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Abstract

A core problem in data mining is to retrieve data in an easy and human

friendly way. Automatically translating natural language questions into

SQL queries would allow for the design of effective and useful database

systems from a user viewpoint.

In this thesis, we approach such problem by carrying out a mapping be-

tween natural language (NL) and SQL syntactic structures. The mapping

is automatically derived by applying machine learning algorithms. In par-

ticular, we generate a dataset of pairs of NL questions and SQL queries

represented by means of their syntactic trees automatically derived by their

respective syntactic parsers. Then, we train a classifier for detecting correct

and incorrect pairs of questions and queries using kernel methods along with

Support Vector Machines. Experimental results on two different datasets

show that our approach is viable to select the correct SQL query for a given

natural language questions in two target domains.

Given that preliminary results were encouraging we implemented an SQL

query generator that creates the set of candidate SQL queries which we

rerank with a SVM-ranker based on tree kernels. In particular we exploit

linguistic dependencies in the natural language question and the database

metadata to build a set of plausible SELECT, WHERE and FROM clauses

enriched with meaningful joins. Then, we combine all the clauses to get

the set of all possible SQL queries, producing candidate queries to answer

the question. This approach can be recursively applied to deal with complex

questions, requiring nested sub-queries. We sort the candidates in terms

of scores of correctness using a weighting scheme applied to the query gen-

eration rules. Then, we use a SVM ranker trained with structural ker-



nels to reorder the list of question and query pairs, where both members

are again represented as syntactic trees. The f-measure of our model on

standard benchmarks is in line with the best models (85% on the first ques-

tion), which use external and expensive hand-crafted resources such as the

semantic interpretation. Moreover, we can provide a set of candidate an-

swers with a Recall of the answer of about 92% and 96% on the first 2 and

5 candidates, respectively.

Keywords[Natural Language Interfaces, Database, Question Answering,

Kernel Methods, Tree Kernels]
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Chapter 1

Introduction

It would appear that we have reached the limits of what is

possible to achieve with computer technology, although one

should be careful with such statements, as they tend to

sound pretty silly in five years.

John von Neumann, 1949

The design of models for automatically mapping natural language se-

mantics into programming languages has been always a major and inter-

esting challenge in Computer Science since if effective they would have

a direct impact on industrial and social worlds. For example, accessing

a database requires machine-readable instructions that common users are

not supposed to know. Ideally, they should only pose a question in natural

language without knowing either the underlying database schema or any

complex machine language.

The development of Natural Language Interfaces to DataBases (NLIDBs)

that translate the human intent into database instructions is indeed a clas-

sic problem, which is becoming of greater importance in today’s world. In

fact, despite the numerous attempts made in the past thirty years, current

solutions are still not applicable in real scenarios. A huge variety of sys-

tems has been proposed, with increasing performance, but the task is still

challenging.
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The central issue in NLIDBs is understanding the user intent when

he/she poses a question to a system, identifying concepts and relationships

between constituents and resolving ambiguities. Systems that embed a

relational database should perform a translation from a natural language

question into an SQL query. Suppose that a user types the following natu-

ral language question: NL1: “Which states border Texas?” The answer to

this question can be found in the Geoquery database, a collection of data

regarding US geography developed by Tang and Mooney [2001]. With re-

spect to that database, a translation of question NL1 into a SQL query

could be the following SQL1:

SELECT border_info.border

FROM border_info

WHERE border_info.state_name = ’Texas’;

This query is trivial enough to be understood even by a reader who does

not have any knowledge about how the database has been constructed or

how SQL are executed. However, without this knowledge it could be hardly

written using the proper syntax and semantics.

This task becomes more difficult as soon as we ask more complex ques-

tions that require nesting queries and merging sparse data joining more

tables. A slightly different but more articulated question similar to NL1

is the following, NL2: “Which capitals are in states bordering Iowa?”. It

can be answered executing query SQL2:

SELECT state.capital

FROM state

WHERE state.state_name IN

SELECT border_info.border

FROM border_info

WHERE border_info.state_name = ’Iowa’;
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This is evaluated starting from the inner query (retrieving “states bor-

dering Iowa”) and then projecting only the column capital of table state,

such that the name of the state is in the retrieved set.

The same result could be obtained without nesting, joining the two

tables as shown in query SQL′2:

SELECT state.capital

FROM state JOIN border_info

ON state.state_name = border_info.state_name

WHERE border_info.border = ’Iowa’;

This is not surprising since there can be multiple SQL queries that

correctly retrieve the same answer to a NL question, as well as a question

could be rephrased in different ways (e.g. “Capitals of states that borders

Iowa.”, “What are the capitals next to Iowa?”). Both natural and artificial

languages can be very expressive and have complex structures and finding

a mapping using a rule-based approach would be too demanding, requiring

a lot of human intervention.

Instead, we rely on a machine learning algorithm to derive such map-

ping exploiting structured kernels. The idea of using such approach arose

looking at the similarity between syntactic tree structures of NL questions

and SQL queries.

With respect to the previous examples, Figure 1.1 represents the NL

questions with syntactic propositional parse trees and SQL queries with

relational parse trees. It shows that NL2 shares some similarities with

NL1, which are reflected also by corresponding relational translated trees:

SQL2 embeds V IEW1, whose structure is identical to the one of SQL1.

Dashed lines and triangles reflect the similarities between the structure

of SQL2 and the substructure V IEW1 of SQL1. Dotted lines indicate

additional relationships between NL2 and SQL2.
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These parse trees can be derived from questions and queries using parsers

as illustrated in Sections 2.1 and 2.2 respectively. Knowing this structure,

the user would be able to straightforwardly substitute values of similar

concepts (e.g. Texas VS Iowa) to create new SQL queries (see relational

tree V IEW1 in Figure 1.1). Generalizing similar concepts1 can be easily

performed exploiting the SQL constituents of the query.

From this pilot example, it is clear why we approach the problem of

question answering as a matching problem. The main idea is deriving a

shared semantics between natural language and programming language by

automatically learning a model based the syntactical representation of the

training examples.

Given pairs of trees, we can compute if and to what extent they are re-

lated using a tree kernel. The kernel represents tree-like structures in terms

of their substructures and defines feature spaces by detecting common sub-

structures. Exploiting Kernel Methods (Sections 2.3) we can operate in a

Cartesian feature space without ever computing the coordinates of the data

and relying on the cheaper and faster computation of the inner products

between the images of all pairs of data in the feature space.

In Chapter 4 we illustrate how we can easily build a NLIDB implement-

ing a machine learning algorithm to learn from an existing training set.

First, starting from a set of correct pairs of questions and the related SQL

queries, available for our target DBs, we need to produce incorrect pairs

and additional correct pairs, i.e. negative and positive examples needed for

training. This process requires that the pairs refer to general concepts in

order to detect false negatives. We create clusters of pairs that represent

the same information need and consider all pairing among the same clus-

ters as positive examples and pairwise combinations between NL questions

and SQL queries belonging to different clusters as negative examples.

1For example Texas and Iowa are istances of the general concept StateName.
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Second, we propose a structural representation of the question and query

pairs in terms of syntactic structures. We construct pairs of parse trees

where the first tree is automatically derived by off-the-shelf natural lan-

guage parsers whereas in order to build the second tree we implemented

an ad-hoc parser that follows SQL grammar rules.

Third, we train Support Vector Machines with the above data, where

the structural representation of the pairs is encoded by means of different

types of kernels. Besides relying on linear and polynomial kernels, that

computes the similarity of similar words, we exploit the potential of tree

kernels and their combinations to compute the number of syntactic tree

fragments. This allows us to automatically exploit the associative patterns

between NL and SQL syntax to detect correct and incorrect pairs from an

operational semantics viewpoint.

Finally, given a new question and the set of available queries (i.e. the

repository of queries asked to the target DB), we produce the set of pairs

containing such question and then we use the classifier to rank pairs in

terms of correctness. We select the top scored pair to find the query that

answer the given question.

Experimental results with this approach on two different datasets, Geo-

Queries and RestQueries [Tang and Mooney, 2001] were encouraging,

as described in Chapter 6. This preliminary experiment showed that (a)

the approach is viable since we obtained a fairly high accuracy and (b) the

advanced kernel combinations (i.e. product kernels) greatly improved ba-

sic models. The main contribution was demonstrating that we can exploit

the space of feature pair, obtained with the product between kernels rep-

resenting questions and queries, to express the relational features between

their syntactic and semantic representations. However, this approach is

not applicable to real world cases, since we can’t always expect to have the

set of all possible SQL queries that could be asked to a database.



7

In order to have a more useful and powerful approach, it should have

been a generative one. It follows that, instead of learning a classifier, we

have to generate plausible SQL queries and use a similar kernel-based re-

ranker to select the one that best answers a given NL questions.

While in the first approach we needed at lot of positive pairings between

NL questions and SQL queries to be given, in a generative approach we

only need the answer (the result set or a SQL query that when executed

retrieves it from the DB) for each NL question in the training set.

In Chapter 5 we illustrate how we can builds the sets of SELECT,

FROM, WHERE clauses used to generate the set of possible SQL queries

with respect to a given NL question based on its grammar dependencies.

To prepare the reader to the core problem and proposed solution, we will

first introduce the notion of typed dependencies and how to obtain a col-

lapsed list of dependencies starting from an NL sentence. Then, we will

describe the subset of Structured Query Language that our system can deal

with and, in order to formalize the problem, we will recall the notation of

corresponding operations in relational algebra. We also will introduce DB

metadata, to show how executing SQL queries we can generate components

of the final SQL query in a recursive fashion.

Combining all clauses in these three sets we obtain a huge set of SQL

queries, possibly involving nesting and joining. However we also need to

prune and weight queries from all possible combinations to generate an

ordered set of meaningful queries among which we need find the answer.

Finally, the most probable answering query is retrieved using kernel-

based re-rankers based on tree kernels. As already pointed out in our

pilot leaning experiments, and confirmed by latest experimental results,

discussed in section Chapter 7, thanks to our re-ranking models we show

that product kernels are effective and efficient when we want to perform

structural mapping between NL questions and SQL queries.
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Our results compare favourably with state of the art systems. As il-

lustrated in Chapter 3, the problem of automatically translating natural

language (NL) questions into SQL queries is an interesting and appealing

research in many research fields, i.e. data mining, information retrieval,

artificial intelligence, etc.

In the last decade a variety of approaches have been proposed to trans-

late the human intent into machine-readable instructions [Dale R., 2000;

Tang and Mooney, 2001; Popescu et al., 2003; Ge and Mooney, 2005; Zettle-

moyer and Collins, 2005; Kate and Mooney, 2006; Wong and Mooney, 2006;

Minock et al., 2008]. Despite this, little progress has been made in devel-

oping a system that can be used by any untrained user without manual

annotation and intervention.

A major challenge for mapping natural language to another language

is recognizing syntactic variations of the same sentence meaning. For ex-

ample, the question “Which states border Texas?” can be rephrased as

“Texas is next to which state?”. Previous work approach this problem

with manually annotation of all these variations into the grammar, but it

is tedious and error-prone. While in a restricted domain it is fairly easy to

specify a grammar, in larger real-world applications it is not feasible due

to the complexity and the subjectivity of all possible annotations. For this

reason the ultimate goal of question answering is developing unsupervised

methods that do not rely on annotated corpora.

In this research, we demonstrate that it is possible to fill the lexical gap

between natural language expressions and database structure by relying on

(i) the informative metadata embedded in all real databases, (ii) natural

language processing methods, e.g., syntactic parsing, grammar dependen-

cies, and (iii) advanced machine learning to build kernel-based rerankers.

Moreover we minimize the supervision effort required for learning by

avoiding the annotation of the training set, exploiting the SQL queries
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paired with NL questions in the dataset only to obtain the real answers.

Indeed we are not committed to any specific representation or language in

our generative approach.

Similar semi-supervised machine learning approaches have been recently

proposed [Clarke et al., 2010; Liang et al., 2011] but our system performs

comparably given that our lever of supervision is much lower then the one

requested by those systems to achieve slightly higher results.

We begin by reviewing the necessary background (Chapter 2) on natural

language, databases and machine learning. In addition we give a survey

of the state of the art in such fields (Chapter 3). We then describe our

model for generating and classifying training pairs (Chapter 4), and then

the reranking approach we use in addition to our SQL generation algorithm

(Chapter 5). Finally, we present our experiments along with a compari-

son with related work (chapters 6 and 7). The results of this PhD thesis

research (Chapter 8) confirm that this work provide some contribution to

advance the field of Information Systems.
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Chapter 2

Preliminaries

Natural language is what humans use for communication. It may be spo-

ken, signed, or written but for our purposes we consider only written text.

In the field of question answering this text is typically modelled as ques-

tions or sentences paired with the corresponding answer. That answer may

be again a natural language sentence, a machine readable instruction in an

artificial language, some structured data like tables, images and graphs or

raw values (e.g. numbers of the result set of a database query).

In this research we consider only questions whose answers can be found

in a database. Indeed we deal with pairs in two different languages, the

human one and the Structured Query Language. In fact, to retrieve the

final answer we need to execute a SQL query over a database to retrieve a

result set.

In next chapters we will show how we address this question answering

task by finding a mapping between natural language and the database pro-

gramming language. Knowing how to convert natural language questions

into their associated SQL queries, it is straightforward to obtain the an-

swers by just executing a query. Unfortunately, previous work in Natural

Language Understanding has shown the inadequacy of logic and rule-based

approaches to this problem; in contrast shallow and statistical methods
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appear to be promising. Our solution indeed is based on robust machine

learning algorithms, i.e. Support Vector Machines (SVMs), and effective

approaches for structural representation, i.e. Sequence and Tree Kernels

This chapter introduces the reader to some basic knowledge in the fields

of Natural Language, Databases and Kernel Methods while it gives a mo-

tivating example to clarify the overall process.

2.1 Natural Language Processing

Natural language understanding has been often referred to as an AI-complete

problem because it requires extensive knowledge over multiple domains and

the ability to manipulate it.

As previously stated, we do not perform natural language understand-

ing but we apply shallow semantics models. However the natural language

processing (NLP) problem of automatically extracting meaningful informa-

tion from natural language input in order to produce a meaningful output

(e.g. the correct answer to a given question) is still demanding. The prob-

lem is that natural language grammar is ambiguous and typical sentences

have multiple possible interpretations. At the same time, the expressive-

ness of a language allows to have many semantically equivalent sentences,

i.e. syntactically different questions that have the same semantics.

To cope with that we take into account only particular aspects of the

natural language, considering only basic grammar relations holding be-

tween a subset of stems in a given NL question, relying only on syntax to

derive the underlying semantics. This way we exploit fewer but enough

information from the input NL question that is used by our mapping algo-

rithm to find a mapping SQL query.
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2.1.1 Stemming

Stemming is the process that reduces inflected and/or derived words to

their root form. The obtained stem could not necessary be the word’s

morphological root, for example the words city and cities are associated

with the stem citi.

In our framework we use the off-the-shelf stemmer written by Martin

Porter as its stemming algorithm is widely used and has become the de-

facto standard for English. We slightly modified his released and official

free-software implementation1 to accommodate the use of stems in order

to better map those words whose stems ended with an -y. In these cases

this letter just drops to allow the correct matching between, for example,

city (that is now stemmed as cit) and citizens. This way we use stems to

exploit conflation, a process also used by search engines to perform query

broadening.

2.1.2 Parsing

The task of parsing deals with syntactically analyzing a string text to

derive the grammatical structure that characterize it. The string of text

should be first tokenized, using a lexical analyser to create tokens from the

sequence of input characters. A grammatical analyzer then determines the

relationship between the tokens (ie. words of the input string) and builds

a data structure. The output of this process can be a parse tree (syntax

tree) or other hierarchical structure.

In the following we introduce two kinds of off-the-shelf parsers that we

embed in our framework to determine relationships between stems of input

questions.

1http://tartarus.org/ martin/PorterStemmer/
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Charniak Parser

The aim of our research is to derive the shared shallow semantics within

pairs by means of syntax. While early work on the use of syntax for

text categorization used to be based on part-of-speech tags, e.g. Basili

et al. [1999], the efficiency of modern syntactic parsers allows us to use the

complete parse tree.

Thus we represent questions by means of their syntactic trees, obtained

from the output of the open source2 Charniak’s syntactic parser [Charniak,

2000]. An example of such parse string for the sentence Which capitals are

in states bordering Iowa? is the following.

