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Abstract
Security vulnerability fixes could be a promising research avenue for Automated Program
Repair (APR) techniques. In recent years, APR tools have been thoroughly developed for
fixing generic bugs. However, the area is still relatively unexplored when it comes to fixing
security bugs or vulnerabilities. In this paper, we evaluate nine state-of-the-art APR tools
and one vulnerability-specific repair tool. In particular, we investigate their ability to gener-
ate patches for 79 real-world Java vulnerabilities in the Vul4J dataset, as well as the level of
trustworthiness of these patches.We evaluate the tools with respect to their ability to generate
security patches that are (i) testable, (ii) having the positive effect of closing the vulnera-
bility, and (iii) not having side effects from a functional point of view. Our results show
that the evaluated APR tools were able to generate testable patches for around 20% of the
considered vulnerabilities. On average, nearly 73% of the testable patches indeed eliminate
the vulnerabilities, but only 44% of them could actually fix security bugs while maintaining
the functionalities. To understand the root cause of this phenomenon, we conduct a detailed
comparative study of the general bug fix patterns in Defect4J and the vulnerability fix patterns
in ExtraVul (which we extend from Vul4J). Our investigation shows that, although security
patches are short in terms of lines of code, they contain unique characteristics in their fix
patterns compared to general bugs. For example, many security fixes require adding method
calls. These method calls contain specific input validation-related keywords, such as encode,
normalize, and trim. In this regard, our study suggests that additional repair patterns should
be implemented for existing APR tools to fix more types of security vulnerabilities.
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1 Introduction

Automated Program Repair (APR) techniques have been thoroughly studied in the past years
(Durieux et al. 2019). These studies outline that APR tools struggle with fixes that require
modifications to several parts of the software, as it becomes extremely difficult to even find
the relevant lines of code to repair (Neto et al. 2018). In this respect, security bug fixes seem
to be a promising research avenue for APR. Several studies have now consistently shown
that security fixes are typically very local, i.e., concentrated in a single method and typically
consisting of a handful of lines (Nguyen et al. 2016; Dashevskyi et al. 2018). There might
be architectural mistakes (Vanciu and Abi-Antoun 2013) which require major redesign, but
they are the statistical outliers.

Automatic Vulnerability Repair (AVR) techniques could provide a much-needed solution
to a pain point in the software industry, as studies have shown that developer tends to be less
proactive in fixing the vulnerabilities themselves (Pashchenko et al. 2020). One of the reasons
is that developers think it is difficult to find the root cause of security bugs (Ma et al. 2017).
Given the great potential, it is somewhat surprising that the area is relatively unexplored (see
Section 3). Therefore, we started an investigation on one of the manually curated datasets
of reproducible vulnerabilities (Bui et al. 2022) and used the wealth of APR tools that have
been previously compared by Durieux et al. on generic bugs (Durieux et al. 2019).

Figure 1 illustrates some puzzling results of our first analysis. The figure shows the patches
generated by both developers and APR tools for the vulnerability CVE-2018-13241 of the
library Apache Common Compress. The vulnerability could cause an infinite loop execution,
leading to a DDoS attack due to a possible integer overflow. In our experiments, almost all
APR tools (ARJA, GenProg-A, jGenProg, jKali, RSRepair-A, TBar, etc.), with the excep-
tions of jMutRepair and SeqTrans, could provide a patch that is considered as a plausible
patch in the APR literature, i.e., it passes all the tests, including additional security tests as
well as additional regression tests. However, when compared with the human patch, those
APR-generated patches are actually incorrect. In the APR literature, this phenomenon is
called the overfitting problem (LE 2018). These observations spurred us to investigate more
thoroughly the application of APR tools to security vulnerabilities. Accordingly, our first
research question is:

RQ1 Can the existing APR tools generate end-to-end (E2E) tested patches in the context of
real-world vulnerabilities?

In Section 2), we present a classification of security patches, which includes a precise defini-
tion of E2E tested patches. In a nutshell, in the industrial setting, a patch must be eventually
deployed without causing errors in the build process. Hence, in this research question, we
accept the output of an APR tool as a feasible artifact for the beginning of the analysis when
it is fully tested according to the project’s own test suite. We remark that this paper is the first
study investigating the test-based repair tools for the Java language in the context of software
vulnerabilities. Our study complements the findings of Pinconschi et al. (2021), which are
obtained for test-based tools and the C language.

1 https://nvd.nist.gov/vuln/detail/CVE-2018-1324
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According to our definitions in Section 2, the tool-generated patches in Fig. 1 are to be
accepted in RQ1. The next step, therefore, is to climb in the hierarchy of what constitutes a
right patch as a developer would interpret it:

RQ2 How many of the generated patches are actually trustworthy?

Our operative definition of ‘trustworthy’ is that the patches actually fix the vulnerability
(positive effect), possibly without breaking the code functionality (negative side effect). To
assess the trustworthiness of patches, we need to resort tomanual validation. Our results show
that purely automated criteria, as used in other vulnerability-centric studies by Pinconschi
et al. (2021), are insufficient. We even found some examples of ‘rank inversion’: the best-by-
far tool in terms of automated criteria is bested by other tools when non-trustworthy patches
are discounted.

We also remark that the detailed manual scrutiny of the patches in order to assess the
presence of a positive security effect and the absence of other functional negative side effects
is used in the field of security for the first time. To our knowledge, the work by Kechagia et al.
(2021) is the only APR study for security-related bugs that takes account of the correctness

Fig. 1 Developer’s patch and APR’s patches for Integer Overflow vulnerability in Apache Common Compress
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of the generated patches. However, in their study, the security-wise and functionality-wise
correctness metrics are not assessed separately.

From the end-user perspective, the security-wise correctness of the patches is a very
desirable property, as this implies that no security experience from the human developer is
necessary. However, a security-fixing patch that has some functional side effects might also
be desirable, as it is generally easier to tweak a fixing patch from a functional perspective
rather than devising a security fix (Gasiba et al. 2021).

To understand the root causes of poor trustworthiness, we perform a detailed comparative
study of the bug vs. vulnerability fix patterns:

RQ3 Are the repair patterns used by humans to fix security vulnerabilities different w.r.t.
fixing generic software bugs?

This investigation gives insights into whether more or different repair patterns need to be
added to the APR tools. In the (somewhat limited) scope of ExtraVul and Defects4J, we
found that, while security fixing patterns are indeed short, they are not necessarily simple.
Most importantly, the patterns do not necessarily resemble code lines present elsewhere in
the code base. This is a major hurdle for any APR tool that bases its analysis exclusively on
the code base to be fixed, thus opening up new research challenges. We also remark that this
paper is the first to provide a list of empirically-identified vulnerability fix patterns for Java
and a comparison of those with generic bug fix patterns.

Novelty and contribution Platforms for automated analysis of test-based APR tools are
well developed and, recently, have also been used for security vulnerabilities. For example,
Durieux et al. (2019) have proposed a toolchain for the automatic analysis of several APR
tools in Java, Pinconschi et al. (2021) have presented an evaluation of APR tools for C vulner-
abilities, and Pinconschi et al. (2022) have proposed a toolchain for the automatic execution
of APR tools for vulnerabilities in C and Java. The key difference between traditional APR
test suites and AVR test suites is that the latter contains a special test case, called Proof of
Vulnerability (PoV) test, which reveals the presence of a vulnerability in the program. A
key issue of all the above-mentioned automated proposals is the strong assumption that the
test suite is correct. Liu et al. (2020) have already shown that, at a more careful semantic
analysis, several APR outcomes pass all tests but are actually wrong. What we have shown
in this paper is that the PoV-based method proposed by Pinconschi et al. (2021, 2022) and
by Bui et al. (2022) is not enough to guarantee semantic correctness of the fixes, even in the
presence of a perfect selection of the bug location.

In summary, the paper has the following contributions:

– amethodology to capture and validate the trustworthiness of APR patches from a security
standpoint.

– an empirical analysis, with extensive manual validation, of the (in)ability of test-based
APR tools to generate trustworthy patches for Java security vulnerabilities. This analysis
includes a discussion of the patch types that the tools are able to successfully (respectively,
unsuccessfully) produce.

– a root cause analysis of the limitations found in the assessed tools, in terms of the fix
patterns that are specific to security and could not be reproduced by the (generic bug-
oriented) tools.
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Outline After introducing the terminology (Section 2) and a review of related works (Sec-
tion 3), we present our methodology in Section 4. We further elaborate on the details of the
dataset we used in Section 5, and present the evaluation results in Sections 6, 7, and 8. We
conclude this paper with the threats to validity (Section 9) and future work (Section 10).
To support the openness in science, we have made the scripts and results of our evaluation
publicly available (Apr4vul 2023).

2 Terminology

In the APR literature, a patch is considered plausible once it passes all tool internal tests in a
given benchmark. Recently, more research has focused on the correctness of a patch, in this
case, a patch is considered to be successful once it passes the human checks. In this study,
we use a more granular classification that also considers the desired effect of the patch (i.e.,
fixing the vulnerability) and the absence of negative side effects (i.e., functionality being
broken). Therefore, we classify the APR-generated patches as follows:

– Generated patch: The tool has used heuristics to produce a patch candidate and, accord-
ing to the tool, the patch candidate has been vetted and has passed the tool’s tests.
Therefore, the tool considers the patch candidate as a successful patch and yields it at
the end. Among the evaluated tools, SeqTrans does not have internal tests for itself, so
we consider the predicted patches from SeqTrans’s model which are compilable as the
generated patches;

– End-to-end (E2E) tested patch2: The generated patches that actually pass all Proof of
Vulnerability (PoV) and regression tests that are available for the program. Note that the
E2E tested patches do not break the build process of the projects they are applied to.
In this study, we forced all the APR tools (except for SeqTrans) to use the whole test
suite of the project as the validation test set for their patch candidates. Therefore, all the
generated patches from these tools are E2E tested patches;

– Security-Fixing patch: The patch is an E2E tested patch that has been analyzedmanually
and in which the undesired behavior is eliminated (in our case, the vulnerability is no
longer present), but some functionalities may be broken in an undetected way;

– Correct patch: The patch is a security-fixing patch that also preserves all the function-
alities, as per the manual analysis;

In the choice of the terminology for E2E tested patches, we rely on the industrial clas-
sification of Continuous Development/Continuous Integration, e.g., by Pittet (2022). In
the test hierarchy, E2E tests are the link between tests for a subset of components (unit,
functional, integration) and tests for business and deployment aspects (acceptance tests, per-
formance) (Pittet 2022). The latter cannot be available for a generic validation of APR tools
as they are specific to an application. This classification describes an increasing level of
patch quality, and each category is a subset of the previous one. These categories are further
explained in Section 4.2.

2 Also known as “Plausible patch" in literature. Henceforward, we use “E2E tested patch" and “Plausible
patch" interchangeably.
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3 RelatedWork

3.1 Automated Program Repair (APR)

To repair a buggy program, APR tools (particularly test-based ones) first try to localize
potential faults (fault localization) and then apply mutations (patch generation) on the buggy
locations until the program passes all the test cases. A patch is plausible if, when applied, it
passes both positive and negative test cases.

