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Abstract
Misfit layer compounds (MLCs) are heterostructures composed of rocksalt units stacked with
few-layers transition metal dichalcogenides (TMDs). They host Ising superconductivity, charge
density waves, and good thermoelectricity. However, research has mostly focused on specific
compounds and trial-and-error synthesis, making the design of misfits’ emergent properties hin-
dered by a lack of a global picture. Our work offers an original perspective by deriving misfits’
properties from those of their constituent layers. We identify the fundamental mechanism gov-
erning charge transfer and demonstrate how charge injection into the TMD layers can be effec-
tively controlled through chemical alloying in the rocksalt unit. We show that misfits behave as a
periodic arrangement of ultra-tunable field-effect transistors, allowing for massive chargings. We
establish a strategy to study the electronic and vibrational properties of MLCs, highlighting the
two-dimensional nature of the lattice dynamics of TMDs in these three-dimensional hetrostruc-
tures. Finally, we present an in-depth study of superconductivity in MLCs, estimating critical
temperatures and comparing with existent experimental data. Our work provides a complete
characterization of these heterostructures, aiming to guide the design of materials with targeted
emergent properties for future device applications.

Keywords: heterostructures, transition metal dichalcogenides, charge transfer,
emergent properties, superconductivity



Résumé
Les matériaux misfit lamellaires (misfit layer compounds (MLCs)) sont des hétérostructures
composées de couches de dichalcogénures de métaux de transition (TMD) en sandwich avec
des couches de chalcogénures rocksalt. Ces structures abritent une supraconductivité de type
Ising, des ondes de densité de charge et de bonnes propriétés thermoélectriques. Cependant,
la recherche s’est principalement concentrée sur des composés spécifiques et une synthèse par
essais et erreurs, ce qui a entravé l’exploration des propriétés émergentes des misfits en raison
d’un manque de vision global. Notre travail propose une perspective originale en dérivant les
propriétés des misfits à partir de celles de leurs couches constituantes. Nous identifions le
mécanisme fondamental régissant le transfert de charge et démontrons comment l’injection de
charge dans les couches de TMDs peut être efficacement contrôlée par l’alliage chimique dans
l’unité rocksalt. Nous montrons que les misfits se comportent comme un agencement périodique
de transistors à effet de champ ultra-ajustables, permettant des effets de charges massifs. Nous
établissons une stratégie pour étudier les propriétés électroniques et vibrationnelles des MLCs,
mettant en évidence la nature bidimensionnelle de la dynamique du réseau des TMDs dans
ces hétérostructures tridimensionnelles. Enfin, nous présentons une étude approfondie de la
supraconductivité dans les MLCs, en estimant des températures critiques et en les comparant
avec les données expérimentales existantes. Notre travail fournit une caractérisation complète de
ces hétérostructures, visant à guider la conception de matériaux avec des propriétés émergentes
ciblées pour de futures applications dans des dispositifs électroniques.

Mots clés: hétérostructures, dichalcogénures de métaux de transition, transfert
de charge, propriétés émergentes, supraconductivité



Acknowledgements
I still can’t believe how much pursuing this path changed my life. But I know
that going through all the good and bad days has shaped me into the woman and
scientist I am now, as well as the one I will become in the future.

I am sincerely grateful to my two supervisors. Matteo Calandra for being my first
scientific guide in this journey. The dedication you have for science inspires me
to always push further while maintaining the ship’s wheel steady. Tristan Cren
who immediately understood and supported me in my scientific path. Thank you
for teaching me that true physics is hidden in the simplest concepts. I’d also like
to thank my master’s thesis advisor, Giovanni Cantele, for being the first person
to have faith in my scientific career and provide consistent encouragement. I also
wish to acknowledge Marie-Aude Méasson, with whom I had the privilege of col-
laborating and acquiring a wealth of knowledge regarding Raman spectroscopy.
I would like to acknowledge the referees, professors Marina Rucsandra Filp and
Claudio Attaccalite, who kindly accepted to review my thesis, and the other mem-
bers of the jury, professors Claudine Katan, Andrea Gauzzi and Pierluigi Cudazzo.
I am profoundly appreciative of the secretary teams of both institutions, with a
special mention for Micaela Paoli, whose commitment to each individual Ph.D.
is truly remarkable, Isabelle Borges, and Valérie Guezo. I want to express my
gratitude for the members of my two scientific groups, the Mattheory group in
Trento and the SNEQ team at the INSP. All these people warmly welcomed me,
helping to keep my mental health stable during the Ph.D. between a ping-pong
match and a post-work apéro. A special thanks goes to my friend and colleague
Giovanni Marini. I’ve seen you becoming an invaluable researcher; with your con-
tagious positive and calm mindset, you make all of us believe that everything can
be fixed one step at a time. Thank you for supporting me both in my scientific
and personal life.

My Ph.D. journey would not have been the same without the support from all
the people I met, first in Trento and then in Paris, whom I am fortunate to call
friends. Thanks to the ’Vabbuòja’ team. Nicola for our deep connection, Costanza
for being my trentino-sister, Manuel for all our life talks, and Gianmarco my
favourite enemy-to-friend. You’ve become my Trento family, the one I will always
come back to. Thanks to Alberto, GioNovi, Stefano, Matteo, Cecilia, Thomas,
Elio, GioMattiotti, Lorenzo, Bob, Margherita, Elena, Jules, Alessio, Veronica and
Kris. Thank you for all the morning coffees and afternoon spritzes, mountain



hiking, and especially for all the laughter that brought joy to my days. Thanks
to my beloved Parisian friends Eliane, Pascal, Carlos, Sergei, Romeo, Laurita,
Antoine, Christian, Noemi, Robin and Axel. Thank you for our Parisian nights,
our visits to Amsterdam, Malta, and, most importantly, to the canteen, and for
sharing with me the delight of eating haricots verts every day. Thanks to Matias
to always be there for me, Hugo to keep cheering me up, and Angelique, who has
been by my side since the beginning of my Parisian journey. Thanks to Arianna,
my special palier friend, for all the Parisian adventures between strange food tastes
and brocantes.

I want to express my profound gratitude and love to my family, Liliana, Fabrizio
and Chris. You raised me with grace, and because of your sacrifice and love, I
am a free woman with the ability to choose her own path. You will always be
my inspiration. Andrea, thank you for treating me with respect and love. You
have the ability to awaken my inner child, sharing with me the beauty of the
present moment while enjoying the scenery. Sara, Ilaria, Laura and Mattia my
core-friends I deeply love you and I am honoured to share my daily life with
you. No distance will keep us apart. Mattia for sharing ’ugly horses’ and life
talks, Laura for being my personal sunshine, Sara and Ilaria, thank you for being
my strong, independent, and furious women, my inspiration, and my source of
happiness. Lastly, thank you Ludovica, remember who you are, I am proud of
you!

i



Contents

Introduction 1

1 Misfit layer compounds 5
1.1 Introduction to misfit crystals . . . . . . . . . . . . . . . . . . . . 5
1.2 Subsystems of misfit layer compounds . . . . . . . . . . . . . . . . 8

1.2.1 Transition metal dichalcogenides . . . . . . . . . . . . . . . 8
1.2.2 Rocksalts . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Structure of misfit layer compounds . . . . . . . . . . . . . . . . . 10
1.3.1 The mismatch . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Lattice and stacking . . . . . . . . . . . . . . . . . . . . . 13

1.4 Experimental synthesis . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Phenomenology and emergent properties . . . . . . . . . . . . . . 18
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Work function and band alignment of TMD monolayers and rock-
salt units 22
2.1 The work function . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 The band alignment . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Band alignment and work function determination in density
functional theory . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Work function determination and band alignment of TMD mono-
layers and rocksalt units . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Ab initio geometrical and electronic properties of misfit layer
compounds 36
3.1 Experimental structure determination of bulk misfit layer compounds 36
3.2 Ab initio construction of the bulk cell and comparison with exper-

iments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Ab initio construction of misfit layer compound surfaces . . . . . 40
3.4 Band unfolding and charge transfer determination . . . . . . . . . 43
3.5 Electronic structure of the surfaces of (LaSe)1+δ(TX2)2 misfit series 46
3.6 (RQ)1+δ(NbSe2)2 surface misfit series . . . . . . . . . . . . . . . . 50
3.7 Tunable doping by La-Pb alloying in misfit layer compound surfaces 53
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ii



4 Modeling misfit layer compounds as a collection of field effect
transistors 60
4.1 Gated two-dimensional materials in the field effect transistor setup 60
4.2 Misfit layer compounds as a collection of field effect transistors . . 66
4.3 Doping-induced superconductivity in misfit layer compound (LaSe)1.27(SnSe2)2

in the FET setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Vibrational properties of misfit layer compounds . . . . . . . . . . 73

4.4.1 Modeling bulk (LaSe)1.14(NbSe2)2 . . . . . . . . . . . . . . 74
4.4.2 Charge density wave collapse of NbSe2 in the (LaSe)1.14(NbSe2)2

misfit layer compound . . . . . . . . . . . . . . . . . . . . 77
4.4.3 Raman scattering and mode attribution of bulk (LaSe)1.14(NbSe2)2 80

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Superconductivity in misfit layer compounds 86
5.1 First principles calculations of superconducting properties . . . . . 86
5.2 Superconductivity of bulk (RQ)1+δ(NbSe2) misfit series . . . . . . 89

5.2.1 Modeling bulk (RQ)1+δ(NbSe2) . . . . . . . . . . . . . . . 89
5.2.2 Electronic properties of bulk (RQ)1+δ(NbSe2) misfit series 92
5.2.3 Ab initio superconducting properties of bulk (RQ)1+δ(NbSe2)

misfit series . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Conclusions 101

Bibliography 105

A Computational details 119
A.1 Geometrical optimization of misfit surfaces . . . . . . . . . . . . . 119

A.1.1 Misfit surfaces with TiSe2 and SnSe2 . . . . . . . . . . . . 119
A.1.2 Misfit surfaces with NbSe2 and RQ=LaSe, BiSe, PbSe, SnSe 120

A.2 Electronic properties of misfit surfaces . . . . . . . . . . . . . . . 121
A.3 Doping-induced superconductivity in misfit layer compound (LaSe)1.27(SnSe2)2127
A.4 Modeling bulk (LaSe)1.14(NbSe2)2 as a collection of field effect tran-

sistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.4.1 2× 1 periodic approximant of bulk (LaSe)1.14(NbSe2)2 . . 128
A.4.2 Field-effect transistor setup modeling . . . . . . . . . . . . 129
A.4.3 Effect of the non-hexagonality of 2L-NbSe2 within (LaSe)1.14(NbSe2)2130

A.5 Superconducting properties of bulk (RQ)1+δ(NbSe2) misfit series . 131

iii



Introduction

Heterostructures composed of two-dimensional (2D) materials attracted a lot of
attention in recent years due to the ability to fine engineering layer-by-layer ma-
terials with remarkable physical properties. Few layers of atoms can be isolated
and manipulated with the aim of discovering novel physical phenomena that are
unachievable in their bulk counterparts. This field has its roots in the work of
Andre Geim and Konstantin Novoselov [1], whose pioneering studies on graphene
established the baseline for the investigation of other 2D materials.
In a heterostructure, 2D materials such as graphene, hexagonal boron nitride (h-
BN), transition metal dichalcogenides (TMDs), and many others can be stacked
or integrated to form layered assemblies. The van der Waals (vdW) forces that
hold the layers together facilitate the assembly of diverse materials while main-
taining high interface quality, free of the defects and dislocations that commonly
plague traditional semiconductor heterostructures, resulting in superior electronic
and mechanical properties. Novoselov and Geim’s reviews have extensively dis-
cussed the potential of these materials [2,3], describing the vdW heterostructures
as an atomic-scale LEGO game. They claim that the strengths of new technolo-
gies based on these heterostructures can be identified in their rich tunability: the
variety of choice between ”bricks” such as the multitude of two-dimensional lay-
ers already synthesized, the number of sheets, the diverse stacking configurations,
and many others. These features can thus be seen as control knobs for fine-tuning
mechanical, optical, electrical, and superconductive properties in two-dimensional
heterostructures. The quest for synthesizing and modeling new heterostructures
represents a frontier in material science and application, driven by the potential
to build innovative devices.

Misfit layer compounds (MLCs) are heterostructures composed of rocksalt units
stacked along the out-of plane direction with few-layer transition metal dichalco-
genides. Because of the different lattice parameters of their constituent layers,
these compounds inherently possess a "misfit" between the layers along one of
the in-plane directions, making the misfit crystal incommensurate. Despite being
three-dimensional (3D) crystals, the physical properties of misfit layer compounds
are intertwined with the one of their two-dimensional building blocks. MLCs are
mechanically stable bulk structures with strong intralayer bonding. They also
inherited the tunability of two-dimensional heterostructures, with the possibility
to be cleaved, obtaining clean surfaces, thanks to the weak interlayer van deer
Waals interactions.
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Misfit layer compounds have been known for a long time. Due to their complex
composition, these heterostructures have been a puzzle for the crystallography
community, and thus their structures as a function of the RS and TMD composi-
tion have been thoroughly investigated [4,5]. However, the exploration of physical
properties of misfit layer compounds is quite recent, and focused mainly on two
interesting perspectives.
The first is that charge transfer occurs as a result of the interaction between the
TMD layers and the rocksalt units. For example, recently [6], it has been shown
that it is possible to overcome the limit of the largest carrier doping that can
be achieved via field effect gating in the metallic TMD NbSe2 (ne ≈ 3 × 1014

e− cm−2 [7]) within a misfit heterostructure. Indeed, in the misfit layer com-
pound (LaSe)1.14(NbSe2)2, a massive electron transfer from the LaSe rocksalt to
the NbSe2 TMD occurs, leading to a rigid doping as large as ne ≈ 6 × 1014 e−
cm−2. The capability of inducing a controlled and tunable number of carriers in
few layer systems has been pivotal for the success of 2D materials [8]. Therefore,
this important result opens up the prospect of employing misfit layer compounds
as a new platform to achieve controllable doping of TMDs. It is, however, unclear
if the electron doping in misfits can be in some way controlled by any physical
parameter and, more importantly, how general this mechanism to dope few layer
TMDs is.
The second point is that recently a plethora of new emergent properties have been
discovered in misfit layer compounds. Indeed, they host physical properties such as
Ising superconductivity [9–13] charge density waves (CDW) [14–16], topological
effects [17] and many others. Emergent properties of a system are those emerging
from the interactions between its individual components. These properties are not
inherent to any single component but arise from the collective behaviour of the
system as a whole. Designing heterostructures with desired emergent properties
is, however, a challenging task of increasing interest for the condensed matter com-
munity, beyond the particular case of misfit layer compounds, to understand how
the complexity of the system’s interactions leads to new behaviors that cannot be
easily predicted from the properties of the isolated components.

To summarize, the research in the field of misfit layer compounds has led to
remarkable results, but it has mostly proceeded by isolated discoveries and trial-
and-error chemical synthesis, while general rules to understand what happens
when assembling different rocksalts and TMDs are missing. The need of a global
picture becomes evident when considering that: first of all, many binary layers and
ternary alloys composed of monochalcogenides can be assembled with practically
any few layer dichalchogenide; second, the thickness of the dichalcogenide layers
can be chosen at will. This makes misfit layer compounds a playground with a
lot of possible combinations but also leads to many unanswered questions. For
example, how does the charge transfer occur in these heterostructures? Are the
TMD layers acceptors or donors? How can the charge transfer be tuned? To
what extent is the electronic structure of the TMD affected when inserted in the
heterostructure? Most important, what are the emergent properties of the misfit,
i.e., properties of the MLC that are absent in the pristine constituents? How can
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we design misfit properties from the knowledge of their building blocks?

In this Thesis, we answer these questions by performing extensive first-principles
calculations of misfit layer compounds in the density functional theory (DFT)
framework. More specifically, the purpose of this Thesis is to develop an approach
that allows to derive the properties of misfit layer compounds starting from their
individual constituents, namely rocksalts and transition metal dichalcogenides.
Such a study would not have been accurate without a solid grasp of the experi-
mental state-of-the-art in misfit layer compounds characterization; hence, I had
the chance to collaborate closely with the experimental SNEQ team at the Insti-
tut des Nanosciences de Paris (INSP).
First of all, the solution to the problem of determining the features of misfit layer
compounds based on those of each of their components necessarily involves un-
derstanding the charge transfer mechanism between the two components of the
heterostructure. We address this problem by identifying the fundamental mecha-
nism ruling charge transfer and demonstrating how the charge injection into the
TMD layers can be efficiently controlled by chemical alloying in the rocksalt unit.
Our methodology involves the accurate study of the properties of individual rock-
salts and TMDs from which we are able to predict the amount of chargings as
well as the direction of the charge transfer in misfit heterostructures. Second,
we characterize misfit layer compounds by deriving their electronic, vibrational
and emergent properties such as superconductivity with extensive ab initio cal-
culations. We then use the knowledge gained from our global picture for the
charge transfer to build a physically meaningful effective model to describe mis-
fit layer compounds. This model allows to reduce the computational effort of
simulating these large supercell heterostructures in the DFT framework. Our
methodology provides a complete and new characterization of misfit layer com-
pounds heterostructures. Most importantly, we are able to compare our findings
with the state-of-the-art experimental results, showing the validity of our method
in calculating the electronic and vibrational properties of these heterostructure.
Finally, our method demonstrates how to exploit the distinct physics of individ-
ual constituents to design misfit layer compounds. We illustrate how to construct
heterostructures that not only can inherit properties from each two-dimensional
constituent but also exhibit emergent properties unique to the misfit, resulting
from interactions among the constituent layers.

Topics covered in the manuscript are organized as follows. In the first chapter,
we introduce misfit layer compounds composition and structural complexity, em-
phasizing how each subsystem contributes to the ultimate crystal structure. We
provide state-of-the-art literature on experimental synthesis, characterization, and
emergent physics. In the second chapter we present our DFT calculations, demon-
strating the mechanism controlling the charge transfer in misfit layer compounds.
In the third chapter we explore the geometrical and electronic properties of mis-
fit layer compounds, comparing our ab initio calculations to known experimental
data. In the fourth chapter, we present the field effect transistor approach designed
to study misfit layer compounds. We explain how we can efficiently model a mis-
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fit layer compound by a collection of field effect transistors. We demonstrate the
validity of this approach by deriving electronic and vibrational properties of misfit
crystals in comparison with the full misfit calculations. In the fifth chapter, we
present our ab initio calculations of the superconductive properties of misfit layer
compounds, evaluating superconducting critical temperatures and comparing our
results with experimental data. In the end we draw our conclusions, summarizing
the main achievements of this Thesis and discussing the possible future direction
on this subject.
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Chapter 1

Misfit layer compounds

1.1 Introduction to misfit crystals
Misfit compounds are heterostructures built as a periodic arrangement along the
c axis of two different types of two dimensional (2D) materials [4, 5]. The name
"misfit" originates from a peculiar feature of these materials, which is the lattice
mismatch between the different types of constituent layers. The mismatch causes
the crystal to be incommensurate along one of the in-plane directions, adding an
additional complexity to the crystal structure.
The first successes in the synthesis of misfit layered materials was in 1987. Mis-
fit crystals were grown by vapor transport methods, and then characterized by
single crystal X-ray diffraction, which was crucial for identifying the distinctive
mismatch patterns.
In this work, we focus on a class of misfit materials known as misfit layer com-
pounds (MLCs) whose chemical formula is (RQ)1+δ(TX2)m where RQ are rocksalt
bilayers and TX2 are few layers transition metal dichalcogenides. To describe the
misfit crystal we start from its building blocks, namely RQ and TX2 layers. We
might think of these layers as two jigsaw puzzle pieces that don’t fit nicely to-
gether, as depicted in Fig. 1.1.
The first piece belongs to the family of transition metal dichalcogenides (TMDs),
which are two-dimensional (2D) materials with the chemical formula TX2 having
an hexagonal lattice. The three-atom-thick layer is made up of a transition metal
atom T (Nb, Mo, W, Ti,...) sandwiched between two layers of chalcogen atoms
X (S, Se, Te).
The second piece is a rocksalt (RS) slab RQ, where R is Pb, Bi, Sn, or rare earth
metals such as La, and Q is a chalcogen atom (S, Se, or Te). The slab consists
of a distorted slice of a three-dimensional rocksalt structure having a tetragonal
lattice.
The misfit is then a three-dimensional (3D) "puzzle" heterostructure consisting
of an intergrowth structure formed by alternating stacking along the c axis of RQ
planes and m layers of TMDs, with m= 1, 2, as depicted in Fig.1.1. The factor
1+δ in the chemical formula is related to the mismatch between the TMD and the
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Figure 1.1: Misfit layer compounds ((RQ)1+δ(TX2)m) pictured as a jigsaw puzzle.
The material building blocks, transition metal dichalcogenides (TMDs) and rocksalts
(RS), are imagined as two jigsaw puzzle pieces that do not fit together. As an example,
the compound (LaSe)1.14(NbSe2)m is depicted. In this misfit, the TMD is NbSe2 (cyan
jigsaw piece) and the RS is LaSe (red jigsaw piece). The regular alteration of these
pieces forms the misfit with m=1, 2.
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Figure 1.2: Polytypes of TMDs (1T,2H and 3R). Bottom panel: top views together
with the different coordination of the T atom. Upper panel: side views with the stacking
sequences. In the X-T-X sandwich, each stacking sequence is labelled with upper-case
letters for the X atoms and with lower-case letters for the T atom.

rocksalt in the misfit, as explained in detail in the next sections. It is possible to
synthetize misfit layer compounds with different (Q̸=X) or equal (Q=X) chalco-
gen atoms in the TMD and rocksalt. In Fig. 1.1 we can see an example of misfit
layer compound, namely (LaSe)1.14(NbSe2)m, with m=1, 2, formed by NbSe2 as
the TMD and LaSe as the rocksalt.
The nature of bonding in MLCs stems from both the individual constituent bonds,
and from their interactions. Within the misfit, the TX2 and RQ units exhibit an
inner strong iono/covalent bonding, whereas the interaction in the misfit out-of-
plane direction is weaker, and its nature depends on the number of TMD layers
in the crystal index m. Misfits with m=1, experience weak iono/covalent bonds
between monolayers TMD and rocksalt units, while those with m=2 inherited an
additional van der Waals (vdW) interaction via TMDs’ stacking. Thus, clean mis-
fit surfaces terminating in monolayer TMD can be obtained by cleaving a misfit
with m=2 in the region between two TMD layers.
In misfit layer compounds each building block, called subunit or subsystem, has
its own unit cell and space group. In the following, we shall identify the sub-
systems as (1) TMD layers and (2) RS units. We now discuss the composition
of misfit layer compounds starting from the structure of their two constituents,
namely transition metal dichalcogenides and rocksalts.
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1.2 Subsystems of misfit layer compounds

1.2.1 Transition metal dichalcogenides

The first type of subsystem in misfit layer compounds is the two-dimensional
transition metal dichalcogenide. Transition metal dichalcogenides (TMDs) are a
class of two-dimensional materials that have sparked widespread interest in the
scientific community due to their exceptional electrical, optical, and mechanical
capabilities [18–21].
TMDs are classified as layered materials, like graphene, in which layers may be
exfoliated into single or few-layer sheets. The transition metal and chalcogen
atoms form a covalent in-plane bond in a single layer of TMDs, while weak van
der Waals (vdW) interactions between layers occur in the out-of-plane direction.
Two essential degrees of freedom, coordination geometry and stacking, signifi-
cantly influence the behavior of the band structure and overall performance of
TMDs in a variety of applications.
Metal atoms in TMDs are usually coordinated with chalcogen atoms in trigo-
nal prismatic or octahedral geometry. In the trigonal prismatic coordination, six
chalcogen atoms are arranged around the central transition metal atom, defining
the vertices of a triangular prism. In the octahedral coordination, the transition
metal atom is surrounded by six chalcogen atoms in an octahedral arrangement.
The two type of coordination are shown in Fig. 1.2 (blue shaded regions). The
preferred coordination of a TMD is established by the amount of ionicity of the
bonding between the transition metal and chalcogen atoms [22]. Monolayer TMDs
are classed based on the coordination of the T atom into two polymorphs: trigonal
prismatic 1H and octahedral 1T phases. The first belongs to the D3h point group,
whereas the second belongs to the D3d group.
Because of the distinct coordination in the monolayer, TMDs have various stack-
ing sequences or polytypes in their bulk and multi-layer systems, which have a
significant influence on their properties. Figure 1.2 shows the three most common
stacking configurations for multilayer TMDs: 1T, 2H, and 3R. Within the X-T-
X sandwich, each stacking sequence is labelled with upper-case letters for the X
atoms and with lower-case letters for the T atom [23].
TMDs with trigonal prismatic coordination of the T atom can be arranged either
in the 2H or in the 3R sequence. In the 2H polytype, the layers stack in an AbA
BaB sequence with point group D6h. Conversely, in the 3R polytype, the lay-
ers stack in an AbA CaC BcB sequence with point group C3v. A representative
TMD with trigonal prismatic coordination of the T atom is bulk 2H-NbSe2. This
metallic compound displays competition between charge density wave (CDW) and
superconducting order [24–27].
2H and 3R TMDs can exhibit semiconducting properties with sizable bandgap
like MoS2, WS2, MoSe2, and WSe2, making them suitable for electronic, optoelec-
tronic and electrocatalytic applications [28–30].
TMDs in the 1T configuration have the T atom octahedral coordinated. The layers
of this polytype have a point group D6d and stack in a AbC sequence. 1T-TMDs
generally exhibit metallic or semi-metallic behavior. This makes them suitable
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Figure 1.3: The rocksalt (RS) crystal. a) Bulk rocksalt crystal as two interpenetrated
face-centered cubic (FCC) lattices of R (red) and Q (yellow) atoms. b) Side and top
view of a rocksalt unit in misfit layer compounds.

for applications requiring high electrical conductivity. Examples of 1T-TMDs are
VSe2 and VS2, which may be used as anode materials for ion-storage [31], and
TiSe2, which displays charge density wave (CDW) [32]. The 1T also presents a
distorted counterparts which is named 1T′ phase, where the displacement of some
of the transition metal atoms results in T-T (metal-metal) bonding [33].
TMDs in misfit layer compounds exist in monolayer or bilayer form, with an
ortho-hexagonal unit cell that matches the rocksalt structure, as explained in the
next section.

1.2.2 Rocksalts

The second kind of subsystem in misfit layer compounds is the rocksalt unit. Rock-
salt crystals are a wide variety of cubic three-dimensional materials [34,35]. These
crystals are named after NaCl, a well-known substance found in many kitchens.
In the chemical formula RQ, the bonds are cation-anion, where R+ is the cation
(for example, Na+) and Q− is the anion (for example, Cl−) in a 1 : 1 ratio.
Bulk crystals rock-salt possesses space group number 225 (Fm3m). This lattice
can be thought of as two interpenetrated face-centered cubic (FCC) lattices, as
depicted in Fig. 1.3(a). In the crystal both cations and anions form a FCC unit
cell with octahedral and tetrahedral interstitial sites. The cations occupy all oc-
tahedral sites of the anions in the in the FCC lattice, leaving all tetrahedral sites
vacant and vice versa. As a result, in a rocksalt structure, each anion is octa-
hedrally coordinated by six cations, and each cation is octahedrally coordinated
by six anions. Many binary compounds crystallize in a rocksalt structure. This
structure is found in the majority of alkali metal hydrides and halides.
In this work, we focus on rocksalt structure with R = Pb, Bi, Sn, or rare earth
metals such as La, and Q being a chalcogen atom (Q = S, Se, Te). Rocksalts
of this family exhibit different kind of behaviours. For example, LaSe and BiS
are metals, while PbSe and SnS are insulators. Rocksalt chalcogenides with R =
Sn are predicted to be topological insulators [36]. Other rocksalt crystals with R
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Figure 1.4: Exact mismatch ratios a2/a1. Lattice parameters of the considered com-
pounds are experimental values.

= Pb undergo a topological phase transition induced by pressure and/or alloy-
ing [37]. Exceptionally high figure of merit (ZT) for thermoelectric applications
is observed in single crystal and polycrystalline SnSe samples [38].
The rocksalt, as a subunit of misfit layer compounds, is in a bilayer form, depicted
in Fig. 1.3(b). The rocksalt bilayer is an alternation of R and Q atoms. Each
layer within the bilayer is a slice of the rocksalt structure, which is distorted to
match the TMD lattice. In this configuration, the R atom has total coordination
5, including four R-Q in-plane bonds of roughly 90◦ and one R-Q out-of-plane
bond, as seen in Fig. 1.3(b). We will denote this structure as the rocksalt unit,
having an ortho-tetragonal lattice, as detailed in the next section.

1.3 Structure of misfit layer compounds

1.3.1 The mismatch

To accommodate layers with very different crystal lattices that are mismatched in
one of the in-plane directions, the misfit crystal has a substantially larger unit cell
than that of its components. To quantify this, we define the lattice mismatch ra-
tio as a2/a1, where a1 and a2 are the TMD and RS lattice parameters for one of the
in-plane directions. The mismatch ratio is a number that represents the in-plane
incommensurability of a misfit. This ratio is in the range ∼ 1.5− 1.9 and sets the
parameter δ in the chemical formula through the relation 1 + δ = 2× (a1/a2).
The challenge of simulating a misfit layer compound in the density functional the-
ory (DFT) framework, deals with the dimension of the crystal cell. Periodicity
must be restored by defining a "commensurate approximant" of the misfit cell.
The commensurate approximant is a supercell that restores periodicity in the mis-
match direction. To create a commensurate approximant for DFT calculations,
the lattice mismatch ratio a2/a1 must be known. Then we can approximate the
ratio using the closest x and y integers as a2/a1 ≈ x/y. Such supercell typically
contains hundreds of atoms; the higher the lattice mismatch ratio, the larger the
supercell required to restore periodicity.
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Figure 1.5: Exact misfits stechiometry 1 + δ = 2 × a1/a2. Lattice parameters of the
considered compounds are experimental values.

Figure 1.6: Table of the periodic approximant extracted from the rocksalt and TMDs
lattice mismatch. Lattice parameters of the considered compounds are experimental
values.
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Figure 1.7: a) The in-plane cell of the misfit layer compound LaSe1.18TiSe2. Subsys-
tem’s axes are depicted in blue for the TMD (TiSe2) and in red for the RS (LaSe). The
shaded green region corresponds to the commensurate approximant of the misfit cell. b)
A sketch of the in-plane cell of the misfit layer compound LaSe1.18TiSe2 (green). The
lattice mismatch ratio is a2/a1= 1.69 ≈ 5/3, thus the commensurate approximant of the
misfit cell is constructed by 5 repetitions of TiSe2 (blue hexagons) and 3 repetitions of
La (red rectangles) along the mismatch direction.

From the individual constituents’ lattice parameters and the mismatch ratio we
can derive the size of all the considered misfit supercells. Starting from the ex-
perimental lattice parameters of each isolated, considered rocksalts and TMDs,
the schema of the exact mismatch ratios a2/a1 and the exact misfits stechiometry
1+ δ = 2× a1/a2 is reported in Fig. [1.4] and [1.5], respectively. We can visualize
the periodic approximant of the misfit supercell required for a DFT simulation
from Fig. 1.6.
To get an idea of the construction of the commensurate approximant of the mis-
fit cell, we report the example of the in-plane cell of the misfit layer compound
LaSe1.18TiSe2 in Fig. 1.7(a). Isolated TiSe2 has an hexagonal cell with in-plane
lattice vectors a1=b1=3.54 Å , while LaSe has a tetragonal cell with in-plane lat-
tice vectors a2=b2=6 Å . Taking a as the mismatch direction, the mismatch ratio
reads: a2/a1= 1.69 ≈ 5/3. This indicates that in order to generate a misfit crystal
with these two layers, 5 repetitions of the TiSe2 lattice parameter and 3 repeti-
tions of the LaSe lattice parameter along a are needed. A sketch of the in-plane
misfit cell of LaSe1.18TiSe2 is shown in green in Fig. 1.7(b). In this image, 5 blue
hexagons indicate the repeats along the mismatch direction of TiSe2, whereas 3
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Figure 1.8: An example of a top and side view of a misfit lattice: (PbSe)1.14(NbSe2)2.
In this misfit, layers of the TMD 2H-NbSe2 are stacked with RS units of PbSe.

red rectangles represent those of La. To match one another, the individual cells
of TiSe2 (blue) and LaSe (red) are orthorhombic, as detailed in the following,
with lattice parameters a1 = 3.54 Å , a2 = 6 Å and b1=b2=6 Å . In this way
the misfit crystal is commensurate along the b direction, with lattice parameter
b=b1=b2=6 Å . The lattice parameter a along the incommensurate direction can
be approximated by a ≈ xa1=ya2=5a1=3a2=18 Å .