(ROOT

(SBARQ

(WHNP (WDT which) (NNS capitals))

(VP (VBP are)

(PP (IN in)

(NP (NNS states))

(VP (VBG bordering)

(NP (NN iowa)))))))

The corresponding visual representation of its parse tree is shown in

Figure 2.1.

2.1.3 Stanford Dependency Parser

In addition to constituency parsing we exploit dependency parsing. While

the first is used for representing questions by means of constituencies in a

hierarchical way, the second one is useful to directly capture binary depen-

dency relations holding between the words in a question.

2ftp://ftp.cs.brown.edu/pub/nlparser/
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Figure 2.1: Syntactic tree of a NL question.

We use the Stanford Dependencies representation [Marie-Catherine de

Marneffe and Manning, 2006] since it provides a simple and uniform de-

scription of binary grammar relations between a governor and a depen-

dent. As shown in the example below, each dependency is written as

abbreviated relation name (governor, dependent). The governor and the

dependent are words in the sentence associated with a number indicating

the position of the word in the sentence.

In particular we refer to collapsed representation, where dependencies

involving prepositions, conjuncts, as well as information about the referent

of relative clauses are collapsed to get direct dependencies between content

words.

For example, the Stanford Dependencies Collapsed (SDC) representa-

tion for the question, q1: “What are the capitals of the states that border

the most populated state?” is the following:

SDCq1 = attr(are-2, what-1), root(ROOT-0, are-2), det(capitals-4, the-3),

nsubj(are-2, capitals-4), nsubj(border-9, states-7), rcmod(states-7,

border-9), det(states-13, the-10), advmod(populated-12, most-11),

amod(state-13, populated-12), dobj(borders-9, state-13)
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The current representation contains approximately 53 grammatical re-

lations but for our purposes we only use the following: adverbial and adjec-

tival modifier, agent, complement, object, subject, relative clause modifier,

prepositional modifier, and root.

For this reason, as we will see in depth in section 5.1.2, we’ll modify

the list given as output from Stanford Parser removing useless relations

(e.g. determinant, det(states-13, the-10) and reduce each governor and

dependent to their stemmed form.

2.2 Databases

A database consists in a collection of data organized in possibly very large

data structures.

It is worth noting that the term database does not apply directly to

a database management system (DBMS). The combination of database

(data collection and data structures) and the underlying DBMS is referred

to as database system.

A large variety of database systems have been used and developed as

soon as they started to be popular. In the past twenty years, relational sys-

tems have shown to be the most dominant, while the most spread database

language is the standard SQL for the Relational model.

For this reason in the research we consider and describe only a relational

system. We first introduce how data is organized according to the relational

model, then we discuss how metadata is stored in the underlying database

catalog. Last, we describe in detail the most common language associated

with the relational model (SQL) and which subset of its grammar we can

deal with in our framework. Following such grammar rules we developed

a parser that builds a relational tree for a given SQL query.
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2.2.1 Relational Databases

According to the relational model, data is organized into two-dimensional

arrays called relations (database tables). Each relation has a heading and a

set of tuples. The heading is an unordered possibly empty set of attributes

(table’s columns). Each tuple is a set of unique attributes and values

(table’s rows). Data across multiple tables is linked with a key, that is, the

common attribute(s) between tables. The dominant language associated

with the relational database is the Structured Query Language (SQL).

In this research we experiment with different relational databases, about:

• Geographic information regarding cities, rivers, mountains and lakes

in US states and their surrounding states. It is called Geobase and

is part of the GeoQuery corpus of R.Mooney and his group. This

corpus is available in different sizes and languages.

• Restaurants information including names, addresses, ratings of Cali-

fornian restaurants. This corpus has been also provided by Mooney’s

group and is part of RestaurantQuery dataset.

Figure 2.2 shows a fragment of the GeoQuery database. In particular

this piece of information, distributed across the tables RIVER, STATE and

Figure 2.2: GeoQuery database fragment
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CITY embeds the intrinsic information that NEW YORK is a state name, its

capital is ALBANY and its population is around 17 million people. However

NEW YORK appear to be also a city name in the homonymous state with

a population of 7 million people. Last, NEW YORK shows up also on table

RIVER under the field traverse. Whether this information regards states or

cities is clear to the reader but from the DBMS point of view this relation

should be stored as metadata in a specific data structure: the database

catalog (called Information Schema in SQL systems).

2.2.2 Metadata and Information Schema

The DBMS manage the database(s) that resides in it by means of a storage

engine. It stores all the information about the data (metadata) into internal

data structures.

In a relational-database metadata is stored into tables. Some examples

are shown in Figure 2.3 and are basically the following:

• A table containing all tables’ names for every database, along with

their size and number of rows.

• A table storing column names in each database, together with the

information about which tables and database they are used in and

the type of data they store.

• A table that keeps track of referred tables and columns by means of

external keys.

• A table used to maintain database constraints to ensure database

integrity.

In database terminology, this set of metadata is referred to as the cat-

alog. In standard SQL the catalog can be accessed interacting with an

internal database, called the Information Schema (in the reminder we refer

to it as IS).
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Figure 2.4: IS fragment a SQL DBMS containing GeoQuery and RestaurantQuery

To show an example of what kind of metadata is typically stored into

IS, lets look at Figure 2.4. It contains table names and column names of

the GeoQuery and RestaurantQuery databases, but as actual values,

not as table or column names (see Figure 2.2 for a comparison).

With respect to the previous example (introduced discussing Figure 2.2),

the fact that NEW YORK shows up in table RIVER under the field traverse

can be used to disambiguate the term NEW YORK as being referred to a state

name.

2.2.3 SQL queries and Relational Algebra

SQL was one of the first languages developed for the relational model.

Nowadays is the most widely used database language, supported by all the

relational DBMSs.
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The basic components of statements and queries are called clauses. The

SELECT components is the most important: it indicates which columns

should be kept in the final result (an asterisk specify that all columns in

the tables should be kept). Tables that contain this data are indicated in

the FROM clause (it can include optional JOIN sub-clause to specify the

rule for joining tables). The WHERE clause is optional, and consist of a

comparison predicate. In order to restricts the rows in the final result set,

it eliminates all rows from the result set for which the comparison predicate

doesn’t hold. Other possible clauses, that we don’t take into account are

GROUP BY, HAVING and ORDER BY.

Hence, the general SQL query that our system can deal with has the

form:

SELECT COLUMN FROM TABLE [WHERE CONDITION ] (2.1)

The query is interpreted starting from the relation in the FROM clause,

selecting tuples that satisfy the condition indicated in the WHERE clause

(optional) and then projecting the attribute in the SELECT clause.

In relational algebra, selection and projection are performed by σ and π

operators respectively. The meaning of the SQL query above is the same

as that of the relational expression:

πCOLUMN (σCONDITION(TABLE)) (2.2)

We introduce this formalism to be more concise in all the definitions

that follow in the remainder of the thesis.

It is worth noting that while relational algebra formally applies to sets

of tuples (i.e. relations), in a DBMS relations are bags so it may contain

duplicate tuples [Garcia-Molina et al., 2008]. For our purposes the fact of

having duplicates in the result adds noise; this is why we always delete mul-

tiple copies of a tuple by using the keyword DISTINCT in the COLUMN
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field. In our QA task we expect that questions can be answered with a

single result set (e.g. we can deal with “Cities in Texas” and “Populations

in Texas” but not with the combined query “Cities and their population in

Texas”). That is, even if in general COLUMN could be a - possibly empty

- list of attributes, in our system it just contains one attribute. We can ap-

ply to this attribute aggregation operators that summarize it by means of

SUM, AVG, MIN, MAX and COUNT, always combined with DISTINCT

keyword (e.g. SELECT COUNT(DISTINCT state.state name)).

Instead, CONDITION is a logical expression where basic conditions,

in the form eL OP eR, with OP={<,>,LIKE,IN}, are combined with AND,

OR, NOT operators. While eL is always in the form table.column, eR

could be:

• numerical value (e.g. city.population > 15000) or

• string value (e.g. city.state name LIKE "Texas") or

• nested query (e.g. city.city name IN (SELECT state.capital FROM

state)

In other words, every expression can produce scalar values or tables

consisting of columns and rows of data. The result of a nested query

(called subquery) can be used in another query via a relational operator

or aggregation function.

An example of a complex WHERE condition could be the following one,

referring to “major non-capital cities excluding texas”:

WHERE city.population > 15000 AND

(city.city_name NOT IN

(SELECT state.capital FROM state)) AND

NOT city.state_name LIKE "Texas"



Databases 23

The meaning of TABLE is more straightforward, since it should just

contain table name(s) to which the other two clauses refer. This clause

could just be a single relation or a join operation, which combines records

from two or more tables by using values common to each. We only deal

with theta-joins where we take the Cartesian product of two relations and

exclusively select only those tuples that satisfy a condition C.

The notation for theta-joins of relations R and S based on condition C

is
R./S
C . We use the SQL keyword ON to keep this condition C separated

from the other WHERE conditions since it reflects a database requirement

and shouldn’t match to anything of the NL question. (e.g. city JOIN

state ON city.city name = state.capital).

The complexity of generated queries is fairly high indeed, since we can

deal with questions that require nesting, aggregation and negation in addi-

tion to basic projection, selection and joining (e.g. “How many states have

major non-capital cities excluding Texas”).

2.2.4 SQL Parsing

Since we aim at transforming NL trees into SQL trees, we need to represent

also the SQL as a syntactic tree. To build the SQL tree we implemented

an ad-hoc parser that follows the syntactic derivation of a query according

to our grammar. Since our database system embeds a MySQL server,

we use the production rules of MySQL, shown at the top of Figure 2.5,

slightly modified to manage punctuation, i.e. rules 5*, 6* and 20* related

to comma and dot, as shown at the bottom.

More in detail, we change the non-terminals Item and SelectItem with

the symbol • to have an uniform representation of the relationship between

a table and its column in both the SELECT and WHERE clauses. In such an SQL

tree, the internal nodes are only the SQL keywords of the query plus the

special symbol • whereas the leaves are names of tables and columns of
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the database, category variables or operators. This allows for matching

between the subtrees containing table, column or both also when they

appear in different clause types of two queries.

It is worth noting that rule 20* still allows to parse nested queries

and that the overall grammar, in general, is very expressive and power-

ful enough to express complex SQL queries involving nesting, aggregation,

conjunctions and disjunctions in the WHERE clause.

Note that, although we eliminated comma and dot from the original

SQL grammar, it is still possible to obtain the original SQL query by just

performing a preorder traversal of the tree.

To represent the above structures in a learning algorithm we use tree

kernels described in the following section.

Figure 2.5: Modified MySQL Grammar
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2.3 SVMs and Kernel Methods

Kernel methods (KMs) define a class of learning algorithms used for pattern

analysis typically associated with support vector machines (SVMs). The

problem in pattern analysis is finding any kind of relations (e.g. rankings,

correlations, classifications, etc.) in any types of digital data (e.g. text

sequences, sets of points, vectors, trees, images, etc.).

KMs approach this problem by mapping the data into a high dimen-

sional feature space, where each coordinate corresponds to one feature of

the data items. This data is transformed into a set of points in a Euclidean

space where a variety of methods can be used to find relations among them,

and indeed, holding also in the original data.

KMs make extensively use of kernel functions, which are able to operate

in the feature space without ever computing the coordinates of the data in

that space, but just computing the inner products between the images of all

pairs of data in the feature space. This operation is often computationally

cheaper than the explicit computation of the coordinates.

The main idea is that the parameter model vector ~w generated by SVMs

(or by other kernel-based machines) can be rewritten as

∑
i=1..l

yiαi~xi (2.3)

where yi is equal to 1 for positive and -1 for negative examples, αi ∈ <
with αi ≥ 0, ∀i ∈ {1, .., l} ~xi are the training instances. Therefore we can

express the classification function as

Sgn(
∑
i=1..l

yiαi~xi · ~x+ b) = Sgn(
∑
i=1..l

yiαiφ(oi) · φ(o) + b) (2.4)

where ~x is a classifying object, b is a threshold and the product
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K(oi, o) = 〈φ(oi) · φ(o)〉 (2.5)

is the kernel function associated with the mapping φ.

Note that it is not necessary to apply the mapping φ, we can use K(oi, o)

directly. This allows, under the Mercer’s conditions [Shawe-Taylor and

Cristianini, 2004], for defining abstract functions which generate implicit

feature spaces. The latter allow for an easier feature extraction and the

use of huge feature spaces (possibly infinite), where the scalar product (i.e.

K(·, ·)) is implicitly evaluated.

In the following section, we first propose a structural representation of

the question and query pairs, then we report the two more adequate kernels

for syntactic structure representation, i.e. the Syntactic Tree Kernel (STK)

[Collins and Duffy, 2002], which computes the number of syntactic tree

fragments and the Extended Syntactic Tree Kernel (STKe) [Zhang and

Lee, 2003b], which includes leaves in STK. In the last subsection we show

how to engineer new kernels from them.

2.3.1 Tree Kernels

The main underlying idea of tree kernels is to compute the number of

common substructures between two trees T1 and T2 without explicitly con-

sidering the whole fragment space. Let F = {f1, f2, . . . , f|F|} be the set of

tree fragments and χi(n) an indicator function equal to 1 if the target fi

is rooted at node n and equal to 0 otherwise. A tree kernel function over

T1 and T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (2.6)

where NT1 and NT2 are the sets of nodes in T1 and T2, respectively, and

∆(n1, n2) =
∑|F|

i=1 χi(n1)χi(n2). The ∆ function is equal to the number of



SVMs and Kernel Methods 27

common fragments rooted in nodes n1 and n2, and thus, depends on the

fragment type. We report its algorithm for the evaluation of the number

of syntactic tree fragments (STFs).

Syntactic Tree Kernel (STK)

A syntactic tree fragment (STF) is a set of nodes and edges from the

original tree which is still a tree and with the constraint that any node

must have all or none of its children. This is equivalent to state that the

production rules contained in the STF cannot be partial. To compute the

number of common STFs rooted in n1 and n2, the STK uses the following

∆ function [Collins and Duffy, 2002]:

1. if the productions 3 at n1 and n2 are different then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the same, and n1 and n2 have only

leaf children (i.e. they are pre-terminal symbols) then ∆(n1, n2) = λ;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not

pre-terminals then

∆(n1, n2) = λ
∏l(n1)

j=1 (1 + ∆(cn1(j), cn2(j))),

where l(n1) is the number of children of n1, cn(j) is the j-th child of the

node n and λ is a decay factor penalizing larger structures.

Figure 2.7.a shows some STFs of the NL and SQL trees in Figure 2.6.

STFs satisfy the constraint that grammatical rules cannot be broken. For

example, in this figure, [VP [AUX NP]] is a STF, which has two non-terminal

symbols, AUX and NP, as leaves whereas [VP [AUX]] is not a STF.

3In a syntactic tree a node with its children correspond to the grammar production rule that generated

it.
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Figure 2.6: Question/Query Syntactic trees

Syntactic Tree Kernel Extension (STKe)

STK does not include individual nodes as features. As shown in Zhang and

Lee [2003b] using its extension (STKe) we can include at least the leaves,

(which in constituency trees correspond to words) by simply inserting the

following step 0 in the algorithm above [Zhang and Lee, 2003b]:

0. if n1 and n2 are leaf nodes and their labels are identical then ∆(n1, n2) =

λ;

2.3.2 Relational Kernels

Since our goal is finding common substructures shared by pairs of trees, as

shown in Figure 2.6, we need to represent the members of a pair and their

interdependencies. Then we can carry out kernel engineering by combining

basic kernels with additive or multiplicative operators.

For this purpose, given two kernel functions, k1(., .) and k2(., .), and

two pairs, p1 = 〈n1,s1〉 and p2 = 〈n2,s2〉, a first approximation is given by

Figure 2.7: Joint space STK+STK for the tree pair in Figure 2.6
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Figure 2.8: Cartesian product STK×STK feature spaces for the tree pair in Figure 2.6

summing the kernels applied to the components: K(p1, p2) = k1(n1, n2) +

k2(s1, s2). This kernel will produce the union of the feature spaces of ques-

tions and queries. For example, the explicit vector representation of the

space of STK of the pair in Figure 2.6 is shown in Figure 2.7. The Syntactic

Tree Fragments of the question will be in the same space of the Syntactic

Tree Fragments of the query.

