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A B S T R A C T   

Phasor Measurement Units (PMUs) are essential for real-time power system monitoring and control. In this 
paper, a novel algorithm for protection (i.e., P Class) PMUs is presented. The proposed algorithm consists of four 
steps: preliminary narrowband disturbance whitening; estimation of the off-nominal fundamental frequency 
offset through the Interpolated Discrete Time Fourier Transform (IpDFT); data record length adjustment to refine 
narrowband disturbance whitening over an integer number of fundamental periods; time-domain estimation of 
the Taylor’s series coefficients of the synchrophasor function through a weighted least-squares estimator (after 
correction of possible static off-nominal deviations). The key novel contribution of the proposed approach is its 
superior ability to smooth harmonic disturbances over shorter observation intervals than many existing algo-
rithms (which typically require at least two-cycle-long data records to meet P Class accuracy requirements), 
while ensuring a good tracking capability of transient events with a reasonable execution time. Several simu-
lation and experimental results confirm that, in the case of multi-harmonic distortion, the proposed approach 
returns more accurate results than both the basic Taylor-series-based Weighted Least-Squares (TWLS) estimator 
and other whitening-based techniques, while ensuring compliance with P Class specifications even over one- 
cycle-long data records.   

1. Introduction 

Phasor Measurement Units (PMUs) play a crucial role in Wide Area 
Monitoring Systems (WAMS) [1], e.g., for fault location [2–4], enhanced 
and secure system observability [5], as well as robust system state 
estimation even in the presence of contingencies [6], time-varying 
operating conditions (e.g., due to large photovoltaic penetration) [7], 
and when bad data are collected [8]. In general, the PMUs are required 
to measure AC voltage or current amplitude, phase, frequency, and rate 
of change of frequency (ROCOF) at times synchronized with the Coor-
dinated Universal Time (UTC), and to transfer them to the so-called 
Phase Data Concentrator (PDC) at rates between 10 frame/s and 100 
or 120 frame/s depending on whether the nominal power system fre-
quency is 50 Hz or 60 Hz. Sometimes, the possible decaying DC offsets 
affecting voltage or current waveforms after a fault are also included 
among the quantities to be measured [9]. Moreover, the real-time ac-
curate measurement of frequency and ROCOF has become increasingly 
important to monitor system stability and for fast frequency support 
when low-inertia, renewable-based distributed generators are connected 

to the grid through smart power converters [10]. 
In the IEC/IEEE Standard 60255–118–1:2018 [11], various Total 

Vector Error (TVE), Frequency Error (FE) and Rate of change of Fre-
quency Error (RFE) limits are specified in both steady-state and dynamic 
testing conditions. Such conditions and the related limits are divided 
into two categories, i.e., the P Class ones (mainly oriented to protection 
purposes) and the M Class ones, that are more suitable for monitoring 
applications. 

In P Class PMUs, a good trade-off between measurement latency and 
accuracy is needed to promptly trigger protection devices and/or to 
support possible control strategies effectively. Therefore, measurements 
over short data records (usually no longer than about two fundamental 
periods) have to be performed to ensure that latency is low enough. On 
the contrary, in the M Class PMUs, longer data records are needed to 
achieve high accuracy even under severe and strongly off-nominal 
operating conditions. In this case, the higher measurement latency is 
due not only to the larger amount of samples to be processed, but also to 
the phase delay of the filters used to extract the signal parameters of 
interest [12]. For instance, in Annex D of [11] synchrophasors are 
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estimated through the direct demodulation of AC waveforms followed 
by low-pass filtering of the in-phase and quadrature components. This 
technique is implemented in several commercial PMUs, but it requires 
digital Finite Impulse Response (FIR) filters with impulse responses with 
length of several fundamental periods to ensure a frequency response 
with both a narrow transition bandwidth and a large stopband attenu-
ation [13]. Such requirements become even stricter if the filter passband 
has to be enlarged to avoid excessive attenuation of phasor oscillations 
[14], or whenever first- and second-order differentiators are used to 
compute frequency and ROCOF from phase angle values [15], due to the 
high sensitivity of frequency and ROCOF estimators to input noise [16]. 
Moreover, the ROCOF measurements, although critical for grid control, 
monitoring and protection, can be hardly estimated with standard linear 
techniques during step-like transients [17]. 

Similar remarks generally apply also to most of the frequency- 
domain estimators for PMUs, e.g., the Interpolated Discrete Fourier 
Transform (IpDFT) [18], the iterative IpDFT (which can compensate for 
the effect of low-order single harmonics and interharmonics) [19,20], 
and the Interpolated Dynamic Discrete Fourier Transform (IpD2FT) 
[21]. Better results can be obtained through compressive sensing tech-
niques applied to a Taylor-Fourier multifrequency model (especially 
when interharmonics are considered), but the performance over 
one-cycle-long intervals is not clear [22]. 

In this paper instead, an algorithm able to provide high synchro-
phasor estimation accuracy for P Class PMUs over short data records 
affected by a significant harmonic distortion is proposed. The algorithm 
relies on the following steps: i) narrowband whitening; ii) IpDFT-based 
preliminary estimation of the average fundamental frequency; iii) data 
record length adjustment with a further refinement of disturbance 
whitening and iv) tuned weighted least-squares estimation of the Tay-
lor’s series coefficients of the dynamic synchrophasor function. Thus, 
the proposed solution is called Whitening-based, IpDFT-driven Taylor’s 
series Weighted Least-Squares (WI-TWLS) estimation algorithm. 

In the rest of this paper, after a deeper explanation of the novelty of 
the proposed approach (Section 2), the steps of the algorithm are 
described and justified in Section 3. Section 4 reports a simulation-based 
comparative analysis of algorithm performance in a variety of testing 
conditions (especially, in the P Class case, as reported in [11]). Section 5 
presents some interesting experimental results both under the effect of 
multiple stationary harmonics and during fast transient conditions 
measured on the field. Finally, Section 6 concludes the paper. 

2. Related work 

The problem of fast synchrophasor and frequency tracking in non- 
stationary conditions has been widely investigated over the last ten 
years. The fact that synchrophasors are regarded as time-varying 
quantities led many researchers to explore the possibility to use dy-
namic estimators (particularly different kind of nonlinear Kalman fil-
ters) to track sudden changes of ac waveform amplitude, frequency and 
ROCOF [23,24]. Among them, the use of the unscented transform 
combined with a Kalman filter proved to be particularly effective, since 
the measurement model for phasor estimation is nonlinear and the 
process and measurement noises not always can be assumed to be nor-
mally distributed [25–27]. Unfortunately, despite the excellent behavior 
of such estimators under dynamic conditions, they are usually strongly 
affected by harmonic and inter-harmonic distortion [28]. This problem 
can be partially addressed either including the harmonics phasors in the 
state vector [29], or smoothing narrowband disturbances through a 
prior decorrelation [30]. 