1.3.2 Lattice and stacking

Misfit layer compounds are complex heterostructures whose chemical and physi-
cal behaviour is intimately linked to the structural composition and interactions
of their constituents [4, 5, 39]. Individual subunits of the misfit crystal exhibit
incommensurate modulation due to the lattice mismatch. Indeed, atoms in each
subsystem experience a mutual perception of the other subsystems’ periodic po-
tentials, resulting in a displacement from their average positions. In diffraction
experiments, such reciprocal modulation produces new satellite reflections as well
as the reflections of the two subsystem lattices which provide valuable information
about the presence of a misfit structure.
As we will show in the following chapters, the mutual modulation along the incom-
mensurate axis in the misfit depends greatly on the ionic radius of the R atom in
the rocksalt units, which modifies the distances within the adjacent TMD layers.
Each of the individual subsystem has its own space group and symmetries. In
order to fully describe the misfit crystal, a theory based on the notion of incom-
mensurately modulated crystals has been proposed [40–42]. In this framework,
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Figure 1.9: In-plane subsystems’ cell and coordination in the misfit crystal. a) Top
view of TMDs’ ortho-hexagonal unit cell. The difference between the T atoms in trigonal
prismatic coordination and those in octahedral coordination is shown. b) Top view of
rocksalt’s ortho-tetragonal unit cell. c) Schematic diagram of the embedding of the two
subsystems’ in-plane lattices in the misfit crystal.

the real structure replaces the three-dimensional space groups of subsystem aver-
age structures with the (3+1)D superspace groups of modulated misfit structure.
The misfit crystal holds a cell with commensurate axes b and c, whereas a is the
incommensurate direction where the two subsystems have a lattice mismatch, also
known as the "mismatch" axis. In Fig. 1.8 an example of misfit lattice is show
for the compound (PbSe)1.14(NbSe2)2.

In order to define the misfit 3D lattice, we start with the in-plane unit cell. We
label the in-plane lattice parameters of the individual subsystems as a1, b1 for the
TMD and a2, b2 for the RS (Fig. 1.9).
Within the misfit, both the TMD and the RS comprise orthorhombic cells to
match each other in-plane lattice parameters in the commensurate direction b.
In the misfit, the TMD forms an ortho-hexagonal in-plane unit mesh (a1,a1

√
3)

whose shape is determined by the coordination of the T atom, as seen in Fig.
1.9(a). As a result, the rocksalt unit has an in-plane ortho-tetragonal cell (Fig.
1.9(b)), with a2=b2, generated via a deformation in the b direction to match the
ortho-hexagonal TMD cell. Thus, the in-plane cell of the misfit is commensurate
along the b axis with lattice parameter b=b1=b2. Along the mismatch axis a,
a1 ̸=a2, and thus the system is incommensurate in that direction. A sketch of the
in-plane unit cell of the misfit is depicted in Fig. 1.9(c).
In the out-of-plane direction of the misfit, the TMD and the rocksalt share the c
axis. Fig. 1.10 illustrates that the misfit cell is often orthorhombic or monoclinic,
depending on the coordination of the T atom in the TMD.
In compounds with the TMD subsystems in trigonal prismatic coordination, the
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Figure 1.10: Side view of misfit cell depicted for different coordination of the T atom
in the TMD: a) orthorhombic and b) monoclinic.

angle α equals 90 ◦(see Fig. 1.10(a)). This is due to the symmetry of a single TX2

sandwich, where the mirror plane connects the X atoms of both planes sandwiching
T. In this case, the misfit cell is orthorhombic with axes shown in Fig.1.10(a). On
the contrary, octahedral sandwiches have rows of chalcogen that are displaced
by 1/6b. The resultant structure is monoclinic, with an angle given by α −
90=cos(b/6c) (Fig.1.10(b)).
TMDs and rocksalts are stacked along the out-of-plane direction of the misfit.

The rocksalt subunit (red) is alternated with a monolayer TMD for m=1 and with
a bilayer TMD for m=2 (blue), as sketched in Fig 1.11(a).
Misfits can be stacked in four primary sequences based on the centering of each
subsystem. Symmetry allows each subsystem’s structure to be either C-centered
or F-centered. The C-centered configuration is the inner ortho-hexagonal or ortho-
tetragonal lattice of the TMDs and RS, respectively, with one layer per unit cell.
The F-centered layout includes extra centering in (0, 1/2, 1/2) and (1/2, 0, 1/2),
as well as two layers per unit cell and a doubling of the c axis.
This centering results in four primary stackings in a misfit layer compound (shown
in Fig.1.11(b) for the case m=1 with the trigonal coordination of the T atom in the
TMDs sandwich), denoted as CC, FF, CF, and FC. In the CC and FF stackings,
both the subsystems’ lattices are in the same centering configuration (C or F),
therefore the relation between the out-of-plane axis is c1=c2. The misfit out-of-
plane direction c for the FF stacking is double that of the CC stacking. In the
CF and FC stackings, the first subsystem has opposite centering with respect to
the second. In the CF stacking, the RQ lattice is C-centered, the TX2 lattice is
F-centered (c2=2c1), and the reverse applies in the FC stacking (c1=2c2). Misfit
layer compounds with m=2 exhibit the same kind of stackings. However, in this
scenario, the various aforementioned polytypes of TMDs must be considered in
the misfit stacking.
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Figure 1.11: Misfit layer compounds stacking sequences. a) MLCs stacking as a func-
tion of the m-layers of the TMD subsystem, with m=1, 2. b) MLCs stacking configu-
rations projected along the [100] axis. Example of the possible stackings for m=1 and
the TMD in the trigonal prismatic coordination. Atoms of the same type at heights
differing by a/2 are labeled by lighter and darker circles.

1.4 Experimental synthesis
The synthesis of MLCs is a key step since they must be thermodynamically stable
when compared to competing phases. In this section we discuss the methods that
have been developed to synthetize these complex structures [4, 5, 39].
The most widespread method to synthetize high quality misfit crystals is chem-
ical vapor transport (CVT). CVT is a technique where the desired elements or
compounds are transported in the vapor phase and deposited onto a substrate or
within a reaction chamber [43, 44]. This approach requires a multi-zone furnace
able to maintain a temperature gradient. The target substance is treated with
a volatile transport agent to form a gaseous intermediate complex. The most
commons transport agent iodine and chlorine. If treated at lower temperatures,
the gas’s thermodynamic energy is inadequate to form an intermediate complex,
causing it to breakdown into the target material and transport agent. The gaseous
intermediate follows the temperature gradient throughout the reaction vessel. The
target material crystallizes in the portion of the reaction vessel with a lower tem-
perature, while the transport agent stays in the gas phase and can react with
the remaining material. Repeating this technique creates bigger crystals of the
target substance. Creating misfit compounds throughout CVT requires assessing
material stability at furnace specific temperatures and developing methods to in-
troduce it into the gas phase.
The second most common technique to synthetize misfit layer compounds is chem-
ical vapour deposition (CVD) [45] and physical vapour deposition (PVD) [46].
CVD is a versatile method where gaseous precursors decompose on a heated sub-
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strate to form the desired compound. This technique allows for the deposition of
thin films with precise control over thickness, composition, and crystallinity. The
deposition process involves injecting precursor materials into a growth chamber,
where they react with one other. This method enables direct material developing
from the gas phase and chemical control by adjusting reagent vaporization and
flow rates. In PVD the process is similar to CVD, but includes vaporizing and re-
condensing the target substance without a chemical reaction, evaporating target
components with an electron beam. The step-by-step deposition is a controllable
process that allows to create one layer at a time. The main challenges in em-
ploying CVD and PVD techniques are calibrating atomic fluxes and the sluggish
growth rate necessary for synthetic control.
Another layer-by-layer growth method is molecular beam epitaxy (MBE) [47]. A
substrate is cleaned and placed in an ultra-high vacuum (UHV) chamber to pre-
vent contamination. Solid-source materials are deposited as molecule beams on
the heated substrate, where they rearrange to form thin crystalline layers. Be-
cause the chamber is under UHV, the mean free path of the particles is long,
allowing the beams to travel without colliding with other particles. The substrate
temperature and beam fluxes are precisely controlled to manage the growth rate
and layer quality. By changing the source materials and altering the deposition
conditions, multiple layers with varied compositions may be produced successively,
resulting in complex multilayer architectures. A unique type of MBE is van der
Waals epitaxy (VDWE), in which a transition metal dichalcogenide is deposited
on another or the same TMD to form the vdW gap [48]. Building a misfit involves
depositing a three-dimensional compound onto a two-dimensional layer (or vice
versa), which implies both types of epitaxies and is known as quasi van der Waals
epitaxy [49].
Finally, other techniques as solid-state reactions and solvothermal and hydrother-
mal synthesis can be employed to build a misfit. Solid-state reactions consist of the
direct combining of elemental or compound precursors at high temperatures [50].
This process normally involves carefully combining the precursors, and subsequent
heating at temperatures ranging from 500°C to 1000°C, depending on the target
item. Solid-state reactions have advantages since they are simple and produce
reasonably pure products. However, they frequently need extended reaction peri-
ods and may produce products with greater grain sizes and reduced homogeneity.
Solvothermal and hydrothermal synthesis include chemical reactions in a solvent
at high temperatures and pressures, generally in an autoclave [51]. Hydrothermal
synthesis employs water as a solvent, whereas solvothermal synthesis can use a
variety of organic solvents. They are especially beneficial for synthesizing com-
pounds that are difficult to get through high-temperature solid-state methods,
but may result in lower yields than other approaches.
Once the MLC crystals have been synthesized, they must be subjected to an accu-
rate characterisation methodology to ensure proper growth and purity of the sam-
ple. Single crystal X-ray diffraction (XRD) is the primary technique employed to
characterise misfit layer compounds. The diffraction pattern provides information
about the crystal structure, including lattice parameters, phase composition, and
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Figure 1.12: Superconducting transitions of (LaSe)1.14(NbSe2) obtained by resistive
and heat capacity measurements from Ref. [9]. Temperature and field sweeps of the
specific heat were measured using an ac calorimeter in a He-3 cryostat [54, 55]. The
superconducting transitions are displayed for the indicated fields B parallel to the c axis
(a), and parallel with the ab plane (b).

crystallinity [52]. It also give informations on disorder, twinning and the eventual
occurrence of orientation variants. For electron diffraction thin samples of single
crystals are prepared by repeated cleavage or splicing. First of all, the intensity
measurements of the two subsystems are carried out individually; the common
reflections can be adopted to scale the two sets of data. With the electron beam
perpendicular to the layers, reflections from both subsystems are obtained, as well
as satellite reflections caused by mutual modulation of the two layers, which serve
as the misfit crystal’s fingerprint. High resolution imaging may also capture rows
of atoms with quasi-periodic intensity modulation in the misfit direction. Finally,
Raman spectroscopy can give precise insights on the bonding and structure of
MLC layers [53], as well as the ability to identify phases by detecting distinctive
Raman signatures. In MLCs, the mismatch between layers often leads to unique
spectral features that can be analyzed to understand the precise stacking order in
the crystal.

1.5 Phenomenology and emergent properties
Misfit layer compounds are a fertile ground for discovering and studying fasci-
nating physical phenomena. The ability to fine-tune their properties through
chemical composition and stacking order, makes them versatile materials for both
fundamental research and technological applications.
A key-feature of MLCs is the charge transfer mechanism that occurs in the bulk
as a result of the interaction between the TMD layers and the rocksalt units. In-
deed, as will be detailed in the next chapter, the rocksalt unit acts as an electron
reservoir, donating electrons to the TMD layers, which are highly doped.
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Figure 1.13: A diagram of the superconducting misfit layer compounds with X=Se.
The y-axis shows critical temperatures (TC) in Kelvin (K). Shaded regions in the figure
categorize misfit layer compounds based on the kind of TMD in the structure, namely
NbSe2 (cyan), TaSe2 (green) and TiSe2 (pink).
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MLCs exhibit a range of emergent properties that arise from the interaction be-
tween the individual constituents, leading to phenomena that can only partially
or cannot be explained in terms of separate subsystems.
Superconductivity was discovered in several MLCs, both with inherently super-
conducting TMD layers, such as NbX2 and TaX2 (with X=S,Se), and with TMDs
in which parameters like pressure or doping can induce superconductivity, such
as TiX2 with X=S,Se.
Misfit layer compounds where the TMD is NbSe2 stacked with diverse rocksalt
monochalcogenides display an extreme in-plane upper critical magnetic field that
substantially violates the Pauli paramagnetic limit. This can be linked to a partic-
ular kind of superconductivity, the so-called "Ising superconductivity". This type
of superconductivity occurs, in most cases, in monolayers that lack crystal inver-
sion symmetry and have significant spin-orbit coupling, such as NbSe2. The com-
bination of these effects produces an effective spin-orbit magnetic field. This fixes
electron spins out of plane (thus the term "Ising") with opposing signs for opposite
momenta at the points K and K′ of the hexagonal Brillouin zone of the monolayer
(spin-momentum locking). The locking of spin and momentum in the supercon-
ducting pairing prevents spin pair splitting, enhancing the in-plane critical mag-
netic field. Examples of misfit layer compound displaying Ising superconductivity
are (LaSe)1.14(NbSe2)m with m=1, 2 [9], (PbSe)1.14(NbSe2) [56], (SnSe)1.16(NbSe2)
[57] and (BiSe)1+δ(NbSe2) [58] with critical temperatures ranging from 1.23 to 5.7
K. As an example, superconducting transitions of (LaSe)1.14(NbSe2) obtained by
resistive and heat capacity measurements is shown in Fig. 1.12.
Enhancement of superconducting critical temperature with respect to the TMD
bulk counterpart is observed in MLCs with TaSe2. Anisotropic superconductiv-
ity with higher in-plane critical field was detected in (SnSe)1.17(TaSe2) [23] and
(PbSe)1.12(TaSe2) [59] with Tc of 3.8 and 1.85 K respectively.
Finally, MLCs with TiSe2 exhibit doping-induced superconductivity, as it happens
in bulk Cu-intercalated TiSe2 [60]. Critical temperatures ranging from 2.3 to 4.5
K are reported for MLCs (PbSe)1.16(TiSe2)2 [10], (SnSe)1.18(TiSe2)2 [61] and
(Pb1−xSnxSe)1.16(TiSe2)2 [17].
Figure. 1.13 shows a summary of the experimental data on superconductivity in
misfit layer compounds with X=Se. The y-axis shows critical temperatures (TC)
in Kelvin (K). Shaded regions in the figure categorize misfit layer compounds
based on the kind of TMD in the structure, namely NbSe2 (cyan), TaSe2 (green)
and TiSe2 (pink).
Modulation of the TMD lattice under the influence of the rocksalt substrate can
trigger charge density wave (CDW) states in MLCs. Compounds with TiSe2 [14]
and VSe2 [15, 62] show variation in the CDW pattern. The presence of a 2 × 2
CDW in (LaSe)1.14(NbSe2)2 misfit layer compound was under debate. This topic
will be extensively treated in the next chapters by presenting our combined study
based on Raman spectroscopy and ab initio calculations on (LaSe)1.14(NbSe2)2
lattice dynamics. Strain due to the lattice mismatch and charge transfer in MLCs
can modify magnetic phases by altering the exchange interactions between mag-
netic moments [63–65].
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The MLCs’s superlattice structure enables selective scattering of phonons at in-
terfaces, lowering lattice thermal conductivity while having no effect on electri-
cal conductivity, making them excellent thermoelectic materials [66]. The ther-
moelectric performance is extremely anisotropic, with substantially larger power
factors along the in-plane axis than in the cross-plane direction. For example,
(SnS)1.2(TiS2)2 has an in-plane power factor that is more than ten times larger
than the cross-plane value [67]. Substitutions and intercalations in the constituent
layers, as in the case of (SnS)1.2(TiS2)2 with element like Co and Cu, can opti-
mize the carrier concentration and further enhance the Seebeck coefficient [67].
Finally, some misfit sulfides and oxides have thermoelectric figures of merit ZT
that can reach promising values around 1 at elevated temperatures, making them
appealing for waste heat recovery applications.

1.6 Summary
In the first chapter, we introduced the materials under consideration in this thesis,
namely misfit layer compounds (MLCs).
These heterostructures are characterized by their composite structure, which con-
sists of alternating layers of distinct compounds with mismatched lattices, namely
transition metal dichalcogenide (TMD) layers and rocksalt units.
We thoroughly investigated the composition and structural complexity of MLCs,
emphasizing how each subsystem contributes to the ultimate crystal structure.
We provided an in-depth examination of the subsystem geometries, we discussed
the mismatch, which gave rise to the word misfit, and defined the misfit crystal
lattice.
We provided a comprehensive review of the state-of-the-art synthesis methods
used to create these complex structures. This included techniques such as molec-
ular beam epitaxy (MBE), chemical vapor deposition (CVD) to produce high-
quality MLCs with precise control over layer composition and thickness.
Furthermore, we discussed the experimental fingerprints of misfit crystals, focus-
ing on the tools and techniques used to characterize these materials.
Finally, we presented MLCs and their emergent properties, which don’t arise from
the individual subsystems alone but from their intricate interplay within the com-
posite structure.
We examined several examples of such emergent phenomena, providing detailed
case studies of MLCs exhibiting superconductivity, charge density waves, mag-
netism, and thermoelectricity.
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Chapter 2

Work function and band alignment
of TMD monolayers and rocksalt
units

2.1 The work function
In solid state physics, the work function is defined as the lowest energy needed to
remove an electron from the material and send it to the vacuum with zero kinetic
energy [68,69].
To establish the work function formula, first we recall the main characteristics of
a material’s electronic structure by glancing at the diagram in Fig. 2.1. In an
insulator or semicontuctor, the highest occupied state is known as the valence band
maximum (VBM), while the lowest unoccupied state is known as the conduction
band minimum (CBM). The single-particle energy gap Eg is the energy difference
between these band edges. In a metal, the gap is zero and the Fermi energy
(EF ) refers to the energy of the highest occupied state that separates occupied
and unoccupied states. An energy barrier at the material’s surface prevents the
electrons from escaping to the vacuum. The barrier culminates at the vacuum
level EV AC which corresponds to the energy level of an electron at rest within a
few nanometers outside the solid, with zero kinetic energy relative to the surface.
Therefore, we can formally define the energy difference between the Fermi energy
EF and the energy at the vacuum level EV AC as the work function W, the minimum
energy necessary to remove an electron from the system to the vacuum level:

W = EV AC − EF . (2.1)

In the case of an insulator, where the Fermi level lies inside the gap, one can define
the ionization potential (IP) as the energy difference between the valence band
maximum and the energy at the vacuum level:

IP = EV AC − V BM, (2.2)
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Figure 2.1: A sketch of an energy diagram for a semiconductor with flat bands at the
surface. Band edges (VBM, CBM), vacuum level EV AC , work function W, energy gap
EG, ionization potential IP are defined.

thus, in a metal, IP=W.
The work function is a simple, experimentally accessible quantity. There are
several ways for measuring the work function, but photoelectric emission is the
most commonly used [70]. By shining a monochromatic light of known frequency
on the target, it is possible to measure the maximum kinetic energy of the emitted
photoelectrons. Thus, the W formula may be derived from the concept of energy
conservation. When an electron is removed from a solid surface by absorbing a
photon of light, the energy of the photon must be equal to the sum of the work
function and the kinetic energy of the electron:

hν = EK +W (2.3)

where h is the Plank’s constant, ν is the frequency of the photon and EK is the
kinetic energy of the emitted electron.
The work function of a material is intricately tied to its composition and sur-
face properties. Understanding the influence of factors such as crystal structure,
surface orientation, cleanliness, adsorbates, and temperature is essential for accu-
rately predicting and controlling the work function [71]. As detailed later, density
functional theory (DFT) simulations provide a solid platform for studying work
functions, taking into account the atomic lattice, exchange-correlation effects, and
surface reconstructions [72].

2.2 The band alignment
Band alignment in solid-state physics refers to the relative placement of distinct
materials’ energy bands when they are brought into contact, such as at a het-
erojunction or interface. This alignment is crucial for determining the physical
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Figure 2.2: A sketch of interfaces classification. Orange and pink represent occupied
and vacant bands, respectively. The labels relate to band edges with energy EV X/ECX

for VMB and CBM in a semiconductor, and EFX for a metal, where X=A,B stands for
material A and B.

properties and behavior of the joined materials, since it influences how charge
carriers (electrons and holes) flow over the interface. Proper alignment allows for
effective charge transfer and separation, which is critical for the performance of
electrical and optoelectronic devices. Poor band alignment, on the other hand,
might have negative consequences, such as increased charge carrier recombination
or energy barriers that obstruct carrier flow, lowering device efficiency and func-
tionality. Understanding and managing band alignment is therefore essential for
developing high-performance solid-state physics devices.
To gain a deeper understanding of the band alignment across different scenar-
ios, we recall that the material interfaces may be classified into three types:
semiconductor-semiconductor, metal-metal, and metal-semiconductor.
A sketch of interfaces classification is shown in Fig. 2.2.
The semiconductor-semiconductor interfaces are determined by the relative loca-
tions of each material’s VBM and CBM. When two insulators with differing band
gaps come into contact, their valence and conduction bands must align to ensure
that the vacuum level remains constant throughout the interface.
It is further possible to divide the semiconductor-semiconductor interfaces in three
categories: type I,II and III. Straddling alignment, also known as type I alignment,
occurs when the conduction band minimum (CBM) and valence band maximum
(VBM) of one material are both inside the other material’s bandgap. In stag-
gered alignment, referred to as type II alignment, the CBM and VBM of the first
material are higher in energy than those of the other material. In broken gap
alignment, or type III alignment, the CBM of one material lies below the VBM
of the other material.
At metal-metal interfaces, the Fermi levels of the two metals must align, resulting
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in a contact potential difference between the metals that allows electron transport
and thermal equilibrium.
In a metal-semiconductor interface, the Fermi levels of the two materials must
align, causing band bending in the insulator to compensate for the difference in
work functions. The band alignment dictates the so-called Schottky barrier height,
which governs electron injection from the metal into the insulator. The barrier
height creates a depletion region, allowing current to flow in one direction while
preventing it in the other. On the other hand, if the height of the barrier is very
small or negligible (ohmic contacts), the current has no preferential direction.
To complete this picture, it has to be pointed out that in the aforementioned cases,
we only considered a rigid shift of the bands when two materials are in contact to
reach an equilibrium state. Thus, we neglected the band bending effect.
Band bending is the process by which a material’s band structure bends up or
down near a junction or contact [73]. Schottky and Mott developed the band
bending concept to account for the right behavior of a metal-semiconductor in-
terface [74,75]. This process is represented in Fig. 2.3.
When metal and semiconductor are in contact, electrons flow between them due to
the difference in work function. For example, if the metal work function (W(M))
is higher than that of the semiconductor (W(S)), electrons flow from the semicon-
ductor to the metal. This process continues until the Fermi levels of the metal and
semiconductor are aligned. In this case, electrostatic induction causes the metal
to be negatively charged at the metal/semiconductor interface, while the semicon-
ductor becomes positively charged. The electric field between the metal and the
semiconductor at the interface cannot be efficiently screened in the semiconduc-
tor, resulting in a lower concentration of free charge carriers at the semiconductor
surface compared to that of the bulk.
Thus, a space charge region is formed: in the considered case, if W(M)>W(S), the
electrons are depleted in the space charge area, which is known as the "depletion
layer", characterized by an excess of positive charges.
In the opposite case, if W(M)<W(S), the electrons are accumulated in the space
charge area, which is known as the "accumulation layer", characterized by an ex-
cess of negative charges.
The charge transfer between the metal and the semiconductor results in band
bending: in the space charge region, the band edges in the semiconductor are
continuously shifted due to the electric field between the semiconductor and the
metal until equilibrium is reached.
When W(M)>W(S), the semiconductor band edges bend upward towards the
metal-semiconductor interface. The opposite process happens when W(M)<W(S),
and the semiconductor band edges bend downward toward the interface.
The degree of bending of the semiconductor’s energy band at the interface is equal
to the difference in work function between metal and semiconductor. Therefore,
we can define the band bending potential as:

VBB = |W (M)−W (S)| (2.4)

whose behaviour is shown for the two cases in Fig. 2.3.
In conclusion, we presented a wide range of interfaces based on material features.
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Figure 2.3: Band bending in metal-semiconductor interfaces. Light-blue and blue rep-
resent occupied states for metal and semiconductor, respectively. The labels refer to
band edges with energy EV /EC for VMB and CBM in a semiconductor. EF,x stands for
Fermi level, where X=m,s represents metal or semiconductor. Evac labels the vacuum
level. W(X), where X=M,S, represents the work function of the metal and semiconduc-
tor. The diagrams show two different cases, namely when W(M)>W(S) and vice versa
(W(M)<W(S)) and the respective behaviour of the band bending potential VBB. Image
adapted from Ref. [73], distributed under a CC BY-SA 3.0 licence
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Figure 2.4: Schematic example of potential line up. The plot represents the planar
average of the electrostatic potential (V (z)) as a function of the out-of-plane coordinate
(z) at the interface (black vertical solid line) between two materials A and B. Blue dashed
lines represent the macroscopic average of V (z) in each material (V (z)). The difference
in macroscopic average of electrostatic potentials between A and B is denoted as ∆V.

The band alignment provides a global visualization picture of the different inter-
faces and serves as a starting point for developing novel devices.
In the following we discuss the band alignment determination in the DFT frame-
work.

2.2.1 Band alignment and work function determination in
density functional theory

To present the work function and band alignment determination in the context
of density functional theory (DFT), we discuss the potential line up problem at
interfaces.
The potential line up problem in density functional theory calculations arises
when trying to align the electrostatic potentials of different materials or surfaces
to determine band alignment and work functions [76].
The band alignment (or band offset) determination entails bringing two materials
(which will be denoted as A and B) with different band edges together at an
interface. The band structure of A and B may be determined in relation to a
reference level, typically, as will be later detailed, an average of the electrostatic
potential, V (X), where X=A,B. The band offset problem is solved by calculating
the difference in average electrostatic potentials between A and B, denoted as
∆V.
We need then to establish the locations of the average electrostatic potentials
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inside A and B on an absolute energy scale, such as relative to the vacuum level.
The long-range nature of the Coulomb interaction, however, means that there is
no absolute reference for the average potential in an infinite solid. This causes
the average potential of an infinite system to be ill-defined, and the band-line up
cannot be solved if the features of the atomic structure near the interface impact
potentials farther away.
As shown in Fig. 2.4, to solve the problem of the potential line up [77–79], we
define the electrostatic potential in the space as:

V (r) =
1

4πϵ0

∫
R

d3r′
n(r

′
)

|r− r′|
(2.5)

where n(r) is the charge density and R is the volume in which the charge density
is non-zero. The oscillations of the electrostatic potential V(r) in the direction
perpendicular to the interface may be expressed as a planar average of the elec-
trostatic potential V (z):

V (z) =
1

S

∫
S

dxdy V (r) (2.6)

where S is the surface area of the unit cell in the interface plane. The spatial
distribution of electrons and ionic cores causes periodic oscillations in the potential
along the z axis. These oscillations are eliminated by a macroscopic averaging
technique, resulting in a constant value in the bulk. The macroscopic average of
the electrostatic potential along z is

V (z) =
1

L

∫ L
2

−L
2

dz V (z) (2.7)

where L is the length of the period of oscillation along z. The potential align-
ment is established by the difference in electrostatic potential energy between the
materials A and B. The planar-averaged electrostatic potential converges to its
bulk value within two atomic layers of the interface, a phenomenon seen in var-
ious interface systems. This quick convergence illustrates that band alignment
is an interface feature. Once the potential alignment between the two materi-
als is known, the bulk band structures can be aligned. For instance, in case of
semiconductor-semiconductor interface, the valence-band offset (∆EV ), is defined
as the position of the VBM (EV BM(X)) with respect to the average electrostatic
potential in material X with X= A or B:

∆EV = (EV BM(B)− EV BM(A)) + ∆V (2.8)

where ∆V= V (B) − V (A) is the potential line up. The conduction-band offset
(∆EC) can be thus derived from the gap value of A and B. A positive valence-band
offset at interface between A and B suggests that material B has a higher VBM
with respect to the material A.
To reframe this issue in terms of work function determination, assume two metals,
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A and B. The work function of the two materials differs as follows:

∆W = W (A)−W (B) =

= (EV AC − EF (A))− (EV AC − EF (B)) =

= EF (B)− EF (A)

(2.9)

thus, if ∆W > 0 this means that EF (B) > EF (A), where EF and EV AC are abso-
lute energies, resulting in a charge transfer from B to A.
The above equation cannot be solved because absolute energies cannot be deter-
mined using DFT for two reasons. First, the Fourier transform of the Hartree
potential is a hill-defined quantity in DFT, since its q = 0 and G = 0 compo-
nents are arbitrarily set to zero. Second, due to the use of pseudopotentials, the
energies are always defined minus a constant.
Although the absolute energies cannot be established, the work function may be
efficiently calculated using the DFT framework by means of the macroscopic aver-
age of the electrostatic potential [80]. Consider two slabs A and B after taking the
macroscopic average of their electrostatic potentials. This quantity is assessed in
the vacuum zone, which is farther away from the slab along z. The work function
is thus determined by the location of the Fermi level EF in relation to the average
electrostatic potential in the vacuum region. This approach allows to calculate the
difference in work function between two slabs A and B to determine the direction
of the charge transfer, if any.

The macroscopic average approach is not suitable to 2D materials with slab
thicknesses of only a few Angstroms. Indeed, as shown in Fig. 2.5, the planar
average of the electrostatic potential V (z) has only a slightly dispersed peak in
the region corresponding to the layer’s location along the out-of-plane direction.
Thus, it is not possible to define any macroscopic average of V (z).
To simulate a 2D material in the DFT framework, extra vacuum space is added to
the simulation box to guarantee that the layers’ periodic replicas do not interact
with one another. If the vacuum space is thick enough, the value of the planar
average of the electrostatic potential in the vacuum region far from the layers’
location is constant (VV AC).
To ensure that the electrostatic potential saturates to a certain value in the vac-
uum zone between two periodic replica of the material, convergence tests can be
performed as a function of the vacuum space. For a monolayer, typical conver-
gence values for the size of the vacuum space range between 5 and 15 Å .
Thus, in order to calculate the work function of a 2D material, it is sufficient to
determine two quantities. The first one is the value of the planar average of the
electrostatic potential in the vacuum region far from the layers’ location (VV AC).
The second one is an energy reference (EF ), namely the Fermi energy (EF ) for a
metal and the valence band maximum (VBM) for an insulator or semiconductor.
Then, as shown in Fig. 2.5, the work function (W) reads:

W (X) = VV AC(X)− EREF (X) (2.10)

where X is the 2D material under consideration.
In the next section, we will show how to use this technique to make a screening
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Figure 2.5: The calculation of the planar averaged electrostatic potential V (z) along
the out-of plane direction (z). The negative peak represents the spacial region in which
the layer is located. VV AC is the value of the planar averaged electrostatic potential in
the vacuum region (red line). EREF (blue line) corresponds to EF (VBM) for metals
(insulators/semiconductors). The work function is W(X) = VV AC(X) − EREF (X) where
X is the material under consideration.

of misfit layer compounds to determine the charge transfer mechanism in these
materials.

2.3 Work function determination and band align-
ment of TMD monolayers and rocksalt units

To address the challenge of creating a misfit layer compound with desired physi-
cal properties, we must first provide a basic description of the essential physical
mechanism, the charge transfer among constituents.
The key quantities ruling the charge transfer in these systems are the work func-
tion difference among RS and TMDs and the consequent band alignment, the
lattice mismatching ratio a2/a1 and, finally, the degree of hybridization when the
two subsystems are in contact.
As we will show in the next chapter, a computational screening of misfits starting
from their building blocks serves as a preliminary analysis to get insight into their
physics with cheap simulations before constructing each individual compound.
To give an idea of the scale of a misfit simulation, consider a misfit layer com-
pound with LaSe as a rocksalt (a2 = 6 Å) and NbSe2 as a TMD (a1 = 3.437 Å).
The lattice mismatch ratio a2/a1 is 6/3.437 ≃ 1.75, which may be approximated
as x/y = 7/4. This ratio suggests that to produce the periodic approximant of
the misfit, we require a supercell including 4 repetition of LaSe and 7 repetition
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of NbSe2 along the mismatch axis. The resultant supercell lattice parameter will
be |a|=a=xa1=ya2=7a1=4a2 = 24 Å.
Thus, for example, a huge supercell of 232 atoms and a total of 1944 electrons
is needed to simulate the bulk misfit layer compound (LaSe)1.14(NbSe2)2. DFT
simulation of such a huge supercell requires heavy computation.
As we will show in the next chapter, we are able to simulate such a system.
However, this preliminary analysis demonstrates that in order to obtain a global
picture of the charge transfer process in misfit layer compounds, we require a fea-
sible preliminary computational screening of all misfit crystals.
We present our screening technique, which is based on the misfit individual sub-
systems’ work function and band alignment determinations.

