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Abstract
After Gentili and Struppa introduced in 2006 the theory of quaternionic slice regular func-
tions, the theory has focused on functions on the so-called slice domains. The present work
defines the class of speared domains, which is a rather broad extension of the class of slice
domains, and proves that the theory is extremely interesting on speared domains. A Semi-
global Extension Theorem and a Semi-global Representation Formula are proven for slice
regular functions on speared domains: they generalize and strengthen some known local
properties of slice regular functions on slice domains. A proper subclass of speared domains,
called hinged domains, is defined and studied in detail. For slice regular functions on a hinged
domain, a Global Extension Theorem and a Global Representation Formula are proven. The
new results are based on a novel approach: one can associate to each slice regular function
f : � → H a family of holomorphic stem functions and a family of induced slice regular
functions. As we tighten the hypotheses on � (from an arbitrary quaternionic domain to a
speared domain, to a hinged domain), these families represent f better and better and allow
to prove increasingly stronger results.
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1 Introduction

This work aims at significantly extending the theory of quaternionic slice regular functions
introduced in [11, 12] (see Definition 2.2). The extension performed is manifold.

While the theory has focused thus far on the so-called slice domains (see Definition 4.2),
an important achievement here is the definition of a wider class of quaternionic domains,
called speared domains (see Definition 4.1). Slice regular functions on speared domains turn
out to inherit many of the nice properties proven over slice domains in [9, 10]. We point
out that carefully choosing the domains of definition of slice regular functions is crucial, as
pathological examples can be constructed on quaternionic domains that do not intersect the
real axis. Slice regular functions on domains included in H\R need not be continuous, see
[14, Example 1.11].

The new approach adopted to study slice regularity on a general speared domain � is
so powerful that it allows to strengthen the Local Extension Theorem and the Local Repre-
sentation Formula of [10] to what we call the Semi-global Extension Theorem 4.11 and the
Semi-global Representation Formula (Corollary 4.14). These new results are stronger than
the aforementioned local results even when � happens to be a slice domain.

Another significant novelty concerns the Extension Theorem, which was proven in [10]
for the so-called simple slice domains (see Definition 6.4) and is known to be false for general
slice domains, as a counterexample appeared in [4, Pages 4–5]. To see explicitly that that
specific example is not a simple slice domain, see [9, Example 4.4]. Another related article is
[5]. In the present work, we prove the Global Extension Theorem 5.12 on the class of hinged
domains (see Definition 5.10), which is considerably wider than the class of simple slice
domains. The result is not obtained directly under the global hypothesis that the domain is
hinged. Instead, several preliminary steps are taken on a general speared domain �. These
include constructing an equivalence relation∼ on� and proving, in Theorem5.9, that if f is a
slice regular function on� and x, x ′ are equivalent points of�, then the local extensions of f
near x and x ′ are consistent. Only later we define hinged domains bymeans of the equivalence
relation∼ and prove that a slice regular function on a hinged domain� automatically extends
to a unique slice regular function on the so-called symmetric completion of� (see Sect. 2.1).

The paper is organized as follows.
Section 2 is devoted to preliminarymaterial: Sect. 2.1 sets up the complex and quaternionic

algebras; Sect. 2.2 recalls the definition and the first properties of slice regular functions;
Sect. 2.3 recalls the alternate approach to regularity proposed in [16] by introducing the
function class SR.

Section 3 provides a novel interpretation of the General Extension Formula of [3]. This
makes it possible to associate to a slice regular function f on an arbitrary domain � ⊆ H a
double-index family of elements of SR strictly related to f .

Section 4 defines the concept of speared domain. For a slice regular function f on a
speared domain � ⊆ H, the double-index family associated to f reduces to a single-index
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family. This allows us to prove the aforementioned Semi-global Extension Theorem and
Representation Formula, which open the path for a detailed analysis of slice regularity on
speared domains.

Section 5 is divided into two parts. Sect. 5.1 constructs, on an arbitrary speared domain
� ⊆ H, the aforementioned equivalence relation ∼. For two equivalent points x, x ′, the
corresponding elements of the single-index family are strictly related. This allows to prove
that the extension of f near x is consistent with the extension of f near x ′, as we already
mentioned. Sect. 5.2 defines hinged domains as those for which the equivalence relation ∼
becomes trivial. TheGlobal ExtensionTheorem for hinged domains is therefore an immediate
consequence of the work done in the previous subsection. A Global Representation Formula
follows.

Section 6 studies speared domains and hinged domains in full detail. Sect. 6.1 proves
that the class of speared domains strictly includes the class of slice domains and provides a
large family of examples. It also proves that every speared domain can be locally shrunk to a
slice domain. The final Sect. 6.2 presents several subclasses of the class of hinged domains:
spear-simple domains, including simple slice domains; S-connected speared domains; and
speared domains having a main sail. A wealth of examples is provided, to show that all
these subclasses are distinct and that there exist hinged domains belonging to none of these
subclasses.

2 Preliminaries

2.1 Real quaternions and their complexification

Let C, H denote the real ∗-algebras of complex numbers and quaternions, respectively. As
explained in [6, 23], they can be built from the real field R by means of the so-called Cayley–
Dickson construction:

• C = R+iR, (α+iβ)(γ+iδ) = αγ−βδ+i(αδ+βγ ), (α+iβ)c = α−iβ ∀α, β, γ, δ ∈
R,

• H = C + jC, (α + jβ)(γ + jδ) = αγ − βcδ + j(αcδ + βγ ), (α + jβ)c = αc −
jβ ∀α, β, γ, δ ∈ C.

On the one hand, this construction endows the two real vector spaces with a bilinear
multiplicative operation, which makes each of them a (real) algebra. By construction, each
of them is unitary, that is, it has a multiplicative neutral element 1; andR is identified with the
subalgebra generated by 1. For the purpose of the present work, every time we will speak of
an algebra or of a subalgebra, we will automatically imply that it is unitary. It is well-known
that H is associative but not commutative. The center {r ∈ H | r x = xr ∀ x ∈ H} of the
algebra H is R.

On the other hand, the Cayley–Dickson construction endows each of C, H with a ∗-
involution, i.e., a (real) linear transformation x 	→ xc with the following properties: (xc)c = x
and (xy)c = ycxc for every x, y; xc = x for every x ∈ R. Thus, C and H are ∗-algebras.
The trace and norm functions, defined by the formulas

t(x) := x + xc and n(x) := xxc, (1)

are real-valued. Moreover, in C 
 R
2 and H 
 R

4, the expression 1
2 t(xy

c) coincides with
the standard scalar product 〈x, y〉 and n(x) coincides with the squared Euclidean norm ‖x‖2.
In particular, these algebras are nonsingular, i.e., n(x) = xxc = 0 implies x = 0. The trace
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function t vanishes on every commutator [x, y] := xy − yx (see [19, Lemma 5.6]). It holds
n(xy) = n(x)n(y), or equivalently ‖xy‖ = ‖x‖ ‖y‖. We point out that (r + v)c = r − v for
all r ∈ R and all v in the Euclidean orthogonal complement of R.

Every nonzero element x of C or H has a multiplicative inverse, namely x−1 =
n(x)−1xc = xc n(x)−1. For all elements x, y �= 0, the equality (xy)−1 = y−1x−1 holds.
As a consequence, each of the algebras C and H is a division algebra and has no zero divi-
sors. A famous result due to Frobenius states that R, C, H are the only (finite-dimensional)
associative division algebras.

Let us consider the 2-sphere of quaternionic imaginary units

S := {x ∈ H | t(x) = 0, n(x) = 1} = {w ∈ H |w2 = −1}. (2)

The ∗-subalgebra generated by any I ∈ S, i.e., CI = span(1, I ), is ∗-isomorphic to the
complex field C (endowed with the standard multiplication and conjugation) through the
∗-isomorphism

φI : C → CI , α + iβ 	→ α + β I .

The union
⋃

I∈S
CI (3)

coincideswith the entire algebraH.Moreover,CI ∩CJ = R for every I , J ∈ Swith I �= ±J .
As a consequence, every element x of H\R can be expressed as follows: x = α+β I , where
α ∈ R is uniquely determined by x , while β ∈ R and I ∈ S are uniquely determined by
x , but only up to sign. If x ∈ R, then α = x , β = 0 and I can be chosen arbitrarily in S.
Therefore, it makes sense to define the real part Re(x) and the imaginary part Im(x) by
setting Re(x) := t(x)/2 = (x + xc)/2 = α and Im(x) := x − Re(x) = (x − xc)/2 = β I .
It also makes sense to call the Euclidean norm ‖x‖ = √n(x) = √

a2 + β2 the modulus of x
and to denote it as |x |. The algebra H has the following useful property.

• [Splitting property] For each imaginary unit I ∈ S, there exists J ∈ H such that
{1, I , J , I J } is a real vector basis of H, called a splitting basis of H associated to I .
Moreover, J can be chosen to be an imaginary unit and to make the basis orthonormal.

We consider on C and H the natural Euclidean topology and differential structure as a finite-
dimensional real vector space. Similarly, we will adopt on C and H the natural structure of
real analytic manifold. The relative topology on each CJ with J ∈ S clearly agrees with the
topology determined by the natural identification φJ between C and CJ . A subset T of H is
called (axially) symmetric (or circular) if it is symmetric with respect to the real axis R; i.e.,
if for all x = α + β I ∈ T (with α, β ∈ R and I ∈ S), the whole set

Sx := α + β S = {α + β I ∈ H | I ∈ S}
is included in T . We observe that Sx = {x} if x ∈ R. On the other hand, for x ∈ H\R, the
set Sx is obtained by real translation and dilation from the 2-sphere S. For each T ⊆ H, the
symmetric completion of T is the set

T̃ :=
⋃

x∈T
Sx .

For each E ⊆ C, the circularization �E of E is defined as the following subset of H:

�E :=
{
x ∈ H

∣∣ ∃α, β ∈ R, ∃I ∈ S s.t. x = α + β I , α + βi ∈ E
}
.
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For instance, given x = α + β I ∈ H, we have that Sx is both the symmetric completion of
the singleton {x} ⊂ H and the circularization of the singleton {α + iβ} ⊂ C.

In this work, we will also use the complexified algebra HC = H⊗R C = {x + ı y | x, y ∈
H}, endowed with the following product:

(x + ı y)(x ′ + ı y′) = xx ′ − yy′ + ı(xy′ + yx ′).

In addition to the complex conjugation x + ı y = x − ı y, HC is endowed with a ∗-involution
x+ı y 	→ (x+ı y)c := xc+ı yc, whichmakes it a ∗-algebra. This ∗-algebra is still associative
and it has center RC = R+ ıR. If we identify RC with C and if I ∈ S, then the previously
defined ∗-isomorphism φI : C → CI extends to

φI : HC → H, x + ı y 	→ x + I y.

Throughout the paper, we will keep referring to RC = R + ıR, which is a distinct subset
of HC = H + ıH than C = R + iR ⊂ H ⊂ HC. For instance: ı commutes with every
element of HC, while i does not. We point out that the extended φI is still a surjective ∗-
algebra morphism, but is no longer injective. For future reference, we make the following
remark. We recall that: a constant complex structure on R

n0 is an R-linear endomorphism
J0 : R

n0 → R
n0 such that J0 ◦ J0 = −idRn0 ; if J0,J1 are constant complex structures

on R
n0 , R

n1 , respectively, then a holomorphic map ψ : (Rn0 ,J0) → (Rn1 ,J1) is a map
ψ : Rn0 → R

n1 such that ψ ◦ J0 = J1 ◦ ψ .

Remark 2.1 Left multiplication by ı is a constant complex structure on HC, which preserves
RC. For each I ∈ S, left multiplication by I is a constant complex structure on H, which
preserves CI . The map φI is a holomorphic map from (HC, ı) to (H, I ) and its restriction to
RC is a biholomorphic map from (RC, ı) to (CI , I ).

2.2 Slice regular functions

As usual, a nonempty open connected subset of C is called a (complex) domain. Similarly,
a nonempty connected open subset of H is called a (quaternionic) domain. The following
definition was given in [3] and is a slight modification of [11, 12]. It has been adopted as
standard in the monograph [14].

Definition 2.2 Let � ⊆ H be a domain and let f : � → H be a function. For each I ∈ S,
let us set �I := �∩CI and f I := f|�I

. The restriction f I is termed holomorphic if it is C 1

and if

∂ I f I (α + β I ) := 1

2

(
∂

∂α
+ I

∂

∂β

)
f I (α + β I )

vanishes identically in �I . The function f is termed slice regular if, for each I ∈ S, f I is
holomorphic.

More precisely, the definition of ∂ I should be stated as follows:

∂ I f (x) := 1

2

((
∂

∂α
+ I

∂

∂β

)
( f ◦ φ̂I )

)
((φ̂I )

−1(x)),

where φ̂I denotes the restriction of φI to φ−1I (�I ) (see [15]). In other words, f I is called
holomorphic if it is a holomorphic map from (�I , I ) to (H, I ). The so-called “splitting
lemma” follows: after fixing a splitting basis {1, I , J , I J } of H and letting F,G be the
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functions �I → CI such that f I = F + GJ , we have that f I is holomorphic if, and only if
F,G are holomorphic functions from (�I , I ) to (CI , I ).

For the purposes of this paper, we will also need the next definition.

Definition 2.3 Let U be an open subset of H: then every connected component of U is a
domain. We call a function f : U → H slice regular if it is slice regular when restricted to
each connected component of U .

Polynomials and power series are examples of slice regular functions, see [12, Theorem
2.1], while every slice regular function on a Euclidean ball centered at 0 expands into power
series, see [12, Theorem 2.7]. We can summarize these facts as follows. For any x0 ∈ H and
R ∈ [0,+∞], we adopt the notation

B(x0, R) := {x ∈ H | |x − x0| < R}.
Theorem 2.4 Every polynomial of the form

∑n
m=0 xmam = a0 + xa1 + . . . xnan with coef-

ficients a0, . . . , an ∈ H is a slice regular function on H.
Every power series of the form

∑
n∈N xnan converges absolutely and uniformly on

compact sets in B(0, R) for some R ∈ [0,+∞], determined by the equality 1/R =
lim supn→+∞ |an |1/n. If R > 0, then the sum of the series is a slice regular function on
B(0, R).