Product Kernel

In theory a more effective kernel is the product k(n1, n2) × k(s1, s2) since

it generates pairs of fragments as features, where the overall space is the

Cartesian product of the used kernel spaces. For example Figure 2.8 shows

pairs of STF fragments, which are essential to capture the relational se-

mantics between the syntactic tree subparts of the two languages. In par-

ticular, the first fragment pair of the figure may suggest that a noun phrase

composed by state expresses similar semantics of the syntactic construct

SELECT state name. Similarly the last fragment pair suggests that the

verb phrase border VARstate semantically maps the syntactic construct

WHERE border = VARstate. In other words, from the above feature pairs

we can derive that the whole query may be a correct translation of the

given question.
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Polynomial Kernel

As additional feature and kernel engineering, we also exploit the ability of

the polynomial kernel to add feature conjunctions. By simply applying the

function (1 + K(p1, p2))
d, we can generate conjunction up to d features.

Thus, we can obtain tree fragment conjunctions and conjunctions of pairs

of tree fragments.

The next section will show the results using different kernel combina-

tions for pair representation.

2.4 Motivating Example

In order to illustrate our goal and proposed ideas to the reader, we give a

short example and briefly discuss the overall process.

When designing a database, domain experts are requested to organize

entities and relationships naming tables and columns in a meaningful way

(i.e. state name or capital instead of table 1 or table 2 ). Moreover we’ve

shown that the database schema also specifies constraints and data types.

IS can be inspected as a normal database, posing SQL queries to obtain

useful fields to build a new SQL query. In practice, we can use the same

technique and technology to generate an answer to a given question and

retrieve the answer itself.

For example, an answer for the question “Which rivers run through

states bordering New York” can be found in the GeoQueries corpus. This

is associated with a spatial database whose structure is stored in IS as

shown in Figure 2.4 (see page 20).

While we have a simple matching for the word rivers with table river

and column river name, there isn’t a direct mapping between the word

run in the question and any of the columns in the metadata. However,
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the disambiguation of term run can be easily performed by looking at the

less semantically distant metadata entry, i.e., traverse. This matching is

furthermore confirmed when investigating on all possible interpretations of

New York in this database (i.e. city name, state name, etc.), by the exist-

ing reference between column traverse in table river and column state name

in table state.

However, matching both words New and York is not so easy since there

is no evidence of relatedness between the two words in the metadata: this

means that the whole database should be looked up for their stems. Words

can be matched with lots of values (e.g., ”New York” both as city and as

state name, but also with ”New Jersey”), as shown by Figure 2.2, but

the key idea is to exploit related metadata information (i.e. primary and

foreign keys, constraints, datatypes, etc.) to select the most plausible one.

After some generative steps we might end with a set of possible SQL

queries including the following ones:

SELECT river.river_name

FROM river JOIN border_info ON river.traverse = border_info.border

WHERE border_info.state_name = ’New York’;

The above query correctly answers to “Which rivers run through states

bordering New York”. However other similar mappings can be investigated:

SELECT river.river_name

FROM river JOIN city ON river.traverse = city.state_name

WHERE city.city_name = ’New York’;

This query retrieves “Names of rivers that run through the state of New

York city” mismatching the bordering information need. Another possible

mapping query can be:
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SELECT river.river_name

FROM river

WHERE river.traverse = ’New York’;

Its result, for a mere coincidence, is equivalent to the previous one,

so still mismatching. While these last two queries are valid queries and

share some common stems with the correct one, we note that the first one

maximizes this similarity. For this reason we introduce a method to weight

generated queries according to the common stems.

However we can’t just rely only on bag-of-stems to compute similarity.

There can exist some special word or phrase in the NL question that maps

to a whole SQL sub-structure.

For example, the word major, referred to cities or rivers, have different

implicit translation in SQL. Let us analyze the mapping between “Major

cities in USA” and “Major rivers in US” and their associated queries.

With respect to GeoQueries dataset, matching queries are the following

ones:

SELECT city.city_name

FROM city

WHERE city.population > 150000;

SELECT river.river_name

FROM river

WHERE river.length > 750;

If we consider just stems, we can’t infer any mapping to translate major

into any of its meaning. But if we take into account their syntactic trees

we can investigate the matching between tree structures using structural

kernels.
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In particular, exploiting the product kernel between their trees, we gen-

erate a feature space that embeds pairing between substructures, e.g. the

first fragment pair of the Figure 2.9 suggests that the noun phrase ma-

jor cities expresses similar semantics of the syntactic construct WHERE

city.population>150000. At the same time, major rivers is semantically

similar to the syntactic construct WHERE river.length>750, with a simi-

larity degree higher than the one with WHERE city.population>150000.

Figure 2.9: Sample feature space of the cartesian product between synctactic tree kernels.
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Chapter 3

State of the art

The numerous attempts to design models for automatically answering nat-

ural language questions made in the past thirty years have shown that the

task is much more difficult than was originally expected [Copestake and

Sparck-Jones, 1990]. A huge variety of systems has been proposed, with

increasing performances, but the task is still challenging.

While early systems were built to translate questions in Prolog language,

in the last twenty years relational databases became very popular making

Structured Query Language (SQL) the most widespread database language
1.

This translation usually takes place in three stages: a first step pro-

duces a tree-like structure from the natural language input; a second one

transforms the tree into an internal logical representation, which is finally

translated into a statement in the target artificial language. The systems

reviewed in this section can be classified into three categories: spoken lan-

guage understanding, keyword-based searching and question answering in

NLI (i.e. user interfaces that handle natural language sentence in text

format).

1In this chapter we will give an overview of most recent systems; for a detailed review of systems

developed before the nineties, please refer to [Chandra and Mihalcea, 2006; Dale R., 2000].
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3.1 Spoken Language Understanding

In 1990, the Advanced Research Project Agency defined an application

domain, called ATIS (Air Travel Information Service), for collaboration

and comparison of the result in the area of speech language understanding.

The following paragraph illustrates the techniques used by some spoken

language systems that addressed this challenge, as discussed in Pallett

et al. [1994].

Phoenix uses a bottom-up semantic parser to build trees from the sen-

tences and then extract information into slots of frames. These frames,

which describe semantic entities (e.g. flight, airport, time and other con-

cepts), are then used to produce the corresponding SQL queries. Another

system that uses this approach is SRI, which combines a syntactic parser

with a template matcher. This matcher fills a set of semantic structures

similar to frames using some domain keywords. Chronus, by AT&T, em-

beds a conceptual statistical decoder that uses Hidden Markov Models to

decode from an acoustic signal a list of concepts in order to build a bi-

gram conceptual model. Also the BBN system represents concepts and

sub-concepts with a tree structure, distinguishing between terminal and

non terminal nodes to define a statistical model. The Chanel system uses

instead a set of trees (called Semantic Classification Trees) to represent

semantic rules. Such trees contain the list of all possible attributes of the

SELECT statement and WHERE constraints.

Another speech understanding system based on statistical representa-

tion of semantics was developed in 1992 [Pieraccini et al., 1992]. Authors

assumed a limited domain where the number of concepts - used to dis-

ambiguate the sentence - was finite. The system was tested in the ATIS

domain and behaved well, answering most of the input sentences, but the

use of a restricted vocabulary was too restrictive.
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In 1993, an evaluation of these systems [Pallett et al., 1994] in the ATIS

domain revealed that the ones performing better were Phoenix and BBN.

The key feature of these approaches was the use of trees to represent the

syntax of the sentences given in input and then identify semantic relations

among leafs. However, this research program focused on handling continu-

ous and spontaneous speech recognition, rather than on natural language

processing.

However, with the advent of the Web and search engines, people got

used to express their information need in terms of keyword combinations

in place of typing whole sentences. For this reason, the focus of natural

language understanding shifted from speech recognition to keyword-based

searching.

3.2 Keyword Search

In the past decade, question answering has been also addressed by keyword-

based search. It retrieves requested information both from documents and

from databases but with different techniques: while in the first case the

keywords are to be searched on a unique source, in the second case the

information is split across multiple tables due to normalization.

In order to understand to what extent our system differ from previous

approaches, we will now review some state-of-the-art systems that perform

keyword-based search only on top of relational databases.

Among recent systems that enable keyword-based search we find Mi-

crosoft DBXplorer [Chaudhuri et al., 2002]. It uses a symbol table to store

tables, columns, and rows of all data values, which is looked up during the

search to identify the locations that contain all the keywords appearing in

the question.
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This table is very useful to disambiguate terms, but although compres-

sion methods to store the symbol table in the database are available, space

and time requirements remain a critical factor. Anyway there is no need

to maintain a symbol table if we can rely on the actual database and its

underlying metadata.

The BANKS [Hulgeri et al., 2001] and ObjectRank [Balmin et al., 2004]

systems apply ranking to keyword search over databases: results are ranked

with respect to their relevance, computed using an approach similar to

PageRank in BANKS while ObjectRank applies authority-based ranking.

One beneficial feature of BANKS is that it also takes into account metadata

while performing the search. Both these systems use graphs to model

relational databases, where each node represents an object of the database.

The ranked answer is a sub-graph where weighted nodes are ordered based

on descending relevance. The same method is used in our approach to

rank results in a way that reflects the correctness of the answers generated

by the system with respect to the question, i.e. based on the number of

matching substructures between the relational tree and the propositional

tree.

Précis [Koutrika et al., 2006] is another system that uses both an in-

verted index and a directed schema graph to generate a new database and

a personalized natural language synthesis of result. Besides, keyword ques-

tion answering is implemented using huge inverted indexes and symbol ta-

bles that need to be rebuilt whenever the database is updated. Indeed, this

approach is not suitable for very large databases where the high number of

tables and rows would prohibit symbol table maintenance. In addition, it’s

worth noting that these systems don’t consider solutions that include two

tuples from the same relation. That is, they retrieve a single-value answer,

while the solution is often a set of values or strings.
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3.3 Question Answering in NLI

The ultimate way to handle the problem and allow to query very large data

is the implementation of natural language interfaces (NLI). In particular,

natural language interfaces to database (NLIDBs) take natural language

questions (whole sentences as well as keywords) and translate the user

intent into machine-readable instructions to retrieve the answers.

One of the first attempts made towards this goal was made by Hen-

drix [1977] with Lifer: A Natural Language Interface Facility. A parser

contained within Lifer was able to translate sentences and requests into

appropriate interactions with a database system. An interesting feature of

Lifer was that the language it could handle was defined in terms of pat-

terns, which used semantic concepts in the domain of application. Lifer

used a simplified augmented transition network to analyse thee input sen-

tence. Each pattern defined by the grammar corresponded to a possible

path in the transition network.

Lifer was used at SRI as the natural language component of a system

called ”LADDER” for accessing multiple, distributed databases. In 1982,

Hendrix left SRI to form Symantec and introduced its first commercial

product, Q&A [Hendrix, 1986] that included an intelligent assistant to let

users manipulate databases and produce reports by issuing commands or

asking questions in English. Assuming a very simple database organization,

English queries were translated into a hypothetical database query and

then transformed into a series of actual database queries that took into

account the actual organization of the database.

Chat-80 [Waltz, 1978] is the best-known NLI of the early eighties.

Entirely implemented in Prolog, it was able to answer rather complex

questions, posed in English, about a database of geographical facts. The

computation of the meaning (that is, the semantics) of an English query
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was guided by the syntactic structure of the query and was expressed as

a logical formula. This formula was then transformed into the individ-

ual queries of the database needed to answer the original question. The

code of Chat-80 had widely circulated, giving the basis of several other

experimental NLIs (e.g. MASQUE, i.e. Modular Answering System for

Queries)

MASQUE/SQL [Androutsopoulos et al., 1993] is a modified version of

the MASQUE system. It answers written English questions by generating

SQL codes, while the original version generated Prolog queries. English

questions are first transformed into expressions in a logical query language

and then translated into SQL. The entity types of the world to which the

database refers are organized in a hierarchical forest and the meaning of

words is expressed as a logical predicate. As opposite to other inefficient

approaches, where partial results are joined by the front-end, it uses DBMS

specialized optimization techniques. It embeds a built-in domain editor

that should be used by an expert to configure the system for new knowledge

domains, to declare expected words and to define the meaning in terms of

a logic predicate. Another disappointing aspect of this application is that

if the SQL query fails, the system does not know which part of the query

caused the failure.

The open-source natural language application SQ-HAL [Ruwanpura]

needs to know the relationships between tables to create the SQL query.

Besides having to manually enter these relationships, users are requested

to suggest synonyms. An approach that requires user assistance defeats

the original goal of building an NLIDB for näıve users. Let us recall that,

as far as we use relational databases, relationships between tables can be

automatically derived.

EasyAsk2, also known as English Wizard, is a commercial applica-

2http://www.easyask.com
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tion that offers both keyword and natural language search over relational

databases. The system crawls the data to automatically construct a contex-

tual dictionary used to identify words that correspond to values or catalog

attributes and generate an SQL statement. It incorporates approximate

word matching, stemming and synonyms.

EQ, which stands for English Query [R., 2004], is a NLIDB implemented

by Microsoft Corporation, as a part of the SQL Server. It creates a model,

collecting database objects (tables, fields, joins) and semantic objects (en-

tities, additional dictionary entries, etc). However, it only extracts few

basic relationships and, thus, requires refining the model manually.

ELF, English Language Front End 3, is another commercial system

that generates a natural language processing system for a database. This

interface works with Microsoft Access and Visual Basic. The parser builds

the parse tree from the input, by swapping and substituting the words

with the SQL keywords wanted in the final result. The basic model is built

automatically, extracting most of the relationships from the database. A

comparison between these two systems [R., 2004] illustrated the superiority

of the ELF system over EQ. The reason is that EQ, like many other natural

language systems except ELF, relies on context-free grammars.

A system that, instead, enables casual user to query XML database,

without any knowledge of the underlying schema, is NaLIX [Li et al.,

2005]. It allows to query XML databases relying on schema-free xQuery

and asking the users to rephrase those questions not understood by the

system, interacting with a feedback module. While no domain-specific

knowledge is used, they provide ontology-based term expansion controlled

by the user when term disambiguation is needed. The approach of map-

ping grammatical proximity of tokens in the parsed tree into proximity of

elements in the final xQuery statement is, to a certain extent, similar to

3http://www.elfsoft.com
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our technique.

Many multilingual interfaces have also been proposed and are typically

more complex that those that deal only with English. For example the

tourism NLIDB Tiscover [Dittenbach M. and Berger, 2003], takes as in-

put both German and English and the language is automatically detected

using an n-gram-based text classification approach. To compensate for or-

thographic errors, a spell checker is used and word occurrence statistics

from previous queries are taken. It uses language-dependent ontologies

to identify relevant parts of the question and a domain-specific processing

logic to define how these relevant parts are related to each other to build

the appropriate database query. For each language they create a dictionary

with concepts and synonyms, prepositions, adverbial and adjectival struc-

tures, proper names (e.g. names of cities and states). This means that all

domain-dependent words have to be stored for each language, increasing

the size of the domain dictionary and, thus, decreasing the portability.

Edite [Filipe and Mamede, 2000] is another NLIDB that answers writ-

ten Portuguese, French, English, and Spanish questions about tourism re-

sources by transforming them into SQL queries. However this translation is

inefficient, being based on several mapping tables which, as said before, are

highly dependent on database organization, domain and language. Trans-

lation is thus only possible in restricted domains with few proper names.

The only beneficial feature of this system is the complete separation be-

tween the linguistic component and the database knowledge, which leads

to guaranteed portability.

An NLIDB that accepts only Spanish natural language questions is pre-

sented in Barbosa et al. [2006]. This interface relies on synonyms and

domain dictionaries, as well as on metadata dictionary, analyzing nouns,

prepositions and conjunctions present in the queries issued to the database

(similarly to our approach for exploiting grammar relationships of the given
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question). It is domain independent, which means that the interface can be

used with different databases, but this requirement complicates the task of

achieving high translation success. Moreover the experimental evaluation

of this system its not reliable, since when formulating their questions, the

users were given the database schema and information contained in the

database, while this is never the case when a NLIDB is used.

Authoring systems (e.g. CatchPhrase [Minock et al., 2008]) rely on

semantic grammar specified by an expert user (i.e. the author) to interpret

question over a database. The author has to name database elements,

tailor entries and define additional concepts. Up to the 1980s, most NLP

systems were based on complex sets of hand-written rules. Starting in the

late 1980s, however, there was a revolution in NLP with the introduction

of machine learning algorithms for language processing.

