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Abstract: In the present work, the theoretical basis of the multiplicity of solutions obtained from
an initial real symmetric distribution is derived. This initial solution is devoted to generating an
equivalent pure real shaped-beam pattern for a concrete synthesis scenario. However, these new
solutions are not based on real symmetric distributions; hence, not based on the generation of
pure real patterns. The bandwidth performances and tolerance to errors provided by the multiple
solutions in the array design are analyzed by considering different architectures, also including
mutual coupling models and element factor expressions due to accuracy purposes. In addition, a
technique to obtain efficient linear arrays by designing resonant structures is addressed. Examples
involving both standard linear arrays of half-wavelength cylindrical dipoles and resonant linear
arrays generating flat-top beam patterns are reported and discussed. Additionally, an extension
to planar arrays performed by means of a generalisation of the Baklanov transformation through
collapsed distribution techniques inspired in the well-known method devised by Tseng and Cheng is
performed. In such a way, an analysis of the quality of solutions for generating circular and elliptical
footprints with controlled both SLL and ripple which are highly interesting in the framework of
space vehicle applications.

Keywords: bandwidth; equispaced linear arrays; far field patterns; multiplicity of solutions; shaped-
beam patterns; tolerance analysis; circular footprints; elliptical footprints

1. Introduction

Shaped-beam array patterns are widely-used for antenna and radar applications. More
precisely, they represent a very interesting solution in satellite application for providing
a uniform coverage of a certain region on the surface of the Earth or similar. Thus, many
techniques have been attracting the attention of many researchers since the introduction in
1947 by Woodward [1] of the classical problem of generating a shaped pattern from an eq-
uispaced array. A conceptually simple—i.e., computationally inexpensive—methodology,
based on a polynomial representation of the radiation power pattern (by means of the
array factor) has been presented in [2]. This approach effectively controls the ripple level
provided in the shaped region as well as the topography of the side lobes by obtaining a
far field radiation pattern with deep nulls in the unshaped region (the region towards the
main beam). At the same time, a multiplicity of solutions generating the same far field
radiation pattern can be directly derived from this formulation.

By analyzing the state of the art on shaped-beam in linear array pattern synthesis
works as [3] can be referred where arbitrary shaped-beam patterns are generated by means
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of sub-array clustering solutions. Here, an optimal trade-off between the complexity of the
array structure and the matching of a reference pattern is exploited. Another interesting
alternative [4] proposes a superposition of scanned sum patterns for the shaped-beam
pattern generation. With regard to the introduction of multiple sets of solutions within the
array pattern synthesis problem, alternative methodologies from recent literature can be
highlighted [5–7]. These works are mainly focused on solving mask-constrained problems
through arbitrary array layouts and thus they can effectively deal with an arbitrary spacing
between the elements. Otherwise, although some interesting attempts with the unit
circle representation from aperiodic arrays have been made in [8], the methods inspired by
Schelkunoff [9] (in the basis of the present work) certainly do not allow a direct management
of non-uniformly spaced linear arrays.

The methodology based on dealing with equispaced linear arrays are directly linked
to the generation of radiation far-field patterns showing deep nulls. There are of course,
alternative methods as [10] that can be used as input of the procedure, but we have
chosen the Orchard–Elliott–Stern method [11], a powerful technique that uses the physical
principles of adjusting zeros in the array pattern polynomial. Even, in light of the comments
made by some authors arguing about the performance of the Orchard–Elliott–Stern method,
it was shown that this procedure can deal with extreme ripple conditions as well as real
symmetric and asymmetric far-field radiation patterns [12]. As general comment for
supporting the application of the Orchard–Elliot–Stern method one can state that this
procedure represents a fast, cheap and efficient numerical method for obtaining a certain
root positioning to generate a concrete far field radiation pattern on equispaced linear
arrays. Then, considering that the root positions given by the specifications in the synthesis
problem (ripple, beamwidth, falloff from the shaped region, and side lobe levels) are
unique and in light that these roots generate far-field patterns exhibiting deep nulls, one
can guarantee the performance of this technique at the level of the state-of-the-art in
the antenna array pattern synthesis. In summary, one can understand the array pattern
synthesis as a framework of cleverly positioning the zeros of the polynomial for a certain
antenna array solution.

On the other hand, as is well known for these Schelkunoff-based techniques, the
multiplicity of their solutions in case of analyzing a complex shaped-beam pattern is
22M [11], where 2M is the number of nulls which has to be filled by the synthesis procedure.
Here, a symmetric number of elements in the array and as a consequence a symmetric
number of filled nulls have been assumed without any loss of generality.

Regarding pure real shaped-beam patterns, Elliott and Stern [2]—inspired by the
technique introduced by Woodward [1]—demonstrated in 1984 that they can be gener-
ated by means a displacement of the roots in pairs at the same angular position in the
Schelkunoff unit circle. In such a way, the realisation of pure real patterns can be assured,
including asymmetric shaped-beam patterns, and approaches as the proper Woodward
technique [1] or the extensions of Orchard–Elliott–Stern synthesis method [13] have proven
this performance. In particular, the reader can consider the synthesis of an asymmetric
pure-real pattern to obtain one real symmetric set of excitations in [13] (by means of a
generalization of the symmetric procedure devised by Kim and Elliott [14]).

In the present work, a methodology for introducing multiple distributions generated
from this initial constrained pure real pattern case (equivalent to the classical complex
pattern case) is addressed and fully characterized. Thus, an enlargement of the number
of valid solutions to the synthesis problem and, therefore, a new path for analyzing
the synthesis problem in shaped-beam patterns—envisaged in [15]—is explored and its
theoretical bases are developed. Moreover, as restricted studies about the nature of these
resulting multiple excitation distributions have not been developed in the literature until
now and just a preliminary study confirming this variability and addressing limited
bandwidth studies [16], the theoretical peculiarities of the method regarding these different
types of solutions are here discussed. In fact, the number of solutions produced in the
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synthesis of an initial pure real far field pattern—envisaged in [15] as 32M and confirmed
in [16]—is now fully addressed and characterized from a theoretical point of view.

An interesting feature of exploiting this new multiplicity of solutions is the facilitation
of the physical realisation of the array. In this manner, the chance to select an adequate
solution with regard to certain feeding network scenario (end-fed, centre-fed, as well
as corporate fed arrays) is highly interesting. As a drawback, a slightly enlargement of
the number of elements of the array has to be expected in comparison to the standard
complex pattern case, if we want to keep the same number of ripples in the shaped region.
Attending the quality of the results offered by this new procedure, both bandwidth and
tolerance analyses of the entire multiplicity of solutions (the classical multiplicity and the
one devised in the present work) are here proposed. In such a way, the potentials of the new
set of solutions can be understood while their quality is evaluated within the framework of
the application in linear array synthesis. Additionally, an extension to both circular and
elliptical footprint patterns by means of a generalized procedure of the well-known Tseng
and Cheng methodology [17] are applied. In such a way, the performance of the different
solutions to produce extended 2-D far field patterns will add impact to the present study,
motivating the provided development for space vehicle applications in order to facilitate
both practical realisation and power consumption.

Regarding bandwidth, studies on equally spaced linear arrays synthesizing flat-top
beam patterns have been previously faced in [18,19]. In both referred works, classical
approaches to these multiplicity problems have been devoted to perform a bandwidth
study of the different set of solutions. More concretely, in [18], an example of a collinear
cylindrical dipole array case has been analyzed, while an analysis involving linear arrays
of parallel cylindrical dipoles has been reported in [19]. These approaches have addressed
excitation distributions which generate complex far field patterns and the special case of a
unique distribution generating a pure real radiation far field patterns (more concretely, the
pure real distribution of [14]). Additionally, it is worth mentioning that mutual coupling
impedance terms among cylindrical dipoles of common length (λ0/2) have been modelled,
where λ0 is the wavelength at the design frequency. To this aim, a formulation for modelling
mutual coupling effects developed by Hansen [20] has been implemented. This strategy is
no longer applicable to determine embedded impedance terms of an array with variability
in the lengths of its elements. More precisely, the expressions from the work of Hansen for
the mutual impedance cannot manage different lengths of the slender dipoles. An attempt
to deal with a less restricted formulation has been addressed in [16], but these methods
also present limitations in terms of elements sizes (changes in the lengths of the dipoles
1.3 ≤ kl ≤ 1.7 and element radii 0.0016 ≤ a/λ ≤ 0.0100 were considered). To fill this
gap, improved expressions of mutual coupling based on standard methods [21] have been
integrated into the methodology here depicted. In this manner, a management of different
lengths of the elements of the array can be guaranteed.