In order to gain insight into the charge transfer among the RS and TMD layers
in the MLC, we perform extensive calculations of the work functions of 8 isolated
rocksalt units and 12 isolated TMDs monolayers. In the following, we will call
each rocksalt unit and TMD monolayer duo the RS/TMD couple. By system-
atically evaluating the work functions, we aim to elucidate the intrinsic process
that govern charge transfer in these heterostructures, thereby providing a deeper
understanding of their potential applications [81].
The choice of considering TMD single layers is motivated by several factors. As
detailed in chapter 1, MLCs with m = 1 comprises monolayers TMD alternated
with rocksalt units. We can also recover the behaviour of the TMD work functions
in the case of MLCs with m = 2, which are composed of alternating TMD bilayers
and rocksalt units. Indeed, previous studies have shown that the work functions
of bilayer TMDs are fairly close to those of single layers. [82]. This observation
supports the validity of our approach, as it implies that the electronic properties
of single layer TMDs can serve as reliable proxies for their bilayer counterparts.
Furthermore, it is interesting to focus on TMD monolayers since surfaces of MLCs
with m=2, obtained by cleaving the bulk in the plane perpendicular to the van
der Waals interaction region, terminate with a TMD monolayer that can be in-
vestigated experimentally by scanning tunnel microscopy (STM) as well as angle-
resolved photoemission spectroscopy (ARPES), as detailed in the next chapter.
To make a computational screening of MLCs heterostructures from their elemen-
tal constituents, we use the previously described approach to determine the work
function of 2D materials. The procedure, depicted in Fig.2.5 is the following:
we estimate for each system the energy reference EREF , namely Fermi energy for
metals (EF ) or valence band maximum (VBM) for insulators and semiconductors.
Then we use Eq. 2.10 to define the work function W(X), where X=TMDs,RS.
In this equation, VV AC is the value of the electrostatic potential along z, averaged
in the plane, and evaluated in the vacuum region. If ∆W=W(A)−W(B)> 0 then
EREF (B)>EREF (A) and electrons will flow from the material B to the material
A.
Numerical values of work functions are calculated in the Perdew-Burke-Ernzerhof
(PBE) scheme [83] with the Quantum ESPRESSO (QE) package [84]. We employ
pseudopotentials (pseudo efficiency) each with a proper converged kinetic energy
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TX2/RQ W (eV)
LaS 2.46
BiS 3.88
PbS 4.48
SnS 4.48
LaSe 2.84
BiSe 3.94
PbSe 4.08
SnSe 3.74
NbS2 6.02
TiS2 5.72
MoS2 5.88
WS2 5.65
SnS2 6.98
VS2 5.33
NbSe2 5.37
TiSe2 4.92
MoSe2 5.31
WSe2 5.06
SnSe2 6.04
VSe2 4.77

Table 2.1: Individual subsystems’ work function determination. Rows represent TMD
monolayers in blue and RS units in red, respectively. For each compound the work
function (W) used to construct the band alignment plot in Fig. 2.6 is reported.

cutoff for plane-wave basis set. The Brillouin zone integration is performed with
a Monkhorst-Pack grid [85] of 21× 21 k-points and using a Gaussian broadening
of 0.01 Ry, proven to be sufficient to accurately determine the electronic proper-
ties of all systems under consideration. The in-plane lattice parameter of all the
considered structures is fixed at the experimental one of each subsystem, namely
the Q-layer rocksalts and the monolayer TMDs (see Fig. 1.6). The internal co-
ordinates are fully optimised by means of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm, with a convergence threshold of 10−4 Ry on the total energy
difference between consecutive structural optimisation steps and of 10−3 Ry/Bohr
on all forces components.
It is worth noting that the GW approximation leads to work functions that are,
at most, 0.5 eV larger than the PBE case in TMDs [82]. Moreover, we verified on
some rocksalt bilayers (LaSe, PbSe) that HSE06 [86] does not change quantita-
tively and qualitatively the picture.
The results of the TMDs and rocksalts are summarized in Tab.2.1.
We used the work function calculation to build the so-called band alignment plot,

shown in Fig. 2.6. This picture shows the relative placements of energy bands
(such as conduction and valence bands) across different materials or interfaces.
The vertical axis shows electron energy levels, such as the conduction band edge
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Figure 2.6: Band alignement of isolated bilayer rocksalt (red) and single layer transition
metal dichalcogenides (blue). Dark (light) bars represent the position of the E F /valence
band maximum (EF /conduction band minimum) for metals/insulators. White spaces
in the bars stand for gaps in the single particle spectrum. The energy zero is set to the
vacuum level.

Figure 2.7: The charge transfer mechanism in misfit layer compounds. The image
depicts the preferred direction of electrons (e−) in a misfit. For example, the compound
(LaSe)1.14(NbSe2)2 is shown. In this misfit, the TMD is NbSe2 and the RS is LaSe.
W(X) represents the work function of the rocksalt (X=RS) and the TMD (X=TMD),
respectively.
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(CBM), valence band edge (VBM) for insulators (semiconductors), or Fermi level
(EF for metals). The horizontal axis represents the different materials. In Fig.
2.6, the rocksalt units are colored red, while the TMD monolayers are blue. Dark
bars represent the Fermi level (EF ) in metals and the valence band maximum in
insulators. In contrast, bright bars represent the location of the conduction band
minimum in insulators. In addition to these bars, the withe spaces indicate gaps
in the single particle spectrum, namely energy regions where no electron states
are accessible. White gaps also divide groups of distinct bands within the va-
lence/conduction bands. To provide a consistent reference point for these energy
levels, the energy zero is set to the vacuum level.
The band alignment plot can help predict the charge transfer in misfit heterostruc-
tures. First and foremost, the band alignment plot shows that the work function
of the rocksalt units is always lower than that of the TMDs. This indicates that
electrons are more easily extracted from a rocksalt unit than from a TMD. There-
fore, as sketched in Fig. 2.7, there is a preferential direction of charge transfer in
misfit layer compounds from the RS to the TMD. The rocksalt units serve as an
electron reservoir for the TMDs, allowing for efficient electron transfer between
the two materials. This holds valid for all rocksalt/TMD couples, demonstrating
that hole charge transfer from rocksalts to TMDs is unlikely. This is an important
finding since the charge transfer phenomenon was a well-known physical mecha-
nism in MLCs, reported in a variety of specific compounds of the family, but there
was a lack of understanding concerning its microscopical mechanism.
Second, we can exploit the different work function of rocksalts to tune the charge
transfer in the misfit. This can be accomplished by analyzing the differences
in work function between each RS/TMD couple. As an example, take LaSe
as the rocksalt and TiSe2 as the TMD. The difference in work function be-
tween these two compounds is ∆W=W(TiSe2)−W(LaSe)= 4.92 − 2.84 = 2.08
eV. Changing the rocksalt with PbSe, for example, results in a work function
difference of ∆W=W(TiSe2)−W(PbSe)= 4.08 − 2.84 = 1.24eV. Thus, because
W(LaSe)>W(PbSe), the doping level of TiSe2 in a misfit layer compound with
LaSe would be higher than with PbSe. Furthermore, we can imagine that it is pos-
sible to engineer a misfit in such a way that the doping level is rigidly adjustable
through appropriate alloying of the RS unit. In the present case, the TiSe2 dop-
ing could be controlled by an intermediate amount of La and Pb through La-Pb
alloying in the rocksalt without requiring any external tuning.
The net amount of charge transfer depends, however, not only on the work func-
tion difference but also on the mutual concentration of the RS and TMD that is
related to the mismatching ratio. To explain this more clearly, each RS can trans-
fer a given amount of charge to the TMD layer, if the mismatching ratio is close
to one. However, if the mismatching ratio increases, the relative concentration of
RS atoms per TMD cell decreases and so does the charge transfer. By looking at
Fig. 1.4 in the first chapter, it is clear that the mismatching ratio varies mostly
due to the change in the TMD lattice parameter.
Finally, it should be noted that our technique is a preliminary screening that is
only valid in the rigid doping regime. Any electronic-state hybridization at the
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interface that influences the shape of the bands, and hence can have an impact on
the charge transfer, cannot be captured by these calculations, requiring in-depth
study of the complete misfit. We will discuss the degree of hybridization when
the two subsystems are in contact in the next chapter.
In conclusion, this plot can therefore be used as guidance for selecting the proper
RS/TMD couple. By comparing the work function and relative band positioning
of different RS/TMD combinations on the plot, it is possible to target the charge
transfer in the misfit. As we will show in the next chapter, the work function
based approach works quite well in predicting charge transfer in the misfit.

2.4 Summary
In the second chapter, we unveil the mechanism controlling the charge transfer in
misfit layer compounds.
By presenting the concepts of work function and band alignment, we emphasize
the necessity of accurately assessing these quantities in heterostructures and in-
terfaces.
The work function is a fundamental property of materials, representing the min-
imum energy required to remove an electron from a material and send it to the
vacuum with zero kinetic energy.
Band alignment describes how different materials’ energy band are positioned in
relation to one another at an interface. We closely examine the various forms of
band alignment, including metal-metal, metal-semiconductor, and semiconductor-
semiconductor, and explained the band bending effect.
We then introduce the macroscopic average method within the framework of den-
sity functional theory (DFT), a powerful computational approach to determine
the work function and band alignment.
We then specialized work function determination for 2D materials. Finally we
present our results by applying the aforementioned concepts in misfit layer com-
pounds.
We show our straightforward computational screening of MLCs based on the work
function of each individual subsystem.
We calculate the work functions of isolated rocksalt units and TMD single layers
to understand the charge transfer processes in misfit heterostructures.
We build the band alignment plot that, as we will show in the next chapter, qual-
itatively and quantitatively predicts the charge transfer in these structures.
The results show that the work function of the rocksalt units is always lower than
that of the TMDs. Therefore, a preferred direction for electron transfer in misfit
layer compounds exists: from the RS, which works as an electron donor, to the
TMD, which is electron-doped.
Finally, we discuss how this method provides a general picture of the charge trans-
fer mechanism in misfit layer compounds.
These findings serve as a guide for selecting the suitable RS/TMD couple to build
a misfit layer compound, avoiding heavy calculations, and also provide significant
information for experimental synthesis.
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Chapter 3

Ab initio geometrical and electronic
properties of misfit layer compounds

3.1 Experimental structure determination of bulk
misfit layer compounds

In this chapter, we discuss the geometrical and electronic properties of misfit
layer compounds, presenting the results of our ab initio calculations. We begin
by introducing the experimental state-of-the-art procedure for structural deter-
mination of misfit layer compounds. Vapor transport techniques coupled with
single crystal X-ray diffraction are one of the most used and effective methods
for synthesizing and characterizing misfit layer compounds. In particular, when
dealing with structure determination, the refining process in X-ray diffraction is
a vital stage in determining the exact structure of misfit crystals. This technique
involves adjusting a model of the crystal structure to fit the observed diffraction
data. To better explain the refinement process, we recall the step-by-step X-ray
diffraction procedure in the case of single crystal XRD. X-ray beams are aimed
at single crystals, and the resulting diffraction pattern is recorded. This pattern
includes information on the atomic arrangement of the crystal. In the pattern, the
position of the spots is determined by the angles at which they occur. Each spot
corresponds to a specific set of crystallographic planes, described by Miller indices
(hkl), which are assigned via the indexing procedure. In the indexing process, the
unit cell dimensions and the symmetries of the crystal are determined from the
diffraction pattern. Based on the previously determined space group and chemical
composition, an initial structural model including the atomic positions within the
unit cell is constructed.
Then, the refining process is applied: by a fitting approach, the structural model’s
parameters are iteratively adjusted to minimize the discrepancy between observed
and estimated diffraction intensities. To correctly establish the crystal composi-
tion of misfit layer compounds, the individual subunit lattices and symmetries
must be refined using X-rays. Then, the common part, namely the misfit crystal,
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Figure 3.1: (LaSe)1.14(NbSe2)2 misfit layer compound. In this misfit, layers of the
transition metal dichalcogenide 2H-NbSe2 are stacked with rocksalt units of LaSe.

is determined by refining the relative positions of each subunit.
For example, we report the experimental structural determination of misfit layer

compound (LaSe)1.14(NbSe2)2, as described in Ref. [87].
As shown in Fig. 3.1, (LaSe)1.14(NbSe2)2 crystal is composed of a regular al-
ternation of 2H-NbSe2 bilayers with trigonal prismatic coordination and of LaSe
rocksalt bilayers.
To grow the crystal, the elements La, Nb, Se were sealed in an evacuated silica
tube in a 1 : 2 : 5 stoichiometry. Then, the tube was heated to 1050 ◦C for 15
days and afterwards slowly cooled to room temperature. After that, the single
misfit crystal was extracted and mounted on the diffractometer.
The structural determination was separated into three stages. To begin, each
subsystem was described by recording two different sets of reflections (hkl) from
LaSe and NbSe2 on the same crystal. The 0kl common reflections were excluded
at this step. The resultant identified space groups were C111 for LaSe and C2221
for NbSe2, respectively. Compared to bulk 2H-NbSe2, the lattice of NbSe2 layers
is not perfectly hexagonal and is slightly compressed along the x axis, as shown
in Fig. 3.2(b). As a consequence, the NbSe2 sublattice is described by a centered
orthorhombic cell with in-plane lattice vectors a1=3.437 Å and a1≈ 6 Å. As shown
in Fig. 3.2(b), each Nb, Se(1) (lower selenium), and Se(2) (upper selenium) is in
Wyckoff position 8(c), 4 atoms of Nb, Se(1), and Se(2) for each layer of the NbSe2
bilayer.
The LaSe sublattice has also an orthorhombic symmetry, in this case with similar
in-plane lattice parameters a2≈b2≈ 6 Å. As shown in Fig. 3.2(a), the bilayer
LaSe is composed of 8 atoms, 4 La and 4 Se, whose positions are independent and
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LaSe Distance Å
(Exp. From [87])

Distance Å
(Th. From [6])

La(1)-Seavg 3.11 3.09
La(2)-Seavg 3.05 3.10
La(3)-Seavg 3.04 3.10
La(4)-Seavg 3.05 3.08

NbSe2
Distance Å

(Exp. From [87])
Distance Å

(Th. From [6])
(Nb-Se)avg 2.593 2.60
(Se-Se)intra 3.317 3.31-3.36
(Se-Se)inter 3.533 3.51-3.53

Table 3.1: Interatomic distances in (LaSe)1.14(NbSe2)2. Comparison between experi-
mental data taken From. [87] and theoretical values obtained by ab initio simulations
From [6].

labeled as La(X) and Se(x) with X = 1, 2, 3, 4.
The common portion was then identified by collecting common 0kl reflections and
refining the relative positions of the LaSe and NbSe2 sublattices in the yz plane.
This was done by fixing the lattice parameter of NbSe2 in the yz plane and refining
the position of the LaSe part accordingly. With this choice, the lattice mismatch
direction is the x axis (h00). The final interatomic distances of (LaSe)1.14(NbSe2)2
are summarized in Tab. 3.1. Fig. 3.2 shows a sketch of the misfit subunits to
clarify the atom labels. In Tab. 3.1, the distance labeled as La(X)-Seavg with
X=1, 2, 3, 4, 5 is the average interatomic distance between each La atom and its
5 coordinated Se (namely 4 in-plane bonds Sea, Seb, Sec, Sed, and 1 out-of-plane
bond See, as detailed in Fig. 3.2(a)). Instead, for the NbSe2 subsystem, the label
(Nb-Se)avg stands for the average interatomic distances of the Nb-Se bond within
each layer. The experimental intralayer (Se-Se)intra and interlayer (Se-Se)inter
distances are also reported (see Fig. 3.2(b)).

3.2 Ab initio construction of the bulk cell and com-
parison with experiments

We now discuss the comparison of these experimental values with ab initio cal-
culations taken from Ref. [6], which is the starting point for DFT calculations of
misfit layer compounds performed in this thesis.
The starting structure for geometrical optimization was built by considering the
experimental one of Ref. [87]. In order to reproduce the aforementioned exper-
imental refinement process, the LaSe and NbSe2 parts were initially considered
separated and then combined together as described in the following.
To construct a commensurate approximant of the misfit cell for first principles
calculations, two supercells of NbSe2 and LaSe, respectively, were built starting
from their individual unit cells. This was done according to the lattice mismatch
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Figure 3.2: Atomic positions of (LaSe)1.14(NbSe2)2 subunits. a) Atomic positions of
LaSe. The LaSe bilayer is composed of 8 atoms (4 La and 4 Se). The positions are
independent and labeled as La(X) and Se(X) with X = 1, 2, 3, 4. Each La atom has 5
coordinated Se, namely 4 in-plane Sea, Seb, Sec, Sed and 1 out-of-plane See. b) Atomic
positions of NbSe2. Within the bilayer, each Nb, Se(1) and Se(2) atom is in the Wyckoff
position 8(c) (with 4 atoms of Nb, Se(1) and Se(2) each layer, as shown in the left). On
the right, intralayer and interlayer distances of the NbSe2 bilayer are shown.
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ratio, that is a2/a1= 6/3.437 = 1.75 ≈ 7/4.
For the NbSe2 subsystem, a 7 ×

√
3 × 1 supercell of the three atoms unit cell

belonging to the space group C2221 was generated (a slightly distored hexagonal
unit cell along one direction, as discussed previously). For the LaSe part C111
symmetry was adopted and a 4 × 1 × 1 supercell of the LaSe unit cell was gen-
erated. Then the two parts were combined with the LaSe centred in between the
NbSe2 bilayers. The assembled bulk system is composed of 232 atoms with P1
symmetry and lattice parameters a=7a1=4a2=24.060 Å , b=b1=b2=6.019 Å and
the c parameter is fixed to the experimental one, c=36.531 Å (see Fig. 3.1).
The average interatomic distances obtained after the geometry optimization are
reported in Tab. 3.1 in comparison with the experimental data of Ref. [87]. As
we can see, the theoretical optimization procedure is in good agreement with the
experimental data, reproducing the average interatomic distances within ∼ 2%
for the La-Se bond and ∼ 0.3% for the Nb-Se bond.
Iono-covalent bonds form at the contact between NbSe2 and LaSe with a sub-
stantial deformation of the LaSe layer and a significant deviation from an ideal
rocksalt structure in which the bond length is equal in every direction. This huge
modification of the LaSe interface signals a large charge transfer between LaSe
and NbSe2 bilayers, as detailed in the next sections.
The average value of the Nb-Se bond length does not deviate from the experi-
mental value of 2.60 ± 0.01 Å measured by X-ray in bulk 2H-NbSe2 [88]. The
intralayer distance of each NbSe2 layer ((Se-Se)intra) is instead affected by the
presence of the rocksalt. Within the misfit supercell, the Se(1)-Se(2) interatomic
distance along the c axis varies in a range of 3.31 − 3.36 Å. This is due to the
out-of-plane bonds between LaSe and NbSe2, which are influenced by the mutual
locations of La and Nb in the misfit crystal. Thus, (Se-Se)intra shrinks by a factor
∼ 1% with respect to the experimental value of 3.36± 0.02 Å measured by X-ray
in bulk 2H-NbSe2 [88]. On the contrary, the van der Waals interface between the
two NbSe2 layers is weakly affected by the presence of the rocksalt. Indeed, the in-
terlayer distance ((Se-Se)inter) between two NbSe2 layers within a bilayer is equal
to the experimental value of bulk 2H-NbSe2 (3.52 ± 0.02 Å in Ref. [88]) varying
in a range of 3.51− 3.53 Å. This explains why the cleavage of the sample leads to
a monolayer NbSe2 terminated surface that can be probed by scanning tunneling
microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), as
shown in Ref. [6]. The cleavage between two layers forming a bilayer NbSe2 does
not influence the doping level; thus, what can be probed by surface techniques is
well representative of the bulk.

3.3 Ab initio construction of misfit layer compound
surfaces

In this paragraph, we explain the method that we use for the ab initio construc-
tion of misfit layer compound surfaces.
As mentioned in the first chapter, clean misfit surfaces can be obtained by cleav-
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Figure 3.3: Misfit layer compounds surface. (a) A sketch of the cleavage plane in bulk
misfit and of the misfit surface modeled for ab initio calculations. (b) STM topography
of a cleaved (LaSe)1.14(NbSe2)2 sample measured at 4.2 K adapted from Ref. [6].

ing bulk misfits with m=2 along the out-of-plane axis. Figure 3.3(a) shows that
the cleavage plane cuts the crystal at the region of the weak van der Waals bond-
ing between two layers of the TMD bilayers. Therefore, these surfaces termi-
nate with TMD monolayers. Fig. 3.3(b) shows an STM topography of a cleaved
(LaSe)1.14(NbSe2)2 sample measured at 4.2 K from Ref. [6]. The triangular atomic
lattice indicates that the sample is terminated by a NbSe2 monolayer.
For ab initio calculations, misfit surfaces can be modeled as slabs: an alternate
stacking sequence of one rocksalt bilayer sandwiched between two TMD monolay-
ers along the c-axis (TMD-RS-TMD stacking sequence), as seen in Fig. 3.3(a).
This sequence assures the neutrality of the cell, with the same charge transfer
of the bulk. Vacuum space has to be added to the cell to prevent the periodic
replicas of the slab from interacting with one another.
In our work [81], we consider several possible combinations of rocksalts and TMDs
to build misfit layer compounds. The selection of specific materials is related to
the band alignment plot presented in the second chapter (see Fig. 2.6), and will
be clarified case by case in the following sections.
We now briefly illustrate how the misfit slab supercell is built (Appendix A.1
provides a more extensive, case-by-case description). For all the considered struc-
tures, we first optimize each subsystems separately. Then, we assemble the misfit
surfaces by stacking the subsystems in the TMD-RS-TMD sequence. Finally we
perform geometrical optimization of the misfit crystal.
We adopt the convention of using the value of δ as obtained from the lattice pa-
rameters a1 and a2 of the pristine TMD and RS respectively, before assembling
them in a MLC structure, as reported in the tables in Fig. 1.4 and 1.5 in Chap-
ter 1. In order to build commensurate misfit supercells, from these analysis we
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TMD a1

[Å]
b1

[Å] RS a2

[Å]
b2

[Å]
SnSe2 3.8 6.5818 LaSe 5.7 6.5818
TiSe2 3.6 6.0191 LaSe 6 6.0191
NbSe2 3.437 6.0191 LaSe 6 6.0191
NbSe2 3.434 6.0102 BiSe 6.0102 6.0102
NbSe2 3.439 5.99 PbSe 6.02 5.99
NbSe2 3.38 5.94 SnSe 5.92 5.94

Table 3.2: In-plane lattice parameters of each subsystem: a1 and b1 for the TMDs
(cyan) and a2 and b2 for rocksalts (red) used to build misfit supercells.

Mismatch
ratio Misfit a

[Å]
b

[Å]
c

[Å]
3/2 (LaSe)1.27(SnSe2)2 11.4 6.5818 30
5/3 (LaSe)1.18(TiSe2)2 18 6.0191 30
7/4 (LaSe)1.15(NbSe2)2 24.060 6.0191 36.531
7/4 (BiSe)1.14(NbSe2)2 24.041 6.0102 30
7/4 (PbSe)1.14(NbSe2)2 24.08 5.99 30
7/4 (SnSe)1.16(NbSe2)2 23.68 5.94 32.34

Table 3.3: Mismatch ratios and lattice parameters, summarized for each misfit supercell
under consideration.

extract the approximant used in the calculations (see Fig. 1.6).

We consider the following cases: misfits with bilayers TiSe2 and SnSe2, both
found in the 1T phase, stacked with bilayers LaSe, and misfits belonging to the
(RQ)1+δ(NbSe2)2 series with NbSe2 in the 1H phase stacked with different rock-
salts, namely RQ=LaSe, BiSe, PbSe and SnSe. Thus, we focus on three different
TMDs, namely NbSe2, TiSe2 and SnSe2.
For the TMD part, we use orthohorombic cells with the transition metal atom in
trigonal coordination for the case of NbSe2, and in octahedral coordination in the
cases of TiSe2 and SnSe2. We optimize the in-plane lattice parameters to match
that of the chosen rocksalts for each corresponding mismatch ratio. Then, starting
from these cells, we build supercells according to the misfit proportions, namely
a 7× 1 for the NbSe2, a 5× 1 for the TiSe2 and a 3× 1 for the SnSe2.
For the rocksalt part, we use centered orthohorombic cells and optimize the in-
plane lattice parameters in order to obtain commensurability with the considered
TMD according to each mismatch ratio. Then, starting from these cells, we build
supercells according to the misfit proportions, namely a 4×1 of LaSe, BiSe, PbSe
and SnSe to match with NbSe2, a 3× 1 of LaSe to match with TiSe2 and a 2× 1
of LaSe to match with SnSe2.
Tab. 3.2 summarizes the lattice parameters for each isolated subunit. In this
process of refinement, lattice parameters in the mismatch direction are slightly
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strained in order to build a commensurate misfit structure. We lower the amount
of strain required to match the RS lattices, maintaining the lattice parameter of
the TMDs as near as possible to the experimental value of isolated TMDs. The
amount of strain applied to each subsystem is detailed in Appendix A.1.
Finally, the common part is composed by stacking the TMD and rocksalt super-
cells in TMD-RS-TMD sandwich sequences. Each misfit slab comprises vacuum
space (optimized form 15 to 18 Å, depending on the system) to prevent inter-
actions between periodic replicas. Tab. 3.3 summarizes each examined misfit
supercell, including its mismatch ratio, compound name, and lattice parameters.
Finally, we perform geometry optimization of each misfit supercell, as detailed in
Appendix A.1. In the tables Tab. A.1, A.2 and A.3, we report the optimized
atomic positions expressed in crystalline coordinates for each of the misfit slabs.
We will now describe the approach used to compute the electronic properties and
charge transfer of misfit surfaces. After explaining this, we will provide our find-
ings on the geometrical and electronic properties of the considered misfit layer
compounds.

3.4 Band unfolding and charge transfer determi-
nation

In this part, we discuss the approach used in our study [81] to compute the band
structure of misfit layer compounds. Specifically, we introduce the band unfold-
ing technique, which allows us to interpret the misfit band structure in terms of
isolated TMD layers and the method we used to determine the charge transfer
from the rocksalts to the TMDs.
As previously stated, a supercell of the commensurate approximant of the misfit
cell is created to provide an appropriate input for ab initio computations of misfit
layer compounds. Although the misfit supercell energy bands are directly acces-
sible from DFT calculations, they are quite intricate and thus tricky to interpret
due to the large size of the unit cell. In addition, we are particularly interested in
determining how to tune the doping of TMDs in MLCs; consequently, it is critical
to identify the contribution of TMDs to the electronic properties of misfits. Thus,
we aim to extract TMD characteristics from misfits computations, which is doable
given the relationship between the misfits’ eigenvalues and those of the TMDs.
To do so, we employed the unfolding technique as implemented in the software
BandsUP [89], based on the effective band structure method [90]. The EBS
method allows to recover the behaviour of a primitive cell, no matter the complex-
ity of the supercell [90]. To elucidate its working protocol, we will now provide
a quick overview of this method for the unfolding procedure as implemented in
Ref. [89].
A supercell (SC) is a mathematical construct created by stacking primitive cells
(PC) along one or more spatial directions. The reciprocal space can be defined
using the wave vectors of the Brillouin zone of the PC (k) or the ones of the SC
(K). Unfolding allows for the reconstruction of the PC’s eigenvalues ϵ(k) from the
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estimated eigenvalues of the SC, ϵ(K). The direct and reciprocal lattice vectors
of a SC (Ai and Bi, with i=1, 2, 3) can be expressed in terms of the PC ones (ai

and bi, with i=1, 2, 3) thought the relations:

A = M · a ; B = M−1 · b (3.1)

where M is the 3× 3 transformation matrix and M−1 its inverse. We distinguish
between two types of Brillouin zones: primitive (PBZ) and supercell (SBZ). The
relation between the two volumes of the PBZ and SBZ is VSBZ=vPBZ/det(M),
which means SBZ has a smaller volume than PBZ. The reciprocal lattice vectors
associated with the the SBZ and PBZ are:

gn =
∑
i

pibi ; Gn =
∑
i

qiBi (3.2)

where pi, qi ∈ Z. Gn and gn froms two infinite sets, where any g vector is also a
G vector. A wave vector k (in PBZ) is said to fold into a wave vector K (in SBZ)
if there exists a reciprocal lattice vector G0 such that:

K = k−G0. (3.3)

Conversely, a wave vector K (of the SBZ) unfolds into k of the PBZ if:

ki = K+Gi , i = 1, ..., NK (3.4)

This means that while in Eq. 3.3 the vectors K and G0 are unique for a given
vector k (thus, each k is mapped into a precise vector K in the folding), in Eq.
3.4, a given vector K can be obtained from a number NK of different pairs (ki,Gi)
in the unfolding.
Standard electronic structure calculation methods can be applied to a periodic
solid using either a PC or a SC representation. By solving the associated Schrödinger
equation of the electronic system one can readily obtain both the eigenvectors
that are a complete set of Bloch functions |ψPC

k,n ⟩ and |ψSC
K,m⟩ where n,m stands

for the band indices, and the dispersion relations E(k) and E(K) and which are
well-defined quantities in both representations. The zone folding and unfolding
geometric relations lead to the property that any SC eigenvector |ψSC

K,m⟩ can be
expressed as a linear combination of PC eigenvectors |ψPC

ki,n
⟩ (where ki are are a

set of wave vectors of the PBZ) trough:

|ψSC
K,m⟩ =

NK∑
i=1

∑
n

F (ki, n;K,m) |ψPC
ki,n

⟩ . (3.5)

The unfolding procedure recovers the PC eigenvectors |ψPC
ki,n

⟩ and their contri-
butions F (ki, n;K,m) to the SC eigenstates |ψSC

K,m⟩ from the calculations of SC
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alone. This last step can be accomplished by projecting |ψSC
K,m⟩ on all the PC

Bloch states |ψPC
ki,n

⟩ of a fixed ki and calculating the spectral weight PK,m(ki).
The probability of |ψSC

K,m⟩ having the same character as a PC Bloch state of wave
vector k is given by the spectral weight PK,m(k):

PK,m(k) =
∑
n

| ⟨ψSC
K,m|ψPC

k,n ⟩ |2 =
∑
g

|CSC
K,m(g + k−K)|2. (3.6)

The second equality in Eq. 3.6 is derived in the Appendix of Ref. [90]. This
equality shows that the spectral weight can be entirely obtained from the coeffi-
cients CSC

K,m of the periodic part of the plane waves that span the eigenstates of
the SC, which means that the knowledge of the PC eigenstates is not required.
The spectral function A(k; ϵ) is then defined as:

A(k; ϵ) =
∑
m

PK,m(k)δ(ϵ− ϵm(K)) (3.7)

where the only pairs (k,K) that need to be included in the sum are those in which
K unfolds onto k.
The last step is then using the spectral function to obtain the EBS by the so-called
cumulative sum. The procedure as implemented in BandsUP is accomplished by
working with the infinitesimal version of the cumulative probability function Sk(ϵ)
to calculate the cumulative sum. The number of PC bands, at the PC wave vector,
crossing the energy interval (ϵ, ϵ+ dϵ) is dSk(ϵ) = A(k; ϵ)dϵ. It is possible to map
the region of interest in the (k;ϵ) space onto a (kj;ϵj) grid with energy intervals
of size δϵ, and assign a weight δN(kj; ϵj) to each point. The quantity:

δN(kj; ϵj) =

∫ ϵj+δϵ/2

ϵj−δϵ/2

dSki
(ϵ) =

∑
m

Pm,K(ki)

∫ ϵj+δϵ/2

ϵj−δϵ/2

δ(ϵ− ϵm(K)) dϵ (3.8)

gives the number of PC bands crossing the grid (kj;ϵj). Finally, δN is averaged
over wave vectors ki, related by symmetry operations of the PBZ.
In practice, the unfolding procedure as implemented in BandsUP follows four
steps. First, a self-consistent run of the SC. Then from the knowledge of the
lattice vectors of the PC and the SC (ai,Ai) and the provided list of k-points of
the PBZ, the corresponding weighted k-points are calculated for the SBZ. These
are used to calculate the band structure of the supercell and finally to generate a
plottable file. A final plot looks like the one shown in Fig. 3.4(a), the color scale
follows the spectral weight of the band, representing δN . This colormap is the
band structure of the misfit surface SC (LaSe)1.15(NbSe2)2 unfolded onto the PC
of the isolated monolayer NbSe2. The blue dashed line corresponds to the Fermi
level EF of the misfit compound.
From this plot we can derive the charge transfer from the rocksalt to the TMD
in the misfit as follows. In Fig. 3.4(a), we compute the band structure of the
selected monolayer TMD (red solid line), namely NbSe2. The red dashed line
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Figure 3.4: (a) Band unfolding onto the NbSe2 single layer Brillouin zone of
(LaSe)1.15(NbSe2)2 surface. The band structure for the isolated single layer NbSe2 (red
line) is superimposed and aligned to the Nb d-band in the misfit. The blue dashed line
corresponds to the Fermi level EF of the misfit compound, while the red one to the
Fermi level of the isolated NbSe2 layer. (b) Density of states of the isolated NbSe2 single
layer. The blue dashed line corresponds to the Fermi level EF of the misfit compound,
while the black one to the Fermi level of the isolated NbSe2 layer. The label n(e) refers
to the number of electrons transferred from LaSe to NbSe2.

corresponds to the TMD’s Fermi level EF . We superimpose it to the unfolded
band structure of the misfit onto the PBZ of the TMD. Then, we manually shift
the band structure of the TMD until it aligns to the unfolded one. In this way,
the difference between the blue and the red dashed lines is the Fermi level shift
of the TMD within the misfit, caused by the charge transfer from the rocksalt.
We next compute the density of states (DOS) of the examined isolated monolayer
TMD (as shown in Fig. 3.4(b) for NbSe2). The number of electrons transferred
to the TMD per formula unit is calculated by integrating the DOS between the
Fermi level of the isolated TMD (black dashed line in Fig. 3.4(b)) and the Fermi
level of the misfit (blue dashed line in Fig. 3.4(b)).
As shown in the example, the Fermi level of NbSe2 is shifted by 0.31 eV, corre-
sponding to a doping of 0.57 e−/Nb atoms, or ne≈ 6 × 1014 cm−2, in agreement
with the experimental reported value [6].
The aforementioned procedure is used in all of the computations of electronic
properties of misfit surfaces detailed in the following sections.

