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A B S T R A C T   

Progressive or disproportionate collapse of structures may have severe socio-economic conse-
quences. Aiming at buildings that can withstand such events, one solution is to prevent or 
minimize the propagation of damage that may lead to progressive collapse by means of robust 
design strategies. As a typical approach to model progressive collapse and assess robustness, the 
Alternate Path Method (APM) allows for static analyses, in which the dynamic effects induced by 
a sudden column loss are taken into account by amplifying loads through a Dynamic Increase 
Factor. Current recommendations for Dynamic Increase Factors to be used within non-linear static 
analyses have mainly considered beam-type collapse, overlooking other failure mechanisms, e.g., 
column buckling. The present paper investigates the dynamic effects of steel structures subjected 
to progressive collapse when buckling of columns is relevant. Five low- to high-rise case study 
building structures are considered together with three different column loss scenarios. A nu-
merical procedure is introduced to evaluate the Dynamic Increase Factors considering two 
different Engineering Demand Parameters (EDPs), suited for describing beam- and column-type 
mechanisms, respectively. As Dynamic Increase Factors are typically assessed by increasing the 
loads on all the spans (DIF), a procedure was proposed for deriving factors that apply only on the 
spans above the removal (DIF*), consistently with UFC guidelines. The obtained DIF and DIF* are 
compared with the current literature and with values recommended in the UFC guidelines, 
highlighting the limits of current recommendations. Relevant considerations on the derived Dy-
namic Increase Factors and failure mechanisms involved are provided.   

1. Introduction 

The progressive collapse of a structure refers to the scenario where localized damage in individual elements propagates and 
eventually leads to the failure of the entire structure or a part of it [1]. Progressive collapse is typically triggered by accidental events 
such as fires, explosions, or impacts, which have a relatively low probability of occurrence. Nevertheless, the severity of the potential 
consequences has raised awareness about the importance of studying and addressing the issue related to progressive collapse. Indeed, 
disasters like the collapse of the Ronan Point Building (London, 1968), the Murrah Federal Building (Oklahoma City, 1995), the World 
Trade Center (New York, 2001), and recently of the Champlain Towers (Miami, 2021) have demonstrated the significant social and 
economic losses that can result from progressive collapse [2–5]. 
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In response to these events and the growing recognition of risks associated with progressive collapse, researchers have extensively 
investigated the phenomenon, and, over the past few decades, substantial progress has been made in comprehending the mechanisms 
involved in progressive collapse for various structural systems [1,6]. By integrating lessons learned from past disasters and the ad-
vancements in progressive collapse research, design codes and standards [7–9] have been updated to provide guidance on mitigating 
the risks associated with this phenomenon. These codes aim to enhance the robustness and resilience of structures, ensuring they can 
withstand accidental events and prevent or minimize the propagation of damage that may lead to progressive collapse. 

Several aspects related to progressive collapse mechanisms have been investigated in the last few decades, including system and 
components experimental tests [10–24], as well as numerical simulation [22–36]. Experimental tests allowed for increasing knowl-
edge of specific phenomena and provided valuable data that can be used to inform and validate numerical models. These models are 
typically implemented for structural engineering applications by exploiting Finite Element (FE) methods. Several FE commercial or 
open-source software have been used to investigate progressive collapse [37–41], and various FE modeling strategies have been 
developed to deal with extreme events, e.g., fires [42,43] and impacts [44], or efficiently account for load redistributions in progressive 
collapse [45]. This allowed extensive studies on the response of several structural typologies and configurations to such extreme 
events, including residential buildings, industrial facilities, and strategic structures [25,26,31–33,35,46–50]. 

In particular, to analyze and assess the capability of a structure to redistribute loads, a well-established numerical procedure, 
referred to as the Alternate Path Method (APM) [9], is often employed. This method allows examining how the structure redistributes 
the loads and identifies alternate load paths that can effectively carry the loads previously supported by failed elements. The APM 
involves conducting numerical simulations in which the structure is initially subjected to gravity loads, and subsequently, it is subject 
to the loss of a structural element. To limit the number of possible analyses, the APM typically focuses on the most critical scenarios (i. 
e., most significant hazard or consequences - maximizing risk), which often involve the sudden loss of one or more columns at the 
ground floor [20,25–29,36,50]. This particular condition poses a significant threat to the entire system’s stability, as the ground story 
columns play a fundamental role in providing vertical load support and structural integrity. Nevertheless, it is noteworthy that while 
the sudden loss of a ground story column is a crucial scenario, design codes and standards also encompass other potential triggers of 
progressive collapse, such as column removal in different locations or the loss of other critical elements [7–9]. 

The APM is commonly addressed through static analyses, wherein the dynamic effects are indirectly taken into account by 
increasing the static loads using a Dynamic Increase Factor. The dynamic increase factors provided in design codes for non-linear static 
analyses is typically calculated based on a ductile failure mode that involves the plastic rotation of structural elements, components, 
and connections. For instance, the UFC [7] provides dynamic increase factors for non-linear static analysis that vary with the ratio 
between the plastic rotation angle θpra defined according to the acceptance criteria [7] and yield rotation θy, which depend on the 
material and mechanical properties of the affected ‘Deformation-Controlled’ structural members only. However, it is noteworthy that, 
in some cases, the dynamic response of a structure during progressive collapse is not solely dependent on the deformation of the ductile 
components. 

In fact, the response may be controlled by brittle collapse mechanisms or ‘Force-Controlled’ actions [7], such as column buckling in 
steel frames or shear failure in RC beams. In these situations, the UFC provides a dynamic increase factor specific for force-controlled 
actions only for elastic analysis, i.e., 2. This value is very conservative, as it refers to the case of an undamped Single Degree of Freedom 
(SDoF) system [51]. Conversely, for non-linear static analyses, the UFC recommends the same dynamic increase factors derived for 
deformation-controlled actions. More detailed considerations involving brittle mechanisms are thus required to effectively evaluate 
the dynamic increase factors, given that different mechanisms might also induce different collapse modes, e.g., pancake, domino, 
zipper, or mixed-type modes [52]. Column buckling, for example, is a phenomenon that can lead to brittle failure in steel structures 
and requires specific attention. 

In recent decades, several studies have proposed alternative formulations for the dynamic increase factors [53–59], exploring 
different approaches to account for dynamic effects. Similarly to UFC [7], a ductility-based formulation was proposed by Stevens et al. 
[53], while a damping ratio was considered in Mashhadi and Saffari [54]. Various researchers worked in the direction of providing 
formulations for dynamic increase factors that depend on the actual structural state, for instance, by considering the ratio between the 
demand and capacity bending moment of the most stressed beam ends Md/Mpl of the damaged structure under the original unamplified 
static gravity loads [55–57]. Tsai [58] presented two formulations for dynamic increase factors obtained for given displacements or 
load levels for an inelastic SDOF model. Ferraioli [59] proposed a modal pushdown procedure for progressive collapse analysis and 
estimation of dynamic increase factors of steel framed structures. Similarly, Brunesi and Parisi [60] assessed the dynamic effects in 
reinforced concrete framed structures in relation to the vertical displacement of beams based on pushdown analyses and Monte Carlo 
simulation. Only recently, Elsanadedy et al. [61] investigated the behavior of a multi-story frame steel building under single and 
multiple-column loss scenarios, including column initial imperfections, and evaluated the dynamic increase factors for linear static 
analyses. However, current literature lacks extensive investigation into the influence of the dynamic effects on the progressive collapse 
of structures experiencing brittle mechanisms, e.g., steel structures prone to column buckling. 