Conversely, if R ∈ (0,+∞] and if f : B(0, R) → H is a slice regular function, then
there exists a sequence {an}n∈N ⊂ H such that

f (x) =
∑

n∈N
xnan

for all x ∈ B(0, R).

A slice regular function f is called slice preserving if, for each I ∈ S, it maps the “slice”
�I into CI . A polynomial or power series

∑
n∈N xnan is slice preserving if, and only if,

{an}n∈N ⊂ R. The following result derives from [7, 8].

Lemma 2.5 Let R ∈ (0,+∞] and let f : B(0, R) → H be a slice regular function. For each
α, β ∈ R with α2 + β2 < R2, there exist quaternions b, c such that

f (α + β I ) = b + I c

for all I ∈ S. Namely, if f (x) = ∑
n∈N xnan in B(0, R) and if sn, tn ∈ R are defined for each

n ∈ N to fulfill the equality (α+β I )n = sn+ tn I , then b =∑
n∈N snan and c =∑

n∈N tnan.

As observed in [3], it holds

b = (J − K )−1 [J f (α + β J )− K f (α + βK )]

c = (J − K )−1 [ f (α + β J )− f (α + βK )]

for all J , K ∈ S with J �= K . The same article [3] proved a result called General Extension
Formula, upon which we will elaborate in Sect. 3.

2.3 Slice functions

Let D be a nonempty subset of RC that is invariant under the complex conjugation z =
α+ iβ 	→ z = α− iβ: then for each J ∈ S the map φJ (α+ iβ) = α+β J naturally embeds
D into a “slice” φJ (D) of �D = ⋃

J∈S φJ (D) ⊆ H. The following definitions were given
in [16].
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Definition 2.6 Assume D ⊆ RC to be nonempty and preserved by complex conjugation. A
function F : D → HC is called a stem function if F(z) = F(z) for every z ∈ D.

If we consider a decomposition F = F1 + ı F2 into H-valued components F1 and F2, F
is a stem function if, and only if, F1(z) = F1(z) and F2(z) = −F2(z) for every z ∈ D.

Definition 2.7 Assume D ⊆ RC to be nonempty and preserved by complex conjugation.
A function f : �D → H is called a (left) slice function if there exists a stem function
F : D → HC such that the diagram

D
F−−−−→ HC

⏐⏐�φJ

⏐⏐�φJ

�D
f−−−−→ H

(4)

commutes for each J ∈ S. In this situation, we say that f is induced by F and we write
f = I(F). If F is RC-valued, then we say that the slice function f is slice preserving. The
real vector space of slice functions on �D is denoted as S(�D).

It is easy to check that each slice function f is induced by a unique stem function F .
For each slice function f : �D → H, it is useful to define the slice function f ◦s : �D → H,

called spherical value of f , and the slice function f ′s : �D\R → H, called spherical
derivative of f , by setting

f ◦s (x) := 1

2
( f (x)+ f (xc)) and f ′s (x) :=

1

2
Im(x)−1( f (x)− f (xc)).

The works [3, 16] showed that these functions are constant on each sphere Sx ⊆ �D\R. For
all x ∈ �D\R, it holds

f (x) = f ◦s (x)+ Im(x) f ′s (x),

where the function Im is a slice preserving element ofS(H). The function f is slice preserving
if, and only if, f ◦s and f ′s are real-valued.

Some special subclasses of the algebra S(�D) of slice functions have been singled out in
[16]: the nested subspaces S0(�D),S1(�D),Sω(�D),SR(�D) of slice functions induced
by continuous, continuously differentiable, real analytic and holomorphic stem functions
F : D → HC, respectively. By holomorphic, here, we mean that F is a holomorphic map
from (D, ı) to (HC, ı). For all of these definitions except the first one, �D is assumed to be
an open subset of H (whence D is open in RC). If D is a connected open subset of RC and
it intersects the real line R, then �D is called a symmetric slice domain. If an open D does
not intersect R and has two connected components switched by complex conjugation, then
�D is called a product domain. A general open �D is a disjoint union of symmetric slice
domains and product domains.

Remark 2.8 The elements of SR(�D) are automatically slice regular functions according to
Definition 2.3. Indeed, if f = I(F) with F : (D, ı) → (HC, ı) holomorphic, then, for each
J ∈ S, the composition φJ ◦ F = f ◦φJ = f J ◦φJ is a holomorphic map (D, ı) → (H, J ).
This, in turn, implies that f J is a holomorphic map ((�D)J , J ) → (H, J ), because the
restriction of φJ to D is a biholomorphic map (D, ı) → ((�D)J , J ).

It has been proven in [16] that, when � = �D is a symmetric slice domain, a function
f : �D → H belongs to SR(�D) if, and only if, it is slice regular. We will provide a
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new proof of this fact in the forthcoming Sect. 3. On the other hand, when �D is a product
domain, the class SR(�D) (studied, for instance, in [1]) is strictly included in the class of
slice regular functions �D → H. To see this, it suffices to restrict to �D the slice regular
function appearing in the next example.

Examples 2.9 Fix I0 ∈ S and let f : H\R → H be defined as follows:

f (q) =
{
0 if q ∈ H\CI0
1 if q ∈ CI0\R

The function f is slice regular because each restriction f I is constant, whence holomorphic.
It belongs to neither SR(H\R) nor S(H\R).

More work on the relation between SR(�D) and the class of slice regular functions on
�D includes [15]. The recent paper [22] generalizes the class SR, dropping the symmetry
hypothesis on�D and imposing the existence of local zonal decompositions. This provides an
extension of the theory of slice regular functions beyond the classical setup of slice domains,
distinct from the one undertaken in the present work.

3 General extension formula

3.1 General extension formula, revisited

This subsection elaborates the ideas behind the General Extension Formula, namely [3,
Theorem 4.2]. This will produce new powerful results in the forthcoming Sect. 3.2.

For all I ∈ S and all T ⊆ H, we will use the notations

C
�
I := {α + β I |α, β ∈ R, β ≥ 0} ,

C
>
I := {α + β I |α, β ∈ R, β > 0} ,

as well as T�
I := T ∩C

�
I and T>

I := T ∩C
>
I . In the sequel, we will speak of a C

1 function

r : T�
I → H according to the usual convention: there exists a C 1 function r̃ from an open

neighborhood of T�
I in CI to H, whose restriction to T�

I equals r . Similarly, a C 1 function

r : T�
I → H will be called holomorphic if there exist an open neighborhood U of T�

I in

CI and a holomorphic map r̃ : (U , I ) → (H, I ) whose restriction to T�
I equals r . We point

out that, if T�
I is an open subset of C

�
I and if r : T�

I → H is a C 1 function, then the real
partial derivative of r in an arbitrary direction within CI is well-defined and continuous at
each point of T�

I , including the real points.

Proposition 3.1 Let � = �D be a symmetric open subset of H and take distinct J , K ∈ S.
Consider C 1 functions r : �

�
J → H and s : �

�
K → H. For each I ∈ S, we define

pI : ��
I → H by setting, for each α + β I ∈ � with α, β ∈ R and β ≥ 0,

pI (α + β I ) := (J − K )−1 [Jr(α + β J )− Ks(α + βK )]

+I (J − K )−1 [r(α + β J )− s(α + βK )] .
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The following properties hold:

• For each I ∈ S, the function pI is C 1 in �
�
I .• pJ = r and pK = s.

• For each I ∈ S, it holds

∂ I p
I (α + β I ) =[(J − K )−1 J + I (J − K )−1] ∂ J r(α + β J )

− [(J − K )−1K + I (J − K )−1] ∂K s(α + βK ) .

As a consequence, if r is holomorphic in �
�
J and if s is holomorphic in �

�
K , then pI is

holomorphic in �
�
I .

Proof By direct inspection in the definition of pI , we find that pI is C 1 in �
�
I . For all

α + β J ∈ �
�
J , it holds

pJ (α + β J ) =[(J − K )−1 J + J (J − K )−1] r(α + β J )

− [(J − K )−1K + J (J − K )−1] s(α + βK )

= |J − K |−2[(−J + K )J + J (−J + K )] r(α + β J )

− |J − K |−2[(−J + K )K + J (−J + K )] s(α + βK )

=[(J − K )(K − J )]−1(2+ K J + J K )] r(α + β J )

− |J − K |−2(−J K − 1+ 1+ J K ) s(α + βK )

= r(α + β J ) .

Analogous computations prove that pK coincides with s in �
�
K . Another direct inspection

in the definition of pI yields that

∂ pI

∂α
(α + β I ) = [(J − K )−1 J + I (J − K )−1] ∂r

∂α
(α + β J )

− [(J − K )−1K + I (J − K )−1] ∂s

∂α
(α + βK ) .

Moreover,

I
∂ pI

∂β
(α + β I ) =[I (J − K )−1 J − (J − K )−1] ∂r

∂β
(α + β J )

− [I (J − K )−1K − (J − K )−1] ∂s

∂β
(α + βK )

=[I (J − K )−1 + (J − K )−1 J ] J ∂r

∂β
(α + β J )

− [I (J − K )−1 + (J − K )−1K ] K ∂s

∂β
(α + βK ) .

The definition ∂ I pI (α + β I ) := 1
2

(
∂
∂α
+ I ∂

∂β

)
pI (α + β I ) now yields that

∂ I p
I (α + β I ) = [(J − K )−1 J + I (J − K )−1] ∂ J r(α + β J )

−[(J − K )−1K + I (J − K )−1] ∂K s(α + βK ).

It immediately follows that, if r is holomorphic in �
�
J and if s is holomorphic in �

�
K , then

pI is holomorphic in �
�
I . ��
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The next result will be extremely useful in the sequel. It follows from the classical Schwarz
Reflection Principle if we identify RC with C and HC with C

4. We include a direct proof for
the sake of completeness. We recall that x + ı y = x − ı y for all x, y ∈ H and we set, for all
D ⊆ RC, the notations

D� := {α + ıβ ∈ D : α, β ∈ R, β ≥ 0} ,
D� := {α + ıβ ∈ D : α, β ∈ R, β ≤ 0} ,
D> := {α + ıβ ∈ D : α, β ∈ R, β > 0} ,
D< := {α + ıβ ∈ D : α, β ∈ R, β < 0} .

Lemma 3.2 (Schwarz reflection principle for stem functions) Let D be an open subset ofRC,
symmetric with respect to conjugation z 	→ z̄. Assume F : D� → HC to be a holomorphic
function with F(α) = F(α) for all α ∈ D ∩R (if any). Setting F(z̄) := F(z) for all z ∈ D�

defines a holomorphic stem function D → HC.

Proof Since F is holomorphic in D�, it holds

lim
D��z→z0

F(z)− F(z0)

z − z0
= ∂F

∂α
(z0)

for each z0 ∈ D�. For z0 ∈ D�, we get

lim
D��z→z0

F(z)− F(z0)

z − z0
= lim

D��z→z0

F(z̄)− F(z̄0)

z − z0

= lim
D��z→z0

(
F(z̄)− F(z̄0)

z̄ − z̄0

)

= lim
D��w→z̄0

(
F(w)− F(z̄0)

w − z̄0

)

=
(

∂F

∂α
(z̄0)

)
= ∂

∂α
F(z̄)|z=z0

= ∂F

∂α
(z0) .

For all α0 ∈ D ∩ R, it holds

lim
D��z→α0

F(z)− F(α0)

z − α0
= ∂F

∂α
(α0) = lim

D��z→α0

F(z)− F(α0)

z − α0
.

Overall, we have proven that, for each z0 ∈ D,

lim
D�z→z0

F(z)− F(z0)

z − z0
= ∂F

∂α
(z0),

whence F is globally a holomorphic map (D, ı) → (HC, ı). ��

We are now ready to associate to each couple of holomorphic functions r : ��
J → H and

s : ��
K → H a holomorphic stem function.

Theorem 3.3 (General extension formula) Let � be a symmetric open subset of H and take
distinct J , K ∈ S. Consider holomorphic functions r : �

�
J → H and s : �

�
K → H and
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assume the equality r(α) = s(α) to hold for all α ∈ �∩R (if any). Let us set D := φ−1J (�J )

(so that � = �D). Let us define F : D→ HC by setting, for all z = α + ıβ ∈ D�,

F(α + ıβ) := (J − K )−1 [Jr(α + β J )− Ks(α + βK )]

+ı(J − K )−1 [r(α + β J )− s(α + βK )]

as well as F(z̄) := F(z). Then F is a well-defined holomorphic stem function. It induces an
element of SR(�) (whence a slice regular function), namely f := I(F) : � → H, such
that r = f|

�
�
J

and s = f|
�

�
K

.

Proof The function F is clearly well-defined in D�. It is also holomorphic in D� because

∂F(α + ıβ) = [(J − K )−1 J + ı(J − K )−1] ∂ J r(α + β J )

− [(J − K )−1K + ı(J − K )−1] ∂K s(α + βK ) ≡ 0 .

Moreover, for all α ∈ � ∩ R, it holds

F(α) = (J − K )−1 [Jr(α)− Ks(α)]+ ı(J − K )−1 [r(α)− s(α)]

= (J − K )−1(J − K )r(α)+ ı(J − K )−1[r(α)− r(α)]
= r(α) .

Now, r(α) = r(α) because themap x + ı y = x−ı y preserves all x ∈ H. Thus, F(α) = F(α)

for all α ∈ D ∩ R. By applying Lemma 3.2, we get that the function F : D → HC is a
well-defined holomorphic stem function, as desired.

If we set f := I(F), then for all I ∈ S the restriction f|
�

�
I

is the holomorphic map

pI : �
�
I → H of Proposition 3.1. In particular, r = pJ = f|

�
�
J

and s = pK = f|
�

�
K

, as

desired. ��

3.2 Double-index slice regular family

The work done in the previous subsection allows us to associate to each slice regular function
a family of holomorphic stem functions depending on two indices J , K ∈ S. We recall that,
for every E ⊆ RC, the symbol E denotes the image of E through conjugation z 	→ z̄.

Definition 3.4 Let � ⊆ H be a domain and let f : � → H be a slice regular function. For
each choice of distinct J , K ∈ S, we set (see Fig. 1)

E := φ−1J (�
�
J ) ∩ φ−1K (�

�
K ), DJ ,K := E ∪ E, �J ,K := �DJ ,K .

