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Abstract: Asphalt pavements are subject to regular inspection and maintenance activities over
time. Many techniques have been suggested to evaluate pavement surface conditions, but most of
these are either labour-intensive tasks or require costly instruments. This article describes a robust
intelligent pavement distress inspection system that uses cost-effective equipment and the ‘you only
look once’ detection algorithm (YOLOv3). A dataset for flexible pavement distress detection with
around 13,135 images and 30,989 bounding boxes of damage was used during the neural network
training, calibration, and validation phases. During the testing phase, the model achieved a mean
average precision of up to 80%, depending on the type of pavement distress. The performance
metrics (loss, precision, recall, and RMSE) that were applied to estimate the object detection accuracy
demonstrate that the technique can distinguish between different types of asphalt pavement damage
with remarkable accuracy and precision. Moreover, the confusion matrix obtained in the validation
process shows a distress classification sensitivity of up to 98.7%. The suggested technique was
successfully implemented in an inspection car. Measurements conducted on urban roads crossed by
tramway lines in the city of Palermo proved the real-time ability and great efficacy of the detection
system, with potentially remarkable advances in asphalt pavement examination efficacy due to the
high rates of correct distress detection.

Keywords: asphalt pavement; distress detection; deep learning; urban roads

1. Introduction

Most state road operators supervise road pavement distress to support their asset
management systems. An efficient pavement management system (PMS) necessitates
the integration of modules for pavement inspection, condition assessment, condition
prediction, optimisation, and decision-making regarding maintenance actions. The initial
stage involves determining pavement conditions, which can be performed using a range of
techniques, from manual to fully automated, to reduce subjectivity and increase efficiency.
The implementation of an efficient pavement management system (PMS) requires accurate
pavement inspections [1]. Correctly identifying pavement distress is of huge importance for
maintaining high levels of safety and performance for road transportation systems. Road
pavement degradation is predominantly due to light and heavy vehicle traffic, weather
conditions, and sunlight. Pavements can be classified into four main categories according
to the materials used, namely asphalt (also known as flexible pavement), concrete, gravel,
brick, and block. Over 90% of the total European road network has a flexible pavement [2].
Flexible pavements are composed of different layers: surface, binder, base, and subbase
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courses. Distresses can be grouped into two different types (i.e., cracking and non-cracking),
as shown in Figure 1 [3,4].
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lows [2] (Qureshi et al., 2023): 
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Other classifications can be found in the literature. For instance, according to [5],
distress can be categorised into six groups. The shapes of some common distresses are
depicted in Figure 2. In addition, cracks can be subdivided based on the crack width
(Table 1) [6].
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Table 1. Examples of distress severity (adapted from [6]).

Crack Type Standards/Guidelines Severity Based on Crack Width

Longitudinal/Transverse
AASHTO R 55–10 Level 1 ≤ 3 mm 3 mm ≤ Level 2 ≤ 6 mm Level 3 > 6 mm
ASTM D6433-16 Low ≤ 10 mm 10 mm ≤Medium ≤ 75 mm High > 19 mm

FHWA LTPP Low ≤ 6 mm 19 mm ≤Medium ≤ 75 mm High > 75 mm

Block
AASHTO R 55–10 Level 1 ≤ 3 mm 3 mm ≤ Level 2 ≤ 6 mm Level 3 > 6 mm
ASTM D6433-16 Low ≤ 13 mm 13 mm ≤Medium ≤ 75 mm High > 50 mm

FHWA LTPP Low ≤ 6 mm 19 mm ≤Medium ≤ 75 mm High > 19 mm

The quality of road pavement can be assessed by applying several standards, as
follows [2] (Qureshi et al., 2023):

• Pavement Surface Evaluation Rating (PASER); rating from 10 to 1 (9–10 excellent
condition, 2–1 extremely poor).