According to Goues et al. (2019), APR techniques can be grouped into three main cate-
gories, based on the way program issues are handled: Heuristic-based, Semantics-based, and
Learning-based.

– Heuristic-based: this technique employs theGenerate-and-Validate strategy, which iter-
ates over a search space of syntactic edits to mutate the buggy program until it passes
all the test cases. The repair strategy is often supervised by a genetic programming
approach (Le Goues et al. 2011). APR techniques that use templates for repair, such as
TBar (Liu et al. 2019), can be considered heuristic-based approaches as they share the
similarity (Liu et al. 2020).

– Semantic-based: this technique extracts semantic specifications from the test cases of the
program, and attempts to synthesize valid program repairs that fulfill those specifications
by leveraging the constraint-solving techniques, such as Z3 (DeMoura andBjørner 2008)
and CVC4 (Barrett et al. 2011).

– Learning-based: this technique learns the repair patterns with or without their contexts
from previous bug fixes and then utilizes machine learning architectures (especially deep
learning) to predict the patches. Recently, there have been many APR tools of this kind
devoted to the community, such as DLFix (Li et al. 2020), DEAR (Li et al. 2022),
CURE (Jiang et al. 2021). However, in our study, we decided not to evaluate the tools in
this category as they are generally not test-based and ‘standalone’ (Liu et al. 2020) APR
tools.

Although current APR techniques differ in the way they generate a patch, they mainly
rely on a set of repair actions and repair patterns (Sobreira et al. 2018) to generate patches:

– Repair actions: fine-grained mutations at the code component level such as assignment
addition, modification, and deletion (Sobreira et al. 2018).

– Repair patterns: more abstract and semantic interpretation of a patch, such as wraps-
with (when a patch wraps the original codes with conditional branches, try-catch, etc.),
wrong reference (when a patch changes the variable or method reference of the pro-
gram) (Sobreira et al. 2018).

Different APR techniques vary in how complex the repair actions and patterns they use.
For instance, jKali (Martinez and Monperrus 2016) performs simple actions like removing
one line of code, while Nopol (Xuan et al. 2016) usesmore complex patterns such as changing
conditional expression.

Benchmarking To assess the effectiveness of the above-mentioned APR techniques,
researchers have created benchmarks consisting of buggy programs and test suites. Durieux
et al. (2019) performed a large-scale evaluation of eleven tools on 2,141 general bugs (i.e., no
focus on security) coming from five different benchmarks on their proposed benchmarking
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platform called RepairThemAll. They found that the tools were able to fix 0.7-9.9% of the
bugs and that the tools overfit Defects4J (which has the most unique patches). However, this
study provided a comprehensive review of tool repairability. Several studies (Liu et al. 2020;
Kechagia et al. 2021; Martinez et al. 2017) assessed the correctness of the patches generated
by the APR tools and found that not all generated patches from APR tools are correct due to
the design of the bug oracle.

3.2 AutomatedVulnerability Repair

Compared to general bugs, there are few repair techniques devoted to vulnerabilities, nor
empirical studies to understand how advanced these techniques have become, especially for
the Java programming language. LeGoues et al. (2012) evaluated anAPR tool calledGenProg
on a number of vulnerabilities, including the one that corresponds to a CVE record (CVE-
2011-1148). Although this study provided an enhancement toGenProg for vulnerabilities, the
number of vulnerabilities fixed is not significant, and the tool’s performance on vulnerabilities
has not been explained thoroughly. Instead of enhancingGenProg,which is a general bugAPR
tool, to fix vulnerabilities, Huang et al. (2019) developed an automatic program repair tool
called Senx to generate patches formemory-related vulnerabilities by using safety properties.
Abadi et al. (2011) developed a tool specifically for fixing injection vulnerabilities by placing
sanitizers in the right place in the code.

Recently, there are several promising deep learning-based AVR tools for repairing C
vulnerabilities, such as VRepair (Chen et al. 2022), VulRepair (Fu et al. 2022), SPVF (Zhou
et al. 2022). However, these tools were evaluated only on vulnerabilities in several groups
of CWE recorded in C vulnerability datasets. In our literature review, only a limited number
of tools have been dedicated to fixing vulnerabilities for Java programs. VuRLE (Ma et al.
2017) and SEADER (Zhang et al. 2021) are the techniques that infer the transformations to
fix vulnerabilities from examples. Although the studies improved the repair rate for specific
vulnerabilities, there is limited knowledge of how the tools perform on a broader set of
vulnerabilities. As far as we know, SeqTrans (Chi et al. 2022) is the first and only AVR
tool that aims to fix Java vulnerabilities with a wide array of vulnerability types. This tool
follows the similar idea of VRepair (Chen et al. 2022), using transfer learning to deal with
the problem of shortcomings of vulnerability fix samples for training.

Benchmarking Regarding the vulnerability benchmark used, Pinconschi et al. (2021) eval-
uated the APR tools on DARPA’s Cyber Grand Challenge (CGC) corpus (Caswell 2023).
However, CGC is an artificial benchmark that contains programs built with vulnerabilities
planted in them. In this work, we use Vul4J (Bui et al. 2022), a benchmark consisting of real
vulnerabilities from real-world projects. Our strategy is aligned with previous APR evalua-
tions with bugs (i.e., using Defects4J Just et al. 2014) and is also believed to be the ideal way
to provide an evaluation that reflects the reality developers face.

Pinconschi et al. (2021) followed the same paradigm as Durieux et al. (2019) to implement
a benchmarking platform, namely SecureThemAll, and perform a comparative study on ten
APR tools for C programs. In this work, the concept of Proof of Vulnerability (PoV) test
(also known as negative test) was used to measure the success rate of an APR technique.
However, this study did not provide any semantic assessments of the generated patches nor
perform any deep analyses on the root causes of poor repair performance of the tools, which
have been carried out in our study. Also, our work focuses on a different programming
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language. Kechagia et al. (2021) proposed a framework called APIARTy to evaluate 14 APR
tools on a dataset of Java API Misuse. API misuse bugs can potentially lead to crashes and
introduce vulnerabilities in software systems. However, in practice, not every API misuse
is a direct software vulnerability. In our work, we evaluated and provided an explanation of
the performance of APR tools on vulnerabilities in real-world Java projects. To this end, we
extended a manual patch validation technique proposed by Liu et al. (2020), focusing on the
correctness metric. In particular, three authors manually review each patch generated from
the tools to see whether it indeed eliminates the vulnerability and maintains the program’s
functionalities. A patch is referred to as security-fixing patch if it successfully eliminates the
vulnerability. A security-fixing patch is privileged to a correct patch if it also does not break
any functionalities.

Current studies showed that repair patterns and actions used by existing APR tools
could be leveraged for fixing vulnerabilities. However, there is very limited insight
into how effective the APR tools are in fixing vulnerabilities (RQ1 and RQ2) and
which repair patterns and repair actions are used the most (RQ3). This is especially
true for the case of Java programming languages.

4 Methodology

This section discusses how we structured our evaluation study. We first show the selection
of APR tools, our criteria for including or excluding them, and the rationale. After having
a set of selected APR tools, we present the experimental setup for evaluating the selected
tools, including (1) the vulnerability dataset for evaluating the tools, (2) the execution of the
tools on the dataset, and (3) the manual assessment of the patch correctness. We also show
separately the replication of SeqTrans, a non-test-based repair tool that we include in our
study for comparison. In the last subsection, we discuss our manual assessment for analyzing
the repair patterns occurring in the ExtraVul dataset (introduced in Section 5.1).

4.1 APR Tools Selection

We have considered as authoritative the list of tools in the living review of Monperrus (Mon-
perrus 2018). In addition, we have analyzed the relevant studies on comparing and evaluating
APR tools (e.g., Durieux et al. 2019) and reviewed APR tools that specialize in repairing
security vulnerabilities (namely, we searched Google Scholar for the keywords ‘program
repair’, ‘vulnerability’, and ‘java’).

We selected the APR tools for our evaluation based on the following criteria:
C1: Java program repairs We want to focus on Java in light of the critical vulnerabilities
recently detected in Java applications. For example, the recent and critical vulnerability CVE-
2021-448323 (Log4Shell), which relates to remote code execution, has caused significant
disruption on the web. To the best of our knowledge, there has not been a study evaluating
the traditional APR tools on Java vulnerabilities. A study on the repair of C vulnerabilities

3 https://nvd.nist.gov/vuln/detail/CVE-2021-44832
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already exists (Pinconschi et al. 2021), albeit they did not perform the manual check that
turns out to be important (cf. answer to RQ2).

C2: Source code available We need to replace some of the tool’s own testing features with
the industrial testing pipeline and eliminate some elements of uncertainty in the vulnerability
identification. Therefore, if the source code repository of a tool is not provided in its paper
or we cannot find it on the internet, we will exclude the tool from our study.

C3: Executable Some APR tools that cannot be executed due to technical issues or are not
maintained anymore are excluded from our study. For example, we were not able to run
ssFix (Xin and Reiss 2017) due to an issue connecting to its code search server.

C4: Extensible Some APR tools require certain input formats to inject the benchmark, but
there should not be a major effort to make it work with a different dataset than the tool’s
own recommended dataset. For example, the tool Nopol (Xuan et al. 2016) was excluded
because it requires a sophisticated test executor to collect runtime traces for synthesizing the
patch candidates, which cannot be easily integrated with the industrial build pipeline based
on Maven and Gradle build systems supported in the Vul4J benchmark.

C5: Can fix multiple kinds of bugs or vulnerabilities The selected repair tools should be
able tofixmultiple types of bugsor vulnerabilities asweaim to seehowwell theAPR tools per-
form on different types of Java vulnerabilities. Hence, we excluded the repair tools aiming to
fix specific types of bugs or vulnerabilities. For example, we have excluded SEADER (Zhang
et al. 2021) because it targets only API misuses in two Java cryptographic frameworks.

C6: Test-basedAPR tools We aim to check the performance of the APR tools in the presence
of test cases in industrial projects (Maven/Gradle). In our evaluation, we use an extended
version ofRepairThemAll framework (Durieux et al. 2019)which supports E2Epatch testing.

The last row in Table 1 shows nine generic APR tools that satisfy our criteria. Since
we focus on vulnerability, we consider including security-specific tools in our benchmark.
This decision is also supported by the early feedback that we gathered on this paper from
expert reviewers. However, there is no security-related APR tool that actually fits all the
criteria, as shown in Table 1. Although there are several tools aimed at fixing vulnerabilities,
as listed in the last column of Table 1, only SEADER and SeqTrans are available to us.
Including SEADER would be unfair to the tool because the tool is very specific to a kind of
vulnerabilities. In particular, it could only potentially fix two vulnerabilities of the same type
in the Vul4J dataset. Therefore, we decided to relax the criteria C6 and included SeqTrans
even though the tool is based on machine learning and not on test cases. We also remark
that this tool is well-known in the APR community and regarded as being state-of-the-art
and class-leading in the category of Java vulnerability repair tools. Note that we do not relax
criteria C6 for generic APR tools because we are confident that we have a good representation
of class-leading and state-of-the-art APR tools. For instance, these are the tools that are also
used in other non-vulnerability-specific evaluations (Durieux et al. 2019; Kechagia et al.
2021). To make the evaluation of SeqTrans fair with respect to the generic test-based tools,
we run the E2E tests on SeqTrans patches ourselves with an automated test executor which
mimics the test executor of the RepairThemAll framework.
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4.2 Experimental Setup

Figure 2 illustrates the overall pipeline of the evaluation in our APR study. We have applied
some modifications to allow the APR tools to run on the Vul4J dataset (Bui et al. 2022), and
produce vulnerability patches. We then manually assessed the patches to check whether they
truly removed the vulnerabilities and did not break any functionalities of the programs (avoid
breaking changes).

