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Earthquakes unveil the global-scale fractality of the
lithosphere
Alessio Perinelli 1,2✉, Leonardo Ricci 1, Angelo De Santis 3 & Roberto Iuppa1,2

The relationship between the magnitude of earthquakes and their spatial and temporal dis-

tribution has been observed to exhibit a scale invariance hypothesised to originate from self-

organized critical regimes. However, the fractality of earthquake distributions has been

mostly established in circumscribed areas, despite the fact that the self-organized criticality

of the lithosphere should only emerge at global or continental level. Here, we analyze seismic

observations occurring over the whole Earth between 2004–2020 to investigate the fractal

correlation dimension of earthquakes distribution. We find that the distribution of earth-

quakes is fractal on a global scale, as well as approximately magnitude-independent and

stationary over decadal time scales. Our results set a primary constraint on the spatial scaling

properties of lithosphere dynamics. We suggest that macroscopic models should fulfil this

constraint to correctly replicate the features of seismicity, and potentially improve seismic

hazard assessment.
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The Earth’s lithosphere is a complex dynamical system
whose evolution covers different temporal and spatial
scales, ranging from the million-year-long reorganization

processes of tectonic plates down to the almost continuous
occurrence of earthquakes1. The statistical features of earthquake
occurrence provide experimental signatures of the lithosphere’s
complex, nonlinear dynamics2–4. The best-known of these fea-
tures is the Gutenberg-Richter (G-R) law2,5, which corresponds to
a scale invariance, i.e., a power-law scaling, of the distribution of
the released energy. The observation of this scaling law prompted
the idea that the lithosphere is in a regime of self-organized cri-
ticality (SOC)6–8. SOC is generally considered to be a sponta-
neous, collective organization of an externally-driven system
towards a stationary state that shows power-law-like, i.e., self-
similar, distributions of observable quantities9. A scale invariance
also exists in the time domain: the Omori law10,11 describes the
power-law decay, and thus the persistent autocorrelation, of the
rate of aftershocks that ensue from a main event. While basic
models of SOC such as the sandpile model6 do not predict
aftershocks3, extensions of these models were shown to be able to
reconcile the SOC paradigm with the experimentally-observed
Omori law12,13. Remarkably, by means of natural time analysis14

to extract information from time series, it was recently proven
that SOC does not imply unpredictability of earthquakes15.

A third feature that is commonly ascribed to the complexity of
the Earth’s lithosphere, and thus related to SOC as well, is frac-
tality, which corresponds to a scale-invariance in the spatial
domain2,3. Fractality, which is typically assessed by estimating a
noninteger dimension16 referred to as correlation dimension, was
applied to describe geological data4,17 and, specifically, the spatial
distribution of earthquakes18. It is worth noting that other fractal
dimensions exist, most notably the Hausdorff dimension and the
information dimension. However, the correlation dimension is
the most informative one in the context of seismicity because it
describes the probability that, given an earthquake, another
earthquake occurs within a given distance16,18.

Understanding the origin of the lithosphere complexity is
ultimately linked to the possibility of earthquake forecasting3.
Describing the geometry of a system basically means to determine
its spatial extent. This simple statement is also true for fuzzy
systems like fractal structures: in a system having fractal dimen-
sion close to 1, events occur along a not-necessarily-straight line.
Similarly, once an event belonging to a system with dimension
close to 2 is observed, the probability of observing a second one
essentially depends only on the distance from the first occurrence.

On the other hand, a thorough understanding of the fractality
of earthquake occurrence, and thus of the lithosphere, is still
lacking. Existing mechanical and statistical models, like the
Burridge–Knopoff spring-block model19,20 and its cellular auto-
maton transposition21,22, provide a partial description of the scale
invariance features introduced above23. More recently, sophisti-
cated models including friction heterogeneities by means of both
a brittle and a ductile region within a fault allowed to capture
more in detail the complex features of instrumental
earthquakes24. Chaos was proposed as a key to describe com-
plexity in the lithosphere, both in numerical models25–27 and
experimental studies28–30. An attempt of unifying G-R law,
Omori law and fractality within a single model makes up a
promising approach, but is still incapable to predict the scaling
law parameters31.

Whereas the experimental determination of G-R and Omori
law follow from the application of standard statistical tools, the
fractal geometry of earthquake distributions is less straightfor-
ward to evaluate18. In the last two decades, this issue has been
tackled with increased attention and by means of different
approaches. Some works32–39 deal with events occurring over

time spans of many years and within bounded geographical
regions of size ranging from ~50 km up to ~3000 km. Another
set of works40–44 concern sequences of small-magnitude after-
shocks following a main event: these studies analyze regions of
size up to ~500 km and cover shorter time spans, with some
works considering time intervals as short as a few months41,43.
Noteworthily, fractal dimension was mostly evaluated out of
epicenter locations. While the choice of analyzing epicenters can
be justified by high uncertainty affecting depth estimations45,
considering epicenters or hypocenters can lead to different
results18. In terms of the assessed fractal dimension, most works
provide noninteger values between 1 and 2, thus suggesting a
fractal structure that is halfway between a linear and a planar
one. Many studies also found sub-linear dimensions (<1) that are
associated to clustered distributions, and even dimensions
greater than 2 in cases in which hypocenters are considered36,40.
A fractal dimension close to 2 was found by analyzing H/V
spectral ratio of seismic noise46. Occasionally, unphysical
dimensions greater than 2 are reported in works dealing with
epicenters47–49.

The analysis of the existing scientific literature shows that the
evaluation of fractal dimension was mostly carried out on a local
scale, typically not exceeding 1000 km, and with poorly populated
samples of just a few hundred events. Despite its practical interest,
for example, to assist the creation of risk assessment maps50,51,
this approach does not provide a characterization of the litho-
sphere in its entirety. On the other hand, the regime of SOC
might hold only on a global or continental scale52, so that the
understanding of the lithosphere dynamics cannot occur without
a whole-Earth analysis of fractal dimension.