To analyse the reliability of an NLI a theoretical framework has been

proposed in Popescu et al. [2003]. Authors give the formal definitions of

soundness and completeness and identify a class of semantically tractable

natural language questions for which sound and complete NLIs can be built.

They claim “if the sentence tokenization contains only distinct tokens and

at least one of its value tokens matches a wh-value, the corresponding sen-

tence is semantically tractable”. Based on this theoretical analysis they

have been able to build an NLI, called Precise, that is 100% accurate: it

correctly answers all semantically tractable questions, otherwise requests

rephrasing. They reduce the problem of finding a semantic interpretation

of ambiguous natural language tokens as database elements to a graph

matching problem. Then they find valid mapping(s) from a complete tok-

enization of a given question to a set of database elements that are finally

converted into a SQL query (queries). Although this can be easily solved

using the maxflow algorithm, computing the set of complete tokenization

is equivalent to the NP-hard problem of exact set covering.
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While previous work [Ge and Mooney, 2005; Zettlemoyer and Collins,

2005; Wong and Mooney, 2006] has explored how to learn a mapping from

sentences to lambda-calculus meaning representations requiring supervi-

sion such as manual labelling, the best performing state-of-the-art systems

adopt instead machine learning approaches to induce a semantic grammar

from data consisting of sentences paired with their meaning representa-

tions.

For example, Krisp [Kate and Mooney, 2006] takes pairs of sentences

and their computer-executable meaning representations as training input

to find a mapping between sentences and Prolog assertions using an SVM

classifier. For each production in the meaning representation language the

model is built on top of SVM with string kernels. Then the classification is

used to compositionally represent a natural language sentence in its mean-

ing representation. While this approach performs well, it is constrained by

learning a grammar that contains a fixed set of lexical items to model the

meanings of input words and production rules to combine them in order

to analyze the sentence meanings. In other words, it may fail to produce

an answer to an unseen question since the grammar does not include the

rules required to correctly parse it.

Another effective and efficient model that transforms sentences into hi-

erarchical representations of their underlying meaning has been presented

in Lu et al. [2008] (we refer to it as ModelIII+R). It builds a single hybrid

tree of words, syntax and meaning representation by recursively creating

nodes at each level according to a Markov process. Then the averaged

perceptron algorithm is applied for discriminative reranking. Rather than

relying on full syntactic annotations, it reduces the problem of mapping

sentences to logical form to a learning algorithm that creates accurate

structured classifiers in a way that requires little human assistance for new

unseen domains. This is a generic model that does not require any domain
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dependent knowledge and could be applicable to a wide range of different

domains.

There exist other unsupervised semantic parsers, for example the USP

system [Poon and Domingos, 2009], that tackle the problem of learning a

semantic parser using Markov logic. The system transforms dependency

trees into semi-logical forms, inducing lambda forms and clustering syntac-

tic variations of the same meaning. However it is not able to handle deeper

linguistic phenomena such as quantification, negation, and superlatives.

Moreover the scope of this system is to perform question answering over

text, while in this research we focus on question answering over databases.

Another system, called UBL [Kwiatkowski et al., 2010] induces a prob-

abilistic CCG grammar to represent the meaning of individual words and

define how to combine meanings in order to represent complete sentences.

Starting from a restricted set of lexical items, using higher order unifica-

tion along with the CCG combinatory rules they learn new lexical entries,

defining the space of possible grammars in a language- and representation-

independent manner.

Recent work focusing on compositional semantics [Liang et al., 2011]

and semantic parsing [Clarke et al., 2010] avoid the need for annotation

by considering the end-to-end problem of mapping questions to answers.

In Liang et al. [2011] authors introduced a new semantic representation

(DCS, dependency-based compositional semantics) to highlight the paral-

lel between syntactical dependencies and evaluation of latent logical forms.

They give semantically-scoped denotations to syntactically-scoped trees.

In addition they extended the model with an augmented lexicon to handle

prototype words.

Our idea closely follows the unsupervised learning approach described

in Clarke et al. [2010]. They generalize questions that describe the same

information need and pair them directly to the final answer, instead of
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relying on meaning representations and their annotation. The SemResp

approach uses the syntactic information to build a semantic interpretation

exploiting a binary classification problem to implement a feedback module.

Additionally we used tree kernels. With respect to the other natural

language tasks that employ tree kernels, in the literature [Collins and Duffy,

2002; Kudo and Matsumoto, 2003; Cumby and Roth, 2003; Culotta and

Sorensen, 2004; Kudo et al., 2005; Toutanova et al., 2004; Kazama and

Torisawa, 2005; Shen et al., 2003; Zhang et al., 2006; Zhang and Lee, 2003a],

several models have been proposed and experimented.

The following table summarizes the features of the above mentioned

question answering systems, highlighting the advantages and disadvantages

of such approaches. A system is domain independent (Dom. I.) if it does

not need to be re-configured when the domain changes while it is database

independent (DB I.)if modifying the database it is not necessary to re-

implement anything. Similarly, language independence (Lan.I.) reflects

the ability of a system to answer questions of any language without having

to implement different frameworks.

In the last row we introduce our system, called MaNaLa/SQL, that

is an abbreviation for Mapping Natural Language into SQL. In Chapters

6 and 7, we will compare performance with the last six systems, being

evaluated on the same data sets we consider.



Question Answering in NLI 47

T
ab

le
3.

1:
S
ta

te
of

th
e

A
rt

S
y
st

em
s’

R
ev

ie
w

.

N
a
m
e

A
u
to

m
a
ti
ca

l
A
p
p
ro

a
ch

In
te
rv

e
n
ti
o
n

R
e
q
u
ir
e
d

D
o
m
.
I.

D
B

I.
L
a
n
g
.I
.

E
a
sy

A
sk

C
on

st
ru

ct
co

n
te

x
tu

al
d
ic

ti
on

ar
y

-
Y

E
S

Y
E

S
N

O

N
a
L
IX

D
is

am
b
ig

u
at

e
u
si

n
g

on
to

lo
gy

R
ep

h
ra

se
q
u
es

ti
on

s
Y

E
S

N
O

N
O

S
Q
-H

a
l

U
se

ta
b
le

re
la

ti
on

sh
ip

s
D

efi
n
e

sy
n
on

y
m

s
N

O
N

O
N

O

E
n
g
l
is
h
Q
u
e
r
y

E
x
tr

ac
t

fe
w

b
as

ic
re

la
ti

on
sh

ip
s

M
o
d
el

re
fi
n
em

en
t

Y
E

S
N

O
N

O

E
L
F

E
x
tr

ac
t

m
os

t
re

la
ti

on
sh

ip
s

-
Y

E
S

Y
E

S
N

O

M
A
S
Q
U
E
/
S
Q
L

S
em

an
ti

cs
as

lo
gi

ca
l

p
re

d
ic

at
es

C
on

fi
gu

re
d
om

ai
n

w
or

d
s

N
O

N
O

N
O

T
is
c
o
v
e
r

D
et

ec
t

la
n
gu

ag
e,

ch
ec

k
sp

el
l

C
on

st
ru

ct
d
ic

ti
on

ar
ie

s
N

O
N

O
N

O

E
d
it
e

E
x
p
lo

it
m

ap
p
in

g
ta

b
le

s
C

on
st

ru
ct

d
ic

ti
on

ar
ie

s
N

O
N

O
N

O

P
r
e
c
is
e

M
ax

fl
ow

al
go

ri
th

m
R

ep
h
ra

se
q
u
es

ti
on

s
Y

E
S

N
O

N
O

K
r
is
p

L
ea

rn
a

p
ar

se
r

u
si

n
g

S
tr

in
g

K
er

n
el

s
D

efi
n
e

th
e

gr
am

m
ar

N
O

N
O

N
O

C
a
t
c
h
P
h
r
a
se

M
ap

ty
p

ed
u
se

r
re

q
u
es

ts
to

S
Q

L
q
u
er

ie
s

N
am

e
an

d
d
efi

n
e

co
n
ce

p
ts

N
O

N
O

N
O

S
e
m
R
e
sp

A
n
w

se
r

D
ri

ve
n

S
em

an
ti

c
P

ar
si

n
g

&
C

la
ss

ifi
ca

ti
on

-
Y

E
S

Y
E

S
N

O

M
o
d
e
l
II
I+

R
G

en
er

at
iv

e
M

ar
ko

v
p
ro

ce
ss

&
R

er
an

k
in

g
-

Y
E

S
Y

E
S

N
O

U
B
L

In
d
u
ce

P
ro

b
ab

il
is

ti
c

G
ra

m
m

ar
s

fr
om

L
og

ic
al

F
or

m
-

Y
E

S
Y

E
S

Y
E

S

D
C
S

L
ea

rn
D

ep
en

d
en

cy
-B

as
ed

C
om

p
os

it
io

n
al

S
em

an
ti

cs
-

Y
E

S
Y

E
S

N
O

M
a
N
a
L
a
/
S
Q
L

(R
e)

ra
n
k

p
ai

rs
u
si

n
g

T
re

e
K

er
n
el

s
A

d
ju

st
ge

n
er

at
io

n
ru

le
s

Y
E

S
Y

E
S

Y
E

S



48 State of the art



Chapter 4

Dataset Generation

The previous chapter introduced the reader to some basic knowledge in

Natural Language, Databases and Machine Learning. Despite these three

fields are separate worlds and have their own community, in the last fifteen

years a lot of progress has been made in cross-disciplinary fields.

Nowadays, many successful interdisciplinary applications use NLP in

Database and Information Systems (NLDB), Machine Learning (ECML)

and Principles and Practice of Knowledge Discovery in Databases (PKDD)

communities.

However, the idea of integrating databases, natural language and ma-

chine learning in a unique framework is rather novel and there is a lack

of ready-to-use corpora. Since our goal was the development of a new

method to map NL questions into SQL queries based on a machine learn-

ing approach, we needed training data, i.e. a set of positive and negative

examples, to learn our classification function.

In practical cases, we can assume to have a set of positive examples con-

sisting of correct question/query pairs. For example, correct pairs may be

defined when databases are designed and validated. Also, we may ask the

DB operator to collect the set of queries that she/he designed in response

to typical questions asked by DB users., i.e. such that the execution of the
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query retrieves a correct answer for the question. Assuming the availabil-

ity of negative examples is a more strong assumption since providing the

correct query for an user information need is a more natural task than pro-

viding the incorrect solution. Therefore, to create negative examples, we

had to use the initial set of questions and queries in the correct pairs and

randomly pair them. Unfortunately, this can generate false negatives since

different questions may have more than one answer (and vice-versa), thus

a manual verification of such pairs is required. To reduce such costly man-

ual intervention, we exploited the semantic equivalence between the pairs’

members and its transitivity closure. This allowed us to extend the set of

positive examples to all possible correct pairings, and label all remaining

pairings as negative examples.

In the next sections, we describe our approach to automatically generate

a gold standard dataset. The main steps are:

• Generalizing concept instances: substitute the involved concepts in

questions and their related field values in the SQL queries, e.g. WHERE

condition, by means of variables expressing the category of such val-

ues (e.g. What are the major cities in Texas becomes What are the

major cities in VARstate).

• Clustering generalized pairs: each cluster represents the information

need about a target semantic concept, e.g. “major cities in VarSTATE”,

common to questions and queries. The clustering can be performed

semi-automatically exploiting the semantic equivalence between the

pairs’ members and its transitivity closure (requires a limited human

supervision for validation).

• Pairing questions and queries of distinct clusters, i.e. the Cartesian

product between the set of questions and the set of queries belong-

ing to the pairs of a target cluster. This allows to find new positive

examples that were not present in the initial corpus.
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Figure 4.1: Example of an initial dataset.

• Final dataset annotation: consider all possible pairs, i.e. Cartesian

product between all the questions and queries of the dataset, and an-

notate them as negatives if they have not been annotated as positives

in the previous steps.

4.1 Generalizing Pairs

Since acquiring training data is the most costly aspect of our design, we

should generate the learning set in a smart way. In this perspective, we

assume that, in real world domains, we may find examples of questions

and the associated queries answering them. Such pairs may have been

collected when users and operators of the database worked together for

the accomplishment of some tasks. In contrast, we cannot assume to have

available pairs of incorrect examples, since (a) the operator tends to just

provide the correct query and (b) both users and operators do not really

understand the use of negative examples and the need to have unbiased

distribution of them.
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Therefore, we need techniques to generate negative examples from an

initial set of correct pairs. Unfortunately, this is not a trivial task since

when mixing a question and a query belonging to different pairs we cannot

assume to only generate incorrect pairs, e.g. when swapping two different

queries x with y in the two pairs:

〈Which states border Texas?, x〉
〈What are the states bordering Texas?, y〉

we obtain other two correct pairs. Queries x with y could be two syntacti-

cally different SQL queries that retrieve the same result set and be, indeed,

semantically equivalent.

The aim of pair generalization is to make the detection of semantically

equivalent questions and queries easy. Our approach consists in consider-

ing questions or queries having similar structures instantiated by the same

semantic concepts. The latter are generalizations of important domain

terms occurring both in the question and in the related query. For exam-

ple, terms like Texas, Iowa, Ohio, etc., are substituted with the concept

VARstate while instances like Austin or Los Angeles etc., are substituted

with the concept VARcity.

Note that: (a) concepts correspond to column names (in the database)

that naturally stores domain terms; and (b) concepts are expressed in

the WHERE condition of the given SQL queries. We identify concepts

exploiting the latter fact since it is less time consuming that the first that

would require to manage large keyword tables.

It is important to note also that, thanks to this inference starting from

the unambiguous SQL query, we disambiguate terms like New York as a

VARcity or a VARstate based on the associated left-value in the WHERE

condition. Similarly, we can generalize more that one concept in the same

question.
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Figure 4.2: Example of the generalized dataset.

Typically these values are natural language terms so we substitute them

with variables if they appear in both questions and queries. For exam-

ple, consider s1 in Figure 4.1. The condition is WHERE state name =

’Texas’ and ’Texas’ is the value of the concept state name. Since ’Texas’

is also present in the related question we can substitute it with a variable

VARstate (one variable for each different concept). Our assumption is that

questions whose answer can be retrieved in a database tend to use the same

terms stored in the database.

We apply the same rule to all given pairs of questions and queries of

the initial dataset, and obtain a new generalized version. An example of

a generalized dataset is shown in Figure 4.2. The initial pairs, consisting

in a set of four pairs containing four distinct questions and three related

queries (connected by the lines) whereas on the right four generalized pairs

are shown in Figure 4.1. We note that, after substituting instances with

variables, both n1 and n3 are generalized into n′1, which is thus paired with

two distinct SQL queries, i.e. s′1 and s′2. This is not surprising since there

can be multiple SQL queries that correctly retrieve an answer to a NL

question. In this case we define them to be semantically equivalent, i.e.



54 Dataset Generation

Figure 4.3: Discovering new positive examples inside the same cluster.

s′1 ≡ s′2. At the same time it is possible to write many NL questions that

map to the same query.

It is worth noting that with the generalization process, we introduce re-

dundancy that we eliminate by removing duplicated questions and queries.

Thus, the output dataset is usually smaller than the initial one. However

the number of training examples will be larger, not only because of the

introduction of negatives but also due to the automatic discovering of new

positives.

4.2 Pair Clustering and Final Dataset Annotation

Once the pairs have been generalized, we cluster them according to their

semantic equivalence so then we can automatically derive new positive

examples by swapping their members. We define semantically equivalent

pairs those correct pairs with (a) equivalent NL questions, i.e. whose gen-

eralized version is the same or (b) equivalent SQL queries. Given that two

equivalent queries must retrieve the same result set, we can automatically



Pair Clustering and Final Dataset Annotation 55

test their equivalence by simply executing them. Unfortunately, this is

just a necessary condition (e.g. two different queries can have the same

answer) therefore we manually evaluate new pairings obtained applying

this condition.

Note that automatically detecting semantic equivalence of natural lan-

guage questions with perfect accuracy is a hard task, so we consider as

semantically equivalent either identical questions (after generalization) or

those associated with semantic equivalent queries. We also apply tran-

sitivity closure to both members of pairs to extend the set of equivalent

pairs.