• Pavement Condition Index (PCI) (ASTM 2011, ASTM 2020); rating from 100 to 0
(100–85 good condition, 10–0 completely deteriorated).

• Pavement Surface Condition Index (Irish PSCI); rating from 1 to 10.
• Road Condition Indicator (RCI).
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Damage to road pavement mainly results from wear and tear, defects in the materials,
or issues during the construction phases.

The pavement distress survey provides a helpful basis for suggesting corrective actions
that allow for the scheduling of effective maintenance interventions with clear financial
benefits for the road operator [7]. Traditional methods for pavement distress identification
are complex and ineffective at dealing with large quantities of images to be inspected.
Numerous automated procedures have been developed to identify pavement distress.
However, currently, the most widely used and most reliable technique for evaluating
flexible pavement distress requires manual or semi-automated data collection by specialised
technicians [7], which is time-consuming and labour-intensive [6].

Although some phases of pavement inspection have been moderately automated
through image and video data acquisition, the following main problems persist:

� Damage detection is still a difficult activity [7].
� Current automated systems are often expensive to acquire and operate, and they are

not simple to use [8]. Consequently, distress is generally detected through visual in-
spections or manual measurement instruments [5]. Manual techniques aim to identify
and classify pavement cracks on the basis of shape, dimensions, and other parameters.

� Manual procedures have several restrictions, such as modest precision, subjectivity,
and inconsistency in analysis outcomes.

To overcome these and other limitations, several automated criteria have been pro-
posed, starting with the evidence that applications of artificial intelligence (AI) are becoming
common in transportation and pavement engineering. In particular, deep learning (DL)
algorithms were applied in previous studies [9–12]. Recently, deep learning has shown
several potential applications in many real-world domains [13], including target detection
in pavement engineering. In deep learning, a computer model learns how to perform
classification tasks based on different types of information, such as texts, sounds, or images.
The models used in deep learning are built from a large amount of labelled data and neural
network structures that contain different layers. The word ‘deep’ refers to the number
of hidden layers in the neural network. The assessment of pavement conditions can be
conducted through the utilisation of deep learning models, which can analyse pavement
images and videos to evaluate the state of the pavement, encompassing such aspects as
cracks, potholes, and other defects. This appears to be a beneficial approach for prioritising
maintenance and repair endeavours.

Although PMS was originally designed for motorway and highway management, it
can also be adapted for urban roads. Artificial intelligence techniques to identify pavement
distress are increasingly used to solve the inadequacies of manual techniques (Figure 3). AI
detects pavement defects quickly and in real-time; it is more efficient than manual methods,
handles large-scale tasks with many defects, improves the accuracy of detection, and has
high efficiency and strong scalability. On the other hand, AI detection methods can be
expensive in their initial implementation, require technical expertise to be operated and
maintained, may need frequent updates to be adapted to new pavement distress, and entail
a risk of error if not properly trained or in unexpected conditions.

In the present article, we describe a deep learning-based technique for monitoring
asphalt pavement health and decreasing the global time necessary for pavement evaluation.
The detection of pavement damage is obtained using the YOLOv3 algorithm. The most
recent editions of the YOLO family are YOLOv5 and YOLOv8. YOLOv8 was released in
2023. It uses a deep convolutional neural network (CNN) architecture like its predecessors
but with some variations, comprising a new backbone architecture called CSPNet, a new
neck architecture termed FPN+PAN, a new head architecture termed PANet, and a new
training procedure. Because of its recent release, there are only a few YOLOv8 applications
in the field of pavement engineering.
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YOLOv3 possesses numerous advantages and disadvantages. One considerable bene-
fit is its swiftness, thus preserving the same detection speed as in the YOLO family. Another
advantage is its ability to detect small objects, which has become better than the previous
versions. Nevertheless, YOLOv3 has its own limitations. One is its difficulty in handling
variations in scale, particularly when confronted with exceedingly minuscule or colossal
objects. In short, YOLOv3 ensures fast speed and high detection accuracy for small entities,
yet it may find it difficult to deal with scale variations and certain specialised detection
tasks. These characteristics allow YOLOv3 to be applied successfully for object detection.
Overall, its balance between speed and precision makes it the obvious choice for various
applications. Consequently, the YOLOv3 algorithm was used for detecting pavement
damages in this research.