3.5 Electronic structure of the surfaces of
(LaSe)1+δ(TX2)2 misfit series

We start presenting our ab initio calculations of the electronic properties of misfit
surfaces with the rocksalt LaSe [81]. As described in the previous section, we build
three misfit slabs of with different TMDs, namely NbSe2, TiSe2 and SnSe2. The
choice of LaSe as the rocksalt is motivated by the band alignment plot presented
in the second chapter (see Fig. 2.6).
According to our calculations shown in Tab. 2.1, among the rocksalt monochalco-
genides RQ with Q=Se, the LaSe compound has the lowest work function
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Figure 3.5: Band unfolding onto the TX2 single layer Brillouin zone of the
(LaSe)1+δ(TX2)2 surface misfit series with different TMDs. (a) (LaSe)1.15(NbSe2)2, (b)
(LaSe)1.18(TiSe2)2, (c) (LaSe)1.27(SnSe2)2. The band structure of each isolated single
layer TX2 (red line) is superimposed and aligned respectively to the (a) Nb d-band, (b)
Ti d-band and (c) Sn s-band in the misfit. The blue dashed line corresponds to the Fermi
level EF of the misfit compound, while the red one to the Fermi level of the isolated
TX2 layer.

Figure 3.6: Density of states (DOS) of the (LaSe)1+δ(TX2)2 surface misfit series with
different TMDs. (a) (LaSe)1.15(NbSe2)2, (b) (LaSe)1.18(TiSe2)2, (c) (LaSe)1.27(SnSe2)2.
In each plot, the black line corresponds to the total DOS of the misfit, while the red
line to the partial DOS of the LaSe layers. The blue lines correspond respectively to the
partial DOS of (a) NbSe2, (b) TiSe2 and (c) SnSe2. The black dashed line corresponds
to the Fermi level EF of each misfit compound.
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(W(LaSe)=2.84 eV). In the LaSe ionic bond, selenium atoms have valence of
2− , while La atoms have a higher valence of 3+. The excess electron makes this
compound a metal [91]. This extra electron can be thus easily extracted from the
rocksalt and donated to the TMD in a misfit. Indeed, as shown in Chapter 2,
there is a preferential direction for the charge transfer in misfit layer compounds,
which is caused by the huge work function difference between the rocksalts and
the TMDs. TMDs globally possess work functions substantially larger than those
of the RS compounds, thus the direction of the charge transfer will always be from
the rocksalt to the TMD. We pick LaSe as the rocksalt to take advantage on the
potential of creating misfits with high levels of doping. Therefore, we choose three
kinds of TMDs, with different properties, to examine how the doping from the
LaSe layers impacts their band structure: a metal (NbSe2), a semimetal (TiSe2),
and an insulator (SnSe2).
By looking at the band alignment plot (Fig. 2.6), we can immediately infer that
in a LaSe/TX2 interface (with TX2=NbSe2, TiSe2 and SnSe2), in order to reach
equilibrium, the Fermi level of LaSe will shift down in energy. On the other side,
the Fermi level of the different TMDs will rise up in energy: potentially, if LaSe
donates the entire last valence electron, this energy shift is huge. The net amount
of charge transfer depends, however, not only on the work function difference but
also on the mutual concentration of the RS and TMD in each misfit that is related
to the mismatching ratio. To explain this more clearly, each RS can transfer a
given amount of charge to the TMD layers, if the mismatching ratio is close to
one. However, if the mismatching ratio increases, the relative concentration of RS
atoms per TMD cell decreases and so does the charge transfer. By looking at Fig.
1.6, it is clear that the mismatching ratio varies mostly due to the change in the
TMD lattice parameter. In the case of LaSe and the selected TMDs, this ratio is
3/2 for SnSe2, 5/3 for TiSe2 and 7/4 for NbSe2.
The considered misfits for the LaSe-TX2 series are therefore: (LaSe)1.15(NbSe2)2,
(LaSe)1.18(TiSe2)2 and (LaSe)1.27(SnSe2)2.
We calculate the band structure of misfit layer compound surfaces
(LaSe)1+δ(TX2)2. To do so, we unfold the band structure of the misfit super-
cell onto the primitive cell of each considered TMD monolayer.
These misfit slabs are constructed and optimized using the process outlined in
the preceding section. Details of electronic structure calculations are reported in
Appendix A.2.
Spin orbit coupling (SOC) is included in the electronic structure calculations of
misfit compound containing NbSe2 and TiSe2. In the case of TiSe2, we employ
PBE+U method described in Refs. [92,93] in order to take into account the strong
correlation effects due to the localized d orbitals of Ti. The Hubbard correction
is set to U= 3.25 eV, consistently with previous work on bulk TiSe2 where a good
agreement with ARPES spectra was demonstrated [94]. The results of the calcu-
lations are shown in Fig. 3.5.
When comparing the band structure of misfit layer compound (LaSe)1.15(NbSe2)2
to that of the superimposed and aligned isolated single layer NbSe2 (red line in
Fig. 3.5(a)), we can see that the Nb d-band of NbSe2 shows no deformation upon
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doping. The Fermi level of NbSe2 is thus rigidly shifted up in energy of 0.31 eV.
This shift corresponds to a doping of 0.57 e−/Nb atoms, or ne ≈ 6 × 1014 cm−2.
Our band structure calculation and doping value is in agreement with a previous
study of the group [6], in which DFT calculations are combined with STM and
ARPES experiments.
A similar scenario occurs in the case of (LaSe)1.18(TiSe2)2: if we superimpose and
align the band structure of an isolated TiSe2 layer (red line in Fig. 3.5(b)) and
then compare it with the band structure of the misfit, again no deformation of
the band structure occurs. The Fermi level of TiSe2 is, thus, rigidly shifted up
in energy of 0.4 eV. This shift corresponds to a doping of 0.53 e−/Ti atoms, or
ne ≈ 5× 1014 cm−2.
In these two cases, rigid band approximation holds. In the case of NbSe2, the
only differences between the isolated monolayer and the misfit occur at zone cen-
ter where an LaSe band slightly hybridizes with the single layer NbSe2 band.
Instead in the case of TiSe2, two parabolic La bands cross the Fermi level along
the Γ-K direction.
However, these La bands at the Fermi level have a small contribution to the density
of states. Indeed, the amount of La electrons at the Fermi level remains negligible,
as demonstrated by the density of states projected over LaSe and NbSe2 layers
(Fig. 3.6(a)) and over LaSe and TiSe2 atomic states (Fig. 3.6 (b)), respectively.
The last example of the LaSe series is (LaSe)1.27(SnSe2)2, whose band structure
is shown in Fig. 3.5(c). We consider the layered indirect gap semiconductor
1T-SnSe2 that can be exfoliated and synthesized in single layer form [95]. The
electronic structure of single-layer SnSe2 is shown in 3.5(c) (red line). The con-
duction band is formed by an isolated band with a Van Hove singularity point
at K. A maximum in the density of states occurs at the energy corresponding to
the band flattening. If the Fermi level is tuned at the inflection point, this would
be beneficial for superconductivity, as we will discuss in Chapter 4. In this case,
the rigid band approximation is clearly not applicable. We compare the electronic
structure of this MLC with the one of an isolated layer SnSe2 (red line in Fig.
3.5(c)). There is substantial band distortion of the s-band of Sn with respect
to the isolated single layer. However, if we look at the density of states of this
compound in Fig. 3.6(c), we notice that even in this case, the amount of LaSe
electrons is low at the Fermi level. It must be pointed out that the amount of
charge transfer between the LaSe and the SnSe2 is huge. This involves a 1.4 eV
Fermi level shift of SnSe2, corresponding to a charge transfer of 0.77 e−/Sn atoms,
or ne ≈ 6 × 1014 cm−2. This very large doping is due to the large work function
difference between LaSe and SnSe2 and the favorable mismatch ratio of 3/2 where
there are 2 LaSe units per 3 SnSe2 ones. Thus, we attribute the band bending
occurring at the K high-symmetry point to the huge charging of the monolayer.
With this amount of charge, the intralayer spacing between the two Se atoms
increases by ∼ 5%, passing from 3.19 Å in the isolated monolayer to SnSe2 to 3.34
Å within the misfit. In Chapter 4, we will present an alternative way to model
this misfit.
In conclusion, our findings demonstrate that by choosing a rocksalt with low work
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function, it is possible to build misfits with huge doping. We show that, the
amount of charge transfer from the rocksalt to the TMD is limited by the lattice
mismatch ratio. Thus, the charge transfer of a specific rocksalt can be predicted
and controlled by engineering a misfit with the appropriate mismatch ratio.
We also discuss the rigid doping approximation of the misfits band structure. We
find that in the particular case of LaSe, the electronic states of the rocksalt, even
if present in a negligible number at the Fermi level, do not have a great influence
on modifying the band structure of the TMD. However, in the case of SnSe2, the
structural modification induced by doping causes band bending. These results
open a question: what happens in terms of charge transfer and rigid doping of the
same TMD by changing the rocksalt? We address this question in the following
section.

3.6 (RQ)1+δ(NbSe2)2 surface misfit series
In the previous section, we presented our study of misfit layer compounds by fix-
ing the rocksalt (LaSe) and changing the TMDs (with TX2= NbSe2, TiSe2 and
SnSe2).
In this section, we want to address the problem of tuning the charge transfer by
appropriately choosing the rocksalt, in order to demonstrate the global picture
based on work functions. We thus perform explicit calculations for several mis-
fit surfaces terminated by a single layer of NbSe2, but having different RS units
as building blocks and sharing comparable mismatching ratios very close to 7/4
(these compounds belong to the ninth column in Fig. 1.6 in Chapter 2). In our
work [81], we specifically consider the (RQ)1+δ(NbSe2)2 misfit series, where we fix
the TMD as NbSe2, and we change the rocksalt with RQ= LaSe, BiSe, PbSe, and
SnSe.
To begin, we will examine how the presence of various rocksalts in the misfit sur-
face affects the geometry of the NbSe2 layer, as well as how each specific rocksalt is
altered within the misfit. For this purpose, we calculate the interatomic distances
of each subsystem in the (RQ)1+δ(NbSe2)2 series (with RQ=LaSe, BiSe, PbSe and
SnSe). The results are summarized in Tab. 3.4.
The average value of the Nb-Se bond in all the considered misfits of the
(RQ)1+δ(NbSe2)2 series (with RQ=LaSe, BiSe, PbSe and SnSe) is 2.59 Å. This
length does not deviate from the experimental value of 2.60 ± 0.01 measured by
X-ray in bulk 2H-NbSe2 [88]. However, in each NbSe2 monolayer, the out-of plane
intralayer distance values (Se-Se)intra change along the supercell. This effect is
caused by the mutual modulations between the TMD and the different rocksalts.
Indeed, each monolayer in the slab has two selenimu planes: one is in contact
with the rocksalt substrate, with which it forms iono/covalent bonds, and the
other is adjacent to the vacuum on the other side. Thus, the intralayer distance
assumes different values, shrinking or expanding with respect to the experimental
value of 3.36±0.02 measured by X-ray in bulk 2H-NbSe2 [88], as reported in Tab.
3.4. Additionally, when NbSe2 monolayers come into contact with the different
rocksalts, their interlayer distance can be altered by up to 2% compared to the
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TMD
Intralayer
distances

[Å]
RS

In-plane
R-Q bonds

[Å]

Intralayer
distances

[Å]
NbSe2 3.30-3.38 LaSe 3.04-3.15 3.07-3.09
NbSe2 3.34-3.37 BiSe 2.98-3.09 2.86-2.89
NbSe2 3.35-3.37 PbSe 3.01-3.04 2.88-2.89
NbSe2 3.39-3.41 SnSe 2.94-3.0 2.78-2.79

Table 3.4: Summary of the geometry optimization of the misfit surfaces of the
(RQ)1+δ(NbSe2)2 series (with RQ=LaSe, BiSe, PbSe and SnSe). In the table, the
intralayer distances of NbSe2 in misfit layer compounds with different RQ layers are
reported. For the rocksalts, we report the in-plane R-Q bond length and interlayer dis-
tances of the different considered compounds.

experimental value of the isolated compound. This is due to the combined action
of the mutual modulation of the subsystems, together with the new bonds forming
between the TMD and the different rocksalts and the substantial charge transfer
between the subunits of misfit surface.
We summarize in Tab. 3.4 the R-Q in-plane and out-of-plane distances for each
rocksalt. Every compound exhibits significant deformation relative to the bulk
rocksalt structure. This is caused by a variety of circumstances. First and fore-
most, the induced strain employed to fit the TMD lattices alters the in-plane R-Q
distances. Second, inside the misfit surface, the R atom can change coordination.
In a bilayer rocksalt, each R atom has a coordination of 5, which increases to 6 if
bonds form between the R atoms and the chalcogen of the TMD, altering also the
R-Q bond length. In addition, the two neighboring TMD layers exert pressure
on the rocksalt bilayer, and the R-Q distances fluctuate as the two subsystems
modulate each other. This changes the out-of-plane distances. Finally, by looking
at the trend of the intralayer distances in Tab. 3.4, we can tell that by going from
LaSe to SnSe, the NbSe2 is more and more strained, while the rocksalt is com-
pressed. As shown in the following, the deformation is indicative of the amount
of charge transfer between the rocksalt and the TMD.
In order to quantify the charge transfer between NbSe2 and the different rocksalts,
we need to calculate the electronic properties of these misfits. We now present
our band structure calculations of misfit layer compound surfaces (RQ)1+δ(Nb2)2,
with RQ= LaSe, BiSe, PbSe and SnSe. We unfold the band structure of the misfit
supercell onto the primitive cell of the isolated NbSe2 monolayer.
Details of these calculations are reported in Appendix A.2. To carefully take into
account the spin orbit coupling (SOC) of NbSe2, which splits the two degenerate
bands at the Fermi level, SOC is included in all the electronic structure calcula-
tions. The results of band unfolding are shown in Fig. 3.7.
As it can be seen in Fig. 3.7, the NbSe2 electronic structure in going from
(PbSe)1.14(NbSe2)2 to (LaSe)1.15(NbSe2)2 is n-doped rigidly. The charge trans-
fer simply induces a Fermi level up-shift, form 0 to 0.31 eV. As already reported,
LaSe transfers 0.57 e−/Nb atom, while BiSe transfers 0.19 e−/Nb atom. Instead,
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Figure 3.7: Band unfolding onto the NbSe2 single layer Brillouin zone for the NbSe2
surface misfit series with different rocksalt Q-layers having comparable mismatching ratio
close to 7/4. (a) (LaSe)1.15(NbSe2)2, (b) (BiSe)1.14(NbSe2)2, (c) (PbSe)1.14(NbSe2)2, (d)
(SnSe)1.16(NbSe2)2. The band structure for the isolated single layer NbSe2 (red line)
is superimposed and aligned to the Nb d-band in the misfit. The blue dashed line
corresponds to the Fermi level EF of the misfit compound, while the red one to the
Fermi level of the isolated NbSe2 layer. In the last two panels the dashed red line is
superimposed to the dashed blue one.

in the compounds with PbSe and SnSe there is no charge transfer. As it can be
seen in Fig. 3.7, the behavior of the misfit NbSe2 7/4 serie is almost completely
characterized by the work function differences. Indeed as W(LaSe) < W(BiSe) <
W(SnSe) < W(PbSe) (see Tab. 2.1 in Chapter 2), the charge transfer decreases
by progressively decreasing the difference W(NbSe2) - W(RS), as expected. In
both LaSe and BiSe ionic bonds, the selenium atoms have a valence of 2−, while
the La and Bi atoms have a higher valence of 3+. Thus, LaSe and BiSe are metal-
lic compounds in which an extra electron can be exchanged from the rocksalt to
NbSe2 in the misfit. The lattice mismatch ratio for all compounds is 7/4, indi-
cating that the misfit contains the same fraction of LaSe and BiSe. However, the
charge transfer is different: LaSe transfers more electrons than BiSe. The work
function, W(LaSe) < W(BiSe), makes it simpler for LaSe to donate electrons to
NbSe2 compared to BiSe.
Both PbSe and SnSe are insulators. In their ionic bonds, the selenium atoms have
a valence of 2− that is perfectly compensated by the valence 2+ of the Pb and
Sn atoms. The work function difference between NbSe2 and PbSe is too small
for the rocksalt to transfer any of its electrons. The work function of BiSe is
slightly larger than the one of SnSe; however, BiSe seems to transfer few more
electrons than SnSe. The differences are due to fine details in the electronic-states
hybridization.
From these and the previous analysis two questions arise: how general is this rigid
doping effect and how to exploit rocksalts with different work function to effec-
tively tune the doping of TMDs? We now show that it is possible to engineer the
misfit in such a way that the doping level is rigidly adjustable through appropriate
alloying of the RS Q-layer.
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3.7 Tunable doping by La-Pb alloying in misfit
layer compound surfaces

Ternary alloys of two monochalcogenides within a single RS Q-layer (e.g.,
LaxSr1−xS) have been already synthesized [96], leading to misfit layer compounds
having chemical formulas of the kind (RxM1−xQ)1+δ(TX2)m. To build this kind
of misfits, we keep the mismatch ratio of the compound with x=1 (rocksalt with
RQ), and then we pregressively substitute some of the R atoms with M atoms
with concentration 1−x (RxM1−xQ) until reaching x=0 (rocksalt with MQ). The
idea is to adjust TMD doping by alloying in rocksalt. The band alignment di-
agram (Fig. 2.6 in Chapter 2) can help us picking the right R and M atoms.
For example, we choose TiSe2 as the TMD and examine all potential rocksalts
containing Se. As seen in Fig. 3.8, LaSe have a significant work function dif-
ference with TiSe2, while the work function difference between PbSe and TiSe2
is smaller. As already reported in the (LaSe)1+δ(TX2)2 series, TiSe2 is rigidly
doped by LaSe of a huge amount of 0.53 e−/Ti atoms. Thus, we wonder if it is
possible to tune rigidly the doping by La-Pb alloying in misfit surfaces. For this
reason, in our work [81], we consider MLCs having the following stoichiometry
(LaxPb1−xSe)1.18(TiSe2)2 as a function of x and lattice mismatch ratio 5/3. A
comparison between these systems and the previous results for the NbSe2 series
allows us to draw conclusions that are less dependent on the chosen TMD. From
the previous reasoning, we expect that the La concentration (x) allows tuning of
the carrier concentration in the TiSe2 layers within the misfits, with x = 1 (x =
0) corresponding to the highest (lowest) n-doping. In Fig. 3.9(a), we show the
calculated band structure of the (LaxPb1−xSe)1.18(TiSe2)2 misfit for x = 1.0, 0.34,
and 0.0 compared with that of an isolated TiSe2 single layer. For all concentra-
tions, we employed the band unfolding technique within the PBE+U scheme with
U=3.25 eV, which has previously been shown to accurately capture the strong
correlation effects caused by Ti’s localized d orbitals in the misfit with LaSe. To
justify the employment of the Hubbard correction, in Fig. A.2 of Appendix A.2,
we also show the same calculations of (LaxPb1−xSe)1.18(TiSe2)2 in the PBE scheme
for more x = 1.0, 0.67, 0.5, 0.34, 0.0. The main difference between these two ap-
proaches resides in the energy dispersion around the Fermi level, especially the
overlap/gap between the Se-4p valence band in Γ and the Ti-3d conduction band
in M. Indeed, as shown in Ref. [94], the introduction of Hubbard interaction leads
to a better comparison with ARPES experiments in which shows that monolayer
1T-TiSe2 is a perfectly compensated semimetal. We also add the SOC effect in
this calculations. However, as detailed in Appendix A.2, relativistic effects are
negligible for the electronic properties of (LaxPb1−xSe)1.18(TiSe2)2 (see Fig. A.1
in Appendix A.2 for the concentrations x = 1.0, 0.67, 0.5, 0.34, 0.0 in the PBE+U
scheme without SOC). Inspecting our calculations in Fig. 3.9(a), we can immedi-
ately state that by increasing x, the doping is increased. Most importantly, the Ti
d-band displays no deformation upon doping. At the highest doping level (x = 1,
corresponding to a charge transfer of 0.53 electrons per Ti) we already discussed
that two parabolic La bands cross the Fermi level along the Γ-K direction. These
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Figure 3.8: Band alignement of isolated bilayer rocksalt (red) and single layer transition
metal dichalcogenides (blue). Dark (light) bars represent the position of the EF /valence
band maximum (EF /conduction band minimum) for metals/insulators. White spaces
in the bars stand for gaps in the single particle spectrum. The energy zero is set to the
vacuum level. In this example, we select the TMD TiSe2 and evaluate its work function
difference with two different rocksalts, namely LaSe and PbSe.
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Figure 3.9: a) Band unfolding onto the single layer TiSe2 Brillouin zone of the misfit
compound surfaces (LaxPb1−xSe)1.18(TiSe2)2 for x = 1.0, 0.34, 0.0. The band structure
of the isolated single layer TiSe2 (red line) is superimposed and aligned to the bottom
of the Ti d-band in the misfit. The blue dashed line corresponds to the Fermi level EF

of the misfit compound, while the red one to the Fermi level of the isolated TiSe2 layer
(in the lowest panel they coincide). b) Lattice deformation of the TiSe2 layers generated
by the partial substitution of Pb atoms in (LaxPb1−xSe)1.18(TiSe2)2. The magnified
portion shows a bond length alternation in the TiSe2 lattice with two different distances
d1 (red) and d2 (green).
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Figure 3.10: Band unfolding onto the single layer NbSe2 Brillouin zone of the misfit
compound surfaces (LaxPb1−xSe)1.15(NbSe2)2 for x= 1, 0.875, 0.75, 0.625, 0.5, 0.375,
0.25, 0.125 and 0. The band structure of the isolated single layer NbSe2 (red line) is
superimposed and aligned to the bottom of the Ti d-band in the misfit. The blue dashed
line corresponds to the Fermi level EF of the misfit compound, while the red one to the
Fermi level of the isolated NbSe2 layer (in the first panel they coincide).

Figure 3.11: Band unfolding onto the single layer SnSe2 Brillouin zone of the misfit
compound surfaces (LaxPb1−xSe)1.27(SnSe2)2 for x= 1, 0.75, 0.5, and 0. The band
structure of the isolated single layer SnSe2 (red line) is superimposed and aligned to the
bottom of the Ti d-band in the misfit. The blue dashed line corresponds to the Fermi
level EF of the misfit compound, while the red one to the Fermi level of the isolated
SnSe2 layer.
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bands disappear by decreasing x (see more values of x in Fig. A.1 in Appendix
A.2). Remarkably, the electronic structure of (PbSe)1.18(TiSe2)2 is almost indis-
tinguishable from that of the isolated TiSe2 layer. The Fermi level of the TMD in
the misfit (blue) is shifted with respect to the single layer one (red) of an amount
which is directly related to the presence of Pb in the rocksalt. Following the di-
rection of the arrow in Fig. 3.9(a), the doping is increased rigidly much like in a
field effect transistor (FET) configuration. This is a crucial result since it means
that the doping of the TMD in misfit layer compounds is tunable by chemical
insight.
We will now discuss how the geometry of the TMD layer is modified by the action
of an alloyed rocksalt substrate.
Despite the similarity in the electronic structure, we find that (PbSe)1.18(TiSe2)2
does not display a 2×2 CDW as it happens in the case of the supported TiSe2 sin-
gle layer [97–99]. This result is in agreement with resistivity data on this MLC [10]
where no CDW was detected.
We attribute the suppression of the CDW to the strong bonding between TiSe2
and the the RS Q-layer. We find that in (LaxPb1−xSe)1.18(TiSe2)2, for x ̸= 0, 1,
the Ti-Ti distances are modulated by the presence of Pb atoms in the host LaSe
lattice (i.e. the Ti-Ti distance becomes shorter if the Ti atoms are close to a Pb
atom).
The reason is mostly sterical as the La atomic radius is larger than the one of Pb,
therefore Pb atoms are more strongly bounded to the RS layer and a consequent
deformation of the LaSe rocksalt host occurs (as shown in Fig. 3.9(b), followed by
a modulation of the Ti-Ti distances). We verified that, even starting from 2 × 2
distorted TiSe2 layers in the misfit, the structural optimization suppresses the
CDW and leads to other distortion patterns that essentially follow the Pb atoms
superstructure. Our analysis shows that altering the chemical composition of the
rocksalt has a double effect: on the one hand, it allows to precisely tune the rigid
doping of the TMD, on the other hand it suppresses the 2× 2 CDW of the TiSe2
bilayer and introduces an additional modulation related to the alternation of La
and Pb.
To further confirm the claim that the doping in misfits can be tuned chemically,
we decide to change the TMD by choosing NbSe2. As already shown in Fig.
3.7, NbSe2 is highly doped by LaSe of 0.57 e−1/Nb atoms, while in misfit with
PbSe, the band structure of NbSe2 inside the misfit is comparable to that of an
undoped isolated monolayer. Thus, we consider misfit layer compounds with for-
mula (LaxPb1−xSe)1.15(NbSe2)2 as a function of x and lattice mismatch ratio 7/4.
As shown in Fig. 3.10, we calculate the electronic band structure of these com-
pounds for x= 1, 0.875, 0.75, 0.625, 0.5, 0.375, 0.25, 0.125 and 0. We employed
SOC in all the unfoldings to account for the band splitting of the Nb’s d-bands
at the Fermi level (in Appendix A.2, a comparison with the case without SOC
for some of the concentrations is shown in Fig. A.3). For all the concentrations,
we report (in black) the amount of charge transferred from the rocksalt to NbSe2.
We can clearly see the evolution of the electrons per Nb atoms as a function of
the concentration of the La atoms (x). The bands of NbSe2 inside the misfit are
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essentially identical to those of an isolated single layer NbSe2, with a rigid upward
shift when going from the misfit with 100% of Pb atoms (x = 0) to the one with
100% of La atoms (x = 1). This analysis reinforce our claim on the chemically
tunable doping in misfit layer compounds.
Finally we tested the alloying in the rocksalt in the case of SnSe2, constructing
misfit surfaces of the kind (LaxPb1−xSe)1.27(SnSe2)2 as a function of x and lattice
mismatch ratio 3/2. In Fig. 3.11, we show the band unfolding onto the single
layer SnSe2 Brillouin zone of the misfit compound (LaxPb1−xSe)1.27(SnSe2)2 for
x= 1, 0.75, 0.5, and 0. We find that La-Pb alloying allows perfect control of the
doping level due to the large work function difference between LaSe and SnSe2
and an insulator-to-metal transition occurs in SnSe2. In this case, as we explained
for the case of (LaSe)1.27(SnSe2)2, that corresponds to x=1, the large doping of
La atoms causes the increase of the SnSe2 intralayer distance, thereby modifying
the curvature of the Sn s-band of SnSe2. Indeed, when the doping lowers, this
band distortion gradually reduces until it disappears in the case of a rocksalt with
100% of Pb atoms (x = 0).
The results obtained for the (LaxPb1−xSe)1+δ(TX2)2 series show that it is pos-
sible to reach a complete control on the doping via chemical intuition in misfit
layer compounds, further validating our approach based on work function. We
can think about misfits like a periodic arrangement of ultratunable field effect
transistors, where charging can be reached and controlled efficiently by the La-Pb
alloying in the rocksalt. In the next section we will show how to exploit these
findings to models misfit layer compounds.

3.8 Summary
In Chapter 3, we describe the ab initio geometrical and electronic properties of
misfit layer compounds. We start by comparing the experimental structure de-
termination of bulk misfit layer compounds with the ab initio process. As an
example, we characterize the geometrical properties of bulk (LaSe)1.14(NbSe2)2
with a detailed analysis of ab initio calculations by carefully taking into account
the geometrical modifications of LaSe and NbSe2 within the misfit in comparison
with experimental data [5, 6].
We then explain our procedure to build misfit surfaces and introduce the band
unfolding technique as implemented in the BandsUP software [89,90] that we use
to calculate the misfit supercell band structure in terms of that of the TMD prim-
itive cell.
Finally, we present our ab initio calculations of the electronic structure and ge-
ometrical properties of selected misfit layer compound surfaces [81]. First, we
select LaSe as the rocksalt, which has the lowest work function among the Se
compounds. We choose three kinds of TMDs with different properties, namely a
metal (NbSe2), a semimetal (TiSe2), and an insulator (SnSe2), to examine how
the high doping from the LaSe layers impacts their band structure within the mis-
fit. Then, we address the problem of tuning the charge transfer by appropriately
choosing the rocksalt in order to demonstrate the global picture based on work
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functions presented in Chapter 2. We specifically consider the (RQ)1+δ(NbSe2)2
misfit series, where we fix the TMD as NbSe2, and we change the rocksalt with
RQ = LaSe, BiSe, PbSe, and SnSe. We show that the behavior of this misfit
series is almost completely characterized by the work function difference; thus,
it is possible to tune the doping of the TMD in the misfit by chemical intuition.
Lastly, we presented our results on the (LaxPb1−xSe)1+δ(TX2)2 series with TX2

= NbSe2, TiSe2, and SnSe2. Our findings show that it is possible to think about
misfits like a periodic arrangement of ultratunable field effect transistors, where
charging can be reached and controlled efficiently by the La-Pb alloying in the
rocksalt.
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Chapter 4

Modeling misfit layer compounds as
a collection of field effect transistors

4.1 Gated two-dimensional materials in the field
effect transistor setup

In the previous chapter, we demonstrated that misfit layer compounds are highly
tunable systems, where charge transfer from the rocksalts to the transition metal
dichalcogenides can be tailored by chemical alloying. In this chapter, we will ex-
plain how to model misfit layer compounds as a collection of field effect transistors.
First and foremost, we introduce the field effect transistor setup (FET setup) as
developed in Ref. [100, 101], tailored for the case of two-dimensional heterostruc-
tures in field-effect configuration. Then, as detailed in the following, we will
explain how, by working within the FET setup, we are able to model misfits as a
periodic arrangement of FETs.
We consider a 2D material that is periodic only on the in-plane axes x and y and
has a finite thickness along the out-of-plane direction z. Thus, it is possible
to identify the positions of the cells from the in-plane primitive lattice vectors a
and b as Rp = ua+vb, where u and v are two integers. In reciprocal space, the
crystal is described by reciprocal vectors Gp, generated by two in-plane primitive
reciprocal lattice vectors a∗ and b∗.
The ground state properties of the system within the DFT framework are deter-
mined by the ground-state electronic density n. In the case of a 2D materials, we
can separate the contribution of the in-plane electron coordinate rp and the out-
of-plane z coordinates of the Bloch wave functions, solutions of the Kohn-Sham
(KS) equations:

ψk,s(rp, z) = wk,s(rp, z)e
ik·rp (4.1)

where k is the in-plane wave vector and the band index s define an electronic
state. Thus, the ground-state electronic density is:

n(rp, z) = 2
∑
k,s

f(ϵk,s)|ψk,s(rp, z)|2. (4.2)
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Figure 4.1: The sketch shows a minimal model of the FET setup containing the 2D
material and a gate separated by an insulating dielectric. The plot shows the out-of-plane
behavior of the corresponding Kohn-Sham (KS) potential for a hole-doped single-layer
2D material (graphene) in the FET setup. A charged plane simulates the gate. On
the left of the material, the KS potential is represented in black, when only vacuum
separates the gate and the material. In blue, a potential barrier is added to simulate
the dielectric material. Figure taken from Ref. [101].
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Figure 4.2: a) Planar-averaged KS potential in the out-of-plane direction as simulated
in DFT with 3D PBC for neutral (dashed line) and doped (plain line) graphene. In the
case of doped graphene, the quadratic behavior of the KS potential indicates the pres-
ence of a jellium background and a linear electric field. The dot-dashed line represent the
behavior one would expect from an isolated monopole with the same surface charge den-
sity as the 2D material Vmono=−2πe2ndop|z|. b) Determination of the physical region.
In the upper panel, the gate potential and the material’s potential <V ion + V H>p(z)
are shown, and the region where they make sense physically is indicated. The physical
region is the overlap between those regions. In the plot, c≈ 37 a.u. and zg≈ −8.5 a.u.
Figure taken from Ref. [101].