The proposed algorithm provides a higher harmonics rejection, as it 
relies on the same Taylor’s series Weighted Least-Squares (TWLS) esti-
mator that was conceived to track single or multi-harmonic phasor os-
cillations over time (particularly amplitude and phase oscillations) [31, 
32]. However, unlike the original least-squares estimator presented in 
[33], in the TWLS a weight matrix is used to smooth the errors affecting 

the Taylor’s series coefficients estimation due to the discontinuities at 
the ends of each observation interval. The application of standard 
window functions (e.g., the Kaiser window or the Hann window) can 
indeed provide a significant reduction of the worst-case TVE values in 
the vast majority of the testing conditions described in the IEEE/IEC 
Standard [34]. To reduce the computational complexity, an efficient 
variant of the original method to estimate the fundamental component is 
proposed in [35]. 

However, when both accuracy and responsiveness are required, the 
synchrophasor estimation algorithm should be able to counteract the 
effect of multiple harmonics with a reasonable tracking capability of the 
fundamental. The detrimental effect of possible harmonics can be 
mitigated through the so-called Taylor-Fourier Transform (TFT) which 
extends the Taylor’s series model to a given number of harmonic com-
ponents, thus reducing their impact on the estimation of the funda-
mental parameters [32]. The measurement errors due to possible 
unknown static off-nominal fundamental frequency deviations can be 
reduced if the fundamental frequency is measured to compute the co-
efficients of the systems of equations of the TWLS-based estimator 
including a lower number of harmonics in the system model [36]. This 
approach is adopted in this paper too, but the impact on frequency 
estimation uncertainty of the preliminary IpDFT stage is strongly 
attenuated by a disturbance whitening transformation. Moreover, the 
impact of narrowband disturbances on synchrophasor estimation over 
very short data records (consisting of one or two fundamental periods) is 
mitigated by a linear transformation that tends to transform the 
narrowband components other than the fundamental into white noise. 
The feasibility of this idea, which relies on signal and noise subspace 
decomposition of multi-tone, real-valued signals embedded into white 
noise [37], was investigated for the first time in [38], and it was later 
successfully applied to a Taylor-Kalman Filter (TKF) for P Class PMUs 
[30]. 

In the following, it is shown that the best tradeoff between accuracy 
improvement, responsiveness and computational burden is achieved 
when one-cycle-long data record are considered. This result is remark-
able, since the FIR filters for P Class PMUs based on the in-phase/ 
quadrature demodulation of the collected waveform (as described in 
Annex D of the IEEE/IEC Standard) can hardly provide adequate rejec-
tion to harmonics if the filter impulse response is shorter than two or 
three fundamental cycles [13]. In fact, even the solutions based on the 
cascade of one-cycle-long FIR adaptive filters exhibit a two-cycle-long 
impulse response [39]. 

The algorithm proposed in this paper inherits some of the basic 
features of the solution described in [30] (most notably the idea of 
combining disturbance whitening with frequency adjustment), but with 
two major advantages, i.e., i) a lower sensitivity to narrowband distur-
bances than the TKF; ii) a lower computational burden for the same 
number of processed samples. Moreover, even if the use of dynamic 
Kalman-based estimators is often a preferable choice to track the vari-
ation of voltage or current components over time [40], in this paper it 
will be shown that an estimator based on the TWLS approach exhibits 
comparable responsiveness and accuracy during real transient events, 
but with better noise and harmonics rejection capabilities, as it will be 
shown in Section 5. As a result, the obtained measurement data can be 
successfully used to feed other cascaded protection-oriented algorithms 
(e.g., for islanding detection). Also, the use of cleaner data is preferable 
if such algorithms are particularly sensitive to disturbances, e.g., when 
the Teager-Kaiser energy operator is used [41]. 

3. Estimation algorithm description 

The AC current or voltage signals collected by a PMU can be modeled 
with the following function: 

s(t) = x(t) + d(t) + ε(t) = a(t) cos(2πf0t + φ(t)) + d(t) + ε(t), (1)  
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where  

• a(t) is the time-varying amplitude of the AC fundamental component 
x(t); 

• φ(t) represents the time-varying phase fluctuations of the funda-
mental (obviously, in steady-state, ideal operating conditions φ(t) =
φ0);  

• f0 = fnom⋅(1+δ) is the fundamental frequency that in general differs 
from the nominal value fnom by a factor δ, which is usually in the 
order of a fraction of percent and in any case it must not exceed a few 
percent points.  

• The function 

d(t) =
∑D

d=1
adcos(2πfdt+φd), (2)   

includes D significant harmonic and interharmonic interferers of 
amplitude ad, frequency fd and initial phase φd, respectively, overlapped 
to the fundamental.  

• Finally, ε(t) is the broadband, normally distributed noise floor with 
zero-mean and variance σε

2. 

Assuming that the phasor of x(t) is measured at a UTC reference time 
tr (with r being a non-negative integer), then the synchrophasor is 
defined as [11] 

p(tr) =
a(tr)

̅̅̅
2

√ ejφ(tr ), (3)  

and the corresponding fundamental frequency and ROCOF are given 
respectively by 

f (tr) = f0 +
1

2π
dφ(t)

dt

⃒
⃒
⃒
⃒

tr

, (4)  

ROCOF(tr) =
df
dt

⃒
⃒
⃒
⃒

tr

=
1

2π
d2φ(t)

dt2 |tr . (5) 

If an integer number of samples is collected in a nominal period, i.e., 
M = fs /fnom (where fs is the PMU sampling rate) and C denotes the 
number of nominal fundamental periods that are collected by the PMU 
to return a single estimate of synchrophasor, frequency and ROCOF, the 
total number of samples within a single data record is N = M⋅C. 

When estimators based on the Taylor’s series of the phasor function 
are considered, it is a common practice to choose the reference time tr 
approximately in the center of the rth data record. In this way, the 
Taylor’s series truncation error is minimum [33,34]. Therefore, recall-
ing that: i) tr is synchronized to the UTC and ii) the sampling clock is 
disciplined accordingly, then r = tr⋅fs and the samples of the rth data 
record can be indexed by variable nr, with r − N− 1

2 ≤ nr ≤ r + N− 1
2 or r −

N
2 ≤ nr ≤ r + N

2 − 1 depending on whether N is an odd or an even number, 
respectively. In both cases, the collected samples can be gathered into a 
single N-long column vector sr. In the following, with no loss of gener-
ality, N will be assumed to be odd. In this way, tr lies exactly in the center 
of the rth observation interval. Fig. 1 shows the flowchart of the 
WI-TWLS algorithm to estimate the values of (3)–(5) using the data 
within vector sr. 

3.1. Narrowband disturbance whitening 

The aim of the first step of the WI-TWLS algorithm is to remove (or at 
least to strongly attenuate) the narrowband disturbances modeled by (2) 
with a negligible impact on the fundamental component x(t) in (1). To 
this end, assuming that (D + 1) < N/2 (a condition that is easily met in 

practice), it can be shown (see for instance [37]) that the Singular Value 
Decomposition (SVD) of the N × N autocorrelation matrix of sr can be 
expressed as follows, i.e. 