A few works examined fractality at the global level. In two of
them53,54, the fractal dimension was estimated out of the b value
of the G-R law. However, the resulting, and bereft of any
uncertainty, assessment of 1.78 depends on the model used to link
the frequency-magnitude distribution to the spatial
distribution55,56. In 1980, by analyzing the spatial distribution of
“only” 429 events, Kagan and Knopoff57 provided a fractal
dimension of 1.5, though admitting that this value was affected by
“large uncertainties”. In a later work, Kagan18 suggested values in
the range 1.5–2.2. Similarly, by looking at large-scale regions of
order ~5000 km, ref. 58 estimated the fractal dimension to be in
the range 0.75–1.59.

In the present work, we estimated the fractal dimension of the
spatial distribution of earthquakes occurring on the whole Earth.
Due to the extent of the dataset, consisting of ~2 ⋅ 105 events, and
the statistical analysis implemented, our estimate of ν̂ ¼
1:30 ± 0:03 is the first one to provide robust, model-free evidence
of global-scale fractality. Records were extracted from the earth-
quake catalog of the United States Geological Survey (data
selection is discussed in the Methods section). Because the catalog
provides also depth estimates, we considered here both hypo-
centers and epicenters, and compared the respective results. To
estimate fractal dimensions, we computed the correlation
dimension59,60 out of sets of points that correspond to the loca-
tions of events. Rather than following the widespread approach of
least-squares fitting a power-law on the correlation integral59, we
carried out the evaluation by relying on Takens estimator16,
which is more efficient and easier to automatize61,62. The esti-
mator was combined with a bootstrapping approach to evaluate
the related uncertainty. To strengthen our results, we also com-
pared estimates obtained by means of different distance metrics.
While our main goal concerns the estimation of fractal dimension
on a global scale, we also performed the same analysis on a local
scale (~1000 km) as a mean of comparison with existing esti-
mates. Finally, we investigated possible dependencies of fractal
dimension on time and magnitude.
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Results
Global fractal dimension. We considered here four distance
metrics (see Methods): besides the spherical (orthodromic) dis-
tance (SP), namely the shortest distance measured along the
surface of a sphere, and the Euclidean 3-d distance (E3), we also
used two locally-defined distances, henceforth referred to as flat
2-d (F2) and flat 3-d (F3) distance, to highlight the essential
independence of the results on the choice of the metric. In the
case of epicenters, the metrics SP, F2, E3 were considered; for
hypocenters, F3, E3 were used instead.

The outcomes of the estimation of global fractal dimension ν̂,
carried out on both epicenter and hypocenter locations, are
shown in Fig. 1. The average global fractal dimension and its
standard deviation for epicenters are: ν̂SP ¼ 1:23 ± 0:02;
ν̂F2 ¼ 1:21 ± 0:01; ν̂E3 ¼ 1:29 ± 0:02. In the case of hypocenters,
ν̂F3 ¼ 1:22 ± 0:01 and ν̂E3 ¼ 1:30 ± 0:03. All these estimates are
significantly above 1, thus implying that the distribution of
earthquakes, either taking into account epicenter or hypocenter
locations, exhibits a fractal geometry on a global scale.

Indeed, a positive bias of less than 0.1 is present between fractal
dimensions estimated with the E3 metric and with other metrics.
The presence of a bias in estimates of the fractal dimension of an
object residing on a spherical surface is theoretically motivated:
the inequality νE3 > νSP was proven to always hold, and the extent
of the bias was quantitatively assessed for the integer dimensions
1 and 263. As discussed in Supplementary Note 2, similar
discrepancies are also observed in three synthetic datasets: a
stochastic set having integer dimension 2; a chaotic attractor lying
on a sphere; a more realistic dataset generated by an epidemic-
type aftershock sequence model64 seeded with the same chaotic
attractor. In all cases, the metric E3 provides the correct estimate,
while SP and F2 yield values that are systematically lower by
approximately 0.1.

It is worth remarking that, considering the E3 metric,
hypocenters yield a slightly higher fractal dimension than
epicenters, due to the hypocenter distribution extending over
an additional dimension, i.e., depth. The same discrepancy is also
observed by comparing the F2 metric for epicenters with the F3
metric for hypocenters (F3 is indeed an extension of F2 that
includes depth). These differences might have a geophysical
origin, possibly linked to the depth distribution of events, that
could prompt further investigations. Nevertheless, the differences
between hypocenters and epicenters are of the same order of the

respective uncertainties. This result suggests that the global
analysis queries the distribution of earthquakes over distances
that are larger than the typical depth of events, namely tens or
hundreds of kilometers. To support this interpretation, we
performed an auxiliary analysis—discussed in Supplementary
Note 3—by increasing the depths of events through the addition
of uniformly-distributed random depth displacements. As shown
in Supplementary Fig. 10, the larger the displacement, the more
the increased-depth hypocenter fractal dimension differs from the
epicenter one. The difference overcomes the uncertainties
affecting the two assessments when the displacement range is
about 10% of the Earth radius, i.e., approximately 600 km, which
also occurs to approximately correspond to the maximum depth
observed in real earthquakes.

A final consideration that is worth highlighting is the
consistency between the uncertainties estimated from the results
of Fig. 1 and those assessed in Supplementary Note 2 for the three
synthetic datasets mentioned above (see Supplementary Figs. 6–9).
The extent of these uncertainties, although stemming from
independent datasets, are comparable, ranging between 0.01 and
0.02. The similarity also concerns the shape of the histograms.
These facts hint at a numerical origin of the experimentally
observed distributions of the fractal dimension ν̂.

Local fractal dimension. The estimation of local fractal dimen-
sion is carried out on 10∘ × 10∘ sectors (latitude × longitude, see
Methods), so that the Earth curvature becomes negligible. The
different metrics, which provide—besides a 0.1 bias—consistent
results on a global scale, are then expected to provide a fortiori
similar results also on a local scale. This expectation is confirmed
by the analysis reported below. For the sake of simplicity, we
therefore discuss here local fractal dimension estimates only for
the E3 metric, which also allows direct comparison between
epicenters and hypocenters. It should be noted that the evaluation
was carried out only on those sectors containing at least 500
events (see Methods).

