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Abstract

We propose a new model to detect the overlapping communities of a network that is based

on cooperative games and mathematical programming. More specifically, communities are

defined as stable coalitions of a weighted graph community game and they are revealed as

the optimal solution of a mixed-integer linear programming problem. Exact optimal solutions

are obtained for small and medium sized instances and it is shown that they provide useful

information about the network structure, improving on previous contributions. Next, a heuris-

tic algorithm is developed to solve the largest instances and used to compare two variations

of the objective function.

Introduction

The community detection problem consists in partitioning the node set of a network, or a

graph, in such a way that node subsets can be substantially interpreted as communities. The

methods that are proposed in the literature so far differ on two main aspects: the first is how

community is translated into mathematics terms, the second is how an algorithm is imple-

mented to outcome communities. To make an example, the classic contribution of [1] defines

as a community the group of nodes with an arc density greater than what expected by nodes

random pairing, then it proposes a method to find communities based on spectral decomposi-

tion. It is beyond our possibility to mention all contributions and developments that followed

that seminal paper, see [2] for a comprehensive survey, but we just focus on the two most

important lines of research that motivate our contribution. The first innovation recognizes

that in some cases it is too restrictive to impose a strict nodes partition, as some node may real-

istically belongs to more than one community. So, communities can overlap and the solution

structure is a node assignment to communities rather than a strict partition. A seminal contri-

bution about overlapping communities can be found in [3] and a summary about first findings

can be found in [4]. The second innovation is to formulate community detection as optimiza-

tion problems, with a clearly stated objective function and well defined constraints. For exam-

ple, in [5], the modularity model is developed into quadratic integer programming,

corresponding to the well-known maximum clique partitioning. Other contributions can be

found in [6–8].
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The objective function is merely a simple statistic that evaluates partitions or node assign-

ments. As such, it can be used to compare alternative community structures and to decide

what is the most meaningful. One of the most popular statistic is modularity, see [1]. Modular-

ity is an index that, for a given partition, compares the arc density of a subset with the one that

is obtained on the assumption of node random pairings. The highest the modularity, the most

connected are the nodes within a community, allowing a clear substantial definition of what is

a community. The extension of the modularity to the case of overlapping communities has

been proposed in [9], using fuzzy membership functions that are optimized using the fuzzy-c-
means algorithm. This method has been elaborated further in [10–13], where the standard

modularity function is modified by node or arc weights, representing node affinity, fuzzy

memberships, or other. An alternative version of the objective function proposed in [9] is pre-

sented in [14], fixing some biases of the original one. In [7], it is proposed to maximize the

modularity function, but with some additional constraints that allow some nodes to belong to

more than one community. These nodes are referred to as bridges.
In [15], communities are defined as stable coalitions of a cooperative game. In a cooperative

game, a coalition is stable if every member does not take any advantage in leaving the coalition

to obtain a better payoff elsewhere, so a community is based on the concept of a common

interest. There is a large room to define this common interest through any game characteristic

function, such as market, voting, matching games, and so on. To just consider the topological

network properties, such as the arc density and the node common neighbors, in [15] a

weighted graph community game is proposed, with arc weights defined on some peculiar

topological indicators. Next, an objective function is proposed to discern between alternative

community structures and a constructive heuristic is implemented to find them.

In our contribution, we formulate the problem of finding communities as stable coalitions

proposed in [15], as a mixed-integer linear programming problem. In this way, taking advan-

tage of existing software, we can calculate the optimal communities of that model without

resorting to any heuristic consideration. As a result, we can evaluate the optimal solutions of

that model without the biases due to the use of the heuristic. Indeed, we found that the com-

munities proposed in [15] are far from the optimal ones and, unfortunately, optimal ones are

inconsistent too, in the sense that they do not correspond to what empirically one expects to

find out. As it will be discussed, we argue that the reason of the inconsistency is on how costs

of the weighted graph community game are defined and therefore we proposed a correction to

them. Our correction follows the spirit of the modularity function, [1], in which an actual

value of a statistic is compared to an expected value in absence of any community structure.

We will show that our correction is reliable and effective as, after many computational tests,

we showed that our method can recognize the hidden community structure of the networks.

As a by-product of our contribution, we note that our cost definition relies on the calculation

of the expected value of some network statistics on the assumption that no community is

embedded in the network. To have an accurate cost estimate, we elaborated a new theorem to

calculate the exact value of these statistics and it is worth to note that this theorem may have an

autonomous interest for other applications in which some exact probabilities can be applied,

as the same seminal paper [1].

To summarize, the contributions of our paper are the following:

1. We provide a mathematical formulation of the method proposed by [15] to detect the over-

lapping communities of a network.

2. We show that the communities obtained with this methodology are not the real communi-

ties embedded in the network, but we proposed an amendment to the game cost function

that correct the bias.
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3. We propose a heuristic algorithm that can calculate the optimal communities when the

exact method fails because of the network size.

4. We apply our new mathematical model to real and artificial test problems and we show its

effectiveness and reliability.

The paper is organized in 4 sections. In the Introduction, we motivate the paper purpose

and summarize its contribution. In Material and methods Section, we formally introduce the

overlapping community detection problem and the methods proposed by [15]. There, we

design the exact optimization model and observe the finding of inconsistent communities. In

Subsection called Detecting overlapping communities as stable coalitions of a cooperative

game, we propose an alternative definition of the costs of the weighted graph community

game that leads to a different objective function of the optimization model. In Local Stability

Exploration Subsection, we present a heuristic algorithm for solving our model for the cases in

which the network size is too large to compute the exact solution in a reasonable amount of

time. In Results and discussion Section, we compare the exact and heuristic algorithm and

then we report some computational results of a controlled experiment on graphs generated

according the method proposed in [16] and we show that our method recovers correctly the

community structure. The paper ends with some concluding remarks and outlines for future

research in the final section, namely Conclusion.

Material and methods

Detecting overlapping communities as stable coalitions of a cooperative

game

In [15], a cooperative game on a weighted graph is defined to characterize overlapping com-

munities. The nodes of a graph are considered as the players of a network game, and then the

Shapley value is used to characterize stable coalitions, e.g. subsets of nodes in which no player

has any incentive to leave. Specifically, the cooperative game (V, φ) is defined on the weighted

graph G = (V, E), with V = {1, . . ., n}, e.g. players are nodes labeled from 1 to n, weights

Wij(� 0) are defined for any edge (i, j) 2 E, then the game characteristic function is:

φðSÞ ¼
X

i; j 2 S
i < j

Wij; for S � V :
ð1Þ

That is, the value of coalition S is the weights sum of the edges of the subgraph induced by

S. The model has been called Weighted Graph Community (WGC) Game in the aforemen-

tioned paper.

When a coalition S� V is going to form, then the members i 2 S can calculate the gain that

they can get from it, e.g. what is their share of the payoff φ(S) that they can receive. A standard

result of cooperative games is that the share that they can get is the Shapley value of the game

restricted to S: For player i and coalition S, i 2 S, the Shapley value is:

φiðSÞ ¼
1

2

X

j 2 S
j 6¼ i

Wij:

Hence, the profit of player i from coalition S depends on the total weight of its connection

with the other members of S.
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In [15], a coalition is defined stable if no member of S takes advantage from swinging from

coalition S to coalition V \ S. In mathematical terms it occurs if and only if:

φiðSÞ � φiððV n SÞ [ figÞ; 8i 2 S: ð2Þ

Actually, there are different definition of stable coalitions that can be found in the literature:

Stable coalition structures are defined in [17, 18], while in [19, 20], condition (2) is called the

internal stability property. Moreover, in the latter notion of stability, an additional property is

imposed requiring that a coalition S is stable if no member of S takes advantage from swinging

from S to any other subset S0 contained in V \ S. This can be formalized as:

φiðSÞ � φiðS
0 [ figÞ; 8i 2 S; 8S0 � V n S: ð3Þ

However, we are not developing this issue further and we will remain with definition (2).

Formulating a WGC game allows a formal definition of what are the feasible overlapping

communities of a network: As a node can belong to more than one stable coalition, communi-

ties can overlap. However, a crucial feature of the model is the way in which weights Wij are

defined. In [15], the following formula is proposed: Let ki be the adjacency degree of node i
(e.g. the number of nodes to which i is connected through an arc), let Pij ¼

1

ki
þ 1

kj
be defined as

the partition ratio and let CNij = (|common neighbors of i and j| + 1)Pij be defined as the neigh-
bourhood ratio of i, j 2 V, then the weight of the arc (i, j), i 6¼ j is

Wij ¼

CNij � Pij
4

; if ki � 1; kj � 1 and ði; jÞ=2E;

Pij; if ki ¼ 1 or kj ¼ 1 and; ði; jÞ 2 E;

2CNij þ Pij; if ki > 1 and kj > 1; and ði; jÞ 2 E;

0; otherwise:

8
>>>>>>><

>>>>>>>:

ð4Þ

The formula was proposed in [15] to consider the node similarity as dependent on both the

direct and indirect links between i and j. It is straightforward to observe that Wij� 0, but this

property has important consequences on the structure of the stable coalitions, as it will be dis-

cussed later. For the moment, we focus in the methodology to find all the stable coalitions of a

networks. While in [15] a constructive method is proposed, that is, an heuristic technique with

some ad-hoc adjustment to find stable coalitions, here we propose a mathematical program-

ming approach in which all considerations about stability discussed in [15] are translated into

an objective function and mathematical constraints. We will show that stable coalitions can be

represented by linear constraints involving binary variables and then, using an appropriate

objective function, stable coalitions can be determined by linear programming.