For example, in Figure 4.3.b s′1 and s′2 retrieve the same result set so

we verify that they are semantically equivalent queries (we may ask to a

human being whether or not n′1 and n′2 are equivalent) and we assign them

to the same cluster (CL1), i.e. information need about the large cities of a

state (with a population larger than 150,000 people). Alternatively, we can

also consider that n′1 and n′2 are both paired with s′2 to derive that they are

equivalent, avoiding the human intervention. Concerning s′3, it retrieves a

result set different form the previous one so we can automatically assign

it to a different cluster (CL2), i.e. involving questions about any city of a

state. Note that, once n′2 is shown to be semantically equivalent to n′1 we

can pair them with s′1 to create the new pair highlighted with the dashed

relation 〈n′2,s′1〉.

All the remaining pairings, obtained by the Cartesian product between

generalized questions and queries, excluding those that we just labelled as

correct pairing or, alternatively, by pairing questions and queries belonging

to different clusters, are negative examples. Thus, in our sample dataset,

the negative instance set is 〈n′3, s′1〉, 〈n′3, s′2〉, 〈n′1, s′3〉, 〈n′2, s′3〉, as shown in

Figure 4.4.
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Figure 4.4: Discovering negative examples.

4.2.1 The Clustering Algorithm

The above steps are formally described by the algorithm in Figure 4.5.

It takes as input the generalized dataset as a list of correct pairs I ⊂
{〈n, s〉 : n ∈ N , s ∈ S} and returns a matrix M storing all positive and

negative pairs P = N × S. M is obtained by (a) dividing I in k clusters

of semantically related pairs and (b) applying the transitive closure to

the semantic relationship between member pairs. More in detail, we first

initialize its entries with a negative value, i.e. M [n, s] = −1∀n ∈ N , s ∈ S.

Let us indicate with n and s the index of questions and queries in the

matrix. Second, we group together each 〈n, s〉 and 〈n′, s′〉 ∈ I, if at least

two of their members are identical. If not we test if the two query members,

s and s′ retrieve the same result set. Since this may be time consuming

we run this test only if the selected columns in their SELECT clause are the

same and if the two result sets share the same minimum.

Third, since the condition above is only necessary for semantic equiva-

lence, in case we find the same result sets, we manually check if the natural
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Figure 4.5: Clustering Algorithm

language question members are semantically equivalent. This is faster and

easier than checking the SQL queries.

Finally, once the initial clusters have been created, we apply the transi-

tive closure to the cluster ck to include all possible pairing between ques-

tions and queries belonging to ck, i.e. ck = {〈n, s〉 : n, s ∈ ck}. We store

in M the id of the clusters in the related pairs, i.e. M [n][s] = k for each

ck. As a side effect all entries of M still containing −1 will be negative

examples.

4.3 Representing Pairs

Finally, we also show how to convert the pairs in syntactic structures suit-

able for the kernel based approaches. For example, let us consider question

n1:“Which states border Texas?” and the queries s1: SELECT state name FROM

border info WHERE border=’texas’ and s2: SELECT COUNT(state name) FROM border info
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Figure 4.6: Question/Query Syntactic trees

WHERE border=’texas’. Since s1 is a correct and s2 is an incorrect interpreta-

tion of the question (corresponding to “How many states border Texas?”),

the classifier should assign a higher score to the former, thus our ranker

will output the 〈n1, s1〉 pair. Note that both s1 and s2 share three terms,

state, border and texas, with n1 but 〈n1, s2〉 is not correct. This suggests

that we cannot only rely on the common terms but we should also take

into account the syntax of both languages.

In Data Mining and Information Retrieval the so-called bag-of-words

(BOW) has been shown to be effective to represent textual documents,

e.g. Salton [1986]; Joachims [1999]. However, in case of questions and

queries we deal with small textual objects in which the semantic content

is expressed by means of few words and poorly reliable probability distri-

butions. In these conditions the use of syntactic representation improves

BOW and should be always used, [Moschitti, 2006; Moschitti et al., 2007;

Moschitti and Quarteroni, 2008; Chali and Joty, 2008; Shen and Lapata,

2007; Surdeanu et al., 2008].

Therefore, in addition to BOW, we represent questions and queries using

their syntactic trees. As shown in Figure 4.6 for questions (a) we use

the Charniak’s syntactic parser (Section 2.1.2) while for queries (b) we

implemented an ad-hoc SQL parser (Section 2.2.4)



Chapter 5

SQL Query Generation

In the perspective of question answering (QA) targeting the information

of databases (DBs), the automatic system only needs to execute one or

more Structured Query Language (SQL) queries that retrieve the answer

to the posed natural language question. This does not necessarily imply

that a semantic parser has to be designed for mapping the meaning of

the questions to the one of the queries. Indeed, recent work Giordani and

Moschitti [2009] has shown that machine learning algorithms, exploiting

syntactic representations of both questions and queries, can be used to

automatically associate a question with the corresponding SQL queries.

One limitation of the approach above is that the set of possible queries,

which a user would execute on the DB, must be known in advance. This

because the method can only verify if a given query probably retrieves

the correct answer for the asked question: it cannot generate new queries.

This limitation is critical as the design of a generative parser which, given a

question, feeds the model above with a reasonable set of candidate queries

seems inevitably to fall in the category of semantic parsers.

This chapter will demonstrate that it is possible to avoid full-semantic

interpretation by relying on (i) a simple SQL generator, which both ex-

ploits syntactic lexical dependencies in the questions along with the target
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DB metadata; and (ii) advanced machine learning such as kernel-based

rerankers, which can improve the initial candidate list provided by the

generative parser.

The idea of point (i) can be understood by noting that database design-

ers tend to choose names for entities, relationships, tables and columns

according to the semantics of the application domain. Such logic organiza-

tion is referred to as catalog, and in SQL systems it is stored in a database

called Information Schema (IS for brevity, see Section 2.2.2).

The values stored in IS along with their constraints and data types are

important metadata, which is useful to decode a natural language ques-

tion about the DB domain in a corresponding SQL query. For example,

given the IS associated with a DB, shown in Figure 2.4 and 2.2, if we

ask a related question, q0:Which rivers run through New York?, a human

being will immediately derive the semantic predicate run through(rivers,

New York) from it. Then she/he will associate the argument river, which

is also the question focus, with the table RIVER. Once the latter is tar-

geted, she/he will select the column TRAVERSE, which being a synonym of

run through, provides the same predicative relation asked in the question.

Finally, by instantiating the available argument, New York, in such predi-

cate, she/he will retrieve the set {Delaware, Allegheny, Hudson} from the

column RIVER NAME, i.e., the missing argument (as they are in the same

row of New York).

The above example shows that several inference steps must be performed

to retrieve the correct answer. In particular, lexical relations must be

extracted from the questions, e.g., using dependency syntactic parsing and

predicate arguments must be expanded with their synonyms or related

concepts, e.g., using Wordnet Miller [1995].

Additionally, ambiguity and noise play a critical role in deriving the

interpretation of the question described above but we can exploit metadata
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to verify that the selected sense is correct, e.g., from the fact that New York

in this database is in the column TRAVERSE, we can gather evidence that

the sense of running-through matches the one of traverse.

However, a link between both words New and York is not so easy, since

there is no evidence of relatedness between the two words in the metadata:

this means that the whole database should be searched for their stems.

Therefore, the general idea is to generate all possible (even ambiguous)

queries exploiting related metadata information (i.e., primary and foreign

keys, constraints, datatypes, etc.) to select the most probable one using a

ranking approach.

Last but not least, we deal with nested SQL queries and complex ques-

tions containing subordinates, conjunctions and negations. We designed a

generative algorithm based on the matches between lexical dependencies

and SQL structure, which allows for building a set of feasible queries.

Starting from the general syntactic formulation of an SQL query, i.e.,:

SELECT column

FROM table

[WHERE condition]

we generate the set of column, table and condition terms using the lexical

relations in the questions. The relation arguments can be generalized us-

ing Wordnet and disambiguated using metadata and the execution of the

resulting query candidates in the reference DB. Once the list of candidates

is available, we can apply supervised rerankers to improve the accuracy of

the system. For this step, we improved on the model proposed in Giordani

and Moschitti [2009], by designing a preference reranker based on struc-

tural kernels. The input of such model consists of pairs of syntactic trees

of the questions and queries, where for the query we use their derivation

tree provided by the SQL compiler.
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For example if a database interface is queried asking for an information,

e.g. “Capital of Texas”, a query in a database language should be exe-

cuted to retrieve the answer. If the target database is GeoQueries and the

language is SQL, its answer can be retrieved executing the query:

SELECT state.capital

FROM state

WHERE state.state_name = ’Texas’;

The result set obtained executing this query is Austin. We can see

that both language share the words capital and Texas, but the way they

are combined to form the query is not trivial. While this information is

hidden and implicit to the reader (thanks to his gained knowledge and

experience), the interface may understand that Texas is a occurrence of

state just because it is stored in the database, whereas the notion that a

state has a capital is embedded in the metadata.

In a NL interface to a SQL database, if we want to generate all possi-

ble queries for a question q we first need to find their possible SELECT,

FROM and WHERE clauses (S,F and W sets) and then combine them

in a smart way such that the resulting queries are all syntactically correct

and meaningful. Generated queries can be ordered based on some heuris-

tics but if we train a support vector machine and then use it as a reranker

we can improve the probability of finding the answer in the top position.

5.1 Building Clauses Sets

The basic idea of our generative parser is to produce queries of the form:

∃s ∈ S,∃f ∈ F ,∃w ∈ W s.t. πs (σw(f)) answers q, (5.1)

where question q is represented by means of SDCq and S,F ,W are the

three sets of clauses (argument of SELECT, FROM and WHERE). The
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answering query, πs (σw(f)), can be chosen among the set of all possible

queriesA ={SELECT s× FROM f×WHERE w} in a way that maximizes

the probability of generating a result set answering q. This section shows

how we extract terms from the question and categorize them in order to

build the sets of clauses above and then how to combine them for generating

a query candidate also associated with a generation score.

In Section 2.1.3 we introduced the dependency list (SDCq1) for the

complex NL question “What are the capitals of the states that border the

most populated state?”. The answer to this question can be retrieved using

a deeply nested query: first of all (1) the most populated state should be

selected, then (2) with respect to this state all its bordering states are

retrieved and finally (3) it retrieves their capitals.

Relations holding between stems of the given questions allow to recog-

nize if they will be used in the S and/or in the W sets. Moreover, the

hierarchy represented by a dependency list allows to follow the correct re-

cursive steps to generate nested SQL queries with respect to subordinates

in the NL question.

Indeed, given a question q we start from its SDCq and (a) prune and

stem its components, (b) add synonyms, (c) create the sets of stems select

and/or project oriented and (d) keep only dependencies possibly used in the

recursive step to generate nested queries. Finally (e) we look for matching

stems both in the metadata and in the database to build S andW . Building

the set F from S and W is straightforward.

5.1.1 Motivating Examples

We now briefly discuss some examples to introduce the objective of each

individual step and clarify how the entire process is carried out.

From the simple question “Capital of Texas” introduced above we have

to derive the correct answering query based on only two stems. The key



64 SQL Query Generation

of categorizing stems (Section 5.1.3) is to recognize that the first stem will

be used in S and the second one inW . In particular, since the word Texas

is not a value in the IS, it is used as a r-value in the WHERE expression,

while the l-value is derived by the column name under where it appears

(Section 5.1.5).

The fact of being respectively projection and selection oriented can be

inferred looking at their grammar relations, i.e. inspecting the dependency

list (e.g. the root of the sentence and the subject dependent are typically

used for projections). This list needs to be preprocessed (section 5.1.2) to

take into account only relevant relations between stems of the question.

Let us consider for example the question: “What is the capital of the

most populous state?” and its answering query:

SELECT state.capital

FROM state

WHERE state.population =

(SELECT max(state.population)

FROM state)

The matching words are capital and state, while stemming also allows

to find a mapping through popul. We can note that this stem is used both

in the l-value and in the r-value of the WHERE expression. In fact, this

query requires nesting and, indeed, the categorizing algorithm needs to be

recursive. This stem is classified both as a selection oriented stem for the

outer query, and as a projection oriented one for the inner query (note that

it requires aggregation, handled when generating the SELECT clause set,

see Section 5.1.4).

Finally we introduce one last example to clarify Section 5.1.6. While

with the other examples it is straightforward to compile the FROM clause,

since the other clauses refer to the same table, when we deal with columns
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belonging to different tables things get complicated. Take question “What

are the capitals states bordering Texas?”) and its associated query:

SELECT state.capital

FROM ...

WHERE border_info.border = ’Texas’:

The problem is: how can we fill in the dots in the FROM clause? Fields

capital and border belong respectively to tables state and border info. From

the database catalog, we learn that these two tables are connected via the

foreign key state name and so the final F will include the following join:

state JOIN border_info

on state.state_name = border_info.state_name

5.1.2 Optimizing the Dependency List

As introduced in Section 2.1.3, we do not use all grammatical relations pro-

vided in output by the Stanford Dependency parser. For this reason before

processing the list of dependencies we filter it pruning useless relations and

removing from governors and dependents the appended number indicating

the position of the word in question q. Moreover we eliminate stems of 3

or less characters since they would introduce too much noise in retrieving

matching strings. In contrast, useful function words such as in, of, not,

or, and, etc. are embedded in the dependency type, e.g., prep of(capital,

state).

Then, govs and deps are reduced to stems (as discussed in Section 2.1.1).

Finally, we enlarge the probability to match stems and the metadata by

means of substring matching (similar to what is done in Wikipedia or in

Google query search). A list of synonyms for each term can be also created

using Wordnet and can be used to increase the matching coverage with the

metadata terms.
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We call the preprocessed list SDCopt
q and we use it for the next step.

For example, with respect to the original SDCq1 introduced in Sec-

tion 2.1.3, the optimized list is the following:

SDCopt
q1

= root(ROOT-0, are-2), nsubj(are-2, capital),

prep of(capital, state), nsubj(border, state),

rcmod(state, border), advmod(populat, most),

amod(state, populat), dobj(border, state)

Figure 5.1: Resulting SDCopt
q1

5.1.3 Stem Categorization

To build S and W sets, we identify the stems that can most probably

participate in the role of projection (i.e., composing the SELECT argu-

ment) and/or selection (composing the WHERE condition). Accordingly,

we create two sets of terms Π and Σ. The main idea is that some terms

can be used to choose the DB table and column where the answer is con-

tained whereas others tend to indicate properties (i.e., table rows) useful

to locate the answer in the column. For example, in case of q0 (see in-

troduction): Which rivers may indicate that river is a SELECT argument

whereas run through and New York may be part of the WHERE argument,

thus forming the query: SELECT river name FROM river WHERE tra-

verse=“new york”.

The Algorithm

We use SDCq to automatically extract and classify such terms and relations

from a question. For example, the dep of root is typically the main verb

(i.e., relation) of the question, which can be used to derive properties of
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the question focus. Thus, it tends to be of type selection (i.e, it belongs to

Σ set) like in root( ROOT, run). In case of an nsubj, the gov is typically a

verb relation and it can be used to build specializers whereas the dep, i.e.,

the subject, is most probably a projection candidate such as for example

in nsubj(run, rivers). In the following, we report our heuristics for term

categorization. It should be noted that they do not produce a precise and

disjoint term separation but the obtained two sets are smaller than the

overall term set, thus reducing the computational complexity in generation.

We analyze grammatical dependencies rel(gov,dep) in SDCq in their parse

order and classify their arguments (stems) in Π and Σ categories according

to the following rules:

1. If it is ROOT, dep is the key to populateW so add it to Σ and remove

the relation from SDCopt
q . Set the flag hasRoot to true. This stem can

be an auxiliary verb, e.g., is, are, has, have and so on. It is useless to

build the arguments of the queries but it could be used transitively to

add other stems.

2. If it starts with nsubj, we use it to add stems to Π. Set the flag hasSubj

to true.

• if gov ∈ Σ add dep to Π and remove rel from SDCopt
q .

• otherwise if gov /∈ Σ and hasRoot is false, add gov to Σ and dep

to Π and remove rel from SDCopt
q .

• otherwise keep it, since it could be a subject related to a subor-

dinate (we will need it in the recursive steps).