62



The KS potential of the 2D system V2D
KS is the sum of the external potential V2D

ext

(which, for now, consists of the potential generated by the ions V2D
ion), the Hartree

potential V2D
H , and the exchange-correlation potential V2D

XC :

V 2D
KS (rp, z) = V 2D

ext (rp, z) + V 2D
H (rp, z) + V 2D

XC(rp, z). (4.3)

All the quantities in Eq. 4.1, 4.2 and 4.3 are periodic with the 2D periodicity of
the crystal:

f(rp +Rp, z) = f(rp, z) (4.4)

thus, the 2D Fourier transform reads:

f(Gp, z) =
1

S

∫
S

f(rp, z)e
−iGp·rpdrp (4.5)

where the integral is over the area of the unit cell S. In-plane averages are defined
as f(Gp = 0,z) = ⟨f⟩p(z), and are also extend in the out-of-plane direction. A
relevant length scale for the out-of-plane extension of the 2D material would be
the electronic density’s thickness t, defined such that:∫ t/2

−t/2

⟨n⟩p(z) dz ≈ n0, (4.6)

where n0 × S is the number of valence electrons per unit cell in the system, equal
to the sum of the ionic charges

∑
α Zα in the neutral case, where α labels the

atoms in the unit cell. We now consider what must be done to simulate this 2D
material in the FET setup. We consider a single-gate configuration, as shown in
Fig. 4.1. A planar gate is placed parallel to 2D material and a voltage difference is
applied between the two. An insulating material (gate dielectric) separates the 2D
material and the gate, such that no current can flow between them and opposite
surface charges accumulate on both sides.
The key feature of the FET setup is its asymmetry in terms of electric field.
Between the gate and the 2D material, the electric field is finite. On the other
side of the 2D material and of the gate, the electric field is zero. In the out-of-
plane direction, it is essential to simulate the correct 2D potentials in a region at
least as large as the thickness t.
Instead of modeling every ion and electron outside this region, it is possible to
simulate the effects of those components on the 2D material. The main purpose
of the FET setup is to charge the 2D material. Considering an electron density
such that: ∫

⟨n⟩p(z) dz = n0 =
∑
α

Zα

S
+ ndop, (4.7)

where Zα is the number of pseudo charges of atom α, S is the surface of the 2D
unit cell, and ndop × S is the surface of the 2D unit cell, and density of the 2D
material is obtained by integrating the sum of the charge distributions associated
with the ions and electrons:∫

⟨ρion + ρelec⟩p(z) dz = −endop, (4.8)
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where the charge densities ρ are related to the corresponding electrons or ions
density as ρion = enion and ρelec = −en. In the FET setup of Fig. 4.1, the doping
comes from the presence of accumulated counter charges in the gate. A charged
plane of opposite surface charge density +endop is added at zg < −t/2, playing
the role of the gate:

ρgate(z) = +endopδ(z − zg), (4.9)

V 2D
gate(z) = +2πe2ndop|z − zg|. (4.10)

Finally the system is now neutral as:∫
⟨ρion + ρelec⟩p(z) + ρgate(z) dz = 0 (4.11)

and the potential of the gate is included in the external potential:

V 2D
ext (rp, z) = V 2D

gate(z) + V 2D
ion (rp, z). (4.12)

The resulting planar-averaged KS potential V 2D
KS is the black line in Fig. 4.1, in

the case of a hole-doping monolayer material. At this point, it has the features
expected from a FET setup with vacuum as the insulating dielectric.
The general characteristics of this potential are easily deduced from a simple
parallel plate capacitor model: (i) outside the system, the electric field is zero and
the potential is constant; (ii) between the 2D material and the gate, the electric
field is constant and the potential is linear with a slope of 4πe2ndop ; (iii) this
electrostatic configuration translates into an out-of-plane dipolar moment, which
induces a shift in the KS potential:

⟨V 2D
KS ⟩p(+∞)− ⟨V 2D

KS ⟩p(−∞) = 4πe2ndop|zg|, (4.13)

as represented in Fig. 4.1.
The other element to consider to have a minimal working model for the FET setup
is the dielectric separating the gate and the material. Its necessity is obvious in
the case of electron-doping. In that situation, the polarity of the system pictured
in Fig. 4.1 is reversed. This means that the gate lies at a lower potential than the
2D material. In such a simulation, there would then be some leaking of electrons
towards the gate. This is not physical. In a FET setup, this is prevented by
the presence of an insulator between the gate and the material. From a more
mechanical point of view, the necessity of the dielectric is in fact more general.
Indeed, both for hole and electron doping, there is an attractive force between the
gate and the material, which is simply the electrostatic attraction between two
oppositely charged plates:

|Fgate−material| = S × 2πe2n2
dop. (4.14)

In this context, the dielectric provides a counteracting repulsive force. To emulate
both the insulating and repulsive roles of the dielectric, a potential barrier is added
in between the material and the gate:

V 2D
barrier(z) =

{
Vb if z < zb.

0 otherwise,
(4.15)
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where zg < zb < 0. This potential can be included in the 2D external potential V2D
ext.

Adding such a barrier results in the potential represented by a blue line in Fig. 4.1.
This barrier potential essentially forbids (or makes highly unlikely) the presence
of electrons for z < zb , thus preventing electrons from leaking towards the gate.
Since the electrons cannot go past the barrier, and since the ions are strongly
attracted by the electrons, the barrier repels the 2D material as a whole. The
equilibrium position of the material with respect to the barrier can be determined
by relaxation of the forces in the system.
Finally, we briefly discuss how to tackle with periodic replica of the system to
correctly recover the behaviour of the potential of a 2D material in the FET
setup [101]. The standard method in plane-wave DFT packages amounts to the
use of a jellium background. Each slab is then globally neutral, containing the
doped material and a uniform distribution of compensating charges. In between
the periodic images, the resulting potential is quadratic in z, with extrema at
mid-distance between layers. This potential does fulfill the periodic boundary
conditions (PBC) and does not diverge. However, it is quite different from the
potential one would expect for a charged, isolated 2D material. In the FET setup
for gated 2D materials, the 3D PCB issue is solved by using the Coulomb cutoff
technique.
The general idea is to cut all the potentials off between the periodic images along
the z-axis. In effect, all physical links between periodic images are severed because
the potential generated by one periodic image does not reach the others. Each slab
is effectively isolated. In this way, there is no physical 3D periodic system anymore.
There is a 2D periodic system, copied and repeated in the third dimension in order
to build potentials that mathematically fulfill 3D periodic boundary conditions.
However, at half the distance between the periodic images, the potential is null.
Each long-range potential (VH ,Vion,Vgate) in the original 3D code is generated by
a certain distribution of charges via the Coulomb interaction (vc(r)= e2

r
). To build

the corresponding cutoff potentials in the code ( V H ,V ion,V gate), the following
cutoff Coulomb interaction is used:

vc(r) =
e2θ(lz − |z|)

|r|
) (4.16)

where r = (rp, z) is a generic three-dimensional space variable. An arbitrary
charge density ρ then generates the following potential:

V (r) =

∫
eρ(r

′
)

|r− r′ |
θ(lz − |z|) dr′

. (4.17)

Roughly speaking, considering a single charged plane, we generate its potential
only within a certain slab of thickness 2lz centered on the charge distribution.
Within this slab, we have that V (r) = V2D(r). Outside of this slab, the potential
is zero. Each periodic image of each charge distribution (ρion, ρelec, ρgate) generates
its own potential within its own slab. To fulfill 3D PBC, the simpler way is to cut
off midway between the periodic images:

lz =
c

2
. (4.18)
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Since the potentials V2D
ion, V2D

H , and V2D
gate are symmetric with respect to the plane

of the associated subsystem (ions, electrons, gate), they have the same value on
both sides of the corresponding slab. V 2D

ion, V 2D
H , and V 2D

gate are each continuous
and periodic, and so is their sum V 2D

KS. However, since the slabs of each subsys-
tem do not coincide, the KS potential is only physical within the overlap of the
subsystems’ slabs. This overlap region defines a "physical region", as illustrated
in Fig. 4.2, where all the potentials make sense. Outside of this region, there are
some spurious unphysical variations of the KS potential. Those spurious varia-
tions are a necessary consequence of fulfilling 3D PBC. Nevertheless, everything
happens, as demonstrated in Ref. [101], within the physical region associated to
the KS potential. To simulate the system, is just needed to make sure that the
2D material lies in this physical region.
In conclusion, the FET setup method is a powerful tool to investigate the prop-
erties of gated 2D materials. It has been already employed to many applications
involving TMDs. For example, for the investigation of how field-effect doping af-
fects the structural properties, the electronic structure, and the Hall coefficient of
few-layers transition-metal dichalcogenides [100] and to study phonon mediated
superconductivity in field-effect doped molybdenum dichalcogenides [102].
In the next sections, we will show how to apply this methodology to predict the
electronic and vibrational properties of misfit layer compounds. The applications
of this technique extend far beyond simulations of gated 2D materials. For exam-
ple, whenever a subset of a material can be assimilated to a charged plate, this
approach can be successfully adopted (see Fig. 4.3).

4.2 Misfit layer compounds as a collection of field
effect transistors

In Chapter 2 we demonstrate that, inside the misfit, the rocksalt subunit acts as
a donor, transferring electrons to the TMD layers.
In Chapter 3 we used the physical insight gained from the work function analy-
sis to calculate the electronic properties of misfit layer compound surfaces. The
results show that it is possible, via Pb/La alloying in the RS layers, to set the
Fermi level at will. For example, in the case of (LaSe)1.27(SnSe2)2 it is possible to
tune the doping of SnSe2 to reach the Van Hove singularity.
Starting from these findings, we want to model the misfit as a collection of field
effect transistors. Because the rocksalt serves as an electron reservoir, it may be
assimilated to a capacitor plate in a field effect transistor scheme. By means of the
field effect transistor setup, presented in the previous section, it is then possible
to model the effect of the misfit structure onto the TMD layers. As we can see
from Fig. 4.3, the full misfit can be assimilated to several field-effect transistors
stacked periodically along the z-axis of the MLC. This configuration is achieved by
replacing the rocksalt with a uniformly positive charged gate. The gate’s charge
is set to match the amount of charge transferred from the rocksalt to the TMD
in the considered misfit. In this way, the TMD is doped as it is in the misfit.
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Figure 4.3: The field-effect modeling scheme for misfit layer compounds with m=2. In
this scheme, MLC surfaces can be modeled in a single layer field effect transistor setup
(1L FET) by replacing the rocksalt with a positively charged gate; a negatively charged
monolayer TMD then corresponds to the misfit surface termination layer. Bulk MLCs
can be modeled in a double layer field effect transistor setup (2L FET) by replacing
the rocksalt with two positively charged gates sandwiching a negatively charged bilayer
TMD. To confine the atoms in the region in between the charged plates, positive potential
barriers are added. Vacuum space prevents periodic replicas from interacting with each
other.
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Figure 4.4: Example of FET applied to simulate misfit layer compounds surface and
bulk. a) Band unfolding (grey) of (LaSe)1.18(TiSe2)2 misfit surface supercell onto the
hexagonal primitive Brillouin Zone (BZ) of single layer TiSe2 (the zero energy is set to
the Fermi level, dashed green line). The superimposed solid lines are the band structure
of an isolated single layer TiSe2 (red), and of a single layer TiSe2 doped in a single FET
setup as in (LaSe)1.18(TiSe2)2 by 0.5 electrons per Ti atoms (green), respectively. b)
Band unfolding (grey) of (LaSe)1.15(NbSe2)2 misfit bulk supercell onto the hexagonal
primitive Brillouin Zone (BZ) of bilayer NbSe2 (the zero energy is set to the Fermi level,
dashed green line). The superimposed solid lines are the band structure of an isolated
bilayer layer NbSe2 (red), and of a bilayer layer NbSe2 doped in a double FET setup
as in (LaSe)1.15(NbSe2)2 by 0.6 electrons per Nb atoms (green), respectively. Darker
regions in the colormap represent the most relevant projection of the misfit eigenvalues
of the band structure in the TiSe2 (NbSe2) first BZ (band unfolding).

As we can see in Fig. 4.3, it is possible to model both the surface and the bulk
MLCs within the FET setup. In particular, we used this scheme to model misfit
layer compounds with m=2. A MLC surface can be modeled in a single layer
field effect transistor setup (1L FET). In this case, the rocksalt is replaced with a
positively charged gate, while the TMD is a negatively charged monolayer corre-
sponding to the misfit surface termination layer. Bulk MLCs can be modeled in a
double layer field effect transistor setup (2L FET) by replacing the rocksalt with
two positively charged gates sandwiching a negatively charged bilayer TMD. To
confine the atoms in the region in between the charged plates, positive potential
barriers are added, as explained in the previous section. Vacuum space prevents
periodic replicas from interacting with each other, and must be sufficient to place
the system in the physical region of the FET setup. As an example, we show
in Fig. 4.4 FET setup applied to the electronic structure of misfits surface and
bulk. We consider specifically the unfolded band structure of (a) the surface of
(LaSe)1.18(TiSe2)2 and (b) the bulk of (LaSe)1.15(NbSe2)2. First, we calculate the
amount of charge transferred from the RS to the TMD, as detailed in Chapter
3. Then, we model the surface (bulk) in the single (double) FET setup (see Fig.
4.3) by replacing the rocksalt units with the appropriate charged plates. In the
first case, we unfold the band structure of (LaSe)1.18(TiSe2)2 misft surface onto
the hexagonal primitive Brillouin Zone (BZ) of single layer TiSe2. The superim-
posed solid lines are the band structure of an isolated single layer TiSe2 (red),
and of a single layer TiSe2 doped in a single FET setup (see Fig. 4.3) as in
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(LaSe)1.18(TiSe2)2 by 0.5 electrons per Ti atoms (green), respectively. In the sec-
ond case we unfold (LaSe)1.15(NbSe2)2 misfit bulk supercell onto the hexagonal
primitive Brillouin Zone (BZ) of bilayer NbSe2 (the zero energy is set to the Fermi
level, dashed green line). The superimposed solid lines are the band structure of
an isolated bilayer layer NbSe2 (red), and of a bilayer layer NbSe2 doped in a dou-
ble FET setup as in (LaSe)1.15(NbSe2)2 by 0.6 electrons per Nb atoms (green),
respectively. As can be seen, the calculation is in good agreement with the one
for the MLC surface (bulk).
In our work [81], we apply the FET setup to the misfit layer compound
(LaSe)1.27(SnSe2)2 where, as shown in Chapter 3, there is substantial band distor-
tion of the s-band of Sn with respect to the isolated single layer (see Fig. 3.5(c)).
Technical details of these calculations can be found in Appendix A.3. From the
the electronic band structure of the misfit surface, unfolded onto that of a single
layer SnSe2, we extracted the amount of charge transfer between the LaSe and
the SnSe2 (0.77 e−/Sn atoms, or ne≈ 6× 1014 cm−2). In Chapter 3, we discussed
how this huge charge transfer causes the distortion of the Sn s-band at the Fermi
level of the misfit. Indeed, as shown in Fig. 4.5, we compare the MLC surface
electronic structure with the one of an isolated layer (red line). The substantial
band distortion with respect to the isolated single layer is evident in the figure.
A better description of the surface electronic structure is obtained by replacing
the LaSe layer with a uniformly positive charged potential barrier, as in a single
gate field effect transistor setup by using the method developed in Ref. [100,101].
Green line in Fig. 4.3 corresponds to the electronic structure of an isolated SnSe2
layer under this approximation. As can be seen, the calculation agrees perfectly
with the one for the entire MLC surface, both in terms of band bending at the
Fermi level (some deviations are seen in the empty states near to the zone center)
and the position of the valence band top. As discussed in Chapter 3, we attribute
the band bending occurring at the K high-symmetry point to a modification of
the intralayer spacing between Sn and Se in SnSe2 due to the charging of the
monolayer.
To further validate our hypothesis, we can separate the contribution of each sub-
unit to the density of states (DOS) of (LaSe)1.27(SnSe2)2 and then compare it
with the one of a single layer SnSe2 doped in a single FET setup. This calcula-
tion is shown in Fig. 4.5. We calculate the total DOS per SnSe2 formula unit of
(LaSe)1.27(SnSe2)2 (yellow line). We then project the density of states over atomic
orbitals of the LaSe layers (purple) and of the SnSe2 layers (blue), respectively.
Finally, we compare it with the green line, which is the DOS of a single layer SnSe2
doped in a single FET setup of 0.7 electrons per Sn atom. As seen in Chapter 3,
the amount of LaSe electrons is low at the Fermi level. In addition, we can see
that the FET setup recovers the behaviour of the total DOS at the Fermi level,
indicating once again, that the FET modeling is in perfect agreement with the
complete calculation of the MLC surface. Finally, a comparison of the interlayer
spacing dz between Sn and Se in SnSe2 is shown in Fig. 4.6. The charge trans-
fer exerted by LaSe in (LaSe)1.27(SnSe2)2 modifies the out-of-plane spacing (dz)
in monolayer SnSe2. The intralayer spacing between the two Se atoms increases
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Figure 4.5: Band unfolding (grey) of (LaSe)1.27(SnSe2)2 misfit supercell onto the hexag-
onal primitive Brillouin Zone (BZ) of single layer SnSe2 (the zero energy is set to the
Fermi level, dashed green line) . The superimposed solid lines are the band structure
of an isolated single layer SnSe2 (red), and of a single layer SnSe2 doped in a single
FET setup as in (LaSe)1.27(SnSe2)2 by 0.7 electrons per Sn atoms (green), respectively.
Darker regions in the colormap represent the most relevant projection of the misfit eigen-
values of the band structure in the SnSe2 first BZ (band unfolding). In the adjacent
panel we plot the total DOS per SnSe2 formula unit of (LaSe)1.27(SnSe2)2 (yellow) and
the projected density of states over atomic orbitals of the LaSe layers (purple) and of
the SnSe2 layers (blue), respectively. The green line is the DOS of a single layer SnSe2
doped in a single FET setup of 0.7 electrons per Sn atoms.

Figure 4.6: Intralayer spacing (dz) between Sn and Se in SnSe2. Comparison between
values of dz in isolated monolayer (1L), monolayer in the MLC (LaSe)1.27(SnSe2)2 (mis-
fit), and single-gate doped monolayer (1L-FET) with 0.7 e−/Sn.
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by ∼5% in the misfit, with respect to that of an isolated monolayer SnSe2 (1L).
While the Sn-Se interatomic distances in the out-of-plane axis (dz(Sn-Sex), with
x=1, 2) of an isolated monolayer SnSe2 are equal, due to the effect of the LaSe
doping substrate, their value differs in the misfit. The structural optimization in
a FET setup recovers this geometrical behavior with an interlayer spacing within
the ∼ 0.8% with that of the misfit, thus being in excellent agreement with the
complete MLC structural optimization.
These findings demonstrate that FET modeling is a reliable tool for tackling the
electronic structure of misfit layer compounds.

4.3 Doping-induced superconductivity in misfit
layer compound (LaSe)1.27(SnSe2)2 in the FET
setup

After achieving complete knowledge of the charge transfer in MLCs, we now
demonstrate how to design a misfit superconductor starting from its constituents.
In particular, we show that non-superconducting pristine RS and TMD com-
pounds can lead to a misfit superconductor via charge transfer control (emer-
gent superconductivity). We specialize our discussion to misfit layer compound
(LaSe)1.27(SnSe2)2 whose electronic and geometrical properties are reported in
Chapter 3 and 4. As superconductivity is a bulk property, we must simulate the
complete 3D crystal. The calculation of the vibrational properties and electron-
phonon coupling for the complete MLC is, however, a very cumbersome task due
to the large number of atoms.
We then proceed differently, namely we consider a SnSe2 bilayer in a field effect
configuration as in Fig. 4.3 with a +0.7 charge on each of the two plates (double
gate configuration). In order to prevent the ions from moving too close to the
gate electrodes, a potential barrier is placed before the gates, and the total charge
of the system is maintained equal to zero [101].
We then calculate the phonon dispersion (ωqν) and the electron-phonon coupling
(in Chapter 5, we will go into more details on the requirements for superconduc-
tivity calculations) λqν (see Eq. 5.11) for each mode ν of phonon crystal momen-
tum q in double gate geometry. From these quantities we obtain the Eliashberg
function α2F (ω) (see Eq. 5.10). These quantities are plotted in Fig. 4.7. As
detailed in Appendix A.3, these calculations have been performed within Epiq
(Electron-Phonon Interpolation over q- and k-points), an open-source in-house
software [103]. Our results show that the average electron-phonon coupling of the
system is λ = 0.6.
Approximately 30% of the coupling arises from the Einstein optical modes at
≈ 45 − 50 cm−1, while the rest of the coupling is uniformly distributed through-
out the other modes. The phonon density of states (not shown) is very similar to
the Eliashberg function.
We calculate the superconducting critical temperature by solving the anisotropic
Migdal-Eliashberg equations [104], as implemented in the EPIq software [102,103,
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Figure 4.7: Dynamical properties and electron-phonon coupling of (LaSe)1.27(SnSe2)2
modeled by a bilayer SnSe2 in a double FET setup. The phonon dispersion is shown in
the first panel while, in the adjacent panel, the Eliashberg function α2F (ω) (filled blue
curve) and the total electron-phonon coupling λ(ω) (red) are depicted.
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105], and by assuming µ∗ = 0.1. We obtain a predicted critical temperature of
Tc = 3.5 K.
This result matches well with the Tc = 4.8 K detected in ultrathin Li-intercalated
SnSe2 via field effect gating and demonstrates that superconductivity can emerge
in MLC from pristine components that are not superconducting.
In conclusion, we identify a strategy to design emergent superconductivity and
demonstrate its applicability in (LaSe)1.27(SnSe2)2 by FET modeling.

4.4 Vibrational properties of misfit layer com-
pounds

In this section, we demonstrate how to predict the vibrational properties of misfit
layer compounds based on that of their subunits, namely the rocksalts and the
TMDs. This can be accomplished with appropriate field-effect doping.
In our work [106], we focus on the specific case of misfit layer compound
(LaSe)1.14(NbSe2)2. This heterostructure is composed of two subsystems, namely
bilayers NbSe2 (subsystem 1) and LaSe rocksalt subunits (subsystem 2) with dif-
ferent symmetries and periodicity [87] (see Fig. 3.1). The lattice parameter’s
mismatch along one of the in-plane direction of ratio |a2|/|a1| = 6/3.437 (≈ 7/4)
makes (LaSe)1.14(NbSe2)2 an incommensurate compound.
In Chapter 3, we already presented the geometrical properties of this compound.
We now focus on one of the two subsystem of this misfit : the TMD NbSe2.
Bulk NbSe2 displays competition between charge density wave (CDW) and super-
conducting order. An incommensurate CDW transition at 33 K occurs in bulk
2H-NbSe2 [25–27]. Superconductivity (SC) emerges below 7.2 K and coexists with
the CDW state [24]. Recent experiments [107, 108] demonstrate that CDW sur-
vives in the two-dimensional (2D) limit for NbSe2 bi and single layers.
Achieving a complete control of CDW order in these systems could lead to a bet-
ter understanding of the interplay between SC and CDW. To this aim, external
parameters that can be tuned are doping, pressure, strain and sample thickness.
However, each one of these control knobs leads to different effects.
For example, applying pressure to bulk NbSe2 leads to a suppression of the CDW
at ≈ 4.4 GPa and an increase of the superconducting Tc [109], but no change in
the ordering vector occurs.
In the bulk, electron doping can be achieved via chemical intercalation [110] paving
the way to a tunability of the ordering vector. Exfoliation of 2D TMDs and ionic-
liquid based field-effect transistors has led to the possibility of setting the doping
electrochemically by tuning the voltage drop at the capacitor plates to generate
an electrical-double layer in the proximity of the 2D dichalcogenide [111].
Experiments show that the CDW phase in bilayer NbSe2 is weakened by electron
doping [7]. This suggests that it could be possible to observe a CDW collapse at
high voltages. Unfortunately, the amount of doping required to observe a collapse
of the CDW phase exceeds the largest carrier chargings accessible via field effect
gating (ne ≈ 3 × 1014 e− cm−2). Other approaches are thus needed to achieve
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higher doping.
As shown in Chapter 3, misfit layer compounds are an intriguing alternative for
achieving nearly perfectly integrated 2D TMDs with massive doping.
In this particular case, quasiparticle interference measurements (QPIs) and angle-
resolved photoemission spectroscopy (ARPES) show that each monolayer of NbSe2
inside the (LaSe)1.14(NbSe2)2 MLC is strongly electron-doped with a large Fermi
level shift of +0.3 eV, (corresponding to ne ≈ 6× 1014 e− cm−2) [6].
Furthermore, scanning tunneling microscopy (STM) and magneto-transport mea-
surements demonstrate that bulk (LaSe)1.14(NbSe2)2 is superconducting at 5.7 K
with a critical field in the TMD plane that strongly violates the Pauli limit due
to an efficient Ising protection, as in the monolayer case [9].
Although superconductivity in (LaSe)1.14(NbSe2)2 has been clearly demonstrated,
the occurrence of CDW is still under debate. STM topography detected the pres-
ence of a short-range 2× 2 modulation disappearing above 105 K [6].
However, the 2 × 2 modulation observed in (LaSe)1.14(NbSe2)2 by STM could
be ascribed to a non-uniform doping on the cleaved surface. Up to our work,
no bulk sensitive probes have demonstrated the presence or absence of a CDW
in (LaSe)1.14(NbSe2)2. Our work [106], based on the combination of our first-
principles calculations and Raman measurements carried out by the group of
Marie-Aude Méasson at the Néel Institut in Grenoble, aims to investigate the
vibrational properties of (LaSe)1.14(NbSe2)2. As we will detailed in the following,
our analyses emphasize the 2D character of the TMD’s lattice dynamics inside
the misfit 3D structure.

4.4.1 Modeling bulk (LaSe)1.14(NbSe2)2
Given the incommensurability of the misfit layer compounds along one of the in-
plane directions, a (3+1)D superspace group could be adopted to label the crystal
structures [4]. However, the commensurate approximant of the (LaSe)1.14(NbSe2)2
compound crystallizes in the P1 space group.
The number of expected phonons is large, virtually infinite due to the incommen-
surability. From the symmetry analysis deriving from the P1 symmetry, all modes
are both Raman (R) and Infrared (IR) active. However, many of the potentially
Raman active modes have very low intensity as (i) the symmetry of the subunits
closely resemble the one of the isolated counterparts and (ii) the P1 group arises
from the need of matching the rocksalt and TMD space groups.
In order to gain a better understanding of the Raman active phonon modes, we
first consider the two sub-structures as separated, namely a rocksalt bilayer of
LaSe and a bilayer of 2H-NbSe2 (2L-NbSe2). Along the c axis, one bilayer of
NbSe2 corresponds to one unit cell of 2H-NbSe2.
In the presence of mirror symmetry with respect to the Nb plane (i.e. isolated
NbSe2 bilayer in the absence of an external electric field), the 2L-NbSe2 sub-
structure belongs to the space group P3m1 (#164, D3

3d point group). Each bilayer
has 6 atoms per unit cell. The Wyckoff positions of the two Nb atoms are 2c (with
z= 3.13Å), while the four Se are in 2d (with z= 1.47Å) and 2d (with z= 4.84Å),
respectively.
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Figure 4.8: Crystal structure of (LaSe)1.14(NbSe2)2 (center) composed of LaSe bilayers
(red and yellow) and NbSe2 bilayers (blue and yellow). Each LaSe bilayer donates
≈ 0.6 electrons/Nb to each NbSe2 layer. The NbSe2 bilayer is modeled in a field effect
transistor set up (right) in which each LaSe bilayer is replaced by a charged plate having
a positive charge of 0.6 electrons per Nb atom. The LaSe bilayer is modeled in a field
effect transistor setup, replacing each NbSe2 bilayer by a negatively charged plate of 0.6
electrons per Nb. To confine the atoms in the region in between the charged plates,
positive potential barriers are added (black lines).
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Bulk LaSe crystallizes in the Fm3m (#225) space group with two atoms per cell.
However, we choose to label the atomic positions of the isolated LaSe bilayer by
using the Cmm2 space group (#35, C2v point group), which is suitable for the
orthorhombic lattice of LaSe within the misfit.
The LaSe bilayer is an alternation of La and Se with a total of 8 atoms per
unit cell. The 4 atoms composing the first layer have Wyckoff positions 2a (with
z= −0.077Å) for Se and 2b (with z= −0.076Å) for La. The 4 atoms composing
the second layer have Wyckoff positions 2a (with z= 0.076Å) for La and 2b (with
z= 0.077Å) for Se.
In our calculations, the in-plane lattice parameter of all the considered structures
is fixed as the one of each sub-system in the bulk (LaSe)1.14(NbSe2)2, namely,
a1 = 3.437 Å and a2 = 6 Å [6].
Bulk (LaSe)1.14(NbSe2)2 is a periodic arrangement of LaSe and NbSe2 subunits
along the stacking direction (see Fig. 3.1 in Chapter 3). The lattice parameter
mismatch in one of the in-plane directions makes the misfit cell incommensurate.
As detailed in Chapter 1, it is possible to simulate an approximate commensu-
rate cell [6] by considering the ratio |a2|/|a1| = 6/3.437 (≈ 7/4), and thus m
=7|a1| ≈ 4|a2|. This periodic approximant has been used to calculate the elec-
tronic structure [6], however it is still formed by too many atoms for the calculation
of the vibrational properties.
In order to reduce the computational effort, we approximate the 7/4 mismatch
ratio by 8/4, corresponding to a 2/1 ratio. This is done by applying 14.6% tensile
strain to the rocksalt subunit, increasing the lattice parameter to a2 = 6.875 Å.
The NbSe2 in-plane parameter is, on the contrary, kept the same as in the misfit
(a1 = 3.437 Å).
Consequently, the two subunit cells in the 2 × 1 periodic approximant of bulk
(LaSe)1.14(NbSe2)2 are listed below. The NbSe2 sublattice has an orthorhombic
cell with in-plane lattice vectors a1 = 3.437 Å and b1 = 6 Å, while the LaSe
sublattice has an orthorhombic cell with in-plane lattice vectors a2 = 6.875 Å and
b2 = 6 Å.
The resulting misfit crystal has an orthorhombic cell with lattice parameters a =
|b1| = |b2| = 6 Å, b = 2|a1| ≈ 1|a2|=6.875 Å and c= 18.25 Å. The structure has
a P1 symmetry and includes 32 atoms in the cell (atomic positions are reported
in the Tab. A.4 in Appendix A.4).
Inside the misfit, the LaSe subunit acts as a donor, losing ≈ 1.2 electrons and
donating ≈ 0.6 electrons per Nb atom to each monolayer of the NbSe2 bilayer
subunit [6].
By means of the field effect transistor setup developed in Ref. [100,101], it is then
possible to model the effect of the misfit structure onto the NbSe2 bilayer by using
a bilayer TMD sandwiched between two uniformly positive charged gates (see Fig.
4.8). Each charged gate replaces the RS subunit and has a positive charge per
Nb corresponding to 0.6 times the modulus of the electronic charge. As shown in
the previous section, this approach is efficiently carried out to estimate the misfit
electronic structure in Ref. [81].
The field-effect scheme can also be employed by considering an RS subunit sand-
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Figure 4.9: Calculated phonon dispersion along the Γ-M-K-Γ path of a) an isolated
2L-NbSe2 and b) a field effect doped 2L-NbSe2. In panel b) the charge-density-wave
instability is clearly removed by electron doping.

wiched between two uniformly negative charged gates (see Fig. 4.8). In this case
the goal is to determine the effect of the misfit structure onto the LaSe bilayer
subunit so that the charged plates are now negatively charged. A detailed descrip-
tion of the computational parameters employed for these simulations are reported
in Appendix A.4.