Let nc be the maximum number of communities to which a node can belong to (this is not

a binding constraint to the model, since nc can be large enough to include all the feasible stable

communities). For i = 1, . . ., n and k = 1, . . ., nc, the model variables are:

xik ¼

1; if node i belongs to community=coalition Sk;

0; otherwise:

8
>>><

>>>:
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For any i, j = 1, . . ., n such that i< j and k = 1, . . ., nc:

zijk ¼

1; if nodes i and j both belongs to community=coalition Sk;

0; otherwise:

8
>>><

>>>:

The relationship between x- and z-variables is given by the logical/quadratic constraints

zijk = xikxjk for all i, j 2 V, i< j and all k = 1, . . ., nc. Then, the quadratic constraint can be

replaced by the linear constraints:

zijk � xik; 8i; j ¼ 1; . . . ; n; i < j; k ¼ 1; . . . ; nc; ð5Þ

zijk � xjk; 8i; j ¼ 1; . . . ; n; i < j; k ¼ 1; . . . ; nc; ð6Þ

xik þ xjk � zijk � 1; 8i; j ¼ 1; . . . ; n; i < j: k ¼ 1; . . . ; nc: ð7Þ

Next, using binary x-variables, the stability condition (2) can be characterized by linear con-

straints too. First, for fixed i and k, consider the quadratic inequality:

xik

Xn

j ¼ 1

j 6¼ i

xjkWij �
Xn

j ¼ 1

j 6¼ i

1 � xjk

� �
Wij

0

B
B
@

1

C
C
A � 0:

If xik = 1, then i belongs to coalition Sk, so that Sk must be stable. For the stability, i-player’s

Shapley value from coalition Sk must be greater than its Shapley value from the opposite coali-

tion (V \ Sk) [ {i}. The term
P

j ¼ 1

j 6¼ i
xjkWij is the Shapley value of coalition Sk, as all j’s such that

xjk = 1 are all the other players of coalition Sk. Conversely, all other j’s such that (1 − xjk) = 1

are the players excluded from Sk. Consequently,
Pn

j¼1
ð1 � xjkÞWij is the Shapley value of the

opposite coalition, (V \ Sk) [ {i}. Finally, their difference must be greater than or equal to 0 for

Sk to be stable. Next, the above quadratic inequality can be simplified to the following linear

one:

Xn

j ¼ 1

j 6¼ i

xjkWij �

Pn
j ¼ 1

j 6¼ i
Wijxik

2
; 8i ¼ 1; . . . ; n; k ¼ 1; . . . ; nc: ð8Þ

Next, it must be imposed that overlapping coalitions/communities must have non-empty

difference, e.g. the same coalition is not selected more than once (a coalition must not be con-

tained in a different one). To prevent inclusion, additional variables h are introduced for i = 1,

. . ., n and pairs k, r such that 1� k< r� nc:

hikr ¼

1; if i belongs to community Sr and not to community Sk;

0; otherwise:

8
>>><

>>>:
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The relation between x- and h-variables is given by the quadratic constraint: hikr = xir(1 −
xik), that can be replaced by three linear constraints as done for z-variables in expressions (5)–

(7).

To prevent the inclusion of Sr in Sk, it must be that:

Xn

j¼1

hjkr � xir; 8 1 � k < r � nc; 8 i ¼ 1; . . . ; n: ð9Þ

The constraint is binding when xir = 1. In that case, coalition Sr must contain at least one

element j that is contained in Sr but not in Sk, guaranteeing that Sr⊄ Sk.
To conclude, we introduce inequalities to avoid symmetrical solutions too. Symmetric solu-

tions decrease the efficiency of the Integer Linear Programming solver, as the same structural

solution can be obtained by multiple assignments to variables x, z, h, simply giving different

labels to coalitions. Note that constraints (9) avoid to replicate the same coalition, so that it is

sufficient that, after ranking the communities from the largest to the smallest, they are assigned

to decreasing labels k. The following constraints do the task:

Xn

i¼1

xik �
Xn

i¼1

xi;kþ1; 8k ¼ 1; . . . ; nc � 1: ð10Þ

Every stable coalition corresponds to a point of the polytope described by the equations and

inequalities described so far. To determine what are the most meaningful overlapping commu-

nities, in the objective function it is used the nodes Shapley value. If a coalition Sk is estab-

lished, then player i’s Shapley value from coalition Sk is:
Pn

j¼1
zijkWij. Therefore, for a set of

overlapping communities Sk, k = 1, . . ., nc, the total Shapley value of a player i is the sum of the

values it gets from every coalition, that is:

Xnc

k¼1

Xn

j¼1

zijkWij: ð11Þ

In [15], the most important overlapping coalitions are determined by maximizing the sum

of the Shapley values of all nodes. Therefore, this index will be used as the objective function of

the following integer programming formulation:

ðFSh� JKÞmax
Xnc

k¼1

Xn� 1

i¼1

Xn

j¼iþ1

zijkWij ð12Þ

s.t.: (5)–(10),

Xnc

k¼1

xik � 1; 8 i ¼ 1; . . . ; n; ð13Þ

hikr � 1 � xik; 8 i ¼ 1; . . . ; n; k; r ¼ 1; . . . ; nc; k < r; ð14Þ

hikr � xir; 8 i ¼ 1; . . . ; n; k; r ¼ 1; . . . ; nc; k < r; ð15Þ
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xir � xik � hikr � 0; 8 i ¼ 1; . . . ; n; k; r ¼ 1; . . . ; nc; k < r; ð16Þ

xik 2 f0; 1g; 8 i ¼ 1; . . . ; n; k ¼ 1; . . . ; nc; ð17Þ

zijk 2 ½0; 1�; 8 i; j ¼ 1; . . . ; n; i 6¼ j; k ¼ 1; . . . ; nc; ð18Þ

hikr 2 ½0; 1�; 8i ¼ 1; . . . ; n; k; r ¼ 1; . . . ; nc; k < r: ð19Þ

The objective function (12) represents the sum of the Shapley values for all nodes and com-

munities. Constraints (13) guarantee that every node belongs to at least one community. Con-

straints (14)–(16) are the linear representations of the h-variables. Finally, constraints (17)

define binary variables. Note that in (18) and (19), we can relax the z− and h−variables to be

continuous, since the constraints on the x-variables force both to be binary.

FSh−JK is the exact Integer Programming formulation of the model proposed in [15]. How-

ever, in that seminal paper the overlapping communities were computed through a heuristic

constructive procedure, in which the search for optimal solutions is combined with various

ad-hoc adjustments to induce sufficient diversification of coalitions. The advantage of Integer

Programming is that the output coalitions of FSh−JK are exactly the optimal ones, without any

bias due to constructive rule-of-thumb procedures. As we will see, this allows us to point out a

drawback of the game definition and to suggest a method to adjust it.

We apply formulation FSh−JK, to the Zachary’s karate club network, fixing nc = 3. Optimal

overlapping communities can be seen in Fig 1. As can be seen, selected communities are the

grand coalition (all the nodes belong to the same coalition) except one node. That is, commu-

nities are subsets S such as |S| = n − 1, in which the discarded node is the one with less connec-

tions. It is hard to believe that those sets are of some interest to researchers, as they are far

from the communities that were often identified in the Zachary’s network. The same occurs

Fig 1. Zachary’s karate club structure obtained by FSh−Jk with nc = 3. (a) Community 1, (b) Community 2, (c)

Community 3.

https://doi.org/10.1371/journal.pone.0283857.g001
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with all the other problems we tested: Overlapping communities are the grand coalition except

one node. The reason of this disappointing result is not the solution method, e.g. exact vs heu-

ristic, or the community definition, e.g. using cooperative games and the Shapley value. Rather,

the reason is the way in which weights W are formulated in (4). As recognized in [15], if Wij�

0 for all i, j, then the cooperative game (V, φ) is convex, that is for two coalitions S, T such that

S� T and i =2 T, it always occurs that:

φðT [ figÞ � φðTÞ � φðS [ figÞ � φðSÞ:

This property establishes that the marginal gain player i gets from joining a coalition is

always greater when the coalition is larger. Therefore the Shapley values are always the greatest

for the largest coalitions and that is why the method proposed is always doomed to mistake the

largest subsets as communities. As we have pointed, the weakness is not on using cooperative

games to define stable coalitions, but on using convex cooperative games. In this section, we

will provide a simple and effective way to adjust this weakness. Our proposal is based on deter-

mining stability using a non-convex cooperative game.

The computation of the expected weight on an arc. As we discussed in the previous sec-

tion, weighted graph community games in which arc weights Wij� 0 are convex games, so

that they imply increasing values of the Shapley values and the tendency of detecting only large

size communities. A straightforward way of avoiding convexity is considering an alternative

set of weights, non necessarily non-negative, so that optimal stable coalitions of small size may

emerge as well. Here, we propose to combine the weights defined by (4) with modularity, so

that weights are normalized by their expected values and may take both negative and positive

values. As a consequence, the resulting game is non-convex.

The modularity function, see [1], is a well-known index to detect communities in networks.

The index compares the edge density of the empirical graph G = (V, E) (unweighted and undi-

rected), |E| = m, with the expected edge density of a theoretical graph G0 = (V, E0) in which

there are no communities by assumption. The expected edge density of G0 is calculated using a

null hypothesis, e.g. an assumption about the edge distribution, that is called the configuration
model, [21]. If the graph does not contain communities, then for any given two nodes i and j
with edge degrees ki and kj, the expected number of edges between i and j is approximated by
kikj
2m . Let Aij = 1 if (i, j) 2 E, Aij = 0 otherwise (so that A = [Aij] is the adjacency matrix of G).