The local fractal dimension of epicenters is shown in Fig. 2a as a
color map on the surface of the Earth, whereas the distribution of
local �ν estimates is shown, as a histogram, in Fig. 2b. The local
fractal dimension �ν takes on values that range from ~0.5 to ~2.
According to the criterion based on the distance to the closest
integer value (see Methods), out of the 480 subsectors for which �ν
is available, 434 are deemed to provide a noninteger value of fractal
dimension at a 95% confidence level. These subsectors contribute
to the colored portion of histogram bars in Fig. 2b, while the
46 subsectors compatible with an integer (i.e., not fractal)
dimension account for the gray portion of the same bars. In
summary, most subsectors (90%) are incompatible with an integer
dimension, thus providing a strong evidence that the fractality of
the distribution of epicenters is a local property, in addition to
being a global one. As mentioned above, the local fractal dimension
of epicenters computed with the SP and F2 metrics, respectively,
shown in Figs. 3 and 4, provide similar results.

The local fractal dimension of hypocenters is shown in Fig. 2c, d
as a color map on the surface of the Earth and as a histogram of
local �ν estimates. Again, the colored portion of histogram bars are
contributed by subsectors that are deemed to provide a noninteger
value of fractal dimension at a 95% confidence level: of the 424
subsectors for which �ν is available, 344 (81%) provide a noninteger
value of fractal dimension. The results obtained with the E3 metric
are similar to those obtained with the F3 metric, as shown in Fig. 5.

The results obtained from the analysis of hypocenters are
qualitatively similar to those obtained for epicenters. As discussed
in Section “Global fractal dimension”, this outcome is indeed
expected for global properties, as they are weakly affected by the

Fig. 1 Global fractal dimension estimate. Normalized histograms of the
fν̂ng sets (see Methods) of the estimated global fractal dimension of
epicenters and hypocenters for different metrics. Points and error bars
correspond to the median ~ν and the percentile ranges ½P15ν̂ ; P85ν̂ � of each
histogram. The black, dashed line corresponds to the dimension ν= 1.
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introduction of depth due to the difference of orders between
typical depth values and the Earth radius. On the other hand, the
local landscape could in principle be significantly modified when
depth is taken into account. To address this point, we carried out
a comparison between local fractal dimension estimates for
epicenters and for hypocenters. Figure 2f plots, for each location,
the local fractal dimension value obtained for the hypocenter
versus the corresponding epicenter value. In both cases, the
metric E3 was used. A color map of the differences of local fractal
dimension Δν ¼ �νhyp;E3 � �νepi;E3 is shown in Fig. 2e. In most
cases, the difference is positive. This fact is consistent with
epicenters being projections of hypocenters onto a two-
dimensional manifold, an operation that can reduce dimension18.
Indeed, the set of points colored in red in Fig. 2f, for which

1:5≤ �νepi;E3 ≤ 2 and 2≤ �νhyp;E3 ≤ 2:5, can be interpreted to
correspond to hypocenters distributed on a nonplanar manifold,
while the corresponding epicentral locations, which are projected
on a locally planar spherical surface, are constrained to distribute
with a dimension ν⩽ 2.

The sporadic observation of sectors having �νepi;E3>�νhyp;E3 (blue
points in Fig. 2f) can be qualitatively explained as follows. One
can consider a finite, worm-like set of points, distributed in a
more-than-linear fashion, so as to yield an experimentally
assessed dimension between 1 and 2. If the set is elongated along
a given direction, projecting it on a plane perpendicular to that
direction can yield a planar random distribution, whose fractal
dimension can be estimated as approaching 2. This example
shows that projecting a set of points distributed on a trench

Fig. 2 Local fractal dimension estimates and comparison between epicenters and hypocenters. Maps of estimated local fractal dimension �ν on the
surface of the Earth and related histograms of �ν for epicenters (a, b) and hypocenters (c, d), obtained by means of the E3 metric. In b, d, the vertical solid
lines and shaded areas correspond to the median ~ν and the percentile range ½P15ν̂ ; P85ν̂ � of the global estimate, respectively represented by the blue and red
points and error bars of Fig. 1. The black, dashed lines highlight the integer values �ν ¼ 1; �ν ¼ 2. The gray portions of the histogram bars count the
subsectors for which the estimate of fractal dimension is deemed to be compatible with an integer value (see Methods). In a, c, the same subsectors are
also reported in gray. e Map of the difference Δν ¼ �νhyp;E3 � �νepi;E3 of local dimension between hypocenters and epicenters. f Scatter plot of the values of
local fractal dimensions for hypocenters versus those for epicenters: each data point corresponds to a subsector in which both assessments are available.
The black, dashed lines highlight integer dimensions. In panels e, f the color scale is the same: red hues denote a higher dimension for hypocenters, while
blue hues correspond to a higher dimension for epicenters. In a, c, e the Earth surface is mapped via an equirectangular projection.
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inclined with respect to the Earth surface on the surface itself can
occasionally induce the sporadic behavior observed, namely
�νepi;E3>�νhyp;E3. It is worth noting that the occurrences of
�νepi;E3>�νhyp;E3 correspond to both fractal dimensions being within
1 and 2, and that most of the related sectors (Fig. 2e) are located

in correspondence of trenches (e.g., South America trench,
Aleutian trench, Japan trench).

A thorough understanding of these discrepancies unavoidably
calls for a geophysical modelization of the underlying earthquake
distributions.

Fig. 3 Local fractal dimension estimates for epicenters obtained with the SP metric. Maps of estimated local fractal dimension �ν on the surface of the
Earth (a) and related histogram of �ν (b). The color scale is the same in both panels. The Earth surface is mapped via an equirectangular projection. In b the
vertical solid lines and shaded areas correspond to the median ~ν and the percentile range ½P15ν̂ ; P85ν̂ � of the global estimate, namely the gray point and error
bar of Fig. 1. The black, dashed lines highlight the integer values ν= 1, ν= 2. The gray portions of the histogram bars contain the estimates of the fractal
dimension that are deemed to be compatible with an integer value (see Methods).

Fig. 4 Local fractal dimension estimates for epicenters obtained with the F2 metric. Maps of estimated local fractal dimension �ν on the surface of the
Earth (a) and related histogram of �ν (b). The color scale is the same in both panels. The Earth surface is mapped via an equirectangular projection. In b the
vertical solid lines and shaded areas correspond to the median ~ν and the percentile range ½P15ν̂ ; P85ν̂ � of the global estimate, namely the orange point and
error bar of Fig. 1. The black, dashed lines highlight the integer values ν= 1, ν= 2. The gray portions of the histogram bars contain the estimates of the
fractal dimension that are deemed to be compatible with an integer value (see Methods).