4.4.2 Charge density wave collapse of NbSe2 in the
(LaSe)1.14(NbSe2)2 misfit layer compound

In Fig. 4.9 we calculate the harmonic phonon dispersion of an isolated neutral
NbSe2 bilayer (panel a) and of a NbSe2 bilayer in field-effect configuration with a
charging corresponding to 0.6 electrons per niobium atom (panel b). The charge
density wave instability occurring in the isolated NbSe2 bilayer is showcased by
the presence of an imaginary phonon band with the most imaginary value at
q ≈ 2/3ΓM. Anharmonic effects do not qualitatively alter this behaviour, since
the instability is reduced, but its wave vector is preserved [112].
In the FET charged NbSe2 bilayer (panel b) the CDW instability is completely
removed for charge transfers similar to those in the misfit. We thus expect that
the CDW should collapse once the NbSe2 subunit is inserted in the misfit. We
will see that this estimation is confirmed by Raman data.
We believe that our FET simulation can accurately recreate CDW behaviour as a
function of misfit doping level. Indeed, in the first place, it has been demonstrated
that the misfit generally behaves as a periodic arrangement of tunable field effect
transistors [81]. In addition, in the specific case of (LaSe)1.14(NbSe2)2, the elec-
tronic band structure of the misfit can be assimilated as that of a rigidly doped
NbSe2 single layer [6]. Second, because the CDW in NbSe2 originates from the
in-plane modes, FET modeling is appropriate for characterising its physics.
Finally, we conclude by noting that, if the charged plates mimicking the charge
transfer by the LaSe subunits are removed and the FET charging is replaced by a
uniform background doping, the results are completely different as they show an
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instability at the M point, in qualitative disagreement with experiments (see for
example supplemental materials of Ref. [6]). The reason is that in the misfit, as in
a field-effect transistor, the charge transfer to the NbSe2 bilayer is not uniformly
distributed along the c−axis. For this reason, the uniform background doping
approximation is inappropriate.
Raman spectroscopy offers a direct probe of charge-density-wave signatures in

the bulk [114,115], and in few-layer systems [107]. Two types of new Raman active
modes arise as a fingerprint of the CDW.
The first one is a soft phonon called the amplitude mode, that gradually hardens
when cooling down and that arises from the phonon branch which softens at the
CDW wavevector. This mode has been detected in bulk 2H-NbSe2 at ≈ 40 cm−1

(triangle in Fig. 4.10, panel (c)) [116,117].
The second type of new peaks are zone-folded modes that arise from other phonon
bands at the CDW wavevector. These modes are folded into Γ by the effect of the
CDW modulation and are therefore detectable (Cf. stars in Fig. 4.10, panel (c)).
Figs. 4.10 (a) and (b) show the Raman response of (LaSe)1.14(NbSe2)2 in crossed
and parallel polarisations for temperatures ranging from 8 to 200 K. In both po-
larizations, a substantial increase of the overall intensity is measured when cooling
down. Narrow phonon modes are reported up to 350 cm−1. The modes above 350
cm−1 are broader and are most likely due to double phonon excitations.
Globally, the phonon modes harden when cooling down, as it is generally expected
from anharmonic effect. No new modes appear at low temperatures, neither across
the temperature range where STM was detecting small patches with short range
2×2 modulation (100K) [6], nor across the temperature range at which the CDW
is detected in bulk samples (35 K). The large-range electronic response does not
present any signature of electronic gap opening that is sometimes measured in the
CDW state [118,119].
The last possible fingerprint of the presence of a CDW is a two-phonon Raman
feature from the soft phonon branch at QCDW , i.e. the phonon momentum re-
lated to the CDW instability. In bulk 2H-NbSe2, it is visible in Fig. 4.10(c) as
indicated by the arrow. The only candidate for this experimental Raman feature
is the broad mode in the low energy range around 100 cm−1 which is detected in
both polarization configurations. However, the temperature dependence of this
mode is peculiar and in stark contradiction with the behaviour of the double
phonon mode in NbSe2. Indeed, as shown Fig. 4.10(c), in bulk 2H-NbSe2 the
double phonon feature loses intensity in both A1g and E2g symmetries and softens
with decreasing temperature. Conversely, in the case of our (LaSe)1.14(NbSe2)2,
the large spectral weight bump always remains in the same energy range, and its
intensity largely grows when cooling down as shown in Fig. 4.10. So even if this
part of the spectra could be partially due to two phonon scattering, it does not
evidence a softening of the branch and, thus, it is not related to a CDW.
A comparison with DFT calculations suggests that the nature of the broad mode
in the misfit can be attributed to the presence of a dense population of LaSe
modes that overlap with a few low energy NbSe2 frequencies. Overall, these mea-
surements suggest that no amplitude modes or CDW related modes occur down
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Figure 4.10: Temperature dependence of the Raman response of (LaSe)1.14(NbSe2)2
with (ab)-plane crossed (a) and parallel (b) polarisation configurations. Inset: large
energy-range electronic Raman response. c) Raman response of bulk 2H-NbSe2 and
isolated 2L-NbSe2 [113] at 300 K and ∼5K, in the CDW state. The stars, triangles
stands for the Brillouin-zone folded phonons and amplitudons, respectively. The arrows
indicate the double phonon modes related to the soft phonon branches of the CDW. (d)
Raman active phonons energies from experiments and from theory.
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to 8 K.
We comment here on the CDW signatures observed by STM at the cleaved
(LaSe)1.14(NbSe2)2 surface while no signature in the bulk could be detected by
Raman spectroscopy. Investigation of the Raman response of 2H-NbSe2 as a func-
tion of quality of the samples, as stated by the residual resistivity ratio (RRR= 50
for good samples and 6 for the worst samples), clearly shows that the main CDW
signature observed by Raman spectroscopy, namely the amplitudon, becomes ex-
tremely weak intensity in low quality samples [120].
A first hypothesis would be that the CDW would exist in the bulk but with a
very short coherence length of ≈ 2 nm, as suggested by the STM experiment. In
this case, the situation would be somehow analogous to the one observed in the
normal state of 2H-NbSe2, where it is reported that short range CDW modula-
tions are observed by STM near the defects much above the bulk CDW critical
temperature [121–123], while no Raman signatures are detected in this tempera-
ture regime.
A second hypothesis would be that a surface peculiar behaviour would stabilize
and enhance a surface CDW, while its bulk counterpart would develop at much
lower temperature and with lower amplitude and coherence length, or even not
form at all. There have been reports of such complicated and different surface
versus bulk CDW properties in well-known quasi-one dimensional materials such
as NbSe3 or the blue bronze [124–126].

4.4.3 Raman scattering and mode attribution of bulk
(LaSe)1.14(NbSe2)2

In Fig. 4.11 we show the Raman spectra of (LaSe)1.14(NbSe2)2 at 8 K in both
parallel and crossed polarizations. There is a substantial difference among the
two spectra, supporting a strong dependence of the signal on the symmetry of the
modes. In Tab. 4.1 we report the most intense modes together with their Raman
active channels.
By comparing with the experimental Raman spectra in the bulk and in the 2L-

NbSe2 in Fig. 4.10(c) and (d), we notice a striking resemblance on the symmetry
of the most intense modes, especially at high energy. Notably in the 2L system,
in addition to the expected 3 modes of the bulk 2H-NbSe2, namely one E(2)g in-
terlayer mode at ∼30 cm−1, one A1g and one E(2)g mode at ∼ 250 cm−1, Lin et
al. [113] report one additional mode due to the few-layer structures, namely an
A1g mode at high energy 310 cm−1. A mode at ∼ 155 cm−1 is possibly measured
by Lin et al., but would require some confirmation. Importantly, these modes,
even if measured at low temperature, are not due to the CDW ordering. As shown
Fig. 4.10 (d), the energy and symmetry of the modes are well reproduced by our
calculations for both systems, with a general tendency to underestimate their en-
ergy compared to the experimental results. As a straightforward interpretation
of the spectra, we then tentatively assigned the most intense modes in the misfit
to the modes of the same symmetry in the 2 layer structure. As shown Table 4.1,
there is a good correspondence with 4 modes, in terms of energy and symmetry.
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Figure 4.11: a) Raman spectra of (LaSe)1.14(NbSe2)2 at 8 K in crossed and parallel
polarizations in the (ab)-plane. b) and c) Theoretical calculations of Raman active
modes of (LaSe)1.14(NbSe2)2 obtained from those of the two subsystems, namely LaSe
(panel b)) and NbSe2 (panel c)), electron doped by means of the FET setup. The original
modes from Γ of the 1× 1 cell (long bars) and their subsequent BZ folding (short bars)
modes are indicated (Cf. text). Original modes from Γ of the 1 × 1 cell are classified
by symmetries. The phonon density of states of LaSe is shown in the upper part of
panel b). d) Comparison between experimental [113] and theoretical zone center modes
of isolated 2L-NbSe2. Here, the NbSe2 lattice parameter is the one in the misfit, namely
a=3.437 Å.
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In order to further corroborate our analysis and perform a full assignment of the
modes, we consider here the two subunits of the compounds, namely LaSe and
NbSe2, as well as their interplay.
As the space group of the bulk misfit compound is P1, all vibrational modes are
Raman active. Thus, in the absence of a charge density wave instability, besides
the zone center modes related to the LaSe and NbSe2 subunit cells, one expects
(i) NbSe2 modes at in-plane phonon momenta that are not at zone center in the
NbSe2 bilayer Brillouin zone but are backfolded at zone center in the misfit Bril-
louin zone due to the 7× 1 NbSe2 periodicity occurring in (LaSe)1.14(NbSe2)2, (ii)
LaSe modes at in-plane phonon momenta that are not at zone center in the LaSe
bilayer Brillouin zone but are backfolded at zone center in the misfit Brillouin zone
due to the the 4× 1 LaSe periodicity occurring in (LaSe)1.14(NbSe2)2, (iii) modes
arising from the presence of two inequivalent (LaSe)1.14(NbSe2)2 units along the
c−axis of the misfit unit cell (see Fig. 4.8) and, finally, (iv) modes that cannot be
interpreted as pure LaSe or NbSe2 modes.
As we will see later from phonon density of states (PHDOS) calculations of the
whole misfit, practically all modes can be interpreted as modes of the two sepa-
rated subunits. Thus, the occurrence of phonon modes that are mixed modes
of the LaSe and NbSe2 subunits can be excluded and point (iv) can be ne-
glected. The splitting of phonon frequencies due to the presence of two inequiv-
alent (LaSe)1.14(NbSe2)2 units along the c-axis, i.e. point (iii), is also expected
to be negligible as the (LaSe)1.14(NbSe2)2 units are weakly interacting along the
c-axis. It then follows that an attempt of interpreting the Raman response in
terms of the backfolded modes of the NbSe2 and LaSe subunits should lead to a
clear understanding of the Raman spectra. Thus, we proceed to a more detailed
analysis based on the Raman activity of the isolated and charged LaSe and NbSe2
bilayers.
The LaSe rock salt subunit (#35, C2v point group), has 24 Γ-point frequencies:

ΓLaSe = 8A1 + 8B1 + 8B2. (4.19)

From symmetry, we expect B1 and B2 modes being Raman active, since there
is no inversion center. Even so, B1 and B2 modes are not expected to be mea-
sured in the configuration of measurement (with Poynting vector along c axis).
On the contrary, the 8 A1 modes are Raman active and mainly in the parallel
configuration since they have a (a−b)2 response in crossed polarization leading to
small intensities. To summarize, the only modes that can be identified in parallel
polarization, expected from the pure rocksalt subsystem, have A1 symmetry.
For the NbSe2 bilayer having P3m1 space group (#164, D3

3d point group), the
behaviour of the modes is the following. We have 18 Γ-point frequencies as:

ΓNbSe2 = 3A1g + 3Eg + 3A2u + 3Eu. (4.20)

The 3 completely symmetric A1g modes are all Raman active only in parallel po-
larization. The 3 double degenerate Eg modes can be detected in both crossed
and parallel polarizations. Finally, the A2u and Eu are not Raman active. The
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Intense Modes Raman activity Experimental Calculated modes Calculated modes Calculated modes
of (LaSe)1.14(NbSe2)2 ⊥ or ∥ modes energy/symmetry from splitted Eg energy/symmetry

(in cm−1) in 2L NbSe2 from 2L-NbSe2 at Γ in misfit from LaSe at Γ

42.6 ⊥ 21/Eg 17.3/Eg

99.0 ∥ 77.2/A1g or 120.1/A1

148 ∥ 148.9/A1

153 ⊥ 154 a 148.5/Eg

229 ∥ 232/A1g 231.2/A1g

258 ⊥ 251.5/Eg 259.7/Eg 251.5/Eg

267 ∥ X X
269 ⊥ 258.7/Eg

320 ∥ 310.5/A1g 320.9/A1g

a Xi Xiaoxiang, private communication: This mode at 154 cm−1 may require experimental confirmation.

Table 4.1: Intense Raman active modes measured in (LaSe)1.14(NbSe2)2 at 8 K with
polarizations in the (ab) plane. The labels ⊥ and ∥ stand for crossed and parallel
polarizations, respectively. The 3rd column reports the experimental data in an isolated
2L-NbSe2 [113]. Calculated phonon modes in the misfit structure originating from the
Γ point of the unfolded Brillouin Zone and from subunits of NbSe2 and LaSe in the 4th

and 6th columns, respectively. In the 5th column, the splitted Eg modes of the 8/4 misfit
cell which correspond to the former Eg of NbSe2 subunit (in blue). The label X marks
the single intense mode that we could not assign from the two subunits (Cf. text).

symmetry of the Γ modes, as well as their activity in different polarization con-
figurations, are reported in Tab. 4.1, in the 4th and 6th column.
In the table, we assign the calculated Γ frequencies to the most intense mode in

the Raman spectra. As it can be seen, only one of the most intense modes can be
ascribed to LaSe. A second one at 99 cm−1 could be either assigned to LaSe or
NbSe2 since both subunits present a parallel-active mode in this range of energy.
The other peaks are all derived from the 2L-NbSe2 subsystem. The physics of the
Raman spectra at 8 K reveals that the lattice dynamics of (LaSe)1.14(NbSe2)2 can
be described in terms of that of its individual constituents.
To strengthen this statement, we can look at the PHDOS calculation on the
8/4 = 2/1 periodic approximant of the full misfit is shown in Fig. 4.12. The
results are compared in Fig. 4.12 with the phonon density of states of the two
separated subunits as well as with their sum in the presence of a field effect
charging mimicking the charge transfer among the LaSe and NbSe2 subunits. As
depicted in Fig. 4.12, almost all features in the misfit PHDOS are fairly well
explained in terms of the sum of the PHDOS of the two (field-effect charged)
separated subunits. The only feature present in the misfit PHDOS, but not in the
PHDOS of the two subunits, is a peak at ≈ 150 cm−1. This peak is at slightly
higher energies ≈ 165 − 170 cm−1 in the LaSe subunit. The difference is due to
the strain applied to the LaSe subunit inside the misfit to obtain the 2/1 periodic
approximant (14% strain), while the field-effect transistor (FET) charged LaSe
bilayer is unstrained and has the same lattice parameters as in the bulk misfit.
Overall, we can state that the vibrational properties of the (LaSe)1.14(NbSe2)2 are
entirely determined by those of the two separated subunits with an appropriate
amount of charging.
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Figure 4.12: Phonon density of states (PHDOS) per misfit formula unit of bulk
(LaSe)1.14(NbSe2)2 (black solid line). Comparison with the PHDOS of the individual
subsystems: (red dashed line) LaSe subunit doped of 1.2 electrons per unit cell in the
FET setup, (blue dashed line) NbSe2 bilayer doped of 0.6 electrons per Nb atom in the
FET setup, respectively, and with their sum (orange solid line).

From Fig. 4.12 it is also clear that, due to the heavy La mass, the phonon modes
of the RS subunit are mostly concentrated in the low energy part of the spectrum
(below 175 cm−1), while those of the NbSe2 bilayer occurs at all energies.
As summarized in Tab. 4.1 only two of the most intense Raman peak, namely the
one at 269 cm−1 in crossed polarization and 267 cm−1 in parallel polarization, are
not directly deducible from 2L-NbSe2’s modes. We are able to assign the highly
intense mode at 269 cm−1 in crossed polarization to the former double-degenerate
high energy Eg mode of 2L-NbSe2 at 259 cm−1 that splits in the misfit.
In order to perform this assignment we consider the full misfit calculation employ-
ing the 8/4 = 2/1 periodic approximant (4.12), where the two distinct peaks can
be clearly identified in this energy range. In order to check if these peaks originate
from the Eg mode of the isolated FET-doped 2L-NbSe2, we project all the full
misfit phonon eigenvectors onto the ones corresponding to the doubly degenerate
Eg mode at 259 cm−1 in the isoated FET-doped 2L-NbSe2. We find that the
highest Eg character is present in two modes at 251.5 and 258.7 cm−1 (see Tab.
4.1, 5th column).
Note that we also evaluated the effect of the slight non-hexagonality of 2L-NbSe2
within the misfit [6], which is just a very small ∼ 1 cm−1 splitting that cannot
account for our experimental results (see Appendix A.4).
Finally, only the intense mode at 267 cm−1 in parallel polarization is not captured
by our DFT calculations. This one is most probably a hybrid mode of the system
as a whole, caused by the bonding between the TMD and the RS subunits that
we neglected in our calculations.
In conclusion, our work [106] provides a complete description of the vibrational

properties of the misfit layer compound (LaSe)1.14(NbSe2)2. We identify all the
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main phonon modes and their symmetry and demonstrate that, similarly to what
happens for the electronic properties, the vibrational properties can be understood
in terms of the two subunits (LaSe and NbSe2 bilayers) in a field effect configura-
tion, where the charging of the gates is directly determined by the charge transfer
in the misfit structure.
Notably, the lattice dynamics of the TMD has a strong 2D character in this 3D
misfit structure. Finally, our theoretical understanding is supported by the Ra-
man results, particularly by the charge density wave collapse in the misfit due to
the large charge transfer from the LaSe subunit. Our work is relevant beyond the
case of (LaSe)1.14(NbSe2)2. Indeed, it sets a reference scheme for the interpreta-
tion of vibrational properties of misfit layer compounds that can be extended to
other compounds of the same family.

4.5 Summary
In Chapter 4, we explain how to model misfit layer compounds as a collection of
field effect transistors.
First of all, we discuss the field effect transistor setup (FET setup) as developed
in Ref. [100,101] for the study of gated two-dimensional materials. We then detail
how, within the FET setup, the full misfit can be assimilated to several field-effect
transistors stacked periodically along the z-axis.
We present our results on the misfit layer compound (LaSe)1.27(SnSe2)2, showing
that FET modeling is a reliable tool for tackling the electronic structure and the
geometrical behavior of misfit layer compounds [81].
Most important, we show how to design a misfit superconductor starting from its
constituents. In particular, we show that non-superconducting pristine RS and
TMD compounds can lead to a misfit superconductor via charge transfer control
(emergent superconductivity) [81].
Finally, we demonstrate how to predict the vibrational properties of misfit layer
compounds based on that of their subunits, namely the rocksalts and the TMDs.
We provide a complete experimental and theoretical description of the lattice dy-
namics of the misfit compound (LaSe)1.14(NbSe2)2 [106].
We show that the vibrational properties are obtained from those of the two sub-
units, namely the LaSe unit and the NbSe2 bilayer, in the presence of a suitable
field-effect doping. In particular, we demonstrate the NbSe2’s charge density wave
collapse in the misfit due to the large charge transfer from the LaSe subunit.
Our work shows that the lattice dynamics of the TMD have a strong 2D charac-
ter in this 3D misfit structure, setting a reference scheme beyond this particular
case for the interpretation of vibrational and structural properties of misfit layer
compounds.
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Chapter 5

Superconductivity in misfit layer
compounds

5.1 First principles calculations of superconduct-
ing properties

We briefly discuss the recipe for ab initio superconductivity calculations before
applying it to misfit layer compounds. We need to calculate three main ingredi-
ents: the electronic structure, the vibrational properties, and the electron-phonon
coupling of the system.
First and foremost, we need to find the ground state (GS) of our system that can
be obtained by means of standard DFT calculations. By solving the Kohn-Sham
equations, we can extract the GS eigenvalues ϵkn and eigenstates |kn⟩ of the sys-
tem, where n is the band index and k is the wavevector. The value of the Fermi
energy ϵF is also known from the electronic structure of the system.
Second, we need to have access to the phonon frequencies ωq,ν and phonon eigen-
vectors eq,ν for each mode ν and phonon momentum q. In the harmonic approx-
imation, we can define the force constant matrix as the second derivative of the
Born-Oppenheimer energy surface E with respect to the phonon displacement
uLAα:

CAα,Bβ(RL,RM) =
∂2E

∂uLAα∂uMBβ

(5.1)

where A,B labels the atomic positions within a cell, α, β = x, y, z are the labels
for Cartesian coordinates of the ions and RL,RM are the positions of the L-
th M -th unit cells. In a crystal, discrete translational invariance grantees that
CAα,Bβ(RL,RM) = CAα,Bβ(RL−RM). The Fourier transform of the force constant
matrix is defined as CAα,Bβ(q) =

∑
LCAα,Bβ(RL)e

−iq·RL .
We can thus define the dynamical matrix as:

DAα,Bβ(RL −RM) =
CAα,Bβ(RL −RM)√

MAMB

. (5.2)
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where MA,MB are the masses of atoms A and B. Finally, diagonalizing the
dynamical matrix in reciprocal space DAα,Bβ(q) = CAα,Bβ(q)/

√
MAMB, we can

obtain its eigenvalues (ωq,ν) and eigenvectors (eq,ν):

det|DAα,Bβ(q)− ω2
q,νδAα,Bβ| = 0 (5.3)

for each mode ν and momentum q, where phonon eigenvectors are:

eq,ν =
∑
Aα

MA

√
2ωq,νe

Aα
q,νuqAα, (5.4)

where eAα
q,ν are the cartesian components of the phonon eigenvectors. This can be

done by using a q-points discrete phonon momentum grid in the DFPT framework
[105,127].
Third, we need to calculate the electron-phonon coupling. The linear electron-
phonon matrix elements in a DFPT framework represent the scattering of an
electron from a state with momentum k to a state with momentum k+q through
absorption of a phonon of momentum q and frequency ωq,ν and describe the
interaction strength between electrons and phonons. They are defined as:

gνkn,k+qm = ⟨kn| δVKS

δeq,ν
|k+ qm⟩ (5.5)

where δVKS/δeq,ν is the derivative of the Kohn-Sham potential VKS with respect to
the phonon eigenvector eq,ν that can be calculated in the DFPT framework [128].
The Fermi "golden rule" gives a formula for the electron-phonon contribution to
the phonon linewidth (FWHM) at lowest order:

γq,ν =
4π

Nk

∑
k,n,m

|gνkn,k+qm|2(fkn − fk+qm)δ(ϵk+qm − ϵkn − ωqν) (5.6)

where fkn is the Fermi occupation of the band ϵkn andNk is an electron momentum
k-point mesh in the Brillouin zone. At temperatures such that kBT >> ωq,ν or
in the case of a temperature independent γq,ν , by using the δ-function condition
δ(ϵk+qm − ϵkn − ωqν) in Eq. 5.6 one can substitute in Eq. 5.6,

ωqν
fk+qm − fkn

ωqν

−→ ωqν
∂f

∂ϵ

∣∣∣
ϵ=ϵkn

. (5.7)

If the temperature dependence in equation 5.6 is weak, then the Fermi functions
can be considered as step functions. In actual calculations, it is also customary
to neglect the frequency dependence in the δ function in Eq. 5.6 so that:

γq,ν =
4πωqν

Nk

∑
k,n,m

|gνkn,k+qm|2δ(ϵkn − ϵF )δ(ϵk+qm − ϵF ). (5.8)

This approximation has been discussed in details in Ref. [129–131].
The mode-resolved electron-phonon coupling constant λqν is related to the phonon
linewidth from the Allen formula [129,130]:

λqν =
γqν

2πN(ϵF )ω2
qν

(5.9)
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where γqν is obtained from Eq. 5.8 and N(ϵF ) is the density of states at the
Fermi level. The knowledge of these quantities allows the evaluation of the aver-
age electron-phonon coupling constant λ and of the Eliashberg spectral function
α2F (ω) via the relations:

α2F (ω) =
1

2Nq

∑
qν

λqνωqνδ(ω − ωqν), (5.10)

λ =
1

Nq

∑
qν

λqν , (5.11)

where Nq is the number of phonon-momentum point of the grid on which λqν is
calculated. Then, it is possible to calculate the superconducting critical temper-
ature by the Allen and Dynes semi-empirical formula [132]:

Tc =
⟨ω⟩log
1.2

exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
. (5.12)

Eq. 5.12 gives critical temperature Tc as function of electron-phonon coupling
parameter λ. The parameter µ∗ is the effective Coulomb pseudopotential and
represents the screened Coulomb repulsion between electrons in a superconduc-
tor. The value of µ∗ typically ranges from 0.10 to 0.15 for most conventional
superconductors. The logarithmic average of the phonon frequencies ⟨ω⟩log to be
used in the Allen and Dynes formula is:

⟨ω⟩log = exp[
2

λ

∫ +∞

0

α2F (ω) log(ω)/ω dω]. (5.13)

To address the role of the different vibrations in determining the electron-phonon
coupling it is possible to decompose the electron-phonon coupling into selected
atomic vibrations, using the relation [133,134]:

λ =
∑
i,j

Λi,j =
∑
A,B

[∑
α,β

1

Nq

∑
q

[Gq]Aα,Bβ[Cq
−1]Bβ,Aα

]
(5.14)

where A,α (B, β) indicates the displacement of the Ath(Bth) atom in α(β)
Cartesian direction, [Gq]Aα,Bβ =

∑
k,n,m 4g̃∗Aαg̃Bβδ(ϵkn)δ(ϵk+qm)/[N(ϵF )Nk], and

g̃Aα = ⟨kn|δVKS/δuqAα|k+ qm⟩/
√
2, uqAα being the Fourier transform of the α

component of the phonon displacement of the atom A in the unit cell. The Cq

matrix is the Fourier transform of the force constant matrix.
We can also write α2F (ω) as:

α2F (ω) =
∑
A,B

α2
A,BF (ω) =

∑
Aα,Bβ

[
1

Nq

∑
q

[Gq]Aα,Bβ[Lq]Bβ,Aα

2
√
MAMB

]
, (5.15)

where
[Lq]Bβ,Aα =

∑
ρ

eAα
qρ

δ(ω − ωq,ρ)

ωq,ρ

(eBβ
qρ )

∗, (5.16)
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TMD a1

[Å]
b1

[Å] RS a2

[Å]
b2

[Å]
NbSe2 3.437 6.0191 LaSe 6.875 (14.6% tensile strain) 6.0191
NbSe2 3.437 6.0148 BiSe 6.874 (14.1% tensile strain) 6.0148
NbSe2 3.44 5.99 PbSe 6.879 (14.1% tensile strain) 5.99
NbSe2 3.44 5.92 SnSe 6.879 (16.1% tensile strain) 5.92

Table 5.1: In-plane lattice parameters of each subsystem: a1 and b1 for the TMDs
(cyan) and a2 and b2 for rocksalts (red) used to build misfit supercells. The amount of
tensile strain applied to each rocksalt is reported.

where eAα
qρ are the components of qρ phonon eigenvector normalized on the unit

cell.
In conclusion, we have now all of the elements necessary to calculate the supercon-
ducting properties of misfit layer compounds. In Chapters 3 and 4, we discussed
how to calculate the electronic structure and vibrational properties of MLCs. In
the next part, we will demonstrate how to calculate electron-phonon coupling with
practical examples of MLCs.

5.2 Superconductivity of bulk (RQ)1+δ(NbSe2)
misfit series

After achieving complete knowledge of the charge transfer in MLCs, and showing
how to characterize their electronic and vibrational properties, we present our ab
initio calculations of superconducting properties of misfit layer compounds. As
detailed in Chapter 1, misfit layer compounds exhibit a range of emergent prop-
erties that arise from the interaction between the individual constituents. Among
them, superconductivity is experimentally measured in different compounds (see
discussion in Chapter 1, Fig. 1.13). Here we present our first principle calcula-
tions of superconducting properties of the bulk (RQ)1+δ(NbSe2) misfit series.
The specific choice of this family of misfits stems from the fact that superconduc-
tivity has previously been experimentally measured in almost all of the materials
in the series.

5.2.1 Modeling bulk (RQ)1+δ(NbSe2)

We focus here on a particular misfit layer compound family. Misfits of this type
are composed of single layers of NbSe2 alternated with different rocksalt units
as building blocks and sharing comparable mismatching ratios very close to 7/4
(these compounds belong to the ninth column in Fig. 1.6 in Chapter 2). We
specifically consider the (RQ)1+δ(NbSe2) misfit series, where we fix the TMD as
NbSe2, and we change the rocksalt with RQ= LaSe, BiSe, PbSe, and SnSe.
In Chapter 4, we discuss how to derive the vibrational properties of bulk misfits.
We pointed out that the periodic approximant of the misfit cell with mismatch
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Mismatch
ratio Misfit a

[Å]
b

[Å]
c

[Å]
2/1 (8/4) (LaSe)1.15(NbSe2) 6.875 6.0191 11.5
2/1 (8/4) (BiSe)1.14(NbSe2) 6.874 6.0148 11.5
2/1 (8/4) (PbSe)1.14(NbSe2) 6.879 5.99 11.5
2/1 (8/4) (SnSe)1.16(NbSe2) 6.879 5.92 11.5

Table 5.2: Mismatch ratios and lattice parameters, summarized for each misfit supercell
under consideration.

ratio 7/4 contains too many atoms for this task.
In this chapter, we try to calculate the electron-phonon coupling of bulk misfits.
This type of computation would need even more extensive linear response com-
putations on denser q-point grids.
In order to reduce the computational effort, we approximate the 7/4 mismatch
ratio by 8/4, corresponding to a 2/1 ratio. This is done by applying a certain
percentage of tensile strain to the rocksalt subunits, increasing their lattice pa-
rameter along the mismatch axis. On the contrary, the NbSe2 in-plane parameter
is left unchanged, kept as in the misfit. As we will see in the following, this choice
weakly affects the charge transfer from the rocksalt to the TMD. Furthermore,
because superconductivity originates mostly from NbSe2, we intend to maintain
the stability of this subunit. In Fig. 5.1, an example of the 2/1 commensurate
approximant supercell of bulk misfit is shown.
By examining the (RQ)1+δ(NbSe2) misfit series, we have access to a vast range of
doping of NbSe2. Thus, we can explore how the effect of doping inside the misfit
structure modifies the superconducting properties of NbSe2.
We now briefly illustrate how the 2/1 misfit approximant of bulk misfit is built.
For all the considered structures, we first optimize each subsystem separately.
Then, we assemble the misfit bulks by stacking the subsystems in a periodic ar-
rangement of TMD monolayers and rocksalt bilayers along the c-axis. Finally, we
perform geometrical optimization of the misfit crystal.
We adopt the convention of using the value of δ as obtained from the lattice pa-
rameters a1 and a2 of the pristine TMD and RS respectively, before assembling
them in a MLC structure, as reported in the tables in Fig. 1.4 and 1.5 in Chap-
ter 1. In order to build commensurate misfit supercells, from these analysis we
extract the approximant that will be used in the calculations (see Fig. 1.6).
For the NbSe2 part, we use orthohorombic cells with the transition metal atom
in trigonal coordination. We optimize the in-plane lattice parameters to match
that of the chosen rocksalt for each corresponding mismatch ratio. Then, starting
from these cells, we build supercells according to the misfit proportions, namely
a 2× 1 cell of monolayer NbSe2.
For the rocksalt part, we use centered orthohorombic cells and optimize the in-
plane lattice parameters in order to obtain commensurability with the considered
TMD according to the 2/1 mismatch ratio. Then, starting from these cells, we
build supercells according to the misfit proportions, namely a 1×1 of LaSe, BiSe,
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Figure 5.1: An example of the 2/1 commensurate approximant supercell of misfit
bulk. a) The in-plane cell of the misfit layer compound LaSe1.15NbSe2. The shaded green
region corresponds to the 7/4 commensurate approximant of the misfit cell, while shaded
violet region corresponds to the reduced 2/1 cell. b) Side view of the LaSe1.15NbSe2
crystal. The stacking sequence is depicted, with black dashed lines corresponding to the
misfit unit cell.
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Figure 5.2: Band unfolding onto the NbSe2 single layer Brillouin zone for the NbSe2
misfit series with different rocksalt Q-layers having comparable mismatching ratio
close to 2/1. (a) (LaSe)1.15(NbSe2), (b) (BiSe)1.14(NbSe2), (c) (PbSe)1.14(NbSe2), (d)
(SnSe)1.16(NbSe2). The band structure for the isolated single layer NbSe2 (red line) is
superimposed and aligned to the Nb d-band in the misfit. The blue dashed line corre-
sponds to the Fermi level EF of the misfit compound, while the red one to the Fermi
level of the isolated NbSe2 layer.

PbSe and SnSe to match with each NbSe2 cell.
Tab. 5.1 summarizes the lattice parameters for each individual subunit. In this
process of refinement, lattice parameters of the rocksalts in the mismatch direc-
tion are increased in order to build a commensurate misfit structure. The amount
of tensile strain applied to each rocksalt is detailed in the 5th column of Tab. 5.1.
Finally, the common part is composed by stacking the TMD monolayer and rock-
salt supercells. The resulting misfit crystal has an orthorhombic cell. Tab. 5.2
summarizes each examined misfit supercell, including its mismatch ratio, com-
pound name, and lattice parameters.
Finally, we perform geometry optimization of each misfit supercell. The final mis-
fit bulks have a P1 symmetry and includes 20 atoms in the cell (atomic positions
are reported in the Tabs. A.5, A.6, A.7 and A.8 in Appendix A.5).