Moreover, let P be a partition of V and let δ(i, j) be the Kronecker delta: δ(i, j) = 1 if i, j 2 V
belong to the same community, δ(i, j) = 0 otherwise. Then the modularity function of a parti-

tion P is:

mðPÞ ¼
1

2m

X

i;j2V

Aij �
kikj

2m

� �

dði; jÞ: ð20Þ

In the case under study, weights are defined through expression (4), in which the adjacency

between nodes i and j is weighted by the common neighbors. However, modularity can be

defined for weighted graphs as well. In the summation terms Aij �
kikj
2m

� �
, entries Aij are

replaced by weights Wij, ki replaced by weight sum Wi = ∑jWij, and m replaced by W = ∑(i,j)2E

Wij, as described in [22]. In this way, modularity is still a function that compares the actual

indices of an empiric graph with the expected indices of a random graph. Using modularity,

we can define modularity game (V, φ) as a weighted graph community game in which the
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characteristic function φ is defined as in (1), but with the following weights:

W 0
ij ¼Wij �

WiWj

2W
: ð21Þ

In this case, W 0
ij can take both positive and negative values, so that the game resulting from

the characteristic function (1) is non-convex.

We elaborate this model further, by noting that the modular term (21) should represent the

difference between the empiric value Wij and its expected value under the assumption that the

graph does not contain any communities. Unfortunately, the term
WiWj
2W is only an approxima-

tion of the true expectation and this can cause unexpected biases. For example, when weights

Wij correspond to the adjacency matrix Aij 2 {0, 1}, the term
kikj
2m is an estimate of the probability

of an arc between i and j, but, if the graph is unbalanced, the term can be greater than 1, which

results in a non-sense estimation of this probability. In our application, expression (4) contains

specific terms about the graph structure, such as the arcs and the common neighbours between

two nodes, and potentially the bias between the true expectation and its approximation can be

large. For this reason, we made a special effort in calculating the exact equation of the expected

values of expression (4) under the assumption that there are no community in the graph.

In [21], the random occurrence of a graph with no communities is calculated through the

configuration model. The configuration model can be interpreted as the process of making a

random graph with no communities through the following operations. Every arc e = (i, j) of

the empirical graph G = (V, E) is cut into two parts, say l1 and l2, with l1 incident to i and l2
incident to j, called stubs. Next, two different stubs are selected randomly and paired. We say

that, if l1 and l2 are such stubs, then (l1, l2) is a match, e.g. an arc of the random graph G0 = (V,

E0). The way in which G0 is built implies that the adjacency degree ki remains unvaried for all i,
but eventual communities are broken by random pairings of stubs. Note that, from construc-

tion, we can interpret any occurrence of G0 as a matching of 2m stubs. The process is exempli-

fied in Fig 2.

Here we show how to compute exactly the expected values of expression (4) using the con-

figuration model. Expected weights depend on the the partition ratio Pij and the neighbour-

hood ratio CNij of the random graphs obtained from the configuration model. By

construction, the partition ratio Pij of the random graph is the same as the one of the empiric

graph, but the neighbourhood ratio CNij is different.

To calculate CNij, we introduce some notation. Recall that ki is the adjacency degree of

node i and assume that the graph has m edges. Let Padjacency(ki, kj, m) be the probability that

node i and j are connected by an arc, let Pcommon neighbour(ki, kj, kr, m) be the probability that i
and j are arc connected with r, so thar r is a common neighbor, and let Ptriangle(ki, kj, kr, m) be

the probability that i and j are arc connected and are also connected with r, so that the three

Fig 2. Configuration model example.

https://doi.org/10.1371/journal.pone.0283857.g002
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arcs form a triangle. The notation emphasizes that probabilities depend on adjacency degrees

ki, kj, kr and the total number of edges m. In the following proposition, we will derive closed

form expressions for the above probabilities.

Proposition 1. Let i, j, r be three nodes with adjacency degrees ki, kj, kr, respectively. Then, in
the random graph configuration model

Padjacencyðki; kj;mÞ ¼
Xminfki;kjg

t¼1

ð� 1Þ
tþ1

ki
t

� �
kj
t

� �

t!
Qt

p¼1
ð2mþ 1 � 2pÞ

; ð22Þ

Pcommon neighbourðki; kj; kr;mÞ ¼
Xminfkj ;kr � 1g

t¼1

ð� 1Þ
tþ1Padjacencyðki; kr � t;m � tÞ

kr
t

� �
kj
t

� �

t!
Qt

p¼1
ð2mþ 1 � 2pÞ

; ð23Þ

Ptriangleðki; kj; kr;mÞ ¼
Xminfki � 1;kj � 1g

t¼1

ð� 1Þ
tþ1Pcommon neighbourðki � t; kj � t; kr;m � tÞ

ki
t

� �
kj
t

� �

t!
Qt

p¼1
ð2mþ 1 � 2pÞ

: ð24Þ

Proof. Applying the configuration model to G = (V, E), we obtain two stubs l1 and l2, adja-

cent to i and j, respectively, for every arc e(i, j) 2 E. Then, we select two stubs at random and

pair them until a random graph G0 is obtained. Note that, from construction, we can interpret

any occurrence of G0 as a matching of 2m stubs.

Given i, j 2 V, let Si = {li(1), . . ., li(ki)} be the set of stubs adjacent to i and Sj = {lj(1), . . ., lj(kj)}
be the set of stubs adjacent to j. Assuming a set of 2m elements, there are

ð2mÞ!
2mm!
¼
Qm

p¼1
ð2mþ

1 � 2pÞ different matching, see [23]. Therefore, if two stubs l1 2 Si and l2 2 Sj are matched,

there are
Qm� 1

p¼1
ð2m � 1 � 2pÞ different matching with the stubs remaining, because there are

still 2m − 2 stubs to pair. Due to this, the probability that two stubs l1 and l2 are joined, con-

necting nodes i and j, is:

Qm� 1

p¼1
ð2m � 1 � 2pÞ

Qm
p¼1
ð2mþ 1 � 2pÞ

¼
1

2m � 1
: ð25Þ

Next, we introduce random variables:

Xl1 l2
¼

1; if the stubs l1 and l2 are matched;

0; otherwise:

8
>>><

>>>:

Obviously, the probability of Xl1 l2
¼ 1 is PðXl1 l2

¼ 1Þ ¼ 1

2m� 1
, as stated in (25). We can

express the number of edges between two nodes i and j as the sum:

X

l12Si

X

l22Sj

Xl1l2
:

The above expression represents the sum of the variables Xl1l2
whose indices are one stub

adjacent to i and another stub adjacent to j. Thus, the expected number of edges between i and
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j is:

X

l12Si

X

l22Sj

E½Xl1 l2
� ¼

X

l12Si

X

l22Sj

PðXl1 l2
¼ 1Þ ¼

kikj

2m � 1
:

Note that in the modularity function (20), this value is approximated by
kikj
2m .

As we explain before, the expected number of edges is different to the probability of adja-

cency. The adjacency between two nodes i and j is the condition that there is at least one arc

between i and j and it can be expressed as the union of the events fo : Xl1l2
ðoÞ ¼ 1g with l1 2

Si and l2 2 Sj, for the sake of simplicity, we refer to this set of events as fXl1 l2
¼ 1g. So, the adja-

cency probability of two nodes i and j is:

P
�
[

l1 2 Si
l2 2 Sj

Xl1 l2
¼ 1

n o�

: ð26Þ

Let St
ij be the set of all the different subsets of Si × Sj with size jSt

ijj ¼ t. Applying the inclu-

sion-exclusion law for the probability of union of events to expression (26), it follows that:

P
�
[

l1 2 Si

l2 2 Sj

fXl1 l2
¼ 1g

�

¼
Xkikj

t¼1

ð� 1Þ
tþ1
X

S2Stij

P
�
\

ðl1 ;l2Þ2S

fXl1 l2
¼ 1g

�

: ð27Þ

By construction of the random graph G0, observe that the intersection of t different sets

fXl1 l2
¼ 1g, representing the match between stubs l1 and l2, is empty if the same stub, l1 or l2, is

repeated more than once in different matches. Therefore, for each t, the non empty sets
T
ðl1 ;l2Þ2S

fXl1 l2
¼ 1g that appears in (27) are matching with t matches. As a consequence, the

summation on t is bounded to min{ki, kj}, because the intersection of more than min{ki, kj} dif-

ferent sets must repeat some stubs and so, its intersection is empty. Moreover, applying the

same argument to calculate the probability of joining two stubs (25), the probability of joining

t stubs from Si with other t stubs from Sj is:

Qm� t
p¼1
ð2mþ 1 � 2t � 2pÞ

Qm
p¼1
ð2mþ 1 � 2pÞ

¼
1

Qt
p¼1
ð2mþ 1 � 2pÞ

:

Finally, to derive expected vales, we need to calculate the number of different subsets from

Si × Sj with a size equal to t that do not repeat any stubs. We have to consider t stubs from Si
and t from Sj, and then all the possible matchings between stubs of different sets. There are

ki
t

� �

different subsets of t stubs from Si and
kj
t

� �
different subsets of t stubs from Sj. We can match

the t stubs of one set with the other t stubs of the other set in t! different ways, obtaining the

following expression for the probability of events ensuring that node i and j are connected, in
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short, fi and j are connectedg:

Pðfi and j are connectedgÞ ¼ P
�
[

l1 2 Si

l2 2 Sj

fXl1 l2
¼ 1g

�

¼

¼
Xminfki;kjg

t¼1

ð� 1Þ
tþ1 ð

ki
t Þð

kj
t Þ!Qt

p¼1
ð2mþ 1 � 2pÞ

:

ð28Þ

This is the expression in (22) for Padjacency(ki, kj, m).