3. If it starts with prep or it ends with obj, we used it to create conditions

(possibly involving nesting):

• if gov ∈ Π and if there is no table.column like1 gov.dep add dep

1We query metadata seeking for something similar to gov as a table and to dep as a column, i.e. we

search for table names using πtable name (σtable name∼=dep∧column name∼=gov(IS.Columns)). For brevity we

use the symbol s1 ∼= s2 for s2 substring of s1, i.e. s1 LIKE ”%s2%”.
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to Σ, otherwise, also add dep to Π. Remove rel from SDCopt
q .

• otherwise if gov /∈ Π hasRoot and hasSubj are false add gov to

Π. If there is not any table.column like gov.dep add dep to Σ,

otherwise, also add dep to Π. Remove rel from SDCopt
q .

• otherwise keep it, since we will need it in the recursive steps.

4. If it ends with mod, it implies that dep is a modificator of gov, so they

should be paired together: if gov ∈ Σ add dep to Σ and if gov ∈ Π add

dep to Π and remove rel from SDCopt
q . This should be done only if

dep is not a superlative (i.e. doesn’t end with -st). The non-removed

dependencies will be taken into account in the recursive step, adding

both dep and gov to Π.

5. If none of the above rules can be applied, iterate the algorithm recur-

sively building Π′, Σ′, Π′′ and Σ′′ until SDCopt
q is empty.

Projection-oriented Set Π

The algorithm creates this set looking for stems that should be used to

project a certain database field. These are the stems that are involved in

the sentence or in its subordinates, as subjects (or objects, if the sentence

is passive). If a preposition refer to stems that are both components of the

same table (e.g. prep of(capital, state) referring to state.capital) and

one of the two has already been labelled as projection-oriented, the other

one is also added to Π. To populate this set the algorithm only exploits

metadata.

Selection-oriented Set Σ

The root of the syntactic tree is typically the focus of the sentence. It is

usually a verb, specifying a condition that the answer should satisfy. For

this reason, everything that could be useful to build the expression that
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select those tuples is included in this set. Again, stems that are part of

the same table are kept together (e.g. rcmod(state, border) referring to

border info.state name) while those that are not directly related to the

focus of the sentence will be used in recursive instances of the algorithm.

Recursive Steps

These rules should be applied iteratively to each relation until the list is

empty. When a nesting query is needed (e.g. a new subject is discovered,

a superlative occurs, etc) the algorithm is recursively performed until no

more rules can be applied, and the resulting Π′ and Σ′ are combined.

The algorithm stops the iteration after the third recursive step as far as

there resulting queries would otherwise be too complicated and since the

number of generated queries grows exponentially. Once all the stems are

categorized and/or the list is empty, the algorithm exploits the sets Π and

Σ to build matching clauses (i.e. clauses that contain one or more matching

stems) starting from the inner sets.

Before discussing how this is performed, let us clarify the above-listed

rules by means of a real example. Figure 5.2 shows the initial list of op-

timized dependencies SDCopt
q1

and all projection and/or selection oriented

sets generated through two recursive steps.

At the first iteration, we use ROOT to add are to Σ. Then, the

nsubj(are,capital) suggests that the subject capital may be a focus of a pro-

jection thus we included in Π. Additionally, given prep of(capital, state),

state is a modifier of the subject thus it may have the same role and we

include it in Π. We immediately verify this assumption by automatically

checking that there is an occurrence of state.capital in IS. Being been

already processed the three dependencies above are deleted from SDCopt
q1

obtaining SDCopt
q1
′ (consisting of relations 4-8) used in the next iteration

(note also that since are is a short stem, it should be deleted from Σ).
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In the second iteration, there is no root dependency anymore thus we

start from nsubj(border,state) which leads to add border to Σ′ and state to

Π′. Additionally, since the relative clause dependency rcmod(state,border)

is supported by the occurrence of border.state name in IS, border is

also added to Π. In contrast, dobj(state,border) is not supported by the

presence of state.border in IS, thus their terms are not added to the sets.

The dependency is deleted from SDCopt
q1
′ obtaining SDCopt

q1
′′ (consisting in

relations 6-7) for the last iteration.

In the third and last iteration, we still have the mod dependencies, thus

we add all their stems to Π′′ and delete their associated dependencies from

the list.

5.1.4 SELECT Clauses

We use the set Π to retrieve all the metadata terms that match with its

elements: this will produce S according to the generative grammar shown

in Figure 5.3. The arguments of the grammar are derived by executing sev-

eral queries to find all matching stems and retrieve a list of table.column

terms augmented by aggregation operators (we also associate a plausibil-

ity weight wi with each element of S, see Section 5.2.3). For example,

(1)root(ROOT, are),

(2)nsubj(are, capital),

(3)prep of(capital, state),

(4)nsubj(border, state),

(5)rcmod(state, border),

(6)advmod(populat, most),

(7)amod(state, populat),

(8)dobj(border, state)

Π = {capital, state}

Σ = {are} ⇒ Σ = φ

Π′ = {state, border}

Σ′ = {border}

Π′′ = {most, populat, state}

Σ′′ = φ

Figure 5.2: Categorizing stems into projection and/or selection oriented sets
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considering the IS scheme in Figure 2.2.2, the SELECT clauses that are

generated from Π, whose elements are listed in the right side of Figure 5.2,

are shown in Figure 5.4 (the superscript numbers just indicate the weight

associated with each statement).

S → AGGR ’(’ FIELD ’)’ | FIELD

AGGR → max | min | sum | count | avg

FIELD → TAB.COL* | TAB*.COL

TAB ∈
⋃x∈Ξπtable name(σtable name∼=x(IS.Tables))

COL ∈
⋃x∈Ξπcolumn name(σcolumn name∼=x(IS.Columns))

TAB* ∈
⋃x∈Ξπtable name(σcolumn name∼=x(IS.Tables))

COL* ∈
⋃x∈Ξπcolumn name(σtable name∼=x(IS.Columns))

Figure 5.3: Clauses generative grammar for fields matching stems in Ξ

Extracting Matching Fields

According to this grammar, the stems can map with table names as well

as with column names. To retrieve such fields from the metadata, the

following SQL query is executed over the database catalog every time we

need to look up for a matching with stem x in the metadata of a fixed DB.

SELECT table_name,column_name

FROM INFORMATION_SCHEMA.columns

WHERE (table_name LIKE "%x%" OR column_name LIKE "%x%")

AND table_schema = "DB"

This query looks for a partial (substring) matching of the stem x among

all the table names (retrieving also all the columns belonging to the matched

tables) and among all the column names (extracting also the names of the

table to which they belong). The result set consist of a two column table,

and the partial list of fields S is obtained linking each row with the dot

separator.
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Adding Aggregation Operators

In the previous step we obtain a list of fields S in the format T.C that

can be extended adding some aggregation operators based on the type of

the fields. If the field type is compatible with numbers we apply all the

operators (sum, average, minimum and maximum). Otherwise, if it is a

textual field it makes sense to apply only the operator that counts how

many different values appear in the field.

The DB catalog can be inspected in the following way to retrieve the

subset of textual fields that are extended adding COUNT(T.C).

SELECT table_name,column_name

FROM INFORMATION_SCHEMA.columns

WHERE table_name = T AND column_name = C

AND (data_type = "TEXT" OR data_type LIKE "%CHAR%")

AND table_schema = "DB"

All the other fields that are in S but not in the result set of this query,

are extended adding clauses SUM(T.C), MAX(T.C), MIN(T.C), AVG(T.C)

and COUNT(T.C).

For example, considering the IS scheme in Figure 2.2.2, the SELECT

clauses originated from Π of Figure 5.2 are shown in Figure 5.4. Note that

the superscript numbers indicate the weight associated with each state-

ment.

In fact we associate a weight wi to each element of S, according to the

procedure described in Section 5.2.3. In particular we take into account

S =
{
state.capital3, state.state name2, border info.state name1, . . .

}
S ′ =

{
border info.state name3, border info.border2, state.state name2, . . .

}
S ′′ =

{
max(state.population)4,max(city.population)3, state.population3, . . .

}
Figure 5.4: A subset of SELECT clauses for q1
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that words ending with -st are superlatives so that they can map with

operators MAX and MIN.

5.1.5 WHERE Clauses

For generating the WHERE clauses, we need to divide Σ in two distinct

sets: ΣL and ΣR, for the left-and right-hand side of the condition, respec-

tively. The set ΣL contains stems matching the IS metadata terms. ΣL is

used to generate the left conditionWL, with the ruleWL → FIELD, where

FIELD is the same of Figure 5.3, where ΣL is used in place of Ξ (this is

the same task as illustrated in Section 5.1.4).

In contrast, ΣR = Σ− ΣL is used to generate WR as follows:

∀col ∈ IS.Columns, ∀tab ∈ IS.Tables,

WR =
{
x|πcount(∗) (σcol∼=x(Geoquery.tab)) ≥ 0, x ∈ ΣR

}
. (5.2)

It is essentially a database lookup, seeking for those values that match

stems of ΣR. This is necessary since we tokenized and stemmed all the

words in the original sentence and we have to make a step backward to

gather the right matchings. For example, if ΣR contains the stems new and

york, WR will be first populated with values “new york”, “new mexico”,

“newark”, and then finding another mapping with “new york” through the

stem york, the correct one becomes also the one with higher weight (the

weighing scheme will be discussed later on).

It is worth noting that non-matching stems may semantically match

a whole condition and need to be handled carefully. For example major,

if associated with city, is translated into city.population>150000 while

when talking about river is associated with river.length>750 [Cimiano

and Minock, 2009]. This kind of knowledge should be handled manually,

adding such clauses to W when the stem major appears in the question.



74 SQL Query Generation

Creating Basic Expressions

To build the WHERE clauses set W , we first generate basic expressions

in the form expr = eL OP eR, ∀eL ∈ WL,∀eR ∈ WR. If the type of eL is

numerical then OP={<,>,=}, otherwise we apply the LIKE operator.

To better understand how it works, let us introduce a new example

question q2: “What are the capitals of states bordering New York?”. The

list SDCopt
q2

and the derived sets of stems are shown in Figure 5.1. The set

Σ′ is split into Σ′L = {border} and Σ′R = {new, york}. We build:

W ′L =
{
border info.border3, border info.state name2

}
and

W ′R =
{′new york′2,′ new mexico′1,′ new jersey′1,′ newark′1

}
.

Finally we generate the set of possible valid conditions and their weights,

i.e.,W = {border info.border=‘new york’5,border info.state name=

‘new york’4,...}.

Nested Expressions

In a query that requires nesting the right hand side of the WHERE clause

can’t be derived directly from stems (e.g. Σ in Table 5.1). In fact, those

stems are used in the recursive step to obtain the nested subquery (e.g.

“states bordering New York?”). Indeed, W R can contain also whole sub-

queries, and in that cases the operators that builds the entire expression

(1)root(ROOT, are),

(2)nsubj(are, capital),

(3)prep of(capital, state),

(4)nsubj(border, state),

(5)rcmod(state, border),

(6)amod(york, new),

(7)dobj(border, york)

Π = {capital, state}

Σ = {are} ⇒ Σ = φ

Π′ = {state, border}

Σ′ = {border, new, york}

Table 5.1: Another example of a subordinate question that requires nesting.
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could be OP={<,>,=,IN}. In particular, the IN operator works well also

when the inner query retrieves a textual result set of one or more rows.

Inheriting Basic Expression and Combining Them

It is worth noting that it may happen that one or more stem originate

a WHERE clause that should be shared across nested subqueries and in

different levels of recursion. Take for example the question “What is the

biggest city in Texas?” and it’s answering query:

select city.city_name

from city

where city.state_name = ’texas’ and

city.population = (select max(city.population)

from city

where city.state_name = ’texas’)

The clause city.state name = ’texas’ appears twice: in the inner query

it is used to retrieve the maximum population of cities in the state of Texas.

This number is used in the outer query seeking for the city name to which

this number of citizen corresponds. The outer clause city.state name =

’texas’ is needed to ensure that it does not retrieve cities with the same

population number but not in Texas.

Similarly, for the question “What is the largest city in a state that borders

Texas?” the same clause is shared by two subqueries.

select city.city_name

from city

where city.state_name in (select border_info.border

from border_info

where border_info.state_name=’texas’)

and city.population=(select max(city.population)

from city
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where city.state_name in

(select border_info.border

from border_info

where border_info.state_name=’texas’))

The need of sharing WHERE clauses between recursive instances applies

only to basic expressions (those that are not combined together and do not

involve nesting). For this reason the setW is composed by the set of basic

clauses WG that are globally considered, and the set WL of clauses that

are used only locally for nested queries. The final W at each iteration is

indeed the union of these sets enriched by their combinations by means of

conjunctions and negations. In particular, ∀e′, e′′ ∈ WL, new expressions

e′ AND e′ are added to WL only if e′L is different from e′′L . Then, all these

clauses are combined with clauses in WG using AND/NOT operators (see

Section 2.2.3), keeping only those expressions expr so that the execution

of πcount(∗) (σexpr(table)) does not lead to an error for at least a table in the

database.

Dealing with Missing Pieces

It could happen that the set ΣR is empty. For example, when the WHERE

condition requires nesting: in this case eR will be the whole subquery (e.g.

Σ′ in Figure 5.2). It could be the case that also ΣL is empty. In fact a query

without a WHERE clause is valid (e.g. Σ′′ in Figure 5.2). In any case, even

if there are no selection-based stems, W may not be empty (e.g. Σ in Fig-

ure 5.2). Taking into account all tables and columns we can get more con-

ditions: W*R = {tab.col such that tab ∈ πtable name (IS.Columns) and

col ∈ πcolumn name (IS.Columns)}.
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5.1.6 FROM Clauses

The generation of the FROM clause F is straightforward given S and W .

This set will contain all tables to which clauses in S andW refer, enriched

by pairwise joins.

As stated before, this information can be found running SQL queries

over IS exploiting metadata stored in table KEY COLUMN USAGE (in

short, Keys; see Figure 2.2). This table identifies all columns in the current

databases that are restricted by some unique, primary key, or foreign key

constraint. That is, for each usage of foreign key column in the table,

we can determine how many aggregate table columns match that column

usage.

Retrieving Used and Useful Tables

First of all, we extract tables appearing in S and W . This is performed

looking at all the words that end with a dot in the clauses sets, creating

a set F . Note that there are no weight associated with FROM clauses

because it’s not possible to backtrack how many stems made each table

appear in F .

Looking up in Metadata for Table Joins

At this point F=F . Then we add two-table joins pairing tables of F :

∀t1, t2 ∈ F we find c1, c2 using the following query:

πcolumn name,ref column name (σtable name=t1∧ref table name=t2(IS.Keys)) (5.3)

The result set is used to add to F the join t1./t2
c1=c2, that is: t1 join t2 on

t1.c1 = t2.c2.
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Going back to our example with question q1, the set of FROM clauses is:

F ′ = {state,border info,state join border info on state.state

name=border info.border,...}.

Two-jumps JOIN Clauses

In addition we can allow for more distant joining finding an intermediate

table useful to link two tables that are not directly referencing each other.

This table is typically the main table, that is, the one that is referred by all

the other tables (e.g. In GeoQuery it is state). This can be done executing

the following SQL query that joins two instances of Keys for each tables

pair T1, T2 in F and their columns C1, C2.

select count(*)

from key_column_usage as tmp1,key_column_usage as tmp2

on tmp1.referenced_table_name=tmp2.referenced_table_name

where tmp1.referenced_table_name=F and

tmp1.referenced_column_name=tmp2.referenced_column_name

and tmp1.table_schema="db" and

tmp1.table_name=T1 and tmp2.table_name=T2 and

tmp1.column_name=C1 and tmp2.column_name=C2

If the returned value is not zero, we can add to F the join
T1./T2
C1=C2

.

In this way, even if border info and river are not directly linked, we can

derive the far joining between the two:

river JOIN border_info ON river.traverse=border_info.state_name
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5.2 Composing Queries

In the previous section we saw how to create building blocks for queries

starting from a question q. These elements should be paired together in a

smart way to generate the set of queries that possibly answer q. This pair-

ing is obtained by creating the Cartesian product between clauses sets from

which non-valid, redundant and meaningless clauses are deleted. We use a

weighting scheme to order the most probable correct candidate queries.