With regard to tolerance analysis, examples also devoted to report the performance of
a classical multiplicity of solutions by generating the same shaped-beam pattern, have been
developed in [22]. In this work, statistical studies about the sensitivity of the performance
to errors in element positions, excitation phases or amplitudes have been conducted.
As limitation to highlight, the work was performed without introducing a model for the
coupling effects neither taking care about the radiation field of each one of the dipoles
which define the array (i.e., their element factors). So, for understanding the potentials
of the multiplicity of solutions created by means of a distribution generating a pure real
shaped-beam pattern, a tolerance analysis is here proposed. As it was already mentioned,
the lack of modelling mutual coupling effects, as well as element factors, in previous
strategies [22] adds motivation to conduct this specific study.

Finally, from the planar arrays scenario, the potentials of selecting a more convenient
solution within the multiplicity are shown. In this manner, the generalisation of the
Baklanov transformation [23] illustrates the behavior of the solutions in different test cases
with different number of elements in the two directions of the planar array by linking
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the pattern to a polynomial of one variable as proposed in [24]. Therefore, a theoretical
discussion regarding the orders of this polynomial has been discussed by López-Castro [25]
and a compact expression to deal with both odd and even p and q parameters of the general
transform has been derived in the present work. So, the evaluation of the quality of the
solutions obtained by means of the multiplicity is reported through the variability of the
excitation currents in the synthesized planar array.

In order to illustrate the method, 10-element and 12-element linear arrays have been
considered within the pure real shaped-beam pattern synthesis, by completing the standard
discussion of [14]. This work analyses a shaped-beam pattern synthesis problem from
the point of view of a 12-element linear array in terms of a unique pure real excitation
distribution by means of this particular linear array arrangement. So, in the present work,
this pure real shaped-beam pattern is used to generate, discuss, and analyse one part of the
innovative multiplicity of solutions here proposed. This is due to, under the philosophy
of [14], the main concern is guaranteeing the same number of ripples in the shaped region.
Here, alternatively, we are also exploring the possibility of keeping the same number
of elements as in the initial complex pattern case (10 radiating elements). In this case,
the cost to pay is to reduce the number of ripples in the shaped region to the half and
consequently to decrease the number of multiple solutions produced by the method. At
the same time, linear arrays of 10 elements have been selected for generating the complex
shaped-beam pattern multiplicity (i.e., the standard/known method) in order to provide
an equivalent case. The initial distributions of the three cases have been obtained by means
of the Orchard–Elliott–Stern technique [11]. Attending the model of each radiating element,
linear arrays with default λ0/2 cylindrical dipoles and also linear arrays with optimized
dipole lengths (devoted to create improved resonant structures) have been analyzed. In
both cases, array architectures in absence and in presence of a ground plane—placed at
a distance of λ0/4—have been simulated. To establish a notation and for clarification
purposes, the denomination of complex pattern case (CPC) and real pattern case (RPC)
has been adopted in the paper. The first one (CPC) is referred to the case of a multiple
set of solutions obtained from an initial distribution that generates the complex far field
pattern associated to the problem. Otherwise, the RPC is the reference to the multiplicity of
solutions obtained from an initial distribution constrained to generate an equivalent pure
real pattern synthesis (a pure real shaped-beam pattern with the same number of ripples).
To differentiate between the two scenarios led by an initial real far field pattern the number
of elements of the array (10 and 12) will be made explicit on each case.

2. Materials and Methods

Let us consider a linear array of 2N equispaced dipoles distributed along the z-axis,
for which the array factor is led by the expression [21]:

F(θ) =
2N

∑
n=1

fn(θ)Inejk(n−1)d cos θ , (1)

where fn(θ) is the radiation pattern of each one of the elements (in the case of isotropic
radiators it would be 1), In is the complex excitation current of the n-th element, k is the
wavenumber and d is the spacing between elements.

2.1. Multiplicity Considerations with an Initial Pure Real Far Field Pattern

Once the excitations in (1) are determined by means of the Orchard–Elliott–Stern
technique [11] or Kim–Elliott procedure [14], we can factorize the obtained array factor and
represent it over the Schelkunoff unit circle.
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Accordingly, if we analyse the case of an equispaced array of isotropic elements given
by (1) it is well known (by means of the fundamental theorem of algebra) that the roots of
the polynomial can be factored as

2N

∑
n=1

In

I2N
ωn−1 =

2N−1

∏
i=1

(ω−ωi) = 0, (2)

where 2N − 1 is the number of roots of the polynomial (ωi) and, by means of the change
ψ = kd cos θ, and therefore ω = ejψ = ejkd cos θ . These roots can be expressed by ωi =
e(ai+jbi), which are the group of complex elements to be represented in the Schelkunoff unit
circle. Then, multiple sets of different solutions will be obtained by altering the positions of
the roots within the Schelkunoff unit circle representation of the initial set. In such a way,
the same normalized amplitude of the far-field pattern is produced. In the case of interest
for the present work, a pure-real shaped-beam pattern will certainly generate equivalent
far field patterns of different natures.

So, by altering the part of the set which lies off the Schelkunoff unit circle, equivalent
solutions in terms of the far field pattern are produced. More precisely, as it has been
pointed out in [14,15], if we alter the sign of an linked to any of the roots off the unit circle,
the magnitude of the obtained radiation power pattern will describe exactly the same
function as the initial case. In the complex case, the number of different solutions which
can be generated are 2Qc for Qc roots off the unit circle [11], while 3Qr/2 is the number of
different solutions offered in the real case being Qr the necessary number of roots off the
unit circle for generating a pure real pattern [15].

An example of this multiplicity of solutions is shown in Figure 1, where the 9 possibil-
ities (non-repeated solutions) for generating the same shaped-beam pattern with two filled
nulls, a SLL of −20 dB and a ripple of ±0.5 dB (Figure 2, solid curve) are distinguished in
the case of a linear array with 12 elements (Figure 3). It is important to have in mind that,
as it has been shown in [14], it is necessary to have a couple of roots (in complementary
positions off the Schelkunoff unit circle, see Appendix A) for each null to force the genera-
tion of a pure-real radiation pattern (i.e., Qr = 2Qc) and in this manner, obtain a pattern
similar to the CPC. Thus, while in the CPC the number of filled nulls 2M is equal to Qc, for
the RPC 2M = Qr/2 filled nulls are mandatory. This means that 2M more elements are
required for synthesizing a far field pattern with the same number of ripples.

In a deep and general analysis about the nature of each one of the solutions for the
RPC (in a similar way as the depicted in [14] for the CPC), if we have an equispaced linear
array of 2N elements and it is desired to produce a symmetric shaped beam with 2M filled
nulls (so 4M roots displace radially off the unit circle), then

F(ω) = I2N(ω + 1)·
N−1−M

∏
i=M+1

[
ω2 − (2 cos bi)ω + 1

]
·

M
∏
i=1

[
ω2 − (ea1,i+jbi + ea′1,i−jbi )ω + ea1,i+a′1,i

]
·
[
ω2 − (ea2,i+jbi + ea′2,i−jbi )ω + ea2,i+a′2,i

]
,

(3)

which is a polynomial with complex (C) or real (R), and symmetric (S), or asymmetric (A)
coefficients, depending on the relations between the signs of the four a1,i, a′1,i, a2,1 and a′2,1
terms. More precisely, it is easy to understand that by exploiting each one of the possible
combinations of the parameters

(
±|a1,i|, ±

∣∣∣a′1,i

∣∣∣, ± |a2,i|, ±
∣∣∣a′2,i

∣∣∣), 24M solutions can
be generated. Otherwise, in contrast with the behavior analyzed in [14] for the general
complex case, some different roots sign combinations would generate exactly the same
polynomial coefficients. So, for example, if one checks the case in study having 2M = 2 (i.e.,
M = 1) filled nulls, it is easy to understand that 4 solutions would lead to an exactly equal
symmetric set of coefficients (Figure 1, Solution 3), whose root groups can be expressed
as +|a1,i|, −