Qr = E
(
sr⋅sT

r

)
= Sr

[
Λ0 0
0 Λ̃0

]

ST
r = Sr

⎡

⎢
⎢
⎣

Λ0 0 0
0 ΛD 0
0 0 σ2

ε IN− 2D− 2

⎤

⎥
⎥
⎦ST

r , (6)  

where:  

• E(⋅) is the expectation operator;  
• The columns of matrix Sr (of size N × N) are the orthonormal singular 

vectors of Qr;  
• The 2 × 2 diagonal matrix Λ0 includes the singular values of the 

fundamental component;  
• Λ̃0 is a diagonal matrix that comprises both the singular values of the 

narrowband components other than the fundamental and those 
associated with the wideband noise floor;  

• Submatrix ΛD contains only the D pairs of singular values associated 
with harmonics and interharmonics; 

• IN-2D-2 is the identity matrix that, multiplied by σε
2, returns the sin-

gular value matrix of the noise subspace of dimension N-2D-2. 

It is worth noticing that since matrix Qr is positive semidefinite, the 
singular values and the eigenvalues Qr (as well as the singular vectors 
and the eigenvectors of Qr) coincide. Therefore, in the following terms 
such as singular values and eigenvalues or singular vectors and eigen-
vectors will be used as synonyms. 

Recalling that the eigenvalues in Λ0 and ΛD are proportional to the 
power of the respective real-valued sinusoidal components [37,38], the 

Fig. 1. Basic flowchart of the WI-TWLS algorithm for synchrophasor, frequency 
and ROCOF estimation. 
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goal of the adopted whitening technique is to replace all eigenvalues in 
Λ̃0 with lower dummy values σ2

ε′ ≤ σ2
ε , so that the power spectral density 

of the resulting signal containsjust the fundamental term and a noise 
floor possibly with a lower level than the original one. In fact, the 
fundamental should not be affected by the whitening transformation. 

It is important to emphasize that, even though in principle σ2
ε′ could 

be set arbitrarily close to 0, in practice choosing an excessively small 
value of σ2

ε′ is pointless, since the lower bound to the variance of the Qr 

estimator depends on the number of available samples and, therefore, on 
the data record length which generally includes a non-integer number of 
periods of all narrowband components. 

If sr-k (for k = 0, …, K-1) denotes the sequence of K subsequent data 
records shifted sample-by-sample, a classic consistent estimator of (6) is 
[42] 

Q̂r =
1
K

∑K− 1

k=0
sr− ksT

r− k, (7)  

where, here and in the following, “̂⋅” means that the corresponding 
quantity is estimated. In stationary conditions, the variance of (7) de-
creases as K grows. Unfortunately, both the number of operations and 
the memory requirements of (7) also increase quadratically with K. 
Therefore, to keep both hardware requirements and processing latency 
reasonable, K can be set equal to N. To further reduce the Qr estimation 
variance due to both wideband noise and the fact that a non-integer 
number of fundamental cycles are collected, a recursive, computation-
ally efficient moving average of L subsequent values given by (7) is 
performed, i.e. 

Q r = Q r− 1 +
1
L
(Q̂r − Q̂r− L+1). (8) 

Thus, if Sr and Λ̃0 are the estimates of matrices of Sr and Λ̃0, 
respectively, (the eigenvalues of the fundamental component can be 

indeed easily identified and excluded from Λ̃0because they certainly are 
the largest ones) it is shown in the Appendix of [38] that the vector of 
data yr resulting from the linear transformation 

yr = Usr = xr + ηr with U =

⎛

⎜
⎝Sr

⎡

⎢
⎣

I2 0

0 σε′Λ̃
− 1

2

0

⎤

⎥
⎦ST

r

⎞

⎟
⎠, (9)  

can be expressed as the sum of the N-long vector xr (including the 
samples of the fundamental component centered at reference time tr) 
and vector ηr which comprises the samples of the residual wideband 
noise with zero-mean and variance σ2

η . It is important to emphasize that 
the elements of ηr do not depend on the wanted noise floor only, but also, 
and above all, on the uncertainty associated with Q r estimation, which 
affects the elements of matrix Uas well. Hence,σ2

η > σ2
ε′, but it can be 

hardly quantified a priori, since it also depends on the testing conditions, 
namely on the number and severity of the disturbances affecting the 
fundamental. In any case, σ2

η can be reduced by increasing the length L of 
the moving average filter (8). 

3.2. Off-nominal frequency offset estimation 

As briefly mentioned in Sections 1 and 2, in the second step of the 
algorithm, the classic IpDFT is applied to estimate any off-nominal static 
frequency deviation. Indeed, this technique is computationally light-
weight and it can return accurate frequency estimates through closed- 
form expression when the rectangular or the Maximum Sidelobes 
Decay (MSD) windows are used [17]. If Yr(•) denotes the N-point 
windowed DFT of yr, and this is computed around the C-th frequency bin 
at which the fundamental component should be located in nominal 
conditions, the fractional off-nominal frequency deviation δ̂r within the 

rth data record can be estimated with the IpDFT with a rectangular 
window, by using the following closed-form expression [43]: 

δ̂r =
f̂ 0(tr)

fnom
− 1

= acos
(

α1Yr(C) − α2Yr(C + 1) − α3Yr(C + 2) + α4Yr(C + 1)
β1(Yr(C + 1) − Yr(C + 2)) − β2(Yr(C + 1) − Yr(C))

)
fs

2πfnom

− 1,
(10)  

where α1 = (1 + e− j4πC/N)e− j2π/N, α2 = 1+ e− j4π(C+1)/N, α3 = − 1 −

e− j4π(C+2)/N, α4 = − (1 + e− j4π(C+1)/N)e− j2π/N, β1 = − 2e− j2π(C+2)/N and 
β2 = 2e− j2π(C+1)/N. If instead the 2-term MSD window (namely, the Hann 
window) is adopted, the fractional off-nominal frequency deviation δ̂r 
within the rth data record is given by [17] 

δ̂r =
f̂ 0(tr)

fnom
− 1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
C

(
γ1 − 2
1 + γ1

)

|Yr(C − 1)| ≥ |Yr(C + 1)|

1
C

(
2γ2 − 1
1 + γ2

)

|Yr(C − 1)| < |Yr(C + 1)|
, (11)  

where by γ1 =
|W(C)|

|W(C− 1)|, γ2 =
|W(C+1)|
|W(C)| and W(•) is the discrete-time Fourier 

transform of the chosen window. It is worth emphasizing that in the 
following, the off-nominal frequency value returned by (10) or (11) is 
used not only to adjust the data record length (both to whiten narrow-
band interferers and to estimate synchrophasors, as explained in Section 
3.3), but also to compute the coefficients of the TWLS matrix (as 
described in Section 3.4). 