In this context, the present study evaluates the dynamic increase factors considering five steel Moment Resisting Frames (MRF) 
ranging from low- to high-rise structures and three different ground story column loss scenarios. The employed procedure enables the 
evaluation of different dynamic increase factors by considering Engineering Demand Parameters (EDPs) relevant to different collapse 
mechanisms. Detailed FE models were developed in OpenSees [37] for all the selected case-studies to perform non-linear static and 
dynamic analyses. The numerical models carefully considered global and local imperfections, and the response of key components was 
validated against experimental data and standard prescriptions to accurately simulate both beam and column-type mechanisms. The 
proposed analysis provided meaningful considerations about the dynamic effects and the dynamic increase factors, paying particular 
attention to the consistency and comparison with the current UFC [7] recommendations. Moreover, the paper presents a procedure for 
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deriving dynamic increase factors that apply only on the loads above the removal region (DIF*), as in UFC guidelines, from factors that 
apply to the loads on all spans (DIF). It is shown that the UFC suggests dynamic increase factors that are not capable of differentiating 
the dynamic contributions observed for structures with different characteristics and that may be subjected to column buckling. 

The paper is organized as follows: Section 2 describes the case studies and the FE modeling strategy employed; Section 3 provides 
the methodology to assess the dynamic effects and determine the dynamic increase factors; Section 4 presents and discusses the results 
of preliminary analyses to characterize the case studies and the application of the methodology to the case studies; finally, Section 5 
provides some conclusive remarks. 

2. Case studies structures and numerical models 

Numerical models of five steel structures were defined to investigate the influence of the dynamic effects considering different 
geometric characteristics and three column removal scenarios. Models were developed in OpenSees [37], combining the most suited 
elements to analyze the behavior of the structural joints and elements. The model’s capability to capture the behavior of both beams 
and columns was assessed and validated. 

2.1. Case studies description 

Five case-study seismically designed MRFs with different numbers of stories were investigated. These MRFs were selected as 
benchmark case studies as they were already examined in previous research focusing on progressive collapse, and detailed information 
can be found in Gerasimidis et al. [48]. The seismic design was performed for a horizontal peak ground acceleration equal to 0.16 g and 
complying with the Eurocode recommendations [62–64]. Plane frames in the x-direction consisting of 4 bays with 5 m spans were 
analyzed, while the bay span in the other direction was considered 7 m for the definition of the loads. The frames have inter-story 
heights of 3 m and total heights of 9, 18, 27, 36, and 45 m, respectively, for the 3-, 6-, 9-, 12-, and 15-story structures. Fig. 1 
shows the elevation views and the columns considered in the loss scenarios. Three single-column loss scenarios were defined, one for a 
perimeter and two for internal columns. The scenarios involving the remaining ground story columns were not considered due to 
symmetry conditions. The steel sections are oriented with the major axis within the frame plane, and beam-column joints were 
designed as rigid, full-strength welded joints. Nominal yield strength fy = 235 MPa, Young’s modulus E = 210,000 MPa, and Poisson 
ratio ν = 0.3 were used. Table 1 summarizes the steel cross-sections for columns and beams. 

A Dead Load (DL) equal to 5.0 kN/m2 was applied on all floors, comprising 3.0 kN/m2 of the self-weight of a 12 cm thick concrete 
slab and 2.0 kN/m2 to account for the non-structural permanent components. An additional DL was applied directly to the structural 
elements to account for the self-weight of beams and columns. Except for the roof level, a Live Load (LL) of 2.00 kN/m2 was applied on 
all floors. The Snow Load (SL) on the roof was assumed equal to 0.69 kN/m2, based on Eurocode guidelines [62] for the Greek climate 
region in Zone III, 200 m of altitude and standard conditions. According to the UFC [7], the progressive collapse resistance is assessed 
by considering the following load combination: 

qd = 1.2DL+ 0.5LL+ 0.0SL (1) 

The Work Ratio (WR) of the ground story columns when the structure is loaded under the load combination in Eq. (1) is reported in 
Table 1 and was calculated as the ratio between the axial force N and the buckling resistance about the weak axis Nz,bRd according to 
EN1993-1-1 [63]. 

Fig. 1. Case studies MRFs and column loss scenarios. (Adapted from Gerasimidis et al. [48]).  
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Table 1 
Case studies: columns and beam design. (Adapted from Gerasimidis et al. [48]).  

N. of stories Columns Ground story columns Work Ratio (WR) [%] Beams 

Col 1 Col 2 Col 3 Col 4 Col 5 

3 HE280B story 1 to 3  12.24  28.27  26.60  28.23  12.45 IPE500 story 1 
IPE400 story 2 
IPE360 story 3  

6 HE320B story 1 to 3 
HE220B story 4 to 6  

20.63  45.55  44.12  45.46  21.20 IPE550 story 1 
IPE450 story 2 to 3 
IPE400 story 4 to 6 
IPE360 story 6  

9 HE400B story 1 to 3 
HE280B story 4 to 6 
HE220B story 7 to 9  

25.98  53.02  53.43  52.91  26.87 IPE550 story 1 
IPE500 story 2 to 3 
IPE450 story 4 to 6 
IPE400 story 7 to 8 
IPE360 story 9  

12 HE500B story 1 to 3 
HE340B story 4 to 6 
HE280B story 7 to 9 
HE200B story 10 to 12  

30.25  57.75  59.70  57.66  31.49 IPE550 story 1 
IPE500 story 2 to 6 
IPE450 story 7 to 9 
IPE360 story 10 to 12  

15 HE650B story 1 to 3 
HE450B story 4 to 6 
HE340B story 7 to 9 
HE280B story 10 to 12 
HE200B story 12 to 15  

33.79  59.38  62.79  59.36  35.33 IPE550 story 1 to 2 
IPE500 story 3 to 9 
IPE450 story 10 to 12 
IPE500 story 13 to 14 
IPE450 story 15  

Fig. 2. Overview of the numerical modeling strategy.  
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2.2. Numerical models 

The OpenSees software [37] was selected to define and investigate the numerical models of the five case studies owing to its 
modeling flexibility, which allowed for optimized use in terms of complexity and computational cost. The model complexity was 
increased only where needed, while simple and less computationally demanding features were employed elsewhere. In the latter case, 
additional analyses were performed to confirm that such simplifications were not influencing the obtained results. 

Fig. 2 shows the key characteristics of the FE modeling strategy used in the present research work. Fiber elements were used for 
columns to exploit a distributed plasticity approach, and the elastic shear stiffness was included through the ‘Section Aggregator’ 
command. Ground story restraints were considered fixed in the x-direction and hinged in the y-direction. Additional lateral restraints 
were introduced at each floor to prevent a global out-of-plane loss of stability and account for the lateral stiffness of the slab. 

To reduce the computational cost, the model discretization was optimized to have a reduced number of elements. Preliminary 
analyses showed that discretizing each column with 6 elements was sufficient to capture buckling (see Fig. 2(a)). Similarly, it was 
confirmed that using 33 concentrated masses at each story and 6 elements for each beam adequately discretized the problem to 
simulate the dynamic response adequately. A Rayleigh damping with a damping ratio ξ = 5 % was used in the simulation. The possible 
positive contribution of the slab to the progressive collapse resistance was conservatively neglected in the present study, and lateral- 
torsional buckling was not taken into account, considering the possible restraints provided by the slab. 

Fig. 2(b) shows the modeling of the beam ends and the beam-column joint. A lumped plasticity approach was used for beams, 
considering plastic hinges at the beams’ ends and implementing the ‘Parallel Plastic Hinge’ (PPH) model proposed by Lee et al. [68]. 
The PPH consists of two ‘zeroLength’ springs, with flexural and axial behavior, and allows capturing the bending moment and axial 
force interactions, typically observed in progressive collapse scenarios due to the large contribution provided by the catenary actions. 
Hence, the PPH model was connected to the elastic beam elements on one side and the rigid elements employed for the beam-column 
joint model on the other side. The panel zone deformation at beam-column joints was simulated using the ‘Scissor Model’ [69], whose 
main parameters were determined according to Charney and Downs [70]. The deformability of the column web panel and flanges is 
modeled through two independent flexural springs connected to two orthogonal rigid links whose extension is consistent with the 
physical dimensions of the nodes. 

The PPH model was previously validated [36] against the experimental results presented by Dinu et al. [23]. As shown in Fig. 2(c), 
good agreement was found for the pushdown curve and the axial tension force, while the bending moment capacity was slightly 
underestimated. The evolution of the bending moment capacity reports the plastic-resisting bending moment of the steel beam (Mpl) 
and its maximum bending moment (Mm). Based on the calibration parameters, the same modeling strategy was implemented for the 
considered case-study structures. 

The possible loss of stability and buckling effects were accounted for based on the EN1993-1-1 [63] recommendations. Global 
equivalent imperfections in terms of initial column rotation Φ were considered and both in-plane and out-of-plane local imperfections 
with a local magnitude eo were introduced to account for the buckling of columns. Since particular attention was devoted to the 
behavior of the columns, the capability of the numerical model to account for buckling was carefully assessed. For this purpose, it was 
checked whether the EN1993-1-1 [63] buckling curves for compressed members could be obtained by means of numerical analysis, as 
depicted in Fig. 3. As shown in different applications [65,66], this goal can be achieved by introducing an imperfection consistent with 
the equation of the buckling load. Specifically, as also indicated in the ENV1993-1-1 [67], an initial imperfection with the following 
magnitude eo,η should be considered. 

Fig. 3. Buckling model validation: strong and weak axis buckling curves.  
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eo,η = kη = kα(λ − 0.2) (2)  

where k = Wel/A is the kernel radius, defined as the ratio between the elastic section modulus Wel for the relevant axis and the area A of 
the section, η is the generalized imperfection factor, and α and λ are the imperfection factor and the non-dimensional slenderness 
according to EN1993-1-1 [63], respectively. 

Simply supported axially loaded columns with HE400B section were investigated in OpenSees. When strong axis buckling was 
investigated, additional lateral restraints were introduced to avoid buckling on the weak axis. The same steel properties, i.e., nominal 
yield strength fy = 235 MPa and Young’s modulus E = 210,000 MPa, distributed plasticity finite element, and discretization used for 
the columns of the case study structures were employed, considering an elastic-perfectly plastic stress–strain law to correctly capture 
both the buckling and yielding loads. In Fig. 3, the evolution of the axial force at failure with respect to the non-dimensional slen-
derness λ is compared to the EN1993-1-1 [63] buckling curves, showing a good agreement. For completeness, the analyses were also 
performed considering the magnitude of the local column imperfection eo,EN1993-1-1 introduced in the numerical model of the case 
study structures, as currently prescribed in EN1993-1-1 [63]. It can be observed that more conservative results are obtained with this 
imperfection, and therefore, buckling is expected to initiate for loads lower than Nz,b,Rd in the columns of the case studies. 

3. Procedure for dynamic increase factor evaluation 

A numerical procedure involving non-linear static and dynamic analyses to assess the dynamic effects of a sudden column loss 
scenario is presented. Such procedure is based on the APM [9] and allows for the numerical evaluation of the dynamic increase factors 
with respect to parameters relevant to beam- and column-type collapse mechanisms. To restore consistency between the factors ob-
tained with the procedure and the recommendations provided in current standards as UFC [7], a transformation to obtain factors to 
increase only the loads above the removed columns is proposed. 

3.1. Numerical procedure 

The numerical procedure for the evaluation of dynamic increase factors consists of comparative analyses between response pa-
rameters of static and dynamic procedures. 

The static response is obtained by performing pushdown analyses of the damaged structure, i.e., the structure without the column 
(Fig. 4). In this procedure, the gravity loads are gradually increased in a non-linear quasi-static fashion until the structure is not able to 
carry any further load increment. To measure the capacity of the structure to withstand progressive collapse scenarios, the load factor λ 
is defined as follows: 

λ =

∑n
i=1Ri

Qtg
(3)  

where 
∑n

i=1Ri is the sum of the n vertical ground story reaction forces of the frame and Qtg is the load target the structure is supposed to 
bear according to a preselected load combination. According to this definition, the structure is not able to redistribute the load and, 
hence, is prone to progressive collapse if any failure is detected for λ < 1. Conversely, the structure has residual bearing capacity if 
failures occur for λ > 1. 

On the other side, the dynamic response is examined by carrying out a three-step procedure aligned with the APM [9] and UFC [7] 
recommendations (Fig. 4). In Step 1, a static pushdown analysis is performed on the undamaged structure, i.e., with no column 
removal, to determine the vertical ground story reaction Rc of the column to be removed. In Step 2, the damaged column is removed, 
and the state of the structure before removal is restored by gradually applying the gravity loads and a reaction force to the node above 
the removal. This force is the ground story reaction Rc, recorded in the gravity analysis in Step 1. Previous studies demonstrated that 
other forces, e.g., shear forces and bending moments, do not significantly affect the final response and, thus, have been neglected [36]. 
In Step 3, a dynamic analysis is performed starting from the final state of Step 2 and applying a counterforce Fc to the node above 
removal to simulate the sudden column loss. The load has the same magnitude of Rc and is linearly applied within a short removal time 
TRem. TRem was taken as (1/11)Tv, according to GSA [9], which recommends employing TRem < (1/10)Tv, with Tv being the period 
corresponding to the first vertical vibration mode of the structure. 

To compare the static and the dynamic responses, the dynamic analyses can be exploited in an Incremental Dynamic Analysis (IDA) 
fashion for increasing load values λ. This work considered ten analyses with constant increments of 10 % of the load factors. Notably, in 
each of these analyses, the mass varies accordingly with the load factor; therefore, the vibration periods and, in turn, the removal time 

Fig. 4. Static and dynamic analyses for the evaluation of dynamic increase factors.  
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TRem vary. 

3.2. Engineering demand parameters (EDPs) 

The UFC [7] recommends checking all the relevant primary and secondary elements for deformation- and force-controlled actions. 
In this work, considering the possible failure mechanisms of the investigated MRFs, beams and columns subjected to deformation- and 
force-controlled actions, respectively, are identified as key elements. Hence, two different Engineering Demand Parameters (EDPs) are 
identified to evaluate the dynamic effects induced by one or more concurrent mechanisms while monitoring the performance of beams 
and columns, i.e., the vertical displacement of the node above the removal δ and the axial compressive force in the columns adjacent to 
the removal N. 

The displacement δ is proportional to the chord rotation, which is also typically used to monitor the performance of beams and is 
considered in the UFC [7] for the dynamic increase factors evaluation. On the other end, the axial force N is a ‘good’ indicator of 
buckling. The two dynamic increase factors, namely DIF, are derived from the numerical analyses according to a load-based approach, 
i.e., measuring the ratio between the static and the dynamic load factors λ at the same EDP values: 

DIFλ(δ) =
λS(δ)
λD(δ)

; DIFλ(N) =
λS(N)

λD(N)
(4)  

where the subscripts D and S are related to the dynamic and static procedures. 
In typical applications, the DIF is meant to increment the loads to account for dynamic effects and obtain the same response in static 

and dynamic analyses. Therefore, the load-based approach should be preferred to an EDP-based approach. Indeed, the load-based 
approach provides the load increment (λS/λD ) necessary to obtain the desired effect in static analyses, i.e., the same EDP values (δD 

or ND) as in the dynamic one. Conversely, an EDP-based DIF cannot ensure the attainment of the same EDP values in the static and 
dynamic analyses. This approach implies that the DIF is determined as the ratio between dynamic and static EDPs (e.g., δD/δS) at a 
given load factor, which stops being equivalent to the load-based DIF when the linear elastic range is overcome. Therefore, hereafter 
DIF will refer to load-based dynamic increase factors, though the presented procedure could also be employed to derive meaningful 
EDP-based DIFs, as shown in Freddi et al. [36]. 

3.3. Modified Dynamic Increase Factor (DIF*) 

The dynamic increase factors obtained from the proposed procedure are evaluated by progressively increasing a uniform load 
applied on all spans. Therefore, to account for the dynamic effects in a static analysis, all gravity loads on all spans should be increased 
by such a factor. Conversely, following the recommendations of the UFC [7], the load must be amplified only on the bays above the 
removed column. Hence, to restore consistency between these two different amplifications of the gravity loads, a new dynamic in-
crease factor, hereafter referred to as DIF*, is derived from the DIF obtained with the numerical procedure. The DIF* should be applied 
to any primary element, component, or connection in the model within or touching the area above the removed column, and its 
derivation is based on the static schemes in Fig. 5. 

Fig. 5 describes three possible scenarios considering four equally long spans with length L and the same ground story columns, i.e., 
same ground story restraint axial stiffness. This configuration was selected as equally long spans, and the same ground story columns 
are very common in structural design, and the contribution provided by additional spans farther from the collapse location is usually 
negligible [15]. Therefore, the considered schemes are suited to represent many structural applications with good approximation. 
Nevertheless, the derivation of the formulation for the DIF* can be based on other static schemes if necessary. 

Three scenarios were studied by removing one of the ground story restraints and considering the two spans above internal column 
removal as a single span with a length 2L. The DIF* was derived for the relevant EDPs by enforcing the same vertical displacement v 
above the removed restraint and reaction force R in the most loaded adjacent restraint when DIF and DIF* are considered on every span 
and the spans above the removal only. A similar procedure was also proposed by Freddi et al. [36] for the axial force in central column 
removal. The following formulations were obtained for the displacement above the removal δ and the axial force in the column 
adjacent to the removal N: 

Fig. 5. Static schemes for the definition of DIF* from DIF.  
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Scenario 1 DIF*
δ = 88/97 ⋅ DIFδ + 9/97; DIF*

N = 61/49 ⋅ DIFN − 12/49
Scenario 2 DIF*

δ = 64/67 ⋅ DIFδ + 3/67; DIF*
N = 93/74 ⋅ DIFN − 19/74

Scenario 3 DIF*
δ = 13/16 ⋅ DIFδ + 3/16; DIF*

N = 57/40 ⋅ DIFN − 17/40
(5) 

The DIF offers the advantage of being relatively easy to incorporate into the analysis process. Since it applies to the loads on each 
floor, it can be directly included in the load combination. By amplifying the load combination with the DIF a simple gravity analysis of 
the MRF becomes sufficient to account for dynamic effects. However, the application of incremented loads only to the region above the 
column loss through the DIF* prevents from inducing higher forces and displacement in regions that should be less affected by dynamic 
effects. Hence, the use of DIF* in static removal analysis is suggested. 

4. Discussion of the results 

The following section synthetically presents and discusses the results related to the assessment of dynamic effects. The results are 
critically examined, considering the different collapse mechanisms observed. The obtained dynamic increase factors are compared 
against the state-of-the-art and current recommendations. 

4.1. Pushdown analyses and failure mechanisms 

Fig. 6 shows the results of the pushdown analyses on the five case study MRFs considering Scenario 3 (i.e., central column loss - see 
Fig. 1). The evolution of beam and column mechanisms are depicted in Fig. 6(a) and (b), in which the vertical displacement above the 
removal δ and the axial force in the most stressed column adjacent to removal N are shown. Analyses were run until collapse or 
incipient collapse, which was observed at different λ values, i.e., 1.46, 1.35, 1.14, 1.07, and 1.06 for the 3 to 15-story MRFs. 

The displacements and the axial forces are normalized with respect to the displacement and axial force capacities δm and Nb to 
highlight which parameters are critical to the stability of the structures. The displacement δm is attained at the maximum bending 
moment Mm (see Fig. 2(c)). The buckling resistance Nb,Rd for the weak axis according to EN1993-1-1 [63] may be significantly different 
from the actual buckling resistance owing to the effect of combined weak and strong axis imperfections, the stiffness contribution of the 
structure surrounding the column, and the interaction with the shear and bending moments induced by the loading pattern. Therefore, 
the column buckling resistance Nb was evaluated with numerical analyses by applying single vertical forces on the top of the ground 
story columns on the fully damaged MRFs and measuring the vertical reaction at the ground story of the relevant column. These 
analyses allowed for accounting for the combined weak and strong axis imperfections and the stiffness contribution of the remainder of 
the structure. The results of these analyses are reported in Table 2. 

Fig. 6(a) shows that in Scenario 3, the displacements δ for MRFs with >6 stories do not reach their capacities throughout the 
analysis and remain below 30 % of δm. Conversely, for the 3-story MRF, failure occurs, and the plastic hinge is fully developed. Fig. 6(b) 
shows that failure can be attributed to the buckling of the columns for MRFs with >6 stories since the axial force N attains the reference 
buckling resistance Nb. On the other end, for the 3-story MRF, the axial force remains below 70 % of Nb. 

Fig. 7 synthetically shows the evolution of the different failure mechanisms for all case study structures and the three column loss 
scenarios. The left subplots of Fig. 7(a) to (c) show the development of the column buckling mechanism. The axial force of the most 
stressed column adjacent to the column removal is plotted against the out-of-plane displacement of the middle node of the column (uy, 

col). At the same time, the instances related to λ = 1 are reported in the plots. In all scenarios, a linear force–displacement response is 

Fig. 6. Pushdown analyses. Central column loss scenario - Scenario 3: (a) vertical displacement of the beam above column removal; (b) axial force 
of the most stressed column. 
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observed for the 3-story MRF, i.e., no buckling. Conversely, fully developed buckling appears for MRFs with >9 stories and is more 
marked in Scenario 1, in which runaway out-of-plane displacements occur for the 12- and 15-story MRFs. Large out-of-plane dis-
placements caused by column buckling are only measured for the 6-story MRF in Scenario 3. 

Table 2 
Ground story column buckling resistance.  

N. of stories Scenario EN1993-1-1 [63] Numerical simulation 
Nb,Rd [kN] Nb [kN] 

3 1 
2 
3  

2686 
2632 
2632 
2633 

6 1 
2 
3  

3357 
3277 
3278 
3279 

9 1 
2 
3  

4245 
4076 
4078 
4078 

12 1 
2 
3  

5104 
5033 
5036 
5036 

15 1 
2 
3  

6074 
6000 
6002 
6002  

Fig. 7. Pushdown analyses. Buckling evolution and beam vs. column capacity plots: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.  
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The right subplots of Fig. 7(a) to (c) synthetically represent the development of beam and column mechanisms. These plots compare 
the demand-capacity ratios for the column axial force N/Nb and the displacement above removal δ/δm, providing insights into the 
mutual evolution of the beam and column mechanisms throughout the analyses. The shaded regions indicate the primary governing 
mechanism at collapse, where red and blue are, respectively, for the column and beam mechanisms. The column mechanism develops 
when the columns exhibit loss of stability due to excessive lateral or out-of-plane displacements induced by the attainment of the 
buckling resistance. Conversely, the beam mechanism entails the development of plastic hinges at the beams ends followed by catenary 
action. 

In all scenarios, for the 3-story MRF, the beam mechanism is predominant since displacements start to increase rapidly when 
column buckling is still not significant (i.e., N/Nb < 0.6). Conversely, in MRFs with >9 stories, the column mechanism becomes more 
relevant since axial forces close to Nb are attained at failure. In these MRFs, the displacements increase, but the full sectional capacity is 
not exploited, and displacements remain well below δm. In the 6-story MRF, both column and beam mechanisms significantly 
contribute to the failure of the structure, while the failure is mainly related to column buckling in Scenario 3. As a final remark, it is 
noteworthy that in Scenario 1, the 12- and 15-story MRFs could not redistribute the loads defined according to Eq. (1) since failure was 
attained before the complete application of the load, i.e., λ < 1. The primary mechanism involved in the collapsing phase and the load 
factor at failure are summarized in Table 3. 

4.2. Non-linear dynamic analyses 

Fig. 8 and Fig. 9 show the results of the dynamic analyses for the two identified EDPs. Analyses were performed for the three 
scenarios for increasing values of the coefficient λ with constant increments equal to 0.1. For the sake of brevity, only the results for 3-, 
9-, and 15-story MRFs, representative of low-, medium-, and high-rise buildings, are shown extensively. For graphical purposes, it was 
assumed that the static ‘state restoring’ analysis, i.e., Step 2 of the dynamic procedure, is performed in 1 s, after which the dynamic 
removal force is applied. 

Fig. 8 shows that the magnitude of the vertical displacement δ increases with the load factor λ and decreases with the number of 
stories of the MRFs. The results depicted with dashed lines represent those obtained after buckling is observed in the column adjacent 
to the removal. When buckling occurred, but the full target load factor could not be applied, the analysis was terminated, and the last 
result is indicated with a red cross. In this situation, no meaningful peak response could be measured, and the analyses were discarded. 
In other cases, after the onset of buckling, the column is gradually unloaded, and loads are redistributed to the other columns until 
collapse occurs while ever-increasing displacements δ are measured. These analyses could not be considered to evaluate the dynamic 
effects on the displacements. 

Since higher loads were associated with higher masses, the load factor λ also affects the vibration period in the dynamic analyses. 
The peak response is indicated with black points and typically occurs after the same number of oscillations regardless of the load factor. 
In Scenario 1, the perimetral column removal induces a lateral oscillation of the structures that may affect the vertical displacement 
above the removal. This effect becomes particularly relevant for higher MRFs, causing the peak dynamic response to appear at os-
cillations >1. Moreover, in a few cases, plasticity also propagates after these oscillations, and the displacement δ increases until energy 
dissipation prevents obtaining higher displacements. Larger peak displacements were observed in low-rise MRFs, in which the 
development of the beam mechanism was more marked. 

Fig. 9 shows that the magnitude of axial forces N increases with the number of stories of the MRFs. For high λ values, buckling was 
observed in the columns for forces approaching the reference column buckling resistance Nb. Typically, in each MRF the peak forces are 
obtained after the same number of oscillations. Hence, for cases that do not experience buckling, the time at which the peak response is 
measured increases with the load factor, as the period increases when λ increases. For cases experiencing buckling, for higher load 
factors, the maximum load is reached at an earlier step as column buckling resistance Nb cannot be exceeded. 

Table 3 
Pushdown analysis. Failure mechanisms.  

N. of stories Scenario Failure mechanism λ at failure 

3 1 
2 
3 

Beam 
Beam 
Beam 

1.37 
1.24 
1.46 

6 1 
2 
3 

Beam & Column 
Beam & Column 
Column 

1.21 
1.21 
1.35 

9 1 
2 
3 

Column 
Column 
Column 

1.04 
1.09 
1.14 

12 1 
2 
3 

Column 
Column 
Column 

0.96 
1.06 
1.07 

15 1 
2 
3 

Column 
Column 
Column 

0.92 
1.04 
1.06 

Note: In bold cases where failures occurred before full load application. 
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For the 3-story MRF small additional oscillations can be observed in the first part of the axial force response. This is related to the 
inelastic behavior of beams and becomes particularly evident for high λ values. Such response is peculiar of structures prone to the 
beam mechanism and was observed also for the 6-story MRF, especially in Scenario 1 and 2, when the development of plastic hinges 
was involved in the collapse behavior. 

Fig. 8. Non-linear dynamic analyses. Vertical displacement of the node above removal for the 3-, 6-, and 9-story structures: (a) Scenario 1; (b) 
Scenario 2; (c) Scenario 3. 
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4.3. Peak dynamic vs. static response 

The influence of the dynamic effects has been assessed by comparing the peak EDP values obtained for the static and dynamic 
procedures across the whole range of load factors investigated. For the sake of brevity, the comparison is provided only for the 3-, 9-, 
and 15-story MRFs. 

Fig. 9. Non-linear dynamic analyses. Axial force in the column adjacent to the removal for the 3-, 6-, and 9-story structures: (a) Scenario 1; (b) 
Scenario 2; (c) Scenario 3. 
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Fig. 10 shows the comparison in terms of peak dynamic displacements (blue continuous line) and static displacements (blue dashed 
line). The analyses in which column buckling was observed, but the structure did not eventually collapse, are indicated in grey. Circles 
show the situation in which the same target displacement value δ was obtained in the dynamic and static analyses. For the dynamic 
analyses these values are the displacements obtained at the target load factors λi employed in the IDA analyses, i.e., δi = δD,i = δD(λi) 

Fig. 10. Static vs. Dynamic analyses. Vertical displacement of the node above removal for the 3-, 6-, and 9-story structures: (a) Scenario 1; (b) 
Scenario 2; (c) Scenario 3. 
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with λi = 0.1–1. It can be observed that the static response δS equals the peak dynamic response δD for higher values of the load factor λ. 
In general, the peak dynamic response is always higher than the static one owing to the dynamic effects induced by the sudden 
application of the removal force. For the sake of simplicity, static results exceeding the highest peak dynamic value δD are not shown as 
they cannot be used in Eq. (4). 

The green lines represent the initial linear trend, while the results show a non-linear evolution for higher load factors. In the non- 

Fig. 11. Static vs. Dynamic analyses. Axial force in the column adjacent to the removal for the 3-, 6-, and 9-story structures: (a) Scenario 1; (b) 
Scenario 2; (c) Scenario 3. 
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linear range, the displacement tends to increase more rapidly owing to the exceedance of the plastic moment in the beams above the 
column removal at δpl. Hence, since the non-linear evolution of displacements is related to the spread of plasticity and owing to the 
response amplification induced by dynamic effects, the non-linear behavior initiates for lower values of λ in the dynamic analyses. 
Moreover, only the 3-story structure exhibits a marked non-linear evolution of the displacement, induced by the full development of 
plastic hinges. 

Fig. 11 shows the comparison in terms of peak axial forces. The analyses in which column buckling occurred are indicated in grey. 
In this case, also the analyses in which the structure eventually collapsed are considered since the peak response can be used to derive 
the dynamic increase factors. As observed for the peak displacements in Fig. 10, the peak dynamic response is always higher than the 
static one also for the axal force, due to the higher response generated by the inertial effects. In contrast with the continuously growing 
displacements, this figure shows a slow increase of the axial forces as they approach the actual buckling capacity. The results indicated 
with circles show that the static response NS equals the peak dynamic response ND for higher values of the load factor λ. Collapse occurs 
for axial forces approaching the buckling resistance Nb, except for the 3-story MRF. In this frame, the beam mechanism is predominant 
and causes collapse for dynamic forces ND and static forces NS well below Nb. 

The axial force shows a non-linear evolution when approaching the buckling resistance Nb. However, it is interesting that the 3- 
story structure shows a non-linear evolution of the peak dynamic axial force even if columns are less stressed. In this frame, the 
beam mechanism leads to significant beam rotations (see Fig. 7), favoring a high concentration of energy dissipation at the beam ends. 
This contributes to damping the dynamic response, and therefore, the dynamic forces transmitted to the columns are reduced, 
gradually approaching the magnitudes observed in static analyses. This is confirmed by the fact that in the 3-story MRF, the non-linear 
evolutions of the dynamic axial force in Fig. 11 and displacement in Fig. 10 start at the same load factor λ. In the 9- and 15-story 
buildings, energy dissipation in plastic hinges is less relevant. 

4.4. Dynamic increase factors (DIF and DIF*) 

DIF values were calculated with the load-based approach shown in Eq. (4) for all case study structures and all scenarios. The 
associated DIF* were derived from the linear transformations specified in Eq. (5). Fig. 12 depicts the procedure for the derivation of 
DIF, considering only the displacement for simplicity. For a selected load factor λi the associated peak dynamic displacement δD(λi) =
δi, indicated with the horizontal line, is taken as target displacement. The load factor necessary to reach the target displacement in the 
static analysis λS(δi) is employed together with λD = λi in Eq. (4) to derive DIF(λi). The response values relevant to the calculation of the 
DIF are shown with black points. To obtain the same displacements in the static and dynamic analyses the DIF(λi) should be introduced 
in the static analysis when the load factor to be applied is λi, or when the static demand on the structure with no load amplification 
reaches δ S(λi), as shown with the red cross. 

The dynamic increase factors can be determined from the target load factor before any analysis is performed, i.e., a priori definition, 
while a static analysis is necessary to determine the static demand with unamplified loads (e.g., δ S(λi)) and derive the associated 
dynamic increase factor, i.e., a posteriori definition. However, the load factor depends on how loads are defined (live loads, dead loads, 
etc.) and combined, and therefore, associating dynamic increase factors to the load factor does not allow for generalization. 
Conversely, the static demand is a measure that is independent from the loads and describes the exploitation of the characteristics of 
the specific structure (i.e. demand/capacity ratios). Moreover, considering demand/capacity ratios it is easier to track the evolution of 
the dynamic increase factors in respect to the development of the relevant mechanisms. 

For these reasons, in Fig. 13 it was preferred to represent DIF and DIF* in respect with the demand/capacity ratios of the relevant 
structural elements (beams and columns). Fig. 13 shows for every scenario, the DIF and DIF* obtained for each of the EDP target value 

Fig. 12. Dynamic increase factor derivation procedure.  
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δi = δD,i = δD(λi) and Ni = ND,i = ND(λi), indicated with circles in Fig. 10 and Fig. 11. These dynamic increase factors apply to structures 
in which the EDP values measured in the static analyses are δS(λi) or NS(λi). Hence, Fig. 13 shows the evolution of DIF and DIF* with the 
static structural demand δS(λi)/δpl and NS(λi)/Nb. The demand is quantified with respect to δpl and Nb, since as shown in Fig. 10 and 
Fig. 11 non-linear behaviour appeared when the response was close to these quantities. It should be observed that for the specific loads 
considered in this study it is still possible to identify the dynamic increase factors from the load factors λi in Fig. 13. Indeed, markers 
show the DIF values calculated at each load factor λi = 0.1–1. 

The typical behavior of the dynamic increase factors involves an initial almost constant branch followed by a non-linear branch 
with decreasing values. The dynamic increase factors remain essentially constant until both the peak dynamic and static response show 
a linear trend in Fig. 10 and Fig. 11. Once the non-linearities appear in the dynamic response, the dynamic increase factors start to 
decrease until minimum values are reached at collapse. In the initial branch the perimetral column removal scenario (Scenario 1) 
exhibits lower dynamic increase factors, while similar values are observed for the other scenarios. 

The values of the initial branch decrease with the number of stories when the displacement δ is considered. Conversely, when the 
axial force N is considered, this trend remains valid only for frames whose collapse is governed by column buckling (9–15 stories). 
Moreover, for 3- and 6-story structures, the dynamic effects are reduced for lower values of Ns/Nb, when large rotations appear in the 
beam ends. The high concentration of energy dissipation in these regions induces an additional damping effect, reducing the dynamic 
forces transmitted to the columns. 

