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Abstract

We compute the cones of effective divisors on blowups of P1 × P2 and P1 × P3 in
up to 6 points. We also show that all these varieties are log Fano, giving a conceptual
explanation for the fact that all the cones we compute are rational polyhedral.

Cones of divisors are combinatorial objects that encode key geometric information
about algebraic varieties. Understanding the structure of these cones is therefore a basic
problem in algebraic geometry. There are important theorems describing the structure of
these cones for important classes of varieties: for example, Fano varieties have rational
polyhedral nef cones by the Cone Theorem, and rational polyhedral effective cones by
Birkar–Cascini–Hacon–McKernan [BCHM10].

In general, however, these cones can be difficult to understand, even for simple varieties
such as blowups of sets of points in projective space or products of projective spaces. Mukai
[Muk05] and Castravet–Tevelev [CT06] proved that the blowup of (Pn)r in a set of s points
in very general position is a Mori dream space, and in particular has rational polyhedral
effective cone, if and only if

1

r + 1
+

1

s− n− 1
+

1

n+ 1
> 1.

These blowups are highly symmetric from the point of view of divisor theory: there is a
naturally-defined Weyl group action on the Picard group, and this is the key ingredient in
describing the effective cones and Cox ring when they are finitely generated.

2020 Mathematics Subject Classification. Primary: 14C20. Secondary: 14J45, 14J70
Key words and phrases. effective cones, base locus lemmas, log Fano varieties, Mori dream spaces,

unexpected hypersurfaces.
∗Current address: School of Mathematical Sciences, University of Nottingham. Email: tim.grange@

nottingham.ac.uk
†elisa.postinghel@unitn.it
‡a.prendergast-smith@lboro.ac.uk

1

mailto:tim.grange@nottingham.ac.uk
mailto:tim.grange@nottingham.ac.uk
mailto:elisa.postinghel@unitn.it
mailto:a.prendergast-smith@lboro.ac.uk


In this paper, we focus instead on certain “asymmetric” varieties of blowup type:
namely, blowups of P1 × P2 and P1 × P3 in sets of up to 6 points in general position.
The presence of factors of different dimensions means that the Picard groups of these
varieties are less symmetric than in the previous examples, so we use different ideas to
understand divisors. Our method combines the following techniques: induction, that is,
pulling back divisors from lower blowups to get information about higher blowups; re-
striction, that is, obtaining necessary conditions for effectivity by restriction to suitable
subvarieties whose cone of effective divisors is understood; and base locus lemmas, show-
ing that divisors violating a numerical inequality must contain a certain fixed divisor as a
component.

This method, that we shall refer to as the cone method, is outlined in Section 2. Our
main results, contained in Sections 3-5, give explicit descriptions of the cones of effective
divisors on these varieties and describe the geometry of the generating classes. For each
such cone, we will give a list of extremal rays and a list of inequalities cutting it out: the
latter corresponds to giving extremal rays of the corresponding cone of moving curves.
Along the way, we also compute the effective cones of divisors of some threefolds given as
blowups of P3 along a line and up to six points in general position (Section 4).

More conceptually, one can also ask when varieties of the above kind are log Fano. For
blowups of P2, being Fano is equivalent to being a Mori dream space and for these cases the
Cox rings were described by Batyrev–Popov in [BP04]. More recently, Araujo–Massarenti
[AM16] and Lesieutre–Park [LP17] proved that the same holds in higher dimension, namely
that blowups of Pn or of products of the form (Pn)m in points in very general position are
log Fano if and only if they are Mori dream spaces.

The same questions are open for mixed products, i.e. for blowups of Pn1 × · · · × Pnm

with not all nk equal. For blowups of P1 × P2 and of P1 × P3 in up to 6 points in general
position, we show in Section 6 that all of these varieties are log Fano, and therefore Mori
dream spaces. We also use the results of Mukai and Castravet–Tevelev to deduce that the
blowup of P1 × Pn in sufficiently many points is not a Mori dream space; Theorem 6.10
summarises what we know in this direction. This leaves a small number of open cases in
each dimension, which we collect in Questions 6.11–6.13.

Acknowledgements: The second author is a member of INdAM-GNSAGA and she
was partially supported by the EPSRC grant EP/S004130/1. The authors thank Hamid
Abban, Izzet Coskun, and Hendrik Süß for valuable suggestions and corrections.

1 Preliminaries

We work throughout over the complex numbers C.
For a variety X, we write N1(X) to denote the group of Cartier divisors on X modulo

numerical equivalence, tensored with R. This is a finite-dimensional real vector space whose
dimension is called the Picard rank of X, and denoted ρ(X). Dually, we write N1(X) for
the group of 1-cycles on X modulo numerical equivalence, tensored with R. When X is
smooth, intersection of divisors and curves gives a perfect pairing N1(X) × N1(X) → R.
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Where appropriate, we will use the same symbol to denote a divisor and its class in N1(X),
or a curve and its class in N1(X). We write Eff(X) to denote the cone in N1(X) spanned
by classes of effective divisors; in general this cone need not be open or closed, but in all
our examples it will be rational polyhedral, in particular closed.

The main objects of interest in this paper will be blowups of products of two projective
spaces in a collection of points in general position. A statement holds for a collection of
points in general position, respectively very general position, if it holds when the corre-
sponding element in the Hilbert scheme of s points of Pm × Pn lies in the complement
of a proper Zariski closed subset, respectively in the complement of a countable union of
Zariski closed subsets. For convenience we fix the following notation:

• Xm,n,s: the blowup of Pm × Pn in a set of s points in general position {p1, . . . , ps};

• πm, πn: the natural morphisms Xm,n,s → Pm and Xm,n,s → Pn respectively; by abuse
of notation, we will use the same symbols to denote the corresponding morphisms
Pm × Pn → Pm and Pm × Pn → Pn;

• H1, H2: the pullbacks of the hyperplane classes on Pm and Pn via πm and πn respec-
tively;

• l1, l2: the classes of a line contained in a Pm-fibre of πn, respectively a line contained
in a Pn-fibre of πm;

• Ei, ei: the exceptional divisor of the blowup of the point pi, respectively the class of
a line contained in Ei.

The following proposition records the intersection numbers we need. All statements
are straightforward consequences of general results about intersection theory of blowups;
a reference is [EH16, Proposition 13.12].

Proposition 1.1. Let Xm,n,s be as above. Then

(a) The vector spaces N1(Xm,n,s) and N1(Xm,n,s) have the following bases:

N1(Xm,n,s) = 〈H1, H2, E1, . . . , Es〉,
N1(Xm,n,s) = 〈l1, l2, e1, . . . , es〉.

(b) We have the following intersection numbers among divisors:

Hm
1 ·Hn

2 = 1,

Hp
1 ·H

m+n−p
2 = 0 for p 6= m,

Hp
1 · E

m+n−p
i = Hp

2 · E
m+n−p
i = 0 for all p > 0, i = 1, . . . , s,

Em+n
i = (−1)m+n−1.
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(c) We have the following intersection numbers between divisors and curves:

Hi · lj = δij,

Hi · ej = 0 for i = 1, 2, j = 1, . . . , s,

Ei · ej = −δij.

In particular this allows us to determine the numerical classes of curves on blowups, as
follows.

Corollary 1.2. Let C be the proper transform on Xm,n,s of a curve of bidegree (d1, d2) in
Pm × Pn with multiplicity mi at the point pi. Then the class of C in N1(Xm,n,s) is

d1l1 + d2l2 −
s∑

i=1

miei.

Proof. We have the intersection numbers

C ·Hi = li for i = 1, 2,

C · Ej = mj for j = 1, . . . , s.

Since the intersection pairing on Xm,n,s is perfect, the given formula then follows from
Proposition 1.1 (a) and (c).

In particular we deduce the following formula, which we use in Section 6. For any
divisor D on Xm,n,s, the class of D can be written in the form

d1H1 + d2H2 −
s∑

i=1

miEi, (1)

for some integers d1, d2, m1, . . . ,ms.

Corollary 1.3. On the variety Xm,n,s consider a divisor D with class (1). Then the top
self-intersection number of D is given by

Dm+n = dm1 d
n
2

(
m+ n

n

)
−

s∑
i=1

mm+n
i .

Virtual dimension and expected dimension

Given a divisor D on Xm,n,s, we can give a lower bound for the dimension of the linear
system |D|, obtained by a simple parameter count.
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Definition 1.4. Let D be a divisor on Xm,n,s with class (1). The virtual dimension of the
linear system |D| is the integer

vdim |D| =
(
m+ d1

m

)(
n+ d2

n

)
−

s∑
i=1

(
m+ n+mi − 1

m+ n

)
− 1.

The expected dimension of |D| is

edim |D| = max{−1, vdim |D|}.

Lemma 1.5. We have dim |D| ≥ edim |D|.

Proof. If di < 0, vdim |D| < 0 and |D| is empty, so the statement holds. If mi ≤ 0 then
vdim |D| = vdim |D +miEi| and |D| = (−mi)Ei + |D +miEi|, so the statement holds for
D if it holds for all divisors with mi ≥ 0.

Assume now that d1, d2,mi ≥ 0 for every 1 ≤ i ≤ s. Notice that a bidegree (d1, d2)
hypersurface of Pm×Pn is the zero locus of a bihomogeneous polynomial F(d1,d2) in n+m+2

variables that depends on
(
m+d1
m

)(
n+d2
n

)
parameters. For such a hypersurface, the passage

through a point with multiplicity mi corresponds to the vanishing of all partial derivatives
of F(d1,d2) of order mi − 1 and therefore it imposes

(
m+n+mi−1

m+n

)
linear conditions. Since

elements of the linear system |D| are in 1 − 1 correspondence with the elements of the
projectivisation of the vector space of such polynomials, we can conclude.

Later we will use the following description of the virtual dimension. This lemma is well
known to experts but we are not aware of a reference.

Lemma 1.6. For D a divisor of the form (1) with mi ≥ 0 for all i, the following relation
between virtual dimension and Euler characteristic holds:

vdim |D| = χ(X,OX(D))− 1.

Proof. Let D be a divisor with class d1H1 + d2H2 −
∑

imiEi where d1, d2, and the mi

are all nonnegative integers. We will prove the claim by induction on the natural number
M =

∑
imi.

If M = 0 then D = d1H1 + d2H2 and both sides of the claimed equality equal(
m+ d1

m

)(
n+ d2

n

)
− 1.

Now assume the equality holds for M = k − 1; we will prove it for M = k. Let D be
a divisor of the form (1) with M = k. Assume without loss of generality that m1 > 0,
and define D′ = D + E1: note that the divisor D′ has M = k − 1, so by our induction
hypothesis we have vdim |D′| = χ(X,OX(D′))− 1.
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On one hand we have

vdim |D′| − vdim |D| =
(
m+ n+m1 − 1

m+ n

)
−
(
m+ n+m1 − 2

m+ n

)
=

(
m+ n+m1 − 2

m+ n− 1

)
.

On the other hand, we can twist the ideal sheaf sequence for E1 by OX(D′) to get the
exact sequence

0→ OX(D)→ OX(D′)→ OE1(D
′|E1)→ 0

which gives

χ(X,OX(D′))− χ(E1, OE1(D
′|E1)) = χ(X,OX(D)).

Now E1
∼= Pm+n−1 and D′|E1

∼= OPm+n−1(m1 − 1) which implies

χ(E1, OE1(D
′|E1)) =

(
m+ n+m1 − 2

m+ n− 1

)
.

Using these expressions and the induction hypothesis we get

vdim |D| = vdim |D′| −
(
m+ n+m1 − 2

m+ n− 1

)
= χ(X,OX(D′))− 1−

(
m+ n+m1 − 2

m+ n− 1

)
= χ(X,OX(D′))− 1− χ(E1, OE1(D

′|E1))

= χ(X,OX(D))− 1.

Base locus lemmas

An important ingredient in our computations will be base locus lemmas showing that
effective divisor classes which violate certain numerical inequalities must contain a certain
fixed divisor in their base locus. The following lemma gives a convenient way to prove
several of these results.

Lemma 1.7. Let X be a smooth projective variety. Let C ∈ N1(X) be a curve class, and
let F be an irreducible reduced divisor on X such that irreducible curves with class C cover
a Zariski-dense subset of F . Let f = F · C, and assume that f < 0.

If D is an effective divisor class on X such that

D · C = d < 0

then the divisor F is contained in the base locus Bs(D) with multiplicity at least dd/fe.
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Proof. Since D · C < 0, every curve in the class C must be contained in every effective
divisor in the class D, so F ⊂ Bs(D). Now replace D with D− F and continue: the same
argument applies to D − kF as long as d− kf < 0.

In particular we immediately deduce base locus lemmas for two kinds of fixed divisors
on our varieties:

Lemma 1.8. On the variety Xm,n,s consider an effective divisor D with class d1H1+d2H2−∑s
i=1 miEi Then:

(a) for each i, the exceptional divisor Ei is contained in Bs(D) with multiplicity at least
max(0,−mi);

(b) in the case m = 1, the unique effective divisor Fi with class H1 − Ei is contained in
Bs(D) with multiplicity at least max(0,mi − d2).

Proof. To prove (a), apply Lemma 1.7 with C = ei, the class of a line in Ei. Note that
Ei · ei = −1.

To prove (b), apply Lemma 1.7 with C = l2 − ei. This is the class of the proper
transform on X1,n,s of any line in a fibre of P1 × Pn → P1 which passes through pi. These
lines cover the fibre, hence their proper transforms cover the proper transform of the fibre.
Note that (H1 − Ei) · (l2 − ei) = −1.