3.3. Window length adjustment and whitening refinement 

The aim of this step of the WI-TWLS estimator is either to select from 
sr (if δ>0) or to append to sr (if δ<0) the samples that are needed to 
process an integer number of actual fundamental periods. In the latter 
case some additional samples of (1) must be buffered in the acquisition 
stage. If [•] is the operator rounding the argument to the closest integer, 
we can denote with N′ =

[ N
1+ δ̂

]
or N′ =

[ N
1+ δ̂

]
+ 1 (depending on whether 

[ N
1+ δ̂

]
is odd or even) the odd number of input samples to be included into 

the adjusted vectors′
r. Quite importantly, while adding or removing the 

samples to/from the data record, the reference time still lies in the center 
of the adjusted data record to avoid possible phase delays in synchro-
phasor angle estimation. Thus, the size of matrix U in (9) must be 
adjusted accordingly and the resulting N′ × N′ matrix given by [38] 

U′ = S′

⎡

⎣

I2 0

0 σ′
εΛ̃

′−
1
2

0

⎤

⎦S′T , (12)  

has to be used for the whitening transformation prior to synchrophasor 

estimation. In (12), the estimated eigenvectors matrix S′ and matrix Λ̃
′
0 

(which includes the singular values of all narrowband disturbances) 

result from the SVD of Q′
r. This matrix is given by the moving average of 

the estimated autocorrelation matrices of s′
r as in (8). Therefore, by 

repeating the same steps mentioned above and explained in [38], the 
linear transformation for narrowband disturbance whitening becomes 

y′
r = U′s′

r ≃ x′
r + η′

r , (13)  

where x′
r is the vector including the N′ samples of the ideal fundamental 

component centered at reference time tr and η′
r is the vector including 

the residual zero-mean wideband noise samples. It is worth emphasizing 
that the variance σ2

η′ of η′
r is lower than or equal to σ2

η because the con-

tributors to σ2
η due to non-coherent sampling become negligible when an 
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integer number of cycles of one or more periodic signal components is 
collected. 

3.4. TWLS with system coefficients adjustment 

As briefly mentioned in Section 2, the basic TWLS estimator is sen-
sitive to low-orders harmonics and interharmonics over short observa-
tion intervals [36]. In addition, the accuracy of a basic TWLS estimator 
with the matrix coefficients computed at the nominal frequency de-
grades when off-nominal static frequency deviations occur. To overcome 
these two problems, not only the TWLS estimator is applied to y′

r, but 
also the off-nominal frequency deviation estimated through (10) or (11) 
is used to tune the elements of the TWLS system matrix. Assuming to 
compute the Taylor’s series of (3) at a time close to reference time tr and 
to truncate the series to the second order (higher order coefficients have 
indeed a negligible impact on estimation accuracy [34]), it follows that 
[33] 

p(nr) = p(r+ n) ≈ p0,r + p1,r n + p2,r n2, (14)  

where − N′− 1
2 ≤ n ≤ N′− 1

2 , p0,r = p(tr) as defined in (3), while coefficients 
p1,r and p2,r are proportional to the first and the second derivatives, 
respectively, of the dynamic phasor function computed at tr, i.e., p1,r =

1
fs

dp
dt |tr and p2,r = 1

2!f2
s

d2p
dt2 |tr . If the Euler formulas are applied to the discrete- 

time fundamental component x(t) in (1), by replacing (14) into the 
definition of synchrophasor, it follows that 

x(nr)≈
1̅
̅̅
2

√
[(

p0,r+p1,r n+p2,r n2)e
j2π

(

1+δ
M

)

n
+
(

p∗
0,r+p∗

1,r n+p∗
2,r n2

)
e
− j2π

(

1+δ
M

)

n]
,

(15)  

where, here and in the following, the complex conjugate quantities are 
denoted with symbol “*”. If the Taylor’s series coefficients and their 
respective conjugate terms are arranged into a single column vectorpr =

[p2,r p1,r p0,r p∗0,r p∗1,r p∗2,r]
T, assuming that the Taylor’s series truncation 

errors are negligible as compared with η′
r, it follows from (15) that the 

rightmost side of (13) can be expressed as 

y′
r ≈ B(δ)pr + η′

r, (16)  

where B(δ) is the N′× 6 matrix defined as in [30], i.e.,  

Ultimately, if the value of δ̂r returned by (10) or (11) is replaced to δ 
into B(δ) and assuming that the signal samples in y′

r are weighted by the 
chosen window function (for the reasons explained in Section 2), it 
follows that Ωy′

r ≈ ΩB(δ̂r)pr + Ωη′
r, where Ω is a diagonal matrix 

including the coefficients of the window function. Thus, by solving the 

previous linear system of equations, the elements of vector pr can be 
estimated as follows, i.e. 

p̂r =
[
BH

r (δ̂r)Ω2Br(δ̂r)
]− 1

BH
r (δ̂r)Ω2 y′

r, (18)  

where superscript “H” denotes the Hermitian operator and Ω2 = ΩH•Ω 
because Ω is diagonal and real-valued. 

Finally, it results from (18) that the amplitude, phase, frequency and 
ROCOF values of the fundamental component estimated at time tr are 
given by [31]: 

â(tr) =
̅̅̅
2

√ ⃒
⃒p̂0,r

⃒
⃒, (19)  

φ̂(tt) = arg
{

p̂0,r
}
, (20)  

f̂ (tr) = fnom(1+ δ̂r) +
fs

2π
⃒
⃒p̂0,r

⃒
⃒2 Im

{
p̂1,r p̂∗

0,r
}
, (21)  

̂ROCOF(tr) =
f 2

s

π

{
Im

{
p̂2,r p̂∗

0,r
}

⃒
⃒p̂0,r

⃒
⃒2 −

Re
{

p̂1,r p̂∗

0,r
}

Im
{

p̂1,r p̂∗

0,r
}

⃒
⃒p̂0,r

⃒
⃒4

}

. (22) 

Note that Re{•} and Im{•} are real- and imaginary-part operators, 
respectively. Even if expressions (19)-(22) can be potentially used to 
return the quantities of interest anytime a new sample is acquired, in 
practice the stream of output measurement values has to be decimated 
to avoid a data tsunami as well to meet the PMU reporting rate re-
quirements specified in the IEEE/IEC Standard. In this final decimation 
step, all the phasor parameters estimated within a single reporting 
period (except the phase angle which change linearly with time) can be 
averaged to further reduce the impact of the residual wideband noise, 
which is particularly critical for both frequency and ROCOF estimation 
[16]. 

4. Performance evaluation in P Class standard testing conditions 

In this Section, the performance of the WI-TWLS algorithm is 
analyzed in depth through multiple Monte Carlo simulations in the P 
Class testing conditions specified in [11]. In particular, a twofold com-
parison is performed in the following. First, the benefits of the proposed 
approach in various testing conditions using one-cycle-long data records 
are shown and are compared with the results obtained with both the 
basic TWLS estimator and the TWLS algorithm enhanced by a pre-
liminary narrowband disturbance whitening with no frequency adjust-
ment [38] (briefly referred to as Whitening-based TWLS or WTWLS 

method in the rest of this paper). Then, a further side-by-side compari-
son between different estimators based on narrowband disturbance 
whitening (namely the WTWLS method, the proposed WI-TWLS 
approach and the recently proposed Tuned Whitening Taylor-Kalman 
Filter (TW-TKF) [30]) is presented . 

Quite importantly, the basic TWLS and the WTWLS algorithm do not 
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include the preliminary fundamental frequency estimation step. As a 
consequence, neither data record length adjustment, nor TWLS system 
coefficients tuning can be performed. Moreover, in the WTWLS case the 
autocorrelation matrix used for narrowband disturbance whitening is 
estimated directly from (7) (as explained in [38]), i.e., without applying 
the moving average step conceived to reduce Qr estimation uncertainty. 