The present article explores case studies of flexible pavements on urban roads crossed by
tramway lines. The proposed technique requires a simple vehicle-mounted camera system.

The experiments proved that a simple video recording device, together with the use of
a deep learning-based approach, can successfully detect several types of pavement damage.
The main results also showed that the proposed technique is both affordable and accurate.

The article is structured as follows: Section 2 explains the deep learning algorithms
applied here. Section 3 briefly describes the known datasets for road pavement damage
detection and, more specifically, those used in this research, as well as the required survey
equipment. Section 4 explains the neural network training and the main outcomes in
terms of loss, precision, recall, and RMSE. Section 5 illustrates the case study, results,
and discussion. The main achievements, challenges, contributions, and limitations are
summarised in Section 6.

2. Algorithms for Crack Detection

In recent times, deep learning (DL) has awakened great interest in several fields of
highway and pavement engineering. In this regard, Mohan and Poobal [14] reviewed
50 scientific articles and collected several procedures for automated distress detection
through image processing. Two-stage object detection algorithms (namely convolutional
neural networks (CNNs)) have proven excellent performance on segmenting pavement
cracks, but the calculation time is unreasonable for real-time applications [14].

Such a problem can be solved by adopting faster ‘one-stage’ (Figure 4) object detec-
tion [15,16]. One-stage models include the single-shot multibox detector (SSD) [17], the
retinanet [18], and ‘you only look once’ (YOLO).

The YOLO (‘you only look once’) algorithm was created by Redmon et al. [19]. It can
classify and locate objects in only one step. YOLOv2 is an enhanced edition of the original
YOLO model. It implements the concept of anchor priors in single-shot multibox detectors
(SSD). YOLOv2 markedly differs in the lower number of layers, with only 19 convolution
layers composed of 3 × 3 and 1 × 1 filters.
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YOLOv3 uses the new Darknet-53 architecture based on successive 3 × 3 and 1 × 1
filters and a residual block inspired by ResNet [20,21]. It showed considerable progress in
detecting small objects in real-time.

YOLOv8 is the last variant of the YOLO family, first released in May 2023. It uses a
deep convolutional neural network (CNN) architecture like its predecessors but with some
changes, including a new backbone architecture called CSPNet, a new neck architecture
called FPN+PAN, a new head architecture called PANet, and a new training procedure.

Despite being launched recently, YOLOv8 has not yet been much used in the field of
pavement engineering. Therefore, this research has applied only the YOLOv3 algorithm to
detect pavement damages.

Figures 5 and 6 show the YOLOv3 architecture. For more details about this algorithm,
the interested reader may consult [22,23].
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The image of interest is partitioned into S × S grids; each grid determines whether the
centre of the focused object is located within it.

The grid evaluates B bounding boxes and the confidence of each box, i.e., the C(Ob),
as follows [22]:

C(Ob) = P(Ob)× IOUtruth
pred (1)

P(Ob) = 1 (no target in the cell); P(Ob) = 0 (there are targets in the cell); (2)
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IoUtruth
pred =

Bground truth ∩ Bpredicted

Bground truth ∪ Bpredicted
(3)

where IoUtruth
pred indicates the intersection over the union (Figure 7).
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The following variables are also calculated:

� (x, y): position of the centre of the bounding box;
� (w, h): height and width of the bounding box;
� P(Classi|Ob): probability that the centre of the i-th object falls into the grid.