∣∣∣a′1,i

∣∣∣, + |a2,i|, −
∣∣∣a′2,i

∣∣∣. On other hand, 4 solutions with RA coefficients
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only generate two different set of coefficients (Figure 1, Solutions 8 and 9) which can be
referred as +|a1,i|, +

∣∣∣a′1,i

∣∣∣, + |a2,i|, +
∣∣∣a′2,i

∣∣∣ and −|a1,i|, −
∣∣∣a′1,i

∣∣∣, − |a2,i|, −
∣∣∣a′2,i

∣∣∣. Other
4 solutions with CS terms also produce just two independent solutions (Figure 1, Solutions
4 and 6), and in this case the roots can be expressed as +|a1,i|, +

∣∣∣a′1,i

∣∣∣, − |a2,i|, −
∣∣∣a′2,i

∣∣∣
and −|a1,i|, −

∣∣∣a′1,i

∣∣∣, + |a2,i|, +
∣∣∣a′2,i

∣∣∣. Finally, the 4 related with CA coefficients have no
chance to generate the same roots positions (Figure 1, Solutions 1, 2, 5, and 7), so they
can be expressed as −|a1,i|, +

∣∣∣a′1,i

∣∣∣, + |a2,i|, +
∣∣∣a′2,i

∣∣∣, +|a1,i|, −
∣∣∣a′1,i

∣∣∣, + |a2,i|, +
∣∣∣a′2,i

∣∣∣,
+|a1,i|, +

∣∣∣a′1,i

∣∣∣, − |a2,i|, +
∣∣∣a′2,i

∣∣∣ and +|a1,i|, +
∣∣∣a′1,i

∣∣∣, + |a2,i|, −
∣∣∣a′2,i

∣∣∣. Another way to
confirm the number of independent solutions in this problem is to understand that for
the same filled null (at a certain angular position in the far field pattern), we necessarily
will have 3 independent options. So, these options are: two paired roots, two double
roots outside or two double roots inside the unit circle. Therefore, the total number of
independent solutions is easily determined as 32M; that is, 9 for the present example with
M = 1. The reader can find in the Appendix A concrete details regarding the analytical
expression of the far field pattern depending on the nature of this combination between
roots.
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terms of nature: Solution 3 is real symmetric (RS), Solutions 8 and 9 are real asymmetric (RA), Solutions 4 and 6 are complex
symmetric (CS), and Solutions 1, 2, 5, and 7 are complex asymmetric (CA).
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So, generally, we have one arrangement of the roots for producing symmetric real
coefficients (all the roots are paired in the Schelkunoff unit circle), 2M sets for no symmetrical
real solutions (all the root pairs are double roots with symmetry along the horizontal axis
of the unit circle representation, it is, a′2,i = a2,i = a′1,i = a1,i, 2M sets of symmetrical
complex solutions (all the root pairs are double roots with anti-symmetry with respect to
the horizontal axis of the unit circle representation, it is, a′2,i = −a2,i and a′1,i = −a1,i with
a′2,i = a1,i and the rest of the cases, namely, 32M −

(
1 + 2M+1) coefficient sets, will represent

the asymmetrical complex solutions.
To synthesize an equivalent pattern by means of the same number of elements, a

distribution with just one couple of roots out of the Schelkunoff unit circle (at the same
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angular position) is necessary. So, in the case of the RPC for the 10-element linear array,
32/2 = 3 solutions will be generated. More precisely, there will be 1 RS solution (Solution
1), and 2 RA solutions (Solutions 2 and 3).

The practical interest of generating a new multiplicity of solutions is based on their
applicability to diverse feeding network designs. In this manner, the multiplicity here
introduced gives to the designer the possibility of selecting an adequate solution with
regard to a certain feeding network introduced by the application (for instance RA for
end-fed, RS for center-fed, as well as CS for corporate fed arrays). A sketch with different
applicability situations is illustrated in Figure 4.
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2.2. Embedded Active Impedance Model

To introduce the embedded active impedance terms of each array element is crucial,
even for the initial step of this procedure, where just the linear arrays are created at the
design frequency. Thus, the accuracy in the procedure is guaranteed. Towards this aim,
the mutual impedance (Zmn) and self-impedance (Zmm) terms have been determined by
means of standard formulation (Equation (7.65) in [21]). When these terms are obtained,
the input voltages of each element can be calculated through the following system of linear
equations

Vm =
2N

∑
n=1

Zmn In, (4)

where In are the complex excitation currents of the array, and Zmn represents the mutual
(when m 6= n) and the self (when m = n) impedance terms of each m-th element of the
array. Regarding this strategy, the assumption is that the feeders are completely matched
to the antenna element ports at the frequency of design, therefore providing the resulting
voltages from both current excitations and coupling effects among all the elements by
(4) [21].
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2.3. Element Factor of a Dipole

For modelling our scenario with certain accuracy at the analysis stage, to include the
expression of the radiation pattern produced by each element becomes mandatory. More
concretely, the general formulation of the element factor for the case of a dipole in absence
and in presence of a ground plane (GP) [26] is

fn(θ, ϕ) =


cos(kl sin θ cos ϕ) − cos(kl)√

1 − sin2 θ cos2 ϕ
without GP

sin(kh cos θ) · cos(kl sin θ cos ϕ) − cos(kl)√
1−sin2 θ cos2 ϕ

with GP
(5)

where 2l is the length of the dipole and h is the distance of the dipole to the ground plane.
The branch denoted as without GP models each element in absence of a ground plane
whereas the complementary expression designed as with GP is devoted to model each
element in presence of a ground plane.

Particularly, the array model analyzed in this work introduces cylindrical dipoles
arranged along the z-axis and oriented parallel to the x-axis (i.e., the pattern is modelled
along the plane ϕ0 = 90

◦
and θ ∈

[
0
◦
, 180

◦]
) as shown in Figure 3. Therefore, the expression

of the element factor in our concrete case is as follows:

fn(θ) =

{
1− cos(kl) without GP

sin(kh cos θ)·[1− cos(kl)] with GP.
(6)

This expression is introduced inside the summation of (1) and it models the impact of
the diversity of lengths within the linear array of dipoles. Otherwise, in case of sharing
the same value for all the lengths of the array elements (for instance, the half-wavelength
scenario of this work), the fn(θ) term goes out of the expression and represents a constant
value (1 in absence of ground plane and sin(π/2 cos θ) in presence of ground plane at a
distance of λ0/4).

2.4. Strategy for Resonant Structures

Searching for a more efficient radiating structure, the length of each array element
has been introduced into an optimization strategy devoted to obtaining linear arrays of
resonant elements with pure real active impedances. It is well known that for the case of
an isolated dipole, the resonant length is approximately 0.5λ0 (more precisely, by using
standard formulation [21], we have obtained a resonant length of 2l0

res = 0.476λ0). However,
due to mutual coupling effects between the array elements, to determine these exact lengths
turns to a more challenging issue.

So, the proposed numerical procedure is based on a hybrid version of the Simulated
Annealing algorithm [27] which changes the lengths of each one of the dipoles. Then, by
considering standard formulation [21] the self-impedance and mutual impedance terms
are calculated. Once these values are determined, the input voltages are consequently
established by means of (4). Finally, active impedances are determined as Zact

m = Vm/Im,
where m = 1, . . . , 2N. In this process, the cost function has been defined as

C =
2N

∑
m=1

∣∣Im
(
Zact

m
)∣∣2, (7)

in order to minimize the imaginary parts of the embedded terms for the active impedance.

2.5. Methodologies for Evaluating the Quality of the Solutions

The test cases here, reported to contribute to understand the potentials in terms of
bandwidth, error tolerance, and extension to circular and elliptical footprints of a number
of excitations, sets completely new terms in the classical literature of array pattern synthesis.
To this end, in the following three subsections, the basis of both methodologies will be
referred.
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2.5.1. Bandwidth Studies

The bandwidth studies in this work are devoted to analyzing the performance of
the different solutions in terms of changes of the electrical size of the array, which are
conceptually linked to changes in the effective geometry of the array in terms of the
wavelength (due to changes in the wavelength).