In all tests, the Root Mean Square (RMS) value of the fundamental is 
set equal to 1 p.u., fnom = 50 Hz and fs = 5 kHz. Therefore, M = 100 
samples per nominal fundamental period are collected. Each test is 
repeated for different values of the most important parameters, such as 
off-nominal frequency deviation or interharmonic frequency. For every 
tuple of such parameters, the same test is repeated 100 times over 1- 
second–long intervals. The initial phase of all narrowband components 
is varied randomly in [-π, π] with uniform probability. Data records with 
a duration of either C = 1 or C = 2 fundamental periods are used in all 
tests in order to keep latency as low as possible. Thus, either N = 100 or 
N = 200 samples at a time are processed to return a single set of syn-
chrophasor magnitude, phase, frequency and ROCOF values. In the 
former case, the plain rectangular window is used, whereas in the latter 
the Hann window is adopted both for fundamental frequency estimation 
through the IpDFT, and to build the weight matrix Ω in (17). The rect-
angular window is preferable for C = 1 because of the narrower spectral 
mainlobe width. The Hann window instead provides a good tradeoff in 
terms of both spectral resolution and spectral leakage suppression when 
2 cycles are observed [36]. Moreover, it allows a lightweight 
closed-form implementation of the IpDFT, as confirmed by (11). In all 
simulations, the Signal-to-Noise Ratio (SNR) due to the white band noise 
ε(t) in (1) is set to 66 dB. This value corresponds to 11 effective bits and it 
is quite reasonable because, even if the nominal resolution of a PMU 
analog-to-digital converters usually ranges from 12 to 14 bits [44,45], 
the actual wideband noise is due not only to quantization, but also to 
further random phenomena that affect, for instance, instrument trans-
formers and analog front-end circuitry (e.g., synchronization jitter and 
quantizer non-idealities). Both the values of K and L in (7) and (8) are set 
equal to N, to limit the computational burden. The noise floor power σ2

ε′ 

after whitening is instead computed in such a way that the maximum 
SNR of (13) is about 96 dB. As a last remark, it should be noted that the 
PMU reporting rate is assumed to be 50 frame/s. Therefore, the esti-
mated values are decimated accordingly (see Section 3.3). 

4.1. Static frequency deviations and frequency ramp testing 

The simplest P Class steady-state PMU test is performed by changing 
the fundamental frequency by at most ±2 Hz [11]. In Fig. 2 the 
maximum values of TVE, |FE| and |RFE| returned by the TWLS esti-
mator, the WTWLS and the proposed WI-TWLS estimators over 
one-cycle-long data records (i.e., for C = 1) are plotted as a function of 
the static off-nominal frequency offset. The WI-TWLS algorithm out-
performs the other estimators mainly because of the preliminary 
IpDFT-based frequency estimation. 

Obviously, in this test the whitening transformation has just a mar-
ginal effect on accuracy improvement since no narrowband disturbances 
are considered in (1). Similar results can be obtained when C = 2, but the 
improvement is less visible. The comparison between different 
whitening-based techniques summarized in Table 1 reveals that the 
TVE, |FE| and |RFE| values obtained with the WI-TWLS technique are 
lower than those resulting from the application of both the WTWLS and 
the TW-TKF algorithms. It is worth noting that the results reported in 
Table 1 almost coincide with those obtained in the frequency ramp test. 
This test is implemented by increasing or decreasing linearly the 
fundamental frequency at the rate of ±1 Hz/s till reaching a maximum/ 
minimum deviation of ±2 Hz. The TVE, |FE| and |RFE| values within the 
40-ms-long time intervals at the beginning and at the end of each ramp 
are excluded from the analysis, in accordance with the IEEE/IEC Stan-
dard when the reporting rate is 50 frame/s [11]. The fact that the results 
obtained with off-nominal static frequency deviations and using linear 
frequency ramps almost coincide is not surprising. Indeed, for data re-
cords of a few cycles, a ROCOF of ±1 Hz/s causes a fundamental fre-
quency shift of just a few tens of mHz. 

4.2. Harmonic testing 

Fig. 3 shows the maximum values of TVE, |FE| and |RFE| returned by 
the basic TWLS, the WTWLS and the WI-TWLS estimators over one- 
cycle-long intervals when the fundamental frequency deviation ranges 
from - 2 Hz to 2 Hz and with D = 25, 1 % narrowband harmonics in (2). It 
is clear that, even in the case of multiple interfering tones, the WI-TWLS 
is insensitive to both frequency deviations and number of harmonics. On 
the contrary, the TVE, |FE| and |RFE| values obtained with the original 
basic TWLS estimator are significant and they are mainly due to the 
lower orders harmonics. 

The IEEE/IEC Standard prescribes that, in the P Class case, all har-
monics from the 2nd to the 50th (one at a time) must be added to the 
fundamental component [11]. The amplitude of such harmonics must be 
equal to 1 % of the fundamental. Again, off-nominal relative frequency 
deviations within ± 2 Hz affect the fundamental and, consequently, all 
harmonics. Table 2 summarizes the results achieved with the WTLWS, 
the proposed WI-TWLS and the TW-TKF techniques over one-cycle-long 
and two-cycle data records respectively, along with the TVE, |FE| and | 

Fig. 2. Max. values of TVE, |FE| and |RFE| values returned by the TWLS, the 
WTWLS and the WI-TWLS estimators over one-cycle-long data records as a 
function of off-nominal frequency deviations compliant with the P Class re-
quirements specified in the IEC/IEEE Standard when just the fundamental 
component is considered. 

Table 1 
Max. values of TVE, |FE| and |RFE| returned by the WTWLS, the WI-TWLS and 
the TW-TKF estimators for C = 1 (with a rectangular window) or C = 2 (with the 
Hann window) when off-nominal frequency offsets within ±2 Hz affect the 
fundamental component.  

Error type Standard limit Algorithm Data record length (in no. of 
power-line cycles) 
C = 1 C = 2 

TVEmax [%] 1 WTWLS 0.04 0.02 
WI-TWLS 0.02 0.02 
TW-TKF 0.04 0.02 

|FE|max [mHz] 5 WTWLS 3.9 6.8 
WI-TWLS 0.2 0.08 
TW-TKF 2.0 0.8 

|RFE|max [Hz/s] 0.4 WTWLS 0.4 0.07 
WI-TWLS 0.1 0.02 
TW-TKF 0.5 0.05  
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RFE| P Class limits specified in [9]. The obtained values give proof of the 
effectiveness of joint off-nominal frequency deviation compensation and 
harmonics whitening. Indeed, the estimation accuracy of the WI-TWLS 
algorithm is almost the same as in the off-nominal case only (see 
Table 1). Moreover, the results of Table 2 confirm the drastic accuracy 
improvement achievable with the WI-TWLS algorithm with respect to 
the WTWLS as well as the safe compliance with the P Class IEEE/IEC 

Standard limits even when C = 1. Quite importantly, the WI-TWLS and 
the TW-TKF algorithms return comparable results only when the TVE is 
considered. The maximum |FE| and |RFE| values obtained with the 
WI-TWLS technique are instead quite lower than the TW-TKF ones, 
especially when C = 1. 