Now, we use (28) and the previous arguments to obtain the probability that i and j are con-

nected with a different node r, namely Pcommon neighbour(ki, kj, kr, m), i.e., we compute the prob-

ability of the intersection of the event nodes i and r are connected with the event nodes j and r
are connected, in short, fi and r connectedg \ fj and r connectedg:

Pðfi and r connectedg \ fj and r connectedgÞ ¼ P
�
fi and r connectedg \

[

l1 2 Si

l2 2 Sj

fXl1 l2
¼ 1g

�

¼
Xminfkj;kr � 1g

t¼1

ð� 1Þ
tþ1
X

S2Stjr

P
�
fi and r connectedg \

\

ðl1 ;l2Þ2S

fXl1 l2
¼ 1g

�

¼
Xminfkj;kr � 1g

t¼1

ð� 1Þ
tþ1
X

S2Stjr

P
�
fi and r connectedg

�
�
�
\

ðl1 ;l2Þ2S

fXl1 l2
¼ 1g

�
P
� \

ðl1 ;l2Þ2S

fXl1 l2
¼ 1g

�

¼
Xminfkj;kr � 1g

t¼1

ð� 1Þ
tþ1Padjacencyðki; kr � t;m � tÞ

ð
kr
t Þð

kj
t Þt!Qt

p¼1
ð2mþ 1 � 2pÞ

:

ð29Þ

Finally, developing as before, the probability of three nodes i, j and r to be connected each

other, namely Ptriangle(ki, kj, kr, m) is:

P
�
fi and r connectedg \ fj and r connectedg \ fi and j connectedg

�

¼
Xminfki � 1;kj � 1g

t¼1

ð� 1Þ
tþ1Pcommon neighbourðki � t; kj � t; kr;m � tÞ

ð
ki
t Þð

kj
t Þt!Qt

p¼1
ð2mþ 1 � 2pÞ

:

ð30Þ

The above probabilities are necessary to determine the exact value of the expected weight E
[Wij], when weights are defined as in formula (4) and the graph is obtained by the configura-

tion model.

Define the following random variables:

Yij ¼
1; if nodes i and j are connected;

0; otherwise;
8i; j 2 V:

(

Theorem 1. Assume that weights between nodes i and j are defined as in (4), then the
expected weight E[Wij] between nodes i and j of the the random graph configuration model is
given by the following expressions:
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1. If ki = 1 or kj = 1,

E½Wij� ¼
Pij

P
r2Vnfi;jgPcommon neighborðki; kj; kr;mÞ

4
þ PijPadjacentðki; kj;mÞ: ð31Þ

2. If ki> 1 and kj> 1,

E½Wij� ¼
Pij

4

X

r2Vnfi;jg

ðPcommon neighbourðki; kj; kr;mÞ � Ptriangleðki; kj; kr;mÞÞ

þ2Pij

X

r2Vnfi;jg

Ptriangleðki; kj; kr;mÞ þ 3PijPadjacencyðki; kj;mÞ;
ð32Þ

Proof. We can express the weights (4) depending on the cases as follows.

If ki = 1 or kj = 1:

Wij ¼ ð1 � YijÞ
CNij � Pij

4

� �

þ YijPij ¼ ð1 � YijÞ
Pij

P
r2Vnfi;jgYirYjr

4

� �

þ YijPij

Observe that if the term ∑r2V\{i,j} YirYjr = 0 then since the adjacency degree of i or j is one, i
and j must be connected and therefore Yij = 1. Thus, the expression above results in YijPij. Oth-

erwise, if ∑r2V\{i,j} YirYjr 6¼ 0 again since the adjacency degree of i or j is one, Yij = 0 and the

expression above simplifies to
Pij
P

r2Vnfi;jg
YirYjr

4
. Hence, we obtain that

Wij ¼
Pij

P
r2Vnfi;jgYirYjr

4

� �

þ YijPij:

Next, we compute the expected values of the previous expression:

E½Wij� ¼
Pij

P
r2Vnfi;jgE½YirYjr�

4

� �

þ PijE½Yij�

¼
Pij

P
r2Vnfi;jgPðfi and r connectedg \ fj and r connectedgÞ

4

� �

þ PijPðfi and j connectedgÞ;

ð33Þ

and the result follows because the expression above coincides with (31).

If ki > 1 and kj > 1:

Wij ¼ ð1 � YijÞ
CNij � Pij

4

� �

þ Yijð2CNij þ PijÞ

¼ ð1 � YijÞ
Pij

P
r2Vnfi;jgYirYjr

4

� �

þ Yij 2Pij

X

r2Vnfi;jg

YirYjr þ 1

 !

þ Pij

 !

:
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Then, the expected value of the expression above is:

E½Wij� ¼
Pij

P
r2Vnfi;jgE½ð1 � YijÞYirYjr�

4
þ 2Pij

X

r2Vnfi;jg

E½YijYirYjr� þ 3PijE½Yij�

¼
Pij

4

X

r2Vnfi;jg

�
Pðfi and r connected \ fj and r connectedgÞ

� Pðfi and r connectedg \ fj and r connectedg \ fi and j connectedgÞ
�

þ2Pij

X

r2Vnfi;jg

Pðfi and r connectedg \ fj and r connectedg \ fi and j connectedgÞ

þ3PijPðfi and j connectedgÞ:

ð34Þ

Now, we observe that

Pði and j connectedÞ ¼ Padjacencyðki; kj;mÞ

Pði and r connected; j and r connectedÞ ¼ Pcommon neighbourðki; kj; kr;mÞ

Pði and r connected; j and r connected; i and j connectedÞÞ ¼ Ptriangleðki; kj; kr;mÞ

Finally, substituting the probabilities that appear in (33) and (34) with the expressions in

(22), (23) and (24), one obtains the result.

New models for detecting communities using weighted graph modularity games. In

the previous section, we show that the optimal solution of the analyzed instances provided by

formulation FSh−JK was the grand coalition except one node. Since, this type of solutions are

meaningless for detecting overlapping communities, in this section, we provide an alternative

model taking advantage of Theorem 1. Actually, we propose to define another modularity

game (N, φ), in which the characteristic function φ is as in (1), but weights are defined as:

W∗
ij ¼Wij � We

ij; ð35Þ

where We
ij ¼ EðWijÞ. Observe that, the game is non-convex as W∗

ij can take both positive and

negative values.

To calculate the overlapping communities through the coalition stability of a modularity

game, the objective function of formulation FSh−JK must be modified according to Eq (35).

Moreover, to avoid double counting (induced by pair of nodes that belongs to the same com-

munity in the new objective function), for any 1� i< j� n the next binary variables are intro-

duced:

yij ¼

1; if nodes i and j belong; at least once; to a common community;

0; otherwise:

8
>>><

>>>:

Observe that if we would have used y-variables in model FSh−JK, the same solution would

have been obtained because all the weights are positive and again the grand coalition would

have been the optimal solution.
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The final formulation of this model is:

ðF∗Sh� ModÞmax
Xn

i; j ¼ 1

i < j

W∗
ijyij ð36Þ

s.t.: (5)–(7), (10), (13), (17), (18)

Xn

j ¼ 1

j 6¼ i

W∗
ijxjk � xik

Pn
j ¼ 1

j 6¼ i
W∗

ij

2
þ 1 � xikð Þ

Xn

j ¼ 1

j 6¼ i
W∗

ij < 0

W∗
ij; 8i ¼ 1; . . . ; n; k ¼ 1; . . . ; nc; ð37Þ

Xnc

k¼1

xik � p; 8i ¼ 1; . . . ; n; ð38Þ

yij � xik þ xjk � 1; 8i; j ¼ 1; . . . ; n; i < j; k ¼ 1; . . . ; nc; ð39Þ

yij �
Xnc

k¼1

zijk; 8i; j ¼ 1; . . . ; n; i < j; ð40Þ

yij 2 ½0; 1�; 8i; j ¼ 1; . . . ; n; i < j: ð41Þ

The objective function (36) sums the weights between nodes of the same community only

once. In this way, it cannot be the case that a community is a proper subset of another, because

its profit would be null. Then, constraints (9), (14), (15), (16) and (19) that were discussed pre-

viously are not necessary. With (37) we guarantee that communities are stable for the new

weights W*. If xik = 1, then (37) is equivalent to (8). Constraints (38) impose that each node

cannot belong to more than p different communities, with p a fixed parameter established by

the user. Constraints (39) and (40) impose that yij = 1 if and only if there is a community k to

which i and j belong to. Finally, constraints (41) defines our variables as binary, but, from the

arithmetic of the model, we can relax them as continuous variables (yij 2 [0, 1]) because in any

case they can take only 0,1 values. The notation F∗Sh� Mod stands for the fact that the condition of

stability is determined by the Shapley value of a modularity game with weights W∗
ij. In some

experimental cases, it is interesting to compare the contribution of Theorem 1 over the

approximations W 0
ij, see (21), and therefore, we will refer as F0Sh� Mod to the model in which W∗

ij

are replaced by W 0
ij.

The following experiments will highlight differences between models F∗Sh� Mod and F0Sh� Mod,

and differences between overlapping and non-overlapping communities models. The experi-

ments are run in the Python environment and using the Gurobi solver.

In the first two examples we will show that models F∗Sh� Mod, e.g. the exact model, and models

F0Sh� Mod, e.g. the approximation, compute different communities, even though they are run

with the same parameters and the network size is small. From the tests, we can argue that the

contribution of Theorem 1 is substantial.

We apply models F∗Sh� Mod and F0Sh� Mod to the Zachary’s karate club network, [24], and com-

pare the results with what obtained in [15]. The overlapping communities of that paper are

three, so we fix nc = 3 and p = 2. In Fig 3, each community is represented by the color grey,

black or blue and the intersection nodes by red.
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Fig 3a and 3c are similar. The only difference is that model F0Sh� Mod detects the node 12 as an

intersection. It is reasonable, because node 12 is only connected to the other intersection node

and share neighbours with both communities, black and blue. The structure obtained by

model F∗Sh� Mod is also similar, but detects more intersection nodes, having connections with dif-

ferent communities and sharing neighbours with them. The results highlights that there can be

differences between the exact and the approximate models, already when applied to small size

graphs.

