)° (V.19)
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Figure V.4: Validation Measurement of the Astigmatic Mismatch Sensors - Waist Parameters.
The y-axis reports the signal generated by the Quadrant Phodiode after the full
read-out chain. The two x-axes described the mismatch, the bottom labels report
the amplitude of the mismatch parameter in %. On the opposite, the top labels
report the corresponding optical loss induced by the mismatch in % of the input
power. Green represents the In-phase signal proportional to the Mode Matching
Error signal, while the brown dots are the constant Quadrature signal. The green
line represents the linear model described in Eq. V.16 for the left plots and in Eq. V.17
for the right ones. The interpolation Parameters are reported in Table V.3.
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QD Mismatch
parameter κb

i [mV%−1] V0,i [mV] R2

QD_1 η −7(1) 346(7) 0.94
β 49(1) −132(11) 1.00

QD_2 η 28(2) −125(12) 0.98
β 0(1) −483(12) 0.03

Table V.3: Validation Measurement of the Astigmatic Wavefront Sensing - Waist Parameters. Fit
parameters of the model described in Eq. V.16 and Eq. V.17.



VI MODE MATCHING SENSING IN QUANTUM NOISE
REDUCTION SYSTEM

The Mode Converter Technique was implemented in the Frequency Dependent Squeez-
ing System of Advanced Virgo Plus. The Mode Matching sensor was designed to
monitor the mismatch of the squeezed vacuum beam at two critical points: the beam
injection to the Filter Cavity and the beam injection to the Interferometer. In this Chapter,
we will briefly introduce the optical scheme of the Frequency Dependent Squeezing
Source, and we will describe the implementation of the Mode Converter Technique.
The installation is still ongoing at the time of writing, and the sensor signals are not
calibrated.

VI.1. Frequency Dependent Squeezing
The key point of Frequency-Dependent Squeezing is manipulating the quantum noise
as a function of its frequency. In particular, we want to reduce the radiation pressure at
low frequencies and the shot noise at high frequencies, and this requires manipulating
the phase of the squeezed vacuum beam as a function of the frequency.

From a formal point of view, the effect of the squeezing on the Quantum Noise is
described by Eq. I.37:

Shnhn =
2h̄

ML2Ω2

(
KITF +

1
KITF

)
(cosh(2ξ)− cos[2(θ + Θ(Ω))] sinh(2ξ))

where M is the mirror mass, L the arm length, Θ(Ω) = arccot(KITF) with KITF the
Interferometer response, and θ is the squeezing angle. In case the squeezing angle is
matched with the dispersion imposed by the Interferometer θ = −Θ(Ω), the Quantum
noise is reduced over the whole spectrum as described by Eq. I.41:

Shnhn =
2h̄

ML2Ω2

(
KMi +

1
KMi

)
e−2ξ

The implementation of the Frequency Dependent Squeezing in Advanced Virgo Plus
is based on a detuned resonance cavity, generally called a Filter Cavity. The idea is to
use the cavity reflectance to manipulate the beam phase and impose the dispersion rule
θ = −Θ(Ω).

The effect of the Filter Cavity can bemodelled by imposing a small detuning f − fres �
fFWMH and a high finesse F >> 1 approximations on Eq.II.19. In this case, the cavity
reflectance can be written as[48]:

rcav(Ω) ' 1 − 1 − ε

1 + iξ(Ω)
(VI.1)
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where

ε = 2Λ2
rt F (VI.2)

ξ(Ω) = 2
δ f

∆ fFWHM
, (VI.3)

and Λrt are the round trip losses of the cavity and F its Finesse. This expression still
mixed the phase modulation with the amplitude, but they can be discriminated by
rewriting the equation as

rcav(Ω) = |rcav(Ω)|eiαcav(Ω) (VI.4)

In this way, we can distinguish between the amplitude manipulation

|rcav(Ω)| =

√
1 − (2 − ε)ε

1 + ξ2(Ω)
(VI.5)

from the phase manipulation

αcav(Ω) = arg
[
−1 + ε + xi2(Ω) + i(2 − ε)ξ(Ω)

]
(VI.6)

To apply these equations to the squeezed vacuum, we should convert them into
the two-photon pictures. The calculations can be found in [48], and they lead to the
following expression of the squeezed quadrature rotation:

αp(Ω) = arctan

 (1 − Λ2
rt
F )∆ fFWHMδw f c

(1 − 2 Λ2
rt
F )

∆ f 2
FWHM
4 + δω2

f c + Ω2

 (VI.7)

This equation depends on four different parameters of the Filter Cavity: the round
trip losses, Λ2

rt; the Finesse, F ; the cavity linewidth, ∆ f 2
FWHM; and the detuning w.r.t

the vacuum squeezed frequency, δω f c. During the design of Advanced Virgo Plus,
these parameters were tuned to match the Interferometer response and to optimise the
reduction of the Quantum Noise[35, p.342]. In particular, the design parameters are:

Parameter

Length(m) 285
Finesse at 1064 nm 10 800
Round Trip Losses(ppm) 40

VI.2. General Design of the Frequency Dependent Squeezer
The Frequency Dependent Squeezing technique is one of the major upgrades of Ad-
vanced Virgo Plus. Its implementation is carried out by the Quantum Noise Reduction
system, and it is designed as an upgrade of the Frequency Independent Squeezer source
used during the last Observing Run, O3. The main goal of these upgrades is to provide
a stable squeezed quadrature rotation using a detuned cavity. For these reasons, most
of the system is dedicated to controlling the Filter Cavity and optimising the coupling
with the squeezed vacuum beam.