In these procedures, the changes in frequency are translated to variations of the
wavenumber and they can be directly obtained in the model by introducing the following
frequency:

f = f0 ± ∆ f = ξ f0, (8)

where ξ is the scale factor on each frequency step and f0, the central frequency.
For these studies, we are setting the central frequency as f0 = 1 GHz and steps in

frequency of ∆ f = 5 MHz. So, through the positive branch of (8) we determine the upper
limit in frequency ( fU). Alternatively, the lower limit ( fL) is obtained by sweeping the
negative branch of (8). The determination of these frequency limits is made by the method
when a predefined termination condition is met on each branch. Then, the bandwidth of
the n-th parameter is determined as

BWn =
fU − fL

f0
. (9)

The termination conditions linked to each one of the parameters to analyze can be
summarized as it follows:

• ∆Dmax = Dmax−D0
max

D0
max

= 0.05

• ∆HPBW = HPBW − HPBW0 = 2
◦

• ∆SLL = SLL− SLL0 = 1 dB
• ∆ripple = ripple− ripple0 = 0.5 dB
• Active impedance parameters

∆imp =
xs − x0

x0
= 0.15

where x0 means the value of the parameter at the design frequency, and xs the value of the
parameter at a certain frequency step.

The procedure for obtaining the antenna array pattern and the different values of
the impedances is similar to the one devised in [18,19]. For each step in frequency, the
corresponding Zmn values will be collected. By assuming that input voltages (Vm) would
be equal for each solution (arrays generating shaped beams are almost always designed on
a constant voltage basis), we can determine the new group of complex excitation currents
of the array (In) just by solving the linear system of (4).

2.5.2. Tolerance Analysis

Alternatively to the above-mentioned bandwidth studies, tolerance analysis pro-
cedures are motivated to show and characterize the quality of the solutions in terms
of changes due to imperfections in the feeding network, but without altering the effec-
tive/electrical geometry of the radiating structure. By following this philosophy, a study
about the sensitivity of the radiation patterns—produced by the linear array—to random
errors in element voltage amplitudes and phases is proposed. The errors introduced in
voltage amplitudes (∆|V|) are ±0.3, ±0.5, ±0.7, and ±1.0 dB whereas ±1.0, ±2.0, ±4.0
and ±6.0 degree errors have been taken into account attending voltage phases [∆φ(V)].

An example of mask requirements for this analysis is shown in Figure 2 (dashed
curves), where also the pure-real far-field pattern obtained by the Kim–Elliott procedure
is depicted (Figure 2, solid curve). For performing the study, a mask allowing differences
with the pattern free of errors (the reference pattern) of 1 degree in width and a ripple 2



Sensors 2021, 21, 62 11 of 27

times greater attending the main lobe region, as well as 1 dB of difference in terms of SLL
has been defined.

The procedure for altering the voltage of the feeders has been based on random
perturbations sampled from a uniform distribution limited by the proposed errors. A
number of 1000 different antenna array patterns have been obtained by this technique and
the statistics of the success (the ratio of the patterns which met the mask to the total number
of samples) have been analyzed by focusing on the nature of the solution.

2.5.3. Extension to Planar Arrays

Let us consider a rectangular grid planar array with a rectangular boundary. Assuming
a layout of 2N by 2N elements (The case of 2N + 1 elements is straight forward, and it can
be easily deduced by the reader. Similar procedure can be applied), where the excitation
has a quadrantal symmetry (in both excitations and positions), and the expression of the
produced far field radiation pattern is given by [21] (pp. 237–243)

F(u, v) = 4
N

∑
m=1

N

∑
n=1

Imn cos[(2m− 1)u] cos[(2n− 1)v], (10)

where
u =

πdx

λ
sin θ cos ϕ, (11)

v =
πdy

λ
sin θ sin ϕ, (12)

in which dx, dy are the interelement spacings on each axis in terms of λ.
Then, to generalize the standard procedure of linking this pattern to a polynomial in

one variable, the generalization of the Baklanov transformation [23] introduced by Kim
and Elliott in [24] is applied, namely,

ω = ω0 cosp u cosq v, (13)

with p, q ∈ N. It is highly remarkable that, particularly for p = 1 and q = 1, the original
case devised by Tseng and Cheng [17] is obtained. In this manner, a restriction requiring
the same number of elements in the two directions is not more applicable in the generalized
version of this methodology. In the work of López-Castro [25] all the scenarios regarding
different combination of pairs p and q in the formulation has been analyzed and discussed.

More precisely, the polynomial representation of the far field radiation pattern can be
expressed as follows

P2N−1(ω) =
N

∑
s=1

a2s−1ω2s−1 =
N

∑
s=1

a2s−1ω2s−1
0 · cosp(2s−1) u· cosq(2s−1) v. (14)

So, in order to match the expression with (10), it is necessary to recast the expression
and reorder them. In such a way, it is interesting to define the following auxiliary variables

h =
(2s− 1)p + εp

2
(15)

g =
(2s− 1)q + εq

2
(16)

b2s−1 = a2s−1·ω2s−1
0 , (17)

where εp and εq are defined as

εx =

{
1 if x is even
0 if x is odd

. (18)
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Then, the expression can be formulated as

P2N−1(u, v) = 4
N

∑
s=1

h

∑
m=εp

g

∑
n=εq

b2s−1δmδn

2[2(h+g)−(εp+εq)]

(
2h− εp
h−m

)(
2g− εq
g− n

)
cos
[(

2m− εp
)
u
]

cos
[(

2n− εq
)
v
]

(19)

where δm and δn are defined as

δx =

{ 1
2 if x = 0
1 else

. (20)

So, for having a pattern F(u, v) expressed in terms of the elements of the polynomial
P2N−1(ω), we have that

Imn =
N

∑
s=l

b2s−1

2[2(h+g)−(εp+εq)]

(
2h− εp
h−m

)(
2g− εq
g− n

)
, (21)

where
l =

⌈
max

(
αp, αq

)⌉
(22)

αp =
2m− εp + p

2p
(23)

αq =
2m− εq + q

2q
. (24)

Then, including the collapsed distribution approach [21] to provide this generalized
Tseng–Cheng excitation, the coefficients of the polynomial can be related to the known
collapsed distribution onto the X-axis (i.e., p = 1),

Im =
N

∑
s=m

b2s−1

2(2h−1)

(
2h− 1
h−m

)
. (25)

In such a way, by following (25) the b2s−1 coefficients are determined though a matrix
inversion within the system of equations and then, by means of (21) the Imn terms are
deduced.

It is worth mentioning that the current distributions introduced in this formalism
introduced by Tseng and Cheng has to present quadrantal symmetry.

3. Preliminary Analysis of the Multiplicity Generation

As it has been already mentioned, this method will be analyzed by means of two test
cases: one through the use of linear arrays with half-wavelength cylindrical dipoles and a
second one by means of linear arrays with optimized dipole lengths for obtaining resonant
properties on each port. At the same time (as also discussed in the Section 2: Materials
and Methods) for filling the same number of nulls (2M) of the equivalent radiation power
patterns of the CPC, the same number of roots out of the Schelkunoff unit circle (2M) is
needed while in the RPC a double number of roots out are necessary (4M). Therefore, to
synthesize the shaped-beam patterns with the same number of ripples to those analyzed
in [14], 10 elements for the CPC are needed versus the 12 elements needed for the RPC.
As second alternative, an RPC restricted to the same number of elements of the CPC is
considered. In this second RPC (also compatible with the width of the CPC) the number of
the ripples in the shaped is decreased to the half. So, the solutions considered in this work
are those devoted to fit the requirement of synthesizing a symmetric flat-top shaped-beam
pattern with 2 or 1 ripples (RPC12 or RPC10) with a ripple level of±0.5 dB, and a maximum
sidelobe level of −20 dB (Figure 2, solid curve).

Some relevant characteristics about the variability of the sets of solutions are shown in
Tables 1 and 2. More precisely, the dynamic range ratio (DRR) of the excitation amplitudes
DRR(|In|) = |Imax|/|Imin|, and phases DRR(φ(In)) = φmax(In)− φmin(In), as well as the
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module LS(In) = |In±1|/|In|, and phase LS(In) = φ(In±1)− φ(In) of the local smoothness
(LS) are calculated. In addition, different sets of solutions for the RPC are shown in Figure 5
for the case of the 12-element linear array and in Figure 6 for the case of the 10-element
linear array in order to give an idea about their variability and to link this variability with
the sets of active impedances of each port introduced in Section 3.1. More precisely, both the
magnitudes and phases of each one of the elements for the groups of current distributions
with maximum and minimum DRR and LS in the RPC are illustrated.