Fig. 5 Local fractal dimension estimates for hypocenters obtained with the F3 metric. Maps of estimated local fractal dimension �ν on the surface of the
Earth (a) and related histogram of �ν (b). The color scale is the same in both panels. The Earth surface is mapped via an equirectangular projection. In b, the
vertical solid lines and shaded areas correspond to the median ~ν and the percentile range ½P15ν̂ ; P85ν̂ � of the global estimate, namely the green point and error
bar of Fig. 1. The black, dashed lines highlight the integer values ν= 1, ν= 2. The gray portions of the histogram bars contain the estimates of the fractal
dimension that are deemed to be compatible with an integer value (see Methods).
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Time dependence of global fractal dimension. The above ana-
lysis was carried out on the period between 2004 and 2020. A
point worth investigating is whether and how the fractal
dimension changes in time. The global fractal dimension as a
function of the year is shown in Fig. 6. In most cases, the yearly
values of fractal dimension are compatible, within the respective
uncertainties, with the value for the whole period, which can be
seen as an evidence of the constancy of the global fractal
dimension all along the time span considered (17 years). Three
points exhibit significantly lower fractal dimension, namely the
years 2005, 2011 and, to a lesser extent, 2010.

These three cases are affected by a significant, low-dimensional
contribution. Each year is indeed characterized by a large-
magnitude event: the m= 8.6 Indonesia earthquake of 28 March
200565; the m= 8.8 Chile earthquake of 27 February 201066; the
m= 9.1 Japan earthquake of 11 March 201167. These events were
followed by a large number of smaller-magnitude aftershocks,
which account for a relevant fraction (>15%) of that year’s total
number of events. It is, therefore, reasonable to hypothesize that
the global fractal dimension was affected by the point-like
distribution—as viewed on a global scale—arising from the
aftershocks of these large events. In these cases, despite the
exclusion of correlated events (see Methods)—which relies on an
algorithm for cluster identification but does not collapse a cluster
to its mainshock—aftershocks associated to large events are so
many that their distances with other, uncorrelated events
contribute significantly to the estimation of fractal dimension.

To verify this interpretation, we carried out an additional,
trimmed computation of the global fractal dimension on the years
2005, 2010 and 2011. Prior to the analysis, and for each of the three
years, we excluded the respective large-magnitude event from the

corresponding dataset. Moreover, all the successive events of that
year that occured within a 10∘ radius around the large event were
also excluded (see Eq. (3) in Methods). To prevent analysis biases,
we applied the same exclusion approach to years 2004 and 2012,
both containing events of comparably large magnitude, i.e., larger
than 8.5 (the m= 9.1 Indonesia earthquake on 26 December 200468

and the m= 8.6 Indonesia earthquake on 11 April 201269).
The global fractal dimensions resulting from the trimmed

computations for the years 2004, 2005, 2010, 2011, and 2012 are
shown in Fig. 6 alongside the originally computed values. The
dimensions for the years 2005, 2010, and 2011 indeed turn out to
increase and, in the case of 2005 and 2011, become consistent with
the values of the years devoid of large events and of the whole
period. In the case of 2004 and 2012 the values are essentially
unchanged. This outcome can be explained by considering the
fractions of events within each year that were excluded in the
trimming procedure: these fractions are equal to 5% in 2004, 16% in
2005, 16% in 2010, 31% in 2011 and 6% in 2012. In other words, a
reduction of fractal dimension due to aftershocks following a large
event is observed only if the corresponding number of events
accounts for 15% of the total number of events in the dataset.

Considering the trimmed analysis, the global fractal dimension is
essentially stationary, although some residual variability persists. The
time dependence of this variability does not appear to follow any
obvious law. Attempting to fit it with a model bereft of a theoretical
justification—for example, a linear law—can lead to unreliable
results. Also, any time dependency might occur over time scales that
are significantly different from the ones analyzed in Fig. 6.
Addressing these issues would require higher statistics, i.e., a lower
magnitude of completeness, and/or a longer temporal coverage as
compared to the two decades analyzed in the present work.

One could argue whether the yearly residual variability
observed in Fig. 6 might have a statistical origin, for example, a
dependence on the number of events included in the estimation.
To test this possibility, we analyzed correlations between yearly
global fractal dimension and the related number of events. A
scatter plot of the two quantities is reported in Fig. 7. The
Spearman correlation coefficient r between number of events and
global fractal dimension was computed and tested against the null
hypothesis of uncorrelated data. The resulting correlation
coefficients r and the corresponding p-values are r=− 0.27, p=
0.31 for epicenters and r=− 0.30, p= 0.23 for hypocenters. In
both cases, as p-values are well above the 5% significance level, the
null hypothesis of uncorrelated data is not rejected.

The residual dimension variability observed here cannot be
straightforwardly explained: tackling this issue, e.g., by correlating
it with other lithosphere observables, can provide an additional
key to understand the inner dynamics of the Earth.

Magnitude dependence of global fractal dimension. A further
point worth investigating is a possible dependence of fractal
dimension on magnitude. To carry out this analysis, events were
divided into three subsets by considering the magnitude intervals
4; 4:5½ Þ; 4:5; 5:5½ Þ, and 5:5;1½ Þ (see Methods). The global fractal
dimension for each magnitude range is shown in Fig. 8. While a
clear dependence on magnitude does not emerge from these
results, an interesting observation is that the highest-magnitude
group, though affected by higher uncertainties, exhibits a marked
discrepancy between epicenters and hypocenters dimension. This
fact suggests that depth might play a role only in the case of
higher magnitudes (m ≥ 5.5).