Next, we analyze models F∗Sh� Mod and F0Sh� Mod with other parameters. First, we fix p = 1, so

that communities cannot overlap, and we obtain the results in Fig 4.

As can be seen, in both cases nodes that belong to the same community have high edge den-

sity between them and many common neighbours, even though the two communities in Fig

4a can be further split, as seen in Fig 4b. There, communities have higher edge density, but less

common neighbors. It highlights the fact that equation (4) combines two criteria, namely den-

sity of common neighbors and number of connections, and the researcher must consider a

trade-off between them. Letting communities overlap partially avoids this trade-off: With

parameters nc = 4 and p = 2, we obtain the results in Fig 5.

Fig 3. Zachary’s karate club community structures. Community structures obtained by (a) [15], (b) F∗Sh� Mod with

parameters nc = 3, p = 2, (c) F0Sh� Mod with parameters nc = 3, p = 2.

https://doi.org/10.1371/journal.pone.0283857.g003

Fig 4. Zachary’s karate club disjoint community structures. Community structures obtained by (a) F∗Sh� Mod with

parameters nc = n, p = 1, (b) F0Sh� Mod with parameters nc = n, p = 1.

https://doi.org/10.1371/journal.pone.0283857.g004
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Figs 3b and 5a are similar. The intersection nodes found previously (Fig 3b) are also inter-

section nodes in Fig 5a with the new parameters. Nevertheless, some other intersection nodes

appear that are brought about by the new fourth community of the clustering. Note that com-

munities in Fig 5a are quite different from the ones of Fig 5b, especially for what concerns

intersection nodes. As was remarked before, it implies that the differences between the exact

and the approximate model are substantial.

Next, we apply models F∗Sh� Mod and F0Sh� Mod to the zebra communication network, see [25].

First, model F∗Sh� Mod is run with p = 1 and results are in Fig 6a. Results of model F0Sh� Mod are the

same. Results of models F∗Sh� Mod and F0Sh� Mod with parameters p = 2 and nc = 3 are in Fig 6b and

6c respectively. The former model does not detect any overlapping community, suggesting

that they are well separated, while the latter model identifies node 20 as belonging to two com-

munities. Since this model is actually an approximation of the real data, it is likely that the role

of node 20 has been mistaken since the communities seems to be separated.

The following two examples compare the communities found by model F∗Sh� Mod when com-

munity i) cannot overlap (p = 1); ii) can overlap (p> 1). It will be seen that allowing

Fig 5. Zachary’s karate club community structures. Community structures obtained by (a) F∗Sh� Mod with parameters

nc = 4, p = 2, (b) F0Sh� Mod with parameters nc = 4, p = 2.

https://doi.org/10.1371/journal.pone.0283857.g005

Fig 6. Zebra community structures. Community structures obtained by (a) F∗Sh� Mod with parameters nc = n, p = 1, (b)

F∗Sh� Mod with parameters nc = 3, p = 2, (c) F0Sh� Mod with parameters nc = 3, p = 2.

https://doi.org/10.1371/journal.pone.0283857.g006
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overlapping communities reveals nodes that are structurally different from others, forming the

bulk of a core/periphery separation.

First, we apply the model F∗Sh� Mod to the the Highland tribes network, see [26]. First, model

F∗Sh� Mod is run with p = 1 and results are in Fig 7a. There, it can be seen that, if no overlapping

communities are allowed, then the model detects one community composed of all the nodes.

Conversely, model F∗Sh� Mod is run with parameters nc = 3 and p = 2, results are reported in Fig

7b. It can be seen that the role of different nodes is emerged. There, three communities of dif-

ferent size have been detected, with some nodes (the red ones) belonging to more than one

community forming the core of the system of alliances.

Next, we apply model F∗Sh� Mod to the Windsurfers network, see [27]. Run with parameter

p = 1, the model detected the two communities reported in Fig 8a. Run with parameters nc = 2

and p = 2, the model detected the communities reported in Fig 8b. As can be seen, the results

with overlapping communities are a refinement of the disjoint communities. Nodes that are in

the border between the two groups are highlighted as members of both, forming the bulk of a

core/periphery network segmentation.

To summarize our findings, the test of models F∗Sh� Mod on four typical benchmark networks

revealed:

• Results between F∗Sh� Mod and F0Sh� Mod are different. As the latter is an approximation of the for-

mer, it reveals that the contribution of Theorem 1 to model development is substantial.

• Results between non-overlapping and overlapping community models are different. The for-

mer can reveal not only group membership, but nodes that could act as potential bridges

between communities.

Fig 7. Highland tribes community structures. Community structures obtained by (a) F∗Sh� Mod with parameters nc = n,

p = 1, (b) F∗Sh� Mod with parameters nc = 3, p = 2.

https://doi.org/10.1371/journal.pone.0283857.g007

Fig 8. Windsurfers community structures. Community structures obtained by (a) F∗Sh� Mod with parameters nc = n,

p = 1, (b) F∗Sh� Mod with parameters nc = 2, p = 2.

https://doi.org/10.1371/journal.pone.0283857.g008
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Local Stability Exploration: An heuristic algorithms to detect overlapping

communities

Problems F∗Sh� Mod and F0Sh� Mod are Integer Linear Programming (ILP) models whose solution

computational times can be impractical when the instances to solve are large. This is normal

when we deal with a NP-hard problem as the case of communities detection. Nevertheless, for

large instances the ILP formulation can be applied to devise heuristic algorithms that could

approximate the optimal solution in short computing time. Here we propose a method, that

we will call Local Stability Exploration (LSE), that is based on local search. Suppose that a set of

feasible communities P ¼ fS1; . . . ; Snc
g; Si � V; i ¼ 1; . . . ; nc is given, we will call such P an

incumbent solution. P feasible means that it satisfies the ILP model constraints, so that i)

every node belongs to at least one community,
Snc

k¼1
Sk ¼ V, ii) there is not strict inclusion

between communities, ∄k; r ¼ 1; . . . ; nc; k 6¼ r; such that Sk� Sr, iii) the maximum number of

communities to which a node can belong is not exceeded by any node, i.e. 8i 2 V the inequality

|{k = 1, . . ., nc: i 2 Sk}|� p is fulfilled; and iv) all communities are stable. Next, we try to modify

P to obtain a new feasible solution P0 with an improved objective function. We consider three

possible modification of P, obtained by moves that are called Add, Remove, and Swap. Add is

the move that joins a node to a community, allowing in this way multiple communities assign-

ments. Remove is the move that takes away a node from a community. Swap is the move that

switch two nodes between two communities. These moves are applied if and only if the new

obtained P0 is feasible. That is, after a move it must not occur that 1) a node does not belong

to any community 2) a node belongs to more communities than allowed, maximum number

of communities p to which a node can belong; 3) one community is included in another, 4)

modified communities are not stable.

For a feasible starting solution, the procedure is summarized in Algorithm 1. There, the

triplet (i, k, 1) is the move of adding node i to community k, the triplet (i, k, 2) is the move of

removing node i from community k, the 5-tuple (i, k, i0, k0, 3) is swapping nodes i and i0

between communities k and k0. It can be seen that from Line 9 to Line 22 all feasible moves are

considered. In Lines 12, 15 and 20 the increases of the objective function are calculated using

the following notation: Let Ci = {k 2 {1, . . ., nc}:i 2 Sk}, that is, Ci is the index set of the commu-

nities to which i belongs, then the objective function can be written as:

f ∗ Pð Þ ¼
Xn

i; j 2 V
i < j

Ci \ Cj 6¼ ;

W∗
ij

Note that the condition Ci \ Cj 6¼ ; is the condition that there is at least one community to

which both i and j belong to. However, from the computational efficiency it is better to calcu-

late just the increase of the objective function, as is done in lines 12, 15, 20. The new solution

P0 is the one that obtains the maximum increase. The algorithm stops when condition of Line

42 applies, as there are no improvements and a local optimum has been reached.

Algorithm 1 Local stability exploration algorithm
1: procedure LOCAL STABILITY EXPLORATION

2: P ¼ fS1; . . . ; Snc
g  Initial Stable Communities ⊳ Π is obtained by peculiar

subroutines
3: for i in V do
4: Ci = {k 2 {1, . . ., nc}: i 2 Sk}
5: end for

6: f  
Pn

i; j 2 V
i < j

Ci \ Cj 6¼ ;

W∗
ij ⊳ Objective function
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7: local_opt = FALSE ⊳ Condition for a local optimum
8: while local_opt = FALSE do
9: Δ  Feasible_Moves(Π) ⊳ Δ: list of admissible moves for Π.
10: for (i, k, d) in Δ do
11: if d = 1 then
12: dikd  

P

j2Sk

Ci \ Cj ¼ ;

W∗
ij

13: end if
14: if d = 2 then
15: dikd  �

P

j2Sknfig
jCi \ Cjj ¼ 1

W∗
ij

16: end if
18: end for
18: for (i, k, i0, k0, 3) 2 Δ do
19: if d = 3 then
20: diki0k0d  

P

j2Sk0 nfi0g
Ci \ Cj ¼ ;

W∗
ij �

P

j2Skn Sk0
S

if gð Þ

jCi \ Cjj ¼ 1

W∗
ij þ

P

j2Skn if g
Ci0 \ Cj ¼ ;