Fig. 3. Max. values of TVE, |FE| and |RFE| returned by the TWLS, the WTWLS and the WI-TWLS estimators over one-cycle-long data records for frequency deviations 
within ± 2 Hz under the effect of multiple harmonics. All harmonics till the 25th have amplitude equal to 1 % of the fundamental. 

Table 2 
Max. TVE, |FE| and |RFE| values returned by the WTWLS, the WI-TWLS and the TW-TKF estimators for C = 1 (with a rectangular window) or C = 2 (with the Hann 
window) under the effect of one harmonic at a time of amplitude equal to 1 % of the fundamental and with frequency offsets within ±2 Hz.  

Error type Standard limit Algorithm Data record length (in no. of power-line cycles) 
C = 1 C = 2 

TVEmax [%] 1 WTWLS 0.17 0.09 
WI-TWLS 0.05 0.02 
TW-TKF 0.04 0.02 

|FE|max [mHz] 5 WTWLS 4.5 6.7 
WI-TWLS 0.6 0.2 
TW-TKF 2 0.8 

|RFE|max [Hz/s] 0.4 WTWLS 0.5 0.05 
WI-TWLS 0.1 0.01 
TW-TKF 0.4 0.06  

Fig. 4. Max. values of TVE, |FE| and |RFE| returned by the TWLS, the WTWLS and the WI-TWLS estimators over one-cycle-long data records as a function of the 
modulating sinewave frequency in the AM test (a) and the PM test (b), respectively. In both cases, the modulation index is 0.1. 
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4.3. Amplitude and phase modulation testing 

As known, power systems oscillations can be roughly modeled 
through Amplitude Modulation (AM) and/or Phase Modulation (PM) 
signal models. The IEEE/IEC Standard prescribes that, in P Class testing 
conditions, a modulating sinewave of frequency up to 2 Hz and ampli-
tude equal to 10 % of the fundamental (in the AM case) or 0.1 rad (in the 
PM case) affects the fundamental component. The effect of AM and PM 
on the TWLS, the WTWLS and the WI-TWLS algorithms over C = 1 data 
records is shown in Fig. 4(a) and 4(b), respectively, as a function of the 
modulating frequency. In both tests, the modulation index is 0.1. Note 
that the accuracy of the WTWLS and the WI-TWLS algorithms is almost 
the same (especially in the AM case). This is due to the fact that no off- 
nominal frequency needs to be estimated and compensated. For small 
modulating frequencies, the TVE, |FE| and |RFE| values are lower than 
those obtained with the basic TWLS algorithm, mainly because of the 
noise floor reduction caused by the disturbance whitening trans-
formation. However, as the modulating tone frequency grows, the TVE, | 
FE| and |RFE| values obtained with the WTWLS and the WI-TWLS al-
gorithms tend to increase, although at a different rate. 

This trend is consistent with the preliminary results shown in [38] 
and it grows worse as the observation interval length grows. In fact, the 
more the narrowband disturbance whitening is effective, the more such 
a transformation smooths the amplitude and phase oscillations that the 
cascaded TWLS estimator is supposed to track. This is the main reason 
why the whitening-based techniques are not recommended over obser-
vation intervals longer than three or four fundamental periods. Such a 
performance degradation is particularly evident for frequency errors 
(especially in the AM case), because the smoothing errors caused by the 
whitening transformation affect (21) more strongly than the estimators 
of amplitude, phase and ROCOF. 

Indeed, the whitening step tends to desensitize the inherent tracking 
capability of the basic TWLS algorithm, which is instead natively 
conceived to estimate amplitude, frequency and phase fluctuations over 
time. The comparison between the WTWLS, the WI-TWLS and the TW- 
TKF techniques for C = 1 and C = 2 data records under the effect of 

AM and PM oscillations (see Tables 3.A and 3.B) confirm that i) the 
WTWLS and WI-TWLS algorithms generally exhibit good accuracy under 
dynamic conditions (with the only exception of the ROCOF estimation in 
the PM case) and ii) accuracy degrades as the observation interval 
grows, as expected. However, the WI-TWLS algorithm returns more 
accurate frequency and ROCOF estimates than the TW-TKF described in 
[30], while ensuring full compliance to the P Class requirements even 
over one-cycle-long data records. 

4.4. Amplitude and phase steps testing 

Finally, the responsiveness of the TWLS estimator, the WTWLS al-
gorithm, the proposed WI-TWLS technique and the TW-TKF estimator 
was analyzed and compared during transients. To that aim, the response 
times associated with synchrophasor, frequency and ROCOF estimation 
were evaluated. In the IEEE/IEC Standard, the P Class response times are 
the temporal intervals between the instants at which the TVE, |FE| or | 
RFE| values, due to an amplitude or a phase step change, exceed 1 %, 5 
mHz or 0.4 Hz/s, respectively, and the times after which the TVE, |FE| or 
|RFE| patterns steadily remain under such thresholds. 

The amplitude and phase step changes must be within ±10 % of the 
fundamental amplitude and within ±π/18, respectively. The 

Table 3 
Max. values of TVE, |FE| and |RFE| returned by the WTWLS, the WI-TWLS and 
the TW-TKF estimators for C = 1 (with a rectangular window) or C = 2 (with the 
Hann window) under the effect of amplitude (a) or phase modulation (b). In both 
cases the modulating signal is a 2-Hz sinewave and the modulation index is 0.1.  

(A)     
Error type Standard limit Algorithm Data record length (in no. of 

power-line cycles)    
C = 1 C = 2 

TVEmax [%] 3 WTWLS 0.06 0.08 
WI-TWLS 0.06 0.07 
TW-TKF 0.05 0.07 

|FE|max [mHz] 60 WTWLS 4.2 4.3 
WI-TWLS 4.3 4.4 
TW-TKF 6.0 6.0 

|RFE|max [Hz/s] 2.3 WTWLS 0.2 0.06 
WI-TWLS 0.2 0.06 
TW-TKF 0.4 0.6  

(B) 
Error type Standard limit Algorithm Data record length (in no. of 

power-line cycles)    
C = 1 C = 2 

TVEmax [%] 3 WTWLS 0.05 0.07 
WI-TWLS 0.05 0.07 
TW-TKF 0.05 0.07 

|FE|max [mHz] 60 WTWLS 1.7 3.5 
WI-TWLS 1.7 3.3 
TW-TKF 26 49 

|RFE|max [Hz/s] 2.3 WTWLS 0.1 0.05 
WI-TWLS 0.4 0.05 
TW-TKF 0.6 0.7  

Table 4 
Max. synchrophasor, frequency and ROCOF response times of the basic TWLS, 
the WTWLS, the proposed WI-TWLS, and the TW-TKF estimators for C = 1 (with 
a rectangular window) or C = 2 (with the Hann window) when either (a) ± 10 % 
amplitude steps or (b) ± π/18 phase Steps occur.  