The simplified scheme of the Frequency Dependent Squeezer source is described in
Figure VI.1 organised into three sectors:
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Figure VI.1: Simplified scheme of the Frequency Dependent Squeezer source. The optical path
begins EQB1 (boom left). In this bench, we can find the Optical Parametric Ampli-
fier, which generates the squeezed vacuum beam and theModeMatching telescope,
which fine controls the coupling with the Filter Cavity. After this preparation, the
beam is sent to the suspended benches, SQB1 and SQB2, where it is expanded and
injected into the Filter Cavity. Once the squeezing ellipse is rotated as a function of
the frequency, the beam travels back to SQB1, where it passes through the Faraday
Isolator. In the last section of this setup, the beam is manipulated by a secondMode
Matching Telescope which tunes the coupling with the Interferometer.

Squeezed Vacuum Source is based on the Frequency Inpendendent Squeezing Source
used during the last Observing Run, O3[22]. The squeezed vacuum is gener-
ated using an optical parametric amplifier, and it can provide up to 14dB of
squeezing[49]. Moreover, this sector is responsible for finely control the squeezed
vacuum as the Mode Matching with the Filter Cavity.

Squeezed Vacuum Injection responsible for the injection of the Squeezed Vacuum to
the Filter Cavity and the injection of Frequency-Dependent Squeezing to the Inter-
ferometer. These two systems are installed on two in-vacuum suspend benches:
The Suspended Squeezing Bench 1(SQB1) ismainly responsible for the injection to
the Interferometer, and The Suspended Squeezing Bench 2(SQB2) is responsible
for the injection to the Filter Cavity;

Filter Cavity which is a Linear Cavity composed of two SuspendedMirror with Radius
of Curvature of 558m, and separated by 285m. Moreover, the reflective coatings
were selected to have a Finesse of 10 800 for λ = 1064 nm.

The optical path of the squeezed vacuum beam starts from the Optical Parametric
Amplifier, which defines its original beam shape. The beam passes through a Faraday
Isolator, EQB1_FI01, and is manipulated by a Telescope. This system is composed of
two Curved Mirrors mounted on two translational stages, and it is responsible for the
fine Mode Matching between the squeezed vacuum beam and the Filter Cavity. Once
the squeezed beam is prepared, it is sent to the Suspended Benches where it is captured
by Faraday Isolator, SQB1_FI02, and is expanded by another reflective telescope which
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starts with SQB1_M1 and ends with SQB2_M2. After that, the squeezed vacuum beam
reaches the Filter Cavity that rotates its quadrature as described by Eq. VI.7. The field
reflected by the cavity is a Frequency Dependent Squeezed vacuum.

A 0.1% peak off of the beam is extracted by SQB2_M2 and sent to the External Squeez-
ing Bench 2(EQB2) where the Wavefront Sensors for the Filter Cavity are installed. The
main component of the squeezed vacuum propagates back to SQB1, passing through
both the Faraday Isolators, SQB1_FI02 and SQB1_FI03, and it is injected into the Main
Interferometer by a third reflective telescope.

After travelling inside the Interferometer, the squeezed beam is sent to theOMC(OMC).
This cavity filters the beam from the Interferometer and is tuned to select both the
squeezed vacuum and the Interferometer signal. These beams are transmitted by the
OMC and reach the Photodiodes used to detect the Gravitational Wave Signals. The
beam reflected from this last cavity is sent to the External Detection Bench, which hosts
the Wavefront Sensors for the OMC. We decided to use the OMC as a reference for the
Mode Matching and the Alignment of the Interferometer.

Even if the squeezed vacuum beam is the main element of the Frequency Dependent
Squeezing, it is not enough to control the whole system. This beam and its sidebands
do not have sufficient power to produce usable error signals. For this reason, the control
scheme is based on two auxiliary beams which act as bright references for the squeezed
vacuum:

Green Beam is a peak-off of the Pump field used to generate the squeezed vacuum. Its
wavelength is 532 nm which corresponds to half of the squeezed vacuum one.