If E (whence DJ ,K and �J ,K ) is not empty, we can apply Theorem 3.3 to r := f|φJ (E)
and

to s := f|φK (E)
to get a holomorphic stem function F J ,K : DJ ,K → HC, defined by setting,

for all z = α + ıβ ∈ E ,

F J ,K (α + ıβ) := (J − K )−1 [J f (α + β J )− K f (α + βK )]

+ı(J − K )−1 [ f (α + β J )− f (α + βK )]

as well as F J ,K (z̄) := F J ,K (z). The family {F J ,K }J ,K∈S,J �=K ,DJ ,K �=∅ is called the double-
index holomorphic stem family associated to f . The double-index slice regular family
associated to f is the family { f J ,K }J ,K∈S,J �=K ,�J ,K �=∅ of the elements f J ,K = I(F J ,K ) of
SR(�J ,K ) induced by the F J ,K ’s.
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Fig. 1 An example of E := φ−1J (�
�
J ) ∩ φ−1K (�

�
K )

We will soon study the double-index families associated to f . Before doing so, we need
the next definition and result.

Definition 3.5 Let � be an open subset of H. The spine of � is the open subset spine(�) of
H defined as the union of all quaternionic open balls B(α0, R) with α0 ∈ �∩R (if any) and
R > 0 such that B(α0, R) ⊆ �. We define spineRC

(�) as the subset D of RC, preserved by
conjugation z 	→ z̄, whose circularization �D equals spine(�).

Remark 3.6 If we adopt the notations of Definition 3.4, then for all distinct J , K ∈ S: if
DJ ,K is not empty, then it includes the set spineRC

(�). It follows that spine(�) is contained
in the circularization �J ,K of DJ ,K , which is the domain of f J ,K .

We are now ready for the announced study.

Proposition 3.7 Let � ⊆ H be a domain and let f : � → H be a slice regular function.
Let {F J ,K : DJ ,K → HC}J ,K∈S,J �=K ,DJ ,K �=∅ and { f J ,K : �J ,K → H}J ,K∈S,J �=K ,�J ,K �=∅
denote the double-index families associated to f . Fix J , K , J ′, K ′ ∈ Swith J �= K , J ′ �= K ′
and �J ,K �= ∅ �= �J ′,K ′ .

1. The function f J ,K coincides with f in (�J ,K )
�
J and in (�J ,K )

�
K .

2. The function f J ,K coincides with f in spine(�). Moreover, f and f J ,K coincide with
F J ,K in � ∩ R = (�J ,K ) ∩ R = DJ ,K ∩ R.

3. The function F J ′,K ′ coincides with F J ,K in spineRC
(�).

4. For each connected open subset C of DJ ′,K ′ ∩ DJ ,K that includes a real point (if any),
the function F J ′,K ′ coincides with F J ,K in C and the function f J

′,K ′ coincides with
f J ,K in �C .

Proof 1. By Theorem 3.3, the induced function f J ,K coincides with f in (�J ,K )
�
J and in

(�J ,K )
�
K .

2. Take any α0 ∈ DJ ,K ∩ R. The equality F J ,K (α0) = f (α0) follows by direct inspection
in the definition of F J ,K . The equality f (α0) = f J ,K (α0) is a special case of property
1. Now let R > 0 be such that B(α0, R) ⊆ � (whence B(α0, R) ⊆ �J ,K ). Up to
precomposing the function f with the real translation x 	→ x + α0, we may suppose
α0 = 0. Lemma 2.5 implies that

f (α + β I ) =
= (J − K )−1 [J f (α + β J )− K f (α + βK )]+ I (J − K )−1 [ f (α + β J )− f (α + βK )]

= f J ,K (α + β I )
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for all α + β I ∈ B(0, R). The thesis now follows from the definition of spine(�).
3. By property 2., f J ,K = I(F J ,K ) and f J

′,K ′ = I(F J ′,K ′) both coincide with f in
spine(�). It follows that F J ,K coincides with F J ′,K ′ in spineRC

(�).

4. Let C be any connected open subset of DJ ,K ∩ DJ ′,K ′ with C ∩ R �= ∅ (whence C ∩
spineRC

(�) is a nonempty open subset of RC). Now, F
J ,K
|C and F J ′,K ′

|C are holomorphic
maps (C, ı) → (HC, ı) coinciding inC∩spineRC

(�) by property 3.SinceC is connected,

the holomorphic maps F J ,K
|C and F J ′,K ′

|C must coincide throughout C . Since F J ,K and

F J ′,K ′ are stem functions, it follows that they coincide in C ∪C ⊆ DJ ,K ∩ DJ ′,K ′ . As a
consequence, f J ,K = I(F J ,K ) and f J

′,K ′ = I(F J ′,K ′) coincide in the circularization
�C of C .

��
As a byproduct, we obtain a new proof of two well-known results: the General Represen-

tation Formula for symmetric slice domains, proven in [3], and the fact, proven in [16], that
the class of slice regular functions on a symmetric slice domain�D coincides with SR(�D)

(whence is included in the class of real analytic functions). We merge all of these results into
a single statement.

Theorem 3.8 (Global representation formula for symmetric slice domains) Let �D be a
symmetric slice domain in H and let f : �D → H be a slice regular function. Then
f ∈ SR(�D) and, in particular, f is real analytic. Moreover, for all distinct J , K ∈ S, it
holds f = f J ,K and

f (α + β I ) = (J − K )−1 [J f (α + β J )− K f (α + βK )]

+I (J − K )−1 [ f (α + β J )− f (α + βK )]

for all I ∈ S and all α, β ∈ R with β ≥ 0 such that α + β I ∈ �D.

Proof We assume, without loss of generality, D to be preserved by conjugation z 	→ z̄.
Let {F J ,K }J ,K∈S,J �=K denote the double-index holomorphic stem family associated to f :
�D → H. Since�D is a symmetric slice domain, all domains DJ ,K (whence all intersections
DJ ,K ∩ DJ ′,K ′ ) coincide with D. By hypothesis, the latter set is connected and intersects
the real axis. By property 4. in Proposition 3.7, all f J ,K : �D → H coincide and form a
single element g of SR(�D). Moreover, property 1. in the same theorem guarantees that g
coincides with f in (�D)

�
J for all J ∈ S, whence g = f . As a consequence, the formula

f (α + β I ) = (J − K )−1 [J f (α + β J )− K f (α + βK )]

+I (J − K )−1 [ f (α + β J )− f (α + βK )]

holds for all α + β I ∈ �D with α, β ∈ R, β ≥ 0 and I ∈ S. ��

4 Speared domains and local representation formula

4.1 Speared domains and their cores

Let us introduce some new terminology.

Definition 4.1 A speared open subset ofRC is anopenT ⊆ RCwhose connected components
all intersect the real axis. A speared open subset of H is an open U ⊆ H such that, for all
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I ∈ S, each connected component ofU�
I includes a real point. A speared domain is a domain

� of H that is a speared open subset of H.

We remark that, if � ⊆ H is a speared domain, then � ∩ R �= ∅. In particular, the sets
DJ ,K and �J ,K of Definition 3.4 are nonempty for each choice of distinct J , K ∈ S.

As we will see in the forthcoming Sect. 6, the class of speared open sets is a rather broad
extension of the class of slice domains, whose definition we recall from [14, Definition 1.12].

Definition 4.2 Let � be a domain in H. Then � is called a slice domain if it intersects the
real axis R and if, for all J ∈ S, the “slice” �J is connected.

However, if a speared open subset U of H happens to be symmetric, we are only slightly
generalizing the notion of symmetric slice domain: indeed, like every other symmetric open
subset ofH,U is a disjoint union of symmetric slice domains or product domains. Now, every
symmetric slice domain is speared and every product domain is not. It follows that our U
is a disjoint union of symmetric slice domains. By applying Theorem 3.8 in each connected
component of U , we can make the next remark.

Remark 4.3 Let�D be a symmetric speared open subset of H and let f : �D → H be a slice
regular function. Then f ∈ SR(�D). Moreover, for all distinct J , K ∈ S, it holds f = f J ,K

and

f (α + β I ) = (J − K )−1 [J f (α + β J )− K f (α + βK )]

+I (J − K )−1 [ f (α + β J )− f (α + βK )]

for all I ∈ S and all α, β ∈ R with β ≥ 0 such that α + β I ∈ �D .

If U is a general open subset of H, we will still be able to apply Remark 4.3 to an
appropriately chosen symmetric speared open subset ofU . This choice will be possible after
some preliminary steps. We begin with the next remark, which uses the fact that every open
subset of RC or R

�
C
is locally path-connected.

Remark 4.4 An open subsetU ofH is speared if, and only if, for all I ∈ S and for all x ∈ U�
I ,

there exists a path γ : [0, 1] → φ−1I (U�
I ) such that γ (0) ∈ R and φI (γ (1)) = x . The latter

property is equivalent to assuming the relative 0-homology group H0(U
�
I ,U ∩ R;Z) to be

trivial.
An open subset T of RC is speared if, and only if, for all z ∈ T , there exists a path

γ : [0, 1] → T such that γ (0) ∈ R and γ (1) = z. Up to restricting γ , we can assume the
support of γ to be entirely contained in R

�
C
or in R

�
C
.

For every open subsetU of H, by Definition 3.5, the symmetric set spine(U ) is a speared
open subset of H (nonempty if U ∩ R �= ∅). Remark 4.4 implies that any union of speared
open sets of H is speared. This justifies the next definition.

Definition 4.5 Let U be an open subset of H. The core of U , denoted as core(U ), is the
largest symmetric speared open subset of U . We define coreRC

(U ) to be the open subset
D ⊆ RC, preserved by conjugation z 	→ z̄, such that core(U ) = �D .

Clearly, core(∅) = ∅. The core of a nonempty open subset U ⊆ H can be obtained as
follows. Let us first set D := ⋂

J∈S φ−1J (U�
J ): then the circularization �D is the largest

symmetric open subset of U . This is a consequence of the following facts:
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• each 2-sphere (or singleton) x + yS is contained in �D if, and only if, it is contained in
U ;

• the open setU contains x+ yS (which is compact) if, and only if, it contains a symmetric
neighborhood of x + yS.

Now,�D is a disjoint union of symmetric slice domains or product domains. The set core(U )

is the union of all connected components of �D that are symmetric slice domains. Clearly,
spine(U ) and core(U ) are nested symmetric speared open subsets of U . They are nonempty
if, and only if, U ∩ R �= ∅ (which is true if U is a nonempty speared open subset of H). In
the forthcoming Example 6.3, we will construct a speared domain � with ∅ �= spine(�) �

core(�) � �: see Fig. 4.
We can now apply Remark 4.3 to �D = core(U ) to prove the next lemma.

Lemma 4.6 Let U be an open subset of H with U ∩ R �= ∅ and let f : U → H be a slice
regular function. Then f|core(U )

∈ SR(core(U )). Moreover, for all distinct J , K ∈ S, it holds

f|core(U )
= f J ,K

|core(U )
and

f (α + β I ) = (J − K )−1 [J f (α + β J )− K f (α + βK )]

+I (J − K )−1 [ f (α + β J )− f (α + βK )]

for all I ∈ S and all α, β ∈ Rwith β ≥ 0 such that α+β I ∈ core(U ). As a consequence, for
all J ′, K ′ ∈ S with J ′ �= K ′, the stem function F J ′,K ′ coincides with F J ,K in coreRC

(U ).

Besides its independent interest, we will use Lemma 4.6 to prove the forthcoming Theo-
rem 4.8.

4.2 Slice regular families on speared domains

The aim of this subsection is proving that the double-index families associated to a slice
regular function f : � → H reduce to single-index families when � is a speared domain.
The proof is based on Lemma 4.6 and on a second lemma, which is a variant of [10, Lemma
3.1]. Let us use the notation Cap(J , ε) := {K ∈ S : |K − J | < ε} for the spherical cap of
radius ε centered at J in S (or the whole sphere S if ε > 2). Let Cap∗(J , ε) := Cap(J , ε)\{J }
denote the same spherical cap, punctured at J .

Lemma 4.7 Let Y be a nonempty open subset of H. Let C be a nonempty, compact and
path-connected subset of RC 
 C. For each positive real number ε, the set

Cε := {z ∈ RC | dist(z,C) < ε}
is a path-connected open neighborhood of C. If J ∈ S is such that φJ (C) ⊂ Y , then there
exists ε > 0 such that φK (Cε) ⊂ Y for all K ∈ Cap(J , ε).

Proof If Y = H, it suffices to set ε := 3. Let us assume henceforth H\Y �= ∅.
Since φJ (C) is a compact subset of the open set Y , the distance between H\Y and φJ (C)

is strictly positive. Set � := maxz∈C | Im(z)| and

ε := dist(H\Y , φJ (C))

�+ 1
> 0.

We observe thatCε is the union of open disks of radii ε centered at arbitrary points z0 ∈ C ,
whence Cε is an open neighborhood of C . Since C is path-connected and since any point
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z ∈ Cε can be joined to a point z0 ∈ C through a line segment included in Cε, it follows that
Cε is path-connected.

We finally show that φK (Cε) ⊂ Y for all K ∈ Cap(J , ε). If z ∈ Cε , then there exists
z0 ∈ C such that |z − z0| < ε. It follows that

dist(φK (z), φJ (C)) ≤ |φK (z)− φJ (z0)|
≤ |φK (z)− φK (z0)| + |φK (z0)− φJ (z0)|
= |z − z0| + |K − J || Im(z0)| < ε + ε�

= dist(H\Y , φJ (C)).

As a consequence, φK (z) ∈ Y , as desired. ��
We are now ready to prove that the double index reduces to a single index if we are dealing

with a speared domain. We recall that, for every E ⊆ RC, the symbol E denotes the image
of E through conjugation z 	→ z̄.

Theorem 4.8 Let � ⊆ H be a speared domain, let f : � → H be a slice regular function
and let {F J ,K : DJ ,K → HC}J ,K∈S,J �=K denote the double-index holomorphic stem family
associated to f . Let us fix J ∈ S and consider the speared open set

DJ := φ−1J (�
�
J ) ∪ φ−1J (�

�
J ).