Effective cones of del Pezzo surfaces

In this subsection we record the effective cones of various del Pezzo surfaces. These cones
are described in standard references such as [Man86]. For this paper, it will be convenient
to view these surfaces as blowups of P1 × P1 rather than of P2. In our notation, X1,1,s

denotes a del Pezzo surface of degree 8− s.

Proposition 1.9. The effective cone Eff(X1,1,5) is given by the generators below left and
the inequalities below right.

H1 H2 E1 E2 E3 E4 E5

0 0 1 0 0 0 0
1 0 −1 0 0 0 0
1 1 −1 −1 −1 0 0
2 1 −1 −1 −1 −1 −1

d1 d2 m1 m2 m3 m4 m5

1 0 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 2 1 1 1 0 0
1 2 1 1 1 1 0
1 3 1 1 1 1 1
2 2 2 1 1 1 0
2 2 2 1 1 1 1
2 3 2 2 1 1 1
3 3 2 2 2 2 1
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Proposition 1.10. The effective cone Eff(X1,1,6) is given by the generators below left and
the inequalities below right.

H1 H2 E1 E2 E3 E4 E5 E6

0 0 1 0 0 0 0 0
1 0 −1 0 0 0 0 0
1 1 −1 −1 −1 0 0 0
2 1 −1 −1 −1 −1 −1 0
2 2 −2 −1 −1 −1 −1 −1

d1 d2 m1 m2 m3 m4 m5 m6

1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0
1 2 1 1 1 1 0 0
1 3 1 1 1 1 1 0
1 3 1 1 1 1 1 1
2 2 2 1 1 1 0 0
2 2 2 1 1 1 1 0
2 3 2 2 1 1 1 0
2 3 2 2 1 1 1 1
2 4 2 2 2 1 1 1
3 3 2 2 2 2 1 0
3 3 2 2 2 2 1 1
3 3 3 2 1 1 1 1
3 4 2 2 2 2 2 2
3 4 3 2 2 2 1 1
3 5 3 2 2 2 2 2
4 4 3 3 2 2 2 1
4 5 3 3 3 2 2 2
5 5 3 3 3 3 3 2

Writing cones Let us spell out the conventions we use in writing effective cones in the
tables in Propositions 1.9 and 1.10 above, and subsequently in this paper. Each effective
cone we compute is described in two equivalent ways: by a list of generating classes, and
by a list of defining inequalities.

For the table giving the list of generators, a row of the table of the form (a1 a2 b1 · · · bn)
corresponds to a generator a1H1 + a2H2 +

∑
i biEi of the effective cone. For example, in

the tables of Proposition 1.10 above, Row 3 of the left table corresponds to the generator

H1 +H2 − E1 − E2 − E3

For the tables giving the list of defining inequalities, a row with entries (α1 α2 β1 · · · βn)
corresponds to an inequality α1d1 +α2d2 ≥

∑
i βimi which must be satisfied by an effective

divisor written in the form (1). So for example in Proposition 1.10 above, Row 3 of the
right table above corresponds to an inequality

d1 + d2 ≥ m1 +m2
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A key point to stress is that these lists should be read up to permutation: for a given
generator written in the list, all generators obtained by suitable permutations are also
included in the list, and similarly for inequalities. So for example, as well as the class and
inequality written above, the lists of generators and inequalities respectively for Eff(X1,1,6)
also include all of the following:

H1 +H2 − Ei − Ej − Ek,

d1 + d2 ≥ mi +mj,

where i, j, k are distinct indices in the set {1, . . . , 6}. Finally, if m = n such as in Proposi-
tions 1.9 and 1.10, also H1, H2 (resp. d1, d2) can be swapped in the list of generators (resp.
inequalities).

2 The cone method

Let Xm,n,s be the blowup of Pn × Pm in s points in general position. In this section, we
outline a method that aims to determine Eff(Xm,n,s) from several pieces of information:
knowledge of the effective cone Eff(Xm,n,s−1), base locus lemmas for fixed divisors, and
the effective cones of certain subvarieties. In later sections, this method will be applied
recursively to determine the effective cones of X1,n,s for n = 2, 3 and s ≤ 6.

Using the notation of Section 1, we write a divisor D in Xm,n,s as

D = d1H1 + d2H2 −
s∑

i=1

miEi,

where d1, d2,m1, . . . ,ms are integers.
The method consists of the following steps.

Step 1 First of all, notice that D+miEi can be thought of as a divisor on Xm,n,s−1. As-
sume that we know the inequalities cutting out the effective cone of Eff(Xm,n,s−1).
These inequalities form a set of necessary and sufficient conditions, in the vari-
ables d1, d2, m1 . . . ,mi−1,mi+1, . . . ,ms, for D +miEi to be effective on Xm,n,s−1,
and a set of necessary conditions for D to be effective on Xm,n,s, thanks to the
obvious relation D + miEi ≥ D. Therefore, letting i vary between 1 and s, we
obtain a list of inequalities in d1, d2,m1, . . . ,ms giving rise to a cone that contains
Eff(Xm,n,s).

Step 2 Secondly, for an extremal ray of the cone obtained in Step 1 that is spanned
by a fixed divisor F , we will compute a base locus lemma for F , namely we will
give an integer KF (D), depending on F and on D, such that, if positive, F is
contained in the base locus of D at least KF (D) times. Then we shall add the
inequality KF (D) ≤ 0 to the list of Step 1, giving rise to a smaller cone. Notice
that all effective divisors that are excluded by the new inequality must contain F
as a component.
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Step 3 Finally, we compute the ray generators of the cone determined in Step 2, po-
tentially identifying new extremal rays. If we can prove that the latter are all
effective, then we add to the list the rays generated by the fixed divisors F ex-
cluded in Step 2, and we obtain a complete list of generators of Eff(Xm,n,s).

Step 4 When the output of Step 3 has some non effective extremal rays, we need to refine
the starting cone by adding additional necessary conditions for the effectivity of
a general divisor D. The key idea here is that if M is a movable divisor on
Xm,n,s and if |D|M | = ∅, then |D| = ∅ too. Therefore the inequalities describing
the effective cone of the divisor M will yield necessary conditions for D to be
effective. These conditions will be added to those from Step 1. This will have
the effect of shrinking the starting cone, and we run the procedure again.

Computationally, we implement this method for a given variety using the software pack-
age Normaliz [BIR+]. For each variety Xm,n,s that we consider, our set of supplementary
files contains 4 Normaliz files with filenames of the form Xmns-*.* and with the following
contents:

• in the input file Xmns-ineqs.in we collect the inequalities obtained in Step 1, Step
2 and Step 4;

• the output file Xmns-ineqs.out then computes, among other things, a list of gener-
ators of the restricted cone cut out by all these inequalities;

• in the input file Xmns-gens.in we collect the generators of the restricted cone from
the previous step, together with all known fixed divisor classes on Xm,n,s, following
Step 3;

• finally, the output file Xmns-gens.out computes the output of Step 3, giving both
a list of generators and a list of defining inequalities.

In this article we will apply this method to compute the effective cones of the blowup
of X1,m,s, with m = 2, 3, s ≤ 6, but we believe this can be applied in more general settings.

3 Blowups of P1 × P2

In this section we consider the threefolds X1,2,s, the blowup of P1×P2 in s points in general
position.

1 or 2 points

The blowup of P1×P2 in one or two points is a smooth toric threefold, therefore the cones
of divisors are generated by the boundary divisors.
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Theorem 3.1. The effective cone of X1,2,1 is given by the list of generators below left and
inequalities below right:

H1 H2 E1

0 0 1
1 0 −1

d1 d2 m1

1 0 0
0 1 0
1 1 1

The effective cone of X1,2,2 is given by the list of generators below left and inequalities
below right:

H1 H2 E1 E2

0 0 1 0
1 0 −1 0
0 1 −1 −1

d1 d2 m1 m2

1 0 0 0
0 1 0 0
1 1 1 0
1 2 1 1

Proof. The two tables on the left hand side contain the list of boundary divisors: they
span the extremal rays of the effective cone. The lists on the right hand side are computed
by duality, we leave the details to the reader.

Remark 3.2. All extremal rays of the effective cone of divisors of X1,2,2 are fixed. Excep-
tional divisors and divisors H1 −Ei are fixed, cf. Lemma 1.8. Finally, consider the image
of pi, pj under the projection onto the second factor: H2 − Ei − Ej is the pre-image of the
line determined by these points and is therefore a fixed divisor isomorphic to the blowup of
P1 × P1 at two points in general position.

Base locus lemmata for degree one divisors

In Lemma 1.8(b), we computed a lower bound for the multiplicity of containment of the
fixed divisor H1−Ei in the base locus of an effective divisor. We now do the same for the
fixed fivisor H2 − Ei − Ej.

Lemma 3.3. Let D = d1E1 + d2E2 −
∑s

i=1 miEi be an effective divisor, with s ≥ 2. The
divisor H2−Ei−Ej is contained in Bs(D) with multiplicity at least max{0,mi+mj−d1−d2}.

Proof. Without loss of generality, we may assume that i = 1, j = 2. Under the assumption
that mi ≥ 0 for every i = 1, . . . , s, it is enough to prove the statement for divisors on X1,2,2,
namely for D = d1H1 + d2H2 −m1E1 −m2E2. If m1 +m2 − d1 − d2 ≤ 0 the statement is
trivial, therefore we will assume that m1 +m2 − d1 − d2 > 0.

Recall from Remark 3.2, that the divisor F = H2 − E1 − E2 is isomorphic to X1,1,2

and its Picard group is generated by the classes l1, l2 and e1, e2 (see Proposition 1.1). The
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surface is swept out by the irreducible curves with class C = l1 + l2− e1− e2. We conclude
using Lemma 1.7, noticing that

F · C = −1

D · C = d1 + d2 −m1 −m2.

3 points

The first interesting case is s = 3 and it can be computed following the procedure outlined
in Section 2.

Theorem 3.4. The effective cone Eff(X1,2,3) is given by the list of generators below left
and inequalities below right:

H1 H2 E1 E2 E3

0 0 1 0 0
1 0 −1 0 0
0 1 −1 −1 0

d1 d2 m1 m2 m3

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
1 2 1 1 0
1 2 1 1 1

Proof. We apply the method of Section 2 (Step 1-2) with the following inputs:

• the pullback via the blowdown morphism X1,2,3 → X1,2,2 of the inequalities from
Theorem 3.1 cutting out the cone Eff(X1,2,2);

• the base locus inequalities corresponding to the fixed divisors Ei, H1−Ei, H2−Ei−Ej

from Lemmas 1.8 and 3.3.

The output is the cone of divisors cut out by the inequalities below right, and whose
extremal rays, computed using the Normaliz files X123-ineqs, are spanned by the divisors
in the table below left:

H1 H2 E1 E2 E3

0 1 0 0 0
0 1 −1 0 0
0 2 −1 −1 −1
1 0 0 0 0
1 1 −1 −1 0
1 1 −1 −1 −1

d1 d2 m1 m2 m3

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
1 2 1 1 0
1 2 1 1 1
0 0 −1 0 0
0 1 1 0 0
1 1 1 1 0
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The irreducible effective classes excluded by these inequalities are precisely Ei and
H1 − Ei and H2 − Ei − Ej, for all choices of i, j with i 6= j. Following Step 3, we add
these classes to the cone obtained above and we compute the extremal rays of the resulting
cone: the files X123-gens compute the list of extremal rays and inequalities displayed in
the statement of the theorem. All of them are represented by effective classes and this
allows us to conclude that this is the effective cone Eff(X1,2,3) as claimed.

We notice that the X1,2,3 behaves like the toric cases, namely there is no new generator
of the effective cone that did not already appear on X1,2,2.

Remark 3.5. The effective cone of X1,n,n+1 follows as an application of work of Hausen
and Süß [HS10], where the authors proved more general results on the Cox rings of alge-
braic varieties with torus actions. In particular, the action of (C∗)n on Pn extends to a
complexity-1 action on X1,n,n+1, and [HS10, Theorem 1.3] gives an explicit description of
the generators of the Cox ring, and hence the effective cone, in terms of this action.

4 points

We will follow the procedure outlined in Section 2 in order to describe the cone of effective
divisors of X1,2,4.

Theorem 3.6. The effective cone Eff(X1,2,4) is given by the list of generators below left
and inequalities below right:

H1 H2 E1 E2 E3 E4

0 0 1 0 0 0
1 0 −1 0 0 0
0 1 −1 −1 0 0
1 1 −1 −1 −1 −1

d1 d2 m1 m2 m3 m4

1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
1 2 1 1 0 0
1 2 1 1 1 0
1 3 1 1 1 1
2 2 1 1 1 1
2 3 2 1 1 1

Proof. We apply the method of Section 2 with the following inputs:

• the pullback via the blowdown morphism X1,2,4 → X1,2,3 of the inequalities from
Theorem 3.4 cutting out the cone Eff(X1,2,3);

• the base locus inequalities corresponding to the fixed divisors Ei, H1−Ei, H2−Ei−Ej

from Lemmas 1.8 and 3.3.