Discussion
In this work we analyzed, in terms of its fractal —or correlation
—dimension, the distribution of earthquakes having

Fig. 6 Time-dependent global fractal dimension. Global fractal dimension
as a function of years computed by means of the E3 metric for epicenters
(a) and hypocenters (b). Points and error bars correspond to the median ~ν

and the percentile ranges ½P15ν̂ ; P85ν̂ �. The horizontal dashed lines and shaded
areas correspond to the median values ~ν and the two percentile ranges
½P15ν̂ ; P85ν̂ � (darker shade), ½P05ν̂ ; P95ν̂ � (lighter shade) of the global estimates
for the whole dataset (see also Figs. 1, 2). The black, dashed lines
correspond to the dimension ν= 1. The difference between the original and
trimmed values is thoroughly discussed in the main text.
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magnitude ≥ 4 and occurring on the whole Earth over a 17-year
period (2004–2020). We found that the distribution of earth-
quakes exhibits a noninteger fractal dimension on a global scale.
To our knowledge, this is the first assessment that provides a
robust, model-free evidence of global fractality by taking into
account events occurring over the whole lithosphere and
including a large number of events (>2 ⋅ 105). In addition, we
evaluated the fractal dimension on a local scale, obtaining
noninteger values that are in agreement with regional analyses
reported in the literature and are distributed about the value
assessed on a global scale.

We showed that global fractal dimension does not significantly
change whenever the analysis is restricted to a subset of events,
either by time segmentation or by considering different magni-
tude ranges. This last observation is consistent with the scale
invariance described by the G-R law: as no characteristic mag-
nitude determining earthquake occurrence can be identified, the
geometry of the distribution of events is essentially the same at
any magnitude. This result suggests a possible, future develop-
ment of the work in which the role of catalog incompleteness is
investigated. A possibility could be to introduce artificial
incompleteness in a synthetic epidemic-type aftershock sequence
model70 and to assess the resulting effect on the fractal dimen-
sion. Along the same line, it would be interesting to compare the
present results with those obtained from local catalogs with lower
magnitude of completeness.

By analyzing the distributions of both epicenters and hypo-
centers, without a priori restricting to one of the two kinds of data
as typically done in the literature, we found that on a global scale
the fractal dimensions of epicenters and hypocenters are statis-
tically compatible. This observation implies that the structures
probed by the global analysis mostly concern the distribution over
lengths larger than tens or hundreds of kilometers. On the

contrary, the assessment of local fractal dimension is affected by
the inclusion of event depths. As shown in Fig. 2, local fractal
dimensions for hypocenters tend to be higher than epicenter
values, although this is not a general rule for all geographical
regions. Specifically, larger hypocenter dimensions, which in
some cases are greater than 2, are mostly detected in the western
Pacific area. These findings highlight the fact that analyzing
epicenter or hypocenter locations does not necessarily provide
equivalent results. On the contrary, it would be interesting—
though beyond the scope of the present work—to investigate the
origin of such difference in terms of both the dynamics of the
lithosphere and its structural properties.

The local correlation dimension being distributed between 0.5
and 2.5 (see Fig. 2), along with its being well-defined on a global
scale as 1.30 ± 0.03 (see Fig. 2), is a marker of multifractality, a
property shared by most naturally-occurring and synthetic com-
plex systems71,72. In fact, if it were a monofractal, any local subset
would have the same structure as the whole object and thus the
same local correlation dimension. A multifractal analysis goes
beyond the scope of the present work. However, as mentioned in
the Introduction, it has to be stressed that it is the correlation
dimension ν, rather than other dimensional estimates like the
information dimension and the Hausdorff dimension, that is
relevant for describing the spatial concurrence of earthquakes.

The found value for the fractal dimension of about 1.3 is
characteristic of many other phenomena associated to the system
Earth. For example, the coastlines of Britain have a fractal
dimension of 1.2573, a value that is close to the one of 1.3 predicted
by stochastic models of islands’ relief74. Similarly, topography and
bathymetry profiles exhibit a fractal dimension of about 1.254.
Fractality was also investigated in basaltic lava flows, which were
found to have a dimension in the range 1.12–1.4275–77.

Interestingly, comparable—though indirect—estimates of
fractal dimension were independently obtained by means of
natural time analysis of seismicity14: an estimate of 1.32 ± 0.06 for
the Mediterranean region78 (corresponding, in the present work,
to 33 subsectors for which an estimate of �ν is available, and whose
average fractal dimension is 1.6 ± 0.3); an estimate of
1.398 ± 0.019 globally, considering events of magnitude m > 4.979;
a slightly smaller value, namely 0.95 ± 0.02, for the Pacific Coast

Fig. 8 Magnitude-dependent global fractal dimension. Global fractal
dimension of the three magnitude ranges for both epicenters (blue) and
hypocenters (red), computed by means of the E3 metric. Points and error
bars correspond to the median ~ν and the percentile ranges ½P15ν̂ ; P85ν̂ �. The
horizontal lines and shaded areas correspond, as in Fig. 6, to the medians ~ν
and the percentile ranges ½P15ν̂ ; P85ν̂ � of global fractal dimension evaluated on
the whole dataset.

Fig. 7 Dependence of global fractal dimension on number of events.
Scatter plot of the global fractal dimension of epicenters (a) and
hypocenters (b), obtained by means of the E3 metric, versus the number of
events. Each dot and the related error bar correspond to the value of one
year among those shown in Fig. 6, and is reported with the same color: gray
dots correspond to the years for which the fractal dimension was computed
upon exclusion of large events (see main text).
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of North and Central America80 (in this case, the 9 subsectors for
which �ν is available correspond to an average fractal dimension of
1.1 ± 0.1).

The similarity of all these values can be attributed to the
expression of the underlying internal dynamics of the planet in
proximity of its surface, which leads to properties that are
fractal in space and chaotic in time. Moreover, the fractality of
the earthquake distribution can be explained by the distribution
of faults being fractal as a result of plate tectonics, where tec-
tonic forces fragment the continental crust into a fractal dis-
tribution of interacting crustal blocks over a wide range of
spatial scales; the crustal blocks are bounded via faults, so that a
fractal distribution of block size can be associated with a fractal
distribution of faults54. Finally, these mechanisms of plate tec-
tonics shaping the Earth’s surface are likely activated by the
chaotic, intermittent energy transport mechanisms that result
from mantle convection.

The present, unambiguous estimation of the global fractal
dimension of earthquake distribution provides a robust constraint
for any dynamical model of the lithosphere, where seismic phe-
nomena have to occur according to well-established scaling laws.