Then there exists a holomorphic stem function F J : DJ → HC with the following property:
for each z ∈ DJ , there exist a real number εz > 0 and a speared open neighborhood Uz of
z in DJ such that

1. it holds coreRC
(�) ⊆ Uz and Uz\coreRC

(�) is contained in either R
>
C
or R

<
C
;

2. for any choice of distinct J ′, K ′ ∈ Cap(J , εz), it holds Uz ⊆ DJ ′,K ′ and F J ′,K ′
|Uz = F J|Uz .

In case z ∈ coreRC
(�), we can assumeUz to be coreRC

(�) and εz = 3 (whenceCap(J , εz) =
S).

Proof Let us begin by choosing, for each z = α+β J ∈ (DJ )�, appropriate εz > 0 andUz .

• If z ∈ coreRC
(�), we can define Uz := coreRC

(�) ⊆ DJ and εz := 3: Lemma 4.6

guarantees that F J ,K
|Uz = F J ′,K ′

|Uz for all J ′, K , K ′ ∈ Cap(J , εz) = S with J �= K and

J ′ �= K ′.
• Assume z /∈ coreRC

(�) (whence β > 0). Remark 4.4 implies that there exists a path

γ : [0, 1] → φ−1J (�
�
J ) with γ (0) ∈ R and γ (1) = z. Let us set

C := γ ([t0, 1]), t0 := sup{t ∈ [0, 1] | γ (t) ∈ coreRC
(�)} ∈ (0, 1].

We observe, for future reference, that γ (t0) belongs to the boundary of coreRC
(�) and

that

C ⊂ φ−1J (�
�
J )\coreRC

(�) ⊆ R
>
C
.

Now, C is compact and path-connected; moreover, φJ (C) ⊂ �>
J ⊂ �\R. If we apply

Lemma 4.7 toC and to Y := �\R, we conclude that there exists a real number ε > 0 such
that the path-connected open neighborhoodCε ofC fulfills the conditionφK (Cε) ⊂ �\R
(whence φK (Cε) ⊂ �>

K ) for all K ∈ Cap(J , ε). We define Uz := coreRC
(�) ∪ Cε and

observe that z ∈ Uz ⊆ DJ ′,K ′ for all distinct J ′, K ′ ∈ Cap(J , ε). We also remark
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that, since C intersects the boundary of coreRC
(�) at γ (t0), its open neighborhood Cε

intersects coreRC
(�) at some point p0. We can prove that the open set Uz is speared by

applying Remark 4.4. Indeed, we can exhibit for every p ∈ Uz a path γp : [0, 1] → Uz

with γp(0) ∈ R and γp(1) = p:

– if p ∈ coreRC
(�), the existence of a suitable path γp : [0, 1] → coreRC

(�) ⊂ Uz is
guaranteed because coreRC

(�) is speared;
– if p ∈ Cε , we can construct γp : [0, 1] → Uz by joining a path γp0 from a real

point to p0 in coreRC
(�) with a path from p0 to p in Cε (which exists because Cε is

path-connected).

By applying property 4. of Proposition 3.7 to each connected component of Uz , we
obtain that F J ,K

|Uz = F J ′,K ′
|Uz for all J ′, K , K ′ ∈ Cap(J , ε) with J �= K and J ′ �= K ′. We

conclude by setting εz := ε.

We are now ready to define F J (z) as the constant value of themapCap∗(J , εz) → HC, K 	→
F J ,K (z). In particular,

F J (z) = lim
Cap∗(J ,εz)�K→J

F J ,K (z).

We notice that the value F J (z) does not depend on the choice of εz nor on the choice of Uz .
Furthermore, F J is holomorphic near z because, for K ∈ Cap∗(J , εz), it coincides in Uz

with the holomorphic stem function F J ,K .
Wehave therefore defined a holomorphic F J : (DJ )� → HC such that, for allα ∈ DJ∩R

it holds F J (α) = f (α) ∈ H (whence F J (α) = F J (α)). Lemma 3.2 implies that F J extends
to a holomorphic stem function DJ → HC by setting F J (z̄) := F J (z) for each z ∈ (DJ )�.

We conclude the proof by setting Uz̄ := Uz and εz̄ := εz for all z ∈ (DJ )�. We can do
so because F J ′,K ′

|Uz = F J|Uz for all distinct J
′, K ′ ∈ Cap(J , εz), as a consequence of the fact

that F J ,′K ′ and F J are stem functions. ��
Definition 4.9 In the situation described in Theorem 4.8, {F J : DJ → HC}J∈S is called
the holomorphic stem family associated to f . For each J ∈ S, let us consider the symmetric
speared open set �J := �DJ : the slice regular family associated to f is the family { f J :
�J → H}J∈S of the elements f J = I(F J ) of SR(�J ) induced by the F J ’s.

For future use, we prove the next lemma.

Lemma 4.10 Let� ⊆ H be a speared domain, let f : � → H be a slice regular function and
let {F J : DJ → HC}J∈S be the holomorphic stem family associated to f . Fix J0, J1 ∈ S.
The holomorphic stem functions F J0 , F J1 coincide in coreRC

(�) ⊇ �∩R. Now, let α, β ∈ R

with β ≥ 0 be such that x0 = α + β J0, x1 = α + β J1 both belong to �. If x0, x1 belong to
the same connected component of (α + βS) ∩�, then there exists an open neighborhood U
of α + βı in DJ0,J1 such that F J0 , F J1 coincide in U.

Proof The first statement concerning coreRC
(�) immediately follows from Theorem 4.8 and

Lemma 4.6. Now let us prove the second statement about x0 and x1 belonging to the same
connected component C of (α + βS) ∩ �. It suffices to pick any J : [0, 1] → S such that
α + βJ is a path within C and to show that there exists an open neighborhood U of α + βı
in DJ (0),J (1) such that FJ (0), FJ (1) coincide in U .

For every J ∈ S such that α + β J ∈ �, Theorem 4.8 guarantees that there exist an
an open neighborhood U J of the point α + βı in DJ and an ε J > 0 with the following
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property: for any choice of distinct J ′, K ′ ∈ Cap(J , ε J ), it holdsU J ⊆ DJ ′,K ′ and F J ′,K ′
|U J

=
F J|U J

. It follows that F J ′|U J
= FK ′|U J

for all J ′, K ′ ∈ Cap(J , ε J ). Consider the open cover

{J−1(Cap(J , ε J ))}J∈S of the compact interval [0, 1]. Take N ∈ N large enough for 1/N to
be a Lebesgue number for this cover (see [21, Lemma 7.2] for details). It follows that, for each
s ∈ {0, . . . , N − 1}, there exists Js ∈ S such that J ([s/N , (s + 1)/N ]) ⊂ Cap(J s, ε J

s
). As

a consequence, U Js ⊆ DJ (s/N ),J ((s+1)/N ) and FJ (s/N )
|
U Js

= FJ ((s+1)/N )
|
U Js

. The intersection

U := ⋂N
s=0U Js is an open neighborhood of α + βı in DJ (s/N ) for all s ∈ {0, . . . , N }

(whence in DJ (0) ∩ DJ (1) = DJ (0),J (1)) and we have

FJ (0)
|U = FJ (1/N )

|U = . . . = FJ ((N−1)/N )
|U = FJ (1)

|U ,

whence the thesis follows. ��

4.3 Semi-global extension and representation for speared domains

Theorem 4.8 allows us to extend and strengthen [10, Theorem 3.2] to our first main theorem.

Theorem 4.11 (Semi-global extension for speared domains)Let� ⊆ H be a speared domain,
let f : � → H be a slice regular function and let { f J }J∈S be the slice regular family
associated to f . Fix J0 ∈ S. There exists a speared open set 
 with

core(�) ∪�
�
J0
⊂ 
 ⊆ � ∩�J0

such that f coincides with f J0 in 
. In particular, for each x0 ∈ �
�
J0
, f coincides with f J0

in a speared domain including x0: namely, the connected component of 
 including x0.

Proof Let {F J : DJ → HC}J∈S and {F J ,K : DJ ,K → HC}J ,K∈S,J �=K denote, respectively,
the holomorphic stem family and the double-index holomorphic stem family associated to
f . In particular, f J0 = I(F J0).
Let us choose x0 = α0 + β0 J0 ∈ �

�
J0

(with α0, β0 ∈ R). If we set z0 := α0 + ıβ0 (so
that x0 = φJ0(z0)), then Theorem 4.8 guarantees that there exist εz0 > 0 and a speared open
neighborhood Uz0 of z0 in DJ0 such that:

1. it holds coreRC
(�) ⊆ Uz0 and U

′
z0 := Uz0\coreRC

(�) is contained in either R
>
C
or R

<
C
;

2. for all K ∈ Cap∗(J0, εz0), it holds Uz0 ⊆ DJ0,K and F J0,K|Uz0
= F J0|Uz0

.

We can produce a speared open neighborhood Vx0 of x0 in�∩�Uz0
⊆ �∩�DJ0 , as follows.

We set Vx0 := core(�) ∪ V ′x0 , where

V ′x0 :=
⋃

K∈Cap(J0,εz0 )

φK (U ′z0) = {α + βK : α, β ∈ R, α + ıβ ∈ U ′z0 , K ∈ Cap(J0, εz0)}.

Now, f J0 = I(F J0) coincides in Vx0 with f J0,K = I(F J0,K ) for all K ∈ Cap∗(J0, εz0).
Let us apply property 1. in Proposition 3.7: namely, for all K ∈ Cap∗(J0, εz0), the function
f J0,K coincides with f in (�Uz0

)
�
J0
= (Vx0)

�
J0

and in (�Uz0
)
�
K = (Vx0)

�
K . It follows that

f J0 coincides with f in V ′x0 . Lemma 4.6 allows us to conclude that f J0 coincides with f in
Vx0 = core(�) ∪ V ′x0 .

The thesis now follows setting 
 := ⋃
x0∈�

�
J0

Vx0 . ��
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Let us add the next definition, which extends [9, Definition 2.14]. We have recalled the
notion of slice domain in Definition 4.2.

Definition 4.12 Let � be a domain in H and let f : � → H be a slice regular function.
Whenever N is a symmetric speared open set, f̃ : N → H is a slice regular function and

 is a speared open set contained in � ∩ N such that f|
 = f̃|
 , then ( f̃ , N ,
) is called
a speared extension triplet for f . A speared extension triplet ( f̃ , N ,
) for f where N is a
symmetric slice domain and 
 is a slice domain is called a slice extension triplet for f .

Using the last definition, Theorem 4.11 can be reformulated as follows.

Theorem 4.11 (Semi-global extension for speared domains, rephrased) If f is a slice regular
function on a speared domain � then, for all J0 ∈ S, the couple f J0 ,�J0 can be completed
to a speared extension triplet ( f J0 ,�J0 ,
) with 
 ⊇ core(�) ∪ �

�
J0
. In particular, if we

define 
0 to be the connected component of 
 including x0, then 
0 is a speared domain
and ( f J0 ,�J0 ,
0) is still a speared extension triplet for f .

Theorem 4.11 implies that every speared domain has the Local Extension Property, as
defined in [14, Definition 11.14]. We prove this fact as the next Corollary.

Corollary 4.13 (Local extension for speared domains) If f is a slice regular function on a
speared domain � and if x0 ∈ �, then there exists a slice extension triplet ( f̃ , Nx0 ,
x0) for
f with 
x0 � x0. As a consequence, f is real analytic.

Proof We apply Theorem 4.11 to find a speared extension triplet ( f J0 ,�J0 ,
) for f with

 ⊇ core(�)∪�

�
J0
. We define Nx0 to be the connected component of �J0 that includes x0:

since�J0 is a symmetric speared open set, it follows immediately that Nx0 is a symmetric slice
domain. The connected component 
0 of 
 that includes x0 is a speared domain contained
in Nx0 . Moreover, 
0 is contained in � because 
 was. By the forthcoming Proposition 6.2,
there exists a slice domain 
x0 � x0 contained in 
0 ⊆ � ∩ Nx0 . If we define f̃ as the
restriction of f J0 to Nx0 , then ( f̃ , Nx0 ,
x0) is a slice extension triplet for f .

Our final statement concerning real analyticity now follows from Theorem 3.8. ��
The original result [10, Theorem 3.2] was exactly Corollary 4.13, under the additional

hypothesis that� be a slice domain.Based on the same result, the article [9] developed a rather
complete theory of regular functions on general slice domains. Later on, [14, §11] defined
the class of domains having the Local Extension Property and proved several properties of
slice regular functions on such domains: for instance, the existence of a ∗-algebra structure
[14, Corollary 11.16], the Strong Identity Principle [14, Corollary 11.19], the existence of the
regular reciprocal f −∗ of a slice regular function f [14, Proposition 11.28], the Maximum
Modulus Principle [14, Theorem 11.53], the Minimum Modulus Principle [14, Theorem
11.54], the Open Mapping Theorem [14, Theorem 11.57], the Local Cauchy Formula [14,
Proposition 11.58] and its volumetric analog [14, Proposition 11.59], as well as the existence
of local spherical series expansions [14, Theorem 11.63]. Our Corollary 4.13 implies that
the properties just listed are true on general speared domains.

By applying Remark 4.3 to f J0 , we obtain another corollary of Theorem 4.11. The corol-
lary strengthens [10, Theorem 3.4] and extends it to speared domains.

Corollary 4.14 (Semi-global representation formula for speared domains) Let � ⊆ H be a
speared domain, let f : � → H be a slice regular function and let J0 ∈ S. There exists a
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speared open subset 
 ⊆ �, including both core(�) and �
�
J0
, such that the formula

f (α + β I ) = (J − K )−1 [J f (α + β J )− K f (α + βK )]

+I (J − K )−1 [ f (α + β J )− f (α + βK )]

holds for all I , J , K ∈ S and allα, β ∈ Rwith J �= K , β ≥ 0 and α+β I , α+β J , α+βK ∈

.

The last corollary allows us to extend [16, Definition 6] and [9, Definition 3.1] to all
speared domains.

Definition 4.15 In the situation described in Corollary 4.14, for all α, β ∈ R with β ≥ 0
such that x0 := α + β J0 ∈ �, we define the spherical value of f at x0 as the quaternion

f ◦s (x0) := (J − K )−1 [J f (α + β J )− K f (α + βK )] ,

which does not depend on the specific choice of J �= K such that α + β J , α + βK ∈ 
. If,
moreover, β > 0, we define the spherical derivative of f at x0 as the quaternion

f ′s (x0) := β−1(J − K )−1 [ f (α + β J )− f (α + βK )] ,

which does not depend on the specific choice of J �= K such that α + β J , α + βK ∈ 
.

Remark 4.16 Let� ⊆ H be a speared domain, let f : �→ H be a slice regular function and
let {F J : DJ → HC}J∈S denote the holomorphic stem family associated to f . Fix J0 ∈ S and
decompose the HC-valued function F J0 as F J0

1 + ı F J0
2 , where F J0

1 , F J0
2 are H-valued. Then,

for all α, β ∈ Rwith β ≥ 0 such that α+β J0 ∈ �, we have f ◦s (α+β J0) = F J0
1 (α+βı) and,

if β > 0, f ′s (α + β J0) = β−1F J0
2 (α + βı). As a consequence, the functions f ◦s : � → H

and f ′s : �\R → H are real analytic.

Corollary 4.14 implies the following properties. We recall that the slice (or complex)
derivative of any slice regular function f : �→ H is the slice regular function f ′c : � → H

defined as

f ′c(α + β I ) := 1

2

(
∂

∂α
+ I

∂

∂β

)
f I (α + β I )

at any α + β I ∈ � (see [14, Definition 1.8]). If f happens to be C 1, let us denote the real
differential of f at a point x0 ∈ � as d fx0 .

Proposition 4.17 Let � ⊆ H be a speared domain and let f : � → H be a slice regular
function.

1. For all x ∈ �\R, the equality f (x) = f ◦s (x)+ Im(x) f ′s (x) holds, while f (x) = f ◦s (x)
at all x0 ∈ � ∩ R.

2. If we fix α, β ∈ R with β > 0 and set S := α + βS, then the maps

S ∩�→ H J 	→ f ◦s (α + β J ) ,

S ∩�→ H J 	→ f ′s (α + β J )

are locally constant, whence constant on each connected component of S ∩�.
3. f is a locally slice function according to [9, Definition 3.6] (see also [14, Definition

11.6]).
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Fig. 2 An example where (x1, y1) shadows (x0, y0) in � and p1 is strongly hinged to p0 in �

4. At each x0 ∈ �∩R, for any v ∈ Tx0� 
 H, we have d fx0v = v f ′c(x0). As a consequence,
d fx0 is singular if, and only if, f ′c(x0) = 0. At each x0 ∈ �\R, say x0 ∈ �>

J , if we
decompose Tx0� 
 H as CJ ⊕ C

⊥
J , then for any v ∈ CJ and any w ∈ C

⊥
J we have

d fx0(v + w) = v f ′c(x0) + w f ′s (x0). As a consequence, d fx0 is singular if, and only if,
f ′c(x0) f ′s (x0)c ∈ C

⊥
J .

Proof Points 1. and 2. are immediate consequences of Corollary 4.14. In turn, they imply
point 3. Point 4. now follows from [9, Proposition 3.5] (see also [14, §8.4 and §8.5] and [2,
17, 20] for the case when � is a symmetric slice domain). ��

In viewof property3.of Proposition 4.17,wepoint out that ourDefinition 4.15 is consistent
with [14, Definition 11.6].

5 Hinged points and global extension theorem for hinged domains

5.1 Hinged points

Assumption 5.1 Throughout this subsection, we assume � ⊆ H to be a speared domain and
we adopt the notations

DJ := φ−1J (�
�
J ) ∪ φ−1J (�

�
J ), E J ,K := φ−1J (�

�
J ) ∩ φ−1K (�

�
K ), DJ ,K := E J ,K ∪ E J ,K

for all distinct J , K ∈ S. Moreover, we assume f : � → H to be a slice regular function
and denote by {F J ,K : DJ ,K → HC}J ,K∈S,J �=K the double-index holomorphic stem family
associated to f and by {F J : DJ → HC}J∈S the holomorphic stem family associated to f .

As customary, in the previous assumption the symbol E denotes the image of a set E ⊆ RC

through conjugation z 	→ z̄. We now define and study several relations on �, which will be
useful to prove our Global Extension Theorem.

Definition 5.2 Let us choose α, α′, β, β ′ ∈ R, J0, J1 ∈ S (with β, β ′ ≥ 0) such that x0 =
α + β J0, x1 = α + β J1, y0 = α′ + β ′ J0, y1 = α′ + β ′ J1 all belong to �.

We say that (x1, y1) shadows (x0, y0) in � if there exists a path γ : [0, 1] → E J0,J1 such
that γ (0) = α + βı and γ (1) = α′ + β ′ı .

We say that x1 is strongly hinged to x0 in � if there exists y ∈ � ∩ R such that (x1, y)
shadows (x0, y).
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The expression “strongly hinged”, used here for the first time, subsumes ideas already
used in the articles [4, 5, 9, 10]. Figure2 portrays an example of shadowing and an example
of point that is strongly hinged to another point.

Remark 5.3 Shadowing is a partial equivalence relation on
⋃

J∈S(�
�
J ×�

�
J ), i.e., it is sym-

metric and transitive. If �
�
J is path-connected, then the relation is also reflexive, whence

an equivalence relation, on �
�
J × �

�
J . By construction, if (x1, y1) shadows (x0, y0), then:

Sx1 = Sx0 ; Sy1 = Sy0 ; and (y1, x1) shadows (y0, x0).
Being strongly hinged is a reflexive and symmetric relation on �. By construction, if x1

is strongly hinged to x0, then Sx1 = Sx0 .

For future use, we establish the following lemma.

Lemma 5.4 Let us choose α, α′, β, β ′ ∈ R, J0, J1 ∈ S (with β, β ′ ≥ 0) such that x0 =
α + β J0, x1 = α + β J1, y0 = α′ + β ′ J0, y1 = α′ + β ′ J1 all belong to �.

1. If (x1, y1) shadows (x0, y0) and if F J0 , F J1 coincide in a neighborhood of α′ +β ′ı , then
there exists a path-connected open subset of DJ0,J1 including both α + βı and α′ + β ′ı
where F J0 , F J1 coincide.

2. If x1 is strongly hinged to x0, then there exists a speared open subset of DJ0,J1 includ-
ing α + βı where F J0 , F J1 coincide. In particular, the connected component of DJ0,J1

including α + βı intersects the real axis.

Proof 1. There exists a path γ : [0, 1] → E J0,J1 such that γ (0) = α + βı and γ (1) =
α′ + β ′ı . By Lemma 4.7, for some ε > 0, the path-connected open neighborhood Cε of
C := γ ([0, 1]) in RC is included in DJ0 and in DJ1 . As a consequence, Cε is contained
in DJ0 ∩ DJ1 = DJ0,J1 . Since the holomorphic maps F J0 , F J1 coincide near the point
α′ + β ′ı ∈ Cε, it follows that they coincide throughout the connected open set Cε (which
includes α + βı , too).

2. There exists y = α′ ∈ � ∩ R such that (x1, y) shadows (x0, y). Moreover, Lemma 4.10
guarantees that F J0 , F J1 coincide in the neighborhood coreRC

(�) of α′. If we repeat the
constructionmade in point 1., we find a speared open subsetCε of DJ0,J1 including α+βı
where F J0 , F J1 coincide.

��
In preparation for the main result in this section, we will need one more relation.

Definition 5.5 Take t ∈ N
∗ := N\{0} and let T := {0, . . . , t}. Let us consider a finite

(ordered) sequence {xs}ts=0 in �. For each s, s′ ∈ T with |s − s′| = 1, we say that there is a
simple step at s0 := min{s, s′} if one of the following conditions is fulfilled:

1. xs′ belongs to the connected component of Sxs ∩� that includes xs ;
2. xs′ is strongly hinged to xs .

If conditions 1. and 2. are false, but

3. there exist s′′, s′′′ ∈ T \{s, s′}with s′′−s′′′ = s′−s such that (xs′′ , xs′′′) shadows (xs, xs′),

and if we set s := min{s, s′, s′′, s′′′}, s := max{s, s′, s′′, s′′′} − 1, then we say that there is a
double step at (s, s).

The sequence {xs}ts=0 is called a chain of length t connecting x0 and xt if, after erasing
from T the index t and all indices s0 where a simple step happens, there remain in T an
even number 2� of indices, which can be listed in a form s1, s1, . . . , s�, s� such that, for all
m, n ∈ {1, . . . , �}:
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• a double step happens at (sm, sm) (whence sm < sm);
• s1 < · · · < s�; in other words, the double steps are listed in the same order they start;

and
• if m < n, then either sm < sn or sm > sn ; in other words, if the nth double step starts

before the mth double step is concluded, then the nth double step must also end before
the mth double step does; equivalently, the double step at (sn, sn) may be nested within
the double step at (sm, sm), but not intertwined with it.

For all points x, x ′ ∈ �, we say that x ′ is hinged to x in �, and we write x ∼ x ′, if there
exists a chain connecting x and x ′.

An example of chain of length 4 is portrayed in the forthcoming Fig. 12.
We will soon prove that∼ is an equivalence relation. Before doing so, we establish a few

useful technical results.

Remark 5.6 Let us consider a finite sequence {xs}ts=0 ⊂ �. If there is a simple step at s, then
Sxs = Sxs+1 . If there is a double step at (s, s), then Sxs = Sxs+1 and Sxs+1 = Sxs . This is a
consequence of the definitions of simple and double step, as well as of Remark 5.3.

Lemma 5.7 If {xs}ts=0 is a chain of length t ≥ 2 connecting x0 and xt , then one of the
following facts is true.

1. There exists u with 0 < u < t such that {xs}us=0 is a chain of length u connecting x0
and xu (whence x0 ∼ xu) and {xs}ts=u is a chain of length t − u connecting xu and xt
(whence xu ∼ xt ).

2. There is a double step at (0, t − 1) and {xs}t−1s=1 is a chain of length t − 2 connecting x1
and xt−1 (whence x1 ∼ xt−1).

The second case is excluded when t = 2.

Proof If there is a simple step at 0, then the sequence {xs}1s=0 is a chain of length 1 connecting
x0 and x1 and there exists no double step of the form (0, s). Thus, {xs}ts=1 is automatically a
chain of length t − 1 connecting x1 and xt . Overall, we are in case 1.

Suppose, instead, that there is not a simple step at 0. Then, if we list all double steps as
in Definition 5.5, we find (0, s1), . . . , (s�, s�) for some natural number �. We separate two
cases.

• If s1 < t − 1 and we set u := s1+ 1, then we are in case 1. because {xs}us=0 is a chain of
length u connecting x0 and xu and {xs}ts=u is a chain of length t − u connecting xu and
xt . Indeed, every simple step in the original chain will still be a simple step in one of the
two subsequences. Every double step (sm, sm) with m > 1 will be a double step in the
first subsequence if it is nested within (0, s1) (i.e., if 0 < sm < sm < s1) or a double step
in the second subsequence if it starts after the double step at (0, s1) is concluded (i.e., if
s1 + 1 = u ≤ sm).

• If s1 = t−1, then there is a double step at (0, t−1). We are in case 2. because {xs}t−1s=1 is
a chain of length t − 2 connecting x1 and xt−1. Indeed, every simple step in the original
chain will still be a simple step in the subsequence. Every double step (sm, sm) with
m > 1 will be a double step in the subsequence because it is nested within the double
step at (0, t − 1) (i.e., 0 < sm < sm < t − 1).

��
Lemma 5.8 The relation ∼ is an equivalence relation on �. Moreover, x ∼ x ′ implies
Sx = Sx ′ .

123



55 Page 24 of 42 R. Ghiloni, C. Stoppato

Proof The relation ∼ is reflexive: for each x ∈ �, it holds x ∼ x because we can set
t = 1, x0 = x, x1 = x and observe that there is a simple step at 0 because x0, x1 fulfill
condition 1. of Definition 5.5.

The relation ∼ is symmetric: if {xs}ts=0 is a chain connecting x and x ′, then {xt−s}ts=0 is
a chain connecting x ′ and x . Indeed, if there is a simple step at s0 in the original sequence,
then there is a simple step at t − s0 − 1 in the new sequence because conditions 1. or 2. are
unchanged when we swap s and s′. If there is a double step at (s, s) in the original sequence,
then there is a double step at (t − s − 1, t − s − 1) in the new sequence because condition
3. stays equivalent if we swap s and s′, while also swapping s′′ and s′′′.

The relation∼ is transitive. Assume x ∼ x ′ and x ′ ∼ x ′′. Let {xs}ts=0 be a chain connecting
x and x ′ and let {yu}t ′u=0 be a chain connecting x ′ and x ′′. We form a longer sequence
x0 = x, x1, . . . , xt = x ′, xt+1, . . . , xt+t ′ = x ′′ with xt+u := yu for all u ∈ {1, . . . , t ′} and
argue that {xs}t+t ′s=0 is a chain of length t + t ′ connecting x and x ′′, thus proving that x ∼ x ′′.
Indeed, any simple step happening at s0 in the first short sequence will still be a simple step at
s0 in the long sequence, while any simple step happening at u0 in the second short sequence
corresponds to a simple step at t+u0 in the long sequence. If, according to Definition 5.5, the
double steps in the first short sequence can be listed as (s1, s1), . . . , (s�, s�) and the double
steps in the second short sequence can be listed as (u1, u1), . . . , (u�′ , u�′), then the double
steps in the long sequence can be listed as (s1, s1), . . . , (s�, s�), (t + u1, t + u1), . . . , (t +
u�′ , t + u�′). Here, s1 < · · · < s� < t + u1 < · · · < t + u�′ and no double steps are
intertwined because they were not in either short list and because max{s1, . . . , s�} < t ≤
t + u1 = min{t + u1, . . . , t + u�′ }.

We have therefore proven the first statement.
The second statement can be proven by induction on the length t of the chain {xs}ts=0

connecting x and x ′. If t = 1, then there is a simple step at 0: Remark 5.6 guarantees that
Sx = Sx0 = Sx1 = Sx ′ . Now suppose the thesis true for all t < t0 and let us prove it for
t = t0. If there exists u such that {xs}t0s=0 breaks at s = u into two chains of lengths less than
t0, then the inductive hypothesis yields that Sx = Sxu = Sx ′ . If there exists no such u, then
Lemma 5.7 guarantees that there is a double step at (0, t0 − 1). In such a case, Remark 5.6
guarantees that Sx = Sx0 = Sxt0

= Sx ′ . ��
Hinged points have an extremely relevant property: if x ∼ x ′, then the local representa-

tion of f near x ′ is consistent with the local representation of f near x . Equivalently, the
corresponding holomorphic stem functions locally coincide.