A minimal set of generators of the so obtained cone is computed using the Normaliz files
X124-ineqs. The irreducible effective classes excluded by these inequalities are precisely
Ei and H1 − Ei and H2 − Ei − Ej. We now add these classes to the cone obtained above
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and we compute the extremal rays of the resulting cone using the files X124-gens. As a
result, we obtain the lists of extremal rays and inequalities displayed in the statement of
the theorem. Observe that the divisor H1 + H2 −

∑4
i=1Ei is effective: this follows from

Lemma 1.5 since its virtual dimension is 2 · 3− 4− 1 = 1. Therefore all extremal rays are
represented by effective classes, proving that this is the effective cone of X1,2,4.

This is the first interesting case that does not behave in a toric manner. Indeed we see
that the new generator H1 + H2 −

∑4
i=1 Ei, that is not inherited from X1,2,s, with s ≤ 3,

appears.

5 points

We will follow the procedure outlined in Section 2 in order to describe the cone of effective
divisors of X1,2,5. We start by proving a general statement which we will use now in the
case n = 2 and, in Section 5, in the case n = 3.

Lemma 3.7. A smooth divisor of bidegree (1, 1) in P1×Pn is isomorphic to the blowup of
Pn in a linear space of codimension 2.

More generally, given a set of s points in general position in P1×Pn, let Vs be a divisor
of bidegree (1, 1) passing through all the points, and Ṽs its proper transform on X1,n,s. Then

Ṽs is isomorphic to the blowup of Pn in a linear space of codimension 2 and s points.

Proof. The proper transform Ṽs is isomorphic to the blowup of Vs in s points, so the second
statement follows directly from the first.

To prove the first statement, let V be a smooth divisor of bidegree (1, 1) on P1 × Pn.
We can choose coordinates [u, v] on P1 so that V is defined by a bihomogeneous equation

uL1 + vL2 = 0,

where and L1 and L2 are independent linear forms in x0, . . . , xn. The projection map
π : V → Pn is an isomorphism outside the locus

{[x0, . . . , xn] ∈ Pn | L1(x0, . . . , xn) = L2(x0, . . . , xn) = 0} ,

which is a codimension 2 linear space Λ ⊂ Pn. Over each point of Λ the fibre of π is P1, so
π−1(Λ) is a (Cartier) divisor in V , and therefore π factors through the blowup BlΛ(Pn)→
Pn. Since both varieties are smooth of Picard number 2, Zariski’s Main Theorem shows
that V → BlΛ(Pn) is an isomorphism.

Proposition 3.8. The divisors H1 + H2 −
∑5

i=1Ei and 2H2 −
∑5

i=1 Ei are effective and
fixed on X1,2,5 and they are both isomorphic to a degree 3 del Pezzo surface of type X1,1,5.

Proof. Both divisors have virtual dimension 0, hence the first statement holds by Lemma
1.5. One can show that the divisors are fixed by direct computation: it is indeed enough to
show that 5 randomly chosen points impose 5 independent conditions to the linear system
of surfaces in P1 × P2 of bidegree (1, 1) and (0, 2) respectively.

14



For the divisor H1 + H2 −
∑5

i=1Ei, the second statement follows from Lemma 3.7.
The divisor 2H2 −

∑5
i=1Ei is the proper transform of a surface S ⊂ P1 × P2 which is the

preimage of a smooth conic in P2. Since S is isomorphic to P1 × P1 the result follows.

We are now ready to prove our main statement.

Theorem 3.9. The effective cone Eff(X1,2,5) is given by the list of generators below left
and inequalities below right:

H1 H2 E1 E2 E3 E4 E5

0 0 1 0 0 0 0
0 1 −1 −1 0 0 0
1 0 −1 0 0 0 0
1 1 −1 −1 −1 −1 −1
0 2 −1 −1 −1 −1 −1

d1 d2 m1 m2 m3 m4 m5

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 1 0 0 0 0
1 2 1 1 0 0 0
1 2 1 1 1 0 0
1 3 1 1 1 1 0
1 4 1 1 1 1 1
2 2 1 1 1 1 0
2 3 2 1 1 1 0
3 3 2 1 1 1 1
3 4 3 1 1 1 1

Proof. We apply the method of Section 2 with the following inputs:

• the pullback via the morphism X1,2,5 → X1,2,4 of the inequalities from Theorem 3.6
cutting out the cone Eff(X1,2,4);

• the base locus inequalities corresponding to the fixed divisors Ei, H1−Ei, H2−Ei−Ej

from Lemmas 1.8 and 3.3,

using the Normaliz files X125-ineqs. We then add the span of the classes Ei, H1−Ei, H2−
Ei −Ej to the so obtained cone, using the file X125-gens: we obtain the lists of extremal
rays and inequalities displayed in the statement of the theorem.

To conclude, we observe that the divisor H1 + H2 −
∑5

i=1Ei, and 2H2 −
∑5

i=1Ei

are effective by Proposition 3.8, and that all other divisors are effective by Theorem 3.6.
Therefore we can conclude that this is the list of extremal rays of the effective cone of
X1,2,5.

Base locus lemmata for degree two divisors

Although we have already computed Eff(X1,2,5), there are additional base locus lemmas for
divisors on this space that will be essential in computing the next case, namely Eff(X1,2,6).
In this subsection we prove these base locus lemmas, for the fixed divisors H1 + H2 −∑5

j=1 Eij and 2H2 −
∑5

j=1 Eij on X1,2,s, for s ≥ 5.
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Lemma 3.10. Fix s ≥ 5 and consider the threefold X1,2,s. For s = 5, the divisor H1+H2−∑5
i=1Ei is contained in the base locus of D = d1H1 + d2H2 −

∑5
i=1miEi with multiplicity

at least

max

{
0,

5∑
j=1

mij − d1 − 3d2,

⌈
5∑

j=1

mij −
3d1 + 5d2

2

⌉}
.

For s > 5, the divisor H1 + H2 −
∑5

j=1 Eij is contained in the base locus of D = d1H1 +
d2H2 −

∑s
i=1miEi, for 1 ≤ i1 < · · · < i5 < i6 ≤ s, with multiplicity at least

max

{
0,

5∑
j=1

mij − d1 − 3d2,

⌈
5∑

j=1

mij −
3d1 + 5d2

2

⌉
,

⌈
2
∑5

j=1mij +mi6 − 4d1 + 5d2

3

⌉}
.

Proof. We first prove the statement for divisors on X1,2,5, namely for D = d1H1 + d2H2 −∑5
i=1 miEi.
It follows from Proposition 3.8 that S̃1 = H1 + H2 −

∑5
i=1Ei is a degree 3 del Pezzo

surface, the blowup of P2 in 6 points in general position, with Picard group generated
by the class of a line h and the class of 6 exceptional divisors e, ei = Ei|S̃1

, i = 1, . . . , 5.
Now, for i = 1, 2, write (Hi|S̃1

) = aih − bie; since both are effective and irreducible, we
can assume ai ≥ bi ≥ 0. The following equations determine the values of a1, b1, a2, b2:
0 = H1

2|S̃1
= a2

1 − b2
1, 1 = H2

2|S̃1
= a2

2 − b2
2, 0 = H1H2|S̃1

= a1a2 − b1b2. This yields:

H1|S̃1
= h− e,

H2|S̃1
= h.

The restriction is D|S̃1
= (d1 + d2)h − d1e −

∑5
i=1miei. In order to prove the statement,

we consider two moving curve classes on S̃1, and for each of them we apply Lemma 1.7 to
obtain the claimed base locus multiplicity.

• Consider first of all class C1 = 3h − 2e −
∑5

i=1 ei, whose irreducible representatives
sweep out S̃1. Notice that

S̃1 · C1 =

(
H1 +H2 −

5∑
i=1

Ei

)
· C1 =

(
(h− e) + h−

5∑
i=1

ei

)
· C1 = −1

D|S̃1
· C1 = d1 + 3d2 −

5∑
i=1

mi,

so we can conclude by applying Lemma 1.7 that the integer
∑5

j=1mij − d1 − 3d2 is

a lower bound for the multiplicity of containment of S̃1 in the base locus of D.

• Secondly, consider the curve class C2 = 5h− 2e− 2
∑5

i=1 ei, whose irreducible repre-
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sentatives sweep out S̃1. We conclude observing that

S̃1 · C2 =

(
(h− e) + h−

5∑
i=1

ei

)
· C2 = −2

D|S̃1
· C2 = 3d1 + 5d2 − 2

5∑
i=1

mi.

and applying Lemma 1.7. we obtain that
⌈

2
∑5

i=1 mi−3d1−5d2
2

⌉
is a lower bound for the

multiplicity of containment of S̃1 in the base locus of D.

This completes the proof of the first statement.
Under the assumption that mi ≥ 0 for every i = 1, . . . , s, it is enough to prove the

second statement for divisors on X1,2,6. Without loss of generality we may assume that
the fixed bidegree (1, 1) surface is based at the first five points: S̃1 = H1 +H2 −

∑5
i=1 Ei.

Consider the fixed fibral curve l1 − e6, that intersects S̃1 transversally in a point q. Since
the points p1, . . . , p6 are in general position in P1 × P2, then so are the points p1, . . . , p5, q
in the del Pezzo surface S1 of class H1 + H2, whose blow-up is S̃1. Let us consider the
blow-up X̃1,2,6 of X1,2,6 at q with exceptional divisor Eq, and the induced blow-up of S̃1,

that we will denote by ˜̃S1. The latter is a degree-2 del Pezzo surface, whose Picard group
is generated by eq = Eq| ˜̃S1

and by h, e1, . . . , e5 that, abusing notation, are the pull-backs

of the corresponding classes on S̃1.
Now, consider a divisor D with class d1H1 + d2H2 −

∑6
i=1miEi on X1,2,6. If P1 and P2

are general divisors of class H2 − E6, then we compute

(D|P1) · ((P2)|P1) = D · P1 · P2

= D · (l1 − e6)

= d1 −m6.

This means that if m6 > d1, then the curve (P2)|P1 = l1 − e6 is contained in D|P1 at least
m6 − d1 times. Therefore D|P1 has multiplicity at least m6 − d1 at every point of l1 − e6,

and hence so too does D. So if D̃ is the strict transform of D, then

D̃| ˜̃S1
= (d1 + d2)h− d1e−

5∑
i=1

miei −mqeq,

with mq ≥ m6 − d1. We will show that
⌈

2
∑5

i=1 mi+m6−4d1−5d2
3

⌉
is a lower bound for the

multiplicity of containment of ˜̃S1 in the base locus of D̃. In order to do so, we consider the

curve class C3 = 5h− 2e− 2
∑5

i=1 ei − eq, whose irreducible representatives sweep out ˜̃S1.
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We have

˜̃S1 · C3 =

(
(h− e) + h−

5∑
i=1

ei − eq

)
· C3 = −3

D̃| ˜̃S1
· C3 ≤ 3d1 + 5d2 − 2

5∑
i=1

mi − (m6 − d1).

Using Lemma 1.7 we obtain that ˜̃S1 is in the base locus of D̃, and hence S̃1 is in the base

locus of D, at least
⌈

2
∑5

i=1 mi−m6−4d1−5d2
3

⌉
times for divisors with m6 > d1.

In order to conclude, we need to consider the case m6 ≤ d1. We claim that under this
assumption the following holds:

2
∑5

i=1mi +m6 − 4d1 − 5d2

3
≤ max

{
0,

5∑
j=1

mij − d1 − 3d2,
2
∑5

i=1mi − 3d1 − 5d2

2

}
.

In order to prove the claim, we consider two cases. First of all, let 2
∑5

j=1mij−3d1−5d2 ≤ 0.
In this case

2
5∑

i=1

mi +m6 − 4d1 − 5d2 =

(
2

5∑
j=1

mij − 3d1 − 5d2

)
+ (m6 − d1) ≤ 0

and the claim holds. Otherwise, if 2
∑5

j=1mij − 3d1 − 5d2 ≥ 0, then

3

(
2

5∑
j=1

mij − 3d1 − 5d2

)
− 2

(
2

5∑
i=1

mij +m6 − 4d1 − 5d2

)

=

(
2

5∑
j=1

mij − 3d1 − 5d2

)
+ 2(d1 −m6)

≥0,

and the claim holds in this case too.

Lemma 3.11. The divisor 2H2 −
∑5

j=1Eij is contained in the base locus of D = d1H1 +

d2H2 −
∑s

i=1miEi, for 1 ≤ i1 < · · · < i5 ≤ s, with multiplicity at least max{0,
∑5

j=1mij −
3d1 − 2d2}.

Proof. Under the assumption that mi ≥ 0 for every i = 1, . . . , s, it is enough to prove the
statement for divisors on X1,2,5, namely for D = d1H1 +d2H2−

∑5
i=1miEi. We will assume

that
∑5

i=1 mi − 3d1 − 2d2 > 0, otherwise the claim is trivial.
It follows from Proposition 3.8 that S̃2 = 2H2 −

∑5
i=1Ei is a X1,1,5, with Picard group

generated by the two rulings h1, h2 and by 5 exceptional curves ei = Ei|S̃2
, i = 1, . . . , 5.
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Now, for i = 1, 2, write Hi|S̃2
= aih1 + bih2; with ai, bi ≥ 0. Since Hi

2|S2 = 0, for
i = 1, 2, and H1H2|S2 = 2, we obtain that one of the following sets of relations holds:
aibj = 2, aj = bi = 0 for either (i, j) = (1, 2) or (i, j) = (2, 1). Without loss of generality,
we may choose the first set. From the equality (2H1 +H2)|S̃2

= 2h1 + 2h2, cf. the proof of
Proposition 3.8, we obtain that a1 = 1, b2 = 2. This yields:

H1|S̃2
= h1,

H2|S̃2
= 2h2.