W∗
i0 j �

P

j2Sk0 n Sk

S
i0f gð Þ

jCi0 \ Cjj ¼ 1

W∗
i0 j

21: end if
22: end for
23: (i*, k*, d*) 2 argmax{δikd|(i, k, d)2Δ} ⊳ Select the move that

increases the most
24: (i*, k*, i0*, k0*, d*)2argmax{δiki0k0d|(i, k, i0, k0, d)2Δ} ⊳ Select

the move that increases the most
25: if δi*k*i0*k0*d* > max{0, δi*k*d*} then
26: f  f+ δi*k*i0*k0*d* ⊳ Update f
27: Sk*  Sk* [ {i0*}\{i*}
28: Sk0*  Sk0* [ {i*}\{i0*} ⊳ Update Π
29: Ci*  Ci* [ {k0*}\{k*}
30: Ci0*  Ci0* [ {k*}\{k0*}
31: else
32: if δi*k*d* > 0 then
33: f  f + δi*k*d* ⊳ Update f
34: if d* = 1 then
35: Sk*  Sk* [ {i*} ⊳ Update Π
36: Ci*  Ci* [ {k*}
37: else
38: Sk*  Sk*\{i*} ⊳ Update
39: Ci*  Ci*\{k*}
40: end if
41: else
42: local_opt = TRUE
43: end if
44: end if
45: end while
46: return Π ⊳ Return the local optimum
47: end procedure

It remains to comment how feasible starting solutions can be obtained in Line 2 of Algo-

rithm LSE. Depending on problems, we tested various procedures. The first possibility is to

start with an unfeasible solutionP, because it contains unstable communities. Then Algorithm

LSE is run without imposing that new solutions P0 should be stable, but once that a feasible

one has been found, then all forthcoming solutions must remain feasible too. The first unfeasi-

bleP can be a random assignment to communities, but another possibility is solving F∗Sh� Mod

for p = 1, that is, when overlapping is not allowed, as the problem is usually solved faster than

the cases in which p> 1. Another possibility that has been used for the problems with the
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largest size is solving F∗Sh� Mod by branch-and-bound, but stop the search when the first feasible

solution has been found and next using it as the starting solution in Line 2. All methods can be

combined using any multi-start strategy, that is, repeating Algorithm 1 many times with differ-

ent starting solutions to obtain sufficient diversification and exploration of the solution space.

Finally, Algorithm LSE has been explained to solve model F∗Sh� Mod, but it can be applied to

F0Sh� Mod with straightforward modifications.

A preliminary test of the quality of the LSE algorithm has been run on the previous net-

works. We run a multi-start version allowing tmax = 10 starting solutions each run. Results

about computational times and solution quality for different parameters configurations are

reported in Table 1. It can be seen that the LSE heuristic algorithm reduces the computing

time significantly with respect to the ILP solution for both models F∗Sh� Mod and F0Sh� Mod, while

the optimal solution has been achieved in all the cases but one.

Moreover, we applied the LSE algorithm to some large-scale real data sets that are impracti-

cal for any ILP model, in order to test the scalability of our heuristic. The solved data sets are

the American college football network with 115 nodes, see [28], the Jazz musician network

with 198 nodes, see [29], and C. metabolic network with 453 nodes, see [30]. These real data

sets examples are commonly used in literature. The exact expected weights W∗
ij cannot be com-

puted for graphs with a large number of edges, so we used the approximated expected weights

W 0
ij. We report the results of our methods in Figs 9–11.

Results and discussion

We are going to analyze the main features of the ILP models F∗Sh� Mod, F0Sh� Mod and the heuristic

Algorithm 1 when they are applied to medium and large size networks, most precisely,

Table 1. Computational results of the solution methods.

Dataset nc p Model Solving method Time (s) Objective value

Zachary’s karate club 4 2 F∗Sh� Mod Exact ILP 1530 162.469

LSE heuristic 77 162.469

Zachary’s karate club 4 2 F0Sh� Mod Exact ILP 316 129.39

LSE heuristic 6 129.279

Zachary’s karate club 3 2 F∗Sh� Mod Exact ILP 139 157.652

LSE heuristic 15 157.652

Zachary’s karate club 3 2 F0Sh� Mod Exact ILP 53 122.578

LSE heuristic 6 122.578

Highland tribes 3 2 F∗Sh� Mod Exact ILP 31 89.654

LSE heuristic 4 89.654

Highland tribes 3 2 F0Sh� Mod Exact ILP 8 47.4516

LSE heuristic 0.46 47.4516

Zebra communication 3 2 F∗Sh� Mod Exact ILP 12 313.869

LSE heuristic 2.8 313.869

Zebra communication 3 2 F0Sh� Mod Exact ILP 16 146.858

LSE heuristic 2.2 146.858

Windsurfers 2 2 F∗Sh� Mod Exact ILP 1059 583.388

LSE heuristic 78 583.388

Windsurfers 2 2 F0Sh� Mod Exact ILP 14 292.662

LSE heuristic 7.5 292.662

https://doi.org/10.1371/journal.pone.0283857.t001

PLOS ONE Overlapping communities detection through weighted graph community games

PLOS ONE | https://doi.org/10.1371/journal.pone.0283857 April 4, 2023 21 / 35

https://doi.org/10.1371/journal.pone.0283857.t001
https://doi.org/10.1371/journal.pone.0283857


whether they can detect the true overlapping communities of randomly generated networks,

as it is done in [31]. Random networks are generated using the procedure proposed in [16],

but with some variations to allow for communities that overlap. Most peculiarly, in our simu-

lation we must distinguish between bridge and non-bridge nodes, the former being the nodes

that belongs to more than one community. The main parameters characterizing the simulated

networks are:

• N: the number of nodes.

• nc: the number of communities.

Fig 10. Jazz music community structure. Community structure obtained by LSE heuristic with W 0
ij weights and

parameters nc = 6, p = 2.

https://doi.org/10.1371/journal.pone.0283857.g010

Fig 9. American college football community structure. Community structure obtained by LSE heuristic with W 0
ij

weights and parameters nc = 7, p = 2.

https://doi.org/10.1371/journal.pone.0283857.g009
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• p: the maximum number of communities to which a node can belong to.

• No: the number of nodes that belongs to more than one communities, that is, they are

bridges.

Next, communities are defined by the probability by which community nodes can establish

a link between themselves. Those probabilities are controlled by parameters:

• 1 − μ: fraction of links between non-bridge nodes belonging to the same community.

• 1 − μo: fraction of links between bridge nodes and other nodes of the communities where the

bridge node belongs to.

There are other parameters characterizing the simulated networks, such as the number of

arcs, the node degrees, the community sizes and so on, whose purpose is to simulate networks

with the same characteristics of the empiric ones. We report all these features in S1 Appendix,

with the pseudo-code describing our implementation of Lancichenetti et al. algorithm.

The solution quality of our models is measured comparing their results with the true com-

munity structures (known by simulation). True and estimated structure may differ for:

• The community composition;

• The identification of the bridge nodes.

The statistics to compare the community composition are:

• the Normalized Mutual Information (NMI) index for overlapping partitions, presented in

[32];

• the Omega index (OI), presented in [33].

Both statistics range between 0 and 1, with values closer to 1 indicating strong correspon-

dence between true and estimated communities.

Fig 11. C. metabolic community structure. Community structure obtained by LSE heuristic with W 0
ij weights and

parameters nc = 10, p = 2.

https://doi.org/10.1371/journal.pone.0283857.g011
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The statistics to compare the identification of bridge nodes are based on a set of indices

which depend on the values of the confusion matrix associated to the identification of bridge

nodes. Each element of the confusion matrix is defined as follows

• True Positive (TP): Nodes successfully detected as bridge.

• True Negative (TN): Nodes successfully detected as non-bridge.

• False Positive (FP): Nodes wrongly detected as bridge.

• False Negative (FN): Nodes wrongly detected as non-bridge.

Then, we consider the following indices.

the accuracy defined as TPþTN
TPþTNþFPþFN,

the True Positive Rate (TPR): TPR ¼ TP
TPþFN,

the False Positive Rate (FPR): FPR ¼ FP
TNþFP,

the Area Under Curve (AUC): AUC ¼ 1� FPRþTPR
2

,

the Precision defined as TP
TPþFP,

the F1 score: F1 ¼ 2TP
2TPþFPþFN;

Test 1: Detecting non overlapping communities: As a first test, we apply the ILP models

F∗Sh� Mod, F0Sh� Mod and the Algorithms LSE to the case in which communities do not overlap, that

is, p = 1, to see whether the approximate result of algorithm LSE are reliable, with respect to

what is found by the respective optimal ILP models. The ILP solution of F∗Sh� Mod and F0Sh� Mod

can be obtained in short computational times only for moderate size networks, so we consider

N = 40, 60 to solve within the time limit of 100 or 200 seconds respectively. The LSE heuristic

has been run with tmax = 5 multiple starting solution, guaranteeing that its computational

times are a fraction of the exact method.

For fixed N and nc, we let μ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, as in [16] to control for the effect

of mixing parameter. For each parameter set, either 50 or 100 random networks are generated

and indices are calculated as averages on all instances. Results are reported in Table 2. The first

two rows of this table give the ILP formulation (F∗Sh� Mod or F0Sh� Mod) used in the corresponding

method: exact (ILP) or (LSE) heuristic to provide an initial solution. The third row describes

the parameters of the instances (N, nc, μ) and the index reported below (NMI or Omega). By

columns, the layout of this table is organized in three blocks. The first one with three columns

describes the instances. The next two blocks, each one with four columns, report the average

values of the NMI and Omega indices for each combination of solution method. Results in

bold report the best behaviour among similar index for the corresponding solution methods.

One can easily observe that using formulation F∗Sh� Mod in the ILP or in the LSE heuristic pro-

vides better solutions than F0Sh� Mod.

For each combinations of parameters N and nc, the NMI and OI of each solution method

are also shown as a function of μ in Figs 12–14 to compare the formulations F∗Sh� Mod and

F0Sh� Mod. The exact formulation F∗Sh� Mod obtains, in general, better NMI results and also better OI
results in more cases than F0Sh� Mod; except for N = 40 and nc = 4. In this case, the behaviour of

OI is similar in both formulations. However, also for N = 40, the exact solution of model

F∗Sh� Mod is superior to the other two approaches, namely the heuristic LSE and the exact model

F0Sh� Mod, as the curves of the NMI and Omega statistics are above the others for most values of

N, nc and μ.
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When μ is above the threshold 0.3, the solution quality of the method deteriorates for the

joint effect of two factors: 1) communities are less well-separated, 2) exact solution has not

been obtained within the considered time limit. However, this is not an actual drawback since

for those parameter values, communities are essentially meaningless.