Theorem 5.9 Let� ⊆ H be a speared domain, let f : �→ H be a slice regular function and
let {F J : DJ → HC}J∈S be the holomorphic stem family associated to f . Let α0, β0 ∈ R

(with β0 ≥ 0) and I , I ′ ∈ S be such that x = α0 + β0 I , x ′ = α0 + β0 I ′ ∈ �. If x ∼ x ′,
then there exists an open neighborhood U of α0 + β0ı in DI ,I ′ where F I , F I ′ coincide.
As a consequence, for all (α, β ∈ R with β ≥ 0 such that) α + βı ∈ U, the equality
f ◦s (α + β I ) = f ◦s (α + β I ′) holds and the equality f ′s (α + β I ) = f ′s (α + β I ′) holds
provided β > 0.

Proof Since x ∼ x ′, there exist a natural number t ≥ 1 and a chain {xs}ts=0 connecting x and
x ′. We prove the thesis by induction on the length t of the chain.

If t = 1, then there is a simple step at 0. If x ′ = x1 belongs to the connected component
of Sx ∩ � that includes x = x0, then the thesis follows immediately from Lemma 4.10. If,
instead, x ′ = x1 is strongly hinged to x = x0, then case 2. in Lemma 5.4 yields the thesis.

Now choose t0 ≥ 2, suppose the thesis true for all t < t0 and let us prove it for t = t0.
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• Let us first assume that there exists u with 0 < u < t0 such that {xs}t0s=0 breaks at s = u
into two chains of lengths u and t0 − u. In particular, x ∼ xu and xu ∼ x ′, whence
xu = α0 + β0 I ′′ for some I ′′ ∈ S. Since u and t0 − u are both strictly less than t0, the
inductive hypothesis yields that there exist open neighborhoods U ,U ′ of α0 + β0ı in
DI ,I ′′ , DI ′′,I ′ (respectively) such that F I , F I ′′ coincide in U and F I ′′ , F I ′ coincide in
U ′. It follows thatU ∩U ′ is an open neighborhood of α0+β0ı in DI ,I ′′ ∩DI ′′,I ′ ⊆ DI ,I ′

where F I , F I ′ coincide, as desired.
• Let us now assume, instead, that there exists no u with 0 < u < t0 such that {xs}t0s=0

breaks at s = u into two chains. Lemma 5.7 guarantees that t0 ≥ 3 and that there is a
double step at (0, t0 − 1) and that {xs}t0−1s=1 is a chain of length t0 − 2 from x1 to xt0−1.
In particular, by the definition of double step and by Remark 5.6, there exist α1, β1 ∈ R

(with β1 ≥ 0) such that x1 = α1 + β1 I , xt0−1 = α1 + β1 I ′. Since t0 − 2 < t0, the
inductive hypothesis guarantees that there exists an open neighborhood of α1 + β1ı in
DI ,I ′ where F I , F I ′ coincide. Since (xt0 , xt0−1) shadows (x0, x1), point 1. in Lemma 5.4
guarantees that there exists a path-connected open subset of DI ,I ′ including both α0+β0ı
and α1 + β1ı where F I , F I ′ coincide.

To prove the last statement, it suffices to perform the following computation, where we apply
Remark 4.16:

f ◦s (α + β I ) = F I
1 (α + βı) = F I ′

1 (α + βı) = f ◦s (α + β I ′) ,

f ′s (α + β I ) = β−1F I
2 (α + βı) = β−1F I ′

2 (α + βı) = f ′s (α + β I ′)

for α + βı ∈ U . ��

5.2 Hinged domains and extension theorem

This subsection is devoted to the class of domains described in the next definition and proves
for them the Global Extension Theorem and the Representation Formula.

Definition 5.10 A speared domain � ⊆ H is termed hinged if, for each x ∈ �, it holds
x ∼ x ′ for all x ′ ∈ Sx ∩ �; or, equivalently, if Sx ∩ � is an equivalence class under the
equivalence relation ∼.

Over a hinged domain, we can draw the following consequence from Theorem 5.9.

Corollary 5.11 Let � ⊆ H be a hinged domain, let f : � → H be a slice regular function
and let {F J : DJ → HC}J∈S be the holomorphic stem family associated to f . If we set
D := ⋃

J∈S DJ , then there exists a holomorphic stem function F : D → HC such that, for
each J ∈ S, the function F J is the restriction F|DJ .

Proof For each J ∈ S, we define F to equal F J in DJ . The function F is well defined: by
construction, for each α, β ∈ R (with β ≥ 0) such that α + βı ∈ DJ ∩ DJ ′ = DJ ,J ′ , the
equivalence α+β J ∼ α+β J ′ holds, whence F J and F J ′ agree near α+βı by Theorem 5.9.
Since each F J is a holomorphic stem function, it follows that F is a holomorphic stem
function, as desired. ��

We are now in a position to prove the announced Global Extension Theorem. It had been
proven in [10, Theorem 4.5] only for the so-called simple slice domains. In the forthcoming
Sect. 6.2, we will recall the definition of simple slice domain, prove that all simple slice
domains are hinged and provide many examples of hinged domains that are not simple.
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Theorem 5.12 (Global extension for hinged domains) Let � ⊆ H be a hinged domain and
let f : � → H be a slice regular function. Then there exists a unique slice regular function
f̃ : �̃→ H that extends f to the symmetric completion �̃ of its domain �.

Proof We recall that {F J : DJ → HC}J∈S denotes the holomorphic stem family associated
to f and { f J : �J → H}J∈S denotes the slice regular family associated to f . Corollary 5.11
guarantees that there there exists a holomorphic stem function F from the union D :=⋃

J∈S DJ to HC such that, for each J ∈ S, the function F J is the restriction F|DJ . We

remark that �D = �̃ and define f̃ to be the element I(F) of SR(�̃) induced by F . For each
J ∈ S, the definition f J := I(F J ) yields that f J is the restriction of f̃ to�J := �DJ ⊆ �̃.
We can now apply Theorem 4.11 to conclude that f coincides with f̃ in

⋃
J∈S �

�
J = �. ��

Theorem 5.12 immediately implies the Global Representation Formula for hinged
domains.

Corollary 5.13 (Global representation formula for hinged domains) Let � ⊆ H be a hinged
domain and let f : � → H be a slice regular function. For all α, β ∈ R with β ≥ 0 and all
I , J , K ∈ S with J �= K, such that α + β I , α + β J , α + βK ∈ �, the equality

f (α + β I ) = (J − K )−1 [J f (α + β J )− K f (α + βK )]

+I (J − K )−1 [ f (α + β J )− f (α + βK )]

holds. As a consequence, for each x ∈ �, the spherical value function f ◦s : � → H is
constant on Sx ∩� and, if x /∈ R, spherical derivative f ′s : �\R → H is constant on Sx ∩�.

An equivalent statement is: if { f J : �J → H}J∈S is the slice regular family associated
to a slice regular function f on a hinged domain �, then f coincides with f J in � ∩�J .

6 Study of speared domains and hinged domains

This section is devoted to the study of speared domains and hinged domains.

6.1 Speared domains

We begin by proving that the class of speared domains (see Definition 4.1) includes the class
of slice domains (see Definition 4.2).

Proposition 6.1 Every quaternionic slice domain is a speared domain.

Proof Let � ⊆ H be a domain. If � is not speared, then it is not a slice domain. Indeed:
assume there exists J ∈ S such that �

�
J has a connected component C with C ∩ R = ∅.

Necessarily, C is also a connected component of �J . In this situation, either �J is not
connected or �J = C does not intersect R, whence � ∩ R = ∅. In either case, � is not a
slice domain. ��

We now prove that every speared open subset can be locally shrunk to a slice domain.

Proposition 6.2 Let U be a speared open subset of H. For every x0 ∈ U, there exists a slice
domain 
x0 ⊆ U including x0.
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Proof If x0 is a real point α0 ∈ R, we can take 
x0 to be any open ball B(α0, δ) contained
in U . We therefore assume x0 ∈ U\R. Our proof borrows some techniques already used in
the proofs of Theorems 4.8 and 4.11.

Let I ∈ S be such that x0 ∈ U>
I . By Remark 4.4, there exists a path γ : [0, 1] →

φ−1I (U�
I ) such that γ (0) is a real number α and φI (γ (1)) = x0. We can pick δ > 0 such

that B = B(α, δ) ⊆ U ; let us denote by � the disk of radius δ centered at α in RC. We set

C := γ ([t0, 1]), t0 := sup{t ∈ [0, 1] | γ (t) ∈ �} ∈ (0, 1].
If we apply Lemma 4.7 to C and to Y := U\R, we conclude that there exists a real number
ε > 0 with the following property: for the path-connected open neighborhood

Cε := {z ∈ RC | dist(z,C) < ε}
of C , it holds φK (Cε) ⊂ U\R (whence φK (Cε) ⊂ U>

K ) for all K ∈ Cap(I , ε). We remark
that, since C intersects the boundary of � at γ (t0), its open neighborhood Cε intersects � at
some point α0 + β0ı . If we define


x0 := B ∪
⋃

K∈Cap(I ,ε)
φK (Cε),

then, by construction, 
x0 is an open neighborhood of x0 inU that intersects the real axis in
the interval (α − δ, α + δ). Moreover, for each J ∈ S, its slice

(

x0

)
J is connected because

it is the union of the following open connected subsets of CJ : the disk BJ = B−J of radius
δ centered at α in CJ ; if J ∈ Cap(I , ε), the path-connected set φJ (Cε) (which intersects the
disk at α0+β0 J ); and, if−J ∈ Cap(I , ε), the path-connected set φ−J (Cε) (which intersects
the disk at α0− β0 J ). The same argument yields that 
x0 is connected, whence a domain. ��

We conclude this subsection by proving that the inclusion of the class of slice domains
within the class of speared domains is proper. Indeed, we construct a family of examples of
speared domains that are not slice domains.

Examples 6.3 In RC 
 R
2, we consider the rectangles R1 := (−1, 0) × [0, 4) and R2 :=

(2, 3)× [0, 4) and their disjoint union R := R1 ∪ R2. Let us fix two lower semicontinuous
width functions w1, w2 : [−1, 1] → [0, 2] such that w1(±1) = 0 = w2(±1) and such that
there exists r0 ∈ (−1, 1) with w1(r0) + w2(r0) > 2. We define, for each r ∈ [−1, 1], the
�-shaped sets

�1 := R1 ∪
(
(−1, w1(r))× (3, 4)

)
, �2 := R2 ∪

(
(2− w2(r), 3)× (3, 4)

)
,

portrayed in Fig. 3, and their union

Dr := �1 ∪ �2.

Wheneverw1(r)+w2(r) ≤ 2, as in Fig. 3, then�1 and�2 are separate connected components
of Dr . This is true, in particular for D±1 = R. When, instead, w1(r) + w2(r) > 2, as it

happens at r = r0, then Dr is the (connected) C-shaped set C := R ∪
(
(−1, 3) × (3, 4)

)
.

We always have Dr ⊆ C and Dr ∩ R = R ∩ R = (−1, 0) ∪ (2, 3), regardless of r . We
remark that R, Dr ,C (for all r ∈ [−1, 1]) are all open subsets of R

�
C
. We define � ⊆ H by

choosing �
�
J for each J ∈ S, as follows: for all x1, x2, x3 ∈ R such that x21 + x22 + x23 = 1

(so that x1i + x2 j + x3k ∈ S), we set

�
�
x1i+x2 j+x3k := φx1i+x2 j+x3k(Dx3).
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Fig. 3 The planar domain
Dr = �1 ∪ �2

We can prove that � is a speared domain but not a slice domain, as follows.

• We first prove that � is an open subset of H by picking α0 + β0 I ∈ � (with α0, β0 ∈
R, β0 ≥ 0 and I = y1i+y2 j+y3k ∈ S) and finding an open neighborhoodU ofα0+β0 I
included in �. If α0+β0ı ∈ R, then we can chooseU to be the circularization �R of R.
If α0 + β0ı ∈ (−1, w1(y3))× (3, 4), then we can pick α1 such that w1(y3) > α1 > α0

and set

U := {α + β(x1i + x2 j + x3k) |α + βı ∈ (−1, α1)× (3, 4), x1i + x2 j

+x3k ∈ S, w1(x3) > α1}.
Indeed: U includes α0 + β0 I by construction; U is open because it is the “product” of
the open rectangle (−1, α1)× (3, 4) and of the open subset of S defined by the inequality
w1(x3) > α1 (which is open because the superlevel set w

−1
1 ((α1, 2]) is open). Similarly,

ifα0+β0ı ∈ (2−w2(y3), 3)×(3, 4), thenwe can pickα2 such that 2−w2(y3) < α2 < α0

and set

U := {α + β(x1i + x2 j + x3k) |α + βı ∈ (α2, 3)× (3, 4), x1i + x2 j

+x3k ∈ S, 2− w2(x3) < α2}.
Indeed: U includes α0 + β0 I by construction; U is open because it is the “product” of
the open rectangle (α2, 3)× (3, 4) and of the open subset of S defined by the inequality
2− w2(x3) < α2 (which is open because the superlevel set w−12 ((2− α2, 2]) is open).

• � is connected, whence a domain, because, for J0 :=
√
1− r20 j + r0k, the C-shaped

half-slice

�
�
J0
= φJ0(Dr0) = φJ0(C)

is connected and because, for each J ∈ S, every connected component of �
�
J intersects

�
�
J0
in the real interval (−1, 0) or in the real interval (2, 3).

• The previous argument also proves that � is a speared domain.
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Fig. 4 The planar set spineRC
(�)

is the union of the open disks of
radius 1/2 centered at −1/2 and
at 5/2 within RC (meshed). The
planar set coreRC

(�) is the union
of the open rectangles
(−1, 0)× (−4, 4) and
(2, 3)× (−4, 4) within RC (with
dashed boundaries)

• � is not a slice domain because its slice

�k = φk(D1) ∪ φ−k(D−1) = φk(R) ∪ φ−k(R)

is the disjoint union between the rectangle φk((−1, 0) × (−4, 4)) and the rectangle
φk((2, 3)× (−4, 4)).