5.2.1 Clause Cartesian Product

In order to find possible answering queries we generate the setA={SELECT

S× FROM F× WHERE W} ∪ {SELECT S× FROM F}. Given that at

least one such query exists there should be one pairing 〈s, f, w〉 ∈ A, such

that the execution of SELECT s FROM f [WHERE w] retrieve the correct

answer. Given that each clause set contain on average up to ten items,

their product can result in a very huge set. Thus, when generating all

pairing some preliminary conditions are verified, e.g. tables appearing in

SELECT and WHERE clauses should appear in the FROM clause as well,

otherwise the execution of that query will fail. This avoids to generate

incorrect queries and to waste time trying to execute them.

A pair 〈s, f, w〉 or 〈s, f〉 is added to A only if it satisfy the rules:

• if s is in the format t.c, then t. ∈ f .

• for every t.c appearing in wL, that is, in a left-hand sided expres-

sion,(before a {=, >,<, IN}) then t. ∈ f .

The notation t. ∈ f ensures that the table name does not conflict with

some column name (t. just stands for the concatenation of t with the dot

symbol used to separate tables and columns).
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If one of these two rules is not satisfied, executing the corresponding

query would lead to an Unknown table error. To make a simple exam-

ple, we illustrate in Figure 5.5 some generated clauses for the question q2,

together with possible pairings. The pairing 〈s1, f1, w1〉 is not correct: it

leads to the MySQL error Unknown table: border info.

The second rule ensures that t.c appears in the running query, and not

only in a subquery. For example, when answering “capital cities”, the

system recognizes that the following query is incorrect since table city

does not appear in the f .

SELECT state.capital

FROM state

WHERE city.city_name IN

(SELECT state.capital

FROM state)

Note that in the inner query there is no WHERE clause, so the second

rule holds for every f . A correct answering query to our running example

is generated and checked for correctness in two levels: first the inner query

is generated and added to A′, then it is embedded in the WHERE clause

of the outer query, adding to A′ the following query:

SELECT city.city_name

FROM city

WHERE city.city_name IN (SELECT state.capital

FROM state)

5.2.2 Pruning Useless Queries

Once the set A of all valid pairings is built, we additionally prune some of

them that are not useful, obtaining the final set Ā. For example, when an-

swering “Mississippi rivers”, the system disambiguates between the state
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and the river called Mississippi, since generating the following query is

meaningless (projecting the same field compared to a value in the selection

is useless).

SELECT river.river_name

FROM river

WHERE river.river_name = "Mississippi"

Moreover there could be redundant queries that if optimized allow us

to remove duplicates in the set, reducing its cardinality. Looking at the

query on the top of this page, that retrieves all cities that are also capitals,

since every capital is also a city, it can be optimized considering only the

inner query.

In practice every pair 〈s, f, w〉 is added to Ā only if it satisfy the fol-

lowing rules.

1. if f = t and t.c appears in wL (before a {=, IN}) as a single clause

(not combined with AND/OR and other expressions), then t.c /∈ s.

2. if f is in the format t1 JOIN t2 ON t1.c1 = t2.c2 then t1 ∈ s AND

t2 ∈ wL OR t1 ∈ wL AND t2 ∈ s.

3. if f is in the format t1 JOIN t2 ON t1.c1 = t2.c2 and t1.c1 ∈ s then

t2.c2 /∈ wL.

4. if f is in the format t1 JOIN t2 ON t1.c1 = t2.c2 and t2.c2 ∈ s then

t1.c1 /∈ wL.

For instance, with respect to Figure 5.5, the pairing 〈s3, f2, w2〉 answers

the question “Which state is New York?” and is clearly useless. An exam-

ple of a redundant query follows from the pairing 〈s2, f3, w1〉. It requires

that the columns state.state name and border info.border are the same,

so w2 would select the same rows of w′2(i.e. state.state name=’new york’ ),
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Figure 5.5: Possible pairing between clauses for q2. Actually Π′ have been merged with

Π and Σ′ with Σ, optimizing by avoiding nesting with equivalent joining.

but this means that table border info is no longer used and this pairing is

equivalent to 〈s2, f1, w
′
2〉 that, as said above, is meaningless.

Regarding those pairs that do not involve any WHERE conditions, i.e

〈s, f〉, they are added to Ā only if f does not involve joining tables i.e. it is a

single table. In practice we add a lot of simple queries, even though they are

trivial and potentially useless. However, as we already seen in the example

of “capital cities” they are needed in recursive steps and, sometimes, also

as final answering queries (e.g. 〈s3, f2〉 would retrieve the correct answer

to question “Which states border another state?”). Nevertheless, these

kind of queries are very useful when handling questions with superlatives,

e.g. “What is the capital of the most populous state?” (see the example

previously reported in page 64).

5.2.3 Weighing Scheme

As introduced in previous sections, we weigh each clause in S and W by

counting how many stems in the original question originated that clause.

In particular, for the SELECT clause, if there is a table that matches

with a stem its weight is +2 while the matching with columns weighs +1

(common stems between table and column name are taken into account

only once, without summing both weights). Superlatives matching with

aggregation operators counts as +1.
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For the WHERE clause, a weight is computed in the same way as for

the left-hand side of the conditions and a +1 is added for each matching

values in the right-hand side. In addition when dealing with nested queries,

the WHERE clause inherits also the weight of the nested query.

The FROM clauses are not associated with weights. However, we will

take into account how many joins are involved when ordering queries with

the same weight.

When pairing clauses the total weight is obtained just summing the

weight of its components, and it’s used to order the final set Ā of possible

useful queries from the most probable to the less one.

Figure 5.5 highlights this probabilistic score by means of the thickness of

connection lines (dashed lines illustrate pruned queries). The final ordered

set answering q2 is the following one:

Ā = {〈s1, f3, w2〉7 , 〈s3, f2, w1〉6 , 〈s2, f3, w2〉6 , 〈s1, f1〉3 , 〈s2, f1〉2 , 〈s3, f2〉1}
(5.4)

From the pairing with highest weight we derive the answering query,

that is:

SELECT state.capital

FROM state JOIN border ON state.state_name=border_info.border

WHERE border_info.state_name=’new york’

It is worth noting that more than a query can have the same weight.

To deal with that, we implemented a comparator that privilege queries

involving less joins and embed the most referenced table (e.g. state in the

case of GeoQuery). See, for example, the order of the second and third

pairings in Ā: they have been swapped since f3 contains a join while f2

consists of a unique table.
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5.3 Reranking Model

Once an initial rank of the candidate SQL queries has been derived, we can

rely on machine learning methods for improving the probability of finding

the correct answer in the top position. The complexity is given by the need

of designing suitable representations of the question and query pairs. For

this purpose, we rely on kernel methods.

The next section will show how to use such kernels for an SVM-based

reranker.

5.3.1 Preference Reranking

Our reranking model consists in learning to select the best candidate from

a given candidate set. To use SVMs for training a reranker, we applied

Preference Kernel Method [Shen and Joshi, 2003]. In the Preference Kernel

approach, the reranking problem – learning to pick the correct candidate

h1 from a candidate set {h1, . . . , hk} – is reduced to a binary classification

problem by creating pairs : positive training instances 〈h1, h2〉, . . . , 〈h1, hk〉
and negative instances 〈h2, h1〉, . . . , 〈hk, h1〉. This training set can then

be used to train a binary classifier. At classification time, pairs are not

formed (since the correct candidate is not known); instead, the standard

one-versus-all binarization method is still applied.

5.3.2 Preference Kernel

The kernels are then engineered to implicitly represent the differences be-

tween the objects in the pairs. If we have a valid kernel K over the can-

didate space T , we can construct a preference kernel PK over the space of

pairs T × T as follows: PK(x, y) =

PK(〈x1, x2〉, 〈y1, y2〉) = K(x1, y1)+K(x2, y2)−K(x1, y2)−K(x2, y1), (5.5)
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where x, y ∈ T × T . It is easy to show that PK is also a valid Mercer’s

kernel. This makes it possible to use kernel methods to train the reranker.

The several kernels defined in the previous section can be used in place of

K2 in Eq. 5.5.

2More precisely, we also multiply K for the inverse of rank position.
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Chapter 6

Experimental Evaluation on

Classifying Mapping

We ran several experiments to evaluate the accuracy of our approach in

automatically selecting correct SQL queries for NL questions, where the

selection of the correct query is modeled as a ranking problem. The ranker

is constituted by SVMs and the kernels described in Section 2.3. We ad-

dressed the problem of finding a query whose result answers to a question

according to the following ranking problem.

Given a question n ∈ N and the complete set of the available queries

S, we classified the set of all possible pairs P (n) = {〈n, s〉 : s ∈ S}. Then

we used the classification score to rank the element of P (n) and select the

pair with the highest score.

To show the generality of our approach we created two different datasets

by applying our algorithm described in Section 4 to two different corpora.

6.1 Setup

To learn the classifier we used SVM-Light-TK1, which extends the SVM-

Light optimizer Joachims [1999] with tree kernels. i.e. Syntactic Tree

Kernel (STK) and its extension (STKe) as described in Section 2.3.2. We
1http://disi.unitn.it/~moschitt/Tree-Kernel.htm

http://disi.unitn.it/~moschitt/Tree-Kernel.htm
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Figure 6.1: Building the Geo dataset starting from GeoQueries

model many different combinations described in the next section. We used

the default parameters, i.e. the cost and trade-off parameters = 1 (for

normalized kernels) and λ = 0.4 (see Sec. 2.3.2).

To generate our datasets we applied our algorithm described in Section 4

to GeoQueries250 and RestQueries corpora2.

The first corpora is about geography questions. After the generalization

process the initial 250 pairs of questions/queries were reduced to 155 pairs

containing 154 NL question and 79 SQL queries. We found 76 clusters,

2Questions in both corpora were originally collected from a web-based interface and manually trans-

lated into logical formulas in Prolog by Mooney’s group [Tang and Mooney, 2001]. Popescu et al. [2003]

manually converted them into SQL. Thanks to our clustering algorithm we discovered and fixed many

errors and inconsistencies in SQL queries.
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from which we generated 165 positive and 12.001 negative examples for a

total of 154 × 79 pairs. Such dataset will be referred to as Geo.

Since the number of negatives is much greater than the positives, we

have to eliminate negative pairings from the test set such that the learning

is more efficient. Moreover, since we want to test the model with feasible

pairs we have to preprocess the pairs to reduce the test set. We address

these problems by keeping only pairs whose members have at least two

words in common since, intuitively, a positive pairing share at least a vari-

able and a concept (e.g. VARstate cities). In this way we excluded 10.685

incorrect pairs. Actually, among the excluded pairs there are 10 positive

examples. However since the NL questions of those pairs are paired with

other equivalent SQL queries in those pairs that are not exlcuded, this

doesn’t affect the learning. This dataset, that in the remainder we call

Geo, indeed consists of 155 positive and 1.316 negative examples for a

total of 1.471 pairs.

It is worth noting that even if an extension of this dataset is available

GeoQueries880 and it has been widely used as a benchmark by other

system, we decided to avoid evaluating our classification approach on this

larger corpus. The reason is twofold: first of all, as shown in Table 6.1,

the number of negative examples generated with our algorithm grows ex-

ponentially in the number of initial given pairs. Even if we can reduce

the number of negative examples discarding pairs of questions and queries

that do not have stems in common, the proportion with positive exam-

ples remains unbalanced, leading to a mistrained model. Secondly, after

conducting a pilot examination of the first 700 initial pairs3, we discov-

ered 243 redundant questions: only the variable changes (e.g. Texas VS

Iowa) so when we generalize them as ”VARstate” only one occurrence is

3a subset of the 880 NL question provided by Mooney paired with SQL queries translated by Popescu

that we automatically checked and then manually corrected.
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Table 6.1: Number of pair generated starting from increasing percentage of the Geo880

corpus.

Initial Pairs Gen. Positives Gen. Negatives Red. Negatives

200 171 10779 3507

400 283 25717 8616

800 587 126502 48103

taken into account. Moreover even if they have different NL questions a

lot of them are paired with the same generalized SQL. While this larger

set contains 207 clusters, taking into account the GeoQueries250 subset,

consisting of a selection of 250 pairs, we discover 76 cluster representatives.

While the redundancy rate is the same in both corpus (each information

is represented with 3.3 pairs on average) learning results achieved on the

smallest one are usually lower compared with evaluation on the larger cor-

pus. However we expect to perform better with the smallest one, given

that our approach can deal with generalized pairs in stead of relying on

training and test sets containing multiple instances of the same pair.

The second dataset regards questions about restaurants. The initial

250 pairs were generalized by 197 pairs involving 126 NL questions and 77

SQL queries. We clustered these pairs in only 26 groups which lead to 852

positive examples and 9.702 negatives. Such dataset will be referred to

as Rest. To speed up the training algorithm we eliminate some negative

examples considering as irrelevant those pairs that share only one stem or

no stem at all. In this way we exclude 2.450 incorrect pairs and we don’t

commit any error during this pre-processing. The final dataset, that indeed

consists of 7.252 pairs, will be referred to as Rest.

To evaluate the results of the automatic mapping, we applied standard

10-fold cross validation and measure the average accuracy and the Std Dev.

of selecting the correct query for each question.
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6.2 Results

6.2.1 Evaluation on Geo dataset

We tested several models for ranking based on different kernel combinations

whose results are reported on Table 6.2 and Table 6.3. The first column of

Table 6.2 lists kernel combination by means of product and sum between

pairs of basic kernels used for the question and the query, respectively. The

latter column shows the average accuracy (over 10 folds) ± Std. Dev.

More in detail, our basic kernels are: (1) linear kernel (LIN) built on

the bag-of-stems (BOS) of the questions or of the query; (2) a polynomial

kernel of degree 3 on the above BOSs (POLY); (3) the Syntactic Tree

Kernel (STK) on the parse tree of the question or the query and (4) STK

extended with leaf features (STKe). Note that we can also sum or multiply

different kernels, e.g. POLY×STK.

An examination of the reported figures suggests that: first, the basic

traditional model based on linear kernel and BOS, i.e. LIN + LIN, provides

an accuracy of only 57.3%, which is greatly improved by LIN×LIN=LIN2,

i.e. by 13.5 points. Although the Std. Dev. associated with the model

accuracy is high, the one associated with the distribution of difference

between the model accuracy is much lower, i.e. 5%. The explanation is that

the sum cannot express the relational feature pairs coming from questions

and queries, thus LIN cannot capture the underlying shared semantics

between them. It should be noted that only kernel methods allow for

an efficient and easy design of LIN2; the traditional approach would have

required to build the Cartesian product of the question BOS by query BOS.

This can be very large, e.g. 10K features for both spaces leads to a pair

space of 100M features.

Second, the baseline model LIN+LIN confirms that the feature pair

space is essential since the accuracy of all kernels implementing individual
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Table 6.2: Kernel combination accuracies for Geo dataset

Kernel Combination Accuracy ± Std. Dev.

LIN + LIN 57.3±10.4

LIN × LIN 70.7±12.0

POLY × POLY 71.9±11.5

STK × STK 70.3±9.3

STKe × STKe 70.1±10.9

LIN × STK 74.6±9.6

LIN × STKe 75.6±13.1

POLY × STK 73.8±9.5

POLY × STKe 73.5±10.4

STK × LIN 64.7±11.5

STKe × LIN 68.3±9.6

STK × POLY 65.4±10.9

STKe × POLY 68.3±9.6
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spaces (e.g. kernels which are sums of kernels) is much lower than the

baseline model for feature pairs, i.e. LIN2 and this is the reason why they

are not listed in these tables.

Third, if we include conjunctions in the BOS representation by using

POLY, we improve the LIN model, when we use the feature pair space,

i.e. 71.9% vs 70.8%. Also, POLY2 is better than STK2 since it includes

individual term/word bigrams, which are not included by STK.

Next, the lower accuracy provided by STK2
e suggests that syntactic mod-

els can improve BOS although too many (possibly incorrect) syntactic fea-

tures (generated by STKe) make the model unstable. This consideration

leads us to experiment with the model LIN × STK and LIN × STKe, which

combine words of the questions with syntactic constructs of SQL queries.

They produce high results, i.e. 74.6% and 75.6%, and the difference with

previous models is statistical significant (90% confidence interval). This

suggests that the syntactic parse tree of the SQL query is very reliable

(it is obtained with 100% of accuracy) while the natural language parse

tree, although accurate, introduces noise that degrades the overall feature

representation. As a consequence it is more effective to use words only in

the representation of the first member of the pairs. This is also prooved by

the last four lines of Table 6.2, showing the low accuracies obtained when

relying on NL synctactic parse trees and SQL BOWs. However, POLY

× STKe performs worse than the best basic model LIN × STKe (80%

confidence level).