Vul4J Dataset This dataset contains 79 Java vulnerabilities along with their corresponding
PoV test cases. The PoV tests are required for the traditional APR tools as the oracle for
verifying the validity of the generated patches. We discussed the detailed requirements to
select the vulnerability datasets for our study in Section 5.1. We also analyzed the test
execution time of the test cases in the Vul4J dataset. The results, which was reported in
Section 5.3, aided us determine the proper execution time settings for running APR tools to
repair the vulnerable programs in the Vul4J dataset.

APR tool execution As shown in Fig. 2 (middle), the selected APR tools in our study are
organized according to a pipeline of three main phases: Fault Localization, Patch Generator,
and Patch Validator. The Fault Localizationmodule runs the test suite over Java programs and
uses the coverage information of passing and failing tests to identify a ranked list of suspicious
code locations. To this aim, GZoltar is the spectrum-based localization library originally used
by the tools. The Patch Generator is the most important module, as it implements the repair
strategy of each tool to produce patch candidates. The Patch Validator applies the patch
candidate to the program and executes the test suite. If all test cases pass, patch candidates
are yielded (the generated patches in Section 2), otherwise, it could be used to guide the
repair strategy. For instance, the number of failing and passing tests is used to compute the
fitness function, which guides the repair algorithm in GenProg-A, jGenProg, and ARJA.

We have extended the RepairThemAll framework (Durieux et al. 2019) to facilitate the
evaluation ofAPR tools on theVul4J dataset.We also integrated the selected tools in this study
that have not been integrated into the framework yet. For instance, we added TBar, which
is considered as the best baseline template-based APR tool, however, was not previously
available in RepairThemAll. In particular, we followed the three below steps:

Fig. 2 The experimental setup for evaluating APR tools
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First, we have integrated Vul4J as a benchmark by implementing all functionality require-
ments (such as checkout, compile, test, and classpath) and providing hooks to
access the necessary information (e.g., failing test list, source and class paths).

Second, we have replaced the Fault Localization module (GZoltar) with a “perfect” one,
i.e., the faulty lines are identified manually by us and fed to the tools. We looked at the source
code locations of the changes performed by the developer in the real projects to identify the
vulnerability-related lines and considered them as faulty locations. GZoltar has been replaced
to remove the confounding factor of possible imprecise fault localization and better isolate
the effect of the patch generation techniques. Although GZoltar is used across all repair tools,
the performance of fault localization is different because the tools use different versions of
GZoltar. These different settings of fault localization could introduce significant bias in the
overall repair performance, as reported by Liu et al. (2019). Note that we did not modify
the tools to use the same version of GZoltar because of the technical issues we encountered
when we were trying to run GZoltar in its latest version (v1.7.2) on the projects contained in
Vul4J. In particular, for a part of the projects in the dataset, GZoltar recognized the wrong
status of the test cases, which causes the imprecise calculation of suspicious statements.
For some other projects, GZoltar failed to perform the fault localization due to errors. For
instance, when we were running GZoltar on Apache Struts, we observed that the exception
java.lang.ClassFormatError with the message Method $gzoltarInit in
class...has illegal modifiers: 0x1009 was thrown and the overall process
was terminated. This technical problem has been reported to the GZoltar development team
and received agreement from the open-source community.4

Third, we have replaced the built-in test executors in the Patch Validator module of the
APR tools with a universal test executor that is more reliable. Each APR tool in our study
(except SeqTrans) now employs its own home-grown code to execute the test cases when
the tool needs to evaluate a generated patch candidate. These in-house test executors are
convenient but vary in implementation, and have technical issues when running the test
suites on large-scale and real-world projects in Vul4J. Moreover, these built-in test executors
are able to execute only the JUnit test cases, however, they cannot execute the test cases from
different testing frameworks such as TestNGwhich exist in the Vul4J dataset. All the projects
in Vul4J use Maven or Gradle as the build systems, which have been already configured by
the project developers to run test cases and report test results.

To implement our universal test executor,we created commands to triggerMaven orGradle
to run the test cases (specific test cases or the whole test suite). When the repair tools want
to run some test cases or the whole test suite, the corresponding commands are executed.
Finally, we wrote a Python script to collect the test results from Maven and Gradle, then
extract the failing tests and passing tests to report back to the APR tools. As we expected, all
the patches generated by the APR tools, into which we integrated the universal test executor,
are E2E tested. For the tool SeqTrans, which does not have any internal test executors, the
tests are automatically executed by the experimenters after it outputs the predicted patches
(similar to what is done in the work of Kechagia et al. 2021). In Subsection 4.3, we elaborated
in detail on the replication of SeqTrans and the evaluation of the generated patches from this
AVR tool.

We remark that the above-mentioned modifications did not introduce any impact for what
concerns the comparison of the tools’ repair performance because their repair strategies were
preserved. If anything, the changes reduced the bias and made the comparison conditions
more even and homogeneous across the APR tools.

4 https://github.com/GZoltar/gzoltar/pull/44
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Patch analysis To determine the correctness of a patch, we manually inspect the E2E tested
patches regarding both security- and functionality-wise. The manual assessment determines
the number of patches generated by the APR tools that can be used by developers. By the
end of the patch assessment process, a patch can be classified as a Security-fixing Patch,
Correct patch, or Incorrect patch. In Section 2, we have already introduced the definitions
of a Security-fixing patch and Correct patch. In our study, an E2E tested patch that is neither
a Security-fixing patch nor Correct patch is considered as an Incorrect patch.

Most of the tools in our study complete their executions after generating the first E2E
tested patch. However, several tools in the Arja platform (GenProg-A, ARJA, and RSRepair-
A) might generate dozens of patches. In that case, we select the first generated patch (E2E
tested) for the subsequent manual analysis. Note that the APR tools produce patches in an
order that the tools decide internally. We argue that selecting the first patch generated by
the tools is optimal because the tools tend to prioritize their highest-ranked patch candidate
to generate first. After picking the E2E patches, we compare each E2E tested patch with
the corresponding developer’s patch. To do so, the first three authors of this paper manually
examine each E2E patch to determine if it is correct or not. Then, we calculate the inter-rater
reliability (McHugh 2012) to measure the agreement between the researchers. When having
a disagreement on a patch, the researchers discuss resolving the conflicts. In our manual
validation, the reviewers mostly agree with each other on the correctness of a patch (an
average agreement level of 75.36% ± 2.84%).

Our next analysis aims to understand the generalizability of our findings when scaling
to a larger number of vulnerabilities. To achieve this, we use the confidence interval for
the probability that an E2E tested patch will eventually be a correct patch for the general
population of E2E tested patches. We use the Wilson-Agresti-Coull (Agresti et al. 2016)
approach to compute the confidence interval. Eq. 1 shows the calculation of the upper and
lower bounds of the confidence interval. In this equation, the lower bound plower and upper
bound pupper provide the bounds for the population proportion of E2E tested patches that are
actually correct. In (1), p is the population proportion, p̂ is the sampled proportion of correct
E2E tested patches in the manually validated sample, z95% is the two-sided 95% confidence
interval, in this case, z has a value of 1.96, and n is the sample size, i.e., the total number of
E2E tested patches in the sample.

| p̂ − p| = z95%

√
p(1 − p)

n
(1)

4.3 SeqTrans Replication

We evaluated SeqTrans separately from the other APR tools in the RepairThemAll platform
as we explained in the sequel. To replicate SeqTrans, we obtained its source code and trained
models available on GitHub.5 SeqTrans provided several models for different evaluation
purposes, e.g., comparing the results of joint training and independent training of the general
bug dataset and vulnerability dataset. In our study, we chose the trained model used in the
research question RQ1.3 in the SeqTrans’s paper (Chi et al. 2022) because (1) this model
was evaluated in the same way we evaluated other tools (i.e., for each generated patch, they
will check if the patch is compilable, plausible, and correct), (2) their model was trained
on a part of the ‘project KB’ dataset (Ponta et al. 2019) which is one of the biggest Java

5 https://github.com/chijianlei/SeqTrans
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Fig. 3 SeqTrans replication and evaluation. The yellow boxes are the scripts and models of SeqTrans while
the white boxes are our own components

vulnerability fix datasets in the literature. The dataset (Vul4J) used in this study was derived
from the ‘project KB’ dataset, and there are 61 of 79 (77.2%) vulnerabilities in Vul4J also
exist in the training set of SeqTrans. Therefore, the repair results of SeqTrans we reported in
this study might not truly represent the repair performance of this tool in general.

Figure 3 illustrates our pipeline to replicate and evaluateSeqTrans on theVul4J dataset. The
yellowboxes indicate the scripts and themodel thatwedownloaded from theSeqTrans’ source
code repository on Github, while the rest were constructed by us for the replication. After
selecting the appropriate model for evaluation, we follow the guidelines in their replication
package to evaluate SeqTrans on the Vul4J dataset. In particular, for each vulnerability
in Vul4J that has known vulnerable locations, we extract the vulnerable statements along
with their data-flow dependencies. Then, we preprocess the inputs using the abstraction and
tokenization techniques. Next, we run the patch prediction of the model using a beam size
of ten,6 which returns ten patches for each vulnerable statement. Next, we perform abstract
backfill and inject the patches into the vulnerable source files of the projects. Finally, since
SeqTrans does not employ any compiler or any built-in test executor, we compile the projects
with the injected patches. In particular, given a list of patches sorted by SeqTrans, we compile
each patch in the list in the top-down order. If a patch does not cause any compilation errors,
we proceed to the next step; otherwise, we discard that patch. We repeat the same strategy to
run the E2E tests ourselves on all the compilable patches and scraped the patches that caused
failed tests. If there is more than one E2E tested patch for a vulnerability, we pick the first
one on the list, as we also do the same for the other tools and then manually evaluate them.

4.4 Manual Repair Patterns Collection

To collect the repair patterns, we first track the repair action list in the Defects4J dissection
website,7 which is categorized by the source code components. We then observe each vul-
nerability patch in ExtraVul and collect the list of changed source components and the repair
actions applied to them. Some of the repair actions we found in ExtraVul have not been listed
in Defects4J, e.g., Change the keyword from while to if. Next, we retain only the list of

6 The default beam size used in SeqTrans
7 https://program-repair.org/defects4j-dissection
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repair actions that existed in ExtraVul and computed the prevalence of them in ExtraVul and
Defects4J. Further, we extract the common repair patterns in vulnerability patches. These
patterns are formed by the aggregation of multiple atomic repair actions.