Attending to the RPC of 12 elements (by analyzing the Table 1), CS solutions present the
least variability (DRR(|In|) = 3.93, DRR(φ(In)) = 52.0

◦
, LS(|In|) = 2.43, and LS(φ(In)) =

52.0
◦
), and therefore they seem a-priori the most advantageous choice. Otherwise, the RA

cases represent the worst set of solutions regarding both dynamic range ratio and local
smoothness (DRR(|In|) = 75.57, DRR(φ(In)) = 180.0

◦
, LS(|In|) = 13.75, and LS(φ(In)) =

180.0
◦
). With regard to the 10-element array, the case with the least variability is the RS

one (DRR(|In|) = 10.53, DRR(φ(In)) = 180.0
◦
, LS(|In|) = 3.09, and LS(φ(In)) = 180.0

◦
),

while the RA case reports the worst variability (DRR(|In|) = 29.79, DRR(φ(In)) = 180.0
◦
,

LS(|In|) = 12.85, and LS(φ(In)) = 180.0
◦
).

Table 1. Dynamic range ratio and local smoothness of the multiple excitations sets obtained by the
initial flat-top beam pattern of Figure 3. Linear array of 12 elements.

Solution # (Type) 1 DRR(|In|) DRR(φ(In)) [
◦
] LS(In) LS(φ(In)) [

◦
]

1 (CA) 11.04 172.7 4.53 172.7
2 (CA) 11.04 172.7 4.53 172.7
3 (RS) 35.96 180.0 7.31 180.0
4 (CS) 3.93 52.0 2.43 52.0
5 (CA) 11.04 172.7 4.53 172.7
6 (CS) 3.93 52.0 2.43 52.0
7 (CA) 11.04 172.7 4.53 172.7
8 (RA) 75.57 180.0 13.75 180.0
9 (RA) 75.57 180.0 13.75 180.0

1 The nature of each solution is shown between parentheses with the number of each one of them. Only the
solution #3 (RS) generates a pure real far field pattern. The rest of the solutions generate equivalent complex far
field pattern expressions (see Appendix A).

Table 2. Dynamic range ratio and local smoothness of the multiple excitations sets obtained by the
initial real case with a linear array of 10 elements.

Solution # (Type) 1 DRR(|In|) DRR(φ(In)) [
◦
] LS(In) LS(φ(In)) [

◦
]

1 (RS) 10.53 180.0 3.09 180.0
2 (RA) 29.79 180.0 12.85 180.0
3 (RA) 29.79 180.0 12.85 180.0

1 The nature of each solution is shown between parentheses with the number of each one of them.
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Figure 5. Magnitudes (left) and phases (right) of the current excitations with maximum and minimum variability linked
to the solutions of the synthesis in the RPC of 12-element linear array (see the pattern in Figure 2). The numbering of the
solution agrees with Figure 1. Solutions 4 and 6 are mirror images of each other and because they are symmetric, they refer
the same values in amplitude.
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3.1. Linear Array Models
3.1.1. Half-Wavelength Dipoles

On a first approach, an equally spaced array (d = λ0/2) of default λ0/2 cylindrical dipoles
(r = 0.004762λ0) has been taken into account. Therefore, not a priori improvements have been
made regarding the radiation efficiency. The multiplicity of all the solutions has been analyzed
by introducing each one of them, through (4), within the aforementioned linear array model
(in agreement with procedures from the literature [18,19]). Both scenarios in absence and in
presence (at a distance of h = λ0/4) of ground plane cases have been implemented.

In Figures 7 and 8, the active impedances in the RPC with minimum and maximum
variability are shown for the linear arrays of 12 and 10 elements, respectively. In this
manner, it is confirmed that a diversity set of solutions (Figures 5 and 6) into the design
will led differences in terms of mutual coupling and therefore in practical realization of the
array. According to these results, it can be concluded that the sets with larger variability are
linked to the asymmetric real current distributions (especially in the case of the presence of
a ground plane), in agreement with the conclusions derived from the results in Figures 5
and 6, already mentioned.

3.1.2. Dipoles with Improved Lengths: Resonant Structure

In this second approach, the multiplicity of all the solutions has been analyzed by consid-
ering an equally spaced array (with d = λ0/2) of cylindrical dipoles (r = 0.004762λ0) with
lengths determined by means of the optimization process depicted in Section 2.4. Furthermore,
in this case, both scenarios have been studied: a linear array in absence of a ground plane and
a linear array with the presence of ground plane at a distance of h = λ0/4.

First of all, as a result of the optimization process, the maximum difference (in per-
centage) from λ0/2 of each case, by considering less than 3000 iterations for reaching a
tolerance in the cost function (7) with less than 10−3 are shown in Tables 3–5. It can be
confirmed how the solutions with less rate of change are the CS, in both absence (with a
1.72% and a 2.16%, respectively) and presence (with a 4.93% and a 4.98%, respectively) of
the ground plane in the cases of CPC with 10 elements and RPC with 12 elements, while
they are the RS in the case of RPC with 10 elements (with a 3.06% and a 6.65% respectively).

Table 3. Maximum rate of change among the elements of the resonant linear array structure in
comparison with the half-wavelength design for the Complex Pattern Case (CPC).

Solution # (Type) 1 In Absence of Ground Plane (%) In Presence of Ground Plane (%)

1 (CS) 2.16 4.98
2 (CS) 1.76 4.93
3 (RA) – 2 6.38
4 (RA) – 2 6.38

1 The nature of each solution is shown between parentheses with the number of each one of them. 2 In this
method, just the symmetric solutions have reached the convergence in less than 3000 iterations for the scenario in
absence of ground plane.
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Table 4. Maximum rate of change among the elements of the resonant linear array structure in
comparison with the half-wavelength design for the Real Pattern Case (RPC) of 12 elements.

Solution # (Type) 1 In Absence of Ground Plane (%) In Presence of Ground Plane (%)

1 (CA) – 2 10.66
2 (CA) – 2 10.22
3 (RS) 8.89 11.63
4 (CS) 2.77 7.89
5 (CA) – 2 10.66
6 (CS) 4.82 7.57
7 (CA) – 2 10.22
8 (RA) – 2 13.36
9 (RA) – 2 13.36

1 The nature of each solution is shown between parentheses with the number of each one of them. 2 In this
method, just the symmetric solutions have reached the convergence in less than 3000 iterations for the scenario in
absence of ground plane.

Table 5. Maximum rate of change among the elements of the resonant linear array structure in
comparison with the half-wavelength design for the Real Pattern Case (RPC) of 10 elements.

Solution # (Type) 1 In Absence of Ground Plane (%) In Presence of Ground Plane (%)

1 (RS) 3.06 6.65
2 (RA) 5.53 12.47
3 (RA) 5.53 12.47

1 The nature of each solution is shown between parentheses with the number of each one of them.
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Additionally, it is worth highlighting that the RA case in presence of ground plane
needs a maximum change in length of 13.36% in order to produce a resonant structure,
while only a 4.8% is required for the case of an isolated dipole searching for the same
resonant behavior.

More concretely, by means of a detailed analysis of Tables 1 and 4, it can be concluded
that the CS solutions need the minimum rate of changes in length in order to obtain a
resonant structure and also present the lowest dynamic range ratio and local smoothness
of the set of solutions in the 12-element RPC, while the RS one has a similar behavior
in the 10-element RPC (by means the comparison of Tables 2 and 5). Otherwise, the set
of solutions involving the greatest rate of change in lengths have been the RS solutions.
These solutions coincide with the ones with maximum level of DRR and LS. Even, we can
give a more concrete picture of the problem by ordering the solutions from minimum to
maximum DRR, LS, and maximum rate of change in length of their elements. In this way,
the list of the more advantageous to the more disadvantageous solutions for the 12-element
RPC is: CS, CA, RS, and finally RA; while for the 10-element RPC is: RS and RA.