Methods
The earthquakes considered here were extracted from the earth-
quake catalog of the United States Geological Survey (USGS)81.
The analyses presented in this work were carried out on different
sets of earthquakes. Earthquakes are highly localized in space and
time with respect to the typical scales of the lithosphere size and
evolution1, and we can therefore consider an earthquake occur-
rence to be described by a point process. Consequently,
throughout the present work, the terms earthquake and event are
used interchangeably. Each event Ei, where i ¼ 1¼I , is labeled
by latitude θi, longitude λi, depth ζi, magnitude mi, and occur-
rence time ti. This last parameter, which is provided in the catalog
as a UTC timestamp having millisecond resolution, is expressed
as Unix epoch time: ti corresponds to the number of seconds that
have elapsed since January 1st, 1970, 00:00:00 UTC up to the
occurrence of the i-th event.

Data selection. The USGS catalog was queried for all earthquakes
of magnitude greater than or equal to 2.5 and occurring in the
years from 1980 to 2020 inclusively. This raw dataset was then
suitably trimmed both in time and by determining the so-called
magnitude of completeness Mc as follows.

First, to assess the time interval in which data are most
complete, the yearly number of events having magnitude m ≥ 4.5
was considered, as shown in Fig. 9. Two distinct time periods can
be identified, namely years up to 2003 and years from 2004 on, as
highlighted in Fig. 9 by different colors: indeed, the second period
exhibits a systematically higher event count than the first one.
This fact is possibly due to the improvement of instrumental
sensitivity and geographical coverage of the detection networks, a
trend that is visible also during the first period. Consequently, the
period 2004–2020 was selected as the one that provides the most
complete data.

In the second step, an accurate value of the magnitude of
completeness Mc was evaluated on the subset of events
corresponding to this last period. To this purpose, the
frequency-magnitude distribution of events, namely the histo-
grams of the number NðMÞ of events having m equal to and
greater than M were considered: NðMÞ ¼fEi jmi ≥MÞg. There-
upon, the so-called Goodness-of-Fit Test82 was applied by fitting
a G-R law of the kind NðMÞ ¼ 10a�bM on the frequency-
magnitude data (the residual threshold parameter for the
Goodness-of-Fit Test was set to 5% as in ref. 83). The

corresponding magnitude of completeness Mc turns out to be
equal to Mc= 4, while the exponent b of the G-R law was found
to be b= 1.02 ± 0.01 and a= 9.70 ± 0.06. The parameter Mc= 4
is given without error: Mc is used here as a threshold value for
further numerical assessments, so that an error assignment is
unnecessary. The Goodness-of-Fit approach for the evaluation of
Mc is less stringent than other available criteria, as we aimed at
maximizing the size of the analyzed dataset. However, it is worth
remarking that, as it can be inferred from the results of fractal
dimension estimation as a function of magnitude (see Fig. 8),
changes of Mc of order ~0.5 would only marginally affect the
fractal dimension estimate.

The main dataset analyzed in the present work, referred to as
D0, is thus given by the set of all events having magnitude m ≥ 4
and occurring between the beginning of 2004 and the end of
2020:

D0 ¼ Ei jmi ≥ 4 ^ ti 2 ½to; tf �
� �

; i ¼ 1; ¼ ; jD0j; ð1Þ
where to and tf correspond to 2004-01-01, 00:00 UTC and 2020-
12-31, 23:59 UTC, respectively. The cardinality D0, i.e., the total
number of events contained in D0, is D0= 238384. The epicentral
locations of all events in the D0 dataset are shown in
Supplementary Fig. 1. To show that the dataset correctly samples
events without biases in depths and magnitude, the conditional
probability distribution p(ζ∣m) of event depths ζ given their
magnitudes m is shown in Supplementary Fig. 2.

Throughout the work, additional analyses were carried out on
subsets of D0. More specifically, a time-dependent analysis of fractal
dimension relies of yearly sets of events obtained by partitioning
the D0 dataset into 17 subsets DY, with Y= 2004,…, 2020,
according to the year of occurrence of the events:

DY ¼ Ei 2 D0 j ti 2 ½to;Y ; tf;Y �
n o

: ð2Þ
Here, to;Y and tf;Y correspond to Y-01-01, 00:00 UTC and Y-12-31,
23:59 UTC, respectively. The cardinalities ∣DY∣ of these yearly
datasets are of order 104 events. Some years, for example 2011,
contain a single large event. For each of these years, an additional
dataset D0

Y was analyzed corresponding to the DY dataset trimmed
by excluding the events occurring after the large event iY and in a
10∘ radius around it:

D0
Y ¼ DY n Ei 2 DY j ti ≥ tiY ^ dF2iiY ≤ 10

�
n o

: ð3Þ
Finally, a magnitude-dependence analysis was carried out. To

this purpose, events were divided into three subsets by

Fig. 9 Yearly number of events having m≥ 4.5. The different colors, as
well as the separating black, dashed line, highlight the two distinct regimes
that can be inferred from the data: gray, 1980–2003; green, 2004–2020.
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considering the magnitude intervals 4; 4:5½ Þ; 4:5; 5:5½ Þ, and
5:5;1½ Þ:

Dlow�m ¼ Ei 2 D0 j 4≤mi < 4:5
� �

;

Dmid�m ¼ Ei 2 D0 j 4:5≤mi < 5:5
� �

;

Dhigh�m ¼ Ei 2 D0 jmi ≥ 5:5
� �

:

The choice of the intervals aims at approximately balancing the
size of the three subsets, thus compensating the effect of the
power-law magnitude distribution of earthquakes.

Distance metrics. The fractal dimension ν was estimated through
the evaluation of the correlation dimension by applying the Takens
estimator16. As for other correlation dimension estimators, the
Takens estimator relies on the computation of pairwise distances
between events in a given embedding space. Results are expected to
be independent of the metric used to compute distances.