Moreover, we experimented with very advanced kernels built on top of

feature pair spaces as shown in Table 6.3. For example, we sum different

pair spaces, STK2
e and POLY2, and we apply the polynomial kernel on top

of pair spaces by creating conjunctions, over feature pairs. This operation

tends to increase too much the cardinality of the space and makes it inef-

fective. However, using the simplest initial space, i.e. LIN, to build pair
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Table 6.3: Advanced kernel combination accuracies for Geo dataset

Advanced Kernel Combination Accuracy ± Std. Dev.

STK2+POLY2 72.7±9.7

STK2
e+POLY2 73.2±11.4

(1+LIN2)2 73.6±9.4

(1+POLY2)2 73.2±10.9

(1+STK2)2 69.4±10.0

(1+STK2
e)

2 70.0±12.2

(1+LIN2)2+STK2 75.6±8.3

(1+POLY2)2+STK2 72.6±10.5

(1+LIN2)2+LIN×STK 75.9±9.6

(1+POLY2)2+POLY×STK 73.2±10.9

POLY×STK+STK2+POLY2 73.9±11.5

POLY×STKe+STK2
e+POLY2 75.3±11.5

conjunctions, i.e. (1+LIN2)2, we obtain a very interesting and high result,

i.e. 73.6% (statistically significant with a confidence of 90% ). Using the

joint space of this polynomial kernel and of simple kernel products we can

still improve our models.

This suggests that kernel methods have the potentiality to describe rela-

tional problems using simple building blocks although new theory describ-

ing the degradation of kernels when the space is too complex is required.

Finally, in order to study the stability of our complex kernels, we com-

pared the learning curve of the baseline model, i.e. LIN+LIN, with the

those of best models, i.e. LIN×STKe and STK2+(1+LIN2)2. Figure 6.2

shows that surprisingly, complex kernels are not only more accurate but

also more stable, i.e. their accuracy grows smoothly according to the in-

crease of training data.
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Figure 6.2: Learning curves for GeoQueries corpora

6.2.2 Evaluation on Rest dataset

The results of the experiment on the second dataset are reported on tables

Table 6.4 and Table 6.5.

The baseline model, i.e. LIN + LIN, provides an accuracy of only 20.9%,

which compared with the 37.1% of linear feature pair model, i.e. LIN2,

confirms that product combination of kernels is more accurate than their

sum. Including conjunctions in the BOS representation, i.e. using POLY2,

we obtain a very high result. Moreover if we combine stems of the ques-

tion with syntactic SQL subtrees, using POLY×STK, we outperform both

POLY2 and STK2 by 4 points at a 95% confidence level. This confirms that

it is better to use stems in the representation of the first member of the

pairs and syntactic parse trees in the second member. Nevertheless, STK

performs worse when taking into account also leafs (STKe), since using

terms is not relieabe as shown by the low BOS accuracy on this dataset.

Given that n-grams based text representation technique has shown to
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Table 6.4: Kernel combination accuracies for Rest dataset

Kernel Combination Accuracy ± Std. Dev.

LIN + LIN 20.9±11.9

LIN × LIN 37.1±16.2

POLY × POLY 74.5±14.0

STK × STK 71.8±10.8

STKe × STKe 62.5±11.6

SK1 × SK1 38.8±13.8

SK3 × SK3 67.4±11.1

LIN × STK 79.1±11.5

LIN × STKe 77.2±12.8

POLY × STK 82.3±11.8

POLY × STKe 78.0±12.2

SK1 × STK 80.5±13.2

SK1 × STKe 77.9±11.8

SK3 × STK 81.7±13.3

SK3 × STKe 78.5±11.5
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Table 6.5: Advanced kernel combination accuracies for Rest dataset

Advanced Kernels Combination Accuracy ± Std. Dev.

(1+LIN2)2 52.5±10.2

(1+POLY2)2 74.5±14.0

(1+STK)2 71.8±10.8

(1+STKe)
2 62.5±11.6

(1+SK1)2 52.5±10.2

(1+SK3)2 69.8±10.0

(1+POLY×STK)2 84.7±11.5

STK2+POLY2 78.6±11.9

(1+POLY2)2+POLY×STK 78.1±13.8

POLY×STK+STK2+POLY2 78.6±11.9

outperform bag-of-words approaches Lodhi et al. [2000], we experimented

also using String Kernel (SK). Results confirm that using 3-grams (SK2
3)

to represent questions is a better choice than the BOS representation (SK2
1

or LIN2). Nevertheless, including conjunctions in the BOS representation,

it performs even better.

We also experimented with advanced kernel combinations. Results are

listed in table Table 6.5. Applying the polynomial kernel on top of polyno-

mial feature pair spaces, i.e. (1+POLY2)2, we obtain a very high result, i.e.

75.4%. We found that the advanced kernel combination (1+STK×POLY)2

outperforms4 the best kernel combination POLY×STK.

Figure 6.3 illustrates the learning curve of the best kernels, i.e. the

kernel combination is POLY×STK and the advanced kernel STK×POLY+

(1+POLY2)2, along with the baseline. The figure shows that the best kernel

4Although the Std. Dev. associated with the model accuracy is high, the one associated with the

distribution of difference between the model accuracy is much lower (about 1.8%). Considering also that

we used 10 folds, it is easy to verify that the first is better than the second at 80% of confidence limit.



98 Experimental Evaluation on Classifying Mapping

Figure 6.3: Learning curves for RestQueries corpora

including the syntanctic information is superior to the very accurate and

rich kernels based on only BOS.

6.3 Related Work

In this section we discuss some NLIDBs that have been tested on Geo-

Queries or RestQueries datasets. Many systems have been evaluated

in terms of precision and recall, whereas our performance is evaluated in-

stead in terms of accuracy, intended as the percentage of all questions for

which correct query were retrieved. Since we want to compare our results

to others, we represented their results by means of accuracy.

However, even if we can compare only systems that were evaluated on

the same dataset and similar experimental set-up, we report also their

evaluation on GeoQueries880 to show that, the smallest is the training

corpus, the more challenging is the learning.

CatchPhrase [Minock et al., 2008] is an authoring system that has
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been evaluated on GeoQueries250. In particular, two students were

asked to author the system to cover 100 of the 250 questions each. Then

the remaining questions were split in 2 test sets and translated by the

system first into logical queries in tuple calculus representation and then

into SQL queries. The average accuracy was 69%.

Krisp [Kate and Mooney, 2006] adopts a machine learning approach to

induce a semantic grammar from a corpus of correct pairs of questions and

queries. The reported experiments using standard 10-fold cross validation

show an accuracy of 70% and of 75% on GeoQueries880 and Geo-

Queries250, respectively. Another evaluation of this system is provided

by Popescu et al. [2003]. According to the authors results on GeoQueries

are approximatively 78% recall and 94% precision, for an f-measure of 85%,

whereas on RestQueries both precision and recall are 97%. However

authors did not publish the correct number of geographical queries nor

experimental-setup information.

In Precise [Popescu et al., 2003], the derivation of semantic inter-

pretation of ambiguous phrases is reduced to a graph matching problem.

Authors claim to achieve 100% precision on a subset of questions while

rejecting semantically intractable questions for a final recall of 77.5% and

the 95% for GeoQueries880 5. and RestQueries respectively.

In particular they consider a generated query as correct if it is the same

of the one manually translated by an expert. In particular the expected

SQL query (one with equivalent result set) is correct it is produced in

the top K queries (being K a small constant) obtained by removing un-

likely candidate queries. However we used their output as training example

source and discovered many inconsistencies in the translation. In addition,

5It is not clear which dataset they used. They claim that each database has been tested on a set

of several hundred English questions. They cite Tang and Mooney [2001], that actually refers to 800

queries, while the evaluation in Minock et al. [2008] suggest that they use the 250 subset. However this

is not recall1.
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Precise outputs a set of queries among which one correctly corresponds

to an ambiguous question, while, in contrast others always retrieve at most

one possibly correct query.

The performance of the above mentioned systems were originally mea-

sured according to different definitions of precision and recall since they

refuse to generate a correct answer in particular output conditions. In

contrast our approach allows for always having one answer, therefore it

can be measured with the more appropriate accuracy measure. Using the

accuracy we note that our approach is comparable to Krisp obtaining the

same measure, i.e. 76% (our result) vs 75% (Krisp), on GeoQueries250.

Regarding the comparison with Precise, it should be noted that we found

several errors in the SQL testset in Popescu et al. [2003] (many of them

do not return the correct values and other were syntactically incorrect), so

we cannot provide a reliable interpretation of their results.

Moreover, our performance are also higher than the one achieved by

CatchPhrase.

There exist other systems [Zettlemoyer and Collins, 2005; Wong and

Mooney, 2006; Tang and Mooney, 2001; Ge and Mooney, 2005] that were

tested on GeoQueries880 with different experimental-setup, so results

are not directly comparable. However we perform similarly to Krisp, that

compares favourably with them.

Recently, two systems, DCS [Liang et al., 2011] and SemResp [Clarke

et al., 2010] have been proposed and evaluated on a subset of GeoQueries880

consisting of 250 randomly selected sentences for training and 250 for test-

ing. According to authors, the inference problem is less constrained than

previous approaches thus limiting the training data to 250 examples is due

to scalability issues. They also prune the search space by limiting the num-

ber of logical symbol candidates per word (on average 13 logical symbols

per word). The basic and unsupervised system SemResp achieves an accu-
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racy of 73.2% whereas an extension of this approach involving supervision

and annotated logical form shows an accuracy of 80.4%. Similarly, DCS

achieves an accuracy of 78.9% with minimal supervision, while relying on

prototype triggers the system DCS+ is 87.2% accurate. However, their

experimental-setup is much different and even if they seem to perform bet-

ter, with respect to these systems, our system do not require supervision

or restrictions on the training dataset.

In addition since our approach can exploit database query logs to find

all possible positive and negative training pairs our system is more portable

and robust. In fact Mooney’s group uses database and queries developed in

Prolog, but real-word application use the widespread language SQL and it

is not straightforward to map queries on one language in another (otherwise

Popescu et al. could have automatically translated the datasets instead of

having an expert to manually generate it).

As a last remark, recent work tends to avoid human supervision and the

costly annotation of databases. For example, the approach described in Lu

et al. [2008] do not rely on annotation and shows Precision of 91.5% and a

Recall of 72.8%, for an f-measure of 81.1% in the GeoQueries250 dataset.

Since this result is obtained applying re-ranking and the same approach

applied to the larger GeoQueries880 corpus leads to an improvement

in f-measure of 85.2%, we stopped experimenting with GeoQueries250

and classification algorithms and moved to the next step. As discussed in

Chapter 5 and then evaluated in the following one, we will consider larger

datasets to exploit reranking abilities of the engineered kernels designed so

far.

With respect to the RestQueries dataset the comparative evaluation

is more complex, since in our opinion Precise performance is corrupted

by the wrong manual translations they use to evaluate correctness. Even

if it is reasonable to believe that they real accuracy on this dataset is
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approximatively 85%, we can’t directly compare with this result since the

experimental test sets are different. However, we believe that this dataset

do not reflect the complexity of a real-word applications since its structure

is trivial, so we stopped experimenting with it.

It is worth noting that this approach, in contrast with previous genera-

tive approaches, retrieves the best matching query among the given set of

all possible queries. One could argue that we can’t find a correct answer

to a given unseen NL question if the SQL query was not present in the

initial dataset. While we still believe that relying on query logs is not so

restrictive, since they represent frequent and required queries asked to DBs,

we also implemented a generative model whose evaluation is presented the

following chapter.



Chapter 7

Experimental Evaluation on

Reranking Mapping

In the previous chapter we have discussed our preliminary experiments

and shown the efficiency of Structured Kernels over question answering.

Thanks to our classification approach we are able to retrieve the best

matching query among a given set of all possible queries. However, we

can’t find a correct answer to a given unseen NL question if the SQL query

is not present in the initial dataset. Indeed, we may not always rely on

query logs even if they should reliably represent frequent asked queries to

a database.

Moreover, in Chapter 3 we have illustrated that recent system tend to

avoid the need of relying on an expensively annotated dataset, reducing

the mapping problem to a simpler and less constrained one: deriving a

mapping from natural language questions to machine readable statements

by only exploiting the final real-world answers.

For these reasons we evaluated our generative approach enriched by

preference reranking in order to show that we can perform semantic parsing

exploiting only syntactic similarity, without the need of grammars, lexicons

and annotation.
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Starting from a corpus of natural language questions {x1, x2, . . . , xm}
paired with their answers {a1, a2, . . . , am}, we generate for each question

xi a set of SQL queries {y1
i , y

2
i , . . . , y

k
i }. Given that this set is ordered

according to a matching weight, we report generative results of the task

of selecting the top scored pair as the most correct. However, at training

time we know which yi is the correct one, i.e. the one whose result set is

equivalent to the given answer a. Indicating yi1 as the correct candidate, we

use a preference reranker to learn a binary classifier by creating the pairs

〈y1
i , y

2
i 〉, . . . , 〈y1

i , y
k
i 〉 as positive training instances and 〈y2

i , y
1
i 〉, . . . , 〈yki , y1

i 〉
as negative ones.

Indeed, given an unseen question n we generated a set of possibly map-

ping SQL queries S. Then we re-ranked the set of pairs P (n) = {〈n, s〉 :

s ∈ S} and used the top-ranked element of P (n) to select the candidate

〈n, s〉 such that the execution of s retrieves the answer a to question n. At

classification time, since the correct candidate is not known and pairs are

not formed, we apply the standard one-versus-all binarization method.

7.1 Setup

After developing and integrating our generative approach (Chapter 5), we

ran several experiments to evaluate the accuracy of our approach for au-

tomatic generation and selection of correct SQL queries from questions.

We only experimented with the GeoQueries880 dataset, since the other

dataset was too simple an we didn’t expect to obtain large improvements.

To generate the set of possible SQL queries we applied our algorithm

described in Chapter 5 to the GeoQueries corpus. We considered the

full GeoQuery annotation (Geo880) but we used the subset of 700 pairs

(henceforth Geo700) since they had been translated by Popescu et al.

[2003] from Prolog data to SQL queries.
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Additionally, to compare with latest systems Clarke et al. [2010]; Liang

et al. [2011], which used a subset of 500 pairs, hereafter Geo500, we

annotated the remaining 180 pairs as they were included in Geo500. The

latter was randomly split by Clarke et al. [2010] in 250 pairs for training

and 250 pairs for testing. The data is slightly easier since the number of

logical symbols per word are limited to an average of 13 logical symbols.

It is worth noting that even if we manually annotated missing questions

with their answering SQL queries, we only used them for extracting the

answer from the database and evaluate the pair correctness (so we do not

really use the SQL queries).

However, pairs that were already annotated in the original Geo700

contained some errors and inconsistencies in SQL queries that we fixed,

except for 3 cases that still lead to a MySQL error. Indeed, since we can’t

test the correctness of our generated query (without a result set to compare

with) we considered a subset of 697 pairs.

To learn the reranker, we used SVM-Light-TK1, which extends the

SVM-Light optimizer [Joachims, 1999] with tree kernels. i.e. Syntactic

Tree Kernel (STK) as described in Section 2.3. We modelled the same

combinations that in our pilot experiment has shown to be more effective.

We used the default parameters, i.e. the cost and trade-off parameters =

1 (for normalized kernels) and λ = 0.4 (see Sec. 2.3.2).

To evaluate the reranking results of on Geo700, we applied standard

10-fold cross validation and measure the average recall and the standard

deviation of selecting the top ranked query as the correct one (i.e. that

retrieves the same result as the annotated one). With respect to Geo500

we kept the original split of 250 training samples and 250 test samples.

1http://disi.unitn.it/~moschitt/Tree-Kernel.htm

http://disi.unitn.it/~moschitt/Tree-Kernel.htm
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7.2 Generative Results

We carried out the first experiment on Geo700. Our algorithm could

generate a correct SQL query in the first 25 candidates for 95.3% of the

cases but could not answer to 33 questions. This was due to (i) empty

clauses set S and/or W , for example, “How many square kilometers in

the US?” does not contain useful stems; and (ii) mismatching in nested

queries, for example, “Count the states which have elevations lower than

what Alabama has” contains an implicit reference to the missing informa-

tