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Abstract

Hydrogeological hazards are quite diffuse rainfall-induced phenomena that
affect mountain regions and can severely impact these territories, producing
damages and sometimes casualties. Because of the potential great repercus-
sions on both society and the economy, the mitigation of the hydrogeological
risk, through its assessment and management, is crucial. In general, mitiga-
tion strategies attempt to reduce the hydrogeological risk to an acceptable
residual level and they can be classified into structural (e.g., check dams,
levees) and non-structural measures (e.g., early warning systems, land-use
planning, public awareness). The structural measures are aimed at reduc-
ing the risk by modifying hazard magnitude and frequency through the
employment of defence structures. Non-structural measures, on the other
hand, are intended to mitigate the risk by reducing the damaging effects of
an extreme event on people and assets. These latter measures are typical of
the planning and are quite widespread since, in general, are more flexible,
sustainable and cost-effective than structural ones.

This work focuses on enhancing some non-structural risk mitigation mea-
sures for mountain regions, such as: (i) debris-flow rainfall thresholds, as a
part of a broader Early Warning System (EWS); (ii) multivariate rainfall
scenarios with multi-hazard mapping purpose and (iii) public awareness.

With regards to rainfall thresholds, they are tools on which EWS for
rainfall-induced natural phenomena are mainly based. Rainfall thresholds
identify the rainfall limit conditions beyond which the probability to observe
a rainfall-induced event is significant. However, there are some limitations
to employing these tools in an operational EWS, mainly linked to their re-
liability and robustness. In this work, to face and try to overcome these
limitations, with specific reference to rainfall thresholds for stony debris
flows, an innovative calibration method, a suitable uncertainty analysis and
a proper validation process are developed. First, a physical-based method
to calibrate rainfall thresholds for stony debris flows is introduced. This
method, named Backward Dynamical Approach (BDA), computes the rain-
fall conditions related to an observed debris flow by combining the forcing
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and the dynamic of the phenomenon. The BDA is applied to a data set
of a study area and a calibrated threshold is obtained. Secondly, the BDA
robustness is tested by assessing the uncertainty in the calibrated threshold
estimate. To this aim, a proper methodology composed of two Monte Carlo
cascade simulations is developed and applied. In this way, the variability
in the threshold estimate is assessed. Finally, a proper validation process
comprised of two approaches is used to assess the calibrated threshold’s reli-
ability and possible forecast use. The first approach evaluates the reliability
of the threshold by using the BDA to calculate the rainfall conditions re-
lated to already occurred debris flows. The second approach, on the other
hand, takes into account all rainfall events, regardless of whether or not they
are resulted in a debris flow, offering a comprehensive picture of threshold’s
reliability and paving the way for the application of a BDA-based thresh-
old in a predictive framework. Overall, the results of these three analyses
(i.e., calibration, uncertainty analysis and validation) suggest that the BDA
method and the related calibrated threshold have satisfactory robustness
and reliability. This finding sets the stage for the BDA approach to be used
to calibrate stony debris-flow rainfall thresholds that can be employed in
operational EWS. Moreover, the methods developed to compute the uncer-
tainty analysis and the validation process are suitable to be applied to other
calibration approaches and thresholds.

Regarding hazard mapping, it aims to identify the zones possibly affected
by a hazard and is based on the definition of scenarios characterized by dif-
ferent occurrence probabilities and intensities of the phenomenon. When
an area is potentially subjected to different dangerous phenomena, the haz-
ard assessment is usually carried out examining each one separately. The
so-called “multi-hazard” map is then obtained by gathering and overlay-
ing the results of each hazard. This method fully ignores the possibility of
many compound events occurring at the same time or in sequence, such as
phenomena caused by statistically correlated drivers or hazards, as well as
their interactions. With the goal of elaborating an actual multi-hazard map,
this work aims to develop a proper methodology to construct multi-hazard
scenarios considering, as an example study area, the confluence between a
mountain stream susceptible to debris flows and a flood-prone valley river.
Since precipitation is one of the main triggering factors for both debris flows
and floods, the simultaneous occurrence of these phenomena is assessed,
and the related multi-hazard scenarios construction is based on a rainfall
multivariate analysis. The historical data of four reference rain gauges are
elaborated and the related extreme values analysis is performed with the
Simplified Metastatistical Extreme Value (SMEV) approach. Then, since
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a correlation between data subsists, a four-variate copula is built, applying
the pair copula construction (PCC) method, thus obtaining a vine copula,
and the best-fit (conditional) bivariate copulas are estimated. Finally, the
multivariate quantiles are computed considering both distinct definitions
and several values of the multivariate return period. The results are multi-
variate scenarios with a varying occurrence probability and intensities of the
compound event precipitation forcing under investigation. These scenarios
are promising to be applied in hazard assessment to construct actual multi-
hazard maps. Moreover, the results of this study highlight that neglecting
the correlation between the drivers of the analyzed compound events can
lead, in some cases, to an underestimation of their simultaneous occurrence
probability. This underestimation can result in an unreliable hazard map
of the investigated area. In addition, the methodological scheme developed
can be applied to other types of compound events characterized by forcing
that can result in simultaneous hazardous phenomena.

The final topic in this work is public awareness, which is briefly con-
sidered. Besides strictly technical mitigation strategies, a key element in
hydrogeological risk management is public awareness and preparedness. In
peacetime and emergency situations, a well-informed and prepared popu-
lace can indeed take preventative measures to decrease their vulnerability
and exposure to hazards. The European project LIFE FRANCA (Flood
Risk ANticipation and Communication in the Alps) fits in this context by
promoting a hydrogeological risk prevention culture and aiming to increase
the population safety degree. Among other project actions, the one consid-
ered in this work is focused on training and communication activities that
aim to provide basic knowledge on several aspects of hydrogeological risk
assessment and management. To this end, some courses and seminars have
been held involving as many different types of stakeholders and speakers
as possible. In this way, a multidisciplinary view on hydrogeological risk
has been provided, and fruitful confrontations and constructive interactions
have arisen.
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Introduction

Hydrogeological hazards, namely floods, landslides and debris flows, are
climate-related phenomena connected to the interaction between meteoro-
logical events and the geological environment that can have severe con-
sequences for the impacted areas, such as casualties and economic losses
(e.g. Barredo, 2009, Canuti et al., 2001, Dowling and Santi, 2014, Jonkman
and Kelman, 2005, Paliaga et al., 2020, Petrucci et al., 2019). Worldwide,
between 1998 and 2017, hydrogeological disasters resulted in more than
160, 000 casualties with another 2 billion people wounded, evacuated, or
in need of emergency aid. In the same period, the direct economic losses
recorded by the disaster-affected countries due to hydrogeological phenom-
ena accounted for more than US$ 650 billion (CRED and UNISDR, 2018).

Worldwide, many areas may be affected by future hydrogeological phe-
nomena. Considering for instance Italy, an overview of hydrogeological risk
in the national territory is provided by the 2021 report on landslides and
floods, realized by ISPRA (Istituto Superiore per la Protezione e la Ricerca
Ambientale) (Trigila et al., 2021). The 18.4% of the national territory is
classified as a very high or high hydrogeological hazard level with 1.3 million
people potentially subjected to landslides and debris flows and 6.8 million
people living in flood-prone areas. As highlighted in Trigila et al. (2021),
the geological, morphological, meteo-climatic, and topographical character-
istics of the territory, as well as its high urbanization, often developed in
the absence of adequate land-use planning, cause the consistent presence of
areas subjected to hydrogeological risk in Italy.

The consequences of past disasters and the huge number of people and
assets potentially exposed and vulnerable to future phenomena point out
the relevance of reducing hydrogeological risk, as also highlighted in the
Sendai Framework for Disaster Risk Reduction 2015–2030 (UNDRR, 2015).
Risk reduction can be achieved by mitigation strategies that aim to decrease
it to an acceptable residual level and comprise a variety of actions, tools and
policies to be planned, designed, developed and implemented before a haz-
ard occurrence. Mitigation strategies are commonly subdivided into struc-
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tural and non-structural measures (e.g. Dalezios, 2017, Godschalk et al.,
1999, Kundzewicz, 2009, Starominski-Uehara, 2021). The structural mea-
sures aim to reduce risk by modifying the hazard in terms of its likelihood
and/or magnitude so as to keep it away from potentially exposed and vul-
nerable elements (e.g. Simonovic, 2002). Examples of structural measures
are check dams, levees, sediment catchment basins and slope stabilization.
The non-structural measures, instead, intend to mitigate risk by reducing
the exposure and vulnerability of people and assets potentially affected by a
hazardous event. Early Warning Systems (EWS), land-use planning, pub-
lic awareness-raising and emergency plans are examples of non-structural
measures.

Nowadays, a long-term mitigation strategy is usually based on a coordi-
nated and appropriate combination of measures of both types (e.g. Luz Bar-
cellos et al., 2017) owing to the recognition that non-structural measures
are an indispensable complement to structural ones (e.g. Barendrecht et al.,
2020, Simonovic, 2002). Indeed, with the growing awareness that risk can-
not be completely eliminated, the paradigm of risk mitigation has shifted
from hazards removal to vulnerability and exposure reduction (e.g. Cardona
et al., 2012, Mees et al., 2016, Mondino et al., 2020, Papagiannaki et al.,
2019a), leading to a great diffusion of non-structural mitigation strategies
(e.g. Kim et al., 2021, Kuller et al., 2021, Reghezza-Zitt and Rufat, 2019).
This spread is also influenced by the fact that non-structural measures are
typically more cost-effective (e.g. Dawson et al., 2011, Pesaro et al., 2018),
adaptable and sustainable than structural ones (e.g. Kundzewicz, 2009).

Given their relevance and wide use, this thesis is focused on the improve-
ment of some non-structural mitigation strategies, with particular reference
to debris flows and floods risk mitigation in mountain regions. The consid-
ered measures are: (i) debris-flow rainfall thresholds, as a part of a more
general Early Warning System (EWS); (ii) multivariate rainfall scenarios
with multi-hazard mapping purpose and (iii) public awareness.

This thesis is structured in three parts, one for each considered non-
structural mitigation strategy. The first part deals with stony debris-flow
rainfall thresholds. First, a new physical-based method to calibrate rainfall
thresholds for stony debris flows and its application to estimate a rainfall
threshold for a study area are presented in Chapter 1. The topics of this
chapter are covered in Rosatti et al. (2019). Second, the robustness of the
developed calibration method, assessed through an uncertainty analysis of
the threshold estimate, is described in Chapter 2. The analyzes presented in
this chapter are published in Martinengo et al. (2021b). Finally, the relia-
bility of the calibrated threshold, assessed performing a validation analysis,
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and its potential forecasting use are described in Chapter 3. The analyzes
covered in this chapter have been submitted for publication (Martinengo
et al., 2022).

The second part of the thesis concerns a multivariate rainfall analysis
with a multi-hazard mapping purpose. In Chapter 4, a copula-based model
to jointly assess rainfall values at different locations is presented, and the
possible use of the resulting rainfall scenarios with multi-hazard mapping
purposes is described.

Finally, the third part of the thesis deals with public awareness. In
Chapter 5, the European project LIFE FRANCA (Flood Risk ANticipation
and Communication in the Alps) is briefly presented and the actions taken
and the related results achieved are described.





Part I

Stony debris flow rainfall
thresholds





Chapter 1

A new method for evaluating
stony debris flow rainfall
thresholds: the Backward
Dynamical Approach

1.1 Introduction

In alpine regions, debris flows are rather common and widespread phenom-
ena that produce considerable damages to houses and infrastructures. In
the last decades, steps forward have been made in the field of mathematical
and numerical modelling of these phenomena by using either a mono-phase
or a two-phase approach (see e.g. Armanini et al., 2009, Brufau et al., 2000,
Iverson, 1997, Liu et al., 2017, Pirulli and Sorbino, 2008, Pudasaini, 2012,
Takahashi, 1978, among others) and even tools aimed at simplifying back-
analysis of past events, evaluating forward scenarios of possible events and
drawing up hazard maps (Chen et al., 2016, Iverson, 2014, Rosatti et al.,
2018, among others) are now available. Nevertheless, a reliable forecast con-
cerning the possibility that a storm may produce a debris flow is still hard,
even just in a probabilistic framework. Attempts aiming at this goal have
led to what is known in the literature as the rainfall threshold approach
(Caine, 1980, Guzzetti et al., 2007). According to this approach, indicating
with D the duration of a rainfall event pertaining to a debris flow and with
I the relevant average rainfall intensity, the rainfall threshold is a function
that splits the I-D domain in two fields: one located above the threshold
and one located below. If a storm is foreseen to have a couple (I,D) falling
in the upper field, it is expected that a debris flow may occur during that
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storm. On the contrary, if the foreseen couple does not exceed the threshold,
it is expected that the storm should not generate a debris-flow.

Two main components are necessary to set up a rainfall threshold start-
ing from an historical series of rainfalls related to debris-flow events:

• a method for evaluating the amount of rain strictly relevant to each
debris-flow event in term of cumulated volume of precipitation V, av-
eraged intensity I and duration D (we stress here that only two of the
previous variables are independent);

• a statistical approach that allows to identify a given occurrence prob-
ability threshold starting from a series of intensity-duration couples,
namely (Ik, Dk) with k = 1, . . . , N and N is the total number of reg-
istered events in a given area.

In the literature, there are a few papers facing the rainfall threshold topic
(see Sec. 1.2 and Sec. 1.4 for specific references). They differ (sometimes
slightly) in the method used to evaluate the first or the second component
of the procedure described above, but they share the same hydrological
perspective, based on the assumption that the proper amount of water per-
taining to a debris flow event can be estimated solely on the analysis of the
rain hyetograph in a suitable time interval around the debris-flow occurrence
time. Unfortunately, as stressed by some authors (Nikolopoulos et al., 2014,
Staley et al., 2013), thresholds obtained so far with these approaches are
unlikely low and many events with rain exceeding the threshold do not give
rise to any debris-flow occurrence. Therefore, rainfall thresholds are seldom
used as an effective tool in debris-flow warning systems.

The goal of the research underlying this paper is exploring new paths
aimed at improving the reliability of rainfall thresholds. We started our
work analyzing the possible weak point of the classical literature approach
and it seemed to be the way the rain volume pertaining to a debris flow
is determined. Then, we have looked for an alternative methodology for
determining this volume involving, in some way, not only the forcing of the
phenomenon (represented by the rain hyetograph), but also the dynamics
of the debris flow. The novel approach we have developed starts from the
knowledge of the volume occupied by the sediments deposited in an event
(typically measured by regional agencies), then, the liquid volume (i.e. the
rain) responsible of this mass movement is back reconstructed by using a
simplified dynamical description of the phenomenon. Finally, the duration
of the storm giving rise to the estimated volume (and the relevant average
intensity as well) is identified from the analysis of the rain hyetograph. We
have called this method the Backward Dynamical based Approach (BDA).
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A proof of concept is presented in the paper by applying the BDA and a
literature method to a sample study area.

The structure of the paper is the following. In Section 1.2, we give a
synthetic overview of the classical literature approaches used to estimate
the rain relevant to a debris-flow event, with particular focus on the Crit-
ical Duration Method (CDM), and we identify a possible intrinsic limit of
these approaches. Section 1.3 is dedicated to the detailed description of the
BDA theoretical framework while, in Section 1.4, a literature method for
evaluating a threshold relation from an I-D series, namely the frequentist
method, is briefly presented. A sample study area and the relevant rain-
fall thresholds obtained by using BDA and CDM are presented in Section
1.5. Discussion of the result is reported in Section 1.6. Conclusions end the
paper.

1.2 Estimate of the rain relevant to a debris-flow event:
the classical literature approach

In the literature, the rain relevant to a debris-flow event is assumed to be the
volume of water poured into a basin from the early beginning of the storm
system, indicated with tinit (time measured respect an arbitrary reference),
up to the debris-flow triggering time (see e.g. Lazzari et al., 2013).

Assuming a uniform distribution of the precipitation over the basin, the
volume V can be evaluated in the following way:

V = Ab

∫︂ ttrig

tinit

i(t) dt (1.1)

where i(t) is the measured hyetograph and Ab is the area of the basin. The
rainfall duration D is then defined as the difference between two character-
istic times, namely the triggering and the initial time:

D = ttrig − tinit. (1.2)

Finally, the average intensity

I =
1

D

∫︂ ttrig

tinit

i(t) dt (1.3)

can be obtained dividing the volume V by the duration D and the area of
the basin Ab:

I =
V

DAb
(1.4)
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Therefore, considering a given hyetograph, the procedure to work out a
couple (I,D) depends on the determination of the two characteristic times.
Their practical determination, despite their simple definitions, is not easy
at all. In fact, the triggering time is seldom a piece of data known with
precision. In most cases, only the date of a debris-flow occurrence is avail-
able in an event report. In these situations, the triggering time is assumed
the instant in which the storm reaches the maximum rainfall intensity, i.e.
ttrig ≡ tmax (Iadanza et al., 2016). Other approaches (see e.g. Lazzari et al.,
2013) assume this time as the last rainy measurement of the day.

Even more complex is the determination of the beginning of the rainfall
event. In the literature there are many methods developed for this purpose
and can be divided into two categories. The first collects the methods
in which tinit is estimated based on empirical and subjective rules, valid
only for the specific sites for which they have been developed. The second
refers to objective methods based on a probabilistic approach. Despite
several works use the first way (e.g. Bel et al., 2017, Nikolopoulos et al.,
2014, Zhuang et al., 2015), the methods belonging to the second category
(e.g. Bonta, 2001, 2003, Bonta and Nayak, 2008, Iadanza et al., 2016) seem
more attractive because of their generality and possibility to be applied to
different study areas.

1.2.1 A specific approach for the determination of tinit: the Crit-
ical Duration Method

The Critical Duration Method (CDM) (Bonta and Rao, 1988, Restrepo-
Posada and Eagleson, 1982) aims at identifying independent storm systems
singling out a characteristic time, the Critical Duration (CD), such that
if the time between two rainy periods is longer than this value, the two
rainy periods can be considered belonging to independent storm systems.
A synthetic summary of the statistical procedure for the evaluation of the
CD is reported in the following Section. For a more detailed description, we
refer the reader to the original papers mentioned above. A monthly value
is commonly determined since the statistical characteristics of the storms
change with the seasons.

Once the CD has been estimated, tinit is determined as the first dry
instant before ttrig, whose time distance respect to the previous rainy instant
is equal or longer than CD. An example of CDM application is reported
in Figure 1.1, where the triggering time has been considered as the tmax of
the event.
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Figure 1.1: Example of determination the rain relevant to a real debris flow. Here,
ttrig ≡ tmax, tinit is obtain by using the CDM, D = ttrig − tinit and I is the event-
averaged rain intensity.

1.2.1.1 A synthetic summary of the CDM

A time sequence of rainfall records consists of rainy periods separated by
non-rainy intervals. When two rainy periods are separated by a time interval
of the order of minutes (or possibly even some hours), they surely cannot be
considered independent, but generated by the same meteorological system.
On the contrary, when the two rainy periods are separated by a long dry
interval, they can be considered caused by independent weather systems.
The CDM identifies, by using a statistical approach, a characteristic time
interval, called critical duration CD, that allows distinguishing independent
rainstorms and it is defined as the minimum dry period, which separates
two stochastically independent rainy periods.

The main hypothesis in the CDM, verified by Restrepo-Posada and Ea-
gleson (1982), is that the rainfall event durations are much shorter than
the interstorm (dry) periods. Under this hypothesis, as proposed by Bonta
and Rao (1988), the occurrence of storms can be assimilated to a random
Poisson process, whose interstorm period distribution can be approximated
with an exponential function of this type:

f(t) = αe−αt (1.5)

where α is the reciprocal of the mean time between storms and t is the
dry-period duration. It is useful to recall that the variation coefficient CV ,
given by the ratio of the standard deviation s to the expected value E, is
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unitary. This feature can be used to single out the CD as the time beyond
which the histogram of the dry periods can be well approximated with the
exponential distribution. The procedure to get the CD is the following:

1. Subdivide a time axis in time steps long as the gauge sampling interval
δt. Each interval is defined by:

[(n− 1)δt, nδt] , n = 1, . . . N

where the central value is (n− 1/2)δt. Consider the number of occur-
rence of dry periods whose durations fall inside each interval. Build
the relevant histogram (see Fig. 1.2(a)). It is worth noting that some
intervals may be empty.

2. Call “classes” the non-empty time intervals of the previous histogram,
number them from 1 to K and associate to each class the central time
of the relevant interval. Build the histogram of the occurrence as a
function of the classes (see Fig. 1.2(b)). In this case, the histogram
has a value associated to each class.

3. Consider the sequence given by:

CVk =
s[k,N ]

E[k,N ]
, k = 1, . . .K (1.6)

where E[k,N ] and s[k,N ] are, respectively, the expected value and the
standard deviation for the dataset composed by the values included
in the class interval [k,N ]

4. Call ˜︁k, the first value of the sequence such that

CV˜︁k =
s[k̃,N ]

E[k̃,N ]

≤ 1 (1.7)

5. The value of the critical duration is defined as the time corresponding
to the k̃-th class, namely

CD = t˜︁k (1.8)

An example of CD determination is shown in Fig. 1.2 where the bars
represent the histogram of dry-periods while the dotted lines are the values
of CVk.

According to Iadanza et al. (2013), the minimum number of years of
data necessary to correctly estimate CD is 6. In this study we have used
10 years of data.
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(a) (b)

Figure 1.2: Histogram of dry period between rainfall associated with the time (a) and
with the class used for the evaluation of CV (b). In the two plot are reported the same
amount of data.

1.2.2 The possible weak point of the classical approaches

As we hinted at the beginning of the paper, the methods present in the
literature produce unlikely low rainfall thresholds. The reasons of this be-
haviour may be multiple and connected both either to the first or to the
second component of the procedure depicted in the Introduction. Neverthe-
less, we think that this feature is mainly due to a not entirely appropriate
estimate of the rain relevant to debris-flow events or, according to eq. (1.1),
a not entirely appropriate definition of the characteristic times.

Although the triggering time presents significant uncertainties that can
affect the reliability of the threshold, we think the assumption that the initial
time, defined as the early beginning of the storm system during which a
debris-flow event occurs, is conceptually the main weak point of the classical
approaches. In fact, this choice leads to include in the duration D even all
the dry periods occurring within a given storm system, with a consequent
average intensity I that can be non-significant or non-representative of the
real intensity that caused a debris-flow (see Figure 1.1). Moreover, with
the given definition of tinit, the water considered relevant to a debris-flow
event is not only the water directly involved in the mass movement, but also
the water that leads to the pre-condition for a debris-flow event, i.e. the
saturation of the soil at least for a depth equal to the eroded layer.

The reason of this basic assumption can be due to a couple of factors.
Firstly, the rainfall threshold approach and the given definition of tinit were
originally proposed for generic hydrogeological phenomena, namely land-



14 1 Backward Dynamical Approach

slides and debris-flows together. For landslides, the water responsible of
the phenomenon is probably all the water occurred before its triggering,
while the water rained after that time plays a negligible role. Therefore,
the assumption seems quite reasonable. On the contrary, in debris flows,
the water volume flowing after the initiation of the flow plays an impor-
tant role, since it determines the actual volume of the debris flow (as it
will be explained in the next Section). Therefore, because of the differences
of the two phenomena, an undistinguished application of the approach to
landslides and to debris flows does not appear completely appropriate. The
second factor, in a pure hydrological framework, is finding some features of
the measured hyetograph that can be correlated to the debris flow itself to
evaluate quantitatively the relevant rain. The hydrological beginning of a
storm system, independently of the actual way it is determined, is therefore
not only the natural choice but also perhaps even the only practical choice
that can be done to characterize the starting of the rain relevant to a debris
flow.

1.3 Estimate of the rain relevant to a debris-flow event:
the Backward Dynamical Approach

Our perspective for estimating the (I,D) couple relevant to a debris-flow
event is quite different from the perspective used so far in the literature.
Hereafter we present a detailed description of the rigorous framework leading
to the BDA, along with all the assumptions necessary to define it.

Let us indicate with V DF
rain, the volume of rain directly embroiled in the

mass movement. Assuming a uniform distribution of the precipitation over
the basin, this volume can be expressed in similar way to eq. (1.1) as:

V DF
rain = Ab

∫︂ t2

t1

i(t) dt (1.9)

where t1 and t2 are two time limits related to the debris-flow duration and
and Ab is the area of the basin. We assume that:

1. V DF
rain can be back reconstructed from the knowledge of Vdep, i.e. from

the volume occupied by the mixture that stops in a deposition fan
during the event. The relation between the two volumes, that we call
“BDA relation”, can be expressed formally as

V DF
rain = f(Vdep) (1.10)
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and can be obtained considering a simplified dynamical description of
the debris-flow phenomenon, to be specified further on.

2. the time limits t1 and t2 are conceptually connected to ttrig and to
the debris flow duration but, in general, not to tinit. Since the trig-
gering time and the duration of a debris flow event is rarely available,
following Iadanza et al. (2016), we assume ttrig ≡ tmax while, for the
time interval, we assume that it is symmetrically distributed around
tmax, namely:

[t1, t2] = [tmax −∆t, tmax +∆t] (1.11)

where ∆t is an unknown value.

The duration and average intensity of an event can be determined by
using the previous three equations in the following way:

i. considering eq. (1.10) and (1.11), eq. (1.9) can be rewritten as

f(Vdep) = Ab

∫︂ tmax+∆t

tmax−∆t
i(t) dt (1.12)

where the only unknown is ∆t; this equation can be solved by means
of a trial and error method;

ii. the rainfall duration, that we will indicate with D̂ in order to distin-
guish from the classical duration D, is equal to the length of the time
interval used in the integral:

D̂ = 2∆t (1.13)

iii. considering the previous two expressions, the average intensity

Î =
1

D̂

∫︂ tmax+∆t

tmax−∆t
i(t) dt

can be rewritten as:

Î =
f(Vdep)

Ab D̂
(1.14)
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Rainfall thresholds will be calculated using couples of values (Î , D̂) in-
stead of (I,D). Consequences of this new point of view on threshold eval-
uations are analysed further in the paper (see Section 1.6).

In order to make the previous procedure effective, it is now necessary to
specify the BDA relation. This is the subject of the following Sections.

1.3.1 Basic assumptions for the BDA relation
The BDA relation is based on a series of assumptions and approximations
that, even if apparently rough, are quite reasonable and can give, at least,
the right order of magnitude of the rain estimate. We list here all the
assumed hypotheses and some motivations of their reasonableness.

• We refer only to stony debris flows, i.e. flows in which silt or clay does
not affect the overall behaviour of the mixture.

• The concentration of sediments in the bed cb is constant everywhere.
This assumption is generally accepted in debris-flow dynamics (Taka-
hashi, 2007) .

• When a debris flow occurs, the soil is commonly completely saturated
(e.g. Hungr et al., 2002). Therefore, we assume that the basin has been
saturated by the rain foregoing the event, up to the level interested to
the erosive stage. This condition is reasonable even if nobody has ever
verified it in real cases. From this assumption and the previous ones,
it follows that along the debris-flow path the pointwise water content
in the terrain is everywhere (1− cb).

• Since the characteristic time scale of a debris-flow event is much
smaller than the time scale of the infiltration process, we assume that
during a debris-flow occurrence, all the rainfall transforms into runoff.

• The volume of sediments surveyed in the field after an event is the
major part of the sediment involved in the debris-flow. This can be
accepted if the deposition fan is a piece of territory with average slope
significantly smaller than the slope in the flowing part and the volume
of small-size sediments carried away with the water is negligible. This
situation commonly occurs if the basin has a well-defined deposition
fan.

• The reach just upstream the deposition fan is characterized by an
average slope if = tan θ, where θ is the angle that the bed forms
with an horizontal reference direction, and by a length long enough
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to allow the debris flow to be in uniform flow condition, i.e. with a
volumetric solid concentration that, according to Takahashi (1978),
for stony debris flows can be expressed as

c =
tan θ

∆(tanψ − tan θ)
(1.15)

where ∆ = (ρs − ρl)/ρl is the sediment relative submerged density,
ρl and ρs are, respectively, the liquid and solid density while ψ is
the internal friction angle. Considering that debris flows reach the
uniform flow condition in rather short lengths, this assumption seems
to be applicable in most cases.

1.3.2 Conceptual scheme of a stony debris-flow dynamics

Besides the previous assumptions, the BDA relation is based on a schema-
tisation of a debris-flow dynamics. Obviously, real dynamics may be much
more complex than the simple conceptual scheme herein reported. Never-
theless, we think that it is reasonably representative of a large set of real
conditions.

For sake of simplicity, let us consider a long plane bed with unit width
and constant slope if . An upper non-erodible transept followed by a lower
erodible and saturated one characterizes the plane bed. At the end of the
plane bed, there is a quasi-horizontal reach (see Fig. 1.3(a)).

The phenomena developing in the three transepts are:

Transept 1 : Runoff formation. Rain gives a significant contribution only
in this transept.

Transept 2 : Erosion of the bed material and formation of a debris-flow
characterized by a concentration given by eq. (1.15).

Transept 3 : Deposition of all the sediments with saturation water entrap-
ment. The rest of the water flow away outside the deposition fan.

In Fig. 1.3(a) we have sketched the phenomena occurring in the three
transepts. The picture can be considered also a superimposition of three
snapshots taken at three subsequent times (Lagrangian description) in the
case the three phenomena occur disjointedly. Actually, it is very likely that
they occur simultaneously in different position of the flow field but, in order
to make the plot clearer, we preferred to represent the disjointed case.
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(a)

(b)

Figure 1.3: Sketch of the conceptual scheme of a debris-flow dynamics: (a) Lagrangian
point of view; (b) Eulerian point of view. Meanings of the quantities can be found in
the text.
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1.3.3 Quantitative volumetric description of the debris-flow dy-
namics

In order to obtain a quantitative volumetric description of the conceptual
debris-flow dynamics, it is useful turning to the one-dimensional Eulerian
description of the flow sketched in Fig. 1.3(b). Here we report the detailed
derivation of the relations valid in each transept, along with the assumptions
necessary to obtain them. More complex relations can be obtained relaxing
one or more hypothesis, but this generalization is left for a future work.

The debris-flow phenomenon can be described starting from the partial
differential equations expressing the mass balances in a two-phase, depth-
averaged framework in which there is no lag between the phases (see e.g.
Armanini et al., 2009, Rosatti and Begnudelli, 2013). More specifically, the
mass-balance equation of the liquid phase and the solid one can be written
as:

∂

∂t
[(1− c)h+ (1− cb)zb] +

∂

∂x
[(1− c)uh] = Sl (1.16a)

∂

∂t
[ch+ cbzb] +

∂

∂x
[cuh] = 0 (1.16b)

where h is the mixture depth, c is the solid volumetric concentration, zb
is the mobile-bed elevation, u the depth-averaged velocity and finally Sl is
the source term for the liquid phase. Here, the constant densities of each
phase has been simplified. Since no source for the solid phase is present,
the relevant term is null. Momentum balance of the solid phase is also
accounted for by mean of the uniform flow relation expressed by eq. (1.15).

The relations necessary for our approach are derived from the integration
of the mass balance equations, namely eq. (1.16a) and (1.16b), along each
transept in space, and throughout the duration of the debris flow in time.
Rearranging some terms, these equations become:
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∫︂ tend
k

tini
k

∫︂ Xend
k

Xini
k

(︃
∂

∂t
((1− c)h ) +

∂

∂x
((1− c)uh)

)︃
dxdt =

∫︂ tend
k

tini
k

∫︂ Xend
k

Xini
k

(︃
−(1− cb)

∂zb
∂t

+ Sl

)︃
dxdt (1.17a)

∫︂ tend
k

tini
k

∫︂ Xend
k

Xini
k

(︃
∂

∂t
(ch) +

∂

∂x
(cuh)

)︃
dxdt =

−
∫︂ tend

k

tini
k

∫︂ Xend
k

Xini
k

cb
∂zb
∂t

dxdt (1.17b)

where the k subscript refers to the k-th transept, Xini
k , Xend

k are the x-
coordinate respectively of the transept initial and ending point and tinik , tendk

are the initial and ending times of the debris-flow. Performing some formal
integrations, they can be rewritten as:[︄∫︂ Xend

k

Xini
k

(1− c)h dx

]︄tend
k

tini
k

+

[︄∫︂ tend
k

tini
k

(1− c)uh dt

]︄Xend
k

Xini
k

=

−(1− cb)

[︄∫︂ Xend
k

Xini
k

zb dx

]︄tend
k

tini
k

+

∫︂ tend
k

tini
k

∫︂ Xend
k

Xini
k

Sl dxdt (1.18a)

[︄∫︂ Xend
k

Xini
k

ch dx

]︄tend
k

tini
k

+

[︄∫︂ tend
k

tini
k

cuh dt

]︄Xend
k

Xini
k

=

−cb

[︄∫︂ Xend
k

Xini
k

zb dx

]︄tend
k

tini
k

(1.18b)

in which we have used the notation that [X ]ba represents the difference of
the generic quantity X evaluated in b minus the same quantity evaluated in
a.

The first term of each equation represents the time variation of respec-
tively the liquid and the solid volume flowing inside the k-th transept. This
term can be neglected under the assumption that [(1− c)h], for the first
equations, and [ch], for the second one, are equal at the initial and ending
times on the boundaries of each transept. This may not be true in some
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cases, but we think that in the framework of a conceptual scheme, this
approximation is acceptable.

The second term of each equation represents the difference of the fluxes
integrated in time (namely, the volumes) that leave and enter the k-th
transept in the given time interval. Indicating with:[︄∫︂ tend

k

tini
k

(1− c)uh dt

]︄
Xend

k

= V l
k;

[︄∫︂ tend
k

tini
k

cuh dt

]︄
Xend

k

= Vs
k

the outflow volumes of the liquid and the solid phase in the k-th transept,
these second terms can be written, respectively, as:{︄

V l
k − V l

k−1

Vs
k − Vs

k−1

in which the inflow volumes of the k-th transept are expressed as outflow
volumes of the (k − 1)-th one.

The first term on the right hand side of each equation represents the
volumes of liquid and solid released or stored in the bed because of the bed
evolution. Since cb is constant in time and space, they can be written as a
function of the volume of bed variation in the transept, defined as:[︄∫︂ Xend

k

Xini
k

zb dx

]︄tend
k

tini
k

= V bed
k

namely: {︄
(1− cb)V

bed
k

cbV
bed
k

The last term in the liquid mass-balance equation represents the source
term for the liquid phase, i.e. the possible volume of rain. We indicate it
as: ∫︂ tend

k

tini
k

∫︂ Xend
k

Xini
k

Sl dxdt = V l
k

Considering the previous expressions, eq. (1.18a - 1.18b) can be rewrit-
ten in the following compact way:

V l
k − V l

k−1 = − (1− cb)V
bed
k + V l

k (1.19a)
Vs
k − Vs

k−1 = −cbV bed
k (1.19b)
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Since the bed variation and the source term are not present in each transept,
it is useful to write explicitly for each reach, the relevant equations according
to the assumed conceptual scheme.

Transept k = 1: here we have no upstream input therefore V l,s
0 = 0; we

indicate with Vrain the liquid source V l
1 ; finally, since no bed variation

is present, V bed
1 = 0, then, the equations for this transept become:

V l
1 = Vrain (1.20a)

Vs
1 = 0 (1.20b)

Transept k = 2: indicating with −Vero = V bed
2 the bed volume variation

connected to the erosion (with Vero ≥ 0), we can write:

V l
2 − V l

1 = (1− cb)Vero (1.21a)
Vs
2 = cbVero (1.21b)

In the outflow section of this transept, according to the assumptions,
the concentration is constant, and given by eq. (1.15). Indicating with
ĉ this concentration, the outflow volumes can be rewritten as:

V l
2 = (1− ĉ)

[︄∫︂ tend
k

tini
k

uh dt

]︄
Xend

k

; Vs
2 = ĉ

[︄∫︂ tend
k

tini
k

uh dt

]︄
Xend

k

We can express these volumes as a function of the outflow volume of
the mixture

Vmix
2 = V l

2 + Vs
2 =

[︄∫︂ tend
k

tini
k

(uh) dt

]︄
Xend

k

in the following way:

V l
2 = (1− ĉ)Vmix

2 (1.22a)
Vs
2 = ĉVmix

2 (1.22b)

and finally eq. (1.21) can be reformulated in the following form that
will be used further on:
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(1− ĉ)Vmix
2 − V l

1 = (1− cb)Vero (1.23a)
ĉVmix

2 = cbVero (1.23b)

Transept k = 3: here, Vdep denotes the bed volume variation connected to
deposition, namely Vdep = V bed

3 (with Vdep ≥ 0). Moreover, since all
the sediments stop in this reach according to the assumptions, Vs

3 must
be null. Therefore, the resulting equations are:

V l
3 − V l

2 = −(1− cb)Vdep (1.24a)
−Vs

2 = −cbVdep (1.24b)

Combining the equations written for each transept, it is now possible to
obtain the following useful relations.

BDA relation: substituting eq. (1.21b) in eq. (1.24b) it follows:

Vero = Vdep (1.25)

Moreover, we can derive Vmix
2 from eq. (1.23b)

Vmix
2 =

cb
ĉ
Vero (1.26)

and substitute it in eq. (1.23a):

(1− ĉ)
cb
c
Vero − V l

1 = (1− cb)Vero

By using eq. (1.25) and (1.20a) it follows:[︂
(1− ĉ)

cb
ĉ
− (1− cb)

]︂
Vdep = Vrain

that can be simplified to the final form:

Vrain =
cb − ĉ

ĉ
Vdep (1.27)

This relation is the explicit expression of eq. (1.10) and, despite its
simplicity, it represents a key element in our approach.
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Volume of erosion: by using the previous relation and eq. (1.25), we ob-
tain:

Vero =
ĉ

cb − ĉ
Vrain (1.28)

which links the eroded volume reaching the deposition fan to the rel-
evant volume of rain.

Amplification of the debris-flow volume respect the rain volume: in eq. (1.23a)
we can substitute the expression of Vero obtained from eq. (1.23b)

Vero =
ĉ

cb
Vmix
2 (1.29)

and V l
1 from eq. (1.20a), obtaining:

(1− ĉ)Vmix
2 − Vrain = (1− cb)

ĉ

cb
Vmix
2

It is then possible to derive the relation

Vmix
2 =

cb
cb − ĉ

Vrain (1.30)

that is nothing but the well-known volumetric amplification relation
obtained by Takahashi (2007) starting from a quite different context:
it expresses the volume of debris flow as a function of the volume of
rain and of the equilibrium concentration in a reach with a given slope.
It is worth noting that the present derivation allows to appreciate the
numerous assumptions underlying this expression.

The liquid volume leaving the domain: by using eqs. (1.20a) and (1.21a)
we obtain:

V l
3 = Vrain + (1− cb)Vero − (1− cb)Vdep (1.31)

and using relation (1.25), it becomes:

V l
3 = Vrain (1.32)

This expresses the somewhat (a posteriori) obvious statement that
the liquid volume leaving the domain is equal to the liquid volume
entering upstream.
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1.3.4 The role of the rain volume in a debris-flow
A by-product of the approach just presented is the explanation of the role of
the rain volume in the simplified dynamics of a debris flow. In a Lagrangian
framework, the rain volume firstly generates the hydrological flow, then
induces a volume of erosion given by eq. (1.28), conveys downstream the
sediments as a mixture whose volume is given by eq. (1.30) and finally,
after having deposited the eroded volume, eq. (1.25), leaves the domain,
eq. (1.32).

1.4 Probability threshold for intensity-duration data:
the frequentist method.

It is widely accepted (see e.g. Brunetti et al., 2010, Nikolopoulos et al., 2014,
Peruccacci et al., 2012) that the relation between rainfall intensity I and
duration D is a power law of type:

I(D) = αD−β (1.33)
where α and β are two constant parameters which are commonly esti-

mated by using least square method (or other statistical approaches) start-
ing from a significant set of couples (Ik, Dk). In this work, we assume that
the same type of relation is valid also for the intensities and durations de-
fined in the previous section, i.e.

Î(D̂) = α̂D̂
−β̂ (1.34)

where α̂ and β̂ are two constant parameters similar to α and β, and esti-
mated by using the BDA couple set (Îk, D̂k).

The approach we have chosen in this work to estimate the probability
threshold is the frequentist method (see e.g. Peruccacci et al., 2012, among
others), nevertheless other methods could be applied as well (see e.g. Berti
et al., 2012, Peres and Cancelliere, 2014). For sake of completeness, we
present here a summary of the methodology applied to the (Îk, D̂k) couples,
but the procedure applies to (Ik, Dk) as well. We address the reader to the
mentioned paper for more details.

According to this approach, the threshold is a curve that, in a log-log
plot, is a straight line parallel to eq. (1.34) but with a lower value of the
intercept such that the probability that the measured real event data exceeds
the threshold value is a given value.

In order to obtain this threshold line, firstly the following difference set
must be evaluated:
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δ(D̂k) = log Îk − log Î(D̂k), k = 1, . . . , N (1.35)
where Îk is the value of the k-th registered datum associated to the k-
th duration D̂k, Î(D̂k) is computed by means of eq. (1.34) and N is the
total number of registered events. Then, the probability density function of
this set is approximated by using a Kernel Density Estimation as proposed
by Silverman (2018). Afterwards, this last function is sampled at regular
intervals and the resulting set of values are used to estimate the parameters
of a normal distribution:

f(δ) =
1

2πσ
exp

(︃
−(δ − µ)2

2σ2

)︃
(1.36)

namely the mean µ and the variance σ. Finally, the previous distribution
is integrated from −∞ up to a threshold value δx such that the relevant
probability of non-exceedance is equal to x. Commonly, this value is set
equal to 5%. Therefore, the threshold curve can be written as:

Î5% = α̂5%D̂
−β̂ (1.37)

where α̂5% = α̂− |δ5%|.

1.5 The rainfall thresholds for a sample study area
In order to verify the feasibility of the proposed method and to highlight the
peculiarities of BDA approach respect to the classical one considered in this
work, we have calculated the rainfall thresholds according to the procedures
above described. The study area is Trentino-Alto Adige/Südtirol, located
in the Alps, in the north of Italy (Figure 1.4).

1.5.1 Available data
Between 2006 and 2016, 161 debris flows were recorded by the regional
agency. The average area of the catchments affected by the events is nearly
1.5 km2. Almost none of them has a precise indication about the triggering
area while for 139 cases, a quantitative estimate of the deposited volume is
available. It ranges from 100m3 of the smallest events up to 50, 000m3 of the
largest ones. In Fig. 1.5, the spatial distribution of the debris-flow events
is reported on a geological map of the study area. It must be emphasized
that all the events, even if occurring in geologically different areas, were
characterized by a loose stony nature, and devoid of any significant presence
of cohesive mud.
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Figure 1.4: Location of Trentino-Alto Adige/Südtirol region (Italy), the sample study
area.
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Rhyiodacitites and rhyolites
Alluvial, debris and
glacial deposits
Lava, hyaloclasts, pyroclasts

Lakes and glaciers

Other

Debris flow

Figure 1.5: Simplified geological map of the study area with indication of the locations
of debris-flow events.
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A network of 195 rain gauges is available with an average spatial density
of approximately 1/70 km−2 and an average altitude of 1, 400m asl. Nearly
each rain gauge used in this study has a record frequency between 5min
and 10min.

For the same period, records of a C-band Doppler weather radar are
available. The radar is located in a central position of the region on the
top of Macaion peak at 1, 866m asl (see Fig. 1.6), and it is effectively used
to monitor an area within the range of 120 km. Precipitation is estimated
converting the reflectivity Z into intensity of precipitation I (see e.g. Ui-
jlenhoet, 2001). The radar output data are available over a square grid cell
with resolution of 500m, while the temporal resolution is between 5min and
6min.

Since generally, the cumulated rainfall depends on the altitude and
rapidly decreases with the increase of the distance from the event area
(Marra et al., 2016), in order to get reliable rain data relevant to a de-
bris flow, a careful choice among the available rain gauges has been per-
formed. For each debris flow event, the choice of the representative station
was obtained by using an automatic procedure. From the knowledge of
the coordinates of a debris-flow basin closure point, assumed located where
the deposition starts, the horizontal distance between the closure point and
each rain gauge was evaluated. Among all the available rain gauges with
a distance less or equal to 5 km, the representative station was assumed
the one with the smallest altitude difference respect the closure point. If
no instrument matched the distance criteria, the debris-flow event has been
considered unserviceable for the subsequent analysis.

Rain gauge data has been used only for the CD estimation, while radar
data has been used to estimate the (I,D) and (Î , D̂) couples. Nevertheless,
because of the complex topography of the region, mountain beam shielding
causes, in certain areas, a lack of measurement associated with a reported
debris flow event (see Fig. 1.6). Therefore we have been preliminary filtered
out all the events located in places where the radar signal is weakened more
than 90%. Other sources of errors, such as signal attenuation in heavy rain
or wet radome attenuation (see e.g. Marra et al., 2014), have not been taken
into account.

1.5.2 The CDM-based threshold

For this site, 45 rain gauges, linked to the 161 debris-flow available events,
have been used to determine the monthly CD reported in Table 1.1 and
plotted in Fig. 1.7.

The CDM-based threshold has been obtained by using only 109 regis-
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Raingauges used
Radar Macaion
Debris flows
Alto Adige
Trentino

Beam blockage [%]
0
12.5
25
37.5
50
62.4
74.9
87.4
99.9

Figure 1.6: Percentage of signal attenuation due to beam blocking effect on the debris
flows considered with radar beam elevation at 1◦.
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Figure 1.7: Box plot of the monthly CD for the study site.

month 1st quartile median 3rd quartile
Jan 16.5 29.6 63.5

Feb 20.0 42.7 54.4

Mar 14.5 21.4 38.7

Apr 16.8 30.3 39.4

May 6.8 9.0 11.8

Jun 7.3 9.2 11.7

Jul 7.1 8.7 11.1

Aug 4.6 5.8 7.6

Sep 5.3 7.0 8.9

Oct 7.8 10.3 13.1

Nov 12.0 15.0 26.4

Dec 19.4 30.4 44.3

Table 1.1: Values of the monthly CD, expressed in hours, for the study case.
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Figure 1.8: The CDM-based rainfall threshold for the study area.

tered events (out of the 161 registered) matching the 5 km distance and the
radar signal criteria. The resulting threshold equation is:

I5% = 4.91D−0.7 (1.38)

and is plotted in Fig. 1.8 along with the relevant (I,D) event couples.

1.5.3 The BDA-based threshold

The BDA methodology requires the knowledge of the volume of deposited
material (as described in Section 1.3). Due to this constrain, only 84 debris
flows of the 109 registered events with unshielded radar data are serviceable.
For each debris-flow case, the couple (Î , D̂) was obtained using the following
procedure:

1. the relevant basin was extracted from a DTM, setting the closure at
the beginning of the deposition zone;

2. a representative bed slope if was considered as the average slope of
the last 50m of the basin network;

3. the debris-flow reference concentration ĉ was evaluated by means of
eq. (1.15), where we set ∆ = 1.65 and ψ = 35Â◦;
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4. the volume of rain that has caused the deposition was estimated by
using eq. (1.27)

5. the duration D̂ should have been evaluated by solving eq. (1.12);
nevertheless, since intensity is actually a piece-wise constant function
whose constancy interval is equal to the radar sampling interval δt,
the equation cannot be solved exactly. Therefore, the procedure used
to obtain D̂ was the following:

• consider the discrete hydrograph pertaining a debris flow event,
place the origin of a discrete reference system in the interval
where the intensity is maximum and label this interval as i0;

• consider the following sequence of discrete integrals of the hydro-
graph:

a0 = i0δt

an = an−1 +

{︃
in/2+1/2 δt if n is odd

i−n/2 δt if n is even

where i±k is the intensity of the ±k-th interval located on the
right and on the left of i0 respectively;

• consider the integer K as the first integer such that

Vrain ≤ AbaK

Then, since aK is nothing but the approximation of the integral term
of eq. (1.12), it follows that:

D̂ = (K + 1) δt

6. the intensity Î was obtained by using eq. (1.14)

The resulting BDA-based threshold equation, plotted in Fig. 1.9 along
with the relevant (Î , D̂) event couples, is:

Î5% = 6.2D̂
−0.67 (1.39)

1.6 Discussion
In this Section, we discuss some aspects of the results obtained for the
sample study area.
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Figure 1.9: BDA-based rainfall threshold for the study area. The color scale indicates
the equilibrium concentration, evaluated according to eq. (1.15), for each event.

1.6.1 The CDM-based threshold

The threshold obtained with this method, eq. (1.38), is similar to the ones
obtained by Marra et al. (2014) and by Iadanza et al. (2016) who consid-
ered, for areas comparable to the one considered in this paper, rain data
associated not only to debris flows but also to landslides. Moreover, it can
be noted that in Fig. 1.8, even if data is distributed over almost three orders
of magnitude, the largest number of values are approximately in the interval
[1 h, 10 h].

Regarding the monthly CDs, it is important to notice, Fig. 1.7, the
dispersion of the summer months values is smaller than the dispersion of
the other months. This means that for the summer period, the median
value of CD is representative of the whole correspondent area. This is
quite important because in this period the majority of the debris-flow events
occur. Moreover, the summer CDs are shorter than in the rest of the year.
This is due to the different structure of the summer storms with respect to
the rainy systems of the other months. Similar trend is reported in Iadanza
et al. (2016), where an area analogous to the one considered in this paper
was investigated.
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1.6.2 The BDA-based threshold

First of all, the assumption that the intensity Î is a power law function of
D̂ (see sec. 1.4) seems to be confirmed by results, since data in Fig. 1.9
shows a clear linear trend in the log-log plot.

The data is distributed essentially over one scale of magnitude, ranging
from 0.1 h to 1 h. This time scale is confirmed by both eyewitness and video
testimonies (some of them can be found on the web) even if, a systematic
and well documented study is still not available. However, this result allows
a first assessment of the BDA relation reliability. On the other hand, the
BDA relation is strictly connected to the Takahashi volumetric amplification
relation, whose validity is widely accepted and assessed (see e.g. Rosatti
et al., 2015). Therefore, the BDA relation appears to be a sufficiently robust
estimator, provided that measured data is sufficiently accurate.

An accurate analysis of the result (still Fig. 1.9) showed several points
characterized by a duration equal to the sampling interval of the radar
(leftmost points) and this can be due to multiple reasons.

One of these can be the sampling interval is too long with respect to the
time necessary to feed a debris-flow.

A second one is an underestimation of Vdep, whether for measurement
errors or because only part of the debris-flow sediments stopped in the fan,
while another significant part is not included in the measurements because
it has been carried downstream by the flow. Therefore, the relevant Vrain
is smaller than the actual value and consequently, the duration is shorter
than the real one.

A third possible reason is an overestimation of cref due to a wrong
estimation of a significant slope. This produces an underestimation of Vrain,
as it can be deduced from eq. (1.27) and plotted in Fig. (1.10). It follows
an underestimation of the event duration.

Last but not least, despite Vdep is essentially correct, the debris flow
has not reached the hypothesized equilibrium condition because of lack
of sediments, non-erodible zones etc. Therefore, also in this case cref is
overestimated with respect to the actual value and the event duration is
underestimated.

We are not able to quantify the errors in our data, or to verify their
frequency distribution. Anyhow, we think that the last three reasons are
probably the most diffuse and possibly mingled. In any case, we think that
our sample is sufficiently reliable. Finally, we are not able even to predict
the change in the threshold if more reliable data would be available.
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Figure 1.10: Trend of the ratio of the volume of rain over the deposited volume as a
function of the ratio of the bed concentration over the reference concentration.

1.6.3 Comparison between the CDM and the BDA-based thresh-
olds

A straightforward comparison between the two thresholds, namely eq. (1.38)
and eq. (1.39), shows that the BDA-based threshold is, as expected, higher
than the CDM-based one (see Fig. 1.11). Nevertheless, we cannot conclude
that BDA is a better estimator, since we are comparing quite different ap-
proaches and quantities and therefore, some care must be paid in making
the comparison.

Since it is not completely right extending the validity of each thresh-
old outside the domain used for the interpolation, there is only a limited
overlapping of the two domains. In this range, the relative difference with
respect to the CDM data spans from 25% to 31%.

The characteristic time scale of the two approaches are quite different:
[1 h, 10 h] for CDM and [0.1 h, 1 h] for BDA. Namely, BDA indicates as po-
tential debris-flow inducing rainfalls, short or very short storm durations
while CDM suggests quite longer durations. This is not surprising since, as
we have already stressed, we are comparing different things, deriving from
different points of view. In order to highlight this difference, it is useful to
compare graphically (see Fig. 1.12), how the same hyetograph is considered
by the two approaches. It is quite clear how the same event is characterized



36 1 Backward Dynamical Approach

Figure 1.11: Comparison between the CDM- and the BDA-based rainfall thresholds
for the study area and their relative difference respect the BDA values.

by different duration and average intensity, and why BDA provides shorter
duration and larger intensities with respect to CDM.

1.6.4 Some issues regarding the forecast use of the BDA-based
threshold

The forecast use of the BDA-based thresholds presents some potential issues.

Starting from a forecast hyetograph, while the peak intensity can be
easily identified, the potential volume of rain that determines both the du-
ration and the average intensity, is not known. A possible empirical choice,
that can be deduced from the available data but that cannot be used in
general, is to consider an average duration of 0.5 h÷1.0 h centred around
the peak.

It is not so uncommon in debris-flow events that the relevant hyetograph
shows multiple peaks (see e.g. Rosatti et al., 2015). In these cases, it is even
more complicated estimating a reference duration because the previous cri-
terion could be largely inaccurate. Moreover, it is quite difficult to forecast
if multiple peaks generate multiple events or a single long event.

A validation of the proposed reference duration choice, the development
of more sophisticate approaches and the evaluation of the frequency of false
positive respect the proposed BDA-based threshold are very interesting top-
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(a)

(b)

Figure 1.12: Portion of hyetograph relevant to a debris flow event according to (a)
CDM, (b) BDA.
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ics, but they are beyond the scope of this work and therefore are left for a
future widening. Last, but not least, BDA focuses the attention only on one
mandatory ingredient for a debris flow: the amount of water necessary to
carry downstream the sediments. The other key element, the saturation of
the basin, is completely disregarded in this approach and therefore, a more
complete methodology considering both the ingredients is desirable.

1.7 Conclusions
The conclusions that can be drawn from this study are the following:

• The Backward Dynamical Approach presented in this paper appears
to be a reasonable theoretical framework able to single out the amount
of rain strictly pertaining a debris-flow event and, consequently, the
related (Î , D̂) couple. Other less simplified relations can be obtained
relaxing one or more assumptions herein considered.

• Every method of extracting a threshold from a (I,D) couple set can
be applied to the BDA couples as well.

• Analysis of a sample study area shows that the characteristic duration
of the rain generating a debris-flows evaluated with BDA is one order
of magnitude shorter than the characteristic duration given by CDM.
This result appears to be consistent to several field observations, but
a systematic validation is still missing because of lack of reliable data.

Moreover the BDA-based threshold is, as expected, higher than the
CDM-based one, provided that the same methodology is used to ob-
tain the thresholds from the intensity-duration couples. Even if this
result seems to overcome a bit the limit of the traditional approaches,
it is not yet possible to state that this method performs better than
the literature ones because a systematic validation is still not possible,
once again, for lack of measured data.

• The use of the BDA-based thresholds for forecast purpose presents
some potential issues. Moreover, the approach does not account for
the reaching of any “triggering condition” (e.g. saturation of the basin,
threshold condition for transport, abatement of possible superficial
sediment cohesion, etc.) and for the effect of earthquakes on these
conditions (see e.g. Shieh et al., 2009, Tang et al., 2009). A more
complete, and presumably more reliable methodology for the rainfall
threshold determination should consider, in some way, not only the
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characteristics of the rain strictly pertaining to the debris flow but
also the characteristics of the rain leading to the triggering conditions
and at least some features of the sediments.

• To fully validate the proposed method, large samples of data from
different areas should be considered. Our forthcoming work aims
to achieve this goal. Unfortunately, the number of well-documented
debris-flow events are rather few, not just because debris flows are in-
frequent, but also because so far the detailed survey of the deposited
volumes was extremely difficult and not considered so important by
the public agencies in charge of debris-flow data collection. Neverthe-
less, in the last years application of drone technology to land surveying
has made it possible to simplify the measurement of debris-flow de-
posits.

We are confident that in some years the number and quality of available
data should help to validate both the reliability of the proposed method and
its possible future enhancements.





Chapter 2

Uncertainty analysis of a
rainfall threshold estimate for
stony debris flow based on the
Backward Dynamical Approach

2.1 Introduction
In mountain regions, rainfall-induced natural phenomena, as shallow land-
slides and debris flows, are relatively frequent events that have a significant
impact on the territory in which they occur, causing damages and, in some
cases, casualties (Cánovas et al., 2016, Dowling and Santi, 2014, Fuchs et al.,
2013). The risk management of these phenomena is crucial to reduce their
effects on the territory and it is based on both active and passive mitigation
strategies. An early warning system is an example of a passive mitigation
tool (Huebl and Fiebiger, 2005) as it allows to activate prevention measures
(e.g. evacuation sets out in the civil protection plans) before the expected
event occurs.

The early warning systems for these phenomena are mainly based on
rainfall thresholds (Chien-Yuan et al., 2005, Segoni et al., 2018), namely
rainfall conditions beyond which the occurrence probability of a rainfall-
induced event is considered significant. In this framework, most rainfall
thresholds are power-law relations expressing the rainfall event cumulated
or intensity as a function of the event duration (Segoni et al., 2018). A
considerable literature deals with this topic (e.g. Caine, 1980, Guzzetti et al.,
2008, Iadanza et al., 2016, Jakob et al., 2012a, Marra et al., 2014, 2016, Pan
et al., 2018, Staley et al., 2013, Winter et al., 2010, Zhou and Tang, 2014).
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In some studies rainfall thresholds concern a wide typology of phenom-
ena (Segoni et al., 2018), other works focus on both shallow landslides and
debris flows (e.g. Baum and Godt, 2010, Cepeda et al., 2010), other on shal-
low landslides (e.g. Frattini et al., 2009, Giannecchini, 2005) and, finally,
some studies are specifically conceived for debris flow (e.g. Giannecchini
et al., 2016, Li et al., 2016, Nikolopoulos et al., 2014).

Power-law thresholds can be derived in the following way. Given a histor-
ical dataset of rainfall-induced events, the rainfall associated with each event
is determined and described in terms of the couple of synthetic quantities
employed in the threshold (e.g. rainfall event cumulated - event duration).
Classically, these quantities are defined only on the basis of a hyetograph
analysis (Segoni et al., 2018), without considering the characteristics of the
rainfall-induced phenomenon. In a log-log plane, the resulting set of cou-
ples becomes a cloud of points and the power-law function is a straight line.
Starting from these couples set, the threshold is determined by locating the
straight line in the log-log plane using one of the several estimate strate-
gies available in the literature, e.g. manual methods, statistical approaches,
probabilistic procedures (Guzzetti et al., 2007, Segoni et al., 2018). The
result is the calibrated rainfall threshold.

One of the critical issues of the calibration is the uncertainty related
to both data and models parameters (Gariano et al., 2020). Here with the
term “model”, we indicate generically a single equation or a set of operations
that, given some input data and model parameters, provide an output. In
the case of the rainfall threshold, the uncertainties derive mainly from direct
data error measurements (e.g. in rainfall), from the non-unique definition of
the models parameters (e.g. distance within which to select the rain gauge
to define the event precipitation) and from the strategy used to calibrate
the threshold. The result is an uncertainty framework that can significantly
impact the threshold estimate.

Some studies have already investigated the uncertainty in threshold de-
termination, focusing on some aspects that can affect the hyetograph or the
event synthetic quantities used in the threshold. For instance, Nikolopoulos
et al. (2014) has analysed the consequences of the spatial variability of the
precipitation while Marra (2019) and Gariano et al. (2020) have investi-
gated the effects of the rainfall temporal resolution. Moreover, the uncer-
tainty arising from the choice of the reference rain gauge and the differences
between the radar and the rain gauge measurements have been examined
in Rossi et al. (2017). Besides, the effect of the uncertainty in triggering
rainfall estimate has been investigated in Peres et al. (2018) while Abraham
et al. (2020) has analysed the consequences of the scale of analysis, the rain
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gauge selection and how the intensity is quantified.

Rosatti et al. (2019) has introduced an innovative method to calibrate
an intensity-duration rainfall threshold for stony debris flow, a particular
type of debris flow, frequent in some mountain areas as in the Alps, in which
the presence of silt and/or clay in the mixture is negligible and the internal
stresses are mainly caused by the collision among the particles (e.g. Bernard
et al., 2019, Stancanelli et al., 2015, Takahashi, 2009). The new method,
called Backward Dynamical Approach (BDA), starts from the knowledge of
the volume of sediments deposited after an event and, thanks to a schematic
description of the stony debris-flow dynamic, it is able to identify, in the re-
lated hyetograph, the rainfall event volume, intensity and duration strictly
pertaining to the debris-flow event. Hence, the BDA differs from the classi-
cal literature approaches since the synthetic quantities describing the rainfall
events are defined involving not only the forcing (i.e. the hyetograph) but
also the dynamic of the rainfall-induced event.

This work focuses on the uncertainty deriving from data and parameters
inherent to the BDA, leaving out the uncertainty related to the hyetograph,
already investigated in the literature. In particular, the aim is to perform
an uncertainty analysis on the threshold calibration to check the robustness
of the BDA. To reach this goal, among the different strategies and methods
available in the literature (e.g. Coleman and Steele, 2018, Helton et al.,
2006, Hofer, 2018), we have chosen the Monte Carlo (MC) approach. With
this tool, we have developed a proper methodology composed of two MC
cascade simulations and we have applied it to a dataset concerning a specific
study area. Detailed analysis of intermediate and final results have also been
performed to better understand the uncertainty analysis outcomes.

The paper structure is the following. A brief description of the BDA
method is presented in Sect. 2.2. The study area and data are described
in Sect. 2.3. The method used to assess the uncertainty propagation in the
BDA-based threshold calibration is described in Sect. 2.4. The obtained
results are presented and discussed in Sect. 2.5. Conclusions end the paper.

2.2 The BDA-based threshold calibration

As mentioned in the Introduction, the BDA determines the rainfall event
intensity and duration, namely the couple (I,D), associated with a stony
debris flow, by using not only the hyetograph but also information concern-
ing the occurred debris flow.

The BDA starts from the knowledge of the deposited volume Vdep oc-
cupied by the sediments after a debris-flow event. Thanks to a simplified
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global volumetric description of the debris-flow dynamic (Fig. 2.1), the
rainfall volume pertaining to the debris flow V DF

r , defined as the volume of
water necessary to convey downstream Vdep as a mixture, can be express as:

V DF
r =

cb − c

c
Vdep (2.1)

where cb is the concentration of the sediment in the bed, constant and
assumed equal to 0.65 (Takahashi, 2014), and c is a reference volumetric
solid concentration of the given debris flow.

The expression of Takahashi (1978) is valid in permanent and uniform
conditions and it can be used as reference concentration:

c = min

(︃
if

∆(tanψ − if )
, 0.9 cb

)︃
(2.2)

where if is the bed slope, ψ is the dynamic friction angle of the sediments
and ∆ = (ρs − ρl)/ρl is the sediment relative submerged density, where ρl

and ρs are, respectively, the liquid and solid constant density. ∆ is constant
and assumed equal to 1.65 (e.g. Prancevic and Lamb, 2015). According
to the assumptions of the BDA, the reference concentration is evaluated
considering the bed slope in the last portion of the debris-flow channel,
just upstream of the deposition area. This means that the information
concerning the triggering conditions and the detailed evolution of the debris
flow in the upper part of the basin are not considered.

The rainfall volume pertaining to the debris flow can also be expressed
as the product of the rainfall volume per unit area E and the event basin
area Ab:

V DF
r = EAb (2.3)

from which, a backward dynamical expression for the rainfall volume per
unit area can be obtained by equating (2.1) with (2.3):

E =
1

Ab

cb − c

c
Vdep (2.4)

On the other hand, E can be obtained from the forcing of the phe-
nomenon, namely the hyetograph. Under the assumption of uniform rainfall
over the basin, the hydrological expression for E is:

E =

∫︂ t2

t1

i(t) dt (2.5)

where i(t) is the measured rainfall intensity and t1 and t2 are the unknown
start and end times related to the debris-flow duration. In the absence of



2.2 The BDA-based threshold calibration 45

Figure 2.1: Conceptual Lagrangian volumetric description of debris-flow dynamic from
Rosatti et al. (2019). The scheme is divided into three transepts: transept 1 is char-
acterised by the run-off formation; the bed material erosion and the achievement of
equilibrium conditions occur in transept 2; transept 3 is characterised by the deposition
of sediments with water entrapment. V DF

r is the rain volume pertaining to the debris
flow, Vero is the bed volume variation related to the erosion, Vdep is the deposited
volume occupied by the sediments and θ = arctan (if ) is the inclination angle of the
bed with respect to a reference horizontal direction.

detailed data of the event, these times are expressed as:{︄
t1 = tmax −∆t1

t2 = tmax +∆t2
(2.6)

where tmax is the instant of maximum intensity during the event and ∆t1
and ∆t2 are unknown intervals. These intervals can be obtained equating
the right hand side terms of Eq. (2.5) and (2.4):∫︂ tmax+∆t2

tmax−∆t1

i(t) dt =
1

Ab

cb − c

c
Vdep (2.7)

Because of the measurement technique, i(t) is a piecewise constant func-
tion on time intervals δt, namely i(k). Consequently, the reference times
becomes: t = kδt, tmax = Mδt, ∆t1 = n1δt and ∆t2 = n2δt where M is
the number of time intervals that identifies the peak and now n1 and n2 are
unknown integers. In addition, the integral in Eq. (2.7) must be rewritten
in discrete form (namely a summation) and the previous equation cannot
be satisfied exactly.

An approximation algorithm, able to determine in a univocal way the
unknowns, can be introduced: starting from zero and increasing of one unit
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alternatively n1 and n2, the first couple n̂1, n̂2, for which the condition

M+n̂2∑︂
k=M−n̂1

i(k) δt ≥ 1

Ab

cb − c

c
Vdep (2.8)

is satisfied, is the searched couple. If a zero-intensity interval is reached,
the sum stops being symmetrical with respect to M and only either n1 or
n2 is increased until the previous relation is satisfied.

Finally, the duration D and the average intensity I can be expressed as:

D = ∆t1 +∆t2 = (n̂1 + n̂2) δt (2.9)

I =

∑︁M+n̂2
k=M−n̂1

i(k) δt

D
(2.10)

Once the (I,D) couple is computed for each event of the available
dataset, the rainfall threshold is estimated by using the frequentist method
(e.g. Brunetti et al., 2010, Peruccacci et al., 2012). According to this
method, the (I,D) couples are plotted in a log-log ID plane and a straight
line fitting these points is determined. The slope and the intercept of this
straight line are the logarithms of the coefficient of the following power law:

I = âD−b (2.11)

The rainfall threshold is then obtained translating vertically the straight
line in the log-log ID plane so that the non-exceedance probability of the
dataset events (namely the occurrence probability of debris flows related to
(I,D) points located below the threshold) is equal to a given value. The
final expression is:

I = aD−b (2.12)

in which a < â.

For more details on the BDA and the frequentist method, we refer the
reader to the above-mentioned references.

2.3 Study area and data

The study area and data used in this analysis are the same as those used
in Rosatti et al. (2019). In particular, the study area is the Trentino-Alto
Adige/Südtirol region, in the north east of the Italian Alps (Fig. 2.2(a)).
The region covers 13607 km2, has an altitude range between 40 and 3900
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m a.s.l. with mean about 1600 m a.s.l. (Fig. 2.2(b)) and a climate char-
acterised mostly by a continental regime (Bisci et al., 2004, Nikolopoulos
et al., 2014).

The regional agencies between 2006 and 2016 have reported 161 debris
flows (Fig. 2.2(b)) but only 139 events present the survey of the deposits,
whose volumes range between 100 m3 and 50000 m3. In every event, sedi-
ments are characterised by the absence or, at least, the negligible presence
of silt and clay thus resulting in stony debris flows.

The rainfall data related to these events derives from a radar located
in a central position with respect to the region, on the Mt. Macaion at
1866 m a.s.l. (Fig. 2.2(b)). A C-band Doppler weather radar measures the
reflectivity Z over an area of 120 km of radius and the rainfall is computed
converting Z into precipitation intensity I (e.g. Uijlenhoet, 2001). Since
radar data in mountain regions are typically affected by the beam shielding
(Germann et al., 2006), which can cause errors in the measurements, the
debris-flow events located in an area with a weakening of the signal greater
than 90% have been excluded from the dataset. Overall, the debris flows
suitable for the analysis were 84 and are highlighted in Fig. 2.2(b) with
circles.

Additional data required for the BDA, namely if , Ab, ψ and i(t), was
defined for each event in the following way. The basin outlet was located
downstream of a segment with a sufficiently constant slope just upstream of
the deposition area and the upstream basin area was determined. Then, if
was calculated as the mean slope of the last 50 m of the torrent upstream
of the outlet point. Besides, due to the scarcity of sediments information,
ψ was assumed to be equal to 35◦ for all the events. The hyetograph i(t)
was computed at each instant averaging over the respective basin area the
radar intensities. In this way, both the spatial and temporal variability of
the rainfall were taken into account.

Starting from this data and setting the non-exceedance probability equal
to 5%, Rosatti et al. (2019) obtained the following threshold:

I = 6.2D−0.67 (2.13)

From now on, the quantities involved in the calibration performed by
Rosatti et al. (2019) will be considered as reference values and they will be
indicated with a subscript r.
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Analyzed debris flows
Debris flows

Elevation (m a.s.l.)
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Figure 2.2: (a) Location of Trentino-Alto Adige/Südtirol region (Italy) and (b) the
Macaion radar and debris-flow events: red dots show all debris flows while yellow circles
highlight the suitable ones for the study.

2.4 Method

As described in Sect. 2.2, the BDA-based threshold calibration starts from
the definition of the following input parameters and data for each considered
event: if , Ab, Vdep, ψ and i(t). Subsequently, based on these values, what
we call the “event characteristics” are computed for each analysed debris
flow: first c (Eq. (2.2)) and E (Eq. (2.4)), and then D (Eq. (2.9)) and I
(Eq. (2.10)). Finally, the (I,D) couples of the events are used to calibrate
the threshold, namely to quantify the threshold coefficients a and b of Eq.
(2.12).

Coherently to the estimate procedure, the uncertainty analysis of the
BDA-based threshold calibration is divided into three parts (Fig. 2.3).
First, the uncertainty characterisation of the input parameters and data
is determined (Fig. 2.3(a)). Then, for each debris flow, the uncertainty
analysis of the event characteristics is performed with an MC simulation,
starting from the above-defined uncertain quantities (Fig. 2.3(b)). Finally,
a further MC simulation is carried out to perform the uncertainty analysis
of the threshold, using as input the (I,D) couples of the events obtained
from the first MC simulation (Fig. 2.3(c)). In this way, the impact of
the uncertain parameters and data on the threshold is quantified. All the
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analyses are performed using the R software (R Core Team, 2013).

Regarding the uncertainty characterisation, as explained in the Intro-
duction, the focus of this study is on the uncertainty in the physical and
morphological parameters and data used in the BDA to describe ,in a simpli-
fied way, the debris-flow dynamic. Therefore, in this analysis, the variables
considered are if , Ab, Vdep and ψ. According to their estimate, described in
Sect. 2.3, these variables are mainly affected by epistemic uncertainty due to
measurement and estimate errors and lack of information (Oberkampf et al.,
2004). The characterization of the uncertainty in the variable, namely the
probability distribution function (pdf) of their values, has to be defined
both in term of distribution type and statistical quantities (e.g. mean and
variation coefficient CV ) (Fig. 2.3(a)). Lacking certain data concerning the
pdfs, according to Marino et al. (2008), all the variables are assumed to be
uniformly distributed and, for each event, the means of the distributions
are set equal to the corresponding reference values. Regarding the devia-
tions from the means, ψ is the only variable whose variability is constrained
by a validity range: for stony debris flow, according to Lane (1953) and
Blijenberg (1995), ψ can vary between 32◦ and 38◦. Assuming 35◦ as the
mean of the ψ distribution, the variability range (32◦, 38◦) can be obtained
by imposing CV equals to about 5%. The uncertainty in Vdep can not be
accurately estimated since the survey methodology, and the related mea-
surement errors, used by regional agencies, is not univocal (Marchi et al.,
2019). However, Brardinoni et al. (2012) has proposed, for a similar study
area, a relative error of 10% in the estimate of Vdep, namely a corresponding
CV equals to about 5%. Therefore, we assume that this uncertainty value
is valid for this analysis. Moreover, the uncertainty in if and Ab is hardly
quantifiable given their computation method. For these reasons and homo-
geneity, the degree of uncertainty of ψ and Vdep is considered suitable also
for if and Ab. The resulting uncertainty characterization is summarized in
Table 2.1.

The procedure used to assess the propagation of the uncertainty in if ,
Ab, Vdep and ψ on the event characteristics (i.e. D, I, c and E), related to
each debris flow, is schematized in Fig. 2.3(b) and it is composed of two
main steps. First, the input samples, namely the ordered sets of variable
values in the form (if , Ab, Vdep, ψ), must be obtained. These samples are
generated by using the Latin Hypercube Sampling (LHS) (Fig. 2.3(b.1)), in-
troduced by McKay et al. (2000). This method produces N samples starting
with a division of each variable uncertainty range into N disjoint intervals
of equal probability. Then, one value is randomly selected within every
interval, thus obtaining N values for each variable. These values are then
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Uncertainty 
characterization

(a)

Uncertainty analysis of the rainfall conditions 
(b.2) Propagation of samples

(b)
(b.1) Generation of samples

Uncertainty analysis of the threshold

(c.2) Propagation of samples

(c)

(c.1) Generation of samples

Figure 2.3: Scheme of the uncertainty analysis performed with two cascade MC
simulations. (a) Uncertainty characterization of the parameters and data: the non-
dimensional form of the uncertain parameters and data, obtained by dividing the vari-
ables by the reference values, are assumed to be uniformly distributed. (b) First MC
simulation to compute the uncertainty analysis of the event characteristics for each
debris flow: (b.1) samples generation performing the Latin Hypercube Sampling (LHS)
and (b.2) propagation of samples to compute the event characteristics. The dots size in
the log-log ID plane indicates the absolute frequency of obtaining the (I,D) couples.
(c) Second MC simulation to perform the uncertainty analysis of the threshold: (c.1)
random samples S generation (one of the previous obtained (I,D) couples for each
event) and (c.2) propagation of samples to estimate the thresholds T .
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Variable Probability distribution function

if Uniform(if,r (1− 5%
√
3), if,r (1 + 5%

√
3))

Ab Uniform(Ab,r (1− 5%
√
3), Ab,r (1 + 5%

√
3))

Vdep Uniform(Vdep,r (1− 5%
√
3), Vdep,r (1 + 5%

√
3))

ψ Uniform(32◦, 38◦) ∼ Uniform(35◦ (1− 5%
√
3), 35◦ (1 + 5%

√
3))

Table 2.1: Probability distributions of the uncertain variables for each event. if,r,
Ab,r and Vdep,r are the event reference values of the average slope, the basin area and
the deposited sediments respectively.

arranged in the LHS matrix, composed of N rows and k columns, where k is
the number of the variables (four, in the specific case). In each column, the
N values relevant to a single variable are inserted in random order (Helton
et al., 2006). Each row of this matrix gives one of the N variable samples.
According to Marino et al. (2008), to ensure accuracy, the sample size N
should be at least greater than k. In this study, N is set to 100 and the
(100 × 4) LHS matrix is generated for each event, based on the previously
established pdfs.
Second, the event characteristics are obtained starting from each input sam-
ple, resulting in 100 (I,D) couples (Fig. 2.3(b.2)), together with the related
c and E values, for each event. Therefore, the overall total of (I,D) couples
obtained is 100 · 84 = 8400, where 84 is the number of considered debris
flows.

The uncertainties propagation in the threshold estimate is then quan-
tified with a further MC procedure. In this case, a sample is generated
selecting randomly one of the possible 100 (I,D) couples for each event, re-
sulting from the previous MC simulation (Fig. 2.3(c.1)). Hence, one sample
consists of 84 (I,D) couples. Following this procedure, 5000 samples are
created and used to estimate as many thresholds (Fig. 2.3(c.2)), namely
5000 (a, b) couples.

2.5 Results and discussion

2.5.1 Variability of the event characteristics

As described in Sect. 2.4, the outputs of the first MC simulation applied to
the dataset are 100 possible event characteristics (i.e. D, I, c and E) for
each debris flow. The relative variability of all these outputs is quantified
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through the computation of the CV of each event characteristics distribu-
tion. This allows providing a complete inspection and interpretation of all
outputs. Then, the absolute variability is quantified through the computa-
tion of the variability range given by the difference between the minimum
and the maximum values of the variable and it is evaluated only for the D
and I distributions. This analysis allows highlighting the variability of the
(I,D) couples in the ID plane for each event.

The CV , by definition, is a standardized measure of dispersion and
allows comparing the relative variability of the results independently of their
measurement units and of their means (e.g. Abdi, 2010, H̊akanson, 2000).
For this reason, the CV is chosen as the statistical quantity for comparing
the relative variability between both the same characteristic of different
events and different characteristics of the same event. The CV s of the
distributions of D, I, E and c for each event are shown in Table 2.2. In
the following, the trends and the differences in the CV s are highlighted and
justified on the basis of some event aspects:

• the D distributions have the largest and most variable CV s with re-
spect to all the other event characteristics: CVD vary between 0% and
157.5%. The reason for this behaviour will be clarified further on;

• the distributions of I are characterised by a lower spread with re-
spect to the D distributions, being all the CVI values within 0% and
30.0%. The reason for this behaviour is connected to the fact that I,
by definition, is an average and therefore the effects of the variables
uncertainty are smoothed by the averaging. Also the reason why CVI
can be zero will be explained further on;

• also the concentration distributions show a low spread. As c is char-
acterised by an upper bound (i.e. 0.9 cb), the CVc is strictly related to
the proximity of cr to this maximum value and consequently, accord-
ing to Eq. (2.2), to the value of if,r. As shown in Fig. 2.4, until the
if,r is less than about 0.3, the CVc tends to go up by increasing the if,r
since cr is sufficiently smaller than 0.9 cb. Instead, if the if,r is between
about 0.3 and 0.4, the CVc tends to decrease by increasing the if,r as c
reaches the maximum and it is equal to 0.9 cb for an increasing number
of if samples. Finally, the CVc becomes 0% if the if,r is greater than
about 0.4 as c is always equal to 0.9 cb independently from the values
of the if samples. However, even in the worst conditions in terms of
variability, CVc is small and reaches a maximum value of 14.3%;

• the distributions of the volumes per unit area have CVEs that vary
between 7.1% and 64.6%. It is worth noting that high uncertainty in
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the estimation of E does not necessarily imply large CVD and/or CVI
(e.g. event 12) and vice versa (e.g. event 38). This suggests that the
relative variability in I and D does not depend only on the relative
variability in the needed rainfall volume per unit area but also on how
the available rainfall volume is distributed into the hyetograph time
intervals.

To better understand the variability of D and I, we classify the events
into three categories based on the CVD values:

1. events with zero variability: CVD = 0%;

2. events with low variability: 0% < CVD ≤ 30%;

3. events with high variability: CVD > 30%.

The first category comprises 48 events for which the 100 MC simulations
have provided always the same (I,D) couple. For these events, the propaga-
tion of the variables uncertainty does not affect the (I,D) couple estimation
resulting in CVD = CVI = 0%. This type of result is related to two condi-
tions:

• regardless of the uncertainty of the variable, the concentration is al-
ways equal to 0.9 cb. In this case, also CVc is equal to zero (e.g. events
1, 13 and 25) and the variation in E is only due to the propagation
of Ab and Vdep uncertainty (Eq. (2.4)), namely CVE ≃ 7.1%. For
these 14 events, such a small variation in E results in the constant
computation of the same (I,D) couple;

• despite CVc is not zero and the CVE is greater than 7.1% (e.g. event
28), the condition of Eq. (2.8) is satisfied, in all the 100 simulations,
considering always the same hyetograph time intervals. 34 events fall
into this condition.

For the 19 events that belong to the second category, the uncertainty in the
variables results in the computation of more (I,D) couples that, however,
are relatively close to the mean values: the I and D distributions are char-
acterised by a standard deviation much smaller than the mean.
The third category includes 17 events for which the uncertainty in the vari-
ables implies high values of CVD. This means that, for these events, the
number of time intervals needed to satisfy the condition of Eq. (2.8) varies
greatly with respect to the mean one: the variables uncertainty has a rel-
ative great impact on the computation of D. Moreover, the highest values
of CVD highlight the presence of extremes in the D distribution, namely of
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Event CVD CVI CVc CVE Event CVD CVI CVc CVE
1 0.0 0.0 0.0 7.1 43 0.0 0.0 0.0 7.1
2 34.6 5.5 11.6 18.3 44 0.0 0.0 1.0 15.0
3 34.2 7.9 13.3 30.7 45 25.3 10.0 12.5 22.8
4 23.0 6.2 11.1 17.8 46 0.0 0.0 0.0 7.1
5 7.1 1.5 9.1 12.6 47 16.7 4.9 9.0 12.1
6 0.0 0.0 0.0 7.1 48 0.0 0.0 10.8 16.4
7 39.6 13.5 13.8 36.3 49 15.9 4.3 9.7 13.1
8 26.4 2.8 12.0 20.9 50 39.9 11.0 14.3 42.4
9 0.0 0.0 0.0 7.1 51 25.1 8.6 11.2 18.9
10 26.6 15.7 10.3 14.7 52 0.0 0.0 9.6 63.1
11 0.0 0.0 12.9 27.0 53 35.4 1.6 10.1 14.5
12 0.0 0.0 11.6 55.9 54 0.0 0.0 0.0 7.2
13 0.0 0.0 0.0 7.1 55 22.6 10.6 9.3 12.7
14 15.6 2.6 9.5 13.2 56 0.0 0.0 0.0 7.1
15 0.0 0.0 11.2 17.8 57 0.0 0.0 10.6 15.6
16 0.0 0.0 0.0 7.1 58 157.5 14.9 14.1 35.4
17 0.0 0.0 13.3 34.6 59 0.0 0.0 10.6 15.9
18 0.0 0.0 12.7 25.0 60 0.0 0.0 0.4 8.8
19 13.3 3.0 10.4 15.1 61 16.1 4.4 9.5 13.4
20 41.7 4.7 7.1 54.9 62 0.0 0.0 11.1 18.1
21 0.0 0.0 8.8 11.7 63 0.0 0.0 7.0 55.5
22 0.0 0.0 11.0 17.8 64 7.8 1.0 0.0 7.1
23 0.0 0.0 9.3 13.0 65 0.0 0.0 14.0 43.5
24 17.3 5.7 9.5 13.3 66 0.0 0.0 10.0 14.4
25 0.0 0.0 0.0 7.1 67 110.1 28.2 13.6 35.5
26 62.4 16.9 14.1 44.8 68 32.9 4.6 13.8 35.9
27 72.1 25.7 12.9 26.3 69 37.1 12.3 13.9 36.2
28 0.0 0.0 12.9 26.2 70 0.0 0.0 13.7 36.1
29 0.0 0.0 12.6 26.6 71 0.0 0.0 6.6 54.8
30 0.0 0.0 12.5 26.9 72 0.0 0.0 12.9 54.7
31 0.0 0.0 0.0 7.1 73 16.0 0.6 12.0 21.6
32 0.0 0.0 11.3 18.4 74 0.0 0.0 13.2 29.5
33 13.8 4.1 11.2 17.2 75 0.0 0.0 13.2 31.4
34 30.9 9.7 13.1 28.1 76 37.7 18.9 8.9 12.3
35 24.8 22.7 9.8 14.2 77 31.1 9.4 9.5 13.1
36 0.0 0.0 7.9 58.4 78 0.0 0.0 14.2 38.7
37 0.0 0.0 3.6 34.2 79 0.0 0.0 13.0 26.4
38 74.7 30.0 10.1 14.4 80 25.2 9.4 13.4 31.1
39 0.0 0.0 0.0 7.1 81 0.0 0.0 9.8 64.6
40 0.0 0.0 0.0 7.1 82 0.0 0.0 0.7 10.1
41 35.3 15.1 12.4 24.7 83 0.0 0.0 11.4 18.4
42 0.0 0.0 13.3 30.0 84 16.1 1.0 9.4 13.2

Table 2.2: Coefficients of variation of the event characteristics related to each debris
flow expressed as a percentage. CVD is the coefficient of variation of the duration
distribution, CVI of the intensity distribution, CVc of the concentration distribution
and CVE of the rainfall volume per unit area distribution.



2.5 Results and discussion 55

0.
00

0.
25

0.
50

0.
75

1.
00

05101520

21
76
47
5

55
23
77
14
84
61
24
49
35
66
53
38
10
19
57
59
48
33
4

22
15
62
32
83
2

51
8

73
45
41
18
27
28
29
30
11
79
34
74
42
3

80
75
17
69
68
7

70
67
58
78
50
65
26
72
12
81
52
36
20
63
71
37
44
82
6

60
31
56
54
39
46
64
1

43
9

25
40
13
16

E
ve

nt

i f , c

CVc (%)

i  f
,r

c r C
V

c

F
ig
u
re

2
.4
:

Re
fe

re
nc

e
slo

pe
i f

,r
,r

ef
er

en
ce

co
nc

en
tr

at
io

n
c r

an
d
C
V
c

of
ea

ch
ev

en
t.

Th
e

ev
en

ts
ha

ve
be

en
so

rt
ed

wi
th

in
cr

ea
sin

g
i f

,r
.



56 2 Uncertainty analysis

0

10

20

30

0 1 2 3
D (h)

C
ou

nt

(a)

D mean

D extreme

0

20

40

19:00 20:00 21:00 22:00 23:00 00:00
Time

In
te

ns
ity

 (
m

m
 h

 −
1 )

(b)

Figure 2.5: (a) Duration distribution histogram and (b) hyetograph of the event
58. The histogram shows the presence of an extreme isolated from the mass of the
distribution. This extreme (D = 3.75 h) is shown in the hyetograph and compared
with the mean (D = 0.32 h).

values of D very distant from the mean. Indeed, CV is very sensitive to the
extremes (e.g. Arachchige et al., 2020, Chau et al., 2005), mainly if they are
located in the right-hand tail of the distribution (Bendel et al., 1989). For
instance, the effect of the extremes on the CVD is evident in event 58: the
D distribution of this event has an extreme much greater than the mean
(Fig. 2.5(a)). This is due to the presence of zero-intensity temporal instants
in the middle of the hyetograph that must be considered (for two out of a
hundred samples) to reach the highest values of E (Fig. 2.5(b)). This re-
sults in a high value of the standard deviation with respect to the mean,
namely a high value of the CVD. It is worth noting that the effects of this
condition on I are smaller thanks to the mean carried out to obtain this
event characteristic.

Regarding the absolute variability, the (I,D) couples variability ranges,
in the ID plane, allow us to get an idea of how variable an event as a whole
is and to presume how this variability may affect the threshold estimate.
Consistently with the relative variability, the events with CVD = CVI = 0%
have also zero-length absolute variability ranges. The non-zero ranges are
shown in Fig. 2.6. As evident, the length of the ranges varies greatly de-
pending on the event. In term of intensity, the maximum length is 66.21
mm h−1 and it is reached with the event 67 while, for the duration, the
event 38 is characterised by the maximum length that is equal to 5.25 h.
Besides, the length of the range for D is less than 1 h in all but 8 events
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while for I it is less than 20 mm h−1 in all but 7 events. Moreover, in most
cases, the mean is located neither vertically nor horizontally in the middle of
the variability ranges, namely the D and I distributions are asymmetrical.
To quantify their asymmetry, the related skewness SKD and SKI are com-
puted for each event and shown in Fig. 2.7. The events with zero variability
are characterised by SKD = 0 and SKI = 0. Moreover, in most cases, SKD

is positive while SKI is negative: the longest tail of the distributions of D
and I tends to be located on the right and the left of the mean respectively.
This suggests that, given an event, the majority of the D values are char-
acterized by duration shorter than the mean and the greatest contribution
to the absolute variability is given by the longest durations (i.e. by the D
distribution right extremes) as in event 38. Consistently, comparing Fig.
2.7 and Table 2.2, the events with the highest positive SKD are the events
with the highest CVD (e.g. events 58 and 67). Instead, given an event, the
concentration of the intensity values is greater towards the highest values
and the smallest intensities (i.e. the I distribution left extremes) mostly
contribute to the absolute variability (e.g. event 20 and 73). However, as
said before, the I extremes have a slight impact on the absolute variabil-
ity of I thanks to the mean procedure necessary for its computation that
reduces the interval ranges.

2.5.2 Correlation between the D and I absolute variability and
some event features

Despite the specificity of each considered event, it’s possible to identify some
event features that are correlated with the D and I absolute variability.
It is worth noting that, in general, correlation does not imply causation
(Wiedermann and Von Eye, 2016) but it is a starting point to understand
if causality between the variables can be established.

We define Eav as the rainfall volume per unit area available in the “main
part of the hyetograph”, namely the integral of the rainfall intensity on the
smallest time interval comprising the peak and included between two in-
stants with null intensities. We can then introduce the ratio Er/Eav. As
shown in Fig. 2.8, the absolute variability of D and Er/Eav are positive
correlated. A small value of Er/Eav means that the main part of the hyeto-
graph is amply able to provide Er (i.e. to satisfy the condition of Eq. (2.8)
in the reference conditions). This tends to avoid having to consider null in-
tervals to achieve the values of E resulting from the MC simulation, namely
to avoid D extremes. The opposite situation occurs if the ratio takes high
values.

Regarding the intensity, we define Imax as the hyetograph maximum
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Figure 2.6: Absolute variability in the (I,D) couples. The symbols are the mean
values and the horizontal and vertical lines are respectively the duration and intensity
variability ranges. To make the graph clearer, the events with ranges equal to zero
have not been represented and the linear scale is used for both axis.
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Figure 2.8: Positive correlation between the absolute variability of D and Er/Eav,
where Eav is the rainfall volume per unit area available in the main part of the hyeto-
graph. Spearman correlation coefficient equals to 0.82 (p < 2.2×10−16). To make the
graph clearer, the events with absolute variability of D equals to zero are represented
with the same symbol.

intensity and Imean as the mean intensity of the main part of the hyetograph
for each event. The ratio Imax/Imean provides a quantitative measure of the
shape of the event hyetograph or, equivalently, of how impulsive the event is.
As shown in Fig. 2.9, a positive correlation subsists between the non-zero
absolute variability of I and Imax/Imean. If the shape of the hyetograph
around the peak is flat, and the ratio Imax/Imean is low, the variability of
I, connected to the variability of D, is small since the average procedure,
necessary to compute I, involves similar intensities intervals. The opposite
occurs when the event is impulsive and the ratio is high. This consideration
is valid only for events with non-zero absolute variability in I and D and
tends to explain why some events with high variability in D have small
variability in I (e.g. event 26).
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Figure 2.9: Positive correlation between the non-null absolute variability of I and
Imax/Imean. Imax is the maximum intensity and Imean is the mean intensity of
the main part of the hyetograph. Spearman correlation coefficient equals to 0.48
(p = 0.0035).
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Coefficient Mean Standard deviation CV (%) 95% mean confidence interval
a 6.0056 0.3882 6.46 0.0108
b 0.6834 0.0199 2.91 0.0006

Table 2.3: Mean, standard deviation, variation coefficient CV and mean 95% confi-
dence interval CI of the coefficients a and b of Eq. (2.12), computed performing the
second MC simulation.
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Figure 2.10: Values a and b of Eq. (2.12) obtained performing 5000 MC simulations:
(a) scatter-plot and histogram and (b) 3D histogram

2.5.3 Variability of the threshold

The result of the second MC simulation is 5000 (a, b) couples. The main
statistical quantities of their distributions are given in Table 2.3. The rel-
ative variability is quantified through the CV that is equal to 6.46% for
a and 2.91% for b. The low spread nature of a and b, highlighted by the
small CV values, is also evident in the scatter plot and in the 3D histogram,
respectively shown in Fig. 2.10(a) and 2.10(b). In addition, to analyse the
absolute variability of the I-D threshold relation, the intensity values for
each (a, b) couple are calculated for D values spanning from five minutes to
six hours with a five minutes time step. In this way, for each duration, we
obtain an intensity distribution composed of 5000 samples. Then, the 2.5
and 97.5 percentiles of these distributions are chosen as upper and lower
bounds of the threshold absolute variability. The result is shown in Fig.
2.11. According to the substantially symmetrical distributions of a and b
(Fig. 2.10(a)), the threshold computed with the mean values of a and b
(Table 2.3) is essentially equidistant from the lower and upper bounds. The
variability bandwidth decreases monotonically by increasing the duration
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Figure 2.11: (a) Log-log and (b) semi-log plot of the threshold absolute variability.
The blue line is the rainfall threshold obtained using the mean value of a and b (Table
2.3). The shaded area represents the threshold absolute variability whose upper and
lower bounds have been computed considering the 2.5 and 97.5 percentiles of the
intensity distributions for fixed durations.

and varies between 5.61 mm h−1 and 0.64 mm h−1.

Hence, both the relative and the absolute variability highlight that the
effect of the uncertainty in the variables on the threshold estimate is small.
This is mainly due to the zero variability in the D and I distributions of
48 events out of 84: since the (I,D) points of these events are located in
the same positions in all the 5000 MC simulations, they propagate zero
uncertainty in the threshold computation.

2.5.4 Reference values versus MC means

Finally, a comparison between the results of the first and second MC simu-
lation and the reference values is carried out. In particular, we compare:

• the means of the D and I distributions (Fig. 2.6) to the corresponding
reference ones, for each event;

• the mean threshold (i.e. threshold computed with the mean values of
a and b) and the threshold absolute variability bounds (Fig. 2.11) to
the reference threshold (i.e. Eq. (2.13)).

As regards D and I, according to Marra (2019), the bias of the duration
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Figure 2.12: Bias of (a) duration BD and (b) intensity BI between the mean values
of the D and I distributions obtained performing the first MC simulation and the
corresponding reference values for each event.

BD and the intensity BI are computed for each event as:

BD =
Dm

Dr
BI =

Im
Ir

(2.14)

where the subscripts m represent the mean of the MC D and I distribu-
tions. The result is shown in Fig. 2.12: BD deviates between 0.8 and 1.5
(Fig. 2.12(a)) while BI between 0.86 and 1.15 (Fig. 2.12(b)). Consistently
with the variability analysis described in Sect. 2.5.1, most events (48) are
characterised by BD = BI = 1. This means that for these zero-variability
events, the reference duration and intensity are exactly the MC mean val-
ues of I and D, namely the only MC (I,D) couple. Moreover, most of the
remaining events have BD > 1 and BI < 1. This signifies that the MC
(I,D) mean couples tend to be located lower and more to the right than
the reference ones in the log-log ID plane.

Regarding the threshold, the differences between the MC intensities
IMC,k, where k stands for mean, upper bound and lower bound, and the
reference threshold ones It,r are carried out for the same durations used to
define the absolute variability of the threshold:

Diff (k,D) = IMC,k (D)− It,r (D) ,

k = mean, upper bound, lower bound

The result is shown in Fig. 2.13(a). For almost all durations, the intensities
of the mean threshold are slightly lower than the reference threshold ones:
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Figure 2.13: (a) Difference between the MC intensities (upper bound, lower bound and
mean) and the reference threshold ones as a function of the duration; (b) percentage
change of the MC intensities respect the reference threshold ones, as a function of the
duration.

a positive difference occurs only for the first time interval. Consistently
with the obtained a and b mean values (Table 2.3) and the BD and BI

trends, in the log-log ID plane the mean threshold is respectively slightly
more downward translated and clockwise rotated than the reference one.
Instead, the upper and lower bounds are respectively always higher and
lower than the reference threshold.

Subsequently, the percentage changes, defined as:

% change (k,D) =

(︃
Diff (k,D)

It,r (D)

)︃
· 100,

k = mean, upper bound, lower bound

are computed to figure out how much the second MC outcomes deviate
relatively from the reference threshold. The percentage changes are plotted
in Figure 2.13(b): the mean threshold deviates between 0.14% and −5.44%,
the upper bound between 8.06% and 12.31% and the lower bound between
−8.34% and −22.94% from the reference one.

It can therefore be generally stated that the outcomes of the uncertainty
analyses, both (I,D) couples and threshold estimate, are consistent with the
reference ones. Coherently with the previous analysis, also in this compari-
son, the duration is the quantity with the highest bias values. However, the
mean threshold and the reference one are very close, pointing out the small
effects of the differences between Dm and Dr on the threshold computation.
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2.5.5 Further elements of uncertainty

In the calibration of the BDA-based threshold and in the assumptions of
the developed method used to assess the uncertainty, it is possible to iden-
tify some elements that may introduce further uncertainty, beyond that
considered in this analysis, in the calculation of the event characteristics
and, consequently, in the estimate of the threshold. Firstly, the variability
ranges and the probability distributions of the parameters and data, namely
the uncertainty characterisation of the variables, are uncertain. Secondly,
the equations of the BDA may be uncertain since they are based on some
simplifications and hypothesis. Finally, the radar data may be affected by
uncertainty due to other sources of error, beyond the beam shielding one
(considered in this analysis), such as signal attenuation in heavy rain or wet
radome attenuation (Marra et al., 2014). Nevertheless, at the present state
of the research, it is not possible to assess the impact of these uncertainties
on the event characteristics estimate and further study is required.

2.6 Conclusions
This study has aimed to assess the effects of the uncertainty in the phys-
ical and morphological parameters and data on the BDA-based threshold
calibration to evaluate the method robustness. To that end, a suitable
methodology composed of two MC cascade simulations has been developed
and applied to a specific study area and dataset. The first MC simulation
has allowed examining the uncertainty propagation in the event character-
istics estimate. The results have highlighted that most of the events (i.e 48
events out of 84) are characterised by zero variability in the estimation of the
(I,D) couples while the duration and the intensity related to the remaining
events are affected by variability, that can be low or high depending on the
event. Overall, the duration has found to be the most variable outcome in
relative term while I, thanks to the average procedure, has a lower relative
variability. In absolute term, the variability of the (I,D) couples differs
greatly between the events and the D and I distributions tend to be skewed
to the right and left respectively. Moreover, considering the mean values of
the events with non-zero variability (36 events out of 84), the uncertainty in
the variables tends to provide slightly longer durations and slightly smaller
intensities with respect to the reference ones. Notwithstanding, the second
MC simulation has shown that the threshold computation is affected by
small variability. The low dispersion of the threshold coefficients is mainly
due to the 48 events with zero variability. As a result, the BDA method, ap-
plied to the considered dataset, can be described as robust since it provides
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a calibrated threshold low sensitive to the considered uncertainty in the pa-
rameters and data. This is also highlighted from the consistency between
the uncertainty analysis mean threshold and the reference one.

Overall, the results of this analysis can be useful to calibrate a BDA-
based threshold for a different study area since the investigation has high-
lighted the main elements that could undermine the BDA robustness. In
particular, given a debris flow and the related rainfall event, it was noted
that some event features are correlated with the variability of D and I. The
percentage of the needed rainfall volume and the available one in the main
part of the hyetograph is positive correlated with the absolute variability of
D. Moreover, the shape of the main part of the hyetograph, described by
the ratio between the maximum and the mean intensity, is positive corre-
lated with the non-null absolute variability of I. Therefore, given an event,
these trends can be used to presume the possible variability in the estimate
of D and I, without carrying out a specific uncertainty analysis. In other
words, if an event is characterised by (i) low availability of rainfall volume
in the main part of the hyetograph with respect to the needed one and (ii)
a peak intensity much greater than the mean one, variations in the parame-
ters and data is likely to result in high variability in D and I estimate. The
presence of many events of this type could undermine the BDA robustness.
Therefore, in these cases, it is advisable to put care in the estimate of the
parameters and data. Besides, given an event, further elements likely affect-
ing the estimate of event characteristics have been highlighted in this study:
(i) the variability ranges and the probability distributions of the parame-
ters and data, (ii) the equations constituting the BDA model and (iii) radar
data. These elements can be affected by uncertainty and impact the event
characteristics estimate. The uncertainty analysis performed in this study
does not provide quantitative information on these impacts. Further anal-
ysis will assess how these three elements affect the (I,D) couple estimate
and, consequently, the threshold calibration.

Moreover, the developed method, composed of two cascade MC simu-
lations, can be applied to assess the uncertainty related to other threshold
calibration approaches whose event characteristics estimate is based not
only on the hyetograph but also on other variables (e.g. the one proposed
by Zhang et al. (2020)). Indeed, the developed method allows considering
the entire range of uncertainty of the variables and, therefore, avoiding the
analysis by scenarios, quite widespread in the literature for the uncertainty
analysis of rainfall thresholds (e.g. Nikolopoulos et al., 2014, Peres et al.,
2018). Analysing by scenarios may not be suitable if the uncertain param-
eters have a continuous range of variability. Indeed, a low number of input
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values combinations may not provide an overall assessment of the variability
of the outputs.

Finally, it is worth noting that the results of this analysis are not useful
to check the forecast capability of the threshold. Indeed, the variability in
the threshold estimate due to the uncertainty of the inputs is not related to
its forecast effectiveness but only to its robustness. The threshold forecast
capability can be proved only by performing a proper validation analysis,
essential to make this tool operational. Since the calibration method applied
to the specific study area is proved to be robust, further analysis will assess
the forecast capability of the threshold, developing an appropriate validation
method.



Chapter 3

Validation and potential
forecast use of a debris-flow
rainfall threshold calibrated
with the Backward Dynamical
Approach

3.1 Introduction

Debris flows are usually rainfall-induced phenomena that may occur in
mountain regions and have serious repercussions on the society and econ-
omy of affected territories (e.g. Dowling and Santi, 2014, Jakob et al., 2012c,
Jalayer et al., 2018). For this reason, the reduction of the debris-flows risk
to an acceptable residual level is crucial and it can be pursued through
both structural and non-structural mitigation strategies. In this context,
an early warning system (EWS) is a non-structural strategy that aims to
reduce vulnerability by allowing the implementation of civil protection ac-
tivities (e.g. evacuation) before debris flow occurrence. Since rainfall is one
of the main triggering factors for debris flows occurrence, EWS for these
phenomena are usually based on rainfall thresholds (e.g. Pan et al., 2018,
Ponziani et al., 2020). Indeed, rainfall thresholds are mostly power-law re-
lations that define the critical rainfall conditions above which it is likely
to observe debris flow (e.g. Caine, 1980, Cannon et al., 2011, Giannecchini
et al., 2016, Huang et al., 2019, Jakob et al., 2012b, Nikolopoulos et al., 2014,
Staley et al., 2013). Generally, the rainfall physical quantities employed to
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describe a rainfall event and used in the computation of the thresholds are
its duration and its average intensity or cumulative precipitation (Segoni
et al., 2018) and the threshold is estimated (i.e. calibrated) by applying
empirical or physical approaches (Nikolopoulos et al., 2014).

The reliability of a rainfall threshold is crucial for its operational use and,
to assess it, a proper validation procedure is required (Gariano et al., 2015).
The validation aims to verify the capability of a calibrated threshold to clas-
sify some physical quantities related to rainfall events that resulted (or not)
in debris flow and can be performed considering different approaches. The
validation approaches mainly differ in terms of rainfall events considered,
namely only rainfall events that resulted in a hazardous phenomenon (e.g.
Gioia et al., 2015) or all rainfall events recorded during a reference period
(e.g. Brunetti et al., 2018, Gariano et al., 2015), and strategies and param-
eters used to quantify the threshold performance (e.g. receiver operating
characteristic curve, skill scores).

However, as pointed out by Segoni et al. (2018), the threshold relia-
bility is rarely evaluated after the calibration and this strongly limits its
operational use (Leonarduzzi et al., 2017). Furthermore, in many works
in which the validation is performed, the reliability is estimated using the
same dataset employed for the threshold calibration and/or a very small
number of events (Segoni et al., 2018). This may lead to a no trustworthy
performance estimate.

In Rosatti et al. (2019) a stony debris flow rainfall threshold has been cal-
ibrated, for a study area, with the Backward Dynamical Approach (BDA).
The BDA is a physical-based method to estimate stony debris flow rainfall
thresholds in which the rainfall event duration D and average intensity I
related to an occurred debris flow are computed by combining the forcing
and the dynamic of the phenomenon. In particular, the rainfall volume and
the corresponding rainfall conditions strictly related to a debris flow are
estimated based on the volume of the sediments, surveyed after the event
occurrence, through a simplified description of the phenomenon dynamic.
The robustness of the BDA method in calibrating a rainfall threshold has
been analyzed in Martinengo et al. (2021b).

This work aims to assess the reliability of the rainfall threshold calibrated
in Rosatti et al. (2019). To this aim, we carry out a validation process com-
posed of two different approaches. The first approach is coherent to the
calibration procedure and considers only rainfall events that resulted in de-
bris flows. This approach aims to check the reliability of the threshold in the
identification of the I − D plane area where the probability of debris-flow
occurrence is significant. The second validation approach is introduced to
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perform a more comprehensive and more robust threshold reliability assess-
ment. In this approach, all rainfall events that occurred during a reference
period are taken into account (Brunetti et al., 2018, Gariano et al., 2015)
and a proper method to compute the related rainfall conditions is devel-
oped. This approach aims to assess the reliability of the threshold in terms
of its ability to correctly classify the rainfall events that resulted or not in
a debris flow. Both approaches are applied considering a proper dataset
related to a study area, contained in the one used for calibration, and a
reference period not used previously.

The paper is organised as follow. In Section 3.2 we briefly describe
the BDA method to provide an overview of the assumptions on which the
threshold calibration is based in Rosatti et al. (2019). The considered study
area and the available rainfall and debris-flow data are described in Section
3.3 and the two validation approaches adopted are presented in Section 3.4.
The obtained results are presented in Section 3.5 while in Section 3.6 we
discuss them focusing on the resulting threshold reliability, the consistency
between the two validation approaches and the potential forecasting use of
the threshold. Finally, the key findings and the possible further analysis are
summarized in Section 3.7.

3.2 The Backward Dynamical Approach

The Backward Dynamical Approach (BDA) is the method for calibrating
stony debris flow rainfall threshold introduced by Rosatti et al. (2019). It
allows you to estimate the rainfall durationD and average intensity I strictly
related to a surveyed debris flow deposit, considering both the hyetograph
and the dynamic of the occurred event.

According to this approach, the rainfall volume V DF
r related to a de-

bris flow is defined as the water quantity required to carry downstream, as
a mixture, the surveyed deposited volume Vdep. Following this definition
and describing the debris-flow dynamic with a simplified global volumetric
approach (see Rosatti et al., 2019, for details), V DF

r can be written as:

V DF
r =

cb − c

c
Vdep (3.1)

in which cb and c are respectively the maximum (volumetric) bed concen-
tration (Takahashi, 2014) and the solid reference concentration of the con-
sidered debris flow. In the BDA method, c is computed according to the
expression proposed in Takahashi (1978):
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c = min

(︃
if

∆(tanψ − if )
, 0.9 cb

)︃
(3.2)

in which if is the bed slope in a significant reach (see sec. 3.4.1 for
a detailed definition), ∆ is the relative submerged density, equal to (ρs −
ρw)/ρw where ρs and ρw are, respectively, the solid and the water density
and, finally, ψ is the sediments dynamic friction angle.

A quantity derived from (3.1) is E, defined as the rainfall volume per
unit area of the basin where the debris flow occurred:

E =
1

Ab

cb − c

c
Vdep (3.3)

This quantity can also be identified within the hyetograph of the asso-
ciated phenomenon by integrating the measured rainfall intensity i(t) over
a suitable time interval:

E =

∫︂ t2

t1

i(t) dt (3.4)

where the extremes of integration, t1 and t2, are assumed to be the
start and end times of the debris-flow duration. In the absence of detailed
information about these times, the BDA method assumes that they can
be expressed as a function of the event peak intensity instant tmax in the
following way: {︄

t1 = tmax −∆t1

t2 = tmax +∆t2
(3.5)

where ∆t1 and ∆t2 are unknown intervals that can be determined by
equating the right-hand sides of equations (3.3) and (3.4). Nevertheless,
since the rainfall intensity i(t) is a piece-wise constant function of the mea-
surement time interval δt, the equality cannot be satisfied exactly. There-
fore, setting ∆t1 = n1δt and ∆t2 = n2δt, these intervals are calculated
increasing n1 and n2 until:∫︂ tmax+n2δt

tmax−n1δt
i(t) dt ≥ 1

Ab

cb − c

c
Vdep (3.6)

The reader is referred to Rosatti et al. (2019) and Martinengo et al.
(2021b) for more details on the estimate of ∆t1 and ∆t2. Once ∆t1 and ∆t2
are computed, the duration D and the average intensity I are defined as:

D = ∆t1 +∆t2 (3.7)
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I =
E

D
(3.8)

Finally, the I −D threshold can be estimated considering all the (I,D)
couples related to the available debris-flow data and applying the frequentist
method (e.g. Brunetti et al., 2010, Peruccacci et al., 2012). For more details
on threshold calibration, we refer again the reader to Rosatti et al. (2019)
and Martinengo et al. (2021b).

3.3 Study area and data

In the calibration work (Rosatti et al., 2019), and the related uncertainty
analysis (Martinengo et al., 2021b), the study area considered is the Trentino-
Alto Adige/Südtirol region (Italy) (Figure 3.1(a)) while the debris flows oc-
curred between 2006 and 2016 in this area are considered as the referring
dataset. Based on these data and assuming a 5% non-exceedance prob-
ability, the following BDA-based threshold is calibrated for the analyzed
region:

I = 6.2D−0.67 (3.9)

In this work, the study area used for the threshold validation is a part
of the previous study area, namely the Autonomous Province of Bolzano,
(Figure 3.1(a)) while the reference period runs from May to September
2017, a period that is not included in the calibration one. During this
period, the regional agency has reported 108 debris flows occurred in the
study area (Figure 3.1(b)). As highlighted from Figure 3.2(a), most of them
occurred in August while no events were recorded in May and September.
In particular, more than a third of the debris flows (i.e. 38) occurred on the
same day, namely on the 5th of August, due to a very intense storm that
mainly affected the Alta Val Pusteria, the easternmost part of the study
area (notice the cluster of events in this zone).

The deposited volume of the surveyed events ranges between 30 m3 and
100000 m3 with a prevalence (third quartile) of volumes smaller than 8000
m3 (Figure 3.2(b)).

As for the precipitation, the available rainfall data derives from a C-band
Doppler weather radar located in the study area, over the Mt Macaion at
1866 m a.s.l. (Figure 3.1(b)). This radar provides the reflectivity Z for an
area of 240 km of diameter, over a grid with 500 m pixel size, with a time
step of 5 minutes. The precipitation is then obtained by converting the
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Figure 3.1: (a) Location of Trentino-Alto Adige/Südtirol region (Italy) and Au-
tonomous Province of Bolzano; (b) position, within the study area, of the Macaion
radar and the reported debris-flow events for the period May-September 2017.

reflectivity in rainfall intensity with the Marshall-Palmer relationship (e.g.
Marshall and Palmer, 1948, Uijlenhoet, 2001).

3.3.1 Data uncertainties

The sources of uncertainty that may affect the data used in this work are the
same as those highlighted in Martinengo et al. (2021b). The most significant
are the ones connected to the radar rainfall data, the BDA parameters, and
the regional agency’s debris-flow events report.

Regarding the radar data, these can be affected by different sources of
error such as beam shielding, attenuation of the signal in heavy precipita-
tion and attenuation due to wet radome (e.g. Marra et al., 2014). These
errors can result in unreliable estimates of the rainfall variables used in the
validation. Nevertheless, it is worth noting that, in general, the main aim
of a rainfall threshold is its use in a real-time operational EWS. In this
context, it is reasonable that the raw radar rainfall data are considered due
to the lack of time and data for the errors correction (Marra et al., 2014).

Moreover, uncertainty in data and parameters affects the BDA approach.
As highlighted in Martinengo et al. (2021b), this uncertainty, in most cases,
results in negligible effects on the estimate of the (I,D) couples computed
with the BDA. Therefore, in this work, the impact of data uncertainty on
the validation processes is neglected.



3.4 Method 75

0

20

40

60

MAY JUN JUL AUG SEP
Month of 2017

N
um

be
r 

of
 r

ep
or

te
d 

ev
en

ts
(a)

0

10

20

30

0 25000 50000 75000 100000

Deposited volume ( m3 )

F
re

qu
en

cy

(b)

Figure 3.2: (a) Number of debris flows reported for each month of the period May-
September 2017; (b) histogram of deposited volume values surveyed after the events.

Finally, the debris-flow event reports may be characterised by a lack
of information (e.g. a debris flow occurred but did not report) or errors.
As stressed in Gariano et al. (2015), the epistemic uncertainty due to the
degree of completeness and correctness of the report of a debris-flow event
can significantly affect the assessment of the threshold’s reliability. However,
this uncertainty is hardly quantifiable and, for this reason, it is neglected in
this analysis.

3.4 Method

To test the reliability of the calibrated threshold (Eq. (3.9)), we perform a
validation process based on two different approaches. The first one consists
in applying the same method used in the calibration, namely the BDA, to
compute the (I,D) couples related to rainfall events that resulted in debris
flows in a reference period not included in the calibration one. In this work,
we name this approach the BDA-based validation approach. Then, to obtain
a complete overview and a more robust result on the threshold reliability,
we use a second approach that considers all rainfall events that occurred
within a reference period (e.g. Brunetti et al., 2018, Gariano et al., 2015,
Peres and Cancelliere, 2014, Segoni et al., 2014). In this work, we name this
second approach the potential debris flows validation approach
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3.4.1 The BDA-based validation approach
This approach consists in the following steps:

• consider a set of debris flows, not included in the determination of
the threshold defined by Eq. (3.9), and evaluate the relevant (I,D)
couples by using the BDA method;

• place the obtained couples in the I − D plane and classify them ac-
cording to whether or not they exceed the threshold;

• choose an appropriate skill score based on the previous classification
and quantify the reliability of the threshold.

For the estimate of the (I −D) couple, we followed the BDA procedure
(Rosatti et al., 2019): the basin outlet is placed just upstream of the deposi-
tion zone and downstream of a creek segment characterised by a sufficiently
constant slope; in this way, Ab is computed and if is calculated as the aver-
age slope of the last 50 m of stream segment located upstream of the outlet.
Then, c is computed by using Eq. (3.2) and E by using Eq. (3.3) in which
Vdep is related to the considered debris flow. For what concerns the rainfall
event, the hyetograph i(t) pertaining to the analyzed debris flow is defined
as the average radar intensities, calculated instant by instant, over the basin
area. Finally, E is obtained by solving Eq. (3.6) and the relevant (I,D)
couple is calculated with Eqs. (3.7) and (3.8).

As for the classification, the threshold acts as a binary classifier of the
rainfall events (see e.g. Brunetti et al., 2018, Gariano et al., 2015, Staley
et al., 2013). Accordingly, each rainfall event is categorised as:

• True Positive (TP), if the related (I,D) couple is located over the
threshold;

• False Negative (FN), if the related (I,D) couple is located under the
threshold.

These combinations are summarized in Table 3.1.
Finally, the Probability Of Detection POD (e.g. Doswell III et al., 1990,

Gariano et al., 2015, Kharin and Zwiers, 2003) is chosen as a suitable skill
score to assess the threshold performance. The POD (also called Hit Rate)
is defined, in this case, as the ratio between the number of rainfall events
exceeding the threshold and the total number of observed debris flows:

POD =
TP

TP + FN
(3.10)

POD varies between 0 and 1 and its optimal value is equal to 1.
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Debris flow occurred

Threshold exceeded True Positive
(TP)

Threshold not exceeded False Negative
(FN)

Table 3.1: Two possible combinations in which the rainfall events are classified in the
BDA-based validation approach.

3.4.2 The potential debris flows validation approach

As evident from Sections 3.2 and 3.4.1, in the I −D plane, a (I,D) couple
refers to the rainfall intensity and duration strictly relevant to a debris flow
event, i.e. only the portion of the rainfall event that is responsible for the
occurrence. As a result, it appears that representing in this plane a rainfall
event that did not result in a debris flow and, consequently, verifying the
threshold’s ability to classify (in some way) this type of event is impossible.
To overcome this limit, we introduce the concept of “potential debris flows”
associated with a rainfall event, which allows us to represent a given rainfall
event in the I −D plane, and a criterion to classify this representation as
above or below the threshold.

First of all, given a catchment, the hyetograph of the considered period is
divided into independent rainfall events using the critical duration method
(CDM) (Restrepo-Posada and Eagleson, 1982) and considering the monthly
values of critical durations calculated in Rosatti et al. (2019).

Then, given the hyetograph of an independent rainfall event, according
to the definition of intensity and duration of a debris flow given in Section
3.2, a set of potential debris flows can be identified starting from tmax and
fixing a set of durations. Since i(t) is a piece-wise constant function of δt,
the set is finite. Moreover, since the duration of most debris flows in the
study area is less than an hour (see Rosatti et al., 2019) and δt = 5 min, we
define the set of potential debris flows associated with a given rainfall event
as the set of couples (Ik, Dk) with k = 1, . . . , 12, where Dk = kδt and Ik
is the relevant intensity obtained according to a discrete expression of Eq.
(3.4). Labelling the time interval exhibiting the maximum intensity with 0
and numbering the intervals so that positive values indicate instants after
the peak while negative values are associated with instants before the peak
(Figure 3.3) and indicating with ik the intensity associated with the kth

interval, we employ the following recursive formula to obtain the intensities
of the set:



78 3 Validation and potential forecast use
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Figure 3.3: Example of an independent rainfall event with the discrete reference
system and the related enumeration of the intensity intervals. For this example, the
order of choice of intervals is: [0, 1, 2, 3, 4, 5, 6,−1, 7,−2,−3, 8]

{︄
I1 = i0δt

K = [−1, 1]⎧⎪⎪⎪⎨⎪⎪⎪⎩
In =

(n− 1) In−1 +max
[︁
iK(1), iK(2)

]︁
δt

n
loc = maxloc

[︁
iK(1), iK(2)

]︁
n ∈ [2, . . . , 12]

K(loc) = K(loc) + sign(K(loc))

(3.11)

where the function maxloc gives the position of the maximum value
(namely, 1 or 2) in the relevant vector, while the function sign gives the value
±1, depending on the sign of the argument. Moreover K(·) indicates the
elements in position (·) of the vector K. On this method, any independent
rainfall event can be represented in the I −D plane by means of the twelve
points defining the relevant set of potential debris flows (Figure 3.4).

The location of the relevant set with regard to the threshold can be used
as a criterion to classify the event as a whole as over or under the threshold.
We consider 12 classification methods based on the number of couples in
the set located under the threshold, and we labelled each method with this
number. For example, the classification method 1 considers a rainfall event
as under the threshold if at least one of the relevant (Ik, Dk) couples is
located under the threshold in the I −D plane.
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Figure 3.4: Example of an independent rainfall event described according to the
potential debris flow validation approach. (a) The hyetogrpah of the considered event
and (b) the 12 (Ik, Dk) couples that represent the set of potential debris flows related
to the rainfall event.

According to a given classification method, a rainfall event that resulted
in a debris flow is categorized as:

• True Positive (TP), if the event, as a whole, is over the threshold;

• False Positive (FP), if the event, as a whole, is under the threshold;

Instead, a rainfall event that is not related to an observed debris flow is
categorized as:

• False Positive (FP), if the rainfall event, as a whole, is classified over
the threshold;

• True Negative (TN), if the rainfall event, as a whole, is classified under
the threshold;

These four possible combinations result in a classical contingency table (e.g.
Fagerland et al., 2017, Wilks, 2011), reported in Table 3.2, for each classi-
fication method.

Once the contingencies are calculated, the reliability of the threshold is
estimated with proper skill scores for each classification method. In addition
to the POD (Eq. (3.10)), we introduce:

• Probability Of False Detection POFD (also called False Alarm Rate)
(e.g. Barnes et al., 2009, Jolliffe and Stephenson, 2012, Peres and
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Debris flow occurred Debris flow not occurred

Threshold exceeded True Positive
(TP)

False Positive
(FP)

Threshold not exceeded False Negative
(FN)

True Negative
(TN)

Table 3.2: Contingency table highlighting the four possible combinations in which the
rainfall events are classified according to the potential debris flows approach.

Cancelliere, 2021, Wilks, 2011) that quantifies the capability of the
threshold in classifying the rainfall events that did not result in a
debris flow:

POFD =
FP

FP + TN
(3.12)

POFD varies between 0 and 1 and its optimal value is equal to 0.

• True Skill Statistic TSS (also called Hanssen & Kuipers discriminant
(Hanssen and Kuipers, 1965) or Peirce Skill Score (Peirce, 1884)) that
combines correct and wrong classifications considering all the contin-
gencies (e.g. Hirschberg et al., 2021, Leonarduzzi et al., 2017, Peres
and Cancelliere, 2021):

TSS =
TP

TP + FN
− FP

FP + TN
= POD − POFD (3.13)

TSS varies between −1 and 1 and its optimal value is equal to 1.

3.5 Results

3.5.1 BDA-based validation approach

For the application to the study case, we consider as the set of events only
those debris flows described in Section 3.3 that are suitable for analysis using
the BDA approach, i.e., only those for which the following information is
available: (i) the location of the deposition zone, (ii) Vdep that is assumed
it must be greater than 100 m3 for the analysis to make sense and (iii) the
rainfall data when the event occurred. The resulting set is composed of 45
of the 108 reported events. Figure 3.5 shows the spatial distribution of the
considered events along with the relevant deposited volume sizes.
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Figure 3.5: Location of the debris flows used for the BDA-based validation approach.
The dot size is a function of the value of the surveyed deposited volume.

Table 3.3 summarizes the main morphological and dynamical-related
quantities of the set in terms of the first and third quartile and median
value. As evident, the analyzed debris flows occurred in small catchments
having an area Ab mainly lower than 3.4 km2. The bed slopes if , estimated
just upstream of the deposition areas, range between 0.17 and 0.28 for 50%
of the considered debris flows while the reference concentrations c are pre-
dominantly less than 0.39. Finally, the required rainfall volume V DF

r is the
quantity characterised by the widest range of variability, mainly due to the
wide variability range of Vdep of the considered debris flows (Figure 3.5).

The (I,D) couples related to the analyzed debris flows are shown in Fig-
ure 3.6. Coherently with the calibration analysis, most of the rainfall events
are characterised by D < 1 h (Rosatti et al., 2019). This further confirms
the plausibility of the predefined durations considered in the potential de-
bris flow validation approach. Overall, the maximum values of D and I are
respectively equal to about 5 h and 118 mm/h while the minimum values
are 5 minutes and about 7 mm/h. Regarding the positions of the (I,D)
couples with respect to the calibrated threshold (Eq. (3.9)) in the I − D
plane, all but two rainfall conditions are located over the threshold. There-
fore, in terms of rainfall events classification and skill score, this validation
process results in TP = 43, FN = 2 and POD = 0.96.
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Ab (km2) if c V DF
r (m3)

First quartile 0.60 0.17 0.20 2008
Median 1.63 0.21 0.26 7633

Third quartile 3.40 0.28 0.39 18248

Table 3.3: First quartile, median and third quartile of the morphological and
dynamical-related quantities involved in the BDA method implementation. Ab is the
basin area, if is the bed slope, c is the reference concentration and V DF

r is the rainfall
volume strictly pertaining to the considered debris flow.
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Figure 3.6: (I,D) couples resulting from the application of the BDA method to the
45 suitable debris flows event. The blue line is the threshold calibrated in Rosatti et al.
(2019) end expressed by Eq. (3.9).
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Figure 3.7: Location of the catchments considered for the validation process based
on the potential debris flows validation approach along with the number of debris flows
observed in each basin.

3.5.2 Potential debris flows validation approach

The starting data, in terms of catchments and debris flows, to be used in
this approach are the same as those used in the BDA-based validation ap-
proach. However, some of these catchments (and the related debris flows)
are excluded from this analysis since the relevant rainfall data are not avail-
able for the whole reference period. Instead, regarding the observed debris
flows, all the events that affected the selected catchments are considered,
thus going to include some events excluded in the BDA-based validation
approach due to the lack of the deposit volume value. Indeed, knowing
whether or not a debris flow occurred is sufficient for this analysis. Overall,
the total number of catchments considered is 40 in which an overall of 49
debris flows was observed (Figure 3.7). The potential debris flows set is
evaluated for each independent rainfall event, as explained in Section 3.4.2,
and can be positioned with respect to the threshold in the I −D plane in
the following way:

• the whole set is over the threshold (Figure 3.8(a));

• the set intersect the threshold (Figure 3.8(b)). We name the events
characterized by this kind of set as intermediate rainfall events;

• the whole set is below the threshold (Figure 3.8(c)).
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Overall, the resulting number of sets for each position is respectively 355,
248 and 1948.

Regarding the intermediate rainfall events, Figure 3.9(a) shows the per-
centage of these events that have the couple (Ik, Dk) under the threshold,
as a function of k: the (I1, D1) couple is below the threshold in almost 90%
of the events while the (I2, D2) couple below the threshold in about 50% of
cases. For the other couples, the percentage is around 25 - 30. Moreover,
Figure 3.9(b) shows the relative number of intermediate rainfall events that
present a set with k elements below the threshold as a function of k. As
evident, 30% of the intermediate events have a set with only one rainfall
condition under the threshold, 16% show a set with two elements; sets with
more than two elements are less than 9% each.

Regarding the contingencies, Figure 3.10 shows the number of TP , FP ,
FN and TN for each analyzed catchment and classification method. De-
pending on the basin, the number of TP varies from 0 to 3 (Figure 3.10(a))
while the number of FN is equal to 0 or 1 (Figure 3.10(c)). In addition,
the number of TP and FN are not affected by the classification method for
all but one catchment. This means that only one observed debris flow is
related to an intermediate rainfall event. Regarding the number of FP (Fig-
ure 3.10(b)) and TN (Figure 3.10(d)), these quantities are characterised by
more variability than TP and FN both between catchments and method of
classification. Depending on the basin, the minimum number of FP ranges
between 2 and 14 while the maximum varies from 4 to 24. The ranges
of variability for TN are between 35 and 63 and between 47 and 69 for
the minimum and maximum number respectively, according to the catch-
ment. In addition, given a basin, the number of FP increases moving from
classification method 1 to classification method 12 while the opposite oc-
curs for the number of TN . Regarding the results at the study area scale,
the contingencies values (computed by adding the values obtained in each
catchment) and the related skill scores are reported in Table 3.4, for each
classification method. Consistently with Figure 3.10, the overall number of
both TP and FN assumes only two different values and the change occurs
when the minimum number of (Ik, Dk) couples required under the threshold
switches from 7 to 8. Coherently, also POD takes just two distinct values,
with maximum equals 0.96, constant for classification method from 8 to 12.
Instead, according to the results at the basin scale, the total number of both
FP and TN takes different values based on classification methods. This re-
sults in a variable value of POFD which ranges between 0.12 and 0.22. The
greatest relative variation in the number of FP and TN and in the value
of POFD occurs when switching from classification method 1 to 2 due to
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Figure 3.9: Bar graphs showing the percentage of intermediate rainfall events that
(a) have the (Ik, Dk) couple under the threshold, plotted as a function of k; (b) have
a set with k elements under the threshold, plotted as a function of k.

the presence of many intermediate events having only one (Ik, Dk) couple
under the threshold (Figure 3.9). Finally, TSS ranges from 0.74 to 0.82, its
maximum value is reached with classification method 1 and its variability
is mainly due to the variations in POFD rather than those in POD.

3.6 Discussion

3.6.1 Consistency of the approaches

Although the two validation analyses carried out in this work are based on
quite different approaches, consistency in the classification of the rainfall
events related to the observed debris flows can be highlighted:

• The two FN obtained in the back-analysis validation approach (Figure
3.6) correspond to the two rainfall events classified always as FN
in the potential debris flow validation approach (Figure 3.10). This
means, for both the events, not only the rainfall conditions identified
by applying the BDA are under the threshold, but also the whole
(Ik, Dk) sets are.

• The only intermediate rainfall event associated with a debris flow,
resulting from the potential debris flow validation approach, matches
to the rainfall event described by the (I,D) couple located about on
the threshold in the BDA-based approach (Figure 3.6).
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Classification
method TP FP FN TN POD POFD TSS

1 46 309 3 2193 0.94 0.12 0.82
2 46 385 3 2117 0.94 0.15 0.78
3 46 424 3 2078 0.94 0.17 0.77
4 46 444 3 2058 0.94 0.18 0.76
5 46 465 3 2037 0.94 0.19 0.75
6 46 478 3 2024 0.94 0.19 0.75
7 46 494 3 2008 0.94 0.20 0.74
8 47 506 2 1996 0.96 0.20 0.76
9 47 520 2 1982 0.96 0.21 0.75
10 47 531 2 1971 0.96 0.21 0.75
11 47 546 2 1956 0.96 0.22 0.74
12 47 556 2 1946 0.96 0.22 0.74

Table 3.4: Contingencies and skill scores obtained at the study area scale for each
classification method.

This consistency demonstrates the coherence between the results of the two
validation approaches.

3.6.2 Reliability of the threshold

Both the validation approaches provide an assessment and quantification
of the reliability of the threshold. The BDA-based validation approach
emphasizes the threshold’s satisfactory reliability. Indeed, a value of POD
equals 0.96 highlights that the threshold identifies adequately the region of
the I −D plane where the rainfall conditions are likely to result in a debris
flow and the low number of FN indicates that the threshold is not too
high. On the other hand, the analysis does not provide an estimate of false
positives, since it considers only rainfall events related to observed debris
flows, and, therefore, it is not possible to verify whether the threshold is too
low.

Because it can classify both rainfall events that result in a debris flow and
those that do not, the potential debris flows validation approach provides
a more complete description of the threshold reliability than the previous
method, allowing some considerations on the threshold both at the basin
and study area scale. Considering the values of the contingencies obtained
in each catchment (Figure 3.10), we can say that some basins present a
relatively large number of FP (Figure 3.10(b)) suggesting that the threshold
is too low for these catchments. Conversely, for the three cases characterized
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by a number of FN equal to 1 (two basins for all classification methods while
one for some of them) (Figure 3.10(c)) the threshold seems to be too high,
as it was not able to correctly classify (always or in some cases) the rainfall
events associated with debris flow events that actually happened. However,
the limited number of observed events in each catchment prevents these
results from being sufficiently robust.

On the contrary, at the study area scale, the number of events is con-
sidered sufficient to quantify the actual reliability of the threshold. As
evident from Table 3.4, the threshold performance varies according to the
classification method due to the presence of the intermediate events, which
represents 10% of the analyzed rainfall events. In particular, the classifi-
cation of the intermediate rainfall events affects the threshold performance
mainly in terms of POFD and TSS. In any case, the values of all three skill
scores (i.e. POD, POFD and TSS) can be deemed satisfactory, regard-
less of the classification method considered. In addition, the resulting skill
scores values are consistent with those obtained in other studies of rainfall
thresholds validation based on contingencies and skill scores computation
(e.g. Gariano et al., 2015, Jordanova et al., 2020, Piciullo et al., 2017).

Hence, the results of the potential debris flows validation approach con-
firm the results of the BDA-based one regarding the satisfactory capability
of the threshold in classifying the rainfall events that resulted in debris
flows. In addition to this, the second validation approach points out that
the threshold has also satisfactory reliability in classifying the rainfall events
that did not result in debris flows.

It is worth noting that the POD values, obtained in both the BDA-
based and the potential debris flow validation approach, are consistent with
the non-exceedance probability level of the threshold. Indeed, in Rosatti
et al. (2019), the threshold is calibrated applying the frequentist method
and imposing a non-exceedance probability equal to 5%. This means that
the threshold is estimated by accepting that there is a 5% of probability to
experience a debris flow related to rainfall conditions below the threshold
(Brunetti et al., 2010). Hence, in both validation approaches, the relative
frequencies of occurred events not correctly classified by the threshold (i.e.
1− POD) are coherent with the non-exceedance probability set in calibra-
tion. This consistency further confirms the reliability of the threshold.

3.6.3 Potential forecasting use of the threshold

The validation based on the potential debris flow approach has set the stage
for the use of the calibrated threshold in a predictive framework. Indeed,
the possibility to describe an event in terms of potential debris flows has
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eliminated the need to know ex-ante the debris flow occurrence. This means
that this method, used in this work only in a back-analysis context, can be
applied also in a predictive framework to compare the (Ik, Dk) set associated
to a rainfall event with the calibrated threshold.

In this context, the skill scores can be used to optimize the prediction ca-
pability. Usually, this optimization is performed considering several thresh-
olds with variable non-exceedance probability to select the optimal one (e.g.
Gariano et al., 2015, Piciullo et al., 2017), namely the one that maximises
the chosen skill score or combination of skill scores. In general, this choice
is not obvious since it depends on the main objective of the analysis. For
instance, if the main purpose is to minimize the loss of credibility in the fore-
cast of debris flows occurrence, namely, to minimize FN , the skill score to
maximize is POD. Within this approach, given the threshold, optimization
can be used to select the most performing classification method. According
to Leonarduzzi and Molnar (2020) and Peres and Cancelliere (2021), it is
advisable to optimize the TSS value since it is an indicator of the over-
all forecast ability of the threshold. By using this criterion, classification
method 1 turns out to be the optimal one in predictive terms, i.e. the best
TSS value is obtained when all intermediate rainfall events are classified
as under the threshold. Combining this result with the fact that most of
the intermediate rainfall events have, at least, the (I1, D1) couple under the
threshold (Figure 3.9), it may be inferred that one of the key characteristics
of a rainfall event to result in a debris flow is having at least the maximum
rainfall intensity exceeding the threshold. However, because the number of
FP is not equal to zero even with classification method 1 (Table 3.4), this
characteristic cannot be considered sufficient to observe a debris flow.

Finally, the (Ik, Dk) set can be interpreted in the BDA perspective: given
a catchment and a rainfall event, each (Ik, Dk) couple can be seen as the
water volume made available to the catchment for a potential debris flow.
Then, by inverting Eq. (3.1), we can estimate the relevant solid volume we
can expect at the outlet of the considered catchment. An example of this
interpretation is provided in Figure 3.11 in which, for each (Ik, Dk) couple
of the considered rainfall event, the available rainfall volume and the related
potential solid volume are quantified.

Clearly, exceeding the threshold is not sufficient to “guarantee” that
the debris-flow occurs since other site-specific predisposing and triggering
factors, such as the presence of loose material and soil moisture (e.g. Most-
bauer et al., 2018, Zhao et al., 2021) must be present. Nevertheless, the
information on the possible occurrence and the estimate of the size of the
debris flow can be useful in an EWS.
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Figure 3.11: (Ik, Dk) couples of the potential debris flow validation approach interpret
in the BDA perspective. For each (Ik, Dk) the related rainfall and potential solid
volumes are computed according to the BDA method.

3.7 Conclusions

In this work, two different approaches, namely the BDA-based and the po-
tential debris flows validation approach, are introduced to perform the vali-
dation of the physically-based threshold calibrated in Rosatti et al. (2019).
The threshold reliability is then quantified by applying these approaches to
a proper dataset.

The results of the BDA-based validation approach reveal that the thresh-
old is satisfactorily capable of identifying the I − D plane region where
rainfall conditions are likely to result in a debris flow. The potential debris
flow validation approach confirms this result and, in addition, highlights the
threshold’s reliability in classifying the rainfall events that did not result in
debris flows.

Moreover, the introduction of the potential debris flow concept allows us
to put the threshold in a predictive framework by letting to place a rainfall
event in the I −D plane regardless of whether or not it is associated with
a (already occurred) debris flow. In this context, classification method 1
results to be the optimal one in terms of forecast and this highlights the
potential key role of the maximum intensity for a debris flow occurrence.
Furthermore, given a catchment and a rainfall event, the interpretation of
the potential debris flow set in the BDA perspective allows us to provide
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an estimate of the solid volume we may expect at the basin outlet for each
couple of the set. Although this estimate is rough, it might be helpful in
an EWS to hypothesize the order of magnitude of what could happen if the
threshold is exceeded.

Hence, overall, the results of this work show that the BDA method,
combined with the potential debris flow approach, is promising to provide a
reliable threshold usable in a forecasting framework. Nevertheless, to further
verify this aspect, it is advisable to calibrate, by applying the BDA method,
and validate, by using the process proposed in this work, other thresholds
for different study areas. In addition, these further studies should be based
on accurate data, collected specifically for this type of analysis, to reduce
uncertainty as much as possible. In addition, careful consideration should
be given to the choice of the spatial scale for calibration and validation
of the threshold. In Rosatti et al. (2019) and this work, the study area’s
scale was chosen primarily based on administrative borders. Nevertheless,
in further studies, it would be advisable to develop some robust criteria for
identifying a region that is homogeneous in terms of features that affect the
BDA-based threshold, such as precipitation regime, type of predominant
storms, morphology, lithology and debris flow characteristics.
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Chapter 4

Multivariate rainfall analysis for
multi-hazard assessment of
combined debris flow-flood
events in a mountain
confluence

4.1 Introduction

In mountain regions, hydrogeological hazards are quite widespread usually
rainfall-induced phenomena that can have severe consequences for the im-
pacted areas, such as damages and casualties (e.g. Barredo, 2009, Dowling
and Santi, 2014, Jonkman and Kelman, 2005, Petrucci et al., 2019). As a
result, the development and improvement of mitigation strategies aimed to
reduce the hydrogeological risk are crucial.

Hazard mapping is an example of a mitigation strategy in this context,
as it identifies the zones of a region susceptible to a hydrogeological hazard,
allowing for more suitable land use planning and management, as well as the
creation of emergency response plans (Dottori et al., 2016, Mudashiru et al.,
2021). Usually, hydrogeological hazard maps are constructed based on sce-
narios (Teng et al., 2017, van Westen and Greiving, 2017) characterized by
varying occurrence probability and related magnitude of the examined phe-
nomenon or, in the lack of appropriate historical data on the phenomenon,
the corresponding main triggering factor, namely rainfall (Serinaldi, 2009).

Many areas are potentially subjected to several hydrogeological hazards
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(De Angeli et al., 2022, Liu et al., 2016) and their assessment with mapping
purpose is usually performed assuming all hazards as independent (Gal-
lina et al., 2016, Gill and Malamud, 2016, Javidan et al., 2021, Ming et al.,
2022, van Westen and Greiving, 2017). However, extreme rainfall may affect
different locations at the same time. This could result in several hydrogeo-
logical phenomena in close proximity in time and space (Dave et al., 2021,
Petrucci and Polemio, 2003, Revellino et al., 2019) and their interactions
may greatly magnify their single impacts on the investigated area (Aceto
et al., 2017, Bevacqua et al., 2017, Hao et al., 2018, Liu et al., 2016, Tilloy
et al., 2020). For instance, the confluence of a mountain stream suscepti-
ble to debris flows and a valley river prone to floods is an area potentially
subjected to coupled multi-hazard. The simultaneous occurrence of a de-
bris flow and a flood, mainly due to the co-occurrence of heavy rainfalls
in the relevant catchments, can lead to potential interactions between the
phenomena at the confluence. Debris flow can affect the river flow and the
river flood can influence the deposition zone of the debris flow, resulting in
compound effects that cannot be assessed by analyzing each phenomenon
separately.

In this context, a multi-hazard approach is required to assess the possi-
ble co-occurrence of hydrogeological phenomena and construct scenarios to
evaluate the related compound effects. The multi-hazard approach has to
be based on a multivariate frequency analysis that jointly considers rainfall
extremes at relevant locations for the investigated phenomena of the consid-
ered area (Le et al., 2019, Thibaud et al., 2013), taking into account their
dependence structure.

In literature, several approaches exist to assess the spatial dependence
between rainfall extremes, including hierarchical Bayesian models (e.g. Coo-
ley and Sain, 2010, Cooley et al., 2007, Dyrrdal et al., 2015, Schliep et al.,
2010, Sharkey and Winter, 2019), max-stable models (e.g. Coles, 1993, Le
et al., 2018, Stephenson et al., 2016, Thibaud et al., 2013) and copula-based
models (Han et al., 2020, Zhu et al., 2020). In general, unlike the first two
types of models, copula-based models allow to deal with the assessment of
the dependence structure between the investigated variables, by means of
copula, separately and independently from their univariate analysis (Brun-
ner et al., 2019, Genest and Favre, 2007). Furthermore, copula-based models
do not impose any restrictions on the distributions used to characterize the
variables’ univariate behavior (Huang et al., 2018). Thanks also to these
advantages, copula-based models have been widely used for multivariate
analyses in the hydrological and water management fields in recent years
(e.g. Bevacqua et al., 2017, Brunner et al., 2019, De Michele et al., 2005,
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Gao et al., 2021, Graler et al., 2013, Hao and Singh, 2016, Jane et al., 2020,
Sadegh et al., 2018, Tavakol et al., 2020, Volpi and Fiori, 2012). Never-
theless, only a few studies applied a copula-based approach to construct a
multivariate model to assess rainfall extremes at different locations and, to
the best of the authors’ knowledge, only bivariate models have been devel-
oped. However, jointly considering rainfall extremes at all relevant locations
for the investigated phenomena allows you to model the spatial variability
of both their values and dependence structure, as well as estimate overall
scenarios.

In order to simulate the dependence structure between rainfall values
at more than two locations, a high-dimensional copula is required. Con-
structing high-dimensional copulas is widely acknowledged to be a difficult
problem (Aas et al., 2009). In literature, there is a wide range of well-
investigated bivariate copulas (e.g. Joe, 1997, Nelsen, 2006) while the num-
ber of copulas with a dimension greater than two are rather limited (e.g. Aas
et al., 2009, Brechmann and Schepsmeier, 2013, Graler et al., 2013). More-
over, high-dimensional copulas lack flexibility needed to model, if present,
an heterogeneous dependence structure between the investigated variables
(Brechmann and Schepsmeier, 2013). To overcame these limitations, Joe
(1996) introduced the pair-copula construction (PCC). PCC is a building
method that allows multivariate copulas to be constructed using just (con-
ditional) bivariate copulas. The result is very flexible multivariate copulas
able to model arbitrary complex dependence structures (Aas et al., 2009,
Bedford and Cooke, 2002, Czado, 2010).

As regards the univariate extremes rainfall analysis, the classical ex-
treme value theory (EVT) is usually applied. EVT aims to characterize
the extreme behavior of the investigated process describing it through an
asymptotic probability distribution (e.g. Serinaldi et al., 2020). This is pos-
sible under the assumptions that (i) the rainfall values are independent and
identically distributed and (ii) the number of realization of the investigated
process is large enough (i.e. tending to infinity) in each considered year (e.g.
Davison and Smith, 1990, Marani and Ignaccolo, 2015). To meet the inde-
pendence assumption, commonly rainfall values are selected applying the
annual maxima approach or the peak-over-threshold approach (e.g. Coles
et al., 2001, Volpi et al., 2019). As a result, most of the observations (and
related information) of the investigated process are discarded from the anal-
ysis (Serinaldi et al., 2020, Zorzetto et al., 2016). Moreover, the number of
yearly independent realization of the investigated process from which the
extremes are selected is necessarily limited, preventing the fulfilment of the
asymptotic assumption (Marra et al., 2019). As an alternative to the clas-
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sical EVT, the Metastistical Extreme Value (MEV) framework, introduced
by Marani and Ignaccolo (2015), and the related Simplified Metastatistical
Extreme Value (SMEV) formulation, presented in Marra et al. (2019), relax
the asymptotic assumption and permit us to make advantage of all informa-
tion provided by the observations of the investigated process (Zorzetto et al.,
2016). Assessment of the performance of the MEV and SMEV formulations
with respect to the classical EVT can be found in Formetta et al. (2022),
Marani and Ignaccolo (2015), Marra et al. (2018, 2019, 2020, 2022), Miniussi
and Marani (2020), Schellander et al. (2019), Zorzetto et al. (2016). Al-
though their adequacy and robustness have been demonstrated, both MEV
and SMEV formulations have not yet been applied in a multivariate frame-
work.

This work aims to develop a multivariate copula-based model to jointly
assess rainfall values at different locations with a multi-hazard analysis pur-
pose. To this end, a confluence between a creek susceptible to debris flows
and a flood-prone river is considered as study area. Some rain gauges rel-
evant to the phenomena under investigation are selected and a strategy to
identify synchronous events in all locations is introduced. The univariate
extremes rainfall analysis at each rain gauge is performed by applying the
SMEV formulation while the PCC is adopted to obtain the multivariate
copula describing the dependence structure between the investigated vari-
ables. The multivariate model thus obtained is used to estimate rainfall
scenarios related to different definitions and values of the multivariate re-
turn period. Finally, the possible use of the obtained scenarios for hazard
mapping purposes is discussed.

4.2 Basic theoretical framework
4.2.1 Copulas
A copula C of d-dimension is a multivariate distribution defined on IId =
[0, 1]d with uniform marginal distributions (e.g. Czado et al., 2012, Salvadori
et al., 2011). A joint cumulative distribution function F of d random vari-
ables X1, . . . , Xd, with marginal distributions F1(x1), . . . , F2(x2), is defined
as (e.g. Durante and Sempi, 2016, Nelsen, 2006):

F (x1, . . . , xd) = P {X1 < x1, . . . , Xd < xd} (4.1)

According to the Sklar’s theorem (Sklar, 1959), there exists a connection
between F and the related C in the form:

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) (4.2)
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for all (x1, . . . , xd) ∈ IRd. If then F1(x1), . . . , F2(x2) are continuous, C is
unique and can be written as:

C (u1, . . . , ud) = F
(︁
F−1
1 (u1) , . . . , F

−1
d (ud)

)︁
(4.3)

in which Fk(xk) = uk with k = 1, . . . , d, namely Uk = Fk(Xk) with Uk

uniformly distributed on II (e.g. Angus, 1994, Nelsen et al., 2001), and
(u1, . . . , ud) ∈ IId. The related copula density is defined as:

c (u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud
(4.4)

By differentiating Eq. (4.2), it’s also possible to obtain the joint probability
density function (PDF):

f (x1, . . . , xd) = c (u1, . . . , ud) · f1 (x1) · . . . · fd (xd) (4.5)

in which f1(x1), . . . , fd(xd) are the marginal PDF.

Moreover, it is useful to introduce the concept of empirical copula. To
this end, first it is necessary to define the empirical marginal distributions.
Given a random sample Xk

1 , . . . , X
k
d , with k = 1, . . . , s, from the random

variables X1, . . . , Xd, the empirical marginal CDF are given by:

Fni (xi) =
1

s+ 1

s∑︂
k=1

1[Xk
i ≤xi] (4.6)

in which 1[... ] is the indicator function of the set [. . . ] and the subscript
n indicates that the function is empirical. The empirical copula is hence
defined as:

Cn (u1, . . . , ud) =
1

s

s∑︂
k=1

1[Uk
1 ≤u1,...,Uk

d≤ud] (4.7)

where Uk
i = Fni

(︁
Xk

i

)︁
for all k = 1, . . . , s and (u1, . . . , ud) ∈ IId (e.g. Tsuka-

hara, 2005).

In this context, it is worth considering two fundamental copulas (e.g.
Durante and Sempi, 2016, Genest and Favre, 2007):

• the comonotonicity copula that describes a perfect positive depen-
dence (as following defined in Sect. 4.2.2) between variables
X1, . . . , Xd and is defined as:

M (u1, . . . , ud) = min (u1, . . . , ud) (4.8)
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• the independence copula that is the copula corresponding to stochas-
tically independent random variable X1, . . . , Xd and is defined as:

Π (u1, . . . , ud) =

d∏︂
j=1

uj (4.9)

In addition, considering F (x1, . . . , xd) as a random variable, it possible
to introduce the Kendall function of X1, . . . , Xd defined as:

KC (t) = P {F (x1, . . . , xd) ≤ t} = P {C(u1, . . . , ud) ≤ t} (4.10)

in which t ∈ II (e.g. Nelsen et al., 2001, 2003). Hence, the Kendall function
is nothing but the univariate distribution of C (Joe, 2014). For example,
considering the comonotonicity copula, the related Kendall function is (e.g.
Garcin et al., 2018):

KM (t) = t (4.11)

while the d-dimensional independence copula one is:

KΠ (t) = t+ t
d−1∑︂
j=1

(− log t)j

j!
(4.12)

According to Genest and Rivest (1993), given a random sample Xk
1 , . . . , X

k
d ,

with k = 1, . . . , s, from the random variables X1, . . . , Xd the empirical ver-
sion of the Kendall function is estimated introducing:

Qi =
1

s− 1

∑︂
i ̸=j

1[Xj
1≤Xi

1,...,X
j
d≤Xi

d]
(4.13)

for all i, j = 1, . . . , s. Qi represents the proportion of the sample in the
rectangle with the origin (0, . . . , 0) and (Xi

1, . . . , X
i
d) as lower-left and upper-

right corners, respectively. The empirical Kendall function can be then
estimated as:

Kn (t) =
1

s

s∑︂
i=1

1[Qi≤t] (4.14)

with t ∈ II.
A function strictly related to the Kendall one is the λ-function that is

defined as:
λ (t) = t−KC (t) (4.15)

with t ∈ II (e.g. Michiels et al., 2011) while its empirical version is:

λn (t) = t−Kn (t) (4.16)
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In terms of exceedance probabilities, it’s possible to introduce the con-
cept of joint survival CDF defined as:

F (x1, . . . , xd) = P {X1 > x1, . . . , Xd > xd} (4.17)

that can be written in terms of copula as:

F (x1, . . . , xd) = Ĉ
(︁
F 1(x1), . . . , F d(xd)

)︁
(4.18)

in which Ĉ is the survival copula of the random variables X1, . . . , Xd and
F k(xk) = 1 − Fk(xk) with k = 1, . . . , d is the survival function of the
marginal distribution of Xk (e.g. Salvadori et al., 2016). According to Joe
(2014), by applying the inclusion-exclusion probability law and introducing
the survival function C related to C defined as:

C (1− u1, . . . , 1− ud) = Ĉ (u1, . . . , ud) (4.19)

for all (u1, . . . , ud) ∈ IId, Ĉ can be express in terms of C as:

C (u1, . . . , ud) = 1−
d∑︂

i=1

ui +
∑︂

S ∈P, #S≥2

(−1)#S CS (ui : i ∈ S) (4.20)

in which P is the set of all subsets of {1, 2, . . . , d}, #S represents the car-
dinality of S and CS (ui : i ∈ S) is the marginal copula of C of dimension
#S (Salvadori et al., 2013). For example, considering the bivariate case,
namely assuming d = 2, the relation between Ĉ, C and C is:

Ĉ (u1, u2) = C (1− u1, 1− u2) = u1 + u2 − 1 + C (1− u1, 1− u2) (4.21)

with (u1, u2) ∈ II2.

Finally, different copula classes exist in the literature, with the elliptical
and archimedean classes being the most studied and used in applications
(Durante et al., 2015). As a result, these copulas classes are considered
in this study. Table 4.1 shows the bivariate expression of the main copula
families belonging to the elliptical and archimedean classes: Gaussian and
t copula are elliptical copulas, Clayton, Gumbel, Frank and Joe are one-
parameter archimedean copulas, while the BB copulas are two parameters
archimedean copulas.

We refer the reader to Nelsen (2006), Joe (2014) and Durante and Sempi
(2016), and reference therein, for more details on copulas theory and prop-
erties.
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4.2.2 Dependence measures
According to Balakrishnan and Lai (2009), a dependence measure reveals,
in some way, how closely two (or more) random variables are related. In
literature, several measures of dependence exist (see e.g. Joe, 1997, Nelsen,
2006) and each is able to quantify only an aspect of the dependence structure
of the investigated variables. In this context, among others, the Kendall’s
rank correlation coefficient (or Kendall’s tau) and the tail dependence are
considered. In the following, since the method used to construct the mul-
tivariate distribution (i.e. Pair-Copula Construction - PCC) is based on
bivariate copulas (as described in Section 4.2.3), we briefly introduce these
dependence measures considering the bivariate case.

Kendall’s tau is a non parametric measure that quantify the concordance
between variables based on ranks (e.g. Genest and Favre, 2007). Considering
a random sample (X1, Y1), . . . , (Xs, Ys) of the variables (X,Y ), the pairs
(Xi, Yi), (Xj , Yj) are defined concordant if (Xi−Xj)(Yi−Yj) > 0 otherwise
if (Xi−Xj)(Yi−Yj) < 0 the two pairs are discordant. Hence, the empirical
version of the Kendall’s tau is defined as:

τn =
P −Q(︃
s

2

)︃ =
4

s (s− 1)
P − 1 (4.22)

in which P and Q are the number of pairs concordant and discordant,
respectively, and τn ∈ [−1, 1] (Genest and Favre, 2007).

Kendall’s tau can be also be written in terms of copula. Indeed, consid-
ering the variables (X,Y ) with copula C and continuous marginal distribu-
tions, Kendall’s tau can be express as:

τC = 4

∫︂
II2
C (u, v) dC (u, v)− 1 (4.23)

with (u, v) ∈ II2 and τC ∈ [−1, 1]. Kendall’s tau is thus a property of the
copula (e.g. Pappadà, 2014) and theoretical formulas of τC as a function
of the copula parameter(s) exist for elliptical and archimedean copulas (see
e.g. Frees and Valdez, 1998, Nadarajah et al., 2017).

As evident from both Eq. (4.22) and (4.23), Kendall’s tau, and its
empirical version, provides an overall concordance measure of observations
and copula. However, if the extreme values of variables are the focus of
the analysis, it’s advisable to introduce other dependence measures that
describe the degree of dependence of the observations and copula in the
upper-right-quadrant tail and lower-left-quadrant tail (Frahm et al., 2005).
The extremes degree of dependence can be estimated with the so-called tail
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dependence coefficients (TDC), suggested in Sibuya et al. (1960) among oth-
ers. Considering two random variables X and Y with continuous marginal
CDF FX and FY , respectively, the upper TDC λU and the lower TDC λL
of (X,Y ) are defined as:

λU = lim
t→1−

P
{︁
Y > F−1

Y (t) | X > F−1
X (t)

}︁
(4.24)

λL = lim
t→0+

P
{︁
Y ≤ F−1

Y (t) | X ≤ F−1
X (t)

}︁
(4.25)

with λU , λL ∈ [0, 1]. Hence, λU (λL) denotes the asymptotic limit of the
probability that Y exceeds (does not exceed) a high (low) quantile given
that X does (does not) (e.g. Durante et al., 2015). Introducing then the
copula C of (X,Y ), λU and λL can be written in terms of C as:

λU = lim
t→1−

Ĉ (1− t, 1− t)

1− t
= lim

t→1−

1− 2t+ C (t, t)

1− t
(4.26)

λL = lim
t→0+

C (t, t)

t
(4.27)

and, considering the related empirical copula Cn, their empirical versions
are:

λUn = lim
t→1−

1− 2t+ Cn (t, t)

1− t
(4.28)

λLn = lim
t→0+

Cn (t, t)

t
(4.29)

with λUn, λLn ∈ [0, 1].
Hence, by definition, TDC, and their empirical version, provide an

asymptotic approximation of the copula and observations behaviour in the
tail. However, investigating the tail behavior at some points close to the
unit square’s (i.e. II2) corners can provide a more exhaustive overview on
tail dependence (Durante et al., 2015). To this end, the so-called tail con-
centration function (TCF ) (e.g. Venter et al., 2002), useful to provide a
representation of the tail behavior of both copula and observations (Pap-
padà, 2014), is considered. The TCF of the copula C is defined as:

TCFC (t) =
C (t, t)

t
· 1(0,0.5] +

1− 2t+ C (t, t)

1− t
· 1(0.5,1) (4.30)

and the related empirical version is:

TCFn (t) =
Cn (t, t)

t
· 1(0,0.5] +

1− 2t+ Cn (t, t)

1− t
· 1(0.5,1) (4.31)
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4.2.3 Pair-copula construction and vine copulas
The Pair-Copula Construction (PCC) is a flexible method to built multi-
variate copulas using exclusively bivariate copulas (e.g. Bedford and Cooke,
2001, 2002, Joe, 1996, Kurowicka and Cooke, 2006) by recursively decom-
posing a multivariate PDF into conditional densities products (Aas et al.,
2009, Czado, 2010). Considering d random variables X1, . . . , Xd with con-
tinuous marginal CDF F1, . . . , Fd and joint PDF f (x1, . . . , xd), the latter
can be factorised as:

f (x1, . . . , xd) = fd (xd) · f (xd−1|xd) · f (xd−2|xd−1, xd) · . . . · f (x1|x2, . . . , xd)
(4.32)

in which f (·|·) is the conditional density.
Considering then Eq. (4.5), it’s possible to write each factor of the right-

hand side of Eq. (4.32) as a product between a proper bivariate copula (i.e.
pair-copula) density and a conditional density applying this general formula:

f (x|ν) = cxνj |ν−j
(F (x|ν−j) , F (νj |ν−j)) · f (x|ν−j) (4.33)

in which cxνj |ν−j
is the appropriate bivariate copula density, F (·|·) is the

conditional CDF, ν is a vector of d dimension, νj is a component of ν
chosen arbitrarily and ν−j indicates all the component of ν but the chosen
one (Aas et al., 2009). For instance, the factor f (xd−2|xd−1, xd), using Eq.
(4.33), can be written as:

f (xd−2|xd−1, xd) = cxd−2xd−1|xd
(F (xd−2|xd) , F (xd−1|xd)) · f (xd−2|xd)

(4.34)
in which, according to the symbols used in Eq. (4.33), x = xd−2, ν =
(xd−1, xd), νj = xd−1 and ν−j = (xd). Then, similarly, f (xd−2|xd) can be
expressed as:

f (xd−2|xd) = cxd−2xd
(Fd−2 (xd−2) , Fd−1 (xd−1)) · fd−2 (xd−2) (4.35)

Hence, substituting Eq. (4.35) in Eq. (4.34), the latter becomes:

f (xd−2|xd−1, xd) =cxd−2xd−1|xd
(F (xd−2|xd) , F (xd−1|xd))

· cxd−2xd
(Fd−2 (xd−2) , Fd−1 (xd−1)) · fd−2 (xd−2)

Therefore, writing each term of Eq. (4.32) using Eq. (4.33), the joint
PDF is expresses as a product of pair-copulas, evaluated at marginal con-
ditional CDF, and marginal PDF.

According to Joe (1996), for each νj ∈ ν, the marginal conditional CDF
can be written in the following generic form:

F (x|ν) =
∂Cxνj |ν−j

(F (x|ν−j) , F (νj |ν−j))

∂F (νj |ν−j)
(4.36)
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in which Cxνj |ν−j
is a bivariate copula. For instance, Eq. (4.36) implies:

F (xd−1|xd) =
∂Cxd−1xd

(F (xd−1) , F (xd))

∂F (xd)
(4.37)

The factorisation of Eq. (4.32) is not unique. This means that the
same joint PDF can be obtained applying different pair-copula construc-
tions. Bedford and Cooke (2001, 2002) introduced a model to classify them
in a graphical way considering copula densities and nested trees sequence.
This method is named vines and the multivariate copulas built in this way
are called regular vines or R-vines copulas (e.g. Czado, 2010, Joe and Kurow-
icka, 2011). A general d-dimensional R-vine structure is characterised by
d − 1 trees, i.e., Tj with j = 1, . . . , d − 1 and each tree Tj has d + 1 − j
nodes and d−j edges. Each node represents a variable, in T1, or a marginal
conditional CDF, in the other trees, while the edges are pair-copulas.

Two R-vines subclasses are the so-called canonical vines or C-vines and
drawable vines or D-vines. A C-vine structure is characterised by a root
node for each tree to which the other nodes are connected. Each edge rep-
resent a pair-copula. A four-dimensional example of C-vine trees is shown in
Figure 4.1. The general d-dimensional C-vine copula density is the following
(e.g. Brechmann and Schepsmeier, 2013):

f (x1, . . . , xd) =
d∏︂

k=1

fk (xk) ·
d−1∏︂
i=1

d−i∏︂
j=1

ci i+j|1:(i−1) (4.38)

in which the following general abbreviation for a bivariate conditional copula
density of xi and xj given xi1 , . . . , xik is introduced (Czado, 2010):

ci j|i1,...,ik = ci j|i1,...,ik (F (xi|xi1 , . . . , xik) , F (xj |xi1 , . . . , xik)) (4.39)

with i, j, i1, . . . , ik arbitrary distinct indices with i < j and i1 < . . . < ik.
Instead, a D-vine has trees with a path structure and the general d-

dimensional D-vine copula density is the following (e.g. Brechmann and
Schepsmeier, 2013):

f (x1, . . . , xd) =

d∏︂
k=1

fk (xk) ·
d−1∏︂
i=1

d−i∏︂
j=1

cj j+1|(j+1):(j+i−1) (4.40)

An example of a four-dimensional D-vine trees is shown in Figure 4.2.
We refer the reader to Joe (1996), Bedford and Cooke (2001), Bedford

and Cooke (2002) and Kurowicka and Cooke (2006) for more details on PCC
and vines copulas.
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Figure 4.1: Example of four-dimensional C-vine trees. The numbers indicate the
subscript of the variables (in tree 1) and the subscript of the variables involved in the
marginal conditional CDF (in trees 2, 3).

Figure 4.2: Example of four-dimensional D-vine trees. The numbers indicate the
subscript of the variables (in tree 1) and the subscript of the variables involved in the
marginal conditional CDF (in trees 2, 3).
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4.2.4 Simplified Metastatistical Extreme Value

The Simplified Metastatistical Extreme Value (SMEV) framework, intro-
duced in Marra et al. (2019), is a simplification of the original Metastatisti-
cal Extreme Value (MEV), presented in Marani and Ignaccolo (2015), and is
based on the assumption that extremes emerge from the distribution of the
ordinary events, i.e. from the distribution of all the independent samples
of the stochastic process under investigation (Formetta et al., 2022, Marani
and Ignaccolo, 2015). According to the SMEV formulation, the cumula-
tive distribution function (CDF) of rainfall extreme values (i.e. the yearly
non-exceedance probabilities) can be written as:

Ω (x) = G (x,θ)n (4.41)

in which G(x,θ) is the cumulative distribution of the ordinary events, θ
is the vector of the distribution parameters and n is the annual average
number of ordinary events (Miniussi and Marra, 2021). The formulation
of Eq. (4.41) is obtained by neglecting the inter-annual variability in the
ordinary events distribution and number, originally taking into account in
the MEV approach (Marra et al., 2019). Thanks to this simplification, the
parameters of the distribution can be estimated considering all ordinary
events of the time series, allowing you to:

• use short rainfall records (Marra et al., 2018, 2022);

• obtain a robust estimate of the parameters (Marra et al., 2020, Miniussi
and Marani, 2020, Schellander et al., 2019);

• focus on representing the right tail of the distribution (i.e. extremes)
through left-censoring the ordinary events (Marra et al., 2019, 2020).

Moreover, as highlighted in Serinaldi et al. (2020), the SMEV approach is
equivalent to a maxima standard distribution considering n-size blocks with
independence condition.

Previous SMEV application shown that a two-parameter Weibull dis-
tribution is suitable to describe the right tail of the precipitation ordinary
events distribution (Formetta et al., 2022, Marra et al., 2019, Miniussi and
Marra, 2021). The CDF of a two-parameter Weibull distribution can be
written as:

G (x;λ, κ) = 1− e−(
x
λ)

κ

(4.42)

in which λ and κ are the scale and shape parameter, respectively, and both
of them vary in the interval ]0,+∞[ (Marra et al., 2019). Hence, using Eq.
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(4.42) in Eq. (4.41), the rainfall extremes CDF becomes:

Ω (x) =
[︂
1− e−(

x
λ)

κ]︂n
(4.43)

which is nothing but an exponential Weibull CDF (e.g. Pal et al., 2006).
We refer the reader to Marra et al. (2019) for more details on the SMEV

formulation.

4.2.5 Multivariate return period
In a multivariate framework, several definitions of return period exist (e.g.
Salvadori et al., 2016, Serinaldi, 2015, Vandenberghe et al., 2011). In gen-
eral, the return period T can be express as (Serinaldi, 2015):

T =
µ

p
(4.44)

in which µ is the average inter-arrival time between two process realizations
and p is the probability that a process realization is greater than an arbi-
trary value. Considering the SMEV approach (i.e. Eq. (4.43)), Eq. (4.44)
becomes:

T =
1

1− tn
(4.45)

in which t is the non-exceedance probability related to the ordinary events
distribution.

Considering the general formula of Eq. (4.44), as highlighted in Tilloy
et al. (2020), the expression (and meaning) of T changes based on the type
of exceedance probability p considered, namely on how the investigated ran-
dom variables combine and which type of compound events they yield. In
this context, among others, three different types of exceedance probabil-
ity are considered that, introducing d random variables X1, . . . , Xd with
marginal distributions F1(x1), . . . , F2(x2) and copula C, can be generally
defined as follow (e.g. Salvadori et al., 2016, Serinaldi, 2015, Tilloy et al.,
2020):

• the OR exceedance probability:

pOR = P{X1 > x1 ∨ . . . ∨Xd > xd}
= 1− C (F1(x1), . . . , Fd(xd))

= 1− C (u1, . . . , ud)

(4.46)

that can also be express as:

pOR = P{(u1, . . . , ud) ∈ S∨
u } (4.47)
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in which

S∨
u =

d⋃︂
i=1

(II× . . .× (ui, 1)× . . .× II) (4.48)

Hence, pOR describes the probability to observe events in the hyper-
solid S∨

u (Serinaldi, 2015) (bivariate example in Figure 4.3(a)).

• the AND exceedance probability:

pAND = P{X1 > x1 ∧ . . . ∧Xd > xd}
= Ĉ

(︁
F 1(x1), . . . , F d(xd)

)︁
= Ĉ (1− u1, . . . , 1− ud)

= C (u1, . . . , ud)

(4.49)

that can also be written as:

pAND = P{(u1, . . . , ud) ∈ S∧
u } (4.50)

with

S∧
u =

d⋂︂
i=1

(II× . . .× (ui, 1)× . . .× II) (4.51)

In this case, pAND is the probability that events in the hyperrectangle
S∧
u occur (bivariate example in Figure 4.3(b)).

• the Kendall function-based exceedance probability:

pK = P{P{X1 ≤ x1 ∧ . . . ∧Xd ≤ xd} > t}
= P{C (u1, . . . , ud) > t}
= 1−KC (t)

(4.52)

with t ∈ II. It’s possible to write pK also as:

pK = P{(u1, . . . , ud) ∈ SK
t } (4.53)

where

SK
t = {(u1, . . . , ud) ∈ IId : C (u1, . . . , ud) > t} (4.54)

Hence, pK indicates the probability to observe events belonging to the
hyperspace SK

t characterised by a copula level greater than t (bivariate
example in Figure 4.3(c)).
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These three exceedance probabilities lead to as many related definitions
of return period: TOR, TAND and TK .

As evident from Eqs. (4.46) and (4.52), all copula points that are char-
acterised by the same copula value have an equal return period, TOR or TK
based on the considered probability type. Similarly, considering Eq. (4.49),
the same TAND is associated to all copula points with an equal survival
function value. For this reason it is useful to introduce the concepts of crit-
ical layer and survival critical layer defined respectively as (e.g. Salvadori
et al., 2011, 2013):

Lt = {(u1, . . . , ud) ∈ Id : C (u1, . . . , ud) = t} (4.55)
L1−t = {(u1, . . . , ud) ∈ Id : C (u1, . . . , ud) = 1− t} (4.56)

To avoid ambiguity, these definitions are written assuming conventionally
that the level t represents a non-exceedance probability. Hence, Lt (L1−t)
is the (d − 1)-dimensional isohypersurface along which C (C) equals the
constant value t (1− t) ∈ II.

4.3 Study area and data

A severe storm, the so-called Vaia storm, affected northeastern Italy in Oc-
tober 2018, causing widespread and serious damage (e.g. Giovannini et al.,
2021). The Sole Valley, located in the northwestern part of the Province of
Trento (Italy), was one of the hardest affected areas, with the main river
(i.e. the Noce river) experiencing a flood wave and a very intense debris
flow occurring in one of its right tributaries (i.e. the Rotiano creek) (Figures
4.4 and 4.5), among others. This extreme event highlighted the possibility
of compound phenomena occurring in this area and, for this reason, the
confluence between the Noce river and the Rotiano creek, along with the
related catchment, is considered as the study area for this work.

The Rotiano creek is an Alpine stream with a catchment of about 2.5
km2, characterised by an altitude that varies between 2050 m a.s.l. and 800
m a.s.l. (at the alluvial fan) and is susceptible to debris flows (Piccolroaz
et al., 2021). Most of the Rotian basin is characterised by high hydraulic
conductivity and thick soils. The Noce catchment, with outlet point located
just upstream of the confluence with the Rotiano creek, has an area of
about 370 km2 and its altitude ranges between 3750 m a.s.l. and 785 m
a.s.l. with mean value equals to 2124 m a.s.l.. As a whole, the study
area is characterised by an alpine climate and mean annual precipitation of
approximately 1100 mm.
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Rain gauge Abbreviation Altitude (m a.s.l.) Record from Mean annual
precipitation (mm)

Pradalago P 2084 1991 1400
Mezzana M 905 1921 950

Passo Tonale PT 1875 1987 1200
Careser C 2600 1930 1000

Table 4.2: Rain gauges chosen for the analysis, along with their abbreviation, alti-
tude, start year of recording and mean annual precipitation, estimated considering the
available data from 1991. The location of the selected rain gauges is shown in Figure
4.5.

As for the precipitation, several rain gauges are present in the study area
(Figure 4.5) and the rainfall data are available with a temporal resolution
equal to 5 minutes. Among the available, the Pradalago rain gauge (P) is
chosen as the reference rain gauge for the Rotiano catchment since it is the
closest one with an altitude comparable with the one at the basin’s highest
part, where a debris flow could trigger. As for the Noce catchment, the con-
sidered rain gauges are Mezzana (M), Passo Tonale (PT) and Careser (C).
These rain gauges are selected based on their location, altitude and data
availability: as evident from Figure 4.5 and Table 4.2, these rain gauges
are well dispersed in the Noce catchment, they are placed at different alti-
tudes and their recording period includes the P one with an overall limited
number of missing data. Three rain gauges are assumed to be a reasonable
number resulting from the compromise between the desire to depict the spa-
tial variability of rainfall in the Noce catchment and the degree of analysis
complexity.

Since the aim is to perform a multivariate analysis, we exclude the cal-
endar years with a missing data rate higher than 20% in at least one of the
four selected rain gauges. Overall, 18 years of precipitation record, 13 of
which continuous, are considered suitable for the analysis.

Moreover, the streamflow data in the Noce river provided by the Malé
gauging station, located just downstream of the confluence (Figure 4.5), are
considered for the event definition.

4.4 Method

The multivariate model with a multi-hazard analysis purpose is constructed
and estimated with a copula-based approach.

The construction and estimate of the model are based on observations
that are relevant to the phenomena under investigation in each selected
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Figure 4.4: Effects of the Vaia storm on the Rotiano alluvial fan.

rain gauge, defined with a proper strategy. The model is then built in order
to reproduce both the values and the dependence structure between the
observations and it includes the following components:

• the marginal distributions, that are the univariate distributions de-
scribing the observations values in each rain gauge, independently;

• the dependence structure model, which consists of a multivariate dis-
tribution capable of reproducing the dependence structure between
observations.

Once these components are defined and validated, the resulting model is
used to estimate scenarios with different values and definitions of the return
period, consisting of rainfall values in each rain gauge.

The analyzes described below have been done using R (R Core Team,
2013) and the packages: copula (Hofert et al., 2020), VineCopula (Schep-
smeier et al., 2021), CDVine (Brechmann and Schepsmeier, 2013) and rvinecop-
ulib (Nagler and Vatter, 2021).
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Available rain gauges
Selected rain gauges
Malé hydrometer
Rotiano catchment
Noce catchment
Main rivers

Figure 4.5: Location of the study area within the Province of Trento (Italy), with
indication of the Noce and Rotiano catchments, the available rain gauges, the selected
ones and the Malé hydrometer.
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4.4.1 Event and related observations definition

The 5-minutes rainfall data series provided by the four selected rain gauges
are aggregated in hourly time intervals thus obtaining IP (τ), IM (τ), IPT (τ)
and IC(τ) in which the subscripts indicate the rain gauges, according to
the abbreviations reported in Table 4.2, and τ = 1, . . . ,m, with m total
amount of hours in the rainfall records. IP (τ), IM (τ), IPT (τ) and IC(τ)
are hence subdivided in independent rainfall events or “storms” considering
dry separation intervals of at least 24 hours (Formetta et al., 2022, Gao
et al., 2021, Miniussi and Marra, 2021). Moreover, according to Marra
et al. (2020), only the independent rainfall events that last more than 30
minutes are considered to avoid to take into account isolated rain gauges
spikes as storms.

Then, a strategy to define synchronous events, namely a rainfall events
that occurred simultaneously in all selected rain gauges, and to obtain the
related observations, is introduced. First, for each investigated hazardous
phenomenon, a rainfall duration that is significant for its occurrence is iden-
tified. A rainfall duration of 24h is assumed to be representative for both
debris flows and floods in the Rotiano and Noce catchments, respectively.
Indeed, given the conductivity and thickness of most Rotiano basin soils,
long precipitations are needed to reach a high degree of soil saturation and,
therefore, the conditions for potential debris flows triggering (e.g. Hungr
et al., 2002, Rosatti et al., 2019). This hydrologic response of the catch-
ment is also highlighted by the debris flow that occurred during the Vaia
storm. As for the Noce catchment, its extension and morphology make it
reasonable to consider precipitation of 24h to observe a flood wave in the
river at the confluence. For example and in support of these assumptions,
the one hour rainfall intensities recorded by the four selected rain gauges
and the discharges of the Noce river at the Malé gauging station during the
Vaia storm are shown in Figure 4.6. Hence, the variables considered in this
analysis are 24h cumulative rainfall and are named HP , HM , HPT and HC

in which each subscript indicates the related rain gauge.

Second, the occurrence of a debris flow during the peak of a river flood is
regarded as the most dangerous compound event. This timing is considered
to identify synchronous events. It is assumed that if a storm in P results in
a debris flow, the phenomenon triggering time coincides with the instant in
which the hourly intensity in P is maximum (Iadanza et al., 2016, Rosatti
et al., 2019). Moreover, the propagation time of the potential debris flow
in the Rotian catchment is considered and it is assumed to be equal to 3
hours.

Al più ci mette tre ore per raggiungere la confluenza...intorno al picco
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si genera
Hence, according to these assumptions, given a storm k in P, the hourly

maximum rainfall intensity within the storm, ÎP (k), and the related instant,
τ̂P (k), are identified. Then, according to Callau Poduje and Haberlandt
(2018), a time window is introduced to identify synchronous events: in this
analysis, we define the time window as the interval [τ̂P (k)− 20, τ̂P (k)+ 3].
The time window is then intersected with the independent events of M, PT
and C and if the intersection is non-zero in all three rain gauges, the overall
event is defined as synchronous.

Finally, the cumulative rainfall in 24h is computed for all synchronous
events in each rain gauge. Given a synchronous event w, the cumulative
rainfall for P is calculated as:

Hw
P =

0∑︂
j=−23

IP (τ̂P (w) + j) (4.57)

and the time window [τ̂P (w) − 20, τ̂P (w) + 3] is used to calculate the
cumulative precipitation in the other three rain gauges:

Hw
M =

3∑︂
j=−20

IM (τ̂P (w) + j) (4.58)

Hw
PT =

3∑︂
j=−20

IPT (τ̂P (w) + j) (4.59)

Hw
C =

3∑︂
j=−20

IC (τ̂P (w) + j) (4.60)

In this way, all elements of the synchronous events set (Hw
P , H

w
M , H

w
PT , H

w
C ),

in which w = 1, . . . , N with N number of synchronous events, are defined.
It is worth noting that the definition of the synchronous events set made

it necessary to introduce some (strong) assumptions in terms of rainfall
duration and investigated phenomena timing. However, these assumptions
can be seen as a first attempt. As will be highlighted later, the goodness
of the provided assumptions can be evaluated and, if necessary, optimized
based on the results of the analysis.

4.4.2 Marginal distributions
In this study, the analysis of extremes is conducted applying the SMEV
approach, which, as mentioned in Section 4.2.4, builds the yearly non-
exceedance probabilities distribution on the basis of all ordinary events of
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Figure 4.7: Computation example for one of the synchronous events set’s elements.
(a) Hourly rainfall intensities of a storm in P along with the identification of the
maximum intensity instant (red dot) and the time window (orange segment). The green
striped columns are the rainfall intensities considered to compute the 24h cumulative
rainfall in P. (b), (c) and (b) hourly rainfall intensities of storms in M, PT and C
respectively. The orange striped columns are the rainfall intensities within the time
window and hence are the ones used to calculate the 24h cumulative rainfall in M, PT
and C. For each rain gauge, the pink segment highlights the interval of the storm.
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the investigated process. This approach is in contrast to classical EVT, that
studies the yearly maxima distribution based on some selected observations
of the process, namely directly annual maxima or realizations that exceed
an established threshold (e.g. Davison and Smith, 1990). As a result, by
avoiding this observations selection, the SMEV framework allows us to use
all of the information offered by the realizations of the investigated process,
for both univariate marginal and dependence structure analysis.

The SMEV approach is applied independently to each considered rain
gauge to obtain the related marginal distributions considering, as ordinary
events, the observations of the related variable. Given a rain gauge, the
parameters of the Weibull distribution are estimated left-censoring the re-
lated ordinary events, considering as threshold the 75th percentile (Formetta
et al., 2022, Marra et al., 2019), and adopting the maximum likelihood es-
timation (MLE) technique (e.g. Balakrishnan and Kateri, 2008, Delignette-
Muller and Dutang, 2015). The result is four fitted Weibull CDF: GP (xP ),
GM (xM ), GPT (xPT ) and GC(xC), and related extremes CDF: ΩP (xP ),
ΩM (xM ), ΩPT (xPT ) and ΩC(xC).

Then, for each variable, to check the adequacy of the Weibull distribu-
tion in representing the right tail of the distribution of the ordinary events,
the 90% sampling uncertainty is quantified generating 1000 random samples,
of size equal to the ordinary events one, from the resulting fitted distribution
(Miniussi and Marra, 2021). The assumption of having a Weibull tail above
the threshold, used to censure the observations, is to be rejected if more
than 10% of the left-censored observations lie outside the 90% sampling
confidence interval.

Finally, the uncertainty in the quantiles (obtainable by inverting Eq.
(4.43)), due to the uncertainty in the estimate of the distribution’s parame-
ters, is quantified using the bootstrap method with replacement. According
to Marra et al. (2019) and Formetta et al. (2022), the procedure consists in
(i) randomly select, with replacement, a number of years equal to the ones
available in the record, (ii) consider as ordinary events the ones observed
during the sampled years and (iii), based on these, estimate the distribution
parameters. This procedure is performed 1000 times and the 90% confidence
interval is used to quantify the quantiles uncertainty.

4.4.3 Dependence structure estimate, modeling and validation

Once the marginal distributions are defined, the dependence structure be-
tween the observations of the synchronous events set is assessed and mod-
elled through a copula-based approach.

The dependence structure of the observations is characterized by esti-
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mating τn and TCFn of all possible variables pairs (Eqs. 4.22 and 4.31,
respectively). To compute these dependence measures, all observations are
transformed in pseudo-observations performing a rank order transformation
as (Graler et al., 2013):

S(x) =
rank(x)

N + 1
(4.61)

in which N is the total number of observations in each rain gauge. This
transformation allow us to transform the variables HP , HM , HPT and HC

in the variables U , V , W and Z, respectively, each approximately uniformly
distributed on II. Hence, the variables pairs (U, V ), (U,W ), (U,Z), (V,W ),
(V,Z) and (W,Z) are considered.

Hence, the empirical dependence structure has to be reproduced intro-
ducing a proper multivariate copula. In general, constructing high dimen-
sional copulas is widely acknowledged to be a difficult problem (Aas et al.,
2009). Indeed, unlike bivariate copulas, the number of higher-dimensional
copulas is very limited in literature. For this reason, the PCC and the re-
lated vine graphical representation are used in this analysis to model the
dependence structure between the four variables under investigation.

According to Dißmann et al. (2013), to fit a four-dimensional R-vine
copula to the pseudo-observations of the variables U , V , W and Z, the
following steps are needed for each tree:

1. select the tree structure;

2. define a bivariate copula family for each edge present in the selected
tree structure. According to Yu et al. (2020), in this analysis, the
families of copulas considered from which to choose are the elliptical
and archimedean copulas (Table 4.1). It is worth noting that, for all
trees, before selecting each (conditional) bivariate copula family, the
test of independence proposed in Genest and Favre (2007) is performed
to assess if the independence copula has to be chosen;

3. estimate the parameters of each chosen copula.

These three steps are performed following the procedure proposed in Diß-
mann et al. (2013) and implemented in the R package “VineCopula” (Schep-
smeier et al., 2015). Starting from the first tree T1, empirical Kendall’s tau
of all possible variables pairs are considered. Then, the T1 structure that
maximizes the sum of the absolute empirical Kendall’s tau is selected. To
this end, a maximum spanning tree algorithm (e.g. Cormen et al., 2009) is
implemented, namely the following general optimization problem is solved:
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max
∑︂

e={ij} in spanning tree

|τn,ij | (4.62)

Then, given the T1 structure, the bivariate copula families corresponding to
each edge is selected using the Akaike Information Criterion (AIC) (Akaike,
1973), namely for each pair, the one with the smallest AIC is selected and the
related parameter(s) is estimated with the MLE technique. Then, the three
marginal conditional CDF to be used as nodes in T2 are estimated using
Eq. (4.36) and empirical Kendall’s tau is computed for each conditional
variables pair that can be present in T2. As for T1, the T2 structure is, then,
selected maximizing the sum of the absolute empirical Kendall’s tau just
calculated, using the optimisation of Eq. (4.62). Hence, the AIC values are
used to select the conditional bivariate copula families of the obtained T2
structure and the related parameters are estimated with the MLE technique.
Finally, Eq. (4.36) is used to compute the two marginal conditional CDF
to be used as nodes in T3, the conditional bivariate copula is selected with
the AIC method and the copula parameter(s) is estimated with the MLE
technique.

In this way, each tree of the R-vine structure, as well as the six (con-
ditional) bivariate copula families and their associated parameters, are de-
fined.

Once the pair-copula decomposition is estimated, a strategy to validate
the obtained dependence structure model is introduced. The aim is to
evaluate how adequate the model obtained is in reproducing the dependence
structure between the observations. According to Brunner et al. (2019),
quantitative tests are not available to validate a multivariate distribution.
As a result, in this analysis, the validation is based on the following copula-
related quantities:

• Kendall function and related λ-function;

• TCF ;

• Kendall’s tau.

and, in particular, on the comparison between their empirical values and the
theoretical ones provided by the copula. The adequacy of each (conditional)
bivariate copula, present in the resulting R-vine structure, and the overall
four-dimensional R-vine copula is assessed.

To validate an arbitrary copula, the empirical values of each quantity are
estimated based on observations of the variables of which the copula models
the dependence structure, using Eqs. (4.14), (4.16), (4.22) and (4.31). The
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theoretical formulas are then employed to compute the related theoretical
values of of each quantity, namely considering Eqs. (4.10), (4.15), (4.23) and
(4.30). If a theoretical formula of a quantity is not available in closed-form
for the considered copula, its theoretical values are estimated by simulation
based on sample of size 104 generated from the investigated copula. This
method is applied for Kendall functions and λ-functions of elliptical copulas
and four-dimensional R-vine copula and Kendall’s tau between variables
pairs modelled by the four-dimensional R-vine copula.

As regards the TCF of the R-vine copula, this quantity is not consid-
ered in this analysis given its complexity and the related large number of
possible conditional probabilities definitions (i.e. 14 for a four-dimensional
copula) (for more details see e.g. Luca and Rivieccio, 2012). However, the
bivariate version of the TCF , related to the variables pairs not directly
modelled by the R-vine copula and hence not addressed in the validation
of the (conditional) bivariate copulas, is considered to validate the overall
dependence structure model.

Once the theoretical and empirical values of the considered copula-
related quantities are computed for all copulas, the adequacy of the ob-
tained dependence structure model is assessed graphically and by introduc-
ing proper performance measures. For all measures but Kendall’s tau, the
adequacy is quantified through the root mean square error normalized with
respect to the empirical mean (NRMSE), that, in a generic form, can be
written as:

NRMSE =

√︃
1

s

∑︁s
i=1(h

i − hĩ)2

1

s

∑︁s
i=1 h

i

(4.63)

where hi is the ith empirical values of the vector h of dimension s and hĩ is
the related theoretical value predicted by the considered model. Instead, the
theoretical and empirical Kendall’s tau are compared by calculating their
absolute difference normalized with respect to the empirical value (NAD)
since they are a single value for each variables-pair. The generic expression
of NAD is the following:

NAD =
|h− h̃|
h

(4.64)

with h and h̃ empirical and theoretical value, respectively. It is worth noting
that Eq. (4.64) can be obtained from Eq. (4.63) by imposing s = 1. Both
the considered performance measures are calculated in a normalized form
to allow us to compare their values.
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Finally, to assess the adequacy of each copula in simulating the depen-
dence structure of the considered variables, the related 90% sampling un-
certainty interval of each considered quantity is estimated performing 1000
repetitions of their empirical version computation using an observations-size
random sample generated from the considered copula.

4.4.4 Scenarios
Once the marginal distributions and the dependence structure model are
defined and validated, it is possible to use the resulting multivariate model
to estimate scenarios with assigned return period, consisting of a non-
exceedance probability, namely a 24h cumulative rainfall value, for each
investigated variable.

In this analysis, to compute a scenario (or design event) for a given value
and definition of the return period T , the following steps are performed:

1. identify the non-exceedance probability level t related to T . Consid-
ering the OR case, t can be computed combining Eqs. (4.45), (4.46)
and (4.55):

tOR =

[︃
1− 1

TOR

]︃1/n
(4.65)

Similarly, for the AND case, considering Eqs. (4.45), (4.49) and (4.56),
t can be written as:

tAND =

[︃
1− 1

TAND

]︃1/n
(4.66)

As for the Kendall case, combining Eqs. (4.45), (4.52) and (4.55), t is
defined as:

tK = K−1
C

(︄(︃
1− 1

TK

)︃1/n
)︄

(4.67)

in which K−1
C (·) is the inverse of KC that allow us to compute the

Kendall’s quantile generically defined as:

q = inf{l ∈ II : KC(l) = b}
= K−1

C (b)
(4.68)

with b ∈ II (Salvadori et al., 2011). Since a closed-from for KC is
not available, tK is estimated using a bootstrap technique, namely
algorithm 2 proposed in Salvadori et al. (2011), considering 1000 rep-
etitions with sample size 105;
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2. identify the isohypersurface related to t (Lt for the OR and Kendall
case while L1−t for the AND one). Considering the analyzed variables
U , V , W and Z with R-vine copula C and density c, for the OR and
Kendall case, the four-dimensional points (u, v, w, z) ∈ II4 that satisfy
respectively the following equations have to be identified:∫︂ u

0

∫︂ v

0

∫︂ w

0

∫︂ z

0
c(u, v, w, z) dudvdwdz = tOR (4.69)

∫︂ u

0

∫︂ v

0

∫︂ w

0

∫︂ z

0
c(u, v, w, z) dudvdwdz = tK (4.70)

Instead, for the AND case, considering Eqs. (4.20) and (4.56), the
equation to be solved is the following (Durante et al., 2008, Lux and
Papapantoleon, 2017):

1− u− v − w − z + C (u, v, 1, 1) + C (u, 1, w, 1) + C (u, 1, 1, z)+

C (1, v, w, 1) + C (1, v, 1, z) + C (1, 1, w, z)− C (u, v, w, 1)−
C (u, v, 1, z)− C (u, 1, w, z)− C (1, v, w, z) + C (u, v, w, z)

= 1− tAND

(4.71)

in which each copula term is computed with a four-dimensional in-
tegral with integration from 0 to 1 for the variable equals to 1. For
instance, the term C (1, v, 1, z) is:

C (1, v, 1, z) =

∫︂ 1

0

∫︂ v

0

∫︂ 1

0

∫︂ z

0
c(u, v, w, z) dudvdwdz (4.72)

The isohypersurfaces of level tOR and tK are computed considering
15000 points for which the values of three variables are uniformly
generated between (0, 1) and the fourth variable value is estimated in
order to satisfy Eq. (4.69) and Eq. (4.70), respectively. The four-
dimensional integral is estimated with a Quasi-Monte Carlo approach
considering the Halton sequence to generate 106 sample points for
the integration (e.g. Cambou et al., 2017, Nagler and Vatter, 2021,
Owen, 2003). The same approach is used to find the points of the
isohypersurface of level tAND. However, for the AND case, the points
considered are 5000 due to the high computational times to solve Eq.
(4.71);

3. select the scenario related to T , namely one copula point of the es-
timated isohypersurface, introducing a proper approach to identify
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it. The approach considered in this analysis is the most-likely de-
sign realization (MLDR) one, introduced by Salvadori et al. (2011).
According to this approach, among all possible copula points that be-
long to the isohypersurface related to t, the one with the highest joint
PDF is selected. Considering the analyzed variables U = GP (HP ),
V = GM (HM ), W = GPT (HPT ) and Z = GC(HC) with copula C
and joint PDF f , the MLDR for the OR, AND and Kendall case are
defined respectively as:

(u, v, w, z)OR =

argmax
C(u,v,w,z)=tOR

f
(︁
G−1

P (u) , G−1
M (v) , G−1

PT (w) , G−1
C (z)

)︁ (4.73)

(u, v, w, z)K =

argmax
C(u,v,w,z)=tK

f
(︁
G−1

P (u) , G−1
M (v) , G−1

PT (w) , G−1
C (z)

)︁ (4.74)

(u, v, w, z)AND =

argmax
C(u,v,w,z)=1−tAND

f
(︁
G−1

P (u) , G−1
M (v) , G−1

PT (w) , G−1
C (z)

)︁ (4.75)

Moreover, considering a level t and a definition of T , the effect on
the MLDR selection of the points used to define the related isohyper-
surface is assessed by applying a bootstrap method with replacement.
Given an isohypersurface, M points are randomly drawn from the M
available ones and, among these, the MLDR is identified. The repli-
cation of this procedure 1000 times allows us to quantify the MLDR
uncertainty through the 90% confidence interval;

4. finally, the copula points are transformed to real scale. Given a cop-
ula point (u, v, w, z), the corresponding quantiles of the variables HP ,
HM , HPT and HC , namely the point (xP , xM , xPT , xC) ∈ IR4, are
computed as:

(xP , xM , xPT , xC) =
(︁
G−1

P (u) , G−1
M (v) , G−1

PT (w) , G−1
C (z)

)︁
(4.76)

In this analysis, for comparative purposes, TOR = TK = TAND = 30
years are considered. Moreover, TK = 100 and 200 years are assessed to
obtain the typical scenarios considered in hazard mapping for the Kendall
case.

It is worth noting that, given its definition, pOR is not actually adequate
to describe the event object of this analysis, i.e. the co-occurrence of the
investigated hazardous phenomena at the confluence. However, a scenario
related to TOR is considered for comparative purposes.
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Finally, the uncertainty in the MLDR values estimate due to uncertainty
in the dependence structure estimate and modeling is not taken into account
in this research. Indeed, the high computational times required to define
an isohypersurface make it impossible to assess the effect of this type of
uncertainty on the MLDR values, using for example the method provided
in Dung et al. (2015), in an acceptable amount of time.

4.5 Results and discussion

4.5.1 Observations and empirical dependence measures

The synchronous events analysis results in N = 557 observations in each
rain gauge. The monthly and yearly distribution of observations, as well as
the variability of the number of observations per year, are depicted in Figure
4.8. Coherently with the rainfall regime of the investigated area, the months
with the greatest number of synchronous events are July, August, May and
October (Figure 4.8(a)). As regards the yearly result, 2009 had the fewest
number of synchronous events (i.e. 22), whilst 2013 had the most (i.e. 41)
(Figure 4.8(b)). However, it is worth noting that the 2009 rainfall record is
characterized by missing data at the C rain gauge and this contributes to
have a fewer number of events. Considering hence the distribution of the
annual number of observations, the summary statistics are shown in Figure
4.8(c) and the mean value is n = 31.

As regards the values of the observations, some statistics of each variable
of the synchronous events set are reported in Table 4.3. HP is the variable
characterized by the largest mean and high skewness and kurtosis, that
suggest a right-heavy tail. This is due to both event definition, which tends
to maximize HP values, and rainfall at P, which is on average higher than
in other rain gauges (Table 4.2). HC has the lowest mean and the skewness
and kurtosis values describe a less right-heavy tail than other variables. A
mean value intermediate between the HP and HC ones characterize the
observations of the variables HM and HPT , with the latter very close to the
HP one. Both HM and HPT observations present a right-heavy tail but it
is less marked than the HP observations one. These considerations on the
distributions of the observations values are visually evident from the box
plots shown in Figure 4.9.

The observations values may be explained considering both the rainfall
regime at each rain gauge (Table 4.2) and the distance from P (Figure 4.5).
By comparing the timing of storms in P and the related storms in the other
rain gauges, it is possible to assess if the distance from P may effect the
contemporaneity of storms’ most intense part and, hence, the consequent
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Figure 4.8: Number of synchronous events: (a) monthly and (b) annual distribution
and (c) boxplot of the number of observations per year. The black dot indicates the
mean value n.

HP HM HPT HC

25th percentile (mm) 5.2 3.4 5.2 3.2
Mean (mm) 16.8 13.4 16 10.9

75th percentile (mm) 21.4 17.6 21.4 15.4
Maximum (mm) 173.2 98.8 112.6 66.4

Skewness 3.2 1.9 2 1.5
Kurtosis 15.6 4.6 5.1 2.3

Table 4.3: Some statistical quantities of the observations of the variables HP , HM ,
HPT and HC , respectively.
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Figure 4.9: Box plots of the observations values of the variables HP , HM , HPT and
HC .

magnitude of the cumulative rainfall. To assess this aspect, the hourly
maximum rainfall intensity instant, namely the rainfall peak instant, of a
given rainfall event is considered as the representative instant of the storm’s
most intense part. Then, for all rain gauges and storms, it is evaluated if the
rainfall peak instant occurs within the time window used to calculate the
related 24h cumulative rainfall. Finally, for each rain gauge, the percentage
of synchronous events with the rainfall peak instant within the related time
window is calculated and shown in Table 4.4. As evident, the greater the
rain gauge is distant from P, the less frequent is the contemporaneity of
the most intense part of its storms and the P ones. Hence, combining this
information with the rainfall at the rain gauges, it is possible to make the
following considerations:

• HM refers to the rain gauge with the lowest mean annual precipita-
tion but its great closeness to P may justify the right-heavy tail that
characterizes its observations values: in comparison to the other rain
gauges, the most intense part of the storms in M most frequently oc-
cur close in time at the related rainfall peaks in P, namely within the
connected time windows;

• PT has the highest mean annual precipitation and a distance from P
that is larger than that between P and M but less than that between
P and C. These characteristics may justify the high values of HPT
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Rain gauge Rainfall peaks instant
within the related time window

M 69%
PT 64%
C 63%

Table 4.4: For each rain gauge, the percentage of synchronous events whose hourly
maximum rainfall intensity (i.e. rainfall peak) instant is included in the related time
window used to calculate the 24h cumulative rainfall.

observations that, however, are characterized by right tail comparable
to the HM one. More frequently than M, in fact, the most intense
part of the storms in PT does not fall within the relative time win-
dow. Hence, considering the pluviometric regime in PT, this results
in extreme values that are lower than expected.

• HC refers to the rain gauge with mean annual precipitation very close
to the M one but the greatest distance from P. These aspects may
explain why the observations of HC have the lowest values and are
characterized by a less right-heavy tail than other variables: the lowest
frequency of contemporary occurrence of the most intense part of the
storms in C and the related rainfall peaks in P results in relatively
lower extremes values.

Regarding the observations correlation structure, its graphical overview
is provided by the scatter plots reported in Figure 4.10. It’s possible to
visually notice a positive correlation between the observations of all variables
pairs and it seems to be strongest and weakest between the observations
of the variables HM and HPT (Figure 4.10(d)) and HP and HC (Figure
4.10(c)), respectively, both in overall terms and in the upper tail.

These visually-based considerations are confirmed by the Kendall’s tau
and TCFn computed considering the pseudo-observations and shown in
Figure 4.11 and 4.12, respectively. The empirical Kendall’s tau values
range between 0.46 and 0.57 with the minimum correlation between the
pseudo-observations of U and Z and the maximum one between the pseudo-
observations of V and W . Hence, all variables pairs present a strong corre-
lation.

Regarding the empirical upper tail dependence, the strongest one sub-
sists between the pseudo-observations of the variables V and W whose
TCFn, for instance, is about 0.61 with t = 0.95. The pseudo-observations of
the variables U and Z present the weakest upper tail dependence with the



4.5 Results and discussion 131

TCFn that tends to zero fast with a value equal to 0.26 for t = 0.95. The re-
maining pairs are characterized by a TCFn that convergences to zero slower
than the (U,Z) one: considering t = 0.95, the TCFn of the pairs (U,W )
and (W,Z) is equal to about 0.44 while the TCFn of the pairs (U, V ) and
(V,Z) is about 0.4. It is worth noting that the spikes present in the TCFn

of the variables pairs (V,W ), (V,Z) and (W,Z) for values of t very close
to 1− are due to both the pseudo-observations behavior in the upper-right
corner of the unit square and their rather limited number used to compute
these values of TCFn.

The obtained empirical dependence structure may be explained consider-
ing the location of the investigated rain gauges and their mutual distances
(see Figure 4.5). Considering the empirical dependencies between U and
the other three variables, Kendall’s tau (first row of Figure 4.11) slightly
decrease by increasing the mutual distance between P and the second rain
gauge considered (i.e. M, PT or C). This possible effect of the distance be-
tween P and the other rain gauges is less evident considering the empirical
upper tail dependence. It can only be noted that the weakest upper tail
dependence subsists between the observations in P and C. Moreover, the
location of M and PT within the same valley may explain the strongest cor-
relation and upper tail dependence between the observations of the variables
HM and HPT . However, more rain gauges would be required to fully assess
how their mutual distances and positions effect the correlation structure.

4.5.2 Fitted marginal distributions

The univariate Weibull distributions fitting the left-censored observations
of each variable are shown in Figure 4.13 along with the related 90% sam-
pling uncertainty interval. The graphs’ coordinates make the Weibull dis-
tributions straight lines. To better visualize the adequacy of the Weibull
distribution in representing the upper portion of the observations, the fit-
ted distributions and sampling uncertainty intervals are also shown in Q-Q
plots in Figure 4.14.

As evident from Figure 4.13, for all variables, the observations greater
than the 75th percentile are characterized by an approximately linear be-
havior satisfactorily represented by the related fitting Weibull distributions.
The linear behavior is most pronounced in the upper portion of the obser-
vations of HP , HPT and HM (Figure 4.13(a), (b) and (c)) while the largest
values of HC tend to deviate slightly from the related fitted distribution
(Figure 4.13(d)). Ordinary events below the 75th percentile tend to deviate
from the obtained distributions for all variables.

Moreover, as evident from Figure 4.14(a), the Weibull distribution de-
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Figure 4.13: Resulting Weibull distributions reproducing the upper portion of the
observations of each variable: (a) HP , (b) HM , (c) HPT and (d) HC . For each plot,
the green solid line is the Weibull distribution fitting the left-censored ordinary events,
represented with magenta points, the black points are all the other ordinary events and
the gray shaded area is the 90% sampling uncertainty interval. p is the exceedance
probability provided by the Weibull distribution (i.e. 1−G(x)).
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