The tasks of collecting and labeling both the repair actions and the repair patterns have
been carried out manually by the first author of this paper and reviewed by the second author.
The two authors discussed the disagreements until a consensus was reached.

5 Dataset

A key requirement to assess the effectiveness of an APR is an appropriate benchmark, that
includes test cases and vulnerability-fixed code pairs. Several of these benchmarks exist,
albeit they are typically developed for evaluating static analyzers (Flynn et al. 2021; Wagner
and Sametinger 2014). Examples of artificially created benchmarks include Juliet (Black and
Black 2018) and Scanstud (Johns and Jodeit 2011), while the ‘project KB’ knowledge base
(Ponta et al. 2019) and Vul4J (Bui et al. 2022) are the manually curated datasets based on
real-world free and open-source software projects.

5.1 Vulnerability Dataset Selection

To benchmark the APR tools on vulnerabilities, we selected the projects that have the fol-
lowing characteristics:

– DC1: Real World Projects. The dataset should contain real-world projects written in
Java, as this is part of all the research questions in our study.

– DC2: Test for Proof of Vulnerability (PoV). Each vulnerability in the dataset should
have one or more test cases that fail when the vulnerability is present and pass when it
is patched. The project should also contain other functionality tests. The test cases are
collectively used by APR tools for patch candidate validation, i.e., to ensure that a patch
‘works’ and does not introduce regression bugs.

– DC3: Independent Human Ground Truth. Each vulnerability in the dataset should
have an associated patch written by developers (e.g., in a fixing commit), as this is
necessary for the context of RQ2 and RQ3.

In literature, the Vul4J dataset (Bui et al. 2022) appears to be the only benchmark that
satisfies the above requirements. Therefore,we decided to useVul4J for the studies of theAPR
tools in our first two research questions: RQ1 andRQ2.Vul4J contains 79 vulnerabilities from
51 real-world open-source Java projects. The vulnerabilities are taken from the ‘project KB’
knowledge base (Ponta et al. 2019). The projects in Vul4J span multiple domains, including
libraries, web frameworks, data-processing desktop apps, and CI/CD servers. Table 2 shows
the characteristics of the top 15 projects in the Vul4J dataset that contain more than one
vulnerability, and the aggregated metrics for the remaining 36 projects that have only one
vulnerability. The number of test cases per project ranges from 25 to 5222.

In RQ3, we have relaxed our selection criteria to create a larger dataset of vulnerability
fixes which allowed our study to be more comprehensive. Indeed, the criteria DC2 has been
omitted as PoV test cases are not necessarily needed for the fix pattern analyses of the
patches. To this end, we followed all the steps described in the Vul4J paper (Bui et al. 2022)
except for Vulnerabilities reproduction and Missing PoV test cases creation to collect more
vulnerability fixes from the ‘project KB’ knowledge base. We then retained only the patches

123



Empirical Software Engineering

Table 2 Top projects included in the Vul4J dataset (Bui et al. 2022)

Project #Vuls kLOC #Tests

apache/struts 10 359 1697

apache/commons-compress 4 48 927

jenkinsci/jenkins 3 275 518

spring-projects/spring-framework 3 684 2189

spring-projects/spring-security 3 198 513

apache/camel 2 925 5222

apache/commons-fileupload 2 6 70

apache/commons-imaging 2 42 562

apache/cxf 2 737 89

apache/pdfbox 2 145 359

apache/sling 2 507 25

cloudfoundry/uaa 2 182 2669

FasterXML/jackson-dataformat-xml 2 9 140

inversoft/prime-jwt 2 2 33

OpenRefine/OpenRefine 2 144 516

36 other projects (mean) 1 121 567

all projects (mean) 1.5 169 705

On average, the projects are relatively large (169 kLoC) compared to, for instance, 85 kLOC average in
Defects4J. They also have a large number of test cases

with less than or equal to ten changed lines as we wanted to exclude the patches that included
unrelated changes to the vulnerability fixes, such as refactoring and aesthetic code changes.
The patches that had already existed in Vul4J were obviously excluded. As a result, we have
collected 119 additional valid patches for 119 unique vulnerabilities.We then combined them
with the 79 vulnerability patches from Vul4J and created a new dataset of 198 vulnerability
fixes in total (called ExtraVul from here on), which was used for the study in our RQ3.

5.2 Reference Dataset Selection

To understand the difference between the repair patterns used by humans for fixing security
vulnerabilities and generic software bugs (RQ3), we can compare the repair patterns adopted
by developers and compare the case of security vulnerabilities versus other software defects.
To do this, we considered several defect datasets that are often used in APR research papers:
Defects4J (Just et al. 2014), IntroClass (Durieux and Monperrus 2016), QuixBugs (Lin et al.
2017), Bugs.jar (Saha et al. 2018), Bears (Madeiral et al. 2019), SARD (SARD 2022). We
selected Defects4J (Just et al. 2014) as it fits our below requirements:

– The dataset should contain only Java real-world projects (as this is the focus of our work)
and openly accessible;

– The dataset should contain a variety of fixing patterns, e.g., one should not contain just
statement deletions or skips;

– The dataset should contain the correct patches written by developers, which should not
be just defined as the ones passing all the tests (i.e., there should be some additional
quality guarantee for the patches).
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Based on the above-mentioned criteria, we excluded SARD (SARD 2022). Although
SARD contains buildable Java projects, it lacks a variety of repairs, such as adding a method
invocation. On the other hand, Defects4J is relevant when compared to ExtraVul since (1) it is
one of the largest benchmarks, (2) widely used in evaluatingAPR techniqueswith good repair
results reported (Liu et al. 2020). In addition, the work onDefects4J dissection (Sobreira et al.
2018) provides a concrete list of repair actions and patterns that serve as a baseline in our
comparison.

5.3 Discussion on Test Cases in Vul4J

This part discusses Vul4J, the main dataset used in our paper, and our chosen settings for
experimenting with it. A quarter of the vulnerabilities in the Vul4J dataset (25.32%, 20 out
of 79) are associated with projects containing more than 1000 test cases at the vulnerable
revisions. So, it will take time to execute all the test cases for these vulnerabilities. As a
consequence, this may impact the overall performance of the repair tools if we set a similar
time budget for each repair attempt in the previous work (e.g., Durieux et al. 2019 used a
two-hour budget in their study).

In this work, we executed the PoVs and the whole test suites of the projects on their
vulnerable revisions (corresponding to the vulnerabilities in Vul4J) and measured the run-
ning time for their executions. Table 3 summarizes the results of test execution time in the
Vul4J dataset by the metrics. We observed that, for a vulnerability in Vul4J, it took, on aver-
age less than 16 seconds to run its PoV tests and less than six minutes to run the whole
test suite of the project. While the PoVs take at most less than five minutes to run, some
projects take hours to run their whole test suites. For example, it took 2.41 hours to run
all the test cases for jenkinsci/subversion-plugin (VUL4J-58) and 1.39 hours
for jenkinsci/junit-plugin (VUL4J-56). Interestingly, these two projects do not
belong to the projects containing more than 1,000 test cases, they have only 234 and 429,
respectively. Meanwhile, apache/camel, which is the project containing the largest num-
ber of test cases (5222 test cases) in the Vul4J dataset, took approximately only 35 minutes
to run all the tests.

Based on the results of the test execution time of the dataset, we decided to set two hours
as the timeout for our universal test executors, which we injected into the repair tools. We
also set the timeout for each repair process to four hours. These decisions are made based on
our observations about the consumed time of test execution in the dataset and the time limit
settings of the evaluated APR tools (Liu et al. 2021). In addition, the evaluation conducted
by Vu et al. (2021) indicated that there is no point in giving more time as the number of
patches does not increase with time. We observed that there is only one case (VUL4J-58)
requiring more than two hours for its test suite execution that we cannot cover with our
configured timeout. For this special case, we set a bigger time budget (72 hours) and let the

Table 3 Descriptive statistics of the test execution in Vul4J dataset

Variable min Q25% median Q75% max mean st.dev

#Test cases 1 139.5 620 1656 5222 1068.41 1236.54

PoV tests execution time (s) 2.27 5.85 8.76 13.72 292.63 15.96 34.06

All tests execution time (s) 2.22 9.17 27.04 74.50 8690.39* 337.83 1223.84

*Outlier: VUL4J-58
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tools generate at least ten patch candidates before we terminate the repair attempts due to
timeout exceeding.

6 RQ1: Performance of APR Tools on Vulnerabilities

6.1 Concrete Experimental Setup

Our experiments were conducted on an Ubuntu 20.04 Docker container, which was deployed
on a macOS machine with a 2GHz Quad-Core Intel Core i5 Processor, and 16 GB of RAM.
We allocated up to 4 CPUs and 8 GB of RAM for the Docker container via Docker Desktop.

6.2 Experimental Findings

To answer this research question, we analyzed the repair capability of the ten selected APR
tools on the 79 vulnerabilities in Vul4J. Figure 4 shows the number of generated patches on
the upper bar and the number of failed attempts on the lower bar. For each tool, the repair
attempts generated at least one patch, while the failed attempts could not generate any patch.

Only one-fifth of the vulnerabilities in Vul4J are patched by the tools We divide the
number of generated patches (the upper bar) in Fig. 4 into E2E tested patches and Generated
patches that failed the automatic sanity check of re-running all the tests. The total number of
Generated vs. E2E tested patches for each tool is also reported in Table 4 (first and second
column, respectively). Considering the lower bar (failed attempts) in Fig. 4, we divide the
data into internal technical failures, timeout, or other reasons, where the tool terminates but
does not report any patch.

Collectively, the APR tools generated patches for 23 unique vulnerabilities that account
for 29.11% of the total number of vulnerabilities in the dataset. Regarding the repair attempts,
78 out of 790 attempts (9.87%) could generate at least one patch for a vulnerability. Of those
78 generated patches, 89.74% graduated as E2E tested patches, while the rest 10.26% which
failed are all produced by SeqTrans. Note that tools in the Arja platform (ARJA, GenProg-A,
RSRepair-A) can generatedozens of ‘equivalent’ patches for a single repair attempt.We tested
all the ‘equivalent’ ones and, for the patches that were successfully E2E tested, we selected
the first one as the E2E tested patch that would be manually analyzed in the next research
question. As a result, we are left with 70 E2E tested patches for 16 unique vulnerabilities.

As shown in Fig. 4, TBar, and SeqTrans generated patches for the highest number of
vulnerabilities (11 and 10, respectively). Following them, RSRepair-A, jKali, Cardumen, and
ARJA each generated patches for eight vulnerabilities, while Kali-A and jGenProg generated
patches for seven vulnerabilities. GenProg-A and jMutRepair are less effective in producing
patches with only six and five vulnerabilities, respectively.

Even the security-specific tools cannot improve the repair performance When consid-
ering E2E tested patches only, SeqTrans’s performance drops dramatically, i.e., among ten
compilable patches that we obtained from this tool, only two of them are E2E tested. This
implies that SeqTrans can generate E2E tested patches for only 2.53% of the vulnerabilities
in the Vul4J dataset. Meanwhile, the number of considered patches for other repair tools
remains. The reason behind this fall is that all the tools except for SeqTrans employ the
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Fig. 4 RQ1: Repair capability of APR tools on Vul4J

universal test executor to validate their patch candidates before yielding them, which are
equivalent to the E2E testing.