Sub Carrier is generated by a Mephisto source. Its wavelength is 1064 nm which is
equivalent to the squeezed vacuum one.

these beams are used to manage different aspects of the system. The Green beam is
responsible for the first stage of the Filter Cavity Control, generating coarse error signals
for Filter Cavity. The Sub Carrier acts as a bright reference of the squeezed vacuum
and is responsible for the fine couple of the squeezed beam with the Filter Cavity and
the Interferometer. In particular, the Mode Matching sensing of the squeezed vacuum
beam is based on Sub Carrier, so we will focus the discussion only on this beam.

VI.2.1. Sub Carrier Path

The first part of the Sub Carrier optical path is in fiber. Here, the beam is phase modu-
lated with a frequency of ΩSC = 11.12 MHz, and it is attenuated down to 10mW. After
this preparation setup, the beam is propagated into free space, where it is manipulated
by a two lenses telescope, and it is sent to the first Faraday Isolator of the Squeezed
Beam, EQB1_FI01. The Sub Carrier polarisation is tuned to send the beam to the cavity
of the Optical Parametric Amplifier. Once the beam reaches the cavity, it is reflected and
starts following the same path as the Squeezed Vacuum beam. In order to guarantee
the overlap with the Squeezed Vacuum, the Sub Carrier is aligned and mode matched
with the cavity of the Optical Parametric Amplifier. This approach is based on the fact
that the resonance mode of that cavity defines the shape of the squeezed vacuum beam,
so if the Sub Carrier is perfectly matched and aligned, it has the same shape as the
squeezed beam. This optimisation was obtained by changing the cavity length with a
piezo actuator and locking to the resonance peak of the different Sub Carrier high order
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Figure VI.2: Wavefront Sensors. This scheme represents the general layout of the Wavefront
Sensor installed in the Frequency Dependent Squeezer source. The first element is
a pre-converter Telescope(green box) which is used to tune the Gouy Phase of the
Alignment Sensors and to match the Mode Converter Telescope.

modes. The mode matching was improved by using the two lenses telescope installed
before the EQB1_FI01.

The Sub Carrier Frequency is shifted with respect to the squeezed vacuum one.
This detuning is necessary to avoid interference with the squeezed vacuum and the
Interferometer main laser. Moreover, the Sub Carrier should not resonate in the cavity
of the Optical Parametric Amplifier, and it should be filtered out by the OMC installed
at the end of the Interferometer. On top of these constraints, we must consider the
Filter Cavity detuning. In fact, the sub Carrier is responsible for the fine stabilisation
of the Filer Cavity Lenght and tuning the offset between the resonance frequency and
the squeezed vacuum one. In order to meet all these requirements, the Sub Carrier is
phase-locked to the main laser of the squeezer source with a frequency offset of:

δωSC = ωsqz − ωSC = 1 262 400 025 Hz (VI.8)

VI.2.2. Wave Front Sensing Scheme

There are two points of the squeezing path where the Mode Matching is critical. One is
the Filter Cavity, and the other one is the Interferometer. For this reason, I designed the
installation of two Wavefront Sensors Setups to control the squeezed vacuum coupling
with two different cavities. These setups are based on the scheme reported in Figure VI.2
and are responsible for monitoring Alignment and Mode Matching. The Alignment
Sensing is based on the standard heterodyne detection presented by Anderson in
[3], and it requires the installation of two Quadrant Photodiodes with a Gouy Phase
difference of 90°. TheModeMatching Scheme is based on theModeConverter technique
proposed by Magaña-Sandoval, Vo, Vander-Hyde, et al. in [2], and it requires the
installation of a Mode Converter Telescope and two Quadrant Photodiodes with a Gouy
Phase difference of 45°.
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The Wavefront Sensors are combined together in the same setup. In particular, the
reflected beam passes through an input telescope and is split into two beams. One beam
is sent to the Alignment Sensors, and the other beam is the Spherical Mode Matching
One. In this way, we could use only two lenses to tune the Gouy Phase of the Quadrant
Photodiode for the alignment and couple the Mode Converter Telescope. An additional
third lens is required to tune the Gouy Phase of the Mode Matching Sensors. In both
cases, the Mode Converter Telescope was based on the standard design presented in
Section III.1.2. In particular, I used two symmetrical Cylindrical lenses with a focal
length of f = 100(2)mm. This choise imposes a waist of w0 = 246µm for beam under
conversion.

The Electronic Quadrant Photodiode Sensors are similar to the one used in the table-
top experiment described in Chapter IV. Still, in this case, the read-out scheme is fully
digital. The signal generated by each sector is measured by the Virgo DAQ system,
which is responsible for the digital demodulation and the recombination of the signals.
Moreover, the beams are centred on the Quadrant Photodiode using a local control loop
based on Galvanometer Mirrors.

This optical scheme was adapted to the two different cavities using the OptoCad
simulation tool. In particular, I optimised the design of the pre-converter to the reflected
beams and the alignment of the Mode Converter cylindrical axis. The final design of
EQB2 is reported in Figure VI.3 while the EDB design is reported in Figure VI.4.

Filter Cavity Mode Matching Sensing

The wavefront Sensing setup for the Filter Cavity was installed on EQB2, and it uses the
Sub Carrier peak-off extracted on SQB2. The installation of the optical path was based
on the same procedure described in Section IV.1.6. In particular, the Mode Matching
between the Sub Carrier and the Filter Cavity was optimised with the Mode Matching
Telescope installed on EQB1, and the transmitted power of the Second Order Mode was
reduced to less than 2% of the Foundemtnal one1. The cavity reflection was extracted
by the SQB2_M2, which transmitted 1% of the power. After that, the peak-off beam
passes through a Dichroic Beam splitter which reflects the Green beam and transmits
the Sub Carrier. This optic induces small astigmatism on the transmitted beam. This
aberration is generated by a combination of the Rayleigh Range of the Sub Carrier,
zR = 429 mm2, the angle of incident 45°, the substrate thickness, d = 19.0(1)mm,
and the refractive index, n2 = 1.45. In particular, this mirror acts as a tilted slab, and
it induces a mismatch between the positions of the Sagittal waist with respect to the
Transversal one[42, p.42]. Optocad Simulation indicates an offset around 200 mm which
corresponds to an astigmatism η = 20 %. In order to compensate for this aberration, the
Mode Converter Telescope was oriented parallel to the beam astigmatism. In particular,
we aligned the Cylindrical lens axis orthogonal to the bench and mounted the Quadrant
Photodiode with an × orientation. The Mode Converter was matched on the common
beam values, 〈w0〉 = (wx′

0 + wy′
0 )/2 and 〈z0〉 = (zx′

0 + zy′
0 )/2.

Output Mode Cleaner cavity Mode Matching Sensing

The wavefront Sensing setup for the Interferometer was designed around the reflected
beam coming from the OMC. The installation of this setup was based on the Single
1Log Entry in https://logbook.virgo-gw.eu/virgo/?r=53474.
2This value was estimated by the OPTOCAD simulation and assumed a perfectly matched Filter Cavity.

https://logbook.virgo-gw.eu/virgo/?r=53474
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Figure VI.3: OPTOCAD simulation for External sQueezing Bench 2. For clarity, I focused the
drawing only on the beam from the Filter Cavity. The bench on the top right is
the Suspended sQueezing Bench 2, while the one on the bottom left is External
sQueezing Bench 2.
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Figure VI.4: OPTOCAD simulation for External Detection Bench. Here, I reported only the
simulation of the Output Mode Cleaner Reflection beam.

Bounce beam coming from the Main Interferometer. This beam is the simple reflection
of the North Cavity Input Mirror and represents the beam shape of the Interferometer,
and it was used for the off-line Mode Matching and Alignment of the OMC. After this
optimisation, the transmitter power of the Second Order Mode was reduced to less than
0.64% of the Fundamental one3 and is mainly generated by astigmatism. In order to
avoid crosstalk with the Spherical Mismatch signals, we aligned the Cylindrical lenses
with an angle of 45° with respect to the bench, and we mounted the Quadrant Photodi-
odes in the plus cross orientation. In this way, we minimise the detector sensitivity to
the HG11 mode generated by the astigmatic Mismatch. Again, the Mode Converter was
matched on the common beam values, 〈w0〉 = (wx′

0 + wy′
0 )/2 and 〈z0〉 = (zx′

0 + zy′
0 )/2.

VI.2.3. Installation of the Mode Matching Sensors

The Commissioning of both the Mode Matching Wavefront Sensors is still under development.
All the Optical components are currently installed on the Tables, but the tuning of the Mode
Converter and the characterisation of the Error signal are not done.

3LVK presentation https://tds.virgo-gw.eu/?content=3&r=18454.

https://tds.virgo-gw.eu/?content=3&r=18454
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VII.1. Summary
This thesis presents three main scientific contributions. The first is the independent
validation of the Mode Matching Sensing technique based on the Mode Converter
Telescope. This is the first method that allows characterising mismatch between a
beam and the cavity kept in resonance and estimating the complex amplitude which
represents this decoupling. The first validation measurement was obtained by Magaña-
Sandoval, Vo, Vander-Hyde, et al. in [2]. The author of this work demonstrated the
equivalence between the Mode Converter Technique and the Standard Heterodyne
detection based on bull’s eye photodiodes. The result presented in Section V.V.1 made
a step forward in the validation of the technique by characterising the Mode Matching
Signals as a function of the incoming beam shape. I used the Mode Matching Telescope
describe in Section IV.1.4 to independently control the parameters β = δw0/wcav

0 , and
γ = δz0/(2zcav

R ), and I recorded the signal generated by two Quadrant Photodiodes
installedwith a differential Gouy Phase of 45°. Themeasurements reported in Figure V.1
demonstrate that the Mode Converter technique generates two decoupled error signals
and it can characterise a Mismatch optical loss lower than 2%. The validation study
is also composed of modelling for a real Mode Converter Telescope(Section III.III.2).
These tools can estimate the coupling of the Mode Matching signal with other cavity
degrees of freedom and quantify the requirement for the tuning of the Mode Converter
Telescope.

The second contribution is the design of an optical scheme for detecting Astigmatic
Mismatch. This method was inspired by the study of a mistuned Mode Converter
Telescope, and it is an extension of the technique proposed by [2]. As described in
Section III.1.4, if we install four extra Quadrant Photoiodes before the Mode Converter
Telescope, we can record the error signals proportional to the Astigmatic Mismatch
degrees of freedom. The measurements collected in Section V.V.2 are the first step in
validating the new technique: Figure V.4 reports the error signal proportional to the
Astigmaticwaist positions, η and Figure V.2 demonstrates the trigonometric dependency
on the orientation of the astigmatic ellipse, θ. These results indicate that even the
Astigmatic Mode Matching technique can characterise mismatch losses lower than 2%.

The third contribution of this thesis is the protocol used to validate the two Techniques.
The Spherical and Astigmatic Mismatch Sensing techniques were validated by studying
the relationship between the mismatch degrees of freedom and the Sensors Error Signal.
This approach does not make any assumption about the Sensing technique since the
mismatch is estimated directly by the characterisation of the beam shape inside the
cavity, and the decoupling is obtained by a calibration of the mode-matching telescope.
For this reason, we could use the same protocol to validate different Mode Matching
techniques and obtain a comparison between different methods.
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VII.2. Outlook
The results presented in this thesis can be extended in different ways. One is the
implementation of a six lenses Astigmatic telescope that will allow characterising the
error signals as a function of all the mismatch parameters and studying their possible
cross-talk.

From the theoretical point of view, the Mismatch model presented in Section II.II.2
is limited only to Simple Astigmatic Gaussian Beams. This study cannot be directly
extended to the General Astigmatic case since we lose the definition of the beam waist.
This kind of beam shape is described by[42, p. 89]:

U(x, y, z|Q) = U0 exp
[
− ik

2

(
x2

qxx
+ 2xy

qxy
+ y2

qxy

)]
(VII.1)

where the complex parameter q is replaced by a complex matrix Q, defined by:

Q =

(
qxx qxy
qyx qyy

)
(VII.2)

which is symmetric qxy = qyx. In this case, the orientation of the iso-power and iso-
phase ellipses rotate within the z-propagation. This evolution destroys the beam’s
internal reference and makes it impossible to directly extend the calculation presented
in Section II.II.2. In this case, the Taylor expansion of the General Astigmatic Gaussian
beams should be based on the perturbation of the matrix, Q, but I could not delve
into this topic. My educated guess is that the General Astigmatic Mismatch can be
represented by:

U(x, y, z) = δε
[
HG11 cos(Θ) + HG45

11 sin(Θ)
]
+ 〈ε〉 LG10 (VII.3)

where Θ is a generic complex angle which collects information about the ellipse evolu-
tion.

Another aspect that should be delved into is the effect of a mistuned Mode Converter
Telescope. TheMeasurements on theAstigmaticMismatch showed a signal proportional
to the Astigmatic Mismatch parameter on the Sensor dedicated to the Spherical Mode
Matching. This cross-coupling is around κ

η
1 /κ

β
1 ' 16 % and could be generated by the

imperfect tuning of theMode Converter Telescope. One possible model for this coupling
can be based on a correction of Eq. III.82, which was obtained by ignoring the extra
component generated by the mismatch of the second-order modes. My educated guess
is that a tuning the Mode Converter based on the wrong reference should couple the
astigmatic degree into the spherical mode matching signal. Moreover, it is reasonable to
assume that this coupling could be comparable to the one estimated for the longitudinal
control signal, which was on the order of 16 %. However, fully characterising the
cross-talk between astigmatic and spherical mismatch signals requires performing the
calculation in Section IV.1.6 and considering all the terms in Eq. III.81.

The natural evolution of this experiment is the implementation of an active correction
of the coupling between the cavity and the beam. This control can be obtained by
combing the error signal generated by the Mode Matching Sensing technique with a set
of actuators that can linearly change the beam parameters.

A first approach can be based on the telescope presented in Section IV.1.4. In this
case, we need to install a motorised stage to control the lens positions electronically.
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However, this solution has a major flaw: as we saw in Section IV.1.4, the relationship
between lens positions and beam parameters is not always linear. This problem can
generate instability in the loop, and it should be avoided

To overcome this issue, we can change the actuation method by keeping the lens
positions fixed and changing the focal lengths. This approach simplifies the relationship
between the telescope configuration and the beam parameters as described in[47]. In
this work, the authors were able to represent the small change of the lens diopters1,
(∆S)−1 as an excitation of second ordermode. In thisway, the actuator can be interpreted
as a generator of a second-order mode:

Ψ(∆S) = U0 + i
π

2λ
w2∆S LG10 (VII.4)

where w is the beam radius at the actuator position, U0 is the fundamental mode when
the actuator is at rest, ∆S = 0, and LG10 is the second order mode which represents the
actuation.

This study was focused on Spherical Mode Matching, but following the same gener-
alisation done in Section II.II.2, it can be expanded to the Simple Astigmatic case. In
particular, the Virgo Trento group is currently working on the technology of deformable
mirrors to develop astigmatic actuators.

1It is more convenient to express the focal length as diopters, S = 1/ f .





A EXPERIMENTAL TECHNIQUE

I.1. Beam Shape measurement
The beamprofilemeasurement is done in two steps. In the first one, Imeasured the beam
diameter, 2w(x′/y′)(z), at different positions (zi), using the BC106N-VIS/M produced by
Thorlabs. The beam profiler has different approaches for the beam diameter estimation,
among which only the Ellipse fit and the 4σ method allow the study of a Simple
Astigmatic Gaussian Beam.

I decided to use the Ellipse fit estimation since it is less sensitive to hot pixels and
background issues. In this case, the algorithm estimates the beam diameter as the
positions, (xw, yw) in which the power profile is a factor e−2 of the maximum:

P(xw, yw) =' PMaxe−2. (A.1)

In this way, it estimates a line (xw, yw) and interpolates it with the ellipse function(
(xw−x0) cos(θ)+(yw−y0) sin(θ)

2wx′ (z)

)
+

(
(yw−y0) cos(θ)−(xw−x0) sin(θ)

2wy′ (z)

)
= 0. (A.2)

In this way, the beam profile can estimate the diameter with respect to the internal
reference of the beam, (x′, y′). The beam shape is measured at different positions, zi, to
obtain a data set similar to the one represented in Fig. A.1. The beam parameters, wx′/y′

0

and zx′/y′
0 , are estimated using the model:

w(x′/y′)(z) = w(x′/y′)
0

√√√√1 +

(
z − z(x/y)

0

z(x′/y′)
R

)
with z(x′/y′)

R =
π
(

w(x′/y′)
0

)2

λ
(A.3)

that is interpolated using the standard implementation of the least squares algorithm
in the scipy package [50]. In this way, it is possible to characterise the two waists of the
beam and estimate both the position and the dimension.

I.2. Astigmatic Mode Matching Telescope

I.2.1. Modular Setup

The first possible design is a modular telescope, in which a stand-alone telescope
generates a simple astigmatic aberration. This setup comprises four lenses divided
into two sub-telescopes, a standard spherical mode matching telescope controlling the
spherical parameters and a Mode Converter that converts the spherical actuation into
an astigmatic one.
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Figure A.1: Example of Beam Scan measurement. The Beam shape is characterised using the
internal reference system of the Astigmatic Beam, (x′, y′). The Beam radius is
estimated using the interpolation Function of the Beam Profile.

We can briefly describe the principle behind this setup by making some simple
considerations. First, we can assume that the spherical telescope can control the beam
parameters around the Mode Converter Telescope mode qMCT. In this case, the beam
before the Mode Converter can be represented as:

Ψpre(qMCT) = U00(qMCT) + εpreLG01(qMCT) (A.4)

where εpre = βpre + iγpre are the mismatch parameters controlled by the first sub-
telescope. The LG01(qMCT) component will be converted by the astigmatic telescope,
so the amplitude shape, after the Mode Converter becomes

Ψpre(qMCT) = U00(qMCT) + εpreHG45∗
11 (qMCT). (A.5)

It is important to point out that the Hermite-Gauss mode 11 is rotated by 45° with
respect to the cylindrical axis of the telescope, and it can be represented in the laboratory
reference as1:

Ψpre(qMCT) = U00(qMCT) + εpre

(
HG45

11(qMCT) cos(2θ) + HG11(qMCT) sin(2θ)
)
(A.6)

where θ is the orientation of the cylindrical lens axis with respect to the laboratory
reference. This four-lens telescope can control all the Simple astigmatic parameters: the
α and η are manipulated by changing the matching between the initial beam and the
Mode Converter, and the angle θ is controlled by rotating the cylindrical lenses together.

However, the modularity of this approach is not perfect. The Spherical Mode Match-
ing Telescope is installed after the Astigmatic one, and it will rotate the phase of the
1See Section II.2.4.
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Second Order Modes, HG11 and HG45
11. Assuming a generic ABCD matrix, the action

of the third telescope can be represented using the Collins integral. In this way, we can
represent the beam shape in the linear cavity as

Ψin(qin) = U00(qin)+

εpre

(
HG45

11(qin) cos(2θ) + HG11(qin) sin(2θ)
)

exp−i Arg[CqMCT + D] (A.7)

where qin represents the Gaussian mode after the input mirror. Following the same
approach used in Section II.II.2, we can rewrite the incoming beam using the Cavity
base, qc:

Ψin(qc) = U00(qc) + 〈ε〉 LG01(qMCT)+

εpree−i Arg[CqMCT+D]
(

HG45
11(qin) cos(2θ) + HG11(qin) sin(2θ)

)
(A.8)

where we used the same argument described in Section III.III.2 to neglect the perturba-
tion of the high-order modes. In particular, we can see how it induces a rotation of the
Astigmatic parameters:

δε = εpree−i Arg[CqMCT+D] (A.9)

I.2.2. Monolithic Setup

The other possible design for the Astigmatic Mode Matching telescope is a monolithic
setup composed of two cylindrical and two spherical lenses. The astigmatic actuation
will be induced by moving the cylindrical and the spherical lenses. As before, we can
still use the Mode Converter Theory to build a telescope that can induce the astigmatic
aberration around the Spherical Gaussian beam. In particular, we can use ABCD

matricies similar to Eq. III.17:

Jx′ =

(
1 − lmid

f2
− lin lmid

f2
+ lin + lmid

− f1+ f2−lmid
f1 f2

f1( f2−lin)− f2(lin+lmid)+lin lmid
f1 f2

)
and Jy′ =

(
1 lmid + lin
0 1

)

where fi are the effective focal length of the cylindrical lenses, lmid the distance between
them, and lin is the position of the first lens. After that, we can impose that the rest
position of the cylindrical telescope, lin = l0

in and lmid = l0
mid, should match the beam

shape long the two axes:

qS(l0
in, l0

mid) =
ASq0 + BS

CSq0 + DS
= q0 + BT = qT (A.10)

in order to guarantee a telescope configuration in which the beam is not astigmatic. This
requirement defines a relationship between the telescope parameters and the initial
beam parameter:

q0 =

(
lin −

lmid

2
f2 − lmid

2( f1 + f2 − lmid)

)
+ i

√
4 f1 f2l2

mid − l4
mid

2| f1 + f2 − lmid|
(A.11)
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that corresponds to:

z0 =

(
lin −

lmid

2
f2 − lmid

2( f1 + f2 − lmid)

)
(A.12)

w0 =
√

λπ

4
√

4 f1 f2l2
mid − l4

mid√
2| f1 + f2 − lmid|

. (A.13)

The Eq. A.11 cannot be analytically inverted, so the telescope parameter should be
optimised numerically. The analytical model can still impose two limits on the telescope
configurations. The focal lengths of the two lenses have to be with the same sign, both
converging or both diverging, and the maximum distance between them is imposed by

lmid <
√

2 f1 f2 and f1 f2 > 0. (A.14)
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II.1. Kat File Optical Setup
%%% FTblock LaserSource
########################################################################
l laser 0.0131 0 nlaser

s slasertoEOM 0 nlaser nEOMin

mod EOM 17M 0.1 1 pm nEOMin nEOMtrans
########################################################################
%%% FTend LaserSource

%%% FTblock ModeMatching
########################################################################

s s_tl1_in 0.254 nEOMtrans nl3in
lens l3 226e-3 nl3in nl3trans
s s_tl1_mid 0.6862 nl3trans nl4in
lens l4 282e-3 nl4in nl4trans
s s_tl1_out 0.3726 nl4trans npbs_in

########################################################################
%%% FTend ModeMatching

%%% FTblock Inj2Cav
########################################################################
# PBS/ cheap Faraday
dbs pbs2 npbs_in n2dump npbs_out npbs_ref

s s_4 5.0e-2 npbs_out nm6_in
bs1 m6 0 0 0 -45 nm6_in nm6_out dump dump
s s_5 10.0e-2 nm6_out nm7_in
bs1 m7 0 0 0 45 nm7_in nm7_out dump dump
s s_6 25e-2 nm7_out nIMin

# Pick off to QPD path and QPD path
s s_7 32.5e-2 npbs_ref nbs02in
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Figure B.1: Optical Setup for the Finesse Simulation with the name of the space and optics used
in the KAT file.
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bs bs02 0.45 0.05 45 0 nbs02in nbs02ref nbs02tran dump

########################################################################
%%% FTend Inj2Cav

%%% FTblock Cavity
########################################################################

m2 IMa 0 0 0 nIMin nIMbout
s s_IM 6e-3 1.4496 nIMbout nIMmid
m1 IM 0.001 0.002 0 nIMmid nIMtrans
#attr IMa Rc 1.e+16
attr IM Rc -1.
s scav 0.80 nIMtrans nEMin
m1 EM 0.001 0.002 0 nEMin nEMtrans
attr EM Rc 1.

########################################################################
%%% FTend Cavity

%%% FTblock ModeConverter
########################################################################

# Mode converter beam shaping telescope.
s s_tl2_in 0.09696 nbs02ref nL8in
lens L8 170e-3 nL8in nL8out
s s_tl2_mid 0.13304 nL8out nL9in
lens L9 -76e-3 nL9in nL9out
s s_tl2_out 0.09696 nL9out nfakemir_in

m1 fakemir 1 0 0 nfakemir_in nfakemir_out

# Mode converter telescope
# Mode converter lens 1
s s_tl3_in 0.0656 nfakemir_out ncyl1_in

# Mode converter lens 2
lens** cyl1 100e-3 inf ncyl1_in ncyl1_out

# Cylindrical lens separation
# Note: focal length times square root 2
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s s_tl3_mid 0.1414213562 ncyl1_out ncyl2_in

# Mode converter lens 2
lens** cyl2 100e-3 inf ncyl2_in ncyl2_out
s s_tl3_out 0.42 ncyl2_out nLGpin

########################################################################
%%% FTend ModeConverter

%%% FTblock Gaussian
########################################################################

# With the gauss command I can optimally mode match into the cavity.
gauss inputparam EOM nEOMin 215u -44.0e-2
cav cavity IM nIMtrans EM nEMin

########################################################################
%%% FTend Gaussian

%%% FTblock LongitudinalPDs
########################################################################
### Photodiodes
## Add the typical PDH photodiode in reflection
pd1 PDH 17M -50.0226 nbs02tran
pd pdref nbs02tran
pd pdtrans nEMtrans
########################################################################
%%% FTend LongitudinalPDs

%%% FTblock RotatedQPD
########################################################################
# Spacing for proper Gouy phase at rotated QPDs. I need to fine tune
lens LGp 282.4e-3 nLGpin nLGp
s sQPD1 0.075 nLGp nQPDBSin

bs QPDBS 0.5 0.5 45 0 nQPDBSin nQPDBSrefl nQPDBStrans dump
s sQPDBStoQPD1 .405 nQPDBSrefl nQPD1
s sQPDBStoQPD2 .725 nQPDBStrans nQPD2

pd1 QPD1at0deg 17M -79.2961 nQPD1
pdtype QPD1at0deg rotatedquadrant
pd1 QPD2at45deg 17M -85.8286 nQPD2
pdtype QPD2at45deg rotatedquadrant
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pd QPD1at0deg_DC nQPD1
pdtype QPD1at0deg_DC rotatedquadrant
pd QPD2at45deg_DC nQPD2
pdtype QPD2at45deg_DC rotatedquadrant

pd1 QPD1at0deg_rf 17M 0 nQPD1
pd1 QPD2at45deg_rf 17M 0 nQPD2

########################################################################
%%% FTend RotatedQPD

Lens Effective FocalLength [mm]

Lens_1 170
Lens_2 100
Lens_3 226

Lens Effective FocalLength [mm]

Lens_4 282
Lens_8 170
Lens_9 −76
Lens_10 282

Table B.1: Lenses used in the Optical Setup.

II.2. Two lens telescope control
This code allows to control a two-lens telescope by acting to the position of the two
lenses, Lens_1 and Lens_2:

%%% FTblock ctrl_tel
###################################################################
var zL1 0
set zL1re zL1 re

var zL2 0
set zL2re zL2 re

func ds_in = $zL1re
noplot ds_in
put* {s_in} L $ds_in

func ds_mid = $zL2re - $zL1re
noplot ds_mid
put* {s_mid} L $ds_mid

func ds_out = 0 - $zL2re
noplot ds_out
put* {s_out} L $ds_out
###################################################################
%%% FTend ctrl_tel

where “zL1“ and “zL2“ are the variation in position of δL1 and δL1 and “s_in“, “s_mid“
and “s_out“ are the space length before, in the middle and after the telescope.
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II.3. Two lens telescope control with Driving Matrix
This code allows to control a two lens telescope by using a driving matrix as proxy. It
uses the auxiliary parameter, γ̃ and β̃, and the driving matrix defined in Eq. IV.65

%%% FTblock ctrl_tel_wz
###################################################################
var gamma_tel 0
set gamma_telre gamma_tel re

var beta_tel 0
set beta_telre beta_tel re

func zL1re = $gamma_telre * ({gammaL1:.6}) + $beta_telre * ({betaL1:.6})
func zL2re = $gamma_telre * ({gammaL2:.6}) + $beta_telre * ({betaL2:.6})

func ds_in = $zL1re
noplot ds_in

put* {s_in} L $ds_in

func ds_mid = $zL2re - $zL1re
noplot ds_mid
put* {s_mid} L $ds_mid

func ds_out = 0 - $zL2re
noplot ds_out
put* {s_out} L $ds_out
###################################################################
%%% FTend ctrl_tel_wz

where “gamma_tel“ and “beta_tel“ correspond to γ̃ and β̃, “gammaLi“ and “ betaLi”
are the columns of Γ−1, and “s_in“, “s_mid“ and “s_mid“ are the telescope length.
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