The following four metrics, henceforth referred to as spherical
surface (SP), flat 2-d (F2), flat 3-d (F3), and Euclidean 3-d (E3)
were considered:

dSPij ¼R0 arccos sin θi sin θj þ cos θi cos θj cos Δλð Þ
h i

;

dF2ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθi � θjÞ2 þ Δλ2

q
;

dF3ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθi � θjÞ2 þ Δλ2 þ ðξi � ξjÞ2

q
;

dE3ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2

q
;

where R0 is the Earth radius. Longitude differences Δλ are
computed according to the following rule: Δλ= ∣λi− λj∣ if
∣λi− λj∣ ≤ 180∘, while Δλ= 360∘− ∣λi− λj∣ if ∣λi− λj∣ > 180∘.
Consequently, Δλ∈ [0, 180∘]. The variables xi, yi, zi are computed
by mapping spherical coordinates to Cartesian coordinates,
namely

xi ¼ðR0 � ζ iÞ cos θi cos λi;
yi ¼ðR0 � ζ iÞ cos θi sin λi;
zi ¼ðR0 � ζ iÞ sin θi :

Finally, the angular depth ξi is computed as 180�
π

ζ i
R0
. The SP and F2

metrics are both acting on points that lie on a two-dimensional
manifold—the surface of an R0-radius sphere or a two-
dimensional flat space with periodic boundary conditions,
respectively—whereas the E3 and F3 metric act in a three-
dimensional space. Consequently, the metrics SP and F2 provide
dimension estimates bounded between 0 and 2, while the E3 and
F3 metrics provide values between 0 and 3.

The choice of the E3 metric follows from its immediate
interpretation as the physical distance between points in three-
dimensional space (for example, it is the distance that seismic
waves have to travel within the Earth’s interior). On the other
hand, because epicenters are located on a spherical surface,
another natural choice is the SP metric, which is the geodetic
distance between two points on the Earth surface. The F2 metric
is chosen as a mean of comparison because it includes
information both on latitude and longitude (contrarily, for
example, to Chebyshev metric) and because it approximates the
SP metric at low distances (contrarily, for example, to the taxicab
metric). Finally, the F3 metric corresponds to an extension of F2
to three dimension by means of the inclusion of an additional
angular quantity that incorporates information on depth.

Dimension estimation. Given a set of events, the Takens esti-
mator is implemented as follows.

1. Pairs of events i, j are randomly extracted with replacement:
a given pair is accepted only if the two events are
uncorrelated60,84 (see Section “Details on avoiding corre-
lated events”). For each accepted pair, and given a metric,
the spatial distance dij is computed. The extraction is
repeated until NP accepted distances are collected.

2. The set of NP accepted distances is ordered. The set can be
expressed as {rk} with k 2 ½1;N 0

P�, where N 0
P ¼ NP unless at

least two equal distances dij exist: rk thus corresponds to the
k-th smallest distance dij.

3. The following function of the distance r is computed:

uðrkÞ ¼ � 1
k� 1

∑
k�1

h¼1
ln

rh
rk

� �� ��1

; ð4Þ

where k runs from 2 to N 0
P.

4. An interval of r, henceforth referred to as a plateau, on which
the curve u(rk) is constant is searched for, as explained in
Section “Details on plateau assessment”. A successful search,
corresponding to the identification of a plateau, yields an
estimate of fractal dimension ν̂n and its uncertainty δν̂n.

5. According to a standard bootstrapping procedure, steps 1–4
are repeated NB times, thus yielding a set fν̂ng of estimated
dimensions. On this set, the average �ν, the standard
deviation σν, the median ~ν, the 15th percentile P15

ν̂ , the 85th
percentile P85

ν̂ , are then computed.

To ensure the reliability of the method, the number of
extracted pairs has to be much less than the number of available
ones: NP≪D2/2, where D is the size of the set considered60,85.
For global estimations, where D0

2/2≃ 3 ⋅ 1010,NP= 5 ⋅ 104. For
local estimations, which operate on sets of minimum size 500
corresponding to D2/2≃ 105, we set NP= 2 ⋅ 104. The number of
bootstrap iterations was set to NB= 103 and NB= 102 for global
and local estimates, respectively.

Details on avoiding correlated events. The estimation of cor-
relation dimension requires the evaluation of distances between
pairs of points that are to be uncorrelated with each other84. This
condition of uncorrelation is required by any method that relies
on the evaluation of the correlation integral out of a set of points,
regardless of the physical origin of the set itself84. Typically, this
requirement reflects into the rejection—during the random
extraction procedure—of those pairs of points that are deemed to
be correlated according to some practical criterion, e.g., their
closeness in time with respect to the typical autocorrelation time
of the underlying process60,84–86.

In the present work, the selection criterion applied to earthquake
events is based on the identification of clusters of earthquakes
according to the window-based procedure by Gardner and Knopoff87.
The procedure considers a time interval w(m) and a distance d(m)
that depend on magnitude. Given an event Ei, all subsequent events
within a time window w(mi) and occurring within a distance d(mi)
from Ei are deemed to be aftershocks of Ei and thus assigned to the
same cluster. Thereupon, the space-time window-based collection of
aftershocks is applied again to the event in the cluster having the
largest magnitude (if it differs from Ei). The parameters w(m), d(m),
originally provided as tabulated values87, were here computed by
means of the interpolating formulas proposed in ref. 88.

The application of this clustering procedure allows to assign
each event to a cluster (possibly containing a single earthquake).
The selection criterion then consists in discarding a pair of events
Ei, Ej if they belong to the same cluster. It is worth highlighting
that the criterion does not correspond to the selection of
mainshocks only, because aftershocks are retained in the dataset.
The estimation of dimension neglects pairs of aftershocks
belonging to the same cluster, but includes pairs belonging to
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different clusters. In this sense, the present correlation criterion
allows to study the fractal geometry contributed by both
mainshocks and aftershocks, while avoiding spurious results
due to the presence of correlated distances84.

An analysis on the role of the cluster identification method is
reported in Supplementary Note 1 (Supplementary Figs. 3–4).
Other two cluster identification methods were considered, namely
the one proposed by Reasenberg89, and the one proposed by
Baiesi and Paczuski90 and further improved by ref. 91. As shown
in Supplementary Note 1, the three methods yield equivalent
results in terms of global fractal dimension (Supplementary
Fig. 5). Because the Gardner-Knopoff method provides the most
conservative approach for the purpose of the present analysis—
i.e., it identifies larger clusters—it was selected as the cluster
identification method throughout the work.