Moreover, in this case, the active impedances (in the RPC) with minimum and max-
imum variability of the linear arrays designed by means of the different set of solutions
are shown (Figures 9 and 10). In the same manner, as the half-wavelength case, also the
variability of the active impedances in presence of ground plane are more extreme and the
worst case in terms of mutual coupling variability is represented by the set of solutions
with RA nature (Solutions 8 and 9 of the RPC with 12 elements and Solutions 2 and 3 of the
RPC with 10 elements).
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4. Bandwidth Studies

Regarding bandwidth performance, the results obtained for both the linear array of
cylindrical half-wavelength dipoles described in Section 3.1.1 and the resonant structure
described in Section 3.1.2 are plotted in Figure 11. Tables 6 and 7 summarize the nature of
the distribution which rises the minimum/maximum ratio of bandwidth (in percentage) on
each case. As it was stated at the initial part of the work, this solution can be CS, CA, RS, and
RA. For each pattern case (CPC/RPC), the left column is devoted to analyze the example in
absence of ground plane and the right one reports the results of a similar procedure but by
including the ground plane. These values of bandwidth are related with the performance of
maximum directivity (Figure 11A), half-power beamwidth (HPBW) (Figure 11B), sidelobe
level (SLL) (Figure 11C), and ripple (Figure 11D) regarding the quality of the pattern; and
maximum absolute value of the active impedance (among the ports of the array) (Figure 11E),
maximum resistance (real part of the previous active impedance) (Figure 11F), absolute value
of the impedance of the edge element (Figure 11G), and absolute value of the impedance of
the center element (Figure 11H) concerning impedances of the array.

By analyzing the results related to the linear array of half-wavelength dipoles (cases #1
and #2 in Figure 11), it can be concluded that the inclusion of the ground plane improves the
bandwidth response of the RPC of 12 elements (RPC12) more than for the CPC for the SLL
parameter (the maximum in RPC10 varies from 59.67 to 116.33%, while for the RPC12 varies
from 59.33 to 103.67%, in front of the increasing from 62.33 to a 74.33% of the CPC). Otherwise,
in the case of the ripple, the tendency is on the contrary in two of them: the inclusion of
ground plane leads a decreasing in the maximum bandwidth for the RPC12 case (from a
159.67% to a 98.33%) with regard to the CPC which keeps its maximum at a similar level
(from 153.00 to 144.00%); while the RPC10 moderately improves the maximum bandwidth
(from 121.33 to 133.67%). For directivity, similar results between both subsets can be noted
analyzing the general minimum and maximum of Figure 11A. Finally, in terms of HPBW
(Figure 11B), the RPC10 offers always the best subsets in terms of bandwidth quality (11.33%
and 12.00%, respectively), while the CPC without ground plane has a 9.33% and with ground
plane has a maximum of 10.33%; and a 7.33% and a 7.67%, respectively, for the RPC12 case.
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plane is summarized on the right column. In this case, by analyzing the results and com-
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we compare the cases without ground plane it is increased a 35%, a 32.33%, and a 37.00% 
for the maximum performance of the three cases CPC, RPC12, and RPC10, respectively), 
at expenses of the bandwidth in ripple in two cases (it decreases around a 11% in the CPC, 
in front of a dramatic 66.33% for the RPC12 for maximum performance) and with an in-
crease in the case of the RPC 10 (a 33.34%). At the same time, similar results have been 
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Figure 11. Numerical results of the bandwidth studies where the case numbering corresponds to
#1—linear array of half-wavelength dipoles in absence of ground plane, #2—linear array of half-
wavelength dipoles in presence of ground plane, #3—resonant linear array in absence of ground
plane, #4—resonant linear array in presence of ground plane. Parameters involved in the analysis:
(A) maximum directivity, (B) half-power beamwidth, (C) SLL, (D) ripple, (E) maximum absolute
value of the active impedance, (F) maximum resistance, (G) absolute value of the active impedance
of the edge element, (H) absolute value of the active impedance of the center element.

After performing the optimization process and creating the different resonant linear
arrays, the same bandwidth study have been developed. The obtained results for the
performance of the same two analogous models (in absence and presence of ground plane)
have been analyzed. These results are plotted as cases #3 and #4 in Figure 11, and the
natures of the least–most convenient distribution natures are reported in Table 7. On the
left column of the pattern case, the results related to the model in absence of ground plane
are shown, while the same discussion about the natures in case of presence of ground plane
is summarized on the right column. In this case, by analyzing the results and comparing
with cases #1 and #2 of Figure 11 and Table 6, it can be concluded that the optimization
strategy makes wider the bandwidth response, especially in SLL (more precisely, if we
compare the cases without ground plane it is increased a 35%, a 32.33%, and a 37.00% for
the maximum performance of the three cases CPC, RPC12, and RPC10, respectively), at
expenses of the bandwidth in ripple in two cases (it decreases around a 11% in the CPC, in
front of a dramatic 66.33% for the RPC12 for maximum performance) and with an increase
in the case of the RPC 10 (a 33.34%). At the same time, similar results have been reached
in presence of ground plane with the exception of the HPBW which has been notably
increased for one of the two CS solutions in the CPC, but also in a CA solution for the RPC.
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Table 6. Nature of the solutions related to the maxima and minima bandwidths in terms of quality parameters of the pattern
and selected terms for linear antenna array half-wavelength elements. Linear arrays in absence and presence of ground
plane.

Parameter

Initial Complex Pattern
(10 Elements)

Initial Real Pattern
(12 Elements)

Initial Real Pattern
(10 Elements)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

Dmax CS-CS CS-CS CS/CA-RS/RA CS/CA-RS/RA RS-RA RS-RA
HPBW – 2 RA-CS CS/CA-RS/RA – 2 RA-RS RA-RS

SLL CS-CS RA-CS CS-CS RA-CA RA-RS RA-RS
ripple RA-CS CS-RA CS-RA CS-CA RS-RA RS-RA∣∣Zact
∣∣
max RA-CS RA-CS RA-CS CA-RA RA-RS RS-RA

Rmax RA-RA RA-RA RA-CS RA-RA RA-RA RS-RA∣∣Zact
1

∣∣ CS-CS CS-RA RA-CS RA-CS RA-RS RA-RS∣∣Zact
c
∣∣ 1 CS-RA RA-CS CA-CA RA-CA RS-RA RA-RS

1 Active impedance term of central element, i.e., 5th element in case of 2N = 10 and 6th element for 2N = 12. 2 All the solutions present
the same result.

Table 7. Nature of the solutions related to the maxima and minima bandwidths in terms of quality parameters of the pattern
and selected terms for the resonant linear antenna array in absence and presence of ground plane.

Parameter

Initial Complex Pattern
(10 Elements)

Initial Real Pattern
(12 Elements)

Initial Real Pattern
(10 Elements)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

Dmax CS-CS CS-CS CS-RS CA-CA RS-RA RS-RA
HPBW CS-CS CS-CS CS-RS CA-CA – 2 RS-RA

SLL CS-CS CS-CS CS-RS CS-CA – 2 RA-RS
ripple CS-CS CS-RA CS-CS CA-RS RA-RS RS-RA∣∣Zact
∣∣
max CS-CS RA-CS CS-CS CS-CS RA-RS RA-RS

Rmax CS-CS RA-RA CS-RS RA-RA RA-RA RS-RA∣∣Zact
1

∣∣ CS-CS CS-RA CS-CS RA-CS RA-RS RS-RA∣∣Zact
c
∣∣ 1 CS-CS RA-CS CS-CS RA-CA RS-RA RA-RS

1 Active impedance term of central element, i.e., 5th element for 2N = 10 and 6th element for 2N = 12. 2 All the solutions present the same result.

5. Tolerance Analysis

Attending to tolerance analysis, the results obtained for the linear array of half-
wavelength dipoles design are shown in Figure 12 and Table 8 (both in absence and
presence of ground plane).

More concretely, in Table 8, the RA distributions inside the complex pattern strategy
offer the best success rates for almost all the error levels. Just for higher levels, the
distributions linked to the RPC seem to be the best option. In the case of ±1.0 dB errors
on voltage amplitudes, RA excitations lead a best performance and for ±6

◦
of error in the

voltage phases, CS solutions are the most convenient. At the same time, it can be seen
how—framed in the RPC12—the RA distributions offer the best ratio of success in pattern
performance, while the CA offer the lower ones for errors in voltage amplitudes. Otherwise,
this behavior changes for errors on voltage phases. Here, the CA excitations represent the
best choice, at the same time that RA currents are the worst solutions. Additionally, and
in a general manner, additionally to the data reported in Figure 13, the superiority of the
distributions obtained from the real pattern strategy—in terms of both variability and best
performance—can be highlighted.
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Table 8. Nature of the solutions with maximum and minimum rate of success in tolerance analysis of Figure 12: Linear
array of half-wavelength dipoles in absence and in presence of ground plane.