Test 2: Detecting overlapping communities on small networks: Networks with overlapping

communities have been simulated with the same parameters used before, but now communi-

ties can overlap. We control the overlap with parameters p = {2, 3} and μo = {0.5, 0.7}. The

choice of these parameters is justified since for p = 2 the smallest possible μo value is 0.5 and

for p = 3 the smallest possible μo value is approximately 0.7. Moreover, the number of bridge

Table 2. Computational results about networks with non-overlapping communities.

Model F∗Sh� Mod F0Sh� Mod

Method ILP LSE ILP LSE

N nc μ NMI OI NMI OI NMI OI NMI OI

40 6 0 0.95 0.99 0.88 0.91 0.95 1 0.82 0.85

0.1 0.96 0.98 0.88 0.94 0.95 1 0.82 0.86

0.2 0.91 0.84 0.88 0.91 0.79 0.86 0.79 0.83

0.3 0.85 0.79 0.82 0.85 0.66 0.72 0.73 0.78

0.4 0.62 0.47 0.7 0.7 0.45 0.5 0.59 0.63

0.5 0.38 0.32 0.48 0.5 0.16 0.19 0.46 0.49

0.6 0.39 0.2 0.29 0.3 0.1 0.11 0.28 0.3

40 4 0 0.88 0.99 0.87 0.98 0.88 1 0.83 0.92

0.1 0.88 0.99 0.86 0.99 0.88 1 0.81 0.91

0.2 0.88 0.94 0.85 0.97 0.88 0.99 0.83 0.92

0.3 0.82 0.79 0.83 0.93 0.78 0.88 0.81 0.9

0.4 0.63 0.63 0.78 0.87 0.57 0.68 0.76 0.85

0.5 0.35 0.34 0.6 0.71 0.17 0.21 0.57 0.65

0.6 0.15 0.23 0.36 0.41 0.07 0.09 0.34 0.41

60 6 0 0.79 0.85 0.89 0.98 0.79 0.87 0.83 0.92

0.1 0.72 0.78 0.9 0.99 0.53 0.6 0.84 0.93

0.2 0.7 0.73 0.9 0.98 0.33 0.41 0.83 0.92

0.3 0.63 0.65 0.89 0.97 0.07 0.08 0.82 0.9

0.4 0.36 0.39 0.87 0.93 0 0.01 0.79 0.87

0.5 0.28 0.3 0.73 0.79 0 0 0.66 0.74

0.6 0.13 0.15 0.44 0.52 0 0 0.39 0.47

Maximum NMI and OI values for each combination of parameters and each method are highlighted in bold.

https://doi.org/10.1371/journal.pone.0283857.t002

Fig 12. Test results on non-overlapping communities, parameters N = 40, nc = 6. (a) Average NMI for each solution

method, (b) Average Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g012
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nodes No is approximately 10% of all the nodes, and we change this value to asses how it affects

the computational results. Problems with overlapping communities are harder to solve, there-

fore we limit the graph size to N = 40 and increase the time limit to 200 seconds. Table 3

reports the computational results with a layout similar to Table 2. It can be seen that the best

values of both the Omega and NME indices are obtained with the LSE heuristic, applied to the

F0Sh� Mod formulation. The LSE heuristic applied to F∗Sh� Mod provides the second best results (with

a few exceptions in which it becomes the best one) and the third one is the ILP formulation.

The reason of the poor performance of the ILP methods is due to the fact that they were not

able to terminate the computation in the imposed time limit and the solution that they provide

is far from optimality. Results of Table 3 are graphically reported in Figs 15–19, where it can be

seen that the purple and green curve, representing the LSE heuristics, are very close with each

other and they are much above the result of the truncated ILP. It is also noteworthy that

weights from F∗Sh� Mod improve the results of the ILP method.

Fig 14. Test results on non-overlapping communities, parameters N = 60, nc = 6. (a) Average NMI for each solution method, (b) Average

Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g014

Fig 13. Test results on non-overlapping communities, parameters N = 40, nc = 4. (a) Average NMI for each solution method, (b) Average

Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g013
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Test 3: Detecting overlapping communities on large-scale networks: In the last experiment,

we have applied the LSE heuristics, using both the F∗Sh� Mod and F0Sh� Mod models, to the largest

networks composed of 500 or 1000 nodes. As before, we control the overlap between commu-

nities with parameters p = {2, 3} and μo = {0.6, 0.7}, the number of bridge nodes are No = {20,

50}.

In Table 4, we report the NMI and OI statistics calculated by the two methods. It can be

seen that they have lower values than what obtained in the smallest networks, due the fact that

Table 3. Computational results about networks with overlapping communities.

Model F∗Sh� Mod F0Sh� Mod

Method ILP LSE ILP LSE

nc p μo No μ NMI OI NMI OI NMI OI NMI OI

4 2 0.5 1 0 0.88 0.92 0.86 0.92 0.88 0.87 0.91 0.95

0.1 0.76 0.78 0.88 0.91 0.71 0.73 0.9 0.95

0.2 0.63 0.66 0.85 0.91 0.45 0.46 0.88 0.92

0.3 0.57 0.63 0.82 0.88 0.28 0.3 0.83 0.88

0.4 0.4 0.46 0.76 0.81 0.17 0.18 0.72 0.78

0.5 0.28 0.33 0.49 0.57 0.1 0.12 0.5 0.57

0.6 0.13 0.16 0.29 0.35 0.05 0.05 0.31 0.37

3 0 0.88 0.88 0.9 0.92 0.81 0.82 0.95 0.96

0.1 0.77 0.78 0.91 0.93 0.66 0.67 0.95 0.96

0.2 0.61 0.72 0.88 0.91 0.5 0.53 0.9 0.93

0.3 0.55 0.57 0.85 0.89 0.32 0.33 0.82 0.85

0.4 0.52 0.46 0.78 0.82 0.19 0.21 0.72 0.75

0.5 0.26 0.29 0.46 0.53 0.06 0.08 0.5 0.55

0.6 0.17 0.19 0.32 0.38 0.07 0.08 0.33 0.38

5 0 0.74 0.79 0.91 0.93 0.72 0.71 0.94 0.95

0.1 0.67 0.69 0.9 0.91 0.66 0.67 0.96 0.97

0.2 0.58 0.65 0.91 0.92 0.42 0.46 0.9 0.91

0.3 0.53 0.56 0.85 0.87 0.28 0.31 0.82 0.85

0.4 0.42 0.42 0.7 0.76 0.15 0.17 0.64 0.68

0.5 0.28 0.27 0.44 0.52 0.06 0.06 0.44 0.49

0.6 0.15 0.21 0.31 0.37 0.06 0.07 0.28 0.32

0.7 3 0 0.87 0.8 0.88 0.9 0.94 0.94 0.94 0.96

0.1 0.77 0.68 0.88 0.9 0.79 0.8 0.95 0.96

0.2 0.71 0.7 0.88 0.91 0.46 0.48 0.89 0.91

0.3 0.55 0.54 0.83 0.87 0.24 0.26 0.85 0.88

0.4 0.42 0.38 0.72 0.77 0.18 0.21 0.67 0.71

0.5 0.23 0.29 0.49 0.56 0.08 0.09 0.47 0.51

0.6 0.17 0.15 0.33 0.39 0.08 0.09 0.29 0.34

3 0.7 3 0 0.74 0.7 0.82 0.84 0.8 0.83 0.88 0.89

0.1 0.67 0.64 0.85 0.87 0.57 0.6 0.87 0.89

0.2 0.59 0.56 0.83 0.86 0.3 0.34 0.83 0.85

0.3 0.5 0.42 0.76 0.8 0.18 0.2 0.71 0.76

0.4 0.32 0.41 0.63 0.69 0.17 0.21 0.56 0.62

0.5 0.22 0.26 0.35 0.43 0.11 0.12 0.37 0.44

0.6 0.14 0.16 0.21 0.27 0.07 0.08 0.22 0.26

Maximum NMI and OI values for each combination of parameters and each method are highlighted in bold.

https://doi.org/10.1371/journal.pone.0283857.t003
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Fig 15. Test results on overlapping communities, parameters p = 2, μo = 0.5, No = 1. (a) Average NMI for each solution method, (b) Average

Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g015

Fig 17. Test results on overlapping communities, parameters p = 2, μo = 0.5, No = 5. (a) Average NMI for each solution method, (b)

Average Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g017

Fig 16. Test results on overlapping communities, parameters p = 2, μo = 0.5, No = 3. (a) Average NMI for each solution method, (b)

Average Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g016
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communities are harder to find. in most of the cases, model F∗Sh� Mod, in which weights are

exact, obtains better indices than the approximated weights of F0Sh� Mod. Results of Table 4 are

reported in Figs 20–23. There, it can be seen that the green line is above the purple one in

almost all cases.

We can compare models F∗Sh� Mod and F0Sh� Mod in term of detecting the network bridge nodes.

We considered many statistics: accuracy, TPR, FPR, AUC, precision and the F1 score. They are

collected in Table 5 which reports the average values of these metrics obtained by the two LSE

heuristics. In all the simulations, the fraction of bridge nodes over all the nodes is less than 0.1.