Details on plateau assessment. As described in the previous
section, the Takens estimator implemented in the present work is
based on the assessment of the curve u(r) given by Eq. (4). The
curve u(r) should ideally converge to the value ν of the correlation
dimension16. In order to identify this convergence, i.e., to obtain
an estimate of the dimension ν̂, a possible approach is to look for
a plateau within the curve, namely a region of r on which u(r) is
approximately constant.

As explained above, a curve u(r) is sampled by a set of N 0
P

values, with N 0
P at least equal to 2 ⋅ 104. For each k value between

ℓ/2 and NP/2− ℓ/2+ 1, we consider the running window
centered in k and encompassing ℓ= 103 point from kmin ¼
k� ‘=2 to kmax ¼ kþ ‘=2� 1. The choice of the maximum value
of the center k corresponds to limiting the search only at
distances below the median distance. This choice is justified by
the fact that, in the standard framework of correlation dimension
estimation, the power-law scaling of the correlation integral only
holds for small distances59,60.

Given a running window, a linear regression is carried out on
the corresponding ℓ points: the slope β̂ and intercept α̂ of the
regression are computed as

β̂ ¼
∑kmax

h¼kmin
rh � hrhi
	 


uh � huhi
	 


∑kmax
h¼kmin

rh � hrhi
	 
2 ;

α̂ ¼huhi � β̂hrhi;

where all averages run on the (rk, uk) pairs contained in the given
window. In order to estimate confidence intervals, the following
quantities are also computed:

s2u ¼
1

‘� 1
∑
kmax

h¼kmin

uh � huhi
	 
2

;

R2 ¼ ∑
kmax

h¼kmin

uh � α̂� β̂rh
� �2

;

Q2 ¼ ∑
kmax

h¼kmin

r2h:

The 95% confidence intervals for α̂ and β̂ are estimated by
considering the value t0.025,ℓ−2 such that the cumulative
t-distribution with ℓ− 2 degrees of freedom equals 0.975
(a two-tailed confidence interval is considered). In detail:

δβ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2

ð‘� 2Þ∑kmax
h¼kmin

rh � hrhi
	 
2

vuut t0:025;‘�2;

δα̂ ¼ δβ̂

ffiffiffiffiffiffi
Q2

‘

r
t0:025;‘�2:

The 95% confidence intervals for slope and intercept are finally
determined as

β 2 β̂� δβ̂; β̂þ δβ̂
h i

;

α 2 α̂� δα̂; α̂þ δα̂½ �:
Among all the available windows, only those such that the

slope is compatible—at 95% confidence—with zero, i.e., those for

which 0 2 β̂� δβ̂; β̂þ δβ̂
h i

, are selected. If none is available, the

search is deemed to be failed. Otherwise, the (up to) ten windows
whose slope is compatible with zero and have the smallest β̂ are
considered. Within this set, the window having the smallest
sample variance s2u, namely the one minimizing the fluctuations of
u, is finally chosen as the plateau. The intercept α̂ associated to
this plateau is taken as the estimate ν̂.

Earth surface partition. The present work deals with both global
and local estimates of fractal dimension. In the global case, events
on the whole Earth were included in the estimation of dimension,
thus yielding a single, global evaluation of ν. On the other hand,
local estimates are inferred from events occurring within small
contiguous subsets into which the Earth surface was partitioned
and that are henceforth referred to as sectors.

We consider here partitions in 648 sectors. Let θo, λo be the
coordinates (latitude and longitude) that identify the origin of a
partition Πθoλo

. Each sector belonging to Πθoλo
has a size 10∘ × 10∘

and is defined as follows:

θ 2 θo þ h10�; θo þ ðhþ 1Þ10� 

;

λ 2 λo þ l10�; λo þ ðl þ 1Þ10� 

;

where the indexes h, l take on values in the intervals
[− 9, 8], [− 18, 17], respectively. Only the sectors that contain a
sufficient number of events were considered for the evaluation of
fractal dimension: the sufficiency threshold was set to 500.

To improve spatial resolution, we considered here four partitions,
namely Π00,Π05,Π50,Π55. The set of all intersections of the sectors
of these partitions corresponds to another partition Π0 of the Earth
surface consisting of 2592 subsectors each having a size 5∘ × 5∘. A
diagram illustrating this partitioning is shown in Fig. 10.

Let Σ be the 5∘ × 5∘ subsector given by the intersection of four
sectors S1; ¼ ;S4, each belonging to one of the four partitions,
and let �νðSkÞ; σ2νðSkÞ be the mean and variance estimated as in

Fig. 10 Earth partition diagram. Each of the four 10∘ × 10∘ squares bounded
by solid lines corresponds to the seed sector of the respective partition
S00;S05;S50;S55 (origins are marked by crosses). The point P belongs to
the 5∘ × 5∘ subsector that results from the intersection of the four sectors.
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step 5. above in the case of the sector Sk. The dimension �ν
corresponding to the subsector is then computed as the weighted
average of the four mean values �νk ¼ �νðSkÞ, where the weights
are given by the inverse of the variances wk ¼ 1=σ2νðSkÞ:

�ν ¼ ∑4
k¼1 wk�νk
∑4

k¼1 wk

: ð5Þ

It is worth noting that, occasionally, the sum includes less than
four terms because some of the sectors contributing to it might
not provide an estimate of �νk due to a low event count or a failed
estimate. The uncertainty δν on �ν is evaluated as

δν ¼ ∑4
k¼1 1

∑4
k¼1 wk

 !1
2

: ð6Þ

Once the local �ν and its uncertainty δν are estimated, the
underlying geometry can be considered fractal only if these values
are incompatible with an integer value. To address this point we
considered the distance of �ν from its closest integer value b�νe,
normalized by the standard deviation δν: if the resulting quantity
�ν � b�νe=δν is greater than 2, i.e., if the distance of �ν to the closest
integer is greater than two standard deviations, the value �ν is
deemed to be noninteger.

Data availability
All input data (event locations, occurrence time and magnitude) are openly available
online from the USGS earthquake catalog available at https://earthquake.usgs.gov/. Post-
processed data are made openly available on Zenodo, at doi:10.5281/zenodo.10119028
(https://doi.org/10.5281/zenodo.10119028).

Code availability
All custom code used in this study is available upon request to the corresponding author.
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