2.1. Detector Loss Function

The loss function comprises the following components [25]:

� Classification loss:

S2

∑
i=0

Iobj
ij (pi(c)− p̂i(c))

2 (4)

� Localisation loss [26]:
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λcoord

S2

∑
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Iobj
ij [(x− x̂i)

2 + (y− ŷi)
2] + λcoord

S2

∑
i=0

B

∑
j=o

Iobj
ij [(
√
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� Confidence loss [26]:

S2

∑
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When an object is not detected, it results in the following [25]:

λnoobj
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∑
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∑
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2 (7)

Therefore, the final loss is as follows:
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2
+

S2

∑
i=0

Iobj
ij (pi(c)− p̂i(c))

2
(8)

Finally, the location prediction is calculated as follows (Figure 8) [27]:{
bx = σ(tx) + cx
by = σ

(
ty
)
+ cy

(9)

{
bw = pwetw

bh = pheth
(10)
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2.2. Performance Metrics

The performance of the model in crack detection and classification can be calculated
using the following parameters [29,30]:

Pr =
α

α+ γ
(11)

Rec =
α

α+ δ
(12)

Acc =
α+ β

α+ β+ γ+ δ
(13)
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F1 =
2

1
Pr +

1
Rec

=
2α

2α+ γ+ δ
(14)

Symbol definitions are summarised in Table 2 [29].

Table 2. Meaning of the symbols in Equations (11)–(14).

Symbol Description

Pr precision
Rec recall
Acc accuracy
α true positive
β true negative
γ false positive
δ false negative

Finally, RMSE is obtained with the following relationship:

RMSE =

√√√√ 1
n

n

∑
i
(fi − yi

)2

(15)

RMSE allows the error to be assessed between the ground-truth distress numbers yi
and the predicted distress numbers fi.

3. Survey Equipment

Nowadays, a lot of data sources for flexible pavement distress are openly available to
be used, and the most popular among them are [23,31–35] (Table 3): CFD dataset, AigleRN
dataset, CRACK500 dataset, GAPs dataset, CrackTree200 dataset, Road Damage dataset
2018, and Road Damage dataset 2019.

Table 3. Main properties of some public pavement distress datasets.

Dataset Task Type Distress Device N◦ of
Images Resolution

Aigle-RN segmentation crack professional
camera 38 991 × 462,

311 × 462
CFD segmentation crack smartphone 118 480 × 320

Crack500 segmentation crack LG-H345 500 2000 × 1500
Road surface

damage - - - 18,345 -

Pavement
image
dataset

- - - 7237 -

GAPs v1 object
detection

severe
distress

professional
camera 1969 1920 × 1080

GaMM segmentation crack professional
camera 42 1920 × 480

Cracktree200 segmentation crack - 206 800 × 600
CrackIT segmentation crack optical 84 1536 × 2048

EdmCrack600 segmentation crack GoPro 7 600 1920 × 1080

GAPs v2 object
detection

several
distress - 2468 1920 × 1080

Road damage
dataset 2018

object
detection

several
distress smartphone 9053 600 × 600

Road damage
dataset 2019

object
detection

several
distress smartphone 13,135 600 × 600

CQU-BPDD - - - 60,059 -
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The model was trained on the Road Damage dataset. Its initial version was made
available in 2018, while the most recent version was released in 2019 [33]. Compared to
the first version, in the Road Damage dataset 2019, the total number of annotated images
increased from 9053 to 13,135 and the number of annotations increased from 15,435 to
30,989. Table 4 lists the damage categories, their definitions, and their class names.

Table 4. Classes of pavement distress.

Damage Description Flexible Pavement Class Name

Longitudinal linear crack,
wheel mark part 3 D00

Lateral linear crack, equal
interval 3 D10

Alligator crack 3 D20
Bump, rutting, separation,

pothole D40

Crosswalk blur 3 D43
White line blur 3 D44

Manhole 3 D50

Therefore, the present study takes 13,135 images of pavement cracks into consideration;
the ratio of training, validation, and testing sets was set at 7:1.5:1.5 (i.e., 9195, 1970, and
1970 images, respectively).