Most of the repair attempts do not succeed A total of 712 repair attempts (90.12%) could
not generate patches, of which 4.35% is due to some failures of the tools, 13.62% is due
to timeout, and 82.03% is due to the limitation of the repair strategy of the tools. The APR
tools that use genetic programming or random search approaches (ARJA, GenProg-A, and
RSRepair-A) mostly have the highest number of timeout attempts (92.78%). It should be
noted that some repair attempts by ARJA, GenProg-A, and RSRepair-A exceeded the time
limit, but only after the tool had already produced a patch previously. In such cases, we do
not count these attempts in the timeout category.

For what concerns tool failures, we observed that occasionally tools from the Astor plat-
form (jGenProg, jKali, jMutRepair, and Cardumen) abruptly terminated the repair attempt
due to some internal error, while other tools did not encounter the same problem. For
instance, when we ran the repair tools to fix the Cross-site scripting (XSS) vulnerabil-
ity CVE-2013-4378 in the JavaMelody project, all the Astor-based tools raised the same
java.lang.ClassFormatError error and terminated the repair processes immediately. Other
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repair tools were able to generate patches for this vulnerability. This failure could be due to
either configuration or implementation issues of the Astor platform.

Most of the tools run in a reasonable amount of time, especially SeqTrans, jKali, Kali-
A, and jMutRepair Figure 5 shows a boxplot of the time (in minutes) spent by each tool
to repair the vulnerabilities. On average, the tools take around 50 minutes to complete the
repair attempts. SeqTrans, jKali, Kali-A, and jMutRepair are the fastest repair tools, with a
median time of less than or equal to one minute. TBar and Cardumen run a bit slower, but
they still have speedy repair attempts with a median time of two minutes and eight minutes,
respectively. However, there are exceptions like GenProg-A, RSRepair-A, and jGenProg,
ARJA with a median of 240, 130, 41, and 25 minutes, respectively.

This can be explained by two reasons: (1) these tools employ genetic programming and
random search as the repair strategies, which usually come with a very large search space,
and (2) technical implementations of the tools, as Arja-based tools sometimes did not stop
their repair attempts even though they produced the patches before the time limit.

The technical implementations of ARJA and GenProg-A cause overheads for their exe-
cution time We observed that there is a significant difference between the execution time
of GenProg-A (median = 240) and jGenProg (median = 41), which are the different Java
implementations of the same repair tool for C, GenProg (Le Goues et al. 2011. This is due
to the difference between their implementation for patch candidate evaluation strategy. In
particular, GenProg-A (and ARJA) always run both PoV tests and regression tests for every
patch candidate, which could cause a significant time overhead for projects with large test
suites. On the other hand, jGenProg, by default configuration, does not run the regression
tests on the patch candidate unless the patch has already passed the PoV tests.

Fig. 5 RQ1: Execution time of the repair tools
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Human-competitiveness As mentioned by Monperrus et al. (2019), there are two criteria
for the tools to be human-competitive: (1) the tool generates the patch faster than the human
developer, and (2) the human developer accepts the generated patch. The second criterion is
out of scope for this paper (it has been studied by our prior work Papotti et al. 2022). For the
first criterion, most of the tools in our study (TBar, Cardumen, Kali-A, jKali, jMutRepair)
halt immediately after the first E2E tested patch is found. This is, on average, under one hour,
which appears competitive with the human developer. SeqTrans generates all the patches
in a few seconds, hence, it would be (if the patches were correct) always competitive wrt
a human developer. Three tools from the Arja framework (ARJA, GenProg-A, RSRepair-
A) generate dozens of patches before the repair process terminates. However, on average,
these tools complete their executions after two hours, which would be acceptable for fixing
vulnerabilities.

Main findings for RQ1: APR tools perform rather poorly as even collectively can
only generate patches that turn out to be successfully E2E tested for 20.25% of the
total number of vulnerabilities in the Vul4J dataset. This happens in spite of all tools
being tipped on the exact location of the vulnerability.

To gain insight into the failed repair attempts, we further examined the human fixes for
the vulnerabilities in Vul4J for which no repair tools in our study could produce E2E tested
patches. We found several kinds of patches interesting to discuss in this context, which we
elaborate on below.

Patches may require minimal changes, however, they need a vocabulary of security-
related code Figure 6 shows a couple of human fixes that require minimal changes that
the APR tools failed to generate successful patches. To fix the vulnerabilities, the repair
tools should be equipped with the appropriate vocabulary of security-relevant code. For
example, APR tools should have knowledge about the path-related fix ingredients (e.g.,
File.separatorChar) to prevent the path traversal vulnerability in VUL4J-5. Other
patch examples in Fig. 6 also require security understanding to generate secure random
numbers in Java programs (VUL4J-71), and the special characters (e.g.,‘!’,‘@’,‘\n’, etc.)
should be validated for web input handling (VUL4J-66).

Patches that require an understanding of API usage for security The XML External
Entity (XXE) vulnerability in Fig. 7 is caused by the insecure configuration when creating a
new SAXParser instance. The developer had to disable the insecure feature ‘load-external-
dtd’ of the parser to prevent this vulnerability. We observed in our study that traditional APR
tools such as jKali tend to fix bugs by removing code, directly or indirectly. As shown in
Fig. 7, although this kind of pattern, can make the program compilable, the generated patch
cannot pass the E2E test. To fix the vulnerability in Fig. 7, APR tools should be able to
learn about the usage of a given security API, and how to change the usage to remove the
vulnerability.

Complicated patches Several security patches written by developers require complex
changes. For example, in Fig. 8, to prevent attackers from exploiting a NULL byte injection
vulnerability, the developer had to validate the input file name carefully (i.e., (1) check if
repository is not null, (2) make sure repository is indeed a directory, and (3) check
if there exist any NULL bytes in repository). Another example of a complicated patch is
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Fig. 6 Developer’s patches for VUL4J-5, VUL4J-71, and VUL4J-66. None of the tools in our study can fix
these vulnerabilities despite the minimal changes

shown in Fig. 9. The vulnerability allows attackers to leverage Spring SpEL to trigger remote
code execution. To fix the vulnerability, the developer had to make changes in multiple loca-
tions to create the randomness for synthesizing the final string ‘result’. To generate such
complicated patches, The evaluated APR tools should learn to understand the context of the
vulnerability and compose a patch based on the context.

Fig. 7 Developer’s patch and compilable patches of APR tools for VUL4J-2. jKali’s patch tried to skip the
XML parsing and returned a null Document, which makes the program compilable but does not pass the E2E
test. SeqTrans produced a nonsense patch with no semantic changes
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Fig. 8 Complicated patch of VUL4J-10 that prevents attackers from injecting NULL byte in the input file
name to write to arbitrary files on the system

7 RQ2: Trustworthiness of Generated Patches

Among the APR tools, RSRepair-A achieves the highest ratio of generating correct
patches Table 4 (right) shows the results of our manual validation, including the 95%
Agresti-Coull confidence interval (Section 4.2). The correctness percentage of a tool is the
ratio of Correct over E2E tested patches. For the generic tools, although TBar has the highest
number of E2E tested patches, the correctness percentage of this tool is only 45.5%. On the
other hand, the tools with the highest correctness percentages are RSRepair-A and ARJA
(71.43% and 62.5%, respectively), whose number of E2E tested patches is lower than TBar.
Indeed, we found that genetic programming-based tools (ARJA, GenProg-A) and random
search-based tools (RSRepair-A) can eliminate the vulnerabilities that require the addition of
method calls while other tools cannot. For example, these APR tools added a method called
t.emitTagPending() to fix a Cross-site scripting vulnerability as shown in Fig. 10.
However, we observed that the method call must reside somewhere in the codebase, so the
tools can reuse it. In case the fix requires using a new method call, that is not in the code-
base, most of the APR tools will fail. Generating the patches when their ingredients are not
present in the code base is a challenging task, not only for traditional APR tools but also for
vulnerability repair tools.

Fig. 9 Complicated patch of VUL4J-75, a vulnerability that allows leveraging Spring SpEL to trigger remote
code execution

123



Empirical Software Engineering

Table 4 RQ1 and RQ2: Assessment of the security patches generated by the APR tools

RQ1 RQ2
Tool #E2E tested #Security-Fixing #Correct %Correct C.I. Lower C.I. Upper

patches patches patches

ARJA 8 8 5 62.5% 30.6% 86.3%

Cardumen 8 3 2 25.0% 7.1% 59.1%

GenProg-A 6 6 2 33.3% 9.7% 70.0%

jGenProg 7 4 2 28.6% 8.2% 64.1%

jKali 8 5 3 37.5% 13.7% 69.4%

jMutRepair 5 2 1 20.0% 3.6% 62.4%

Kali-A 7 6 3 42.9% 15.8% 75.0%

RSRepair-A 7 7 5 71.43% 35.9% 91.8%

SeqTrans 2 2 2 100.0% 34.2% 100.0%

TBar 11 7 5 45.5% 21.3% 72.0%

“%Correct" is the ratio of Correct patches over End-to-End tested patches. The confidence interval for cor-
rectness is also reported

The correct patches generated by SeqTrans (security-related) actually exist in the tool’s
train dataset When evaluating the two E2E tested patches generated by SeqTrans, we found
that both of them are correct, which means that SeqTrans has (by chance) the correctness of
100%. These patches are even identical to the human patches. However, our further inves-
tigation reveals that those generated correct patches by SeqTrans actually existed in their
training dataset. This may lead to the problem of overfitting when the model learns too much
about the training set.

More than half of the patches eliminate the vulnerabilities, however, hinder the
maintainability On average, only 46.66% of the patches (correct patches) can be used
directly bydevelopers, as they can eliminate the vulnerabilitywhilemaintaining theprogram’s
functionality. On the other hand, the average fixing percentage (the ratio of Security-fixing
patches over E2E tested patches) is 74.65%, which gives us a 28% difference from the
correctness percentage. Although these patches can be used by developers to eliminate the

Fig. 10 Developer’s patch for VUL4J-59. Genetic programming- and random search-based tools have good
performance for this vulnerability
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vulnerability in their program, additional modifications are needed for the patches to prevent
breaking functionalities.

The vulnerabilities the APR tools perform the best often use the patches that remove
or skip code Figure 11 shows the developer’s patches for VUL4J-39 and VUL4J-50, which
most tools in our studywere able to generateCorrect andSecurity-fixing patches, respectively.
VUL4J-39’s fix requires the deletion of a code block to remove the vulnerabilities. Most
of the tools support the deletion repair action, especially Kali-A, and jKali. In our study,
nine of the ten repair tools (except for SeqTrans) can fix this vulnerability successfully.
Regarding the vulnerability VUL4J-50, the parameter remoteAddr should be carefully
sanitized before passing to the method write, which prints the value to the web, to avoid
a potential XSS vulnerability. Many tools generated patches that try to skip or remove this
statement. TBar was close to fixing correctly the vulnerabilities by changing the statement
to javascriptEncode(remoteAddr);. SeqTrans generated an identical patch to the
human patch. All patches from the tools pass the E2E test. In most cases, remoteAddr
is not printed to the web anymore, therefore, there were no XSS vulnerabilities. However,
the deletion of the vulnerable code (like jKali) will break the functionality, that is, we do
not have the information about the remoteAddr on the web. The reason is that there
were no regression test cases checking if remoteAddr is printed correctly and safely, but
only checking for the existence of a vulnerability. This indicates the necessity of a manual
evaluation. In our manual assessment, we classified the patches as Security-fixing, which
means that it can successfully remove the vulnerabilities, however, it introduces problems
for the system’s functionalities.

Figure 12 visualizes the trend of the patch count in each category. The trend is going
down for all the ten evaluated tools, from the number of Generated to Correct patches, which
correlates with the correctness percentage we have discussed before. Since we embedded the
universal test executor into the tools (except for SeqTrans), all generated patches generated
by the tools are equivalent to the E2E tested patches. In the case of SeqTrans, which does not
have any test executor inside and we ran the E2E tests ourselves, only 20% of the generated
compilable patches actually passed the tests.

Looking at the E2E-Tested-to-Security-Fixing trend in Fig. 12, we observed that there
are only four straight lines (three generic tools: ARJA, RSRepair-A, and GenProg-A; and
SeqTrans). Therefore, only four out of nine (44.4%) tools actually maintain the reliability of
their E2E tested patches in terms of eliminating the vulnerability. The last trend is the one
and only straight line from Security-fixing to Correct, which is achieved by SeqTrans. This
trend is straight because of the presence of the fixing patches in the training dataset.

Fig. 11 Developer’s patches for VUL4J-39 and VUL4J-50
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Fig. 12 RQ2. Trustworthiness of patches generated by APR tools on Vul4J

7.1 Generic Tools Result in Comparison to Defect4J

To compare the performance of theAPR tools on fixing vulnerabilities vis-à-vis fixing general
bugs, we extracted the patch correctness percentage in the Defects4J dataset (Just et al. 2014)
from Liu et al. (2020). Table 5 shows that TBar tends to generate many patches, as its
number of E2E Tested patches is the highest among its peers in both benchmarks. Although
TBar’s correctness is the best for general bugs (33.3%), it ranks the third-lowest correctness
for vulnerability only. On the other hand, ARJA and GenProg-A have low performance in
general bugs (10.3% and 6.7%), but are top of the rank in vulnerability repair with a 50%
correctness percentage.

Table 5 RQ2: Proportion of correct to generated patches in Defects4J. The data is derived from Liu et al.
(2020)

From literature Computed in this paper
Tool #E2E Tested #Correct %Correct C.I. Lower C.I. Upper

ARJA 58 6 10.3% 4.8% 20.8%

Cardumen 12 3 25.0% 8.9% 53.2%

GenProg-A 30 2 6.7% 1.8% 21.3%

jGenProg 20 5 25.0% 11.2% 46.9%

jKali 25 6 24.0% 11.5% 43.4%

jMutRepair 22 5 22.7% 10.1% 43.4%

Kali-A 65 3 4.6% 1.6% 12.7%

RSRepair-A 41 4 9.8% 3.9% 22.5%

TBar 72 24 33.3% 23.5% 44.8%
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APR tools from different platforms perform differently on general and security
bugs The APR tools in the Arja platform (ARJA, GenProg-A, Kali-A, and RSRepair-A)
have a medium-low correctness percentage for general bugs, but for vulnerabilities, they
have a high-medium performance. On the other hand, the APR tools in the Astor platform
(Cardumen, jGenProg, jKali, and jMutRepair) obtain higher ranks in general bugs (all in the
top five) but have varying performance for vulnerability. In the same platform, we observed
that Cardumen and jMutRepair have lower correctness percentages compared with the other
two.

The trustworthiness of APR tools could be different when it comes to repairing
vulnerabilities In the Defects4J benchmark, for some tools (namely, ARJA, GenProg-A,
Kali-A, RSRepair-A), the E2E-tested to Correct trends are steeper than in the case of vulner-
abilities. This means the trustworthiness of APR tools could be different when it comes to
repairing vulnerabilities rather than general bugs. The next section explains this phenomenon
in more detail.

Main findings for RQ2: If developers managed to obtain ten End-to-End tested
patches fromAPR tools, three of themwould be useless, three of themwould remove
the vulnerability with additional manual modifications, and only four out of them
could be used as-is. This phenomenon also exists for generic bugs, however, is differ-
ent for each tool. Independent validation of a sample of results is thereforemandatory
to assess the real effectiveness of APR techniques.

8 RQ3: Root Causes, Developers and APR

In this research question, we conducted a comprehensive and systematic study to understand
the reasonswhy current test-basedAPR tools failed to repair Java vulnerabilities by analyzing
the fix patterns in vulnerability patches and comparing them to generic bug patches. We also
gave some insights that could help improve currentAPR tools or develop newAVR techniques
to fix vulnerabilities.

To identify the characteristics of fixing patterns used by developers in the ExtraVul and
Defects4J datasets,we consider two granularity levels: (1) atomic repair actions,which are the
smallest actions that could be applied to source code components (e.g., addition or removal,
or modification of an assignment); and (2) repair patterns, which combine multiple repair
actions.

The starting point for analyzing the root causes of such a lackluster performance is an
interesting observation by Iannone et al. (2022): the most frequent net effect of a Correct
patch is to change or add new lines. For example, a simple solution to sanitize an external
input is to add missing checks. Hence, the APR tools that generate patches by adding code
might perform better than APR tools removing code for those types of vulnerabilities. The
preliminary insights from the failed attempts of APR tools, which we present in RQ1 and
RQ2, also provide several hints for analyzing the characteristics of vulnerability fixes that the
current APR tools lack. For example, patches for vulnerabilities might be simple, however,
they require knowledge of the vocabulary specific to security-related ingredients.

Therefore, starting with the Vul4J dataset, we analyzed the distribution of E2E tested
and Correct patches across the different CWE categories. Unfortunately, the tools could not
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generate any E2E tested patches for 18 CWE categories (72% of the total number of CWE
categories in Vul4J). Table 6 shows the performance among the CWE categories for which
APR tools can generate an E2E tested patch. The APR tools mostly generate patches that
can be successfully E2E tested for Infinite Loop (CWE-835), Information Exposure (CWE-
200), Data Deserialization (CWE-502), and XSS (CWE-79). Instead, Cryptographic Issues
(CWE-310) and Vulnerable Credential (CWE-522) have the least number of E2E tested
patches generated. This distribution in repair results shows that there might be some bugs
and fix patterns that the APR tools have not assessed.

In line with this, we compared in detail the characteristics of the repair patterns used by
developers in real-world projects from ExtraVul against the repair patterns in Defect4J. The
goal is to understand what the APR tools would have missed in order to repair vulnerabilities.
To do so, we extracted the repair patterns inDefects4J from thework by Sobreira et al. (2018).

ExtraVul and Defects4J share a similar distribution in terms of repair actions Table
7 shows the distribution of atomic repair actions in both datasets. Overall, ExtraVul and
Defects4J have equivalent distributions for repair actions. In particular, CB1, MC1, and
AS1 are the top 3 repair actions used by security patches and general bug patches. Some
repair actions are only present in ExtraVul such as LP2 – Addition of break/continue
statement. However, we observed these repair actions are uncommon.

More than 75% of fix patterns in ExtraVul do not exist in Defects4J or carry security-
specific traits Tables 8 and 9 show the prevalence of the fix patterns in ExtraVul. These
patterns are categorized into six groups: Infinite Loop Handling, Object Instantiation, User’s
Permission Management, External Input Validating and Handling, Configuration, and the
Others. In contrast to the repair actions, we noticed that there are significant differences
between security patches and general bug patches regarding the repair patterns. In partic-
ular, many repair patterns contain combinations of basic actions that are entirely new in
ExtraVul and whose purposes are not present in Defect4J. Furthermore, many repair patterns
in ExtraVul have their own traits in terms of source code components when compared to gen-
eral bugs. For instance, the repair pattern Addition of method call to sanitize external input,
which is based on the repair action MC1 (Method Call Addition/Removal), often contains
unique keywords related to input validation, such as encode, normalize, trim, etc.

Main findings for RQ3:While security patches in ExtraVul are indeed short in terms
of lines of code, they contain instantiations of fixing patterns that are not present in
Defects4J. This suggests that the repair strategies in the studied APR tools might be
insufficient. Also, the fixing code contains keywords that are not used in the rest of
the program.

8.1 Discussion on the Repair Patterns for Vulnerabilities

In this subsection, we describe in detail the vulnerability fix patterns that we have compiled
from the ExtraVul dataset. We also distill some insights into these patterns and provided
suggestions for the repair community on designing APR tools for fixing vulnerabilities
specifically.

123



Empirical Software Engineering

Ta
bl
e
6

R
Q
3:

R
ep
ai
r
ca
pa
bi
lit
y
of

to
ol
s
by

C
W
E
ca
te
go

ri
es

C
W
E

K
ey
w
or
d

E
2E

te
st
ed

A
R
JA

C
ar
du

m
en

G
en
Pr
og

-A
jG
en
Pr
og

jK
al
i

jM
ut
R
ep
ai
r

K
al
i-
A

R
SR

ep
ai
r-
A

Se
qT

ra
ns

T
B
ar

22
Pa
th

T
ra
ve
rs
al

5
✗

❍
✗

❍
❍

❍
✗

✗
✗

❍

79
X
SS

11
✓
(1
)

✓
(1
)

❍
✗

✗
✗

❍
✓
(1
)

✓
(1
)

✓
(1
)

20
0

In
fo
.E

xp
os
ur
e

9
✓
(1
)

❍
✓
(1
)

❍
✓
(1
)

✓
(1
)

✓
(1
)

✓
(1
)

✗
✓
(1
)

31
0

C
ry
pt
o.
Is
su
es

2
✓
(1
)

✗
✗

✗
✗

✗
✗

✓
(1
)

✗
✗

50
2

D
at
a
D
es
er
ia
liz
.

8
❍

❍
❍

❍
❍

❍
❍

✗
✗

❍

52
2

V
ul
n.

C
re
de
nt
ia
l

1
✗

✗
✗

✗
✗

✗
✗

✗
✗

✓
(1
)

83
5

In
fin

ite
L
oo

p
24

✓
(1
)

✓
(1
)

✓
(1
)

✓
(1
)

✓
(1
)

❍
✓
(1
)

✓
(1
)

✗
✓
(1
)

-
N
ot

C
la
ss
ifi
ed

9
✓
(1
)

❍
✗

✓
(1
)

✓
(1
)

✗
✓
(1
)

✓
(1
)

✓
(1
)

✓
(1
)

T
he

“E
2E

te
st
ed
"
co
lu
m
n
de
no

te
s
th
e
nu

m
be
r
of

E
nd

-t
o-
E
nd

te
st
ed

pa
tc
he
s
ac
ro
ss

th
e
to
ol
s,
w
hi
le

th
e
nu

m
be
rs

on
ea
ch

of
th
e
to
ol

co
lu
m
ns

de
no

te
th
e
co
rr
ec
t
pa
tc
he
s
by

th
e

to
ol
.T

he
sy
m
bo

l“
✓
"
m
ea
ns

th
at
th
e
to
ol
ge
ne
ra
te
d
so
m
e
co
rr
ec
tp
at
ch
es

(t
he

nu
m
be
ro

fc
or
re
ct
pa
tc
he
s
is
m
ar
ke
d
by

th
e
fo
llo

w
ed

nu
m
be
r)
.T

he
sy
m
bo

l“
❍
"
m
ea
ns

th
at
th
e
to
ol

ge
ne
ra
te
d
E
2E

te
st
ed

pa
tc
he
s,
bu
ta
ll
of

th
em

ar
e
in
co
rr
ec
t.
T
he

sy
m
bo
l“

✗
"
in
di
ca
te
s
th
at
th
er
e
is
no

E
2E

te
st
ed

pa
tc
h
ge
ne
ra
te
d
by

a
to
ol

fo
r
a
C
W
E
ca
te
go

ry
at
al
l.
In
cl
ud

ed
C
W
E
ca
te
go

ri
es

ar
e
th
e
on

ly
ca
te
go

ri
es

th
at
co
ve
r
at
le
as
to

ne
re
su
lt
fr
om

on
e
of

th
e
to
ol
s

123



Empirical Software Engineering

Ta
bl
e
7

R
Q
3:

D
is
tr
ib
ut
io
n
of

th
e
re
pa
ir
ac
tio

ns
in

th
e
D
ef
ec
ts
4J

an
d
E
xt
ra
V
ul

da
ta
se
ts

C
at
eg
or
y

A
bb

r.
R
ep
ai
r
A
ct
io
n

D
ef
ec
ts
4J

E
xt
ra
V
ul

C
on

di
tio

na
lB

lo
ck

C
B
1

A
dd

iti
on

/R
em

ov
al
of

co
nd

iti
on

al
br
an
ch

56
.2
%

36
.3
6%

C
B
2

C
ha
ng

e
of

co
nd

iti
on

al
ex
pr
es
si
on

21
.3
%

10
.6
%

C
B
3

C
ha
ng

e
of

ke
yw

or
d
fo
r
co
nd

iti
on

al
st
m
t.

0.
0%

0.
51

%

E
xc
ep
tio

n
H
an
dl
er

E
H
1

A
dd
iti
on

of
t
h
r
o
w
st
m
t.

9.
6%

15
.5

%

E
H
2

A
dd

iti
on

/R
em

ov
al
of

t
r
y
-
c
a
t
c
h
bl
oc
k

1.
5%

6.
1%

M
et
ho

d
C
al
l

M
C
1

A
dd

iti
on

/R
em

ov
al
of

m
et
ho

d
ca
ll

65
.3
%

73
.7

%

M
C
2

C
ha
ng

e
of

ar
gu

m
en
ts
of

m
et
ho

d
ca
ll

14
.4
%

18
.2

%

M
C
3

C
ha
ng

e
of

na
m
e
of

m
et
ho

d
ca
ll

12
.8
%

4.
6%

R
et
ur
n
St
at
em

en
t

R
S1

A
dd
iti
on
/R
em

ov
al
of

r
e
t
u
r
n
st
m
t.

34
.9
%

18
.2
%

R
S2

C
ha
ng

e
of

re
tu
rn

va
lu
e

20
.3
%

11
.1
%

L
oo

p
L
P1

A
dd

iti
on

/R
em

ov
al
of

lo
op

11
.1
%

4%

L
P2

A
dd
iti
on

of
b
r
e
a
k
/c
o
n
t
i
n
u
e
st
m
t.

0.
0%

2%

L
P3

C
ha
ng

e
of

ite
ra
tio

n
va
ri
ab
le

0.
3%

0.
5%

O
bj
ec
tI
ns
ta
nt
ia
tio

n
O
I1

A
dd
iti
on
/R
em

ov
al
of

ob
je
ct
in
st
an
tia
tio

n
3.
3%

23
.2

%

O
I2

C
ha
ng

e
of

ar
gu

m
en
ts
of

co
ns
tr
uc
to
r

1.
8%

2%

O
I3

C
ha
ng

e
of

co
ns
tr
uc
to
r
ty
pe

1.
8%

2.
5%

M
et
ho

d
D
efi

ni
tio

n
M
D

A
dd

iti
on

/R
em

ov
al
of

m
et
ho

d
de
fin

iti
on

6.
8%

13
.6

%

Ty
pe

C
T

C
ha
ng

e
of

ty
pe

ex
te
ns
io
n

0.
5%

1.
5%

A
ss
ig
nm

en
t

A
S1

A
dd
iti
on
/R
em

ov
al
of

as
si
gn
m
en
ts
tm

t.
39
.0
%

27
.3
%

A
S2

C
ha
ng

e
of

as
si
gn

m
en
te
xp

re
ss
io
n

14
.9
%

9.
6%

V
ar
ia
bl
e

V
R
1

A
dd

iti
on

/R
em

ov
al
of

va
ri
ab
le

30
.1
%

17
.7
%

V
R
2

C
ha
ng

e
of

va
ri
ab
le
ty
pe

2.
5%

3.
5%

T
he

em
ph

as
iz
ed

va
lu
es

in
E
xt
ra
V
ul

co
lu
m
n
in
di
ca
te
th
at
E
xt
ra
V
ul

co
nt
ai
ns

a
bi
gg

er
po

rt
io
n
of

th
e
co
rr
es
po

nd
in
g
re
pa
ir
ac
tio

n
w
he
n
co
m
pa
re
d
to

D
ef
ec
ts
4J

123



Empirical Software Engineering

Ta
bl
e
8

R
Q
3:

Pr
ev
al
en
tF

ix
in
g
Pa
tte
rn
s
in

th
e
E
xt
ra
V
ul

da
ta
se
t

R
ep
ai
r
Pa
tte

rn
O
bs
er
va
tio

n/
E
xp

la
na
tio

n
C
W
E
M
ap
pi
ng

R
ep
.

V
ul
ne
ra
bi
lit
y

N
ew

#

In
fin

it
e
L
oo

p
H
an

dl
in
g

A
dd

b
r
e
a
k
/
c
o
n
t
i
n
u
e
/
t
h
r
o
w

st
m
t.
to

ex
it
lo
op

(L
P2

,E
H
1)

A
vo
id

an
in
fin

ite
lo
op

i.e
.,

D
D
oS

at
ta
ck

C
W
E
-8
35

C
V
E
-2
01

9-
12

40
2

✓
5

C
ha
ng

e
lo
op

he
ad
er
/te

rm
in
at
io
n
co
n-

di
tio

n
(L
P3

)
A
vo
id

in
te
ge
r
ov
er
flo

w
ca
us
in
g
in
fi-

ni
te
lo
op

C
W
E
-8
35

C
V
E
-2
01

8-
13

24
✓

2

O
bj
ec
tI
ns
ta
nt
ia
ti
on

U
se

se
cu
re

cl
as
s
fo
r
ob
je
ct

in
st
an
tia
-

tio
n
(V

R
1
+
O
I2
)

E
.g
.,

R
ep
la
ce

R
a
n
d
o
m

by
S
e
c
u
r
e
R
a
n
d
o
m

C
W
E
-3
52

,
C
W
E
-9
18

C
V
E
-2
01

8-
12

72
✓

4

A
dd

M
C

to
av
oi
d
de
se
ri
al
iz
at
io
n
of

un
tr
us
te
d
da
ta
(M

C
1)

E
.g
.,

A
vo
id

in
st
an
tia
tin

g
ob
je
ct

of
V
o
i
d
.
c
l
a
s
s

C
W
E
-5
02

C
V
E
-2
01

7-
10

00
35

5
✓

6

C
ha
ng

e
ob

je
ct

in
st
an
tia

tio
n
to

se
cu
re

pa
rs
er

(O
I1
)

S
n
a
k
e
Y
A
M
L
Pa
rs
er

al
lo
w

ex
ec
ut
in
g

ar
bi
tr
ar
y
co
de

fr
om

in
pu

t
Y
A
M
L
fil
e

w
ith

de
fa
ul
tc
on
fig

C
W
E
-5
02

C
V
E
-2
01

7-
10

00
20

7
✓

2

U
se
r’
s
Pe
rm

is
si
on

M
an
ag
em

en
t

A
dd

M
C
to

ch
an
ge

us
er
’s
pe
rm

is
si
on

(M
C
1)

E
.g
.,

R
es
tr
ic
t
us
er
’s

pe
rm

is
si
on

to
re
ad
-o
nl
y

-
PD

FB
O
X
-3
34

1
✓

5

A
dd

M
C
to
ch
ec
k
us
er
’s
au
th
or
iz
at
io
n

(M
C
1)

C
he
ck

pe
rm

is
si
on

of
th
e
us
er

ex
ec
ut
-

in
g
cu
rr
en
tc
od

e
C
W
E
-2
87

,
C
W
E
-5
32

C
V
E
-2
01

8-
10

00
08

9
✓

12

C
on

fig
ur
at
io
n

A
dd

M
C

to
co
nfi

gu
re

D
O
M
/S
A
X

Pa
rs
er

(w
ith

t
r
y
-
c
a
t
c
h

bl
oc
k)

(M
C
1
(+

E
H
2)
))

In
se
cu
re
/s
ec
ur
e

fe
at
ur
es

of
D
O
M
/S
A
X

Pa
rs
er

sh
ou
ld

be
di
s-

ab
le
d/
en
ab
le
d
to

av
oi
d
X
X
E
vu
ls

C
W
E
-7
4
,

C
W
E
-6
11

,
C
W
E
-9
18

C
V
E
-2
01

6-
70

51
✓

20

T
he

“N
ew

”
co
lu
m
n
in
di
ca
te
s
th
at
th
e
re
pa
ir
pa
tte
rn

ex
is
ts
on
ly

in
E
xt
ra
V
ul

bu
tn

ot
in

D
ef
ec
ts
4J
.T

he
“#
”
co
lu
m
n
in
di
ca
te
s
th
e
to
ta
ln

um
be
r
of

vu
ln
er
ab
il
ity

pa
tc
he
s
w
e
fo
un
d
in

E
xt
ra
V
ul

w
hi
ch

us
ed

th
e
re
pa
ir
pa
tte
rn
.“
St
m
t.”

st
an
ds

fo
r
“s
ta
te
m
en
t”
,“
M
C
”
st
an
ds

fo
r
“M

et
ho
d
C
al
l”

123



Empirical Software Engineering

Ta
bl
e
9

R
Q
3:

Pr
ev
al
en
tF

ix
in
g
Pa
tte
rn
s
in

th
e
V
ul
4J

da
ta
se
tc
nt
d

R
ep
ai
r
Pa
tte

rn
O
bs
er
va
tio

n/
E
xp

la
na
tio

n
C
W
E
M
ap
pi
ng

R
ep
.