(A)  
Standard limit Algorithm No. of cycles 

C = 1 C = 2 

Synchrophasor resp. time 
[cycles] 

2 TWLS 1.01 1.41 
WTWLS 1.51 1.84 
WI-TWLS 1.61 1.85 
TW-TKF 1.55 2.83 

Frequency resp. time [cycles] 4.5 TWLS 1.95 2.17 
WTWLS 2.66 3.77 
WI-TWLS 2.31 3.77 
TW-TKF 1.90 3.82 

ROCOF resp. time [cycles] 6 TWLS 1.94 2.48 
WTWLS 2.89 4.13 
WI-TWLS 2.67 4.13 
TW-TKF 1.97 3.87  

(B)  
Standard 
limit 

Algorithm No. of cycles 
C = 1 C = 2 

Synchrophasor resp. time [cycles] 2 TWLS 0.91 1.68 
WTWLS 1.85 3.37 
WI-TWLS 1.86 3.41 
TW-TKF 1.81 3.37 

Frequency resp. time [cycles] 4.5 TWLS 1.87 2.21 
WTWLS 2.69 3.84 
WI-TWLS 2.70 3.94 
TW-TKF 1.95 3.88 

ROCOF resp. time [cycles] 6 TWLS 2.01 2.40 
WTWLS 2.93 4.11 
WI-TWLS 2.91 4.28 
TW-TKF 2.29 3.93  

Table 5 
Average execution times (per data record) of the four algorithms considered 
when C = 1 (with a rectangular window) and C = 2 (with the Hann window). In 
all cases, about M = 100 samples per fundamental period are processed.  

Algorithm Execution time per data record (ms) 
C = 1 (i.e. N = 100 samples) C = 2 (i.e. N = 200 samples) 

TWLS 0.85 1.25 
WTWLS 3.82 12.22 
WI-TWLS 7.24 23.44 
TW-TKF 8.71 23.96  
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corresponding maximum response times, expressed in nominal cycles, 
are reported in Table 4.A and 4.B. The main conclusions that can be 
drawn from such results can be summarized as follows, i.e.  

• In all cases, the whitening transformation increases the response 
times of the basic TWLS estimator. This is the price to pay to achieve 
higher accuracy. Nevertheless, in all cases, all response times are 
safely below the P Class limits when both amplitude and phase steps 
occur. In particular, when C = 1 the response times for synchro-
phasor estimation never exceed 2 cycles and those for frequency and 
ROCOF estimation are below 3 cycles. 

• The response times over two-cycle-long data records are consider-
ably longer than those obtained over one-cycle-long intervals, with 
no significant benefits in terms of estimation accuracy in other 
testing conditions.  

• The responsiveness of the WTWLS and WI-TWLS techniques is quite 
comparable. This is reasonable, because neither the frequency tun-
ing, nor the better disturbance whitening provided by the WI-TWLS 
have relevant effects on the spectrum of step-like changes. On the 
other hand, the TW-TKF estimator is faster in tracking the step 
changes, but it returns less accurate results. 

4.5. Execution times 

The average execution times of the proposed WI-TWLS technique 
with the settings described at the beginning of Section 4 and those of the 
other estimators considered for comparison are reported in Table 5. All 
algorithms were implemented in Matlab 2017b. The execution times 
(expressed in ms) were measured using a PC equipped with 16 GB of 
RAM and an AMD microprocessor Ryzen 7 4800H running at 2.90 GHz. 
The average values were computed over 1000 data records consisting of 
C = 1 or C = 2 cycles, respectively. The algorithms including the 
whitening step are clearly much slower than the basic TWLS technique 
due to the preliminary autocorrelation matrix estimation and the sub-
sequent SVD computation, whose order of complexity is O(N3) [30]. The 
TW-TKF execution time is particularly high because the computational 
burden of the initial MUSIC algorithm for static frequency estimation 
also grows cubically with the data record size. In fact, this is much 
higher than the burden of the IpDFT approach adopted in this paper. 
Quite importantly, while the execution times over one-cycle-long in-
tervals are reasonably shorter than one fundamental period (i.e., 20 ms 
at 50 Hz and 16.7 ms at 60 Hz), this is no longer true in the case of 
two-cycle-long data records. Although further performance improve-
ment could be achieved by using a low-level software implementation 
(e.g., in C/C++ language), the reported results suggest that only for C =
1 a reporting rate of 50 or 60 measurements per second can be safely 
guaranteed if a mid- to high-end processing platform is adopted to run 
the algorithm. Considering also the results of the accuracy analysis re-
ported in Sections 4.1–4.4, apparently there is no reason to process data 
records longer than one fundamental period at a time. Therefore, only 
the results over one-cycle-long data records will be considered in the rest 
of this paper. 

5. Experimental results in real-world conditions 

In this Section, two kinds of experimental data sets are used to 
evaluate the performance of the proposed algorithm both in the case of 
large steady-state harmonic distortion and during transient events. 

5.1. Results under harmonic distortion exceeding the limits of the EN 
standard 50160:2010 

The first data sets consist of multiple records of stationary synthetic 
waveforms (generated by a NI cRIO 9068 controller through an NI‑9263 
output analog module and acquired by an analog input module NI 9205 
at fs = 6 kSa/s) affected by larger harmonic disturbances than those 

reported in [11] for P Class PMUs. The Standard EN 50160:2010 spec-
ifies the voltage characteristics of the electricity distribution systems in 
Europe [46]. In particular, the voltage frequency must lie within [47 Hz, 
52 Hz], the Total Harmonic Distortion (THD) must not exceed 8 % at 
both Medium-Voltage and Low-Voltage levels, and the magnitude of the 
first 25 harmonics must be smaller than individual thresholds ranging 
from 0.5 % to 6 % of the fundamental component [46]. To evaluate the 
performance of the algorithm under stressed conditions, the frequency 
of the waveforms used for testing is set to either to 47 Hz or 52 Hz, with 
random initial phase within [0, 2π) and with amplitude of the 2nd to the 
7th harmonic equal to 2 %, 5 %, 1 %, 6 %, 0.5 %, and 5 % of the 
fundamental component, respectively. As a result, the THD is equal to 
9.4 % as in [14], i.e., higher than the limits reported in the EN Standard 
50160:2010. No higher-order harmonics are included in the model, 
since they can be easily filtered by the TWLS algorithm [36]. The 
reference values for amplitude, phase, frequency, and ROCOF at the 
reference times in each one-cycle-long observation interval were 
reconstructed a posteriori, using a sine-fitting procedure over the whole 
data set [47]. 

The bar diagrams in Fig. 5 show the maximum values of TVE, |FE| 
and |RFE| returned by the TWLS estimator, the WTWLS variant, the 
newly proposed WI-TWLS technique and the previous TW-TKF dynamic 
estimator in the testing conditions described above. The results of Fig. 5 
show clearly that the WI-TWLS algorithms outperforms the other 
reference algorithms. Quite importantly, TVE and |FE| are safely below 
1 % and 5 mHz, respectively, while the |RFE| value is about 0.6 Hz/s for 
f1 = 47 Hz and just about 0.25 Hz/s when f1 = 52 Hz. 

5.2. Results under real-world transient conditions 

The second data set used for testing includes real-world 60-Hz three- 
phase waveforms sampled at fs = 15.360 kHz (i.e., M = 256) affected by 

Fig. 5. Max. values of TVE, |FE| and |RFE| values returned by the TWLS esti-
mator, the WTWLS variant, the newly proposed WI-TWLS technique and the 
TW-TKF dynamic estimator over one-cycle-long data records with multiple low 
order harmonics (THD = 9.4 %) and when the fundamental frequency is 47 Hz 
or 52 Hz, respectively. 
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a variety of visible short events, which cause sudden changes in 
amplitude, phase and/or frequency [48]. In this case, since the data are 
collected on the field (i.e., they are not synthetic), no ground-truth 
values of amplitude, phase, frequency and ROCOF are available, nor 
they can be determined with adequate accuracy. Nonetheless, a quali-
tative comparison between the basic TWLS estimator, the WTWLS 
variant, the newly proposed WI-TWLS technique and the previous 
TW–TKF dynamic estimator is shown in Fig. 6(a)–(d). In particular, 
Fig. 6(a)–(b) shows two examples of voltage waveforms affected by 
significant transient events, while Fig. 6(c)–(d) show the respective 
amplitude, phase, frequency and ROCOF patterns estimated by the 
various estimation algorithms over one-cycle-long intervals. 

The event shown in Fig. 6(a) is a noticeable (but not too critical) joint 
amplitude and frequency oscillation, which is well tracked by both the 
WTWLS and the WI-TWLS estimators (whose results are basically 
overlapped), while the results returned by the basic TWLS and by the 
TW-TKF estimator are affected by evident and comparable fluctuations 
(see Fig. 6(c)). On the other hand, Fig. 6(b) shows two sudden one-cycle- 
long severe events occurring in an already strongly degraded scenario, 
as confirmed by the visible harmonic distortion and the reduction of 
voltage amplitude by about 40 % with respect to the nominal value. 
Again, the amplitude, phase, frequency and ROCOF values returned by 
the WTWLS and the WI-TWLS algorithms look trustworthy, and 
smoother than those obtained with the TW-TKF estimator, which 
nonetheless exhibits a more stable behavior than the basic TWLS tech-
nique. In conclusion, the lower supposed responsiveness of the 
whitening-based techniques during transients does not look critical in 
real operating conditions. At the same time, if one-cycle-long data 

records are considered, the WI-TWLS estimator certainly provides the 
highest rejection to harmonics. 

6. Conclusions 

The WI-TWLS algorithm described in this paper aims at improving P 
Class PMU measurement accuracy over short observation intervals. The 
proposed approach relies on the idea of i) whitening harmonics and 
interharmonics while reducing the signal noise floor and ii) compen-
sating for the effect of possible frequency offsets, prior to computing 
synchrophasor magnitude and phase through a weighted least-squares 
estimator based on a Taylor’s series synchrophasor model. The first 
part of the algorithm is very effective in mitigating the impact of steady- 
state narrowband interferers. The final Taylor-based weighted least 
squares estimator is instead supposed to track dynamic synchrophasor 
changes. Since this capability can be compromised by the preliminary 
whitening step, the best tradeoff is achieved over one-cycle-long data 
records when a rectangular window is used. This is also beneficial in 
terms of computational complexity. The tracking capability and 
responsiveness degradation with respect to the basic TWLS estimator or 
the Taylor-Kalman filter in transient conditions after sudden step-like 
events are tangible, but the IEEE/IEC Standard 60255–118–1–2018 re-
quirements are met in any case. So, the worse responsiveness is 
acceptable and it is well counterbalanced by the resulting accuracy 
improvement. Some experimental results collected on the field confirm 
the simulation-based conclusions performed in the P Class testing con-
ditions of the IEEE/IEC Standard 60255–118–1–2018. 

Fig. 6. (a)-(b): examples of experimental voltage waveforms affected by sudden events of different severity; (c)-(d): amplitude, phase, frequency and ROCOF patterns 
estimated with the TWLS estimator, the WTWLS variant, the newly proposed WI-TWLS technique and the TW-TKF dynamic estimator over one-cycle-long intervals in 
case (a) and (b), respectively. 
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[25] H. Novanda, P. Regulski, F.M. González-Longatt, V. Terzija, Unscented kalman 
filter for frequency and amplitude estimation, in: IEEE PowerTech, Trondheim, 
Norway, 2011, pp. 1–6, https://doi.org/10.1109/PTC.2011.6019414. 

[26] P. Regulski, V. Terzija, Estimation of frequency and fundamental power 
components using an unscented kalman filter, IEEE Trans. on Instr. Meas. 61 (4) 
(2012) 952–962, https://doi.org/10.1109/TIM.2011.2179342. 

[27] Y. Lee, G. Lee, A. White, Y.-J. Shin, Oscillation parameter estimation via state-space 
modeling of synchrophasors, IEEE Trans. on Power Syst. (2024), https://doi.org/ 
10.1109/TPWRS.2023.3332248 in-print. 

[28] D. Fontanelli, D. Macii, D. Petri, Dynamic synchrophasor estimation using 
Smoothed Kalman filtering, in: Proc. IEEE Int. Instr. and Meas. Tech. Conf. 
Proceedings, Taipei, Taiwan, 2016, pp. 1–6, https://doi.org/10.1109/ 
I2MTC.2016.7520462. 

[29] J.A. de la O Serna, J. Rodríguez-Maldonado, Taylor–Kalman–Fourier Filters for 
Instantaneous Oscillating Phasor and Harmonic Estimates, IEEE Trans. on Instr. 
and Meas. 61 (4) (2012) 941–951, https://doi.org/10.1109/TIM.2011.2178677. 

[30] A. Bashian, D. Macii, D. Fontanelli, D. Petri, A Tuned Whitening-Based Taylor- 
Kalman Filter for P Class Phasor Measurement Units, IEEE Trans. on Instr. and 
Meas. 71 (2022) 1–13, https://doi.org/10.1109/TIM.2022.3162274. Art no. 
9002913. 

[31] M.A. Platas-Garza, J.A. De La O Serna, Dynamic phasor and frequency estimates 
through maximally flat differentiators, IEEE Trans. Instrum. Meas. 59 (7) (2010) 
1803–1811, https://doi.org/10.1109/TIM.2009.2030921. Jul. 

[32] M.A. Platas-Garza, J.A. De La O Serna, Dynamic harmonic analysis through Taylor- 
Fourier transform, IEEE Trans. Instr. Meas. 60 (3) (2011) 804–813, https://doi. 
org/10.1109/TIM.2010.2064690. Mar. 

[33] J.A. de la O Serna, Dynamic phasor estimates for power system oscillations, IEEE 
Trans. Instrum. Meas. 56 (5) (2007) 1648–1657, https://doi.org/10.1109/ 
TIM.2007.904546. Oct. 

[34] G. Barchi, D. Macii, D. Petri, Synchrophasor estimators accuracy: a comparative 
analysis, IEEE Trans. Instr. Meas. 62 (5) (2013) 963–973, https://doi.org/10.1109/ 
TIM.2012.2236776. 
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