Survey Vehicle

In the experimental phase, the input data for pavement distress detection and classifi-
cation are videos of flexible pavements on urban roads in the city of Palermo. The videos
are obtained through a camera installed on the rear windscreen of a car (Figure 9) by means
of a gripper suction device. In order to reduce the motion blur due to vehicle speed and
road conditions, the equipment was only experimented with at speeds v ≤ 50 km/h (the
maximum speed limit of urban roads in Palermo). In addition, a proper camera angle of
around forty-five degrees with respect to the road pavement surface was adopted. The
detected images were 640 × 480 pixels in size, which corresponds to a ground truth mea-
surement area of about 1080 mm × 1447 mm. The accuracy of crack detection was ensured
by a strong camera calibration performed as shown in Figure 10. More details and an
example of this process can be found in [23].
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The first step of this research was the camera calibration obtained from Zhang’s algo-
rithm [35]. The calibration was then performed by using several images of a chessboard in
the outdoor environment (Figure 10). The extrinsic parameters estimated by the calibration
process are depicted in Figure 11. Finally, the model was validated by comparing the
real and predicted distances of some objects [36]. Figure 12 shows an example of distress
annotation [34].



Infrastructures 2024, 9, 34 10 of 20

Infrastructures 2024, 9, x FOR PEER REVIEW 10 of 21 
 

are obtained through a camera installed on the rear windscreen of a car (Figure 9) by 
means of a gripper suction device. In order to reduce the motion blur due to vehicle speed 
and road conditions, the equipment was only experimented with at speeds v ≤ 50 km/h 
(the maximum speed limit of urban roads in Palermo). In addition, a proper camera angle 
of around forty-five degrees with respect to the road pavement surface was adopted. The 
detected images were 640 × 480 pixels in size, which corresponds to a ground truth meas-
urement area of about 1080 mm × 1447 mm. The accuracy of crack detection was ensured 
by a strong camera calibration performed as shown in Figure 10. More details and an ex-
ample of this process can be found in [23]. 

  
Figure 9. Survey vehicle. 

   

Figure 10. Some phases of camera calibration. 

The first step of this research was the camera calibration obtained from Zhang’s al-
gorithm [35]. The calibration was then performed by using several images of a chessboard 
in the outdoor environment (Figure 10). The extrinsic parameters estimated by the cali-
bration process are depicted in Figure 11. Finally, the model was validated by comparing 
the real and predicted distances of some objects [36]. Figure 12 shows an example of dis-
tress annotation [34]. 

 
Figure 11. Camera parameter representation. 

Figure 10. Some phases of camera calibration.

Infrastructures 2024, 9, x FOR PEER REVIEW 10 of 21 
 

are obtained through a camera installed on the rear windscreen of a car (Figure 9) by 
means of a gripper suction device. In order to reduce the motion blur due to vehicle speed 
and road conditions, the equipment was only experimented with at speeds v ≤ 50 km/h 
(the maximum speed limit of urban roads in Palermo). In addition, a proper camera angle 
of around forty-five degrees with respect to the road pavement surface was adopted. The 
detected images were 640 × 480 pixels in size, which corresponds to a ground truth meas-
urement area of about 1080 mm × 1447 mm. The accuracy of crack detection was ensured 
by a strong camera calibration performed as shown in Figure 10. More details and an ex-
ample of this process can be found in [23]. 

  
Figure 9. Survey vehicle. 

   

Figure 10. Some phases of camera calibration. 

The first step of this research was the camera calibration obtained from Zhang’s al-
gorithm [35]. The calibration was then performed by using several images of a chessboard 
in the outdoor environment (Figure 10). The extrinsic parameters estimated by the cali-
bration process are depicted in Figure 11. Finally, the model was validated by comparing 
the real and predicted distances of some objects [36]. Figure 12 shows an example of dis-
tress annotation [34]. 

 
Figure 11. Camera parameter representation. Figure 11. Camera parameter representation.

Infrastructures 2024, 9, x FOR PEER REVIEW 11 of 21 
 

 
Figure 12. An example of distress annotation. 

4. Neural Network Training 
The crucial elements for an accurate model are the image characteristics, in terms of 

quantity and quality, which are selected for the training. In this study, the Road Damage 
dataset 2019 was used (Table 4). Therefore, the pre-trained model was able to identify such 
types of distress in the pavement surface as those given in Table 4.  

The initial learning rate was fixed to 0.001, and the ‘rmsprop’ algorithm was adopted. 
RMSprop is a popular optimisation algorithm used in machine learning. It is designed to 
improve the speed of convergence and find the minimum of the loss function quickly. In 
addition, the following parameters were fixed: minimum batch size 8, total epochs 20 
(38,840 iterations). For the training dataset, Figure 13a summarises the total number of 
bounding boxes for each damage class and the total images in which a given damage was 
detected. As expected, the bounding boxes have relatively small variance in the pixel di-
mensions for the damage types ID00, ID10, ID43, and ID44 and high variations for ID20 
and ID40, as shown in Figure 13b. 

  

(a) (b) 

Figure 13. (a) Sample of images used for different types of damage; (b) object size variance across 
classes. 

Figures 14, 15, 16 and 17 represent the base learning rate, loss, RMSE, and precision–
recall curves as a function of the iterations obtained in the training process. It is immedi-
ately clear how the model can detect flexible pavement damages accurately once around 
8000 iterations are reached. The precision–recall curves demonstrate that the average pre-
cision ranges from 0.5 to 0.8, depending on the distress type (Figure 17).  

D00 D10 D20 D40 D43 D44 D50
Count 4048 3979 6196 2243 736 3995 3553
ImageCount 2796 2240 4713 1390 696 3210 2610

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r

Figure 12. An example of distress annotation.

4. Neural Network Training

The crucial elements for an accurate model are the image characteristics, in terms of
quantity and quality, which are selected for the training. In this study, the Road Damage
dataset 2019 was used (Table 4). Therefore, the pre-trained model was able to identify such
types of distress in the pavement surface as those given in Table 4.

The initial learning rate was fixed to 0.001, and the ‘rmsprop’ algorithm was adopted.
RMSprop is a popular optimisation algorithm used in machine learning. It is designed
to improve the speed of convergence and find the minimum of the loss function quickly.
In addition, the following parameters were fixed: minimum batch size 8, total epochs 20
(38,840 iterations). For the training dataset, Figure 13a summarises the total number of
bounding boxes for each damage class and the total images in which a given damage was
detected. As expected, the bounding boxes have relatively small variance in the pixel
dimensions for the damage types ID00, ID10, ID43, and ID44 and high variations for ID20
and ID40, as shown in Figure 13b.

Figures 14–17 represent the base learning rate, loss, RMSE, and precision–recall curves
as a function of the iterations obtained in the training process. It is immediately clear how
the model can detect flexible pavement damages accurately once around 8000 iterations are
reached. The precision–recall curves demonstrate that the average precision ranges from
0.5 to 0.8, depending on the distress type (Figure 17).
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Figure 13. (a) Sample of images used for different types of damage; (b) object size variance
across classes.
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For a more in-depth evaluation of the flexible pavement distress classification results,
the confusion matrix was calculated (Figure 18). In deep learning applications, the confu-
sion matrix is used for a demonstration of the classification model’s performance. In this
matrix, the columns show the predicted values, while the rows show the actual values. The
cell where the row and column for a certain pavement distress class intersect indicates the
true positive values for that class. We can observe that the pavement distress class with the
lowest sensitivity in the validation data is D43, with a 86.8% sensitivity. On the contrary,
the class with the highest sensitivity is D20, with a 98.7% sensitivity.
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Distress Tracking and Surface Evaluation

The correspondence between a point in an image and its projection on a 2D image is
determined with the use of a geometric model. The real dimension of several distresses can
be estimated by the inverse perspective mapping (IPM) method [35–37]. The IPM method
eliminates the perspective effect in images by converting them to a bird’s-eye view. This
method corrects image distortion caused by tilt through a mathematical transformation
deriving from the vanishing point, image plane, and slope. Multiple transformed images are
stitched together to create a panoramic image. Thanks to the IPM, a top-down view of the
damage to road pavements can be obtained (Figure 19) by means of the following equations:

g
i T = h


− 1

fu
c2 − 1

fv
s1s2

1
fu

cuc2 − 1
fv

cvs1s2 − c1s2 0
1
fu

s2
1
fv

s1c1 − 1
fu

cus2 − 1
fv

cvs1c2 − c1c2 0
0 1

fv
c1 − 1

fv
cvc1 + s1 0

0 − 1
hfv

c1
1

hfv
cvc1 − 1

h s1 0

 (16)

i
gT =


fuc2 + cuc1s2 cuc1c2 − s2fu −cus1 0

s2(cvc1 − fvs1) c2(cvc1 − fvs1) fvc1 − cvs1 0
c1s2 c1c2 −s1 0
c1s2 c1c2 −s1 0

 (17)

where the projection on the pavement surface of the generic point is denoted with iP = {u, v,
1, 1} and the point placed on the road pavement surface is denoted with gP = {xg, yg, −h, 1}.

A bird’s-eye view allows us to project the coordinates of each distress from the input
image onto the pavement surface and then determine the information of interest (e.g., the
length or surface of each distress type). Therefore, the proposed technique can automatically
detect asphalt pavement distress coordinates starting from video recording, in that it
implements a specific procedure for tracking pavement damage present in subsequent
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frames. The proposed tracking algorithm is divided into the phases illustrated in Figure 20.
During detection, the noise was reduced by applying the linear Kalman filter. The use of
this filter is necessary to estimate the coordinates of the points on the perimeter of any
damage present on the road pavement. It is a recursive filter [38] that estimates the state of
a dynamic system of relationships [39,40] as follows:

xn+1 = Anxn + Bnun (18)
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Figure 19. The IPM method used in this research.
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Taking the error covariance [40,41] into consideration, as follows:

Pn+1 = AnPnAn
T + Qn (19)

where xn denotes the state value at phase n, An denotes the state transition matrix, and un
is the measurement and the input at phase n. Qn is the white noise covariance [41]. This
is the ‘prediction step’ because it estimates the n + 1 state. Kalman gain value is obtained
with the following relation [41]:

Kn = PnCT
(

CPnCT + Rn

)−1
(20)
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in which C denotes the measurement matrix and R is the measurement noise.
The actual measurement value is:

Pn = (I−KnH)Pn (21)

where Kn and H are the measurement value and the mapping matrix from the true state,
respectively.

The combination of the IPM and tracking algorithm procedures allows us to determine
the type and area of the surface for each damage. These data are essential for estimating
numerous performance factors (e.g., PCI, RQI, RDI, and SRI [42–44]).

5. The Case Study: Results and Discussions

The case study concerns several urban road sections in Palermo. We selected only
roads crossed by tramway lines. The tramway transportation system of the city was opened
on 30 Dec 2015 and comprises four lines for a total of 23.3 km. According to Bieberc’s
classifications [45,46], some sections of these tramway lines belong to class E (common
corridor) and others to class B (exclusive protected corridor). Figure 21 depicts the tramway
track details for both ballasted tracks and slab tracks. Figure 22 shows the construction
phases of the tramway slab track in Palermo. Finally, Figures 23 and 24 illustrate a few
images of some tramway lines in operation.
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Figure 22. Construction phases of the tramway track on the analysed urban roads. (a) casting of a
lean concrete layer and curb construction; (b) laying of steel reinforcement bars; (c) laying of the flat
framework; (d) casting of the concrete slab and paving.
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Figure 25. Examples of damage detection and surface estimation.