The restriction is D|S̃2
= d1h1 + 2d2h2 −

∑5
i=1miei. Consider the moving curve class

C = h1 + 3h2 −
∑5

i=1 ei, whose irreducible representatives sweep out S̃2 (cf. Proposition
1.9). Since

S̃2 · C =

(
2H2 −

5∑
i=1

Ei

)
· C =

(
4h2 −

5∑
i=1

ei

)
· C = −1

D|S̃2
· C = 3d1 + 2d2 −

5∑
i=1

mi,

we can conclude applying Lemma 1.7.

6 points

In this subsection we will compute our final example in dimension 3, the effective cone of
X1,2,6. To do so, we first identify a final set of fixed divisors and give the associated base
locus inequality.

Lemma 3.12. The divisor class H1+4H2−3E1−2
∑6

i=2 Ei−Ej is effective and fixed. The
unique effective divisor F in this class is irreducible. It is contained in the base locus of
D = d1H1 +d2H2−

∑6
i=1miEi with multiplicity at least max{0, 2m1 +

∑6
i=2 mi−3d1−3d2}.

Proof. Consider the divisor class F = H1 +4H2−3E1−2
∑6

i=2Ei. The formula for virtual
dimension in Defintion 1.4 gives vdim |F | = −1, suggesting that F has no global sections.

However, consider the linear system |G| corresponding to the divisor class G = H1 +
4H2 − 3E1. We claim that dim |G| > vdim |G|, and therefore dim |F | > vdim |F | also, so
that we can conclude that dim |F | ≥ 0. In order to prove the claim, we assign coordinates
x0, x1; y0, y1, y2 to P1;P2 and we consider the generic degree (1, 4) form

f(x0, x1, y0, y1, y2) = x0(a0000y
4
0 + a0001y

3
0y1 + a0002y

3
0y2 + · · ·+ a2222y

4
2)+

x1(b0000y
4
0 + b0001y

3
0y1 + b0002y

3
0y2 + · · ·+ b2222y

4
2).

Imposing a triple point at p1 = ([1 : 0], [1 : 0 : 0]) corresponds to imposing that the second
order derivatives of f vanish when evaluated at (1, 0, 1, 0, 0). However, since our form has
degree 1 in the variables x0, x1, the second derivative ∂2f/∂x2

1 is automatically zero, and
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so the triple point at p1 imposes 9 conditions rather than 10 as in the formula of Definition
1.4. Therefore dim |G| > vdim |G| as claimed.

Next we claim that any effective divisor F in the class H1 + 4H2 − 3E1 −
∑6

i=2Ei is
irreducible. To see this, note that since F ·l1 = 1, the divisor F contains a unique irreducible
component which dominates P2. Write F = F1 + F2 where F1 is the unique irreducible
component which dominates P2, and F2 is a sum of irreducible components contracted by
π2 : X → P2. The class of F2 must be a sum of classes of the form Ei, H2 − Ei − Ej, and
2H2−

∑5
j=1 Eij . Assuming F2 is nonzero, it is then easy to find a curve class C of the form

3l1 + 5l2 −
∑5

j=1 Eij such that F2 · C > F · C, and hence F1 · C < 0. By Lemma 3.10 this

implies that F1 is a divisor of the form H1 + H2 −
∑5

k=1 Eik , but for any such divisor we
find that F − F1 has the form 3H2 − 2Ei1 − 2Ei2 −Ei3 − · · · −Ei6 . Since there is no cubic
curve in P2 with 2 double points and passing through 4 other general points, F −F1 is not
effective. So we must have that F2 = 0, hence F is irreducible as required.

To prove that F is fixed and the claimed multiplicity of containment holds, we apply
Lemma 1.7 with the curve class C = 3l1 + 3l2 − 2e1 −

∑6
i=2 ei. We compute(

H1 + 4H2 − 3E1 − 2
∑
i

Ei

)
· C = 15− 6− 10 = −1.

Therefore it suffices to prove that irreducible curves of class C sweep out a divisor on X1,2,6,
which must then be F .

Let Γ be an irreducible cubic curve in P2 with a node at π(p1) and passing through the
points π(pi) for i = 2, . . . , 6. There is a 1-parameter family of such curves, sweeping out
P2. Now let

ν : P1 × P1 → P1 × Γ ⊂ P1 ⊂ P2

be the product of the identity map with the normalisation of Γ. Under this map, a curve
of bidegree (a, b) in P1×P1 maps to a curve of bidegree (a, 3b) in P1×P2. The preimages of
the 6 points p1, . . . , p6 give us 7 points q1, q̃1, . . . , q6 in P1×P1 such that ν(q1) = ν(q̃1) = p1

and ν(qi) = pi for i = 2, . . . , 6. Counting parameters, we see that there is a curve C ′ of
bidegree (3, 1) through these 7 points. Moreover, such a curve must be irreducible, since
by generality a curve of bidegree (a, 0) can pass through at most a points and a curve of
bidegree (0, 1) can pass through at most 2 points q0 and q̃0. The image of C ′ in P1 × P2

is then an irreducible curve of bidegree (3, 3) through the 6 points p1, . . . , p6, and since
the map ν identifies the P1-rulings through q0 and q̃0, the image C has a node at p1. The
proper transform of C ′ on X1,2,6 is then an irreducible curve in the class C. By construction
π2(C) = Γ, so as we vary Γ to sweep out P2 these irreducible curves of class C then sweep
out a divisor on X1,2,6.

Remark 3.13. Laface and Moraga [LM16] introduced the fibre-expected dimension for
linear systems of divisors on blowups of (P1)n, providing a lower bound for the dimen-
sion that improves the one given by the virtual dimension. This takes into account that
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(the proper transforms after blowing up the points of) certain fibres of the natural pro-
jections (P1)n → (P1)r are contained with multiplicity in the base locus of the divisors,
whenever the multiplicities are large enough with respect to the degrees. In algebraic terms,
this corresponds to observing that certain partial derivatives of the multidegree polynomi-
als corresponding to the linear systems vanish identically, therefore they should not give a
contribution to the dimension count.

Their approach can be used verbatim in the case of blowups of P1×Pn, where each fixed
line Ci = l1−ei is contained at least −D ·Ci times in the base locus of D and, if D ·Ci ≥ 2,
this gives a contribution to the dimension count.

In particular the argument proposed in the proof of Lemma 3.12 to show that the divisor
H1 + 4H2− 3E1 on X1,2,s has dimension strictly larger than expected is a generalisation of
Laface’s and Moraga’s idea.

To compute the effective cone of X1,2,6, we require one more restriction on the classes
of effective divisors. To obtain this, consider a movable divisor M given as the proper
transform of a general bidegree (2, 1) surface S in P1 × P2 containing all six points. The
following lemma describes the geometry of M .

Lemma 3.14. A smooth surface S of bidegree (2, 1) in P1 × P2 is isomorphic to P1 × P1.

Proof. Using adjunction we see that −KS = 2H2|S, so −KS is 2-divisible in Pic(S), and
we also find that (−KS)2 = 8. So if we can prove that −KS is ample, then S is del Pezzo
of degree 8 with −KS 2-divisible, hence it must be P1 × P1.

To prove that −KS is ample, it is enough to prove that, for a general S as in the state-
ment the projection S → P2 is finite. Let [u, v] and [x, y, z] be homogeneous coordinates
on P1 and P2 respectively. Then S is given by an equation

F (u, v, x, y, z) = u2Λ1 + uvΛ2 + v2Λ3 = 0,

where the Λi are linear forms in x, y, z. For a point p ∈ P2, the fibre of S → P2 over
p is infinite if and only if Λi(p) = 0 for i = 1, 2, 3. We claim that if the surface S is
nonsingular, the set of such p is empty, and therefore S → P2 is finite as required.

To prove the claim, suppose for contradiction that the Λi are linear forms in x, y, z
with a common zero p ∈ P2. We will prove that S must have a singular point.

By changing coordinates in P2 we can assume

Λ1 = x, Λ2 = x+ y, Λ3 = y,

so that S is defined by the equation

F (u, v, x, y, z) = u2x+ v2y + uv(x+ y) = 0.

Note that S contains the line {
([u, v], [0, 0, 1]) | [u, v] ∈ P1

}
.
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Computing partial derivatives, we find

∂F

∂u
= 2ux+ v(x+ y),

∂F

∂v
= 2vy + u(x+ y),

∂F

∂x
= u2 + uv,

∂F

∂y
= v2 + uv,

∂F

∂z
= 0,

and therefore the surface S is singular at the point ([1,−1], [0, 0, 1]), as required.

Corollary 3.15. The divisor class 2H1 + H2 −
∑6

i=1Ei is movable on X1,2,6. Moreover
the generic element M of its linear system is isomorphic to X1,1,6.

Proof. By Lemma 3.14 we see that a general such M is the the blowup of P1 × P1 in 6
points, in other words it is isomorphic to X1,1,6.

For every j = 1, . . . , 6, we have

M = (H1 − Ej) +

(
H1 +H2 −

6∑
i=1

Ei + Ej

)
.

Since M is linearly equivalent to a sum of fixed divisors in multiple ways, and there is no
common summand in these decompositions, we can conclude that M is movable.

Theorem 3.16. The effective cone Eff(X1,2,6) is given by the list of generators below left
and inequalities below right:
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H1 H2 E1 E2 E3 E4 E5 E6

0 0 1 0 0 0 0 0
0 1 −1 −1 0 0 0 0
1 0 −1 0 0 0 0 0
1 1 −1 −1 −1 −1 −1 0
0 2 −1 −1 −1 −1 −1 0
1 4 −3 −2 −2 −2 −2 −2

d1 d2 m1 m2 m3 m4 m5 m6

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 2 1 1 0 0 0 0
1 2 1 1 1 0 0 0
1 3 1 1 1 1 0 0
1 4 1 1 1 1 1 0
1 4 1 1 1 1 1 1
2 2 1 1 1 1 0 0
2 3 2 1 1 1 0 0
3 3 2 1 1 1 1 0
3 4 3 1 1 1 1 0
3 4 3 1 1 1 1 1
3 6 3 3 1 1 1 1
4 3 2 1 1 1 1 1
4 4 2 2 2 1 1 1
5 5 3 2 2 2 2 1
6 5 2 2 2 2 2 2
6 6 4 2 2 2 2 1
7 6 3 3 2 2 2 2
7 7 3 3 3 3 2 2
7 8 3 3 3 3 3 3
9 10 5 5 3 3 3 3
10 10 4 4 4 4 4 3

Proof. Let M = 2H1 + H2 −
∑6

i=1Ei
∼= X1,1,6 be the movable divisor of Corollary 3.15.

Let h1, h2, e2, . . . , e6 be the generators of the Picard group of M . The intersection table
on M is given by the following. Set H1|M = ah1 + bh2, for a, b ≥ 0. From (H1H2)|M =
H1H2(2H1 +H2) = 1, we obtain a+ b = 1. From H2

1 |M = H1H2(2H1 +H2) = 0, we obtain
2ab = 0. Therefore either (a, b) = (1, 0) or (a, b) = (0, 1). We obtain:

H1|M = hi,

H2|M = h1 + h2,

Ei|M = ei, i = 1, . . . , 6,

where the second equality is a consequence of the adjunction formula.
Applying Proposition 1.10 to D|M , we obtain the following necessary conditions for the

effectivity of the divisors D on X1,2,6:
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d1 d2 m1 m2 m3 m4 m5 m6

1 3 1 1 1 1 0 0
1 4 1 1 1 1 1 1
2 5 2 2 1 1 1 1
3 6 2 2 2 2 1 1
3 6 3 2 1 1 1 1
3 7 3 2 2 2 1 1
3 7 2 2 2 2 2 2
3 8 3 2 2 2 2 2
4 8 3 3 2 2 2 1
4 9 3 3 3 2 2 2
5 10 3 3 3 3 3 2

We now apply the method of Section 2 with the following inputs:

• the above inequalities coming from the effectivity of D|M ;

• the pullback via the morphism X1,2,6 → X1,2,5 of the inequalities from Theorem 3.9
cutting out the cone Eff(X1,2,5);

• the base locus inequalities corresponding to the fixed divisors Ei, H1−Ei, H2−Ei−Ej

from Lemmas 1.8 and 3.3;

• the base locus inequalities corresponding to the fixed divisors H1 + H2 −
∑5

j=1 Eij

and 2H2 −
∑5

j=1Eij from Lemmas 3.10 and 3.11.

• the base locus inequalities corresponding to the fixed divisors H1+4H2−2
∑

j Ej−Ei

from Lemma 3.12.

The resulting cone is computed with the files X126-ineqs. To the list of extremal rays, we
add the rays spanned by the fixed divisors Ei, H1−Ei, H2−Ei−Ej, H1 +H2−

∑5
j=1Eij ,

2H2−
∑5

j=1 Eij , and H1 +4H2−2
∑6

j=1 Ej−Ei, for all index permutations. A minimal set
of generators and inqualities are obtained using the Normaliz files X126-gens. The former
is given by the list of divisors on the left hand side of the statement of this theorem. Since
they are all effective, they span the effective cone of X1,2,6.

4 Effective divisors on some threefolds

In this section we compute the effective cones of certain threefolds obtained by blowing up
either P3 or P1 × P2 in a line and a set of points. These results will be used as inputs in
the computations of Section 5, when we use our method to determine the cones Eff(X1,3,s)
for s ≤ 6.
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We start with the following result, which is a special case of [BDP16, Theorem 5.1]. In
the statement below Ei denotes the exceptional divisor of the blowup of a point in P3. The
Normaliz files X036-gens show that the cone spanned by the generators in the left-hand
table is indeed cut out by the inequalities in the right-hand table.

Theorem 4.1. Let X0,3,6 denote the blowup of P3 in a set of 6 points in general position.
The effective cone Eff(X0,3,6) is given by the list of generators below left and inequalities
below right:

H E1 E2 E3 E4 E5 E6

0 1 0 0 0 0 0
1 −1 −1 −1 0 0 0
2 −2 −1 −1 −1 −1 −1

d m1 m2 m3 m4 m5 m6

1 0 0 0 0 0 0
1 1 0 0 0 0 0
3 1 1 1 1 0 0
3 1 1 1 1 1 0
5 2 2 1 1 1 1
7 2 2 2 2 2 2

By blowing down one of the exceptional divisors we get the corresponding result for 5
points:

Corollary 4.2. The effective cone Eff(X0,3,5) is given by the list of generators below left
and inequalities below right:

H E1 E2 E3 E4 E5

0 1 0 0 0 0
1 −1 −1 −1 0 0

d m1 m2 m3 m4 m5

1 0 0 0 0 0
1 1 0 0 0 0
3 1 1 1 1 0
3 1 1 1 1 1

We will also need to consider certain threefolds which arise naturally as divisors in
P1 × P3; these threefolds can be described as blowups of P3 in a line and a set of points.
The following result helps in determining their effective cones.

Proposition 4.3. Let s ≥ 0. Let YL, s+1 denote the blowup of P3 in a line and s+ 1 points
in general position. Let ZL, s denote the blowup of P1 × P2 in a line contained in a fibre
of π1 : P1 × P2 → P1 and s points in general postion. Then there is a small modification
ϕ : YL, s+1 99K ZL, s.

Proof. It is enough to consider the case s = 0. For brevity we write Y , respectively Z,
instead of YL, 1 and ZL, 0. In this case both Y and Z are toric varieties, and we find the
necessary ϕ by considering their fans.

Consider the fan of P3 with ray generators e1, e2, e3, − (e1 + e2 + e3). Then Y is ob-
tained by star subdivision of the cones 〈e1, − (e1 + e2 + e3)〉 corresponding to a line, and
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〈e2, e3, − (e1 + e2 + e3)〉 corresponding to a point. The resulting fan Σ has rays

Σ(1) = {e1, e2, e3,− (e1 + e2 + e3) , − (e2 + e3) , −e1} .

On the other hand, the fan of P1 × P2 has ray generators e1, −e1, e2, e3, − (e2 + e3). This
fan contains a cone 〈−e1,− (e2 + e3)〉 corresponding to a line contracted by π1 : P1×P2 →
P1. Blowing up along this line corresponds to star subdivision of the cone above, resulting
in a fan Σ′ with ray generators

Σ′(1) = {e1, −e1, e2, e3,− (e2 + e3) ,− (e1 + e2 + e3)}
= Σ(1).

Since these two fans have the same rays, the evident rational map ϕ : Y 99K Z and its
inverse do not contract any torus-invariant divisor on either side, and therefore ϕ is a
small modification as required.

The small modification ϕ allows us to identify divisors on YL, s+1 and ZL, s, as follows. On
YL, s+1 let H denote the hyperplane class, and let Ei, respectively EL, denote the exceptional
divisor over the point pi, respectively the line L. On ZL, s let H1 and H2 denote the
pullbacks of the hyperplane classes from P1 and P2, and let Ei, respectively EL, denote the
exceptional divisor over the point qi, respectively the line L.

Lemma 4.4. Fixing bases for N1(Y ) and N1(Z) as follows:

N1(Y ) = 〈H, EL, E1, . . . , Es+1〉
N1(Z) = 〈H1, H2, EL, E1, . . . Es〉

the pushforward and pullback maps ϕ∗ : N
1(Y ) → N1(Z) and ϕ∗ : N1(Z) → N1(Y ) are

given by the following matrices:

ϕ∗ =


1 0 1
1 1 0 0
−1 −1 −1

0 Is×s

 ϕ∗ =


1 1 1
−1 0 −1 0
0 −1 −1

0 Is×s

 (2)

Proof. Again it suffices to prove this for s = 0. The matrix ϕ∗ above is obtained by
identifying classes on Y and Z which correspond to the same ray generators, as follows.
The classes H on Y and H1 +H2−EL on Z both correspond to the sum e1 + (−(e2 + e3))
of ray generators. The classes EL and H2 − EL both correspond to −(e2 + e3), which
corresponds to H2 − EL on Z. Finally, E1 and H1 − EL both correspond to −e1. The
matrix ϕ∗ is the inverse of ϕ∗.

Now we will compute the effective cone of YL, 5. We start with some base locus inequal-
ities. To state these we introduce the following notation. For i ∈ {1, . . . , 5}, let Π(L, i)
denote the plane in P3 spanned by L and pi For distinct i, j, k ∈ {1, . . . , 5}, let Π(i, j, k)
denote the plane in P3 spanned by pi, pj, pk.
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Lemma 4.5. Let D be a divisor on YL, 5 with class

dH −mLEL −
5∑

i=1

miEi.

Then the following divisors are contained in Bs(D) with the given multiplicities:

(a) EL with multiplicity at least max{0,−mL};

(b) Π(i, j, k) with multiplicity at least max{0,mi +mj +mk − 2d};

(c) Π(L, i) with multiplicity at least max{0,mL +mi − d}.

Proof. These all follow from Lemma 1.7 using the following curve classes:
(a): the class eL of a line in EL that is contracted by the blowdown. Note that

EL · eL = − 1.
(b): the class 2l− ei− ej − ek of the proper transform of a conic in P3 passing through

pi, pj, and pk. Note that Π(i, j, k) · (2l − ei − ej − ek) = − 1.
(c): the class l − eL − ei of the proper transform of a line in P3 intersecting L and

passing through pi. We have Π(L, i) · (l − eL − ei) = −1.

To obtain more bounds on the effective cone, once more we consider the restriction of
divisors to a suitable movable subvariety (Step 4 of the method outlined in Section 2). At
this point it is convenient to switch from considering effective divisors on YL, 5 to effective
divisors on ZL, 4; by Proposition 4.3 these can be identified. In fact we will first consider
divisors on ZL, 5, but the conditions we obtain will give us useful information on ZL, 4.

There is a 1-parameter family of surfaces of bidegree (2, 1) in P1×P2 containing the line
L and the points q1, . . . , q5. A general such surface S is smooth, and its proper transform
on ZL,S is a smooth surface S̃ of class

2H1 +H2 − EL −
5∑

i=1

Ei.

By Lemma 3.14 the surface S is isomorphic to P1 × P1, so S̃ is isomorphic to X1,1,5. The
effective cone of X1,1,5 was described in Proposition 1.9, and by restricting we can use this
information to obtain effectivity conditions for divisors on ZL, 5. To do this, we first need to

record the following facts about restrictions of divisors on ZL, 5 to S̃. Since S̃ is isomorphic
to X1,1,5, we have

N1(S̃) = 〈h1, h2, e1, . . . , e5〉,

where h1 and h2 are the classes of the two rulings of S ∼= P1 × P1 and the ei are the
exceptional curves of the blowups. Let us fix notation by choosing h1 to be the ruling of
S containing the line L. Then we have
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Lemma 4.6. The restriction map N1(ZL, 5)→ N1(S̃) is given by:

H1 7→ h1

H2 7→ h1 + h2

EL 7→ h1

Ei 7→ ei (i = 1, . . . , 5).

Proof. The first two restrictions can be computed on S. Since S has class 2H1 + H2 this
restriction of H1 to S is a curve of class (2H1 + H2) ·H1 = H1 ·H2, which is a line in the
ruling h1. The restriction of H2 to S is a curve of class (2H1 +H2) ·H2; this is an effective
class on S with selfintersection (2H1 +H2) ·H2

2 = 2, so it must equal h1 + h2.

The exceptional divisor EL meets S̃ in a smooth curve C; near C the blow-down map
S̃ → S is an isomorphism which maps C to the line L ⊂ S, and therefore C is a curve in
the class h1.

The restrictions of the remaining exceptional divisors are clear.

We can now put together the necessary ingredients to determine the effective cone of
the variety YL,5.

Theorem 4.7. The effective cone Eff(YL,5) is given by the list of generators below left and
inequalities below right:

H EL E1 E2 E3 E4 E5

0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 −1 −1 0 0 0 0
1 0 −1 −1 −1 0 0
2 −1 −1 −1 −1 −1 −1
5 −1 −3 −3 −3 −3 −3

d mL m1 m2 m3 m4 m5

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
2 1 1 1 0 0 0
3 0 1 1 1 1 0
3 0 1 1 1 1 1
3 2 1 1 1 0 0
3 2 1 1 1 1 0
4 2 2 1 1 1 1
4 3 1 1 1 1 1
5 3 2 2 1 1 1
6 3 2 2 2 2 1

Proof. We apply the method of Section 2 with the following inputs:

• the base locus inequalities from Lemma 1.8 and Lemma 4.5, corresponding to the
fixed divisors Ei, EL, Π(i, j, k), and Π(L, i);

• the pullback via the map YL, 5 → X0,3,5 of the inequalities from Corollary 4.2 cutting
out the cone Eff(X0,3,5);
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• the pullback via the restriction map N1(ZL,5)→ N1(S̃) from Lemma 4.6 of inequal-
ities from Lemma 1.9 cutting out the cone Eff(X1,1,5).

Note that the last bullet point gives inequalities bounding Eff(ZL, 5). We convert these
into inequalities bounding Eff(YL,6) by using the dual of the map ϕ∗ given in (2). These
inequalities turn out not to involve one of the multiplicities mi, and so we can view them
as inequalities on Eff(YL,5).

The Normaliz files YL5-ineqs compute the cone defined by these inequalities. We then
add the classes of the fixed divisors listed in the first bullet point above, using the files
YL5-gens, to obtain the list of extremal rays and inequalities shown in the tables above.
It remains to show that all the extremal rays in the left table are effective.

The first 4 rows in the table correspond to effective divisors of type EL, Ei, Π(L, i), and
Π(i, j, k).

For Row 5, counting dimensions shows that there is a 1-parameter family of quadric
surfaces in P3 containing the line L and the 5 points: containment of L imposes 3 condi-
tions and passage through 5 points in general position imposes 5 conditions. The proper
transform of any such quadric has class

2H − EL −
5∑

i=1

Ei

which shows that Row 5 is effective.
It remains to deal with the final row of our table, that is to prove that the class

D = 5H − EL − 3
5∑

i=1

Ei

is effective. The virtual dimension of |D| is(
8

3

)
− 6− 5 · 10− 1 = −1

so this does not follow from a simple parameter count. Instead we will prove the this class
is effective by restriction to a suitable subvariety.

As already seen, there is a 1-parameter family of quadric surfaces in P3 containing the
line L and the 5 points. By generality of L and the points, every such quadric is smooth;
let Q be the proper transform on YL, 5 of any such quadric. Restricting D to Q gives the
short exact sequence of sheaves

0→ O(D −Q)→ O(D)→ O(D|Q)→ 0

and the corresponding long exact sequence of cohomology

0→ H0(Y,O(D −Q))→ H0(Y,O(D))→ H0(Q,O(D|Q))→ H1(Y,O(D −Q))→ · · ·
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Now Q has class 2H − EL −
∑

i Ei, so we get D − Q = 3H − 2
∑

i Ei which is not
effective since a cubic surface can be singular at no more than 4 points in general position.
So h0(Y,O(D −Q)) = 0.

On the other hand, according to [Pos14, Remark 11.1] we have H i(Y,O(D − Q)) = 0
for i ≥ 2, so

χ(Y,O(D −Q)) = h0(Y,O(D −Q))− h1(Y,O(D −Q)).

Using Lemma 1.6 we have

χ(Y,O(D −Q)) = vdim |D −Q|+ 1

= 20− 5 · 4 = 0,

so h0(Y,O(D −Q)) = h1(Y,O(D −Q)) = 0.
The exact sequence of cohomology above therefore gives an isomorphism

H0(Y,O(D)) ∼= H0(Q,O(D|Q)).

Proposition 1.9 tells us that D|Q = 4h1 + 5h2− 3
∑

iEi is effective, so we conclude that D
is effective also.

Remark 4.8. Since the class 5H − EL − 3
∑

iEi is a primitive generator of an extremal
ray of Eff(YL,5), it must be represented by an irreducible quintic surface S ⊂ P3. If R is
a twisted cubic incident to L and passing through p1, . . . , p5, we compute that S · R = −1.
so R is contained in D. As we move the point R ∩ L these twisted cubics sweep out an
irreducible surface, which must therefore equal S.

Using the linear map ϕ∗ given in (2) and its dual, we can restate this result in terms
of the variety ZL, 4; we will use the information in this form in the next section.

Corollary 4.9. The effective cone Eff(ZL,4) is given by the generators below left and the
inequalities below right.
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H1 H2 EL E1 E2 E3 E4

0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 −1 0 0 0
0 1 −1 0 0 0 0
0 1 0 −1 −1 0 0
1 1 −1 −1 −1 −1 0
2 4 −1 −3 −3 −3 −3

d1 d2 mL m1 m2 m3 m4

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 1 1 1 0 0 0
1 2 0 1 1 0 0
1 2 0 1 1 1 0
1 2 1 1 1 0 0
1 3 0 1 1 1 1
1 3 1 1 1 1 0
1 3 1 1 1 1 1
2 2 0 1 1 1 1
2 3 0 2 1 1 1
2 3 1 2 1 1 1
2 4 1 2 2 1 1
3 2 2 1 1 1 0
3 2 2 1 1 1 1
3 3 3 1 1 1 1
3 4 2 2 2 2 1
3 5 2 2 2 2 2

The effective cone of YL, 6

Finally for this section, we will consider YL, 6, the blowup of P3 in a line and 6 points. The
effective cone of this variety will be an important input into the computations of the next
section. To compute this effective cone, it will be necessary to use the small modification
described in Proposition 4.3 and obtain restrictions on divisors on both YL, 6 and ZL, 5;
putting together all the resulting restrictions, we can then find the effective cone.

We start with two more base locus lemmas.

Lemma 4.10. Given a class in N1(YL,6) of the form 2H−
∑6

i=1Ei−Ej, there is a unique
effective divisor Fj with the given class.

For a divisor D on YL,6 with class

dH −mLEL −
6∑

i=1

miEi,

the divisor Fj is contained in Bs(D) with multiplicity at least max
{

0,
∑6

i=1 mi +mj − 4d
}
.

Proof. To prove the first claim, we observe that the class 2H−
∑6

i=1Ei−Ej is represented
by the proper transform of a quadric surface in P3 with a singular point at pj. By projection
away from pj there is a unique such quadric Fj.
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The second claim follows from [BDP16, Lemma 4.1]; one can also see it directly as
follows. Let Q be the proper transform of a smooth quadric in P3 passing through the
points p1, . . . , p6. Then the intersection Fj ∩ Q is a curve Cj of class 4l −

∑
i ei − ej.

There is a 2-parameter family of such curves Cj, and the union of all such curves equals
Fj. The only possibility for a reducible such curve is Cj = R ∪ Lj, where R is the proper
transform of the twisted cubic through p1, . . . , p6 and Lj is the proper transform of a line
on Fj through pj. So there is a 1-parameter family of such reducible curves, and therefore
the general such Cj is irreducible.

For a divisor D on YL,6 with class dH −mLEL−
∑5

i=1miEi, the intersection number of
this divisor with Cj equals

D · Cj = 4d−
6∑

i=1

mi −mj.

Finally we compute that Fj ·Cj = −1, so by Lemma 1.7, the divisor Fj is contained in the
base locus Bs(D) with multiplicity at least

−D · Cj =
6∑

i=1

mi +mj − 4d.

Lemma 4.11. Given a class in N1(ZL, 5) of the form H1 +H2 −EL −Ei −Ej −Ek there
is a unique effective divisor Gijk with the given class.

For a divisor D on ZL, 5 with class d1H1 + d2H2 −mLEL −
∑5

i=1miEi the divisor Gijk

is contained in Bs(D) with multiplicity at least

max {0,mi +mj +mk − d1 − 2d2} .

Proof. For the first claim, the given class is represented by the proper transform of a divisor
of bidegree (1, 1) containing the line L and the points pi, pj, pk. Containing the line L
imposes 2 conditions on such divisors, and passing through a point imposes 1 condition. So
the corresponding linear system on ZL, 5 has dimension 0, meaning that it contains there
is a unique effective divisor Gijk.

For the second claim, consider a general divisor H with class H1 +H2 −Ei −Ej −Ek.
The intersection Gijk ∩H will then be a curve of class Cijk = l1 + 2l2 − eL − ei − ej − ek.

For a divisor D on ZL, 5 with class d1H1 + d2H2−mLEL−
∑5

i=1miEi, the intersection
number of D with the curve Cijk equals

D · Cijk = d1 + 2d2 −mL −mi −mj −mk.

Finally we compute that Gijk · Cijk = −1, so by Lemma 1.7 the divisor Gijk is contained
in the base locus Bs(D) with multiplicity at least

−D · Cijk = mi +mj +mk − d1 − 2d2.
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Now we return to consider divisors on YL, 6. As in the computation of Eff(YL,5), we will
need to use a restriction map to obtain extra inequalities on divisors on Eff(YL,6). For a
general line L and 6 points in general position in P3, there is a unique smooth quadric Q
containing all of them. Let Q̃ be the proper transform of Q on YL,6. If D is any irreducible

effective divisor on YL,6 other than Q̃ itself, then the restriction D|Q̃ must be effective.

The divisor Q̃ is isomorphic to X1,1,6, so the inequalities from Proposition 1.10 will give

us restrictions on the class of D|Q̃. We can label classes on Q̃ so that EL restricts to h1.

The restriction map N1(YL,6)→ N1(X1,1,6) is then evidently given as follows:

Lemma 4.12. The restriction map N1(YL,6)→ N1(Q̃) is given by

H 7→ h1 + h2

EL 7→ h1

Ei 7→ ei

We can now compute the effective cone of this threefold.

Theorem 4.13. The effective cone Eff(YL,6) is given by the generators below left and the
inequalities below right.

H EL E1 E2 E3 E4 E5 E6

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 −1 −1 0 0 0 0 0
1 0 −1 −1 −1 0 0 0
2 0 −2 −1 −1 −1 −1 −1
2 −1 −1 −1 −1 −1 −1 −1
5 −1 −3 −3 −3 −3 −3 0

d mL m1 m2 m3 m4 m5 m6

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 1 1 1 0 0 0 0
3 0 1 1 1 1 0 0
3 0 1 1 1 1 1 0
3 2 1 1 1 0 0 0
3 2 1 1 1 1 0 0
4 2 2 1 1 1 1 0
4 3 1 1 1 1 1 0
5 0 2 2 1 1 1 1
5 2 2 2 1 1 1 1
5 3 2 2 1 1 1 0
5 4 1 1 1 1 1 1
6 3 2 2 2 2 1 0
6 3 3 2 1 1 1 1
7 0 2 2 2 2 2 2
7 2 2 2 2 2 2 2
7 4 3 3 1 1 1 1
9 3 3 3 3 3 2 1
11 4 4 4 3 3 3 1
16 5 5 5 5 5 5 2
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Proof. We apply the method of Section 2 with the following inputs:

• the base locus inequalities from Lemma 1.8, Lemma 4.5, Lemma 4.10, corresponding
to the fixed divisors Ei, EL, Π(i, j, k), Π(L, i), and Fi on YL, 6;

• the base locus inequality from Lemma 4.11, corresponding to the fixed divisors Gijk

on ZL, 5;

• the pullback via the restriction map N1(YL,6) → N1(Q̃) from Lemma 4.12 of the
inequalities from Proposition 1.10;

• the pullback via the morphism YL,6 → YL,5 of the inequalities from Theorem 4.7;

• the pullback via the morphism YL,6 → X0,3,6 of the inequalities from Theorem 4.1;

• the pullback via the morphism ZL,5 → X1,2,5 of the inequalities from Theorem 3.9.

Again, in cases where we obtain an inequality on divisors on ZL, 5, we use the dual
of the isomorphism ϕ : N1(Y ) → N1(Z) given in (2) to convert these into inequalities on
divisors on YL, 6.

The Normaliz files YL6-ineqs compute the cone defined by these inequalities. We then
add the classes of the fixed divisors listed in the first bullet point above, using the files
YL6-gens to obtain the list of extremal rays and inequalities shown in the tables above. It
remains to show that all the extremal rays in the left table are effective.

All the classes in the table on the left-hand side are pullbacks of effective classes on
YL,5, with the exception of the class 2H − EL −

∑6
i=1 Ei. This class is represented by the

proper transform of the unique quadric in P3 containing the line L and the points pi, hence
it is effective.

5 Blowups of P1 × P3

In this section we use the computations of the previous section as inputs into our method,
in order to compute the effective cone of divisors of the blowup of P1×P3 in up to 6 points
in general position.

4 points

First we compute the effective cone of the variety X1,3,4, which by definition is the blowup
of P1×P3 in a set of 4 points in general position. Again this result follows from Hausen–Süß
[HS10, Theorem 1.2]. It could also be proved using the method of Section 2, starting from
the toric case X1,3,2 and iterating, but for brevity we give a more direct proof.

Theorem 5.1. The effective cone Eff(X1,3,4) is given by the list of generators below left
and inequalities below right:
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H1 H2 E1 E2 E3 E4

0 0 1 0 0 0
1 0 −1 0 0 0
0 1 −1 −1 −1 0

d1 d2 m1 m2 m3 m4

1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
1 2 1 1 0 0
1 3 1 1 1 0
1 3 1 1 1 1

Proof. The classes listed in the table on the left are clearly effective, so they span a subcone
K of the cone Eff(X1,3,4). The Normaliz files X134-gens shows that the subcone K is cut
out by the inequalities listed in the table on the right. We will prove that any effective
divisor on X1,3,4 must satisfy all the inequalities listed in the table on the right, which gives
the reverse inclusion Eff(X1,3,4) ⊂ K.

To prove this, it is enough to show that for each inequality in the table on the right,
there is a curve class Ci ∈ N1(X) such that the given inequality is of the form D · Ci ≥ 0
and such that irreducible curves in Ci cover a Zariski-dense open subset of X1,3,4.

For the first two inequalities in the table, the curve classes we need are C1 = l1 and
C2 = l2, which clearly have the required properties.

For the remaining rows we can use the following argument. We give the details for the
last row; the other rows are similar but easier. For any embedding f : P1 → P3 whose image
is a twisted cubic, its graph Γf is an irreducible smooth curve of bidegree (1, 3) in P1×P3.
Such a morphism f is given by a choice of 4 linearly independent cubic forms in 2 variables,
and direct computation shows that for 5 points p1, . . . , p5 in general position in P1 × P3,
cubic forms can be chosen appropriately to make Γf pass through all the pi. Therefore,
blowing up at p1, . . . , p4 and taking proper transforms, we get a family of irreducible curves
with class l1 + 3l2 − e1 − · · · − e4 which cover a Zariski-dense open set, as required.

5 points

Next we consider the variety X1,3,5, which by definition is the blowup of P1 × P3 in a set
of 5 points in general position. To compute the effective cone, we will again use base
locus inequalities coming from fixed divisors, together with inequalities pulled back from
blowups in fewer points. Additionally, we will iterate the strategy that we used in the
previous section: we restrict divisors on X1,3,5 to a subvariety whose effective cone we
computed in Section 3, in order to obtain extra effectivity conditions, following Step 4 of
the cone method of Section 2.

To do this, let s be a set of points in general position in P1 × P3, let V be a smooth
divisor of bidegree (1, 1) containing all the points, and let Ṽs be the proper transform of V

on X1,3,s. Then by Lemma 3.7 we have that Ṽs is isomorphic to YL,s.
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Lemma 5.2. The restriction map N1(X1,3,s)→ N1(Ṽs) is given by

H1 7→ H − EL
H2 7→ H

Ei 7→ Ei

Proof. It suffices to prove the case s = 0.

We also need one final base locus lemma. For this, let i, j, k be any set of 3 distinct
indices in {1, . . . , 6}. Since there is a unique plane in P3 containing 3 points in general
position, there is a unique effective divisor on X1,3,6 in the class H2 − Ei − Ej − Ek. We
denote this divisor by Π(i, j, k).

Lemma 5.3. Fix s ≥ 3. For a divisor D on X1,3,s with class d1H1 + d2H2 −
∑s

i=1miEi.
The divisor Π(i, j, k) is contained in Bs(D) with multiplicity at least

max{0,mi +mj +mk − d1 − 2d2}.

Proof. Choose 2 general hypersurfaces of bidegree (1, 1) passing through the 3 points
pi, pj, pk, and let D1, D2 be their proper transforms on X1,3,s. Let C be the curve
Π(i, j, k) ∩D1 ∩D2. By Proposition 1.1 we compute

C ·H1 = (H2 − Ei − Ej − Ek) · (H1 +H2 − Ei − Ej − Ek)2 ·H1 = 1,

C ·H2 = (H2 − Ei − Ej − Ek) · (H1 +H2 − Ei − Ej − Ek)2 ·H2 = 2,

so C is a curve of class l1 + 2l2 − ei − ej − ek and therefore we have C · Π(i, j, k) = −1.
By choosing the divisors D1 and D2 appropriately, we can cover the divisor Π(i, j, k)

by such curves C, so by Lemma 1.7 the claim follows.

Now we have the ingredients we need for our computation of the effective cone of X1,3,5.

Theorem 5.4. The effective cone Eff(X1,3,5) is given by the list of generators below left
and inequalities below right:

H1 H2 E1 E2 E3 E4 E5

0 0 1 0 0 0 0
1 0 −1 0 0 0 0
0 1 −1 −1 −1 0 0
1 1 −1 −1 −1 −1 −1
1 4 −3 −3 −3 −3 −3

d1 d2 m1 m2 m3 m4 m5

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 1 0 0 0 0
1 2 1 1 0 0 0
1 3 1 1 1 0 0
1 3 1 1 1 1 0
1 4 1 1 1 1 1
2 4 2 1 1 1 1
2 5 2 2 1 1 1
3 3 1 1 1 1 1
3 6 2 2 2 2 1
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Proof. We apply the method of Section 2 with the following inputs:

• the base locus inequalities from Lemma 1.8 and Lemma 5.3 corresponding to the
fixed divisors Ei, H1 − Ei, and H2 − Ei − Ej − Ek;

• the pullback via the morphism X1,3,5 → X1,3,4 of the inequalities from Theorem 5.1
cutting out the cone Eff(X1,3,4);

• the pullback via the restriction map N1(X1,3,5) → N1(Ṽ5) from Lemma 5.2 of the

inequalities from Theorem 4.7 cutting out the cone Eff(Ṽ5).