Except for the different initial branches, whose values are influenced by the effects of damping and the characteristics of the frame, 
in buckling-governed MRFs (9- to 15-stories) the dynamic increase factors for the axial force converge to the same values in the non- 
linear branch. Conversely, for the 3- and 6-story frames, the significant reduction in the dynamic increase factors for the axial force is 
still governed by the development of the beam mechanisms. In all structures, the factors derived for the displacement show a similar 
non-linear branch governed only by the onset of plastic hinges in the beams. 

Dynamic increase factors for the axial force N span in a narrower range. It is interesting to note that the DIF is increased for N and 

Fig. 13. DIFs and DIF*s vs structural demand in pushdown analyses: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.  
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decreased for δ when the DIF* is derived. Indeed, loads on farther beams have a beneficial lifting effect on the vertical displacement δ. 
When loads are amplified only in the beams above removal, this lifting effect is reduced, and therefore, lower factors are required to 
achieve the same vertical displacement δ. On the other hand, a uniform amplification of the loads across all spans ensures that the same 
axial force obtained by increasing only the loads on the beams above removal is attained for lower increase factors. However, 
considering all scenarios, the range in which dynamic factors span is only slightly reduced, varying from 1.02 to 1.78 for the DIF to 
1.03–1.74 for the DIF*. 

4.5. Comparison with the state-of-the-art dynamic increase factors 

The derived dynamic increase factors are compared with formulations provided in previous research. As research in literature 
mainly focused on dynamic increase factors considering only the response in terms of displacements, results in terms of axial forces 
could not be compared to existing studies. Conversely, previous studies showed that the dynamic increase factor is affected by the 
energy dissipation obtained in the structural components as a consequence of the plastic deformations. For this reason, the factors 
provided in existing analytical equations are often related to the ratio δ/δpl or MS/Mpl. In this context, comparison with two relevant 
formulation is presented in the followings. Finally, DIF* derived for both displacements and forces are compared to the factors rec-
ommended in the UFC guidelines [7]. 

4.5.1. Dynamic increase factors according to Tsai (2010) 
In Fig. 14(a) the DIF values are compared with the formulation proposed by Tsai [58]. This formulation was derived with a force- 

based approach considering a bilinear elastic–plastic SDoF model with a post-elastic stiffness ratio α. In the showed curves only the 
ratio α (see Fig. 2) for the beams above removal of the 15-story frame was considered, since slightly lower values were associated to the 
beams of the other structures with little influence on the DIF curves. The proposed formulation is provided with respect to the 
displacement in the dynamic analyses, i.e., the target displacement δ = δD. The numerical results and formulation by Tsai are in good 
agreement, especially for Scenario 2 and 3. In general, numerical values are lower than the curve proposed by Tsai, owing in particular 
to the fact that damping was considered in the numerical simulation, emphasizing its beneficial effect in reducing the DIF. 

Indeed, previous studies in literature highlighted the influence of damping in the evaluations of dynamic increase factors. The 
maximum reference value is 2 for a SDoF linear elastic undamped system, but it becomes lower when damping is considered [51]. 
Similarly, in Fig. 14(a) the maximum DIF values are obtained when the beams are still in the elastic range, i.e., δ < δpl. In general, part 
of the vibrational energy is dissipated through various damping mechanisms, which can further reduce the dynamic responses, 
resulting in lower values of the dynamic increase factors. Inelastic buckling phenomena and the joints may have an influence on the 
dynamic response as well, as they might dissipate energy and induce a damping effect. These aspects contribute to the attainment of 
different DIF values depending on the building and the scenario. 

4.5.2. Dynamic increase factors according to Liu (2013) 
Fig. 14(b) presents a comparison between the DIF* values derived for the displacement δ with Eq. (5) and the formulation suggested 

by Liu [55]. This formulation was based on numerical simulations of three steel frames under an internal and a perimetral column 
removal. 9-story frames with five bays and no initial imperfections were considered. DIF* were compared with this formulation since 
numerical analyses performed by Liu implied the increment of the loads only of the bays above the removed column. The evolution of 
DIF* was expressed with respect to the ratio between the bending moment in the static analyses MS and the plastic moment Mpl. 

For Scenario 2 and 3 the numerical results are in good agreement with the proposal of Liu for the inelastic range in the dynamic 

Fig. 14. Comparison of dynamic increase factors for δ against the state of the art: (a) DIF vs. Tsai (2010); (b) DIF* vs. Liu (2013).  
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analyses, i.e., MS/Mpl > 0.5. Indeed, it was found that the lowering of the beam ends induced by column buckling did not significantly 
affect the displacements δ, and therefore, results for the DIF* are comparable to those presented in [55] even if imperfections were not 
introduced in this work. The value for entering the inelastic range was set considering the conventional DIF* of 2 for the elastic range 
and that at the elastic limit (MD = Mpl) the simplification MD(λ) = MS(DIF*‧λ) = DIF*‧MS(λ) can be accepted. 

Few results were available in the static post-elastic range in Liu’s analyses and no specific formulation was provided for Ms/Mpl > 1. 
However, in a recent work [57] a significant reduction of the DIF* with an analogous behavior to the one exhibited by low-rise MRFs in 
Fig. 14(b) was found in this range. This change in the behavior is mainly devoted to the static analyses entering the inelastic range for 
Ms/Mpl > 1, adding a further source of non-linearity in the evolution of DIF*. 

For Scenario 1 the derived DIF* values are significantly lower than Liu’s formulation. Similarly, Liu found that the lowest numerical 
DIF* in his analyses were obtained with a perimetral column removal, in particular for MS/Mpl ≤ 0.5. According to Liu [55], this fact 
can be attributed to the higher level of geometrical non-linearity introduced by the removal of an exterior column and the subsequent 
redistribution of gravity loads among a smaller number of bays, which may contribute in reducing the dynamic response. 

It should be observed that for MS/Mpl ≤ 0.5 the numerical results show different levels of dynamic increase factors depending on the 
structures. This highlights that already in the elastic range, the dynamic response varies with the level of geometric non-linearity of the 
structure and that damping effects might reduce the response more significantly for low-rise structures. Liu [55] proposed different 
linear branches which were however obtained only from the analyses of one seismically designed MRF with 9-story and are therefore 
not reported in Fig. 14(b). 

4.5.3. Dynamic increase factors according to UFC 
In Fig. 15 factors associated with the same state, i.e., same load factor, are compared more concisely for two selected load factors, i. 

e., λ = 0.4 and λ = 0.7 respectively. Among all the investigated cases, λ = 0.4 was identified as the highest load factor for which the 
variation of the dynamic increase factors is not significant, while λ = 0.7 is the highest load factor for which buckling did not occur. 

Fig. 15. Dynamic Increase Factors at λ = 0.4 and λ = 0.7: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.  
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In the case of λ = 0.4, DIF is always higher for the displacement. However, when only loads above the removal are amplified 
through the DIF*, the highest value among the one for the displacement and the axial force is better aligned with the critical 
mechanism. When the beam mechanism is more relevant (3- and 6-story buildings), the DIF* for the displacement is typically higher 
than the one for the axial force, and vice versa when the column mechanism is critical (9-, 12-, and 15-story buildings). There are few 
exceptions, i.e., the 9- and 12-story MRFs in Scenario 2, and therefore a direct correlation between the collapse mechanism identified in 
the pushdown analyses (shown in Fig. 7) and the DIF* cannot be established. 