We remark that spine(�) = B(−1/2, 1/2)∪ B(5/2, 1/2) and core(�) is the circularization
�R of R = R1∪ R2. The planar open sets spineRC

(�) and coreRC
(�) are portrayed in Fig. 4.

It is an open question whether an interesting theory of slice regular functions on such a
large class of domains is also available in several quaternionic variables. Indeed, the theory
developed in [18] is restricted to (the multidimensional analogs of) symmetric slice domains
and product domains. A positive answer to this open question may widen the class of quater-
nionic manifolds to which the direct approach of [13], based on the use of slice regular
functions in several quaternionic variables, can be applied.

6.2 Hinged domains

We now prove that the class of hinged domains strictly includes the class of simple slice
domains defined in [10]. We rephrase the definition of simple slice domain according to the
present setup, as follows.

Definition 6.4 A slice domain � ⊆ H is called simple if, for all distinct J , K ∈ S, the
intersection φ−1J (�>

J ) ∩ φ−1K (�>
K ) is connected.

Before proving the announced inclusion, we propose a new notion valid for speared
domains �, which is weaker than the property of being simple in the special case when � is
a slice domain.

Definition 6.5 Let � ⊆ H be a speared domain. Then � is spear-simple if, for all distinct
J , K ∈ S, every connected component of the intersection φ−1J (�

�
J ) ∩ φ−1K (�

�
K ) intersects

the real axis.
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We are now ready for the announced result.

Proposition 6.6 1. Every simple slice domain is spear-simple.
2. Every spear-simple domain is a hinged domain.

Proof Let � ⊆ H be a speared domain.

1. First assume � to be a simple slice domain. In particular, � ∩ R �= ∅. Moreover, for all
distinct J , K ∈ S, the intersection φ−1J (�>

J ) ∩ φ−1K (�>
K ) is connected. Since

A := φ−1J (�
�
J ) ∩ φ−1K (�

�
K ) = (φ−1J (�>

J ) ∩ φ−1K (�>
K )) ∪ (� ∩ R),

is included in the closure of φ−1J (�>
J ) ∩ φ−1K (�>

K ) in RC, it follows that A is connected.
Moreover, A intersects the real axis. As a consequence, � is spear-simple.

2. Now assume � to be spear-simple and let us prove that� is a hinged domain, i.e., that for
all α, β ∈ R with β ≥ 0 and for every two points x = α + β J , y = α + βK belonging
to the intersection between the sphere S := α + βS and �, the equivalence x ∼ y holds.
This is clearly true when J = K , i.e., x = y. Now consider the case when J �= K : the
connected component φ−1J (�

�
J )∩φ−1K (�

�
K ) that includes α+βı intersects the real axis at

some point α′. In particular, there exists a path from α+βı to α′ in φ−1J (�
�
J )∩φ−1K (�

�
K ).

Thus: (y, α′) shadows (x, α′); the point y is strongly hinged to the point x ; and x ∼ y, as
desired.

��
Examples 6.7 It has been proven in [9, Proposition 2.18] that every open subset of H that
is starlike with respect to a real point is a simple slice domain, whence a spear-simple and
hinged domain.

In the forthcoming Examples 6.10 wewill exhibit a family of examples of hinged domains
that are not simple slice domains. Examples 6.11 will present a subfamily comprising spear-
simple domains that are not simple slice domains. Examples 6.12 will provide one example
of hinged domain that is not spear-simple.

An example of speared domain which is not a hinged domain can be found in [4, Pages 4–
5]: in that work, the authors present an example of slice domain where the Global Extension
Theorem does not hold. To see explicitly that that specific slice domain is not simple (nor
spear-simple), see [9, Example 4.4]. Another related article is [5].

It is useful to describe two more classes of speared domains, distinct from the class of
spear-simple domains, both included in the class of hinged domains.

Definition 6.8 Let U be an open subset of H. We say that U is S-connected if, for each
x ∈ U , the intersection Sx ∩ U is connected. We say that U has a main sail if there exists
J0 ∈ S such that φ−1J (U�

J ) ⊆ φ−1J0
(U�

J0
) for all J ∈ S; if this is the case, then U�

J0
is called a

main sail for U .

Proposition 6.9 1. Every S-connected speared domain is a hinged domain.
2. Every speared domain having a main sail is a hinged domain.

Proof Let � ⊆ H be a speared domain.

1. Assume � to be S-connected. Take any x ∈ �: since Sx ∩ � is connected, there is a
simple step from x to any y ∈ Sx ∩�, whence x ∼ y. As a consequence, � is a hinged
domain, as desired.
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2. Assume � to have a main sail �
�
J0
. We claim that, for all α, β ∈ R with β ≥ 0 and for

every J such that the point x = α+ β J belongs to �, the point x0 = α+ β J0 is strongly
hinged to x , whence x ∼ x0. Now, for each point y = α + βK belonging to � it holds
y ∼ x0 and x ∼ x0, whence y ∼ x by symmetry and transitivity. Thus, � is a hinged
domain, as desired.
We are left with proving our claim. Since� is a speared domain, the connected component
of �

�
J that includes x also includes a real point α′. Take any path within φ−1J (�

�
J ) from

α + βı to α′. Since φ−1J (�
�
J ) ⊆ φ−1J0

(�
�
J0

), the support of the path is also included in

φ−1J0
(�

�
J0

). Thus, (x, α′) shadows (x0, α′) and x0 is strongly hinged to x in �, as claimed.

��

We are now ready for the announced examples of hinged domains that are not simple slice
domains.

Examples 6.10 Each speared domain � constructed in Examples 6.3 is a hinged domain
because it has a main sail: namely, its C-shaped half-slice �

�
J0
= φJ0(C). We have already

proven that it is not a slice domain.

By carefully choosing the lower semicontinuous width functions w1, w2 : [−1, 1] →
[0, 2] used in the construction of � in Examples 6.3, we can illustrate all classes of domains
defined in the present subsection with examples (not belonging to the class of simple slice
domains). Eventually, our examples will show that each class is distinct from all others.

Examples 6.11 Consider again the (non simple) speared domain � constructed in Exam-
ples 6.3. Assumew1 andw2 to coincide throughout [−1, 1]. Then, for each choice of distinct
J = x1i + x2 j + x3k, K = y1i + y2 j + y3k ∈ S, it holds

φ−1J (�
�
J ) ∩ φ−1K (�

�
K ) = Dx3 ∩ Dy3 ∈ {Dx3 , Dy3}.

Since (both for r = x3 and for r = y3) every connected component of Dr includes the real
interval (−1, 0) or the real interval (2, 3), we conclude that � is spear-simple.

For instance, let us pick the width functions

w1(r) :=

⎧
⎪⎪⎨

⎪⎪⎩

4r + 4 if r ∈ [−1,−1/2]
−4r if r ∈ [−1/2, 0]
4r if r ∈ [0, 1/2]
−4r + 4 if r ∈ [1/2, 1]

,

w2(r) := w1(r) for all r ∈ [−1, 1] ,
portrayed in Fig. 5: they are continuous, vanish at±1 and have sum greater than 2 exactly in
(−3/4,−1/4) ∪ (1/4, 3/4) (corresponding to the dashed part of the figure). Let us denote
the resulting � as �1. By our previous discussion, �1 is spear-simple. Additionally, �1 is
not S-connected because the intersection

(
1 + 7

2S
) ∩ �1 has two connected components.

These can be visualized cutting Fig. 5 with a horizontal line at level 1 = Re
(
1+ 7

2 ı
)
and are

{1+ 7/2(x1i + x2 j + x3k) | x1i + x2 j + x3k ∈ S, x3 ∈ (−3/4,−1/4)} ,
{1+ 7/2(x1i + x2 j + x3k) | x1i + x2 j + x3k ∈ S, x3 ∈ (1/4, 3/4)} .
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Fig. 5 The width functions of �1

Examples 6.12 Consider again the speared domain � constructed in Examples 6.3. Assume
w1, w2 to be concave and assume there exists r1 ∈ (−1, 1) such that max[−1,1]ws = ws(r1)
for s = 1, 2. We claim that, for each α ∈ [0, 2], the union of the superlevel sets w−11 ((α, 2])
and w−12 ((2 − α, 2]) is an open subinterval of [−1, 1]. Indeed: the concavity assumption
guarantees that the superlevel sets w−11 ((α, 2]) and w−12 ((2−α, 2]) are open subintervals of
[−1, 1]; the assumption on the maximum guarantees that, if w−11 ((α, 2]) is not empty, then
it includes r1 because w1(r1) = max[−1,1]w1 > α and that, if w−12 ((2− α, 2]) is not empty,
then it includes r1 because w2(r1) = max[−1,1]w2 > 2− α.

Let us prove that � is S-connected by fixing α+βı ∈ C and arguing that the intersection
between the sphere S := α + βS and � is connected. This is obviously true if α + βı ∈ R,
since in such a case S is entirely included in�. We therefore assume α+βı ∈ [0, 2]× (3, 4).
In such a case, we see that

S ∩� = {α + β(x1i + x2 j + x3k) | x1i + x2 j + x3k ∈ S, w1(x3) > α or w2(x3) > 2− α}

is connected, as an immediate consequence of the fact that w−11 ((α, 2])∪w−12 ((2− α, 2]) is
an open subinterval of [−1, 1].

For instance, the width functions

w1(r) :=
⎧
⎨

⎩

2r + 2 if r ∈ [−1,−1/5]
8/5 if r ∈ [−1/5, 3/5]
−4r + 4 if r ∈ [3/5, 1]

,

w2(r) := w1(−r) for all r ∈ [−1, 1] ,

portrayed in Fig. 6, are continuous and concave; they both vanish at ±1 and take their
maximum value 8/5 at 0; they have sum w1 + w2 greater than 2 exactly in (−2/3, 2/3)
(corresponding to the dashed part of the figure). Let us denote the resulting � as �2. By our
previous discussion, �2 is S-connected. However, �2 is not spear-simple. For instance, if
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Fig. 6 The width functions of �2

we set J := 1√
2
j + 1√

2
k and K := −J , then the intersection

A := φ−1J

((
�2)�

J

)
∩ φ−1K

((
�2)�

K

)

has a connected component that does not meet the real axis. This fact is visible in Fig. 7 and
can be proven by direct computation, as follows. We compute

w1(1/
√
2) = 4− 2

√
2, w1(−1/

√
2) = 2−√2,

2− w2(1/
√
2) = 2− w1(−1/

√
2) = √2,

2− w2(−1/
√
2) = 2− w1(1/

√
2) = 2

√
2− 2.

Since 2−√2 < 2
√
2−2 < 4−2

√
2 <

√
2, the intersection A is the union between R = R1∪

R2, the rectangle B1 :=
(
−1, 2−√2

)
×(3, 4), the rectangle B0 :=

(
2
√
2− 2, 4− 2

√
2
)
×

(3, 4) and the rectangle B2 :=
(√

2, 3
)
×(3, 4).We remark that B0 is a connected component

of the intersection A that does not intersect the real axis, as claimed; the other two connected
components being the �-shaped figures R1 ∪ B1 and R2 ∪ B2.

Examples 6.13 Let us choose the width functions w1(r) := 2 − 2|r | =: w2(r) (for r ∈
[−1, 1]), portrayed in Fig. 8, and denote the resulting speared domain � as �0. We remark
that w1, w2 are coinciding, continuous and concave functions on [−1, 1], vanishing at ±1
and taking their maximum value 2 at 0. Their sum w1 + w2 is greater than 2 exactly in
(−1/2, 1/2) (corresponding to the dashed part of the figure). Based on the discussions in
Examples 6.10, 6.11 and 6.12, the domain �0 is spear-simple and S-connected; moreover, it
has a main sail.

In the next example, we adopt the customary notation χ(a,b) for the characteristic function
of the interval (a, b).
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Fig. 7 A (one-dimensional) portrait of A = (R1 ∪ B1) ∪ B0 ∪ (R2 ∪ B2)

Fig. 8 The width functions of �0
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Fig. 9 The width functions of �3

Examples 6.14 According to Examples 6.3 and 6.10, we construct a hinged domain �3 with
a main sail, picking the width functions

w1 := 3

2
χ(−3/4,−1/2) + 3

2
χ(−1/4,1/4) ,

w2 := 3

2
χ(−1/4,1/4) + 3

2
χ(1/2,3/4) ,

portrayed in Fig. 9. By direct inspection, w1, w2 are lower semicontinuous, zero at ±1 and
fulfill the inequality w1 + w2 > 2 exactly in the interval (−1/4, 1/4) (corresponding to the
dashed part of the figure). We claim that �3 is not spear-simple nor S-connected.

To prove our first claim, we remark that, for all r ∈ (−3/4,−1/2), the set Dr is the union
between the �-shaped figure �1 = R1∪

(
(−1, 3/2)× (3, 4)

)
and the rectangle R2; while for

all r ∈ (1/2, 3/4), the set Dr is the union between the rectangle R1 and the �-shaped figure
�2 = R2 ∪

(
(1/2, 3) × (3, 4)

)
. Since −√2/2 ∈ (−3/4,−1/2) and √2/2 ∈ (1/2, 3/4), if

we set J− :=
√
2/2 j −√2/2k and J+ :=

√
2/2 j +√2/2k, then we get

φ−1J−

((
�3)�

J−

)
∩ φ−1J+

((
�3)�

J+

)
= R1 ∪

(
(1/2, 3/2)× (3, 4)

) ∪ R2,

where the second connected component (1/2, 3/2)× (3, 4) does not meet the real axis. The
previous equality can be visualized cutting Fig. 9 along the vertical lines r = −√2/2 and
r = √2/2 and observing that the common shade of the two cuts corresponds to the interval
from level 1/2 to level 3/2.

To prove our second claim, we consider the sphere S := 1+ 7
2S. Its intersection with �3

has three connected components. These components can be visualized cutting Fig. 9 with a
horizontal line at level 1 = Re

(
1+ 7

2 ı
)
and are

{1+ 7/2(x1i + x2 j + x3k) | x1i + x2 j + x3k ∈ S, x3 ∈ (−3/4,−1/2)} ,
{1+ 7/2(x1i + x2 j + x3k) | x1i + x2 j + x3k ∈ S, x3 ∈ (−1/4, 1/4)} ,
{1+ 7/2(x1i + x2 j + x3k) | x1i + x2 j + x3k ∈ S, x3 ∈ (1/2, 3/4)} .