The Normaliz files X135-ineqs compute the restricted cone defined by these inequalities.
Adding the fixed divisors Ei, H1 − Ei, and H2 − Ei − Ej − Ek, the files X135-gens then
compute the list of extremal rays and inequalities shown in the tables above. Lemma 1.5
shows that all generators in the table on the left except the last are represented by effective
divisors. It remains to the prove that the last generator H1 +4H2−3

∑5
i=1 Ei is represented

by an effective divisor.
We will show by direct computation that for 5 points p1, . . . , p5 in general position in

P1 × P3, there is a hypersurface D of bidegree (1, 4) with multiplicity 3 at each of the pi.
The proper transform of D on X1,3,5 will then be an effective divisor with the required
class. Denote the homogeneous coordinates on P1 by s, t and those on P3 by w, x, y, z.
Using projective transformations we may assume that the points pi have homogeneous
coordinates

p1 = ([1, 0], [1, 0, 0, 0]) , p2 = ([0, 1], [0, 1, 0, 0]), p3 = ([1, 1], [0, 0, 1, 0]) ,

p4 = ([1, a], [0, 0, 0, 1]) , p5 = ([1, b], [1, 1, 1, 1]) ,

where a and b are distinct complex numbers different from 0 and 1.
Define

C1 = (w − x)(w − y)z

C2 = (w − x)(w − z)y

C3 = (w − y)(w − z)x

L1 = (b− 1)sx+ (s− t)y
L2 = (a− b)sx+ (t− as)z

Then each Ci is a form of bidegree (0, 3) with multiplicity 1 at p1 and multiplicity 2 at
the other pi, while L1 and L2 are forms of bidegree (1, 1) with multiplicity 1 at each pi. So
for any coefficients aij ∈ C the form

F =
2∑

i=1

3∑
j=1

aijLiCj

has bidegree (1, 4) and multiplicity at least 2 at p1 and 3 at the other pi. We can then
attempt to choose the coefficients aij such that the form F has multiplicity 3 at p1 also.
Computing, one finds that this occurs if and only if F is a multiple of the form

F0 = aL1C1 + (b− a)L1C3 + L2C2 + (b− 1)L2C3.
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So the hypersurface D = {F0 = 0} has bidegree (1, 4) and multiplicity 3 at each point pi
as required.

We conclude this section with the following discussion on the ray generator of bidegree
(1, 4).

Proposition 5.5. The divisor H1 + 4H2 − 3
∑5

i=1Ei on X1,3,5 is fixed.

Proof. As before let Ṽ5 be the proper transform on X1,3,5 of a general hypersurface of

bidegree (1, 1) passing through the 5 points. Recall that Ṽ5 is isomorphic to YL,5, the
blowup of P3 in a line and 5 points.

Twist the ideal sheaf sequence for Ṽ5 by D = H1 + 4H2 − 3
∑5

i=1Ei to get the short
exact sequence

0→ OX

(
3H2 − 2

5∑
i=1

Ei

)
→ OX(D)→ OṼ5

(
D|Ṽ5

)
→ 0 (∗)

By Lemma 5.2 the restriction of D to Ṽ5 gives the class 3H − EL −
∑5

i=1 Ei, which is
fixed as we saw in the proof of Theorem 4.7. So H0(OṼ5

(D)) = 1. On the other hand,

any effective divisor on X1,3,5 with class 3H2 − 2
∑5

i=1Ei must come from a cubic in
P3 with singularities at 5 points in general position. No such cubic exists, so we have
H0(OX(3H2 − 2

∑5
i=1Ei)) = 0. So the long exact sequence of cohomology associated to

the short exact sequence (∗) shows that H0(OX(D)) = 1 as required.

Remark 5.6. As observed in Remark 3.13, a triple point imposes a number of conditions
to the family of bidegree (1, 4)-hypersurfaces of P1 × Pn that is one less than the expected
one obtained by a parameter count. This is geometrically justified by the presence of the
fixed line Ci = l1 − ei in the base locus of D at least −D · Ci times. If, for instance, we
consider D = H1 + 4H2 − 3

∑5
i=1Ei on X1,2,5, we have D · Ci = −2, for i = 1, . . . , 5, and

each Ci contributes by 1 to the fibre-expected dimension formula:

fibre-dim|D| = vdim |D|+ 5 = −1.

Furthermore, we know from Proposition 5.5 that dim |D| = 0, so there is a gap of 1
between the dimension and the fibre-expected dimension. Our expectation is that the fixed
curve C = l1 + 3l2 −

∑5
i ei, that satisfies D · C = −2, contributes by 1 to the dimension

count, so that
dim |D| = fibre-dim|D|+ 1.

6 points in P1 × P3

Now we come to our final effective cone computation. Fix a set of 6 points in general
position in P1 × P3 and let X1,3,6 be the corresponding blowup. We will compute the
effective cone Eff(X1,3,6) in a similar way to the previous case.
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A parameter count shows that there is a 1-parameter family of divisors of bidegree (1, 1)

passing through the 6 points. Let V6 be a smooth such divisor, and let Ṽ6
∼= YL,6 be the

proper transform of V6 on X1,3,6. Then as before, using the restriction map N1(X1,3,6) →
N1(Ṽ6) given in Lemma 5.2, we can pull back the inequalities cutting out Eff(Ṽ6) to get
inequalities cutting out Eff(X1,3,6).

Together with our existing base locus lemmas and pulling back from X1,3,5, this gives
us enough information to compute our final effective cone.

Theorem 5.7. The effective cone Eff(X1,3,6) is given by the generators below left and the
inequalities below right.

H1 H2 E1 E2 E3 E4 E5 E6

0 0 1 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 −1 −1 −1 0 0 0
0 2 −2 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 −1 −1
1 4 −3 −3 −3 −3 −3 0

d1 d2 m1 m2 m3 m4 m5 m6

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 2 1 1 0 0 0 0
1 3 1 1 1 0 0 0
1 3 1 1 1 1 0 0
1 4 1 1 1 1 1 0
1 5 1 1 1 1 1 1
2 4 2 1 1 1 1 0
2 5 2 2 1 1 1 0
3 3 1 1 1 1 1 0
3 5 2 2 1 1 1 1
3 6 2 2 2 2 1 0
3 6 3 2 1 1 1 1
3 7 3 3 1 1 1 1
5 7 2 2 2 2 2 2
6 9 3 3 3 3 2 1
7 11 4 4 3 3 3 1
11 16 5 5 5 5 5 2

Proof. We apply the method of Section 2 with the following inputs:

• the base locus inequalities from Lemma 1.8 and Lemma 5.3 corresponding to the
fixed divisors Ei, H1 − Ei, and H2 − Ei − Ej − Ek;

• the pullback via the morphism X1,3,6 → X1,3,5 of the inequalities from Theorem 5.4;

• the pullback via the restriction map N1(X1,3,6) → N1(Ṽ6) from Lemma 5.2 of the
inequalities from Theorem 4.13 cutting out Eff(YL,6).

The Normaliz files X136-ineqs compute the restricted cone defined by these inequalities.
Adding the fixed divisors Ei, H1 − Ei, and H2 − Ei − Ej − Ek to the restricted cone and
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computing the extremal rays of the resulting cone, the files X136-gens then compute the
list of extremal rays and inequalities shown in the tables above.

The generators in Rows 1, 2, 3 and 6 are pulled back from effective classes on X1,3,5,
hence are effective.

The generator in Row 4 is represented by the proper transform on X1,3,6 of a hyper-
surface of the form π−1

3 (Q) where Q is a singular quadric in P3 with vertex at π3(p1) and
passing through the other points π3(pi). There is a unique such quadric in P3, so this
generator is represented by a fixed effective divisor.

Finally, the generator in Row 5 is effective by Lemma 1.5.

6 Weak Fano and log Fano varieties

For terminology used in this section, we refer to [KM98, Notation 0.4, Section 2.3].
A Q-factorial projective variety with finitely generated Picard group is a Mori dream

space if its Cox ring

Cox(X) =
⊕

L∈Pic(X)

H0(X,L)

is a finitely generated C-algebra. Blowups of products of copies of Pn at points that are
Mori dream spaces were classified in [Muk05, CT06]. A similar question can be asked
for blowups of mixed products such as the varieties Xm,n,s and the answer is unknown in
general.

Birkar–Cascini–Hacon–McKernan [BCHM10, Corollary 1.3.2] showed that X is a Mori
dream space if it is log Fano. In particular, if X is weak Fano then it is log Fano and
therefore a Mori dream space. It is therefore natural to ask which of the varieties Xm,n,s

are weak Fano or log Fano.
In this section we discuss our progress in this direction for varieties X1,n,s with n = 2, 3.

Definition 6.1. Let X be a Q-factorial variety and ∆ a Q-divisor on X. The pair (X,∆)
is klt if the coefficients of ∆ are in the set [0, 1) and for any log resolution f : Y → X we
have

KY + ∆Y = f ∗(KX + ∆) +
∑
i

aiEi,

where ∆Y is the proper transform of ∆ on Y , the Ei are prime exceptional divisors, and
ai > −1 for all i.

Definition 6.2. A Q-factorial projective variety X is

• log Fano if there is a Q-divisor ∆ on X such that the pair (X,∆) is klt and −KX−∆
is ample;

• weak Fano if −KX is nef and big.
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Every weak Fano variety is log Fano; a reference is [AM16, Lemma 2.5].
Now we move on to our results. First we consider the case of threefolds. For ease of

notation we will denote the anticanonical divisor simply by −KX where the variety Xm,n,s

in question is understood. We will use the fact [KM98, Proposition 2.61] that a nef divisor
D is big if and only if its top self-intersection satisfies DdimX > 0.

Theorem 6.3. The variety X1,2,s is weak Fano if and only if s ≤ 6.

Proof. We will show that for s ≤ 6 the anticanonical divisor −KX = 2H1+3H2−2
∑s

j=1Ej

is nef and has positive top self-intersection, while for s ≥ 7 the top self-intersection is
negative.

Using Corollary 1.3, we compute the top self-intersection number

(−KX)3 =

(
2H1 + 3H2 − 2

s∑
i=1

Ei

)3

= 21 · 32 ·
(

3

1

)
−

s∑
i=1

23

= 54− 8s,

which is positive if and only if s ≤ 6.
In order to show that −KX is nef for s ≤ 6, we find a set which is an upper bound for

its base locus, then show that it has positive degree on all curves in that set. We consider
the following unions of effective divisors, all of which belong to the anticanonical linear
system: (

H1 +H2 −
s−1∑
j=1

Eij

)
+

(
H1 +H2 −

s−1∑
j=1

Ekj

)
+ (H2 − Ea − Eb) ,

where a, b, ij, kj ∈ {1, . . . , s}, the ij are distinct, as are the kj, a 6= b, and each index
appears precisely twice. That the linear systems corresponding to the three summands
are nonempty follows from Lemma 1.5, indeed vdim |H1 + H2 −

∑s−1
j=1 Eij | = 6 − s and

vdim |H2−Ea−Eb| = 0. Therefore, the base locus of −KX is contained in the intersection
of these unions of divisors, which is a subset of

⋃s
j=1 Ej.

Now, assume that there is an irreducible curve C such that −KX · C < 0. Then this
curve must be contained in the base locus Bs(−KX) ⊆

⋃s
j=1Ej. Now, since the Ej’s are

disjoint, the curve C must be contained in one of the exceptional divisors, say Ej. But for
any curve C ⊂ Ej we have Ej · C < 0, while Ei · C = 0 for i 6= j and H1 · C = H2 · C = 0.
This gives −KX · C > 0, contrary to our assumption.

From [BCHM10, Corollary 1.3.2] it follows that, for s ≤ 6, the variety X1,2,s is a
Mori dream space. This gives a conceptual explanation for the finitely generated cones of
effective divisors that we computed in Section 3.
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We now turn to the case of fourfolds X1,3,s. Here our varieties are never weak Fano,
since −KX = 2H1 + 4H2− 3

∑s
i=1 Ei has negative degree on curves of the form l1− ei. We

will show, however, that for up to 6 points, our varieties are still log Fano, and therefore
Mori dream spaces.

Fujino–Gongyo [FG12, Theorem 5.1] showed that if f : X → Y is a surjective morphism
of projective varieties and X is log Fano, then Y is also log Fano. Therefore it would suffice
to prove our result in the case s = 6. However, this approach would not give the log Fano
structure explicitly in the case s < 6. Instead, we give explicit log Fano structures on both
X1,3,5 and X1,3,6.

Since the log Fano condition requires an ample class, we start with a lemma verifying
that a particular class is ample.

Lemma 6.4. For s ≤ 6 the divisor class D = 2H1 + 2H2 −
∑s

i=1Ei is ample on X1,3,s.

Proof. It is sufficient to prove the case s = 6.
First we claim that for any 3 distinct indices i, j, k from {1, . . . , 6}, the class H1 +H2−

Ei − Ej − Ek is basepoint free, hence nef. To see this, we can write the class as

H1 +H2 − Ei − Ej − Ek = (H1 − Ei) + (H2 − Ej − Ek)

and by permuting indices we get 2 more such decompositions. The classes H1 − Ei are
disjoint for distinct i, while the class H2 − Ej − Ek has base locus the preimage of a line
in P3 through 2 of the 3 points. Permuting indices we get 3 such lines, which are disjoint
by generality. So the base locus of H1 +H2 − Ei − Ej − Ek is empty as claimed.