Errors

Initial Complex Pattern
(10 Elements)

Initial Real Pattern
(12 Elements)

Initial Real Pattern
(10 Elements)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

∆|V|
(dB)

±0.3 – 1 – 1 – 1 – 1 – 1 – 1

±0.5 CS-RA RA-RA CA-RA CA-RA RS-RA RS-RA
±0.7 CS-RA CS-RA CA-RA CA-RA RA-RS RA-RA
±1.0 CS-RA CS-RA CA-RA CA-RA RA-RS RA-RS

∆φ(V)
(deg)

±1.0 – 1 – 1 – 1 – 1 – 1 – 1

±2.0 CS-RA RA-RA RA-CA RS-CA RA-RS RA-RS
±4.0 RA-RA RA-RA RA-CA CS/RS-CA RA-RA RA-RS
±6.0 RA-CS RA-RA RA-CA CS-CA RS-RA RS-RA

1 All the solutions have reached the 100% of success rate.
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Then, by performing the tolerance analysis for the resonant linear array structure, the
results obtained for this case are shown in Figure 13 and Table 9 (again, both in absence
and presence of ground plane.

Table 9. Nature of the solutions with maximum and minimum rate of success in tolerance analysis of Figure 13: Linear
array of half-wavelength dipoles in absence and in presence of ground plane.

Errors

Initial Complex Pattern
(10 Elements)

Initial Real Pattern
(12 Elements)

Initial Real Pattern
(10 Elements)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

GP Absence
Min–Max

(Type)

GP Presence
Min–Max

(Type)

∆|V|
(dB)

±0.3 – 1 CS-RA – 1 CS-RA/CA – 1 – 1

±0.5 CS-CS CS-RA CS-CS CS-CA RS-RA RS-RA
±0.7 CS-CS CS-RA CS-RS CS-CA RA-RS RS-RA
±1.0 CS-CS CS-RA CS-RS CS-CA RA-RA RA-RS/RA

∆φ(V)
(deg)

±1.0 – 1 CS-RA – 1 CS-RA/CA – 1 – 1

±2.0 CS-CS RA-CS CS-CS CS-CA RA-RS RA-RS
±4.0 CS-CS RA-CS CS-CS CS-CA RA-RS RA-RS
±6.0 CS-CS RA-CS CS-CS CS-CA RS-RA RS-RA

1 All the solutions have reached the 100% of success rate.

From Figure 13, CPC in absence of ground plane presents enhanced tolerance to errors in
voltage magnitudes in comparison with the RPC12 alternatives. Otherwise, RPC12 maxima
improve the results of the CPC in the case of phase errors. It is particularly important to
highlight the point that the results obtained by the RPC10 are particularly interesting in the
case of the resonant structure for the linear array. More precisely, in the scenario of this array
with improved efficiency in absence of ground plane, the solutions obtained by means of this
procedure are always the best option among the others (RPC12 and CPC).

With regard to the case in presence of ground plane, on the contrary, RPC12 alter-
natives present slightly better results in terms of maximum success rate, while on phase
errors (on average) CPC seems a better choice.

Alternatively, concerning the results of Table 9, it can be concluded that for optimized
lengths of the dipoles and in presence of ground plane, asymmetric complex distributions of
RPC present the best tolerance to errors in voltage magnitudes (and more concretely the case
RPC10). This fact is noteworthy due to this type of solutions for the excitation currents set have
just been introduced within this analysis by the pure-real constraint of the initial far field pattern.

6. Extension to Planar Arrays

In order to evaluate the quality of the results previously discussed for generating a
planar array, results regarding the dynamic range ratio of the current excitations presented
by the generated planar array for cases of the extension of Tseng and Cheng with p = 1 and
q = 5, and p = 1, and q = 10 are shown in Table 10. In this sense, the compact methodology
described in Section 2.5.3 is showing its performance for two formal different cases: the first
one with two odd orders and the second with one odd and another even. Only symmetric
current excitation distributions have been introduced in the formalism, due to a limitation
of the proper formulation of Tseng and Cheng, because it considers planar arrays which are
devoted to generating circular and elliptical footprint by means of their symmetries. In fact,
as shown in (10), the considered planar array has quadrantal symmetry.

By analyzing the DRR results reflected in Table 10, we can observe how the CS solution
of the linear array with 12 elements represents the more advantageous solution, while the
RS solutions (in both cases the linear array has 10 and 12 elements) present the higher level
of variability. So, in order to illustrate the performance of this case, a region of the layout of
the planar array (the one with not dismissed elements) is shown in Figure 14, where both
normalized amplitudes and phases are plotted.
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Table 10. Dynamic range ratio (|Imax|/|Imin|) of the current excitation amplitudes of the planar
array generated by means of the generalisation of Tseng and Cheng method. Element currents with
|Imn|/|Imax| > 10−2 (weak excitations) have been deleted.

Baklanov
Parameters

CPC 10 Elem.
CS Solution

RPC 12 Elem.
RS Solution

RPC 12 Elem.
CS Solution

RPC 10 Elem.
RS Solution

p = 1, q = 5 9.74 25.82 5.92 28.10
p = 1, q = 10 8.23 40.67 5.38 16.34
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Figure 14. Detailed view of the layout after deleting the less excited elements |Imn|/|Imax| < 10−2, case of the generalized
Tseng–Cheng method with p = 1 and q = 10 : normalized amplitudes of the excitation currents (left) and current phases in
degrees (right).

Additionally, an interpolated image of the pattern generated by the planar array of
Figure 14 is shown in Figure 15. In this figure also detailed view of the shaped region is
included, to show the performance in the shaped region.
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Sensors 2021, 21, 62 23 of 27

7. Discussion

In this paper, bandwidth studies, tolerance analysis, and a direct extension to planar
arrays by including cases derived from an initial synthesis of a pure real far field power
radiation pattern have been performed. In this manner, by starting from a pure real far field
pattern, a new number of 32M solutions can be added to the synthesis problem. Although
just one of these new solutions (more concretely, the initial one) produces a pattern with a
pure real nature, it certainly not represents a problem for a shaped-beam based on the fact
that the phase is irrelevant for a standalone array. Two types of cases in this framework
have been analyzed: the first one guaranteeing to keep the same number of ripples in the
shaped region and the second one by assuring the same number of elements in the linear
array.

In this manner, the variability of solutions predicted in [15] has been confirmed. As
a result, a precise mathematical description of the aperture distributions which generate
these patterns has been performed. In a parallelism of classical methodologies, a discussion
through the Schelkunoff unit circle representation has been conducted.

Consequently, one can find that if an equispaced liner array of 2N elements producing
symmetric shaped-beam patterns with 2M filled nulls is considered, this array must be
lengthened in 2M elements for producing double offset roots. This solution is, in such a
way, inefficient due to the number of elements required for obtaining a radiation pattern
with the same number of ripples in the shaped region as the complex pattern case. By the
way, one can judge as little the price to pay, especially in case of 2M << 2N, having in mind
that it will produce an alternative multiplicity of solutions to exploit.

Alternatively, an interesting solution to fill this gap has also been performed by forcing
the array to have exactly the same number of elements and, in this manner, to reduce the
number of ripples present in this shaped region to the half. In such a way, the shape would
not be more the same as the complex one (due to the different number of ripples resulting
from both techniques), but the requirement of a certain radiation level in the same region
can be still met. Of course, this solution is linked to a decrease in the number of solutions
that the method can generate in the real case alternative (which would be reduced to
the half as well), but they still represent a group of solutions that have not already been
considered in the development based on the initial complex pattern.