The procedure described in the previous sections was applied to carry out an error
analysis in the case study. Numerous images extracted from 10 video clips were analysed,
and damages were hand-labelled.

A total of 459 labelled frames contain 1378 boundary boxes of damages. The ID50
class is not taken into consideration because it refers to manholes (cf. Table 4), which are
not considered damage. A comparison was made between the observed and real distress.
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The outcomes summarised in Figure 26 demonstrate the correct detection rate to range
from 91% to 98% in distress detection.
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Therefore, the empirical analyses demonstrate that the algorithm used is sufficiently
precise in detecting and measuring pavement damages. This is true, although some errors
are inevitable in the detection phase, especially due to the irregularities in the pavement,
which generate oscillations in the vehicle and therefore in the camera [51–54].

To summarise, the practical importance of the proposed approach is related to the
fact that the timely identification of damages helps the city administration or the road
operator in the decision-making process to choose the appropriate technology for pavement
detection and repair [55]. On the other hand, automated pavement monitoring makes it
possible to choose in advance an environmentally friendly technology (in terms of LCA)
for the maintenance phase, resulting in a significant social benefit.

6. Conclusions

The accurate detection and classification of road pavement distress need to acquire
three-dimensional depth pavement pictures, but this process requires expensive dedicated
survey vehicles, sensors, and other devices. Therefore, alternative techniques should be
considered to analyse road pavement carefully and at a low cost.

This research presents cost-effective equipment for asphalt pavement surface con-
dition evaluation that has been applied for assessing urban road surface condition. The
potential benefits of this equipment were evaluated by means of experiments on several
urban road sections in the city of Palermo (Italy). Such road sections crossed by tramway
lines were analysed because of their numerous distress types, extensions, and spreading.
The procedure is founded on examining videos of asphalt pavement taken by a test car
equipped with a rear camera and then applying the YOLOv3 algorithm for the detection
and measurement of different damage categories. A dataset with about 13,135 images
and 30,989 bounding boxes was used. Damages were classified into seven different types.
The outcomes of the analyses prove that the pre-trained network can classify distress into
several categories, i.e., longitudinal, lateral, and alligator cracks, rutting, bumps, potholes,
etc. The loss and the RMSE guarantee that the algorithm can detect damages with very
good accuracy and speed. In addition, as shown by the confusion matrix calculated during
the validation process, the pavement distress classification sensitivity reaches up to 98.7%.

The experiments showed that a simple videorecording device, together with the
implementation of a deep learning-based procedure, can successfully assess pavement
quality, detect several damage types, and meet the real-time requirements.
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Even though the method needs to be validated with additional experiments in other
road conditions, sample data from 10 video clips from this research proves that the correct
detection rate ranges from 91% to 98%.

However, there are still limitations that require future studies for the following
main reasons:

− Due to vehicle vibrations and visibility conditions, the algorithm is unable to identify
some pavement distress.

− Use of a public dataset.
− In this research, YOLOv3 was applied even though it is a less-performing version of the

YOLO family (e.g., YOLOv5 and YOLOv8). Despite this choice, it is possible to obtain
excellent results in both the detection and classification of road surface damage using
low-cost detection devices. Therefore, the application of deep learning algorithms
in pavement engineering can produce enormous benefits even with less-performing
versions of YOLO and cost-effective equipment.

Future studies may be dedicated to the application of a new generation of YOLO
algorithms (i.e., YOLOv8 or later) and more expensive and higher-resolution cameras.
Finally, it is worth highlighting that with the rapid development of autonomous vehicles,
which will be equipped with numerous cameras and other sensors, the proposed technique
will likely provide details about the state of flexible pavements and useful information for
road operators.
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