It implies that it is much easier to detect non-bridge nodes rather than bridge ones. Therefore,

a method that selects the fewest number of bridge nodes has a numeric advantage in terms of

accuracy. Clearly, it could not classify successfully bridge nodes. Looking at Table 5, one can

observe that the greatest difference between F∗Sh� Mod-LSE and F0Sh� Mod-LSE is on metrics FPR
and TPR. Model F∗Sh� Mod obtains the best rate of true positive, model F0Sh� Mod-LSE obtains the

Fig 18. Test results on overlapping communities, parameters p = 2, μo = 0.7, No = 3. (a) Average NMI for each solution method, (b)

Average Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g018

Fig 19. Test results on overlapping communities, parameters p = 3, μo = 0.7, No = 3. (a) Average NMI for each solution method, (b)

Average Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g019
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Table 4. Computational results about large-scale networks with overlapping communities.

Model F∗Sh� Mod F0Sh� Mod

Method LSE LSE

N nc p μo No μ NMI Omega NMI Omega

500 25 2 0.6 20 0 0.63 0.74 0.59 0.69

0.1 0.61 0.73 0.58 0.69

0.2 0.53 0.6 0.46 0.56

0.3 0.45 0.51 0.43 0.53

0.4 0.38 0.44 0.37 0.42

0.5 0.33 0.36 0.32 0.33

0.6 0.26 0.29 0.27 0.25

50 0 0.43 0.56 0.42 0.52

0.1 0.46 0.57 0.46 0.58

0.2 0.41 0.51 0.41 0.53

0.3 0.39 0.46 0.39 0.5

0.4 0.33 0.41 0.33 0.4

0.5 0.3 0.35 0.3 0.33

0.6 0.26 0.29 0.28 0.28

3 0.7 20 0 0.62 0.71 0.61 0.71

0.1 0.62 0.73 0.53 0.64

0.2 0.56 0.58 0.46 0.57

0.3 0.5 0.59 0.4 0.48

0.4 0.46 0.49 0.36 0.42

0.5 0.38 0.36 0.33 0.34

0.6 0.31 0.27 0.26 0.23

1000 50 2 0.6 50 0 0.41 0.55 0.6 0.7

0.1 0.42 0.57 0.46 0.6

0.2 0.44 0.58 0.38 0.5

0.3 0.38 0.49 0.32 0.41

0.4 0.35 0.41 0.23 0.32

0.5 0.14 0.27 0.13 0.25

0.6 0.09 0.22 0.06 0.19

Maximum NMI and OI values for each combination of parameters and each method are highlighted in bold.

https://doi.org/10.1371/journal.pone.0283857.t004

Fig 20. Test results on overlapping communities, parameters N = 500, nc = 25, p = 2, μo = 0.6, No = 20. (a) Average NMI for each solution

method, (b) Average Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g020
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best rate of false positive. This means that model F∗Sh� Mod selects more bridge nodes, but some of

them are not actually bridges. Conversely, F0Sh� Mod can successfully detect most of the non-

bridge nodes, resulting on higher accuracy just because the majority of nodes are actually non-

bridge. However, this is a consequence of a method that takes less risk in detecting a node as a

bridge. As far as the AUC is concerned, the results are really similar due to the existing balance

between FPR and TPR of both methods.

These values confirm that the bridge nodes detected by model F∗Sh� Mod are more reliable

than the ones detected by F0Sh� Mod, due to the better precision values. Moreover, since the

F1-score is equal to the harmonic mean between TPR and precision, F∗Sh� Mod also gets better

results for this metric.

For the highest values of μ, it is more difficult to distinguish the non-bridge from the bridge

nodes, which increases the number of false positives. So, statistics FPR, AUC, precision and F1
decreases. As in the previous experiments, both models F∗Sh� Mod-LSE and F0Sh� Mod-LSE obtain

Table 5. Computational results about large-scale networks with overlapping communities.

Model F∗Sh� Mod F0Sh� Mod

Method LSE LSE

N nc p μo No μ Accuracy TPR FPR AUC Precision F1 Accuracy TPR FPR AUC Precision F1

500 25 2 0.6 20 0 0.87 0.81 0.13 0.84 0.83 0.82 0.98 0.69 0 0.84 0.75 0.72

0.1 0.86 0.82 0.14 0.84 0.69 0.75 0.95 0.74 0.04 0.85 0.51 0.6

0.2 0.73 0.84 0.28 0.78 0.32 0.46 0.91 0.65 0.08 0.79 0.21 0.32

0.3 0.59 0.87 0.42 0.72 0.15 0.26 0.83 0.73 0.16 0.78 0.14 0.23

0.4 0.49 0.89 0.53 0.68 0.09 0.16 0.73 0.7 0.27 0.71 0.08 0.14

0.5 0.38 0.88 0.64 0.62 0.06 0.11 0.58 0.69 0.42 0.63 0.06 0.11

0.6 0.27 0.87 0.76 0.56 0.05 0.09 0.46 0.65 0.55 0.55 0.04 0.08

50 0 0.74 0.87 0.28 0.8 0.64 0.74 0.95 0.63 0.01 0.81 0.63 0.63

0.1 0.76 0.86 0.26 0.8 0.66 0.75 0.94 0.73 0.03 0.85 0.63 0.68

0.2 0.66 0.88 0.37 0.75 0.45 0.6 0.9 0.69 0.07 0.81 0.44 0.54

0.3 0.6 0.89 0.43 0.73 0.32 0.47 0.83 0.73 0.16 0.79 0.3 0.43

0.4 0.49 0.9 0.55 0.67 0.21 0.34 0.74 0.7 0.25 0.73 0.2 0.31

0.5 0.42 0.89 0.63 0.63 0.16 0.27 0.6 0.7 0.4 0.65 0.14 0.23

0.6 0.37 0.85 0.69 0.58 0.13 0.23 0.46 0.73 0.57 0.58 0.12 0.21

3 0.7 20 0 0.89 0.99 0.12 0.94 0.83 0.9 0.99 0.91 0 0.95 0.85 0.88

0.1 0.93 0.99 0.08 0.96 0.77 0.87 0.97 0.83 0.02 0.91 0.57 0.68

0.2 0.74 0.99 0.27 0.86 0.35 0.52 0.93 0.83 0.07 0.88 0.28 0.42

0.3 0.78 0.99 0.22 0.88 0.23 0.37 0.85 0.79 0.15 0.82 0.15 0.25

0.4 0.49 0.99 0.37 0.81 0.13 0.23 0.75 0.86 0.26 0.8 0.11 0.2

0.5 0.46 0.99 0.56 0.71 0.08 0.15 0.6 0.94 0.41 0.76 0.08 0.15

0.6 0.35 0.98 0.67 0.65 0.06 0.11 0.5 0.83 0.51 0.66 0.05 0.09

1000 50 2 0.6 50 0 0.98 0.66 0.01 0.83 0.8 0.72 0.96 0.82 0.03 0.9 0.6 0.69

0.1 0.95 0.8 0.05 0.88 0.47 0.59 0.88 0.8 0.1 0.85 0.28 0.41

0.2 0.89 0.82 0.11 0.86 0.29 0.43 0.79 0.81 0.2 0.81 0.17 0.28

0.3 0.81 0.74 0.19 0.78 0.17 0.28 0.68 0.8 0.32 0.72 0.12 0.21

0.4 0.62 0.78 0.39 0.7 0.1 0.18 0.54 0.76 0.47 0.65 0.08 0.14

0.5 0.51 0.7 0.5 0.6 0.07 0.13 0.38 0.76 0.64 0.56 0.06 0.11

0.6 0.25 0.75 0.82 0.47 0.07 0.13 0.26 0.73 0.77 0.48 0.05 0.09

Best values for each combinations of parameters are highlighted in bold.

https://doi.org/10.1371/journal.pone.0283857.t005
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the best results when μ is near 0 and when a bridge node belongs to many communities, as it is

easier to be detected. In conclusion, F∗Sh� Mod detects more bridge nodes, so it obtains the highest

TPR, but at the cost of incurring in a higher number of false positive too, which leads to the

worst accuracy.

Conclusion

In this paper, we proposed an Integer Linear Programming model to detect overlapping com-

munities in a network. Our contribution identifies communities as stable coalitions and then

we select the best of them with an optimization model. Peculiar to this approach is the defini-

tion of a weighted graph connection game and its characteristic function. Moreover, we intro-

duced a null hypothesis in the spirit of the modularity function, [1]: We have compared the

community node similarity of the actual graph with the node similarity of a random graph

with no embedded communities, and in this way we could define a new similarity measure.

Then, these similarities are used to define the non-convex cooperative game and the objective

Fig 21. Test results on overlapping communities, parameters N = 500, nc = 25, p = 2, μo = 0.6, No = 50. (a) Average NMI for each

solution method, (b) Average Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g021

Fig 22. Test results on overlapping communities, parameters N = 500, nc = 25, p = 3, μo = 0.7, No = 20. (a) Average NMI for each solution

method, (b) Average Omega for each solution method.

https://doi.org/10.1371/journal.pone.0283857.g022
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function of a maximization problem. Nodes similarities are obtained through the application

of Theorem 1, or by a simplified formula, see (21), useful to reduce the computational com-

plexity. Computational tests show that they find similar communities.

Future research can be devoted to define stability with cooperative games others than graph

connection games, and they could depend on the actual social or economic activity that is tak-

ing place on the network. We could imagine matching or voting game, to define a few, that

could promptly be defined and applied to peculiar networks. Moreover, the implementation of

the LSE heuristic, Algorithm 1, has been necessary to find solutions in a reasonable computa-

tion time and we found that the stability property increased the problem complexity. As stable

community structures are poorly analyzed in literature, we expect that there is large room to

improve our basic heuristic subroutines.

Finally, our extension of the procedure proposed in [16] to generate controlled overlapping

communities can be used to validate any other method or algorithm. Testing algorithms is a

big challenge and the generation of heterogeneous networks makes the comparison between

algorithms easier. However, the wide combinations of parameters complicates the issue,

advancing the need for a general methodology to select the most appropriate scenarios.

Supporting information

S1 Appendix. Appendix: Random networks generation. Random network generator based

on [16] benchmark.

(PDF)
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