Regarding the application of this procedure, it is worth highlighting that method-
ologies concerned to the multiplicity of solutions of linear array antennas are interesting
in terms of design for space vehicle and/or satellite (mainly geostationary) communi-
cation systems [28] in order to not only improve their radiation characteristics but also
their power consumption (via the improvement of feeding network requirements). In
this framework and in order to provide a uniform radiation over a portion of the surface
of the Earth, a concrete shape of the footprint pattern generated by the radiating system
becomes mandatory. Therefore, a strategy to develop an extension to two-dimensional
antenna arrays is mandatory and to this end, a process based on collapsed distribution
principle represents a good alternative [21] (pp. 243–249). More concretely, for determining
the excitations devoted to obtaining circular and/or elliptical footprints, an alternative
based on the Baklanov transformation [23] and devised by Tseng and Cheng [13,21,29] can
be applied. This technique provides a full control in both the shaped (ripple level) and
the unshaped region (SLL). In this basis, the coefficients for the 3D radiation pattern are
obtained by means of the collapsed distribution of the considered planar array. In this
manner, the performance of the planar case gives an idea about the quality of the solution
for the linear array under analysis. At the same time, it is worth highlighting that, due
to its mathematical development, the technique presents inefficiencies due to the use of
rectangular grid-rectangular boundary planar arrays for generating this kind of patterns.
In this manner, unnecessary corner elements (with almost negligible level of excitation)
appear in the synthesized two-dimensional array. Therefore, a removal of these less excited
elements has adopted in this work, to improve the efficiency of these synthesized planar
arrays (something that represents a minor cost in pattern degradation [14]). Additionally,
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in the present paper, a compact development to directly deal with different orders of the
general extension from Baklanov transformation has been developed. The performance of
this formulation has been tested with different combinations of p− q parameters (odd-odd
and odd-even) and it represents a general formulation no matter if p and/or q are odd
or even.

Another interesting method which also overcomes these limitations and that also can
be exploited in case of much more complicated shapes of the footprint (something out
of the scope of the present paper) is also analyzed in [30]. This alternative is based on
collapsed distributions as well, by applying it to a sequence of crystal planes in order to
meet the requirements of the two dimensional discrete distribution necessary to generate a
certain shape [31,32]. As it is illustrated in [32], the boundary is not necessarily rectangular
and it can be managed in order to uses a more efficient number of elements which improves
the performance.

With regard to a possible discussion on the nature of the far field expression, as it is
shown in Appendix A, just one possible solution could guarantee the generation of a pure
real radiation pattern.

On the other hand, a simple methodology for obtaining resonant linear arrays in
presence and in absence of ground plane has been developed. Convergence for moderate
variations in lengths has been reached by all the cases in presence of ground plane and just
for symmetric distribution on isolated linear array scenarios.

Regarding the quality of the results, the most relevant findings about the inclusion
of the real pattern cases in the bandwidth analysis is that they offer a wider bandwidth
with respect to the complex pattern cases in presence of a ground plane. On the other
hand, although they seem competitive in terms of bandwidth for some active impedance
terms, the distributions from complex far field pattern cases generally present a better
performance in terms of bandwidth.

Furthermore, focusing on the results of the tolerance analysis, it can be concluded
that the introduction of the real pattern case leads an increasing of the tolerance to errors
mainly in the half-wavelength dipoles linear array in absence of a ground plane and also
improves the results in the optimized lengths scenario in presence of a ground plane. More
concretely, CA and RA distributions are responsible of this behavior. In the other two cases,
a better performance of the excitation sets related with the standard complex pattern case
has been reported.

Additionally, a direct relation between both dynamic range ratio and local smoothness
with the maximum ratio of changes in lengths for elements of the resonant linear arrays
can be made. Accordingly, a list of solutions—in the case of both the real and the complex
pattern cases—have been analyzed in a comparative fashion and their advantages and
drawbacks have been discussed.

Furthermore, by facing the problem without doing symmetrical assumptions on the
pattern—as the one made in the first steps of this work, due to simplicity—a cosecant
squared can be chosen as example of non-symmetrical shaped-beam pattern. Particularly,
by applying the basis of this methodology, a multiplicity of solutions also led by a cur-
rent distribution which generates a pure real pattern—certainly asymmetrical—can be
implemented. In this case, even the number of multiple solutions remains the same: 32M.
The basis of the Kim–Elliott procedure, as equal to other developments as the Woodward
technique, allows this. Accordingly, a general axiomatic sentence about the generation
of pure real patterns can be here stated: among all the solutions of the method in the
asymmetric pattern case, just one solution—which is the one would generate the pure real
far field pattern—that presents symmetric amplitude and anti-symmetric phase can be
reached.
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Appendix A. Discussion about the Nature of the Far Field Pattern Expression Led by
the Nature of the Aperture Distribution

In the following lines, an analysis about the impact of the null positioning in the
Schelkunoff unit circle—regarding the solutions implemented in this paper—is presented.

As it has been already introduced in (2), the mathematical expression which represents
the far field pattern of an equispaced linear array left (side of the first equality, in (2)) is
factorized in order to obtain the roots of the polynomial (right side of the first equality
in (2)). Consequently, these roots can be plotted by means of the Schelkunoff unit circle
representation (several examples can be found in Figure 1).

Alternatively, it has been analytically demonstrated that in order to obtain a pure
real contribution to the far field pattern from a combination of two roots which are off
the unit circle, these roots have to be positioned at the same angular position and in a
reciprocal radius (i.e., R and 1/R, where R 6= 1) ([33], Appendix 9.3). More precisely, the
mathematical description which certainly illustrates this statement has been derived in the
Appendix 9.4 of [33]. In this appendix, the expressions of the contributions to the far field
radiation pattern of a couple of complementary roots—at the same angular position—in
the unit circle representation are given.

Consequently, if we analyze the different scenarios obtained by allowing a freedom
of movement of these two roots (without imposing the constraint of generating pure real
contributions to the pattern), three different scenarios have to be considered. According to
the referred literature expression, the far field contribution of a root outside the unit circle
is derived in (13,14) of [33], while that of a root inside is derived in (15,16) of [33]. So, we
can determine analytically the expression of:

Appendix A.1. Coupled Roots in Reciprocal Radius (Pure Real Contribution to the Pattern)

This scenario is represented by a root Rejα and another (1/R)ejα, where R and (1/R)
are the radial distances (outside and inside to the unitary circumference) and α the angular
position of both roots. The corresponding array factor is given by

F1 =
[
ω− Rejα

]
·
[
ω− (1/R)ejα

]
(A1)

where ω = ejψ and ψ = kd cos θ − jα.
Then, introducing the center of the array as the reference for the phases, the array

factor can be expressed as

F1 = ejα
{

ejψ −
(

R +
1
R

)
+ e−jψ

}
. (A2)

So, finally—by expanding the complex exponentials—(A2) turns into

F1 = ejα
{

2 cos ψ−
(

R +
1
R

)}
, (A3)
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which corresponds with a formulation of a pure real far field pattern within a linear phase.

Appendix A.2. Double Root at the Outer Part of the Unit Circle (Complex Contribution to the
Pattern)

This scenario is represented by two roots equal to Rejα such that

F2 =
[
ω− Rejα

]
·
[
ω− Rejα

]
(A4)

Then, analogously to the previous case, by using the center of the array as phase
reference the expression of the far field led by this pair of roots is

F2 = ejα
{

ejψ − 2R + R2e−jψ
}

. (A5)

So, finally it turns equal to

F2 =
ejα

R2

{(
1 + R2

)
cos ψ− 2R + j

(
1− R2

)
sin ψ

}
, (A6)

which represents a complex contribution to the radiation pattern.

Appendix A.3. Double Root at the Inner Part of the Unit Circle (Complex Contribution to the
Pattern)

This last scenario is represented by two roots equal to (1/R)ejα. Therefore, the expres-
sion of the array factor would be

F3 =
[
ω− (1/R)ejα

]
·
[
ω− (1/R)ejα

]
(A7)

Again, setting the center of the array as the reference of the phases

F3 =
ejα

R2

{
R2ejψ − 2R + e−jψ

}
. (A8)

and finally, the expression results as

F3 =
ejα

R2

{(
1 + R2

)
cos ψ− 2R + j

(
R2 − 1

)
sin ψ

}
, (A9)

in which another general complex expression is derived.
Consequently, for the case discussed in the present paper (Figures 1 and 2)—in which

two filled nulls are necessary to produce the far field pattern—nine possibilities with regard
to the different 3× 3 combinations of root arrangements can be derived. Among them,
just one (the one which presents all the pairs of roots coupled in reciprocal radius 2 by 2)
generates a pure real far field pattern.
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