Our claim is thus proven.
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The next remark suggests simple ways to construct further examples of speared domains
that are S-connected domains or have a main sail.

Remark 6.15 Let U be a symmetric open subset of H, let H be a closed subset of H, let
� := U\H and assume � to be a speared domain.

1. If H is a closed half-space, a closed ball, or the complement of an open ball in H, then �

is S-connected.
2. If there exists J0 ∈ S such that H ∩ C

�
J0
= ∅, then � has �

�
J0
as a main sail.

In both cases, � is a hinged domain.

For each class we introduced thus far in the present section, we have only made use of
simple steps when proving it was included in the class of hinged domains. The next result
allows to build new examples using double steps, too.

Definition 6.16 Let � be a hinged domain. Consider a family {Uλ}λ∈
 of open subsets of H

with the following properties:

1. for all λ ∈ 
, the set Uλ is S-connected and has a main sail (Uλ)
�
Jλ
;

2. there exists an open subset D′ of RC such that (Uλ)
�
Jλ
= φJλ (D

′) for all λ ∈ 
;

3. there exists a set D, which intersects every connected component of D′, such that ��
Jλ
⊇

φJλ (D) for all λ ∈ 
;
4. �D′\D does not intersect �.

In such a case, we say that the union

�′ := � ∪
⋃

λ∈


Uλ,

is obtained from � by adding identical sails. If 
 is a singleton, we also say that �′ is
obtained from � by adding a sail.

Remark 6.17 In the situation described in Definition 6.16, the inclusion

�′\� ⊆ �D′

holds. This follows from the inclusion Uλ ⊆ �D′ valid for each λ ∈ 
, which, in turn, is a
consequence of the chain of inclusions

φ−1J

(
(Uλ)

�
J

)
⊆ φ−1Jλ

(
(Uλ)

�
Jλ

)
= D′

valid for all J ∈ S.

Proposition 6.18 Let � ⊆ H be a hinged domain. If �′ is a speared domain obtained from
� by adding identical sails, then �′ is a hinged domain.

Proof We adopt the notations of Definition 6.16 and assume, additionally, �′ to be a speared
domain. We have to prove that, for all α, β ∈ R with β ≥ 0 and for every two points
x = α + β J , y = α + βK belonging to the intersection between the sphere S := α + βS

and �′, it holds x ∼ y. This is obviously true if x, y ∈ �, because � is a hinged domain by
hypothesis. We therefore assume that at least one among x, y does not belong to �, without
loss of generality x . In particular, there exists λ ∈ 
 such that x ∈ Uλ\�. For future use, we
define xλ := α+β Jλ: sinceUλ is S-connected, the points x, xλ ∈ S∩Uλ must belong to the
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same connected component of S ∩�′, whence x ∼ xλ in �′. Since x ∈ �′\�, Remark 6.17
implies that x ∈ �D′ , whence α + βı ∈ D′. If, moreover, α + βı ∈ D, then

xλ = α + β Jλ ∈ φJλ(D) ⊆ �
�
Jλ
⊂ �.

We separate two cases:

• Suppose y ∈ �. Since �D′\D does not intersect �, it follows that α+βı ∈ D. Thus, the
point xλ belongs to �. Since � is a hinged domain, it follows that xλ ∼ y in �, whence
in �′. Since we already established that x ∼ xλ in �′, it follows that x ∼ y in �′, as
desired.

• Suppose y /∈ �, so that there exists μ ∈ 
 with y ∈ Uμ\�. If we set yμ := α + β Jμ,
then, reasoning as before, we find that yμ ∼ y in �′. We claim that xλ ∼ yμ in �′. The
chain of equivalences x ∼ xλ ∼ yμ ∼ y in �′ yields the thesis.
We prove our claim as follows. If α + βı ∈ D, then xλ, yμ ∈ �, whence xλ ∼ yμ in
� and in �′, as claimed. Now assume α + βı ∈ D′\D: the connected component of D′
including the point α + βı intersects D at some point α′ + β ′ı �= α + βı : we can thus
pick a path in D′ from α + βı to α′ + β ′ı . The points

x ′λ := α′ + β ′ Jλ ∈ φJλ(D) ⊆ �
�
Jλ

,

y′μ := α′ + β ′ Jμ ∈ φJμ(D) ⊆ �
�
Jμ

both belong to the hinged domain�. Thus, x ′λ ∼ y′μ in�, i.e., there exists a chain {ps}t−1s=1
from x ′λ to y′μ in � ⊆ �′. Now, consider again the path we have picked in D′: since
φJλ(D

′) ⊆ (�′)�Jλ , φJμ(D′) ⊆ (�′)�Jμ , it follows that (yμ, y′μ) shadows (xλ, x ′λ) in �′.
Thus, if we set p0 := xλ and pt := yμ, then {ps}ts=0 is a chain from xλ to yμ in �′ with
a double step at (0, t − 1). It follows that xλ ∼ yμ, as claimed.

��

We can now provide examples of hinged domains that do not have a main sail. We do so
by adding identical sails to previously constructed examples.

Examples 6.19 Each speared domain � constructed in Examples 6.3 is a hinged domain
because it has a main sail, as proven in Examples 6.10. We additionally assume we can
pick ρ such that w1(r) + w2(r) ≤ 2 when r ≥ ρ (this is always the case if w1 + w2 is
continuous, since w1(1) + w2(1) = 0). We let D′ denote the the rectangle (2, 4) × (3, 4)
which is portrayed in black in Fig. 10 and contains the square D := (2, 3) × (3, 4) ⊂ R2

(dotted, in black and red). We set

Uρ :=
⋃

x1i+x2 j+x3k∈S, x3>ρ

φx1i+x2 j+x3k(D′)

and make the following remarks.

• The union �′ := � ∪ Uρ is still a speared domain and is obtained from � by adding a

sail. Indeed, Uρ is an S-connected open subset of H with a main sail (Uρ)
�
k = φk(D′).

Moreover, φk(D) ⊆ �k ; actually, �D ⊂ �. Finally, the circularization �D′\D of D′\D
(which is the part of D′ to the right of the red dotted line) does not intersect �.

• By Proposition 6.18, the speared domain �′ is a hinged domain.
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Fig. 10 The planar domain
Dr ∪ D′ of Example 6.19

• There exists no J = x1i + x2 j + x3k ∈ S such that (�′)�J is a main sail for �′. If such a
main sail existed, it would have to include both a copy φJ (D′) of the added sail and the
C-shaped figure φJ (C). The former inclusion would imply x3 > ρ; the latter inclusion
would imply w1(x3)+ w2(x3) > 2; this would contradict our construction.

• The hinged domain �′ is spear-simple if, and only if, � is. Indeed, take any distinct
J = x1i + x2 j + x3k, K = y1i + y2 j + y3k ∈ S. If x3 ≤ ρ or y3 ≤ ρ, then the
intersections

A := φ−1J

((
�

)�
J

) ∩ φ−1K

((
�

)�
K

)
,

B := φ−1J

((
�′

)�
J

) ∩ φ−1K

((
�′

)�
K

)

coincide. Only when x3, y3 > ρ: one of the connected components of A, namely the
�-shaped component including R2 and intersecting the real axis in the interval (2, 3),
changes into a larger T -shaped component of B including R2 ∪ D′, still intersecting the
real axis in (2, 3); each further connected component of A equals one of the remaining
connected components of B.

• The hinged domain �′ is S-connected if, and only if, � is. Indeed, for every sphere
S := α + βS intersecting Uρ : either S ⊂ �D ⊂ � ⊂ �′; or S is contained in �D′\D ,
which does not intersect �, whence S ∩�′ = S ∩Uρ (which is connected).

In particular, if we consider the spear-simple domain�0 constructed in Example 6.13 (which
was S-connected) and we set (�0)′ := �0 ∪U1/2, then (�0)′ is an example of spear-simple
domain that is S-connected but has no main sail. If we consider the spear-simple domain �1

constructed in Example 6.11 (which was not S-connected) and we set (�1)′ := �1 ∪U3/4,
then (�1)′ is an example of spear-simple domain that is not S-connected nor has a main sail.
If we consider the S-connected speared domain �2 constructed in Example 6.12 (which was
not spear-simple) and we set (�2)′ := �2 ∪U2/3, then (�2)′ is an example of S-connected
speared domain that is not spear-simple nor has a main sail.

In our last example of hinged domain, double steps are necessary. In particular, the hinged
domain we construct has no main sail and is not spear-simple nor S-connected.
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Fig. 11 The planar domains Dy3 ∪ D′ and Dy′3 ∪ D′ of Example 6.20, with y3 ∈ (−3/4,−1/2) and for

y′3 ∈ (1/2, 3/4)

Examples 6.20 Consider again the speared domain �3 with a main sail constructed in Exam-
ple 6.14. Let D′ denote the rectangle (1/2, 3/2)× (3, 6), which is portrayed twice, in black,
in Fig. 11 and contains the square D := (1/2, 3/2)× (3, 4) (dotted). Set

U− :=
⋃

x1i+x2 j+x3k∈S,
x3∈(−3/4,−1/2)

φx1i+x2 j+x3k(D′) ,

U+ :=
⋃

x1i+x2 j+x3k∈S,
x3∈(1/2,3/4)

φx1i+x2 j+x3k(D′) .

We recall that we have set J− :=
√
2/2 j −√2/2k and J+ :=

√
2/2 j +√2/2k and make

the following remarks.

• The union (�3)′ := �3 ∪ U− ∪ U+ is still a speared domain and is obtained from �3

by adding identical sails. Indeed, U± is an S-connected open subset of H. The half slice
(U±)

�
J± = φJ±(D′) is a main sail for U±. The equality w1(−

√
2/2) = 3/2 implies that

φJ−(D) ⊆ φJ−(D−√2/2) = (�3)
�
J− , while the equality 2 − w2(

√
2/2) = 1/2 implies

that φJ+(D) ⊆ φJ+(D√2/2) = (�3)
�
J+ . Moreover, the circularization �D′\D of D′\D

(which is the part of D′ above the colored dotted line) does not intersect �3.
• By Proposition 6.18, the speared domain (�3)′ is a hinged domain.
• We can exhibit two hinged points in (�3)′, namely 1 + 5J− ∈ U− and 1 + 5J+ ∈ U+,

such that every chain connecting them must include a double step. This is because the
intersection of the sphere S := 1 + 5S with (�3)′ has two connected components,
namely S ∩ U− and S ∩ U+ and because every chain comprising only simple steps
must be entirely contained in either component. Indeed, there can only be a simple step
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between two points belonging to separate connected components if these two points are
strongly hinged, but we can show that this is impossible in our case. If 1+ 5J ∈ S∩U−,
then J = y1i + y2 j + y3k ∈ S with y3 ∈ (−3/4,−1/2), whence

φ−1J (((�3)′)�J ) = Dy3 ∪ D′ = �1 ∪ D′ ∪ R2

(see the left part of Fig. 11). If 1+ 5J ′ ∈ S ∩U+, then J ′ = y′1i + y′2 j + y′3k ∈ S with
y′3 ∈ (1/2, 3/4), whence

φ−1J ′ (((�3)′)�J ′) = Dy′3 ∪ D′ = R1 ∪ D′ ∪ �2

(see the right part of Fig. 11). Within the intersection

φ−1J (((�3)′)�J ) ∩ φ−1J ′ (((�3)′)�J ′) = R1 ∪ D′ ∪ R2,

the connected component of 1+ 5ı is D′, which does not meet the real axis. Our claim
that 1+5J ′ cannot be strongly hinged to 1+5J now follows from part 2. of Lemma 5.4.

• As a consequence of the previous discussion, (�3)′ is not spear-simple nor S-connected
and does not have a main sail.

We are in a position to provide explicit examples of chains of length t > 1.

Examples 6.21 Let J := √2/2 j +√2/2k and let us construct a chain connecting 1− 5J to
1+ 5J in (�3)

′. Since
√
2/2 ∈ (1/2, 3/4), we already know that these two points cannot be

connected by a simple step. If we set

x0 := 1− 5J , x1 := 1− 7/2J , x2 := 1+ 7/2 j, x3 := 1+ 7/2J , x4 := 1+ 5J ,

then {xt }4t=0 is a chain of length 4 connecting x0 to x4 in (�3)
′ (portrayed in Fig. 12). Indeed:

there is a simple step at 1 because there is a path from 1 + 7/2ı to −1/2 in E−J , j ⊂ RC;
there is a simple step at 2 because there is a path from 1 + 7/2ı to 5/2 in E j,J ⊂ RC; and
there is a double step at (0, 3) because the line segment from 1+ 5ı to 1+ 7/2ı is entirely
contained in E−J ,J ⊂ RC.

Fig. 12 Within (�3)
′: there is a simple step from x1 = 1− 7/2J to x2 = 1+ 7/2 j because they are strongly

hinged, as shown by the dashed blue paths; there is a simple step from x2 = 1 + 7/2 j to x3 = 1 + 7/2J
because they are strongly hinged, as shown by the dashed red paths; while the dashed black segments from
x0 = 1− 5J to x1 = 1− 7/2J and from x3 = 1+ 7/2J to x4 = 1+ 5J correspond to a double step
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Table 1 Properties of the examples of speared domains constructed in the present subsection

Spear-simple S-connected With a main sail Hinged domain

�0 � � � �
�1 � × � �
�2 × � � �
�3 × × � �
(�0)′ � � × �
(�1)′ � × × �
(�2)′ × � × �
(�3)′ × × × �

We remark that {xt }3t=1 is a chain of length 2 connecting x1 to x3 in�3 ⊂ (�3)
′. Moreover,

the points x1 = 1− 7/2J and x3 = 1+ 7/2J cannot be connected by a chain of length 1 in
(�3)

′ ⊃ �3 because: they belong to distinct connected components of (1+ 7/2S) ∩ (�3)
′;

they are not strongly hinged because the point 1+ 7/2ı belongs to the connected component
D′ of E−J ,J ⊂ RC, which has D′ ∩ R = ∅.

We conclude with Table 1, which recaps the properties of the speared domains �s and
(�s)′ for s = 0, 1, 2, 3.
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