V
ul
ne
ra
bi
lit
y

N
ew

#

E
xt
er
na

lI
np

ut
Va

li
da

ti
ng

an
d
H
an

dl
in
g

A
dd

co
nd

iti
on

al
br
an
ch

w
ith

ex
ce
pt
io
n

th
ro
w
in
g

(C
B
1

+
E
H
1)

T
he

co
nd

iti
on

al
ex
pr
es
si
on

is
ne
w

fr
om

th
e
co
de

ba
se
,
e.
g.
,

ch
ec
k
nu

ll-
by

te
‘\
0
’

C
W
E
-2
0
,

C
W
E
-2
2
,

C
W
E
-2
64

,
C
W
E
-2
69

,

C
W
E
-7
70

,
C
W
E
-8
35

C
V
E
-2
01

3-
21

86
20

A
dd

co
nd

iti
on

al
br
an
ch

w
ith

re
tu
rn

st
m
t.
(C

B
1
+
R
S1

)
T
he

re
tu
rn

va
lu
e

is
n
u
l
l
,

f
a
l
s
e
,-

1
,e
tc
.

C
W
E
-2
0
,

C
W
E
-2
87

,

C
W
E
-3
10

,
C
W
E
-5
22

C
V
E
-2
01

9-
37

75
16

C
ha
ng

e
R
eg
ul
ar

E
xp

re
ss
io
n

(A
S2

)
Im

pr
ov
e
th
e
ru
le
fo
rv
al
id
at
in
g

in
pu

t
C
W
E
-2
0

C
V
E
-2
01

6-
44

65
✓

5

A
dd

M
C

to
sa
ni
tiz
e
ex
te
rn
al

in
pu

t(
M
C
1)

T
he

M
C

na
m
e
co
nt
ai
ns

on
e

of
th
es
e
ke
yw

or
ds
:e

n
c
o
d
e
,

n
o
r
m
a
l
i
z
e
,

r
e
p
l
a
c
e
,

t
r
i
m

C
W
E
-2
0
,

C
W
E
-2
2
,

C
W
E
-7
4
,

C
W
E
-7
9
,

C
W
E
-2
84

C
V
E
-2
01

3-
43

78
✓

24

A
dd

/R
em

ov
e
‘/
’t
o
th
e
sy
st
em

pa
th

or
U
R
I
pa
th

(A
S2

)
E
.g
.,
A
dd

‘/
’
at

th
e
en
d
of

th
e
di
re
ct
or
y
pa
th
to
av
oi
d
pa
th

tr
av
er
sa
l

C
W
E
-2
2
,

C
W
E
-6
01

A
PA

C
H
E
-C
O
M
M
O
N
S-
00
1

✓
3

O
th
er
s

R
em

ov
e
co
de

A
vo
id
ex
po

su
re
of

da
ta
in
W
eb

U
I
or

A
PI

C
W
E
-2
00

,
C
W
E
-8
63

C
V
E
-2
01

8-
11

92
14

M
ov
e
co
de

-
C
W
E
-7
9
,

C
W
E
-3
32

C
V
E
-2
01

9-
37

95
4

T
he

“N
ew

”
co
lu
m
n
in
di
ca
te
s
th
at

th
e
re
pa
ir
pa
tte
rn

ex
is
ts
on
ly

in
V
ul
4J

bu
t
no
t
in

D
ef
ec
ts
4J
.T

he
“#
”
co
lu
m
n
in
di
ca
te
s
th
e
to
ta
l
nu
m
be
r
of

vu
ln
er
ab
ili
ty

pa
tc
he
s
w
e
fo
un
d
in

V
ul
4J

w
hi
ch

us
ed

th
e
re
pa
ir
pa
tte
rn
.“
St
m
t.”

st
an
ds

fo
r
“s
ta
te
m
en
t”
,“
M
C
”
st
an
ds

fo
r
“M

et
ho
d
C
al
l”

123



Empirical Software Engineering

Infinite loop handling The repair patterns in this category fix the CVEs in the CWE-835
(Infinite Loop). Generated patches are either changing the loop condition (LP3); or adding
break/continue/return statements to the exit loop (LP2, EH1). These repair patterns
utilize Loop repair actions, which apparently are rarer for vulnerabilities compared to general
bugs (6.5% in ExtraVul and 11.4% in Defects4J, see Table 7). However, we observed that the
pattern of adding break/continue/return statements to exit the loop is not present
in Defects4J, while it is actually effective in removing the Infinite Loop vulnerabilities in
the ExtraVul dataset (even applying the patch breaks the functionalities, the vulnerability is
solved). Researchers, therefore, should consider including this repair pattern when building
an automatic vulnerability repair tool.

Object Instantiation The repair patterns in this category are unique to vulnerabilities. These
patterns use a secure class (VR1, OI2), add a method call to avoid deserialization (MC1),
or instantiate a secure parser for YAML file (OI1) to fix the CVEs in CWE-352 (Cross-Site
Request Forgery), CWE-918 (Server-Side Request Forgery), and CWE-502 (Deserialization
of Untrusted Data). Out of 142 vulnerabilities which patch we can map to Table 8 and 9,
this group covers twelve vulnerabilities (8.45%). While these patterns are similar to Wrong
reference and Copy/Paste patterns from Sobreira et al. (2018), they are more specific for
vulnerabilities. The uniqueness of vulnerabilities and their fixing patterns are themain reasons
the APR tools we evaluated failed to fix them.

User’s PermissionManagement The repair patterns in this category account for 17 vulner-
abilities (11.97%) of 142 that we could map. These repair patterns are grouped into two more
specific patterns: addingmethod call (MC1) to (1) change the user’s permission and (2) check
the user’s authorization. We observed that these repair patterns only exist for vulnerabilities,
even though they use the repair action MC1, which is also used in a bunch of patches in
Defects4J (65.3%). Although these patterns seem ‘simple’, they are once again specific to
the system’s access control features, making it harder for APR tools to generate them.

Configuration This repair pattern was used to fix 20 vulnerabilities out of 142 (14.08%).
This pattern also uses repair action MC1, with an additional try-catch block (EH2) in some
cases. However, adding a method call in this pattern is specifically configuring a DOM/SAX
parser. This pattern of changing configuration only appears to fix a vulnerability, as the
functionality stays the same. The pattern is mostly specific to the DOM/SAX parser they
configure, and the added method call is (a “new” method call) not present in the codebase
before. This makes the process of producing the right patch harder because the tool cannot
just uses the Copy/Paste pattern. APR tools, therefore, should learn different kinds of parsers
and their secure configuration combination to, in the end, be able to prevent the parsers from
being prone to vulnerabilities.

External Input Validating and Handling This category of patterns covers the most vul-
nerabilities in our dataset (68 out of 142 from ExtraVul, 47.89%). The first two patterns
are part of Conditional Block pattern from Sobreira et al. (2018): adding conditional branch
with (1) exception throwing and (2) return statement. These patterns utilize CB1, which is
used in many patches in the Defects4J dataset. The following patterns are changing Regular
Expressions and adding/removing ’/’ to the system/ URI path (AS2). Although these patterns
are related to Expression Fix (RegEx) for general bugs, they are specifically for RegEx and
paths, which can be exploited as a vulnerability. For these patterns, the APR tools are stuck in
understanding the right RegEx to add/remove a ’/’ in the variable to make it not vulnerable.
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The last pattern is similar to other groups that utilize MC1, but this pattern is specifically
used to sanitize external input. Implementing this can be challenging for APR tools as they
must understand which external input can be malicious and devise the right method call (and
its parameter) to sanitize it.

Others This group covers 18 out of 142 vulnerabilities we mapped to the Tables 8 and 9
(12.68%). In this group, the pattern Move code was also used for fixing general bugs, so it
makes sense that traditional APR tools can generate this kind of patch. The other pattern,
Remove code, was used to remove the data exposure method (CWE-200), and has actually
been used extensively by the APR tools to remove other vulnerabilities, e.g., to remove an
infinite loop (CWE-835). However, researchers should be careful in using this pattern because
it might break the functionality of the program while removing a vulnerability.

Unlisted We can only map 142 out of 198 vulnerabilities that we manually analyzed in
Tables 8 and 9. The reason is that the patches for the remaining 56 vulnerabilities (28.28%)
are too specific to the vulnerabilities that we could not generalize them to the repair patterns.
This specificity is also why most APR tools failed to fix them.

9 Threats to Validity

Our pipeline may influence the search strategy of some tools ARJA, GenProg-A, Kali-
A, and RSRepair-A are designed to automatically use a subset of the available tests instead
of the whole test suite. Hence, using fewer test cases will reduce complexity and might allow
the tool to expand the search space. However, we decided to force those tools to use the
whole test suite instead. Even though it might not be natural for them, using the whole test
suite will completely ensure that a patch will not break the program.

Weonly considered ten repair tools in our study Including other APR tools in our pipeline
requires their source code to be open and extensible. Our developed pipeline is flexible, in
which only minimal configuration is needed to integrate more tools. Among the selected
tools, we acknowledge that several of them can have varying results on different executions,
e.g., GenProg-A and jGenProg which use genetic programming. However, we doubt that this
will change the overall evaluation results.

We only analyzed three datasets for Java Our study is based on Vul4J, ExtraVul and
Defect4J. Therefore, the findings might not generalize to other datasets. In the case of vul-
nerabilities, Vul4J is the only suitable dataset at the moment, to the best of our knowledge.
ExtraVul is similar to Vul4J with more vulnerabilities. Defects4J is a well-known dataset that
is extensively used by the research community.

Our evaluation setup may influence the result The results may be influenced by the
execution environment, e.g., executing processors, and virtual memory availability. In our
experiments, we set the time budget of four hours for a repair execution, which is based on
what has been done in other studies (Liu et al. 2021). However, most repair tools (except
GenProg-A and RSRepair-A) in our evaluation actually take less than 30 minutes on average
to generate a patch, which is significantly lower than the allocated time budget.

The Vul4J benchmark used in our study may not cover all types of vulnerabilities
that affect Java projects The vulnerabilities are curated from the public Snyk vulnerability
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database and the NVD database. Six out of eight CWE categories in our study are listed in
the OWASP Top 10 (Owasp 2022). Hence, we believe that the vulnerabilities used in this
study are sufficiently considerable and reflect the real severe vulnerabilities in the wild.

10 Conclusion and FutureWork

In this paper, we have presented the first thorough evaluation of nine test-based repair tools
and one security-specific repair tool for Java and their potential to repair real-world security
vulnerabilities. Although our results seem to paint a somewhat gloomy picture, we believe
that we have provided interesting insights and actionable suggestions (especially in RQ3)
for the program repair research community. The study is an incentive to perform further
research in order to optimizeAPR tools for vulnerabilities specifically. Fromamethodological
perspective, we have also outlined the necessity of more research in order to support the
(possibly automated) validation of the patches for what concerns their correctness. Today,
this still represents a major obstacle in the rigorous evaluation of the tools’ performance, as
manual validation is a very time-consuming effort. It is left for our future work to further
extend our benchmarking platform, both in terms of tools and additional vulnerabilities.

A conclusion of general interest from this paper, consistent with the previous findings
by Durieux et al. (2019) on general bug repair, is that performing a manual validation of a
sample of results obtained by automatic means is mandatory for assessing the confidence of
the quality of an APR technique. We also make the artifact of our evaluation available in a
publicly-accessible repository (Apr4vul 2023) to support the Open Science movement.
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