In particular this implies that D is nef, since it can be written for example as

D = (H1 +H2 − E1 − E2 − E3) + (H1 +H2 − E4 − E5 − E6) .

By Corollary 1.3 we compute D4 = 4 · 4 · 6 − 6 > 0, so D is big. Therefore it lies in the
interior of the effective cone Eff(X1,3,6).

If D is nef but not ample, it lies on a codimension-1 face F of the nef cone Nef(X1,3,6).
By the previous paragraph, the face F intersects the interior of Eff(X1,3,6). So there are
generators of Eff(X1,3,6) on both sides of F , and in particular we can choose a generator
G such that for every natural number k the class kD − G is not nef. We will show that
for every generator G of Eff(X1,3,6) the class kD − G is nef for some k. By the argument
above, this implies that D is ample, as required. By symmetry, it is enough to find a ki
such that kiD − Gi is nef for the 6 generators G1, . . . , G6 listed in the left-hand table of
Theorem 5.7. We compute:

• D − G1 = 2H1 + 2H2 − 2E1 − E2 − · · · − E6: this class can be decomposed into
effective classes as

D −G1 = (H2 − E1 − E2 − E3) + (H2 − E1 − E4 − E5) + (H1 − E6) +H1.

By permuting indices in this decomposition one can see that the base locus of D−G1

consists of at most the two curves of class l1−e1 and l2−e1. But (D−G1)·(l1−e1) = 0
and (D −G1) · (l2 − e1) = 1, so D −G1 is nef.
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• D−G2 = H1 + 2H2−E2− · · ·−E6: this can be decomposed into effective classes as

D −G2 = (H1 − E2) + (H2 − E3 − E4) + (H2 − E5 − E6).

By permuting indices we see that D −G2 is basepoint-free, hence nef.

• D−G3 = 2H1 +H2−E4−E5−E6: this can be decomposed into effective classes as

D −G3 = (H1 − E4) + (H1 − E5) + (H2 − E6).

By permuting indices, we see that D −G3 is basepoint-free, hence nef.

• 2D −G4 = 4H1 + 2H2 −E2 − · · · −E6: this class can be decomposed as 2D −G4 =
2H1 + (D+E1). The proof that D is nef can easily be modified to show that D+E1

is nef, so 2D −G4 is a sum of nef classes, hence nef.

• D −G5 = H1 +H2 is nef.

• 4D −G6 = 7H1 + 4H2 − E1 − · · · − E5 − 4E6: this class can be written as

4D −G6 = 2H1 + (H1 − E1) + · · ·+ (H1 − E5) + 4(H2 − E6).

The base locus of 4D−G6 is therefore contained in the union of the divisors H1−Ei

for i = 1, . . . , 5, together with the unique curve of class l1− e6. Each divisor H1−Ei

is isomorphic to P3 blown up in 1 point, with cone of curves spanned by ei and l2−ei.
For i = 1, . . . 5 we have (4D − G6) · ei = 1 and (4D − G6) · (l2 − ei) = 3; we also
compute (4D −G6) · (l1 − e6) = 3. So 4D −G6 is nef as required.

Now we are ready to describe the log Fano structures on our examples.

Theorem 6.5. X1,3,5 is log Fano.

Proof. There are exactly 10 planes in P3 containing the projection images of 3 of the 5
points. Let P1, . . . , P10 be the proper transforms on X1,3,5 of the preimages of these planes.
For each Pm, its divisor class on X1,3,5 is of the form H2−Ei−Ej−Ek. Let D1 and D2 be
the proper transforms on X1,3,5 of two general hypersurfaces of bidegree (1, 1) in P1 × P3

containing all 5 points. Each of the Di has divisor class H1 +H2 −
∑

iEi.
Now for a rational number ε, consider the Q-divisor

∆ =
1

5

(
10∑

m=1

Pm

)
+ (1− ε) (D1 +D2) +

(
1

5
− ε
) 5∑

i=1

Ei.
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For 0 < ε < 1
5

this is an effective divisor. We compute that the class of ∆ in N1(X) equals

1

5

(
10H2 − 6

5∑
i=1

Ei

)
+ 2(1− ε)

(
H1 +H2 −

5∑
i=1

Ei

)
+

(
1

5
− ε
) 5∑

i=1

Ei

= (2− 2ε)H1 + (4− 2ε)H2 + (−3 + ε)

(
5∑

i=1

Ei

)
,

and so

−KX −∆ = 2εH1 + 2εH2 − ε
5∑

i=1

Ei

= ε

(
2H1 + 2H2 −

5∑
i=1

Ei

)
.

The class 2H1 + 2H2−
∑

iEi is ample by Lemma 6.4, so it remains ample when multiplied
by ε > 0.

It remains to prove that (X,∆) is a klt pair. Since we have chosen 0 < ε < 1
5
, the

divisor ∆ is a Q-linear combination of prime divisors with all coefficients in the set [0, 1).
To compute discrepancies of the pair (X,∆), first let us analyse the intersections among

components of ∆. For each point π3(pi) there are 6 planes containing this point and 2 more
of the points π3(pj), so on X there are 6 divisors Pm meeting pairwise transversely along
the curve Ci = π−1

3 π3(pi). Next, for two points π3(pi) and π3(pj), let Lij ⊂ P3 be the line
joining them. Then there are 3 planes in P3 containing the line Lij and one other point,
and therefore 3 divisors Pm meeting pairwise transversely along the surface Sij = π−1

3 (Lij).
Now consider the morphism

Z Y X
g

h

f

where f is the blowup of the curves Ci and g is the blowup of the proper transforms of the
surfaces Sij. One can check that H is indeed a log resolution of the pair (X,∆), so we can
compute discrepancies of the pair by comparing KX + ∆ to KZ + ∆Z . (Here ∆Z denotes
the proper transform of ∆ on Z.)

Let Fi denote the exceptional divisors of f and Gij the exceptional divisors of g. Then

KZ = h∗KX + 2
∑
i

Fi +
∑
i, j

Gij.

Moreover since there are 6 planes Pm through the each of the points π3(pi) and 3 planes
containing each of the lines Lij, we get

h∗

(
10∑

m=1

Pm

)
=

10∑
m=1

(Pm)Z + 6
∑
i

Fi + 3
∑
i,j

Gij.
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On the other hand, the divisors Di and Ei do not contain the centres of the blowups in f
and g, so we have

h∗Di = (Di)Z (i = 1, 2),

h∗Ej = (Ej)Z (j = 1, . . . , 5).

Putting everything together we get

KZ + ∆z = h∗(KX + ∆) +
4

5

∑
i

Fi +
2

5

∑
i,j

Gi,j,

so by Definition 6.1 the pair (X,∆) is klt.

The proof in the case s = 6 is similar. To find the required boundary divisor this time,
instead of planes through 3 points we use quadric cones through all the points and with
vertex at one point.

Theorem 6.6. X1,3,6 is log Fano.

Proof. For i = 1, . . . , 6, define Qi to be the proper transform of the preimage of a cone in
P3 with vertex at π3(pi) and passing through the other 5 points π3(pj). Now define

∆ =
1

6

∑
i

Qi + (1− ε)(D1 +D2) +

(
1

6
− ε
)∑

i

Ei

For 0 < ε < 1
6

this is an effective divisor. We compute that the class of ∆ in N1(X) equals

1

6

(
12H2 − 7

6∑
i=1

Ei

)
+ 2(1− ε)

(
H1 +H2 −

6∑
i=1

Ei

)
+

(
1

6
− ε
) 6∑

i=1

Ei

= (2− 2ε)H1 + (4− 2ε)H2 + (−3 + ε)
6∑

i=1

Ei,

so as before we have

−KX −∆ = ε

(
2H1 + 2H2 −

6∑
i=1

Ei

)
,

which is again an ample class.
It remains to prove that (X,∆) is a klt pair. Again, since we have chosen 0 < ε < 1

6
, the

coefficients of ∆ are in the set [0, 1). As before, let Ci = π−1
3 π(pi), and now let S = π−1

3 (R)
where R is the unique twisted cubic through the 6 points π3(pi). Then for any two of the
quadrics, say Qj and Qk, their intersection is Qj ∩ Qk = Ljk ∪ R, and moreover none of
the other quadrics contains Ljk. So our log resolution is given as before by a sequence of
blowups
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Z Y X
g

h

f

where as before f is the blowup of the 6 curves Ci but now g is the blowup of a single
surface, namely the proper transform of S on Y .

Let Fi denote the exceptional divisors of f and G the exceptional divisor of g. Then
one computes that for each quadric cones Qi we have

h∗(Qi) = (Qi)Z +
6∑

j=1

Fj + Fi +G, so

h∗

(∑
i

Qi

)
=
∑
i

(Qi)Z + 7
∑
i

Fi + 6G.

Putting everything together we find

KZ + ∆Z = h∗(KX + ∆) +
5

6

∑
i

Fi.

(Note that the coefficient of the exceptional divisor G on the right hand side equals 0.) So
again (X,∆) is a klt pair.

Using for example the theorem of Fujino–Gongyo mentioned above we deduce the re-
maining cases:

Corollary 6.7. For s ≤ 6 the variety X1,3,s is log Fano.

It follows that, for s ≤ 6, the variety X1,3,s is a Mori dream space. Again, this gives a
conceptual explanation for the rational polyhedral effective cones that we found in Section
5.

Infinite cones of divisors

We finish with some upper bounds on the number of points that we can blowup before cones
of effective divisors cease to be finitely generated. These are based on the corresponding
bounds for a single projective space: we can lift divisors from a single projective space to
a product to translate these bounds to the product setting.

The main input is the following theorem of Mukai and Castravet–Tevelev [Muk05,
CT06].

Theorem 6.8. For n > 1, let X0,n,s be the blowup of Pn in a set of s points in very general
position. Then Eff(X0,n,s) is finitely generated if and only if one of the following holds:

• n = 2 and s ≤ 8;

• n = 3 and s ≤ 7;
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• n = 4 and s ≤ 8;

• n ≥ 5 and s ≤ n+ 3.

By pulling back divisors from a single projective space to a product, we get the following
corollary.

Corollary 6.9. Consider a product of projective spaces

P = Pn1 × · · · × Pnk .

Let Y be the blowup of P in a set of s points in very general position. If there exists an
ni 6= 1 such that ni and s do not satisfy one of the conditions of Theorem 6.8, then Eff(Y )
is not rational polyhedral.

Proof. Suppose that such an ni exists; for simplicity let us denote it by n. Choose a Pn

factor of P and consider the projection map π : P → Pn. Let p1, . . . , ps be the points in P
and let q1, . . . , qs be their images in Pn.

Let ∆ be an effective divisor on X0,n,s with class dh −
∑

imiei. If d > 0 and the mi

are nonnegative, then ∆ corresponds to a divisor D ⊂ Pn with degree d and multiplicity
mi at the point qi. For such a divisor D, its preimage π−1(D) is the product of D with a
product of projective spaces, and therefore it has multiplicity mi at the point pi. So the
proper transform of π−1(D) on Y has class dHn −

∑
imiEi for some nonnegative integers

d and mi. Conversely, any irreducible effective divisor on Y whose class is of this form
must either be the exceptional divisor over one of the points, or else pulled back from Pn

in this way. The classes of these divisors span a subcone EY of Eff(Y ) which is isomorphic
to Eff(X0,n,s).

The subcone EY lies in a proper face F of Eff(Y ), namely the face orthogonal to all
curve classes in factors of P other than Pn. No other effective divisor on Y has class in the
face F . Therefore if Eff(Y ) is rational polyhedral, hence spanned by effective divisors, the
subcone EY must be a face of Eff(Y ). Every face of a rational polyhedral cone is rational
polyhedral, so this implies EY , equivalently Eff(X0,n,s), is rational polyhedral. Therefore
n and s must satisfy one of the conditions of Theorem 6.8.

The following statement summarises our knowledge of which varieties X1,n,s are Mori
dream spaces.

Theorem 6.10. Let X1,n,s be the blowup of P1 × Pn in s points in very general postions.
Then X1,n,s is a Mori dream space in the following cases:

(a) n = 2 or n = 3 and s ≤ 6;

(b) n arbitrary and s ≤ n+ 1.

On the other hand, X1,n,s is not a Mori dream space in the following cases:

(c) n = 2 or n = 4 and s ≥ 9;
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(d) n = 3 and s ≥ 8;

(e) n ≥ 5 and s ≥ n+ 4.

Proof. Statement (a) was proved in Theorem 6.3 and Corollary 6.7. Statement (b) follows
from the theorem of Hausen–Süß [HS10, Theorem 1.3].

Statements (c), (d), (e) follow from Theorem 6.8 and Corollary 6.9 by taking k = 2 and
n1 = 1.

These results leave only a small number of open cases in each dimension, which we
address in the following questions.

Question 6.11. Are the varieties X1,2,7, X1,2,8, X1,3,7 log Fano or Mori dream spaces?

Question 6.12. For s = 6, 7, 8, are the varieties X1,4,s log Fano or Mori dream spaces?

The methods of this paper could in principle be applied to study these two questions.
It would be interesting to know if our methods can be applied successfully in these cases.

Finally, in higher dimensions, the remaining open cases are the following:

Question 6.13. For n ≥ 5, are X1,n,n+2 and X1,n,n+3 log Fano or Mori dream spaces?
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