5.2.2 Electronic properties of bulk (RQ)1+δ(NbSe2) misfit
series

We present here our band structure calculations of bulk misfit layer compounds
(RQ)1+δ(NbSe2), with RQ= LaSe, BiSe, PbSe and SnSe. We unfold the band
structure of the misfit supercell onto the primitive cell of the isolated NbSe2 mono-
layer.
To carefully take into account the spin orbit coupling (SOC) of NbSe2, which splits
the two degenerate bands at the Fermi level, SOC is included in all the electronic
structure calculations. The results of band unfolding are shown in Fig. 5.2.
As can be seen in Fig. 5.2, the NbSe2 electronic structure in going from
(SnSe)1.14(Nb2)2 to (LaSe)1.15(Nb2)2 is n-doped. The charge transfer induces a
Fermi level up-shift, from 0.0 to 0.5 eV. The amount of charge transfer in e−/Nb
atoms is reported in Fig. 5.2. We can do a comparison with the (RQ)1+δ(NbSe2)m
series with m=2 presented in Chapter 3 (see Fig. 3.7). In the current example,
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Figure 5.3: Sketch of misfit layer compound belonging to the family (RQ)1+δ(NbSe2)m.
The example shows (LaSe)1+δ(NbSe2)m misfit bulk with a) m=1 and b) m=2. The
arrows indicate the electron (e−) charge transfer from the rocksalt to the NbSe2 single
layers in both cases. Yellow shaded regions highlight the region of the charge transfer
per NbSe2 single layer.

with m=1, NbSe2 is more doped by each individual rocksalt than in the previous
case. This effect is related to the number of rocksalt atoms per NbSe2 layer. As
seen in Fig. 5.3, in cases with m=1, there is the equivalent of a whole rocksalt
bilayer per NbSe2 single layer, while in cases of m=2, each NbSe2 single layer is
bounded with just half of the rocksalt bilayer.
We note that as in the case with m=1, the behavior of the misfit NbSe2 series
is almost completely characterized by the work function differences, as expected
from the analyses discussed in Chapter 2.
The metallic rocksalt compounds, namely LaSe and BiSe, transfer a large amount
of electrons. In particular LaSe transfers an entire electron to NbSe2. Instead, in
the insulating compounds with PbSe and SnSe transfer less electrons.
We now comment on the shape of the Nb d-band at the Fermi level of monolayer

NbSe2 in each misfit of the series. This is modified due mainly two factors: the
large doping and the strain applied to the rocksalt subunit to reduce the cell to
the 2/1 commensurate approximant. However, this last effect does not hinder
the calculated amount of charge transferred from the rocksalt to NbSe2. To show
that, we can take the compound with LaSe as an example. Fig. 5.4 shows the
comparison of the unfolded band structure of (LaSe)1.15(NbSe2) onto the NbSe2
single layer BZ for the case of a) the 7/4 (taken from Ref. [135]) and b) 2/1 (this
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Figure 5.4: Band unfolding onto the NbSe2 single layer Brillouin zone for the
(LaSe)1.15(NbSe2) compound. a) Image adapted from Ref. [135] showing the band un-
folding of the 7/4 commensurate approximant of the misfit cell. b) Image from this work
showing the band unfolding of the 2/1 commensurate approximant of the misfit cell. In
both figures, the yellow-shaded area represents the energy range going from the misfit
Fermi level to the bottom of the Nb d-band.

Figure 5.5: a) ARPES map of (LaSe)1.15(NbSe2) adapted from Ref. [135]. The sample
has 11.1% of La vacancies, corresponding to a charge transfer of 0.75 e−/Nb atoms b)
Band unfolding onto the NbSe2 single layer Brillouin zone for the 2/1 commensurate
approximant of the (LaSe)1.15(NbSe2) cell (this work). To match the experimental value
of La vacancies, the compound is rigidly doped.
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Misfit λ λNbSe2 λRS ωlog [meV] Tc [K] TExp
c [K]

(LaSe)1.15(NbSe2) 0.34 0.23 0.11 16.86 0.0 1.23 [135]
(BiSe)1.14(NbSe2) 0.78 0.28 0.50 8.31 3.0 2.7 [58]
(PbSe)1.14(NbSe2) 0.89 0.57 0.32 10.66 5.2 5.6 [56]
(SnSe)1.16(NbSe2) 1.58 0.60 0.98 5.50 6.6 3.4 [57]

Table 5.3: Summary of the calculated superconducting properties of the
(RQ)1+δ(NbSe2) misfit series.

work) commensurate approximant of the misfit cell. In this picture, the yellow
shaded regions represent the energy region going from the misfit Fermi level to the
bottom of the Nb d-band. As can be seen, these calculations give the same amount
of charge transferred to the NbSe2 single layer, corresponding to 1.0 e−/Nb atoms.
Thus, even if the 2/1 alters the geometry of the system, nothing changes in terms
of the amount of charge transfer.
As the subunits experience mutual modulation during the relaxation of the whole
misfit, strain in the rocksalt subunit affect the intralayer distances of NbSe2. This
is what clearly happens for the case of PbSe and SnSe, where the doping experi-
enced by NbSe2 is low, but the intralayer distances of NbSe2 are compressed by
∼ 2% with respect to the experimental value of bulk NbSe2 [88]. Because the
dz orbitals at Γ represent the majority of the niobium’s d orbitals, reducing the
intralayer lengths of the NbSe2 monolayer causes the Nb d-bands to stretch at the
Γ point. However, the amount of calculated charge transfer is recovered, being in
agreement with experimental work on these compounds [56,136].
Lastly, since we are interested in calculating the superconducting properties of the
(RQ)1+δ(NbSe2) misfit series with the aim of comparing our result to the available
experimental data, we have to correct the band structure of the compound con-
taining LaSe. Indeed, since LaSe donates an entire electron to NbSe2, the Fermi
level up-shift exceeds the Nb d-bands, reaching a gap region, thus suppressing
superconductivity. However, experimental ARPES from Ref. [135] shows that the
Fermi level is still in the NbSe2 band and Hall effect measurements show that
carriers are hole like. This is explained by the fact that there are about 15% of La
vacancies, as confirmed by precise measurements of the chemical compositions by
X-ray diffusion; thus, this compound is superconducting thanks to the presence
of La vacancies. In particular, the sample with 11.1% exhibits superconductivity
with a critical temperature of 1.23 K. To match this experimental result, we p-
doped the 2/1 commensurate approximant of the misfit cell of 12.5% La vacancies
with a uniform background doping. This amount is comparable to the experimen-
tally estimated value, as shown in Ref. [135]. In this way, within the compound,
the NbSe2 is n-doped of 0.75 e−/Nb atoms that matches the experimental value
of Ref. [135] (see Fig. 5.5).
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Figure 5.6: Superconducting properties of bulk (RQ)1+δ(NbSe2) misfit series. (a)
(LaSe)1.15(NbSe2), (b) (BiSe)1.14(NbSe2), (c) (PbSe)1.14(NbSe2), (d) (SnSe)1.16(NbSe2).
The total Eliashberg function α2F (ω) and the total average electron-phonon coupling
λ are plotted in a black solid curve. The partial contribution to the α2F (ω) from each
subsystem is also plotted (blue dashed line for NbSe2 and red dashed line for each
different rocksalt), together with their partial average electron-phonon coupling λ (blue
solid line for NbSe2 and red solid line for each different rocksalt).
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5.2.3 Ab initio superconducting properties of bulk
(RQ)1+δ(NbSe2) misfit series

After determining their structure and electronic properties, we finally provide our
ab initio calculations of superconducting properties of bulk (RQ)1+δ(NbSe2) misfit
series.
Last column of Tab. 5.3 provides a summary of experimental results for the
critical temperatures of the superconducting transition of each compound in the
(RQ)1+δ(NbSe2) misfit series.
As already mentioned, the calculation of vibrational properties and electron-
phonon coupling for the complete MLC is a very computationally heavy task
due to the large number of atoms in the 7/4 supercell. However, we are able to
estimate the superconducting properties of the (RQ)1+δ(NbSe2) misfit series by
using the 2/1 commensurate approximant.
We then calculate the electron-phonon coupling for each mode ν at the Γ point.
Given the large amount of atoms, only the Γ point calculation was affordable, we
will discuss the accuracy of this approach in the following. From these quantities
we obtain the Eliashberg function α2F (ω) that is plotted in solid black curves in
Fig. 5.6. Then, we obtained the average electron-phonon coupling λ for each of
the considered system (black lines in Fig. 5.6). Detail of these calculations can
be found in Appendix A.5.
We decompose the Eliashberg function to evaluate the contribution of each of the
two subsystems to the misfit’s electron-phonon coupling (see Eq. 5.15). In Fig.
5.6, we plot the decomposition of α2F (ω) into vibrations of NbSe2 (blue dashed
lines) and of each different rocksalt (red dashed lines). We also calculate the
contribution of each misfit’ subsystem to the average electron-phonon coupling λ
(blue solid lines for NbSe2 and red solid lines for each rocksalt).
As it can be seen in Fig. 5.6, in all the considered cases, the contribution of the
highest energy modes (180-350 cm−1) is essentially due to vibrations of NbSe2 de-
coupled from the rocksalt’s ones. The rocksalts’ modes are instead present in the
low energy part of the Eliashberg function. In this region, also low energy modes
of NbSe2 appear, therefore we may deduce that the contribution of the lower en-
ergy modes (0-180 cm−1) to α2F (ω) of the misfit is a mixture of the modes of the
two subsystems.
We can further identify two scenarios. In the cases of LaSe (Fig. 5.6 (a)) and
PbSe (Fig. 5.6 (c)), the predominant contribution to the electron-phonon cou-
pling comes from NbSe2, with the contribution of the rocksalts being half that of
the TMD. In the case of BiSe (Fig. 5.6 (b)) and SnSe (Fig. 5.6 (d)), the existence
of rocksalt modes in the lowest frequency range (0-70 cm−1) amplifies the contri-
bution of the rocksalts to the electron-phonon coupling.
In the case of BiSe, we may attribute the significant contribution of the rocksalt
layers to the misfit’s electron-phonon coupling to band alignment. Our ab initio
calculations of the electronic properties of the (BiSe)1.14(NbSe2) misfit layer com-
pound (see Fig. 5.2 panel (b)) reveal the existence of BiSe bands at the Fermi
level, which contributes to electron-phonon coupling.
In the case of SnSe, the explanation is more challenging. The CDW of NbSe2
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may be inherited by the bulk due to its low doping inside the (SnSe)1.16(NbSe2)
misfit. This impact cannot be accounted for with a Γ-only grid and would require
a considerably denser one, which is currently beyond our computing capabilities.
Furthermore, during the construction of the 2/1 commensurate approximant of
the misfit cell, the rocksalt SnSe is the most strained in the mismatch direction
to match NbSe2, decreasing some low energy modes that would be higher in fre-
quency if the larger 7/4 ratio was used.
A summary of the contribution of NbSe2 and the respective rocksalt to the misfit’s
electron-phonon coupling is shown in Tab. 5.3 for each case.
We then calculate the superconducting critical temperature by the Allen and
Dynes semi-empirical formula (Eq. 5.12). In this work we assume µ∗ = 0.15. We
choose this value as the electronic states at the Fermi level are poorly screened
in NbSe2 [137]. Moreover, because of a different orbital character, these states
weakly interact with those far from the Fermi level, yielding a weak reduction of
the Coulomb pseudopotential (high µ∗) [137,138].
Tab. 5.3 summarizes the estimated critical temperatures for each compound of
the series in comparison with the experimental values.
As can be seen, our calculations show that the critical temperature increases with
decreasing doping of NbSe2 in the misfit. This linear trend is confirmed by the
comparison with the experimental measurements of the compounds of this series
(TExp

c in the last column of Tab. 5.3). For the case of (LaSe)1.15(NbSe2), we esti-
mate the value of the Tc within ≈ 1 K in comparison with the experimental work
of reference [135]. For the case of (BiSe)1.14(NbSe2), we calculate a critical tem-
perature of 3.0 K. The comparison is done with the available experimental data on
the compound (BiSe)1.10(NbSe2), where the percentage of BiSe within the misfit
is slightly lower, but still comparable with our considered system [58]. In the case
of (PbSe)1.14(NbSe2), we estimate the critical temperature of the system to be
Tc = 5.2 K. This value is consistent (within ∼ 7%) with the experimental results
in Ref. [56]. The sole exception is (SnSe)1.16(NbSe2), where our expected value
for the Tc is ∼ 50% of that of the experimental study in Ref. [57]. This system
corresponds to the lowest doping of NbSe2 within the series. As previously noted,
at this low doping level, the existence of the CDW of NbSe2, which cannot be
described in our approximations, can significantly alter electron-phonon coupling,
competing with superconductivity.

Finally, we wanted to address the role of the z-axis in the calculation of the
electron-phonon coupling. In Fig. 5.7, we show the misfit calculations using a
k-point grid for the electron-phonon coupling of Nk = 12× 12× 12, which corre-
sponds to the grid we used in our simulations provided in Fig. 5.6. We compare
our results with a k-points grid of Nk = 12 × 12 × 1 excluding the effect of the
kz-axis. Our plot in Fig. 5.7 shows that the contribution of kz to the electron
phonon coupling is essentially negligible, since the shape of the first (black solid
curve) and the second (lilac solid curve) α2F (ω) is almost identical. When fur-
ther inspecting the average electron-phonon coupling λ for the two grids, we can
see that it is identical for LaSe, while it varies in a short range of 5 − 12% with
decreasing doping.
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Figure 5.7: Superconducting properties of bulk (RQ)1+δ(NbSe2) misfit series. (a)
(LaSe)1.15(NbSe2), (b) (BiSe)1.14(NbSe2), (c) (PbSe)1.14(NbSe2), (d) (SnSe)1.16(NbSe2).
The total Eliashberg function α2F (ω) and the average electron-phonon coupling λ are
plotted in a black solid and dashed curve for a k-point grid for the electron-phonon
coupling of Nk = 12 × 12 × 12. The total Eliashberg function α2F (ω) and the average
electron-phonon coupling λ are plotted in a lilac solid and dashed curve for a k-point grid
for the electron-phonon coupling of Nk = 12×12×1, neglecting the kz-axis contribution.
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In conclusion, our calculations represent a first step towards the theoretical under-
standing of the superconducting properties of bulk (RQ)1+δ(NbSe2) misfit series.
A potential improvement of our results could involve using the anisotropic Migdal-
Eliashberg equations to calculate the superconducting gap of NbSe2 within the
misfit. The methodology applied is relevant beyond the considered family and
can be further applied to other misfit layer compounds.

5.3 Summary
In Chapter 5, we present our study of the superconducting properties of misfit
layer compounds. First of all, we introduce the electron-phonon coupling theory.
Then we show a method to reduce the computational effort of modeling bulk misfit
layer compounds to compute superconducting properties. This method consists in
considering the smallest commensurate approximant of the misfit cell by straining
the rocksalt bilayers.
We specifically consider the (RQ)1+δ(NbSe2) misfit series, where we fix the TMD as
NbSe2, and we change the rocksalt with RQ= LaSe, BiSe, PbSe, and SnSe. We ap-
proximate the 7/4 mismatch ratio by 8/4, corresponding to a 2/1 ratio. With this
reduced cell, we are able to reproduce the correct charge transfer from the rocksalt
to the TMD, as shown with the electronic properties of the (RQ)1+δ(NbSe2) misfit
series.
Then, we perform the electron-phonon coupling calculations of the full misfit. The
estimated critical temperatures are in good agreement with the available experi-
mental values. Our findings are useful beyond the examples studied because they
establish a baseline for the ab initio investigation of superconductivity in misfit
layer compounds.
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Conclusions

Misfit layer compounds are a family of heterostructures built by stacking rock-
salt units with few layers of transition metal dichalcogenides. Aside from their
relevance for crystallography, these heterostructures have lately sparked a lot of
attention in the condensed matter physics due to recent measurements indicating
the occurrence of a plethora of emergent phenomena, such as superconductivity,
charge density waves, and many others. However, the research in the field of
misfits has focused on specific compounds, mostly through experimental synthesis
and measurements, without a global, clear physical picture that is needed as a
guide to exploit the potential of these heterostructures. In this thesis, we provided
a fresh perspective for the study of misfit layer compounds by addressing most
of the unanswered questions on these heterostructures. Specifically, this Thesis
focused on deriving the properties of misfit layer compounds from those of their
individual building blocks. Within our approach, we are able to fully character-
ize misfit layer compounds with the aim of designing these heterostructures with
desired emergent properties for future device applications.

We first outlined the theoretical and experimental background in which our re-
search has been carried on. We placed particular emphasis on the distinct subsys-
tems that are the baseline for building misfit heterostructures, namely rocksalts
and transition metal dichalcogenides. We then gave an overview of the compo-
sition of the misfit crystals and of the state-of-the-art emergent properties dis-
covered in misfit layer compounds. This initial perspective not only introduced
the composition and underlying physics of this family of heterostructures but also
brought to light the significant challenges that define and drive advancements in
this field.

Then, we solved the crucial problem of explaining the charge transfer mechanism
occurring in these heterostructures. We detailed our approach, which is based
on determining the work function of each separate rocksalt and TMD units in
order to acquire a basic knowledge of the charge transfer process between misfit
constituents. We showed that the work function of rocksalt units is always lower
than that of TMDs, indicating a favorable path for electron transfer in misfit layer
compounds: from the RS (electron donor) to the TMD (electron acceptor). By
performing ab initio calculations of the work functions and band edges we were
able to build the band alignement plot between each considered RS and TMD
that offers in one picture a qualitatively and quantitatively predictions of the
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charge transfer in these structures. These findings serve as a guide for selecting
the suitable RS/TMD couple to build a misfit layer compound, avoiding heavy
calculations, and also provide significant information for experimental synthesis.

After established the key process ruling the charge transfer in these materials, we
validated our method based on the work function determination. At this aim,
we performed extensive geometrical optimization and electronic structure first-
principle calculations of misfit layer compounds. In particular, we used the band
unfolding technique to evidence the TMD features within the band structure of
the misfit. We found that our method based on the work function determination
and the band alignment plot produces reliable predictions of the charge transfer
mechanism in agreement with our full misfit calculations and the available exper-
imental data. We found that, in most of the cases, misfits behave as rigidly doped
transition metal dichalcogenides. The electron density that can be injected in the
TMD layers can be as high as 6× 1014 e− cm−2, sensibly larger than in ordinary
field-effect transistors. In addition, we proposed a efficient way to tune the amount
of charge transferred from the RS to the TMD within the misfit. We showed that
the charging of the TMD layers can be efficiently controlled by chemical insight
without the introduction of any external parameters via alloying in the rocksalt.
These results are crucial for the engineering of new misfit layer compounds with
a high tunability of carrier concentration injected into TMD layers [81].

Our results based on electronic properties calculations show that misfits behave
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essentially as highly doped TMDs, with doping controlled by the chemistry of the
rocksalts that serve as electron reservoirs. We thus demonstrated that a misfit
can be assimilated to a collection of ultratunable field effect transistor with an
unequaled charging of the TMD layers. Based on this conceptualization, we were
able to design a model for misfit layer compounds by means of the field effect tran-
sistor (FET) setup. The model consist in replacing each RS units with a charged
plate and a barrier. With this method we showed that the surface of the misfit
layer compound behaves as a single gated field-effect transistor while the bulk can
be seen as a periodic arrangement of a double-gated field effect transistors. This
model highly reduces the computational effort of simulating huge misfit supercells.
We demonstrated the applicability of our model by showing that the electronic
properties of misfits are well reproduced within the FET setup. Furthermore,
we proposed to use our method for evaluating the vibrational properties of mis-
fit layer compounds, a task that would be otherwise unfeasible without applying
linear response theory to larger misfit supercells. As a practical demonstration,
we showed how to reproduce the experimental Raman spectra of misfit layer com-
pound (LaSe)1.14(NbSe2)2. Our model was able to assign the most intense Raman
peaks by analyzing the Raman active modes of each individual subsystem. More
specifically, we showed that the vibrational properties are obtained from those of
the two subunits, namely the LaSe unit and the NbSe2 bilayer, in the presence of
a suitable field-effect doping within our model. Our first-principles calculations
predicted that NbSe2 undergoes a doping-driven collapse of the CDW ordering
within the misfit [106]. Our predictions are confirmed by polarized Raman spec-
troscopy measurements in which no signature of the CDW is detected down to
8 K. Interestingly, our model in comparison with experimental results highlights
the 2D nature of the lattice dynamics of NbSe2 within the (LaSe)1.14(NbSe2)2
3D structure. These results are relevant beyond the specific considered case as
it sets a roadmap for the investigation of vibrational properties of misfit layer
compounds. Lastly, we used the knowledge gained from the previous analysis to
design a misfit with emergent superconductivity within the the FET setup. We
showed that superconductivity can emerge in misfit layer compounds formed by
assembling non-superconducting RS and TMDs. As a practical application, we
were able to predict a doping-induced insulator-to-metal transition of SnSe2 in
misfit layer compound (LaSe)1.27(SnSe2)2. By chemical alloying in the rocksalt,
it is possible to reach a region corresponding to the Van Hoove singularity. We
predicted by means of the anisotropic Migdal-Eliashberg theory a critical temper-
ature of 3.5 K, demonstrating that doping-driven superconductivity can arise as
an emergent property in misfit layer compounds.

Finally, we exploited the insights obtained from our modeling to estimate su-
perconductivity in misfit layer compounds in comparison with the promising ex-
perimental results already achieved. We explain how to obtain a reduced mis-
fit supercell by applying strain to the rocksalt unit. We demonstrate that this
approximation doesn’t hinder the electronic charge transfer in the misfit, repro-
ducing the electronic properties of the full supercell. With this reduced cell we
were able to calculate the electron-phonon coupling at the Brillouin Zone cen-
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ter of the (RQ)1+δ(NbSe2) misfit series, estimating their superconducting critical
temperatures. We deeply investigated the composition of the Eliashberg function,
isolating the contribution of the different rocksalts and of NbSe2, showing that
the modes of each individual rocksalt contribute at the low frequency range of
the coupling, while the high energy range is completely due to the vibrations of
NbSe2. Our results are in good agreement with the state-of-the-art experimental
data of the (RQ)1+δ(NbSe2) misfit series, indicating that our technique may be
further extended to study superconductivity in other compounds of the family.

Our work provides an original modeling of misfit layer compounds based on chem-
ical and physical insights that can be applied as a general tool for those families
of materials. In addition, the methodology developed in this Thesis could be
relevant beyond the misfit case to be employed for other heterostructures of two-
dimensional materials. For example, it has the potential to be used for other ma-
terials such as TMDs/graphene (or hBN) or TMDs/2D perovskites to construct
tunable heterostructures for electronics and thermoelectric applications. The po-
tential impact of this Thesis resides in the possibility of being used as guidance
for future experimental synthesis of misfit layer compounds with tailored physical
properties for future device applications.
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Appendix A

Computational details

A.1 Geometrical optimization of misfit surfaces
In Chapter 3, we discuss the surfaces construction and geometrical properties of
misfit layer compounds with m= 2. In this appendix, the convergence param-
eters of DFT calculations for all the investigated misfit surfaces are reported,
while details of each specific considered system follows. We employ a 2 × 8 × 1
a Monkhorst-Pack k-points grid and a Gaussian smearing of 0.025 Ry for Bril-
louin Zone (BZ) sampling. We use the generalized gradient approximation in the
Perdew–Burke–Ernzerhof [83] parametrization for the exchange-correlation func-
tional. In the calculation of surface properties, as the interaction among transition
metal dichalcogenides layers is missing and only covalent bonds among the rock-
salt and the transition metal dichalcogenides are present, we did not consider any
Van der Waals correction. We consider the pseudopotential configurations taken
from the Vanderbilt [139] and PSlibrary [140] distributions. The values of kinetic
energy cutoff for plane-wave basis set is set to 50 Ry and for charge density 600 Ry
respectively for all misfits. The atomic position of the slab are relaxed, by means
of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, with a convergence
threshold of 10−4 Ry on the total energy difference between consecutive structural
optimisation steps and of 10−3 Ry/Bohr on all forces components.

A.1.1 Misfit surfaces with TiSe2 and SnSe2
We detail the procedure that we use to build misfit cells, specifically considering
two cases: misfits with single layers TiSe2 and SnSe2, both found in the 1T phase,
stacked with bilayers LaSe, and misfits belonging to the (RQ)1+δ(NbSe2)2 series
with NbSe2 in the 1H phase stacked with different rocksalts, namely RQ=LaSe,
BiSe, PbSe and SnSe. For the first case, we start by considering the orthorhombic
TiSe2 and SnSe2 cells with octahedral coordination of the transition metal atom
(see Fig. 1.9 in the Chapter 1), and optimize their lattice parameters. We keep
the a axis as the mismatch direction to build the misfit supercell. The mismatch
ratio for the cases of TiSe2/LaSe (5/3) and SnSe2/LaSe (3/2) misfits, respectively
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are extracted from Fig. 1.6. Lattice parameters in the mismatch direction are
slightly strained in order to build a commensurate misfit structure. We obtain
aTiSe2=3.6 Å (tensile strain of ≈ 2%, exp. value aTiSe2=3.54 Å) and aSnSe2=3.8
Å (compressive strain of ≈ 0.3%, exp. value aSnSe2=3.81 Å), respectively. In the
other in-plane direction, we find bTiSe2=6.0191 Å and bSnSe2=6.5818 Å, respec-
tively.
Starting from this cell, a supercell is built according to the misfit proportions (
5 × 1 and a 3 × 1 supercell for the cases of TiSe2/LaSe and SnSe2/LaSe misfits,
respectively).
Regarding the Q-layer rocksalt, we optimized LaSe with centered orthorhom-
bic cell and slightly strained in-plane lattice parameter in order to obtain some
commensurability with the considered TMD. A 3 × 1 LaSe supercell with in-
plane lattice parameters aLaSe≈bLaSe=6 Å (tensile strain of ≈ 0.5%, exp. value
aLaSe≈bLaSe=5.97 Å) is considered in order to match with TiSe2, and a 2×1×1 with
lattice parameter aLaSe=5.7 Å (compressive strain of ≈ 4%, exp. value aLaSe=5.97
Å) and bLaSe=6.5818 Å (tensile strain of ≈ 10%, exp. value aLaSe=5.97 Å) is
considered in order to match with SnSe2.
Starting from this cell, a supercell is built according to the misfit proportions (
3 × 1 and a 2 × 1 supercell for the cases of TiSe2/LaSe and SnSe2/LaSe misfits,
respectively).
The two cells (one for the TMD and one for the rocksalt) are then appropriately
assembled to build the slab system, which possesses a P1 symmetry. The supercell
is composed of a Q-layer LaSe sandwiched between two TiSe2 (or SnSe2) single
layers. The final (LaSe)1.18(TiSe2)2 cell is orthorhombic, composed of 84 atoms,
the mismatch ratio is a2/a1 =(6 Å)/(3.6 Å) = 1.66 ≃ 5/3, leading to lattice pa-
rameter of the misfit supercell equal to a = 18Å. Instead, (LaSe)1.27(SnSe2)2 is
orthorhombic, composed of 52 atoms, the mismatch ratio is a2/a1 =(5.7 Å)/(3.8
Å) = 1.57 ≃ 3/2, leading to lattice parameter of the misfit supercell equal to
a = 11.4 Å.
The lattice parameters of the misfit cells are summarized in Tab. 3.3. In the tables
Tab. A.1 and Tab. A.2, we report the optimized atomic positions expressed in
crystalline coordinates of (LaSe)1.27(SnSe2)2 and (LaSe)1.18(TiSe2)2, respectively.

A.1.2 Misfit surfaces with NbSe2 and RQ=LaSe, BiSe,
PbSe, SnSe

In the second case, we start by considering the orthorhombic NbSe2 cell with
trigonal coordination of the transition metal atom (see Fig. 1.9 in Chapter
1). We keep the a axis as the mismatch direction to build the misfit super-
cell. For all the NbSe2/RQ cases, the mismatch ratio is 7/4, extracted from Fig.
1.6. We obtain aNbSe2/LaSe=3.437 Å, aNbSe2/BiSe=3.434 Å and aNbSe2/PbSe=3.439
Å. Only aNbSe2/SnSe=3.38 Å have a compressive strain of ≈ 1.3%, with respect
to its experimental value aNbSe2=3.43 Å. In the other in-plane direction, we find
bNbSe2/LaSe=6.0191 Å, bNbSe2/BiSe=6.0102 Å, bNbSe2/PbSe=5.99 Å, and bNbSe2/SnSe=
5.94 Å, respectively. Starting from this cell, a supercell 7× 1 is built according to
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the misfit proportions.
For the Q-layer rocksalt, we optimized all the rocksalts with centered orthorhom-
bic cell and slightly strained in-plane lattice parameter in order to obtain some
commensurability with NbSe2 as detailed in the following.
A 4× 1 LaSe supercell with in-plane lattice parameters aLaSe≈bLaSe=6 Å (tensile
strain of ≈ 0.5%, exp. value aLaSe≈bLaSe=5.97 Å) is considered in order to match
with NbSe2.
A 4 × 1 BiSe supercell with in-plane lattice parameters aBiSe≈bBiSe=6 Å (tensile
strain of ≈ 0.5%, exp. value aBiSe≈bBiSe=6.026 Å) is considered in order to match
with NbSe2.
A 4 × 1 PbSe supercell with in-plane lattice parameters aPbSe= 6.02 Å and
bPbSe=5.99 Å (tensile strain of ≈ 0.2% and ≈ 0.7%, exp. value aPbSe≈bPbSe=6.028
Å) is considered in order to match with NbSe2.
A 4 × 1 SnSe supercell with in-plane lattice parameters aSnSe= 6.02 Å and
bSnSe=5.99 Å (tensile strain of ≈ 0.1% and ≈ 0.2%, exp. value aSnSe≈bSnSe=5.927
Å) is considered in order to match with NbSe2.
The two cells (one for the TMD and one for the rocksalt) are then appropriately
assembled to build the slab system, which possesses a P1 symmetry. The supercell
is composed of a Q-layer with RQ = LaSe, BiSe, PbSe, SnSe sandwiched between
two NbSe2 single layers. The final cells are orthorhombic, composed of 116 atoms,
with lattice parameters summarized in Tab. 3.3. As an example, we report in
Tab. A.3 the optimized atomic positions expressed in crystalline coordinates of
the compound (LaSe)1.15(NbSe2)2.

A.2 Electronic properties of misfit surfaces
We provide the convergence parameters of DFT computations used to determine
the band structure of the misfits’ surface.
We use the generalized gradient approximation in the Perdew–Burke–Ernzerhof
[83] parametrization for the exchange-correlation functional.
We consider the following pseudopotential configurations taken from the Vander-
bilt [139] and PSlibrary [140] distributions. (i) For Se, norm-conserving pseu-
dopotentials from the PSlibrary distributions. (ii) For Ti, ultrasoft pseudopoten-
tials from Vanderbilt distribution. (iii) For La, ultrasoft pseudopotentials from
the Vanderbilt distributions. (iv) For Sn, Optimized Norm-Conserving Vanderbilt
Pseudopotential. (v) For Pb, ultrasoft pseudopotentials from the PSlibrary distri-
butions. (vi) For Nb, ultrasoft pseudopotentials from the PSlibrary distributions.
(vii) For Bi, norm-conserving pseudopotentials from the PSlibrary distributions.
We employ a 2×8×1 a Monkhorst-Pack k-points grid and a kinetic energy cutoff
for plane-wave basis set of 50 Ry and of 600 Ry for charge density respectively for
misfits with SnSe2 and TiSe2. We optimize the computations for the largest su-
percells (with a mismatch ratio of 7/4) containing NbSe2 using a Monkhorst-Pack
k-points grid of 1×4×1 and a kinetic energy cutoff for plane-wave basis set to 48
Ry and 480 Ry for charge density, respectively. A Gaussian smearing of 0.025 Ry
for Brillouin Zone (BZ) sampling is used in all the calculations. Each misfit slab
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Sn -0.0350 -0.0839 -0.0356 Se 0.0358 0.5066 0.2033
Se -0.0403 0.2573 0.0234 La 0.2870 0.4629 0.2271
Se 0.1215 0.0782 -0.0947 Se 0.2838 0.0119 0.1986
Sn 0.1330 0.4172 -0.0421 La 0.0352 0.0046 0.4629
Se 0.1382 0.7528 0.0193 Se 0.5366 0.5134 0.2031
Se -0.0430 0.5889 -0.0900 La 0.7872 0.5377 0.2318
Sn 0.2992 -0.0781 -0.0471 Se 0.7834 0.0034 0.2037
Se 0.3008 0.2404 0.0151 La 0.5303 0.0218 0.2270
Se 0.4744 0.0779 -0.0959 Sn -0.0339 0.0935 0.3713
Sn 0.4640 0.4187 -0.0440 Se -0.0236 0.4344 0.4232
Se 0.4551 0.7486 0.0194 Se 0.1369 0.2524 0.3042
Se 0.2968 0.5791 -0.0978 Sn 0.1332 0.5962 0.3634
Sn 0.6313 -0.0837 -0.0360 Se 0.1440 0.9264 0.4182
Se 0.6350 0.2599 0.0231 Se -0.0429 0.7642 0.3077
Se 0.8000 0.0909 -0.0883 Sn 0.3008 0.0971 0.3620
Sn 0.7987 0.4153 -0.0346 Se 0.3022 0.4217 0.4156
Se 0.8034 0.7542 0.0239 Se 0.4616 0.2553 0.3038
Se 0.6420 0.5863 -0.0908 Sn 0.4669 0.5965 0.3629
Se 0.0363 -0.0017 0.1241 Se 0.4592 0.9234 0.4173
La 0.2869 0.0253 0.0954 Se 0.3064 0.7583 0.3033
Se 0.2838 0.5086 0.1235 Sn 0.6351 0.0953 0.3692
La 0.0307 0.5326 0.1003 Se 0.6236 0.4342 0.4219
Se 0.5356 0.0039 0.1240 Se 0.8032 0.2717 0.3119
La 0.7867 0.0496 0.1001 Sn 0.8014 0.5905 0.3743
Se 0.7841 0.5003 0.1286 Se 0.7986 0.9333 0.4251
La 0.5357 0.5108 0.1003 Se 0.6399 0.7592 0.3079

Table A.1: Optimized atomic positions of the surface of MLC (LaSe)1.27(SnSe2)2 in
crystal coordinates. The lattice parameters in Å are summarized in the main text (see
Tab. 3.3).
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Ti -0.0053 -0.0730 -0.0370 Se 0.0011 0.5178 0.2028
Se -0.0061 0.2531 0.0162 La 0.1680 0.4935 0.2276
Se 0.0952 0.0878 -0.0862 Se 0.1674 -0.0009 0.2034
Ti 0.0942 0.4255 -0.0349 La 0.0006 0.0269 0.2277
Se 0.0923 0.7603 0.0192 Se 0.3343 0.5035 0.2034
Se -0.0054 0.5863 -0.0862 La 0.5006 0.5267 0.2276
Ti 0.1943 -0.0773 -0.0354 Se 0.5011 0.0176 0.2028
Se 0.1954 0.2608 0.0176 La 0.3345 0.0022 0.2265
Se 0.2940 0.0857 -0.0858 Se 0.6674 0.4988 0.2034
Ti 0.2943 0.4233 -0.0349 La 0.8345 0.5024 0.2265
Se 0.2929 0.7615 0.0182 Se 0.8343 0.0037 0.2034
Se 0.1947 0.5848 -0.0858 La 0.6679 -0.0063 0.2275
Ti 0.3942 -0.0740 -0.0351 Ti -0.0066 0.0913 0.3634
Se 0.3974 0.2588 0.0189 Se -0.0068 0.4291 0.4133
Se 0.4943 0.0863 -0.0861 Se 0.0935 0.2509 0.3083
Ti 0.4944 0.4272 -0.0370 Ti 0.0939 0.5882 0.3624
Se 0.4938 0.7532 0.0162 Se 0.0926 0.9255 0.4139
Se 0.3935 0.5878 -0.0861 Se -0.0066 0.7526 0.3107
Ti 0.5943 -0.0745 -0.0348 Ti 0.1932 0.0858 0.3642
Se 0.5924 0.2605 0.0192 Se 0.1932 0.4260 0.4137
Se 0.6947 0.0845 -0.0857 Se 0.2897 0.2565 0.3094
Ti 0.6945 0.4227 -0.0354 Ti 0.29348 0.5859 0.3634
Se 0.6956 0.7609 0.0175 Se 0.2941 0.9253 0.4135
Se 0.5952 0.5877 -0.0862 Se 0.1955 0.7586 0.3106
Ti 0.7946 -0.0769 -0.0351 Ti 0.3929 0.0888 0.3619
Se 0.7930 0.2615 0.0181 Se 0.3938 0.4255 0.4134
Se 0.8937 0.0874 -0.0862 Se 0.4933 0.2522 0.3107
Ti 0.8946 0.4259 -0.0353 Ti 0.4934 0.5909 0.3633
Se 0.8977 0.7585 0.0188 Se 0.4931 0.9288 0.4131
Se 0.7941 0.5854 -0.0859 Se 0.3945 0.7502 0.3082
Se 0.0007 0.0174 0.1243 Ti 0.5939 0.0880 0.3623
La 0.1680 -0.0080 0.1007 Se 0.5926 0.4254 0.4137
Se 0.1671 0.4986 0.1245 Se 0.6957 0.2584 0.3106
La 0.0005 0.5253 0.0991 Ti 0.6934 0.5857 0.3642
Se 0.3342 0.0024 0.1241 Se 0.6932 0.9261 0.4137
La 0.5005 0.0254 0.0991 Se 0.5936 0.7508 0.3082
Se 0.5007 0.5172 0.1242 Ti 0.7937 0.0861 0.3634
La 0.3332 0.4985 0.1010 Se 0.7941 0.4255 0.4136
Se 0.6670 -0.0012 0.1244 Se 0.8945 0.2505 0.3083
La 0.8333 -0.0014 0.1009 Ti 0.8931 0.5889 0.3621
Se 0.8343 0.5024 0.1240 Se 0.8939 0.9257 0.4135
La 0.6680 0.4920 0.1006 Se 0.7899 0.7566 0.3095

Table A.2: Optimized atomic positions of the surface of MLC (LaSe)1.18(TiSe2)2 in
crystal coordinates. The lattice parameters in Å are summarized in the main text (see
Tab. 3.3).
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Nb 0.4872 0.0889 0.5871 Se 0.1578 0.4838 0.9620 Nb 0.9886 0.8749 0.5872
Nb -0.0085 0.1278 0.9160 Se 0.1633 0.5166 0.6327 Nb 0.4888 0.9124 0.9166
Se 0.1567 0.0884 0.5415 Se 0.1540 0.4833 0.8701 Se 0.6553 0.8736 0.5422
Se 0.1578 0.0562 0.9610 Nb 0.9879 0.4453 0.5879 Se 0.6617 0.8728 0.6331
Se 0.1546 0.0888 0.6341 Nb 0.4896 0.4852 0.9165 Se 0.6564 0.9844 0.9613
Se 0.1535 0.0569 0.8693 Se 0.6573 0.4457 0.5425 Se 0.6597 0.9813 0.8694
Nb 0.9920 0.0172 0.5869 Se 0.6583 0.4478 0.6349 La 0.4030 0.1044 -0.2997
Nb 0.4894 0.0549 0.9155 Se 0.6565 0.5559 0.9623 Se -0.0928 0.1043 -0.2801
Se 0.6558 0.0169 0.5420 Se 0.6603 0.5587 0.8705 La -0.1005 0.1033 -0.1958
Se 0.6568 0.0171 0.6320 Nb 0.4924 0.6595 0.5882 Se 0.4058 0.1036 -0.2157
Se 0.6568 0.1263 0.9610 Nb -0.0124 0.6981 0.9168 La -0.0664 0.0206 -0.3014
Se 0.6558 0.1269 0.8704 Se 0.1575 0.6605 0.5432 Se 0.4231 0.0211 -0.2810
Nb 0.4879 0.2320 0.5875 Se 0.1553 0.6269 0.9623 La 0.4172 0.0221 -0.1967
Nb -0.0102 0.2700 0.9173 Se 0.1566 0.6605 0.6335 Se -0.0837 0.0205 -0.2167
Se 0.1569 0.2316 0.5422 Se 0.1625 0.6253 0.8716 La 0.3981 0.1465 -0.3008
Se 0.1571 0.1981 0.9620 Nb 0.9881 0.5886 0.5881 Se -0.0934 0.1461 -0.2804
Se 0.1593 0.2282 0.6343 Nb 0.4890 0.6278 0.9174 La -0.0709 0.1443 -0.1961
Se 0.1569 0.2008 0.8694 Se 0.6579 0.5888 0.5425 Se 0.4190 0.1461 -0.2163
Nb 0.9894 0.1595 0.5868 Se 0.6568 0.5870 0.6351 La -0.0801 0.2722 -0.2991
Nb 0.4873 0.1983 0.9165 Se 0.6572 0.6991 0.9624 Se 0.4145 0.2707 -0.2794
Se 0.6555 0.1606 0.5419 Se 0.6540 0.6985 0.8699 La 0.3955 0.2709 -0.1949
Se 0.6628 0.1609 0.6323 Nb 0.4883 0.8022 0.5877 Se -0.0953 0.2712 -0.2150
Se 0.6555 0.2697 0.9622 Nb -0.0126 0.8419 0.9164 La 0.4276 0.3943 -0.2997
Se 0.6630 0.2703 0.8720 Se 0.1565 0.8027 0.5425 Se -0.0791 0.3963 -0.2795
Nb 0.4916 0.3749 0.5881 Se 0.1559 0.7703 0.9617 La -0.0695 0.3977 -0.1948
Nb -0.0079 0.4123 0.9169 Se 0.1608 0.8062 0.6342 Se 0.4219 0.3959 -0.2153
Se 0.1573 0.3737 0.5430 Se 0.1567 0.7697 0.8718 La -0.1044 0.5209 -0.3002
Se 0.1571 0.3414 0.9624 Nb 0.9897 0.7323 0.5885 Se 0.4043 0.5209 -0.2801
Se 0.1560 0.3733 0.6338 Nb 0.4920 0.7701 0.9169 La 0.4146 0.5205 -0.1961
Se 0.1575 0.3397 0.8699 Se 0.6583 0.7308 0.5430 Se -0.0879 0.5214 -0.2158
Nb 0.9903 0.3019 0.5882 Se 0.6540 0.7307 0.6349 La 0.4317 0.6476 -0.3000
Nb 0.4877 0.3416 0.9170 Se 0.6569 0.8416 0.9619 Se -0.0790 0.6460 -0.2795
Se 0.6580 0.3036 0.5428 Se 0.6539 0.8413 0.8694 La -0.0976 0.6458 -0.1953
Se 0.6545 0.3036 0.6344 Nb 0.4873 0.9452 0.5874 Se 0.4089 0.6458 -0.2154
Se 0.6572 0.4134 0.9619 Nb -0.0121 0.9850 0.9160 La -0.0864 0.7703 -0.2992
Se 0.6564 0.4135 0.8715 Se 0.1569 0.9457 0.5418 Se 0.4144 0.7713 -0.2792
Nb 0.4900 0.5173 0.5874 Se 0.1553 0.9135 0.9616 La 0.4337 0.7709 -0.1945
Nb -0.0119 0.5551 0.9170 Se 0.1537 0.9462 0.6343 Se -0.0770 0.7710 -0.2150
Se 0.1558 0.5171 0.5425 Se 0.1620 0.9141 0.8710

Table A.3: Optimized atomic positions of the surface of MLC (LaSe)1.15(NbSe2)2 in
crystal coordinates. The lattice parameters in Å are summarized in the main text (see
Tab. 3.3).
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Figure A.1: Band unfolding onto the hexagonal Brillouin Zone (BZ) of a single layer
TiSe2 in the PBE+U scheme of misfit supercell (LaxPb1−xSe)1.18(TiSe2)2, with x =
(a) 1.0, (b) 0.834, (c) 0.67, (d) 0.5, (e) 0.34, (f) 0.167, (g) 0.0. Darker regions in the
colormap represent the most relevant eigenvalues of the misfit band structure along the
TiSe2 first BZ. In red isolated single layer TiSe2 band structure is superimposed onto
the unfolded one. Blue (red) dashed line corresponds to the Fermi level EF of the misfit
(single layer TiSe2).

comprises vacuum space (optimized form 15 to 18 Å, depending on the system)
to prevent interactions between periodic replicas.

In case of TiSe2 compounds, we calculate the band structure shown in Fig.
3.5 and 3.9 within the PBE+U method and with the inclusion of SOC. How-
ever, we verified that relativistic effects are negligible for the electronic prop-
erties of (LaxPb1−xSe)1.18(TiSe2)2 family of compounds. We report here the
full calculation of (LaSe)1.18(TiSe2)2 with partial substitution of Pb atoms
((LaxPb1−xSe)1.18(TiSe2)2 with x = 1.0, 0.834, 0.67, 0.5, 0.34, 0.167, 0.0) in the
PBE+U, without SOC in Fig. A.1. In Fig. A.2, we also show the
same calculations of (LaxPb1−xSe)1.18(TiSe2)2 in the PBE scheme for x =
1.0, 0.67, 0.5, 0.34, 0.0, without taking into account the Hubbard correction. The
main difference between these two approaches resides in the energy dispersion
around the Fermi level, especially the overlap/gap between the Se-4p valence
band in Γ and the Ti-3d conduction band in M. Indeed, as shown in Ref. [94]
the introduction of Hubbard interaction, where U is set to U= 3.25 eV, leads to
a better comparison with ARPES experiments in which shows that monolayer
1T-TiSe2 is a perfectly compensated semimetal.

Spin orbit coupling is included in all the electronic structure calculations con-
cerning NbSe2. In Fig. A.3, the calculation of the band structure of the
(RQ)1+δ(NbSe2)2 series (with RQ=LaSe, BiSe, PbSe, and SnSe) without the in-
troduction of the SOC is shown. As we can see, the main difference between the
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Figure A.2: Band unfolding in the PBE scheme of misfit supercell
(LaxPb1−xSe)1.18(TiSe2)2, with x = (a) 1.0, (b) 0.67, (c) 0.5, (d) 0.34, (e) 0.0,
onto the hexagonal BZ of a single layer TiSe2. Darker regions in the colormap represent
the most relevant eigenvalues of the misfit band structure along the TiSe2 IBZ. In red
isolated single layer TiSe2 band structure is superimposed onto the unfolded one. Blue
(red) dashed line corresponds to the Fermi level EF of the misfit (single layer TiSe2).

Figure A.3: Band unfolding onto the NbSe2 single layer Brillouin zone for the NbSe2
misfit series with different rocksalt Q-layers having comparable mismatching ratio close
to 7/4. (a) (LaSe)1.15(NbSe2)2, (b) (BiSe)1.14(NbSe2)2, (c) (PbSe)1.14(NbSe2)2, (d)
(SnSe)1.16(NbSe2)2. In this calculation, SOC is neglected. The band structure of the
isolated single layer NbSe2 (red line) is superimposed and aligned to the Nb d-band in
the misfit. The blue dashed line corresponds to the Fermi level EF of the misfit com-
pound, while the red one to the Fermi level of the isolated NbSe2 layer. In the last two
panels the dashed red line is superimposed to the dashed blue one.
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calculations with SOC presented in Chapter 3 (see 3.7) resides in the SOC split-
ting of the Nb d-bands of NbSe2. The amount of charge transfer, however, is not
affected by the presence of SOC.

A.3 Doping-induced superconductivity in misfit
layer compound (LaSe)1.27(SnSe2)2

As detailed in Chapter 4, in order to recover the (LaSe)1.27(SnSe2)2 surface and
bulk behaviour, we used the 2D material FET setup [101] to precisely dope SnSe2
as it is inside the misfit.
A Coulomb long range interaction cutoff is placed at lz = c/2 with c being the
unit-cell size in the direction perpendicular to the 2D plane: c is set opportunely
for single and double layer SnSe2 at 16.14Å and 25.83Å, respectively.
For SnSe2 monolayer we use a single gate setup, placing charged plate modelling a
single gate electrode at zbot = −0.25c with a charge of +0.7, equal and opposite to
the one of the single layer SnSe2 to ensure charge neutrality. For SnSe2 bilayer we
use a double gate configuration, with the bilayer sandwiched between two charged
plates at zbot = −0.266c and ztop = +0.266c each with a charge of ρ=+(-)0.7, such
that ρtot = ρ2L + ρbot + ρtop = 0.
For all systems, potential barriers V with a height of VH = 2.5 Ry are placed
before the gates at zV = zbot + 0.1 (zV = ztop − 0.1) in order to prevent the ions
from moving too close to the gate electrodes.
The harmonic phonon frequencies are evaluated within density-functional pertur-
bation theory [141] on a 7×7×1 phonon momentum grid (q-grid) and 21×21×1
electron-momentum grid (k-grid). The slightly imaginary acoustic phonons (or-
der of 8 cm−1) observable in the phonon dispersion are an artifact linked to the
acoustic sum rule breaking in linear response. To avoid spurious effects, we did not
impose the acoustic sum rule manually since it has been shown that in field-effect
gated 2D system one of the three acoustic modes remains finite at Γ (see [101]).
The correct evaluation of the electron-phonon coupling properties of doped SnSe2
requires a precise knowledge of electron-phonon matrix elements for very dense
electron and phonon momentum grids. Since the direct calculation of electron-
phonon matrix elements over a ultradense q- and k-point grids is very time con-
suming in linear response, we perform a Wannier interpolation of the electron-
phonon coupling as described in Ref. [105].
We used the Wannier90 [142] code to obtain the Bloch to Wannier transformation.
We use as starting guess of the Maximally Localized Wannier Function procedure
three p-like orbitals at every chalcogen site and 5 d-like orbitals at any molyb-
denum site. Within this approach, the electron-phonon matrix elements are first
calculated on a coarse 7×7×1 q grid and 21×21×1 k-grid, and then Wannier in-
terpolated to 96×96×1 q- and k- grids in order to evaluate the electron-phonon
coupling parameter λ and the isotropic Eliashberg function α2F (ω). We employ
a Gaussian smearing of 0.001 Ry for k- and q- summations in λ.
The superconducting gap is evaluated by solving the Migdal-Eliashberg equa-
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tions [104]in the Wannier basis over the imaginary frequency axis and then by
performing analytic continuation to the real axis using N-point Padé approxi-
mants [143]. In order to perform the k- and k+ q- summations to solve the
Migdal-Eliashberg equations on the imaginary axis, we generate random elec-
tron momenta on the Brillouin zone, and select 2048 of them having at least one
eigenvalue within 0.2 eV of the Fermi surface. The Matsubara summation was
truncated at 128 frequencies, where convergence is reached. The superconduct-
ing critical temperature is then evaluated by determining the temperature where
the superconducting gap becomes zero. We use a Morel-Anderson pseudopoten-
tial [144] µ∗ = 0.1 to parameterize the Coulomb repulsion in the superconducting
state.
The Wannier interpolation of the electron-phonon matrix elements, as well as
the solution of the Migdal-Eliashberg equations have been performed within Epiq
(Electron-Phonon Interpolation over q- and k-points), an open-source in-house
software [103].

A.4 Modeling bulk (LaSe)1.14(NbSe2)2 as a collec-
tion of field effect transistors

A.4.1 2×1 periodic approximant of bulk (LaSe)1.14(NbSe2)2
As reported in Chapter 4, we needed to simulate vibrational properties of bulk
(LaSe)1.14(NbSe2)2. It is possible to simulate an approximate commensurate
cell [6] by considering the ratio |a2|/|a1| = 6/3.437 (≈ 7/4), and thus m
=7|a1| ≈ 4|a2|. This periodic approximant has been used to calculate the elec-
tronic structure [6], however it is still formed by too many atoms for the calcu-
lation of the vibrational properties. In order to reduce the computational effort,
we approximate the 7/4 mismatch ratio by 8/4, corresponding to a 2/1 ratio.
This is done by applying 14.6% tensile strain to the rocksalt subunit, increasing
the lattice parameter to a2 = 6.875 Å. The NbSe2 in-plane parameter is, on the
contrary, kept the same as in the misfit (a1 = 3.437 Å). The atomic positions in
crystal coordinates are summarized in Tab. A.4.
We calculate the vibrational properties of bulk (LaSe)1.14(NbSe2)2 by means of
density functional perturbation theory (DFPT) as implemented in the quantum
ESPRESSO (QE) code [127, 145]. We choose to employ the optimized ultrasoft
pseudopotentials from pslibrary to reduce the computational effort. The kinetic
energy cutoff is set to 40 Ry and the Brillouin zone (BZ) integration is carried out
over a 4×4×2 electron-momentum Monkhorst-Pack grid and by using a Gaussian
smearing of 0.01 Ry. The PBE [146] exchange and correlation functional is used
in the calculations.
The atomic positions are fully optimised by means of the Broyden-Fletcher-
Goldfarb-Shannon (BFGS) algorithm, with a convergence threshold of 10−4 Ry on
the total energy difference between consecutive structural optimisation steps and
of 10−3 Ry/Bohr on all forces components. During the relaxation procedure, we
use the Van der Waals corrections Grimme-D3 [147] to reproduce the interaction
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among adjacent NbSe2 layers.
We compute the dynamical matrix of bulk (LaSe)1.14(NbSe2)2 at the Γ point.
The phonon density of states (PHDOS) is obtained by Fourier interpolation over
a 10×10×1 phonon-momentum grid and by using a Gaussian smearing of 3 cm−1

(see Fig. 4.12).
We note that in our calculations, the shearing mode along the axis with the lattice
mismatch among the NbSe2 and LaSe units goes slightly imaginary; nevertheless,
this is an artifact caused by the tensile strain applied to the LaSe subunit.

A.4.2 Field-effect transistor setup modeling

The field-effect modeling is carried out by using density functional theory (DFT)
as implemented in the quantum ESPRESSO (QE) [145] package using the PBE
exchange and correlation functional [146]. We employ ultrasoft pseudopotentials
from the Vanderbilt distribution for La and Nb, including semi-core states for Nb
atoms [148], while for Se we use norm-conserving pseudopotentials with empty
d-states in valence.
The kinetic energy cutoff for plane-wave basis set of NbSe2 (LaSe) is set to 50
(48) Ry. The Brillouin zone (BZ) integration is performed with a Monkhorst-Pack
grid of 21×21×1 (14×14×1) k-points and a Gaussian smearing of 0.01 (0.015) Ry.
The smearing value of 0.01 Ry is proven to ensure the convergence of the phonon
frequencies of NbSe2 within 1 cm−1.
A Coulomb long range interaction cutoff is placed at zcut = c/2 with c being the
unit-cell size in the direction perpendicular to the plane: c is set opportunely for
each of the different systems to 20 Å for LaSe and 25 Å for NbSe2. Each of the
two subsystems is centred around z=0.
For 2L-NbSe2 (LaSe) we use a double gate configuration, with two charged plates
at zbot = −0.266c (zbot = −0.221c) and ztop = +0.266c (ztop = +0.221c) each with
a charge of ρ=+0.6 (ρ=-0.6) times the modulus of the electronic charge, such that
ρtot = ρ2L + ρbot + ρtop = 0.
For each system a potential barriers V of height 2.5 Ry is placed before the gates
at zV =zbot + 0.1 (zV =ztop − 0.1) in order to confine the atoms between the gate
electrodes.
The Raman active phonon frequencies are calculated using density functional
perturbation theory (DFPT) in the linear response regime [127]. In order to fulfill
the 7/4 lattice mismatch ratio of the best periodic approximant, the dynamical
matrices are calculated on uniform 7×7×1 and 4×4×1 phonon-momentum grids
and then Fourier interpolated in the full Brillouin zone.
For the DOS at zone center in Fig. 4.11 panel (b), we use only the phonon
frequencies obtained from the dynamical matrices on a 4×1×1 phonon momentum
grid.
The individual phonon densities of states (PHDOS) in Fig. 4.12 are obtained by
Fourier interpolation over a 40× 40× 1 and 70× 70× 1 phonon-momentum grid
for LaSe and NbSe2 respectively, and by using a Gaussian smearing of 3 cm−1.
Vibrational properties of isolated neutral 2L-NbSe2 are calculated using DFPT
in the linear response regime on uniform 8×8×1 phonon-momentum grids. The
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Nb 0.0310 0.0062 1.1843 Se 0.2537 0.4995 1.9301
Nb 0.0279 0.5056 1.1843 Se 0.7547 0.7548 1.9307
Nb 0.5260 0.2495 1.1840 Se 0.7540 0.2546 1.9302
Nb 0.5290 0.7496 1.1844 Se 0.4768 0.0716 -0.5506
Nb -0.0789 0.0052 1.8389 La 0.4735 0.6448 -0.5895
Nb -0.0815 0.5063 1.8389 Se 0.4714 0.5722 -0.4263
Nb 0.4204 0.2485 1.8388 Se 0.1995 0.2619 1.2789
Nb 0.4232 0.7489 1.8393 Se 0.1956 0.7582 1.2782
La -0.0182 0.0735 -0.5905 Se 0.6999 0.4935 1.2773
Se -0.0230 0.1472 -0.4267 Se 0.6965 -0.0014 1.2768
La -0.0335 0.5729 -0.3863 Se 0.2495 -0.0073 1.7460
Se 0.1943 0.2547 1.0925 Se 0.2528 0.4978 1.7465
Se 0.1955 0.7546 1.0929 Se 0.7499 0.7616 1.7444
Se 0.6953 0.5008 1.0928 Se 0.7537 0.2578 1.7451
Se 0.6958 0.0004 1.0929 La 0.4747 0.1452 -0.3874
Se 0.2539 -0.0002 1.9305 Se -0.0288 0.6480 -0.5501

Table A.4: Optimized atomic positions of the 2 × 1 periodic approximant of bulk
(LaSe)1.14(NbSe2)2 in crystal coordinates.

Brillouin zone integration is performed with a Monkhorst-Pack grid of 30×30×1
k-points and a Methfessel-Paxton smearing of 0.005 Ry.

A.4.3 Effect of the non-hexagonality of 2L-NbSe2 within
(LaSe)1.14(NbSe2)2

In our DFT calculations we neglected the effect of the slightly non-hexagonal lat-
tice of 2L-NbSe2 within (LaSe)1.14(NbSe2)2. Indeed, the angle of 60 ◦along the
misfit direction is compressed to 59.6 ◦ [6] as an effect of the lattice mismatch.
By accounting this effect, all the modes in a non-hexagonal 2L-NbSe2 at the zone
center become Raman active and non-degenerate, as a result of the breaking of
the hexagonal symmetry (the space group becomes P−1).
The main consequence is that the Eg modes will be no longer degenerate. Thus,
we considered the non-hexagonality as a possible explanation for the splitting of
the high energy Eg modes observed in the Raman spectra of (LaSe)1.14(NbSe2)2
(see Tab. 4.1 in Chapter 4).
To test this possibility, we include the non-hexagonality in our field-effect doped
2L-NbSe2 calculation by setting a1 ̸= b1 with a1 = 3.457 Å and b1 = 3.437 respec-
tively. The resulting phonon modes at Γ in the 1× 1 cell are shown in green bars
in Fig.[A.4] panel a).
However, as we can see from Fig.[A.4] panel b), the splitting of former degenerate
Eg modes caused by the non-hexagonality appears to be of the order of 1 cm−1

(red bars). This splitting is 10 times smaller than the one measured in the misfit,
thus we infer that this argument is not sufficient to match experimental data. The
explanation of the splitting in the misfit is given in the main text by accounting
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Figure A.4: a) Theoretical calculation of Raman active modes of non-hexagonal 2L-
NbSe2. The system is electron doped by means of the FET setup. Green bars represent
the Γ modes of the 1× 1 cell of the system. b) Zoom of the frequency range 260− 265
cm−1. Red bars correspond to the splitted high energy Eg modes, while blue bars
correspond to the splitted high energy Eu modes.

the projection of the misfit modes onto the Eg modes of 2L-NbSe2.

A.5 Superconducting properties of bulk
(RQ)1+δ(NbSe2) misfit series

We specifically consider the (RQ)1+δ(NbSe2) misfit series, where we fix the TMD
as NbSe2, and we change the rocksalt with RQ= LaSe, BiSe, PbSe, and SnSe.
As detailed in Chapter 5, we approximate the 7/4 mismatch ratio by 8/4, corre-
sponding to a 2/1 ratio. We calculate the electronic and geometrical properties of
bulk (RQ)1+δ(NbSe2) misfit series by means of density functional theory (DFT)
and the vibrational properties by means of density functional perturbation theory
(DFPT), as implemented in the quantum ESPRESSO (QE) code [127,145]. We
choose to employ the optimized ultrasoft pseudopotentials from PSlibrary [140]
to reduce the computational effort. For each of the considered misfit, the kinetic
energy cutoff is set to 40 Ry, the Brillouin zone (BZ) sampling is carried out over
a 8×8×4 k-points grid and by using a Methfessel-Paxton smearing of 0.005 Ry.
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Nb 0.4864 0.3612 -0.0040
Nb 0.9958 0.1129 -0.0055
Nb 0.4863 0.8612 -0.0045
Nb 0.9958 0.6129 -0.0029
Se 0.1582 0.3667 0.8445
Se 0.6557 0.1128 0.8551
Se 0.1571 0.8599 0.8496
Se 0.6663 0.6090 0.8563
Se 0.1571 0.3599 0.1418
Se 0.6663 0.1090 0.1351
Se 0.1582 0.8666 0.1469
Se 0.6557 0.6128 0.1362
La -0.0676 0.0985 0.6466
Se 0.4194 0.0755 0.5946
La 0.3947 0.1390 0.3443
Se -0.0958 0.1640 0.3964
La 0.3949 0.6395 0.6471
Se -0.0957 0.6644 0.5949
La -0.0677 0.5980 0.3449
Se 0.4193 0.5752 0.3968

Table A.5: Optimized atomic positions of the 2 × 1 periodic approximant of bulk
(LaSe)1.15(NbSe2) in crystal coordinates.

The PBE [146] exchange and correlation functional is used in the calculations.
The atomic positions are fully optimised by means of the Broyden-Fletcher-
Goldfarb-Shannon (BFGS) algorithm, with a convergence threshold of 10−4 Ry
on the total energy difference between consecutive structural optimisation steps
and of 10−3 Ry/Bohr on all forces components. The final misfit bulks have a P1
symmetry and includes 20 atoms in the cell. Atomic positions after the relaxation
procedure are summarized in Tabs. A.5, A.6, A.7 and A.8 for each of the consid-
ered compounds.
The harmonic phonon frequencies are evaluated within density-functional pertur-
bation theory [141] on a Γ-only q-grid. A denser 12×12×12 k-grid is employed to
evaluate the electron-phonon coupling parameter λ and the isotropic Eliashberg
function α2F (ω), with a Gaussian smearing of 0.015 Ry for k-summation in λ.
We use the Allen-Dynes semi-empirical formula to evaluate the superconducting
critical temperatures of each considered misfit, with a Morel-Anderson pseudopo-
tential [144] µ∗ = 0.15 to parameterize the Coulomb repulsion in the supercon-
ducting state.
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Nb 0.4924 0.3656 -0.0051
Nb 0.9900 0.1146 -0.0034
Nb 0.4923 0.8656 -0.0034
Nb 0.9900 0.6148 -0.0049
Se 0.1586 0.3674 0.8494
Se 0.6580 0.1146 0.8528
Se 0.1605 0.8618 0.8515
Se 0.6587 0.6158 0.8512
Se 0.1606 0.3616 0.1399
Se 0.6586 0.1157 0.1401
Se 0.1587 0.8674 0.1423
Se 0.6579 0.6146 0.1386
Bi -0.0370 0.1034 0.6437
Se 0.4249 0.0413 0.5941
Bi 0.3621 0.1280 0.3579
Se -0.0945 0.1893 0.4060
Bi 0.3605 0.6256 0.6337
Se -0.0945 0.6891 0.5852
Bi -0.0377 0.6026 0.3475
Se 0.4254 0.5414 0.3973

Table A.6: Optimized atomic positions of the 2 × 1 periodic approximant of bulk
(BiSe)1.14(NbSe2) in crystal coordinates.
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Nb 0.5034 0.3176 -0.0043
Nb 1.0123 0.0753 -0.0044
Nb 0.5034 0.8177 -0.0042
Nb 1.0123 0.5753 -0.0041
Se 0.1752 0.3273 0.8483
Se 0.6735 0.0684 0.8542
Se 0.1719 0.8241 0.8516
Se 0.6768 0.5659 0.8515
Se 0.1719 0.3242 0.1397
Se 0.6769 0.0659 0.1397
Se 0.1751 0.8272 0.1430
Se 0.6735 0.5684 0.1371
Pb -0.0980 0.1763 0.6195
Se 0.3895 0.1040 0.6101
Pb 0.3958 0.1820 0.3714
Se -0.1134 0.2553 0.3809
Pb 0.3966 0.6832 0.6200
Se -0.1129 0.7564 0.6104
Pb -0.0969 0.6751 0.3719
Se 0.3900 0.6029 0.3816

Table A.7: Optimized atomic positions of the 2 × 1 periodic approximant of bulk
(PbSe)1.14(NbSe2) in crystal coordinates.
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Nb 0.5035 0.3610 -0.0056
Nb 1.0071 0.1122 -0.0024
Nb 0.5035 0.8607 -0.0027
Nb 1.0071 0.6123 -0.0058
Se 0.1699 0.3610 0.8464
Se 0.6716 0.1101 0.8527
Se 0.1708 0.8626 0.8504
Se 0.6695 0.6115 0.8512
Se 0.1708 0.3626 0.1411
Se 0.6694 0.1115 0.1402
Se 0.1698 0.8610 0.1451
Se 0.6718 0.6101 0.1390
Sn -0.0675 0.0797 0.6235
Se 0.4191 0.0591 0.5931
Sn 0.3806 0.1615 0.3652
Se -0.0931 0.1774 0.3954
Sn 0.3791 0.6617 0.6266
Se -0.0938 0.6781 0.5950
Sn -0.0631 0.5794 0.3670
Se 0.4204 0.5589 0.3989

Table A.8: Optimized atomic positions of the 2 × 1 periodic approximant of bulk
(SnSe)1.16(NbSe2) in crystal coordinates.
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