In Fig. 15 the derived dynamic increase factors are compared with the ones recommended in the UFC guidelines [7]. These 
guidelines provide dynamic increase factors to be applied on the region above the removal and are therefore compared with DIF*. 
Moreover, it should be mentioned that a force-based approach was employed in the derivation of the UFC factors and therefore, the 
comparison with the factors presented in this study is consistent. 

The UFC [7] provides a formulation for the dynamic increase factors to check deformation-controlled actions in non-linear static 
analyses which depends on the material and mechanical properties of the affected structural members and its ductile behavior. This 
formulation considers the ratio between the plastic rotation angle θpra defined in acceptance criteria provided in [7] and yield rotation 
θy in any primary element, component, or connection in the model within the area that is loaded with the increased gravity load. The 
highest among the obtained factors should be considered, which for the case study structure was 1.24, except for the 15-story structure, 
for which 1.22 was obtained. These values were determined considering that the structures have welded unreinforced flanges 
connections. 

No separate calculation is provided in the UFC [7] to account for brittle failures as column buckling in non-linear static analyses, 
and the same value is suggested for both deformation- and force-controlled actions. On the contrary, for linear static analyses, a single 
value of 2 is suggested for force-controlled actions. In the absence of specific indications regarding non-linear analyses, the value of 2 
can be conservatively taken for force-based mechanisms or brittle failures. 

It is noteworthy that for λ = 0.4 the UFC values for deformation-controlled actions in non-linear analyses considerably underes-
timate the dynamic effects for the displacements. The dynamic effects are reduced at λ = 0.7 but are still higher than the UFC reference 
values. Hence, UFC deformation-controlled value underestimates the dynamic effects in particular when beams still not entered the 
inelastic range, but become more precise for load levels that significantly engage the structures. 

On the other hand, as expected the UFC factor for force-controlled actions in linear analyses, i.e., 2, significantly overestimates the 
DIF* for the axial force as it is based on the dynamic response of a SDOF at-rest linear elastic system [51]. A better estimate though 
conservative, can be obtained by considering the UFC values for displacement-controlled actions in non-linear analyses. The UFC 
factors are in better agreement with the numerical DIF*N for higher load factors, in particular when the beam mechanisms is more 
relevant, i.e., for the 3- and 6-story buildings. It may be concluded that by applying UFC [7] factors, neither the displacements nor the 
axial force induced by dynamic effects can be accurately considered. 

Finally, it should be observed that it is very difficult to propose a single value of the increase factor valid for all the situations. The 
impact of dynamic effects depends on the number of stories and the activated mechanisms, the column loss scenario, and the load 
factor. In general, the derived DIF* are meaningful for both δ and N and the most appropriate one should be determined based on the 
actual collapse mode or dominant mechanism of the investigated structure. As an alternative, the dynamic increase factor may be 
selected among factors derived for various EDPs, depending on the desired effect to maximize or deemed more significant in a specific 
case. 

5. Conclusions 

This paper investigates the dynamic effects in progressive collapse scenarios by evaluating the Dynamic Increase Factors for 
different steel structures with an increasing number of stories. A numerical procedure involving non-linear static and dynamic analyses 
was proposed and applied to evaluate the factors for five seismically designed case study Moment Resisting Frames (MRFs). Detailed 
finite element models were developed in OpenSees including mechanical and geometrical non-linearities. The models have been 
validated to simulate with good confidence the axial force-bending moments interaction in the beams (e.g., PPH - due to the catenary 
effects) and the column buckling. Such models have been used to simulate three different column loss scenarios. Considerations related 
to the dynamic effects were provided considering two key Engineering Demand Parameters (EDPs) aiming at evaluating the effects 
under beam-type collapse mechanisms and column buckling failure, respectively. Dynamic Increase Factors were assessed, also 
considering their application on all loads acting on beams (DIF) or only on those above the column removal zone (DIF*), as for the UFC 
[7] recommendations. The outcomes of the analyses provided insights into the involved phenomena, revealing that the Dynamic 
Increase Factors might significantly differ from those recommended by the UFC guidelines [7]. In detail, relevant considerations are:  

• The factors derived are meaningful for both δ and N and the most appropriate one may be determined based on the actual collapse 
mode of the investigated structure or the effect deemed more relevant in a specific application. Conversely, the indiscriminate 
application of the highest available DIF* may lead to a premature collapse of the structure. Hence, as also suggested in UFC [7] for 
deformation and force-controlled actions, it is recommended that both beam and column mechanisms are checked separately.  

• The UFC [7] recommendations are unable to adequately account for the diverse dynamic responses exhibited by structures with 
different characteristic and structural demand, especially those prone to column buckling. The values suggested for non-linear 
analyses, which primarily address collapse considerations associated with beam mechanisms, tend to underestimate the dy-
namic effects measured on both the displacement δ and the axial force N. On the other hand, the single conservative value provided 
for linear force-controlled mechanisms largely overestimates the DIF* for the axial force. 
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• In the linear elastic range, the highest among the DIF* for the displacement and the axial force is generally the one related to the 
most critical mechanisms involved. Conversely, since the DIF values for the displacements δ were always higher than the ones for 
the axial force N, the DIF could not provide information about the mechanism governing the structural behavior.  

• In structures in which the beam mechanism is predominant a high energy dissipation concentrates at the beam ends. This promotes 
a damping effect reducing the dynamic axial forces transmitted to the columns. Consequently, the magnitude of dynamic forces is 
gradually reduced when plastic hinges activate, causing a reduction of dynamic increase factors for the axial force N that is not 
related to the development of column buckling.  

• The results showed that, as expected, for both the displacement and the axial force, the peak dynamic response is always higher 
compared with the static one, due to the inertial effects contribution. In the peak dynamic response, the non-linear behaviour 
appears for lower load factors, and eventually approaches the static one. This is evident when buckling is reached in the ground 
story columns, with the axial force approaching the buckling axial force Nb without exceeding it in both dynamic and static an-
alyses. It was observed that the non-linear response is mainly initiated by the exceedance of the plastic moment Mpl in the beams 
above the column removal. 

Finally, it was shown that the impact of dynamic effects depends on the number of stories and the main collapsing mechanism, and 
the column loss scenario. Damping may significantly affect the increase factors in the elastic range, with an increasing influence for an 
increasing number of stories. In the inelastic range, increase factors tend to a common path, but significantly lower values are obtained 
for perimetral column removals. Therefore, the definition of a general formulation for the DIF and DIF* is not straightforward. To offer 
detailed guidelines on dynamic effects, future work will include additional investigations supported by experimental studies. More-
over, to generalize the results various aspects will be considered in future studies, as the influence of different span lengths and 
interstorey heights and of the seismic design extending the analysis to non-seismically designed steel frames. Indeed, these frames are 
typically designed with more slender columns, which are therefore more sensitive to buckling. In addition, a further aspect that de-
serves a specific investigation is how the removal time and the damping ratio might impact the dynamic response and the Dynamic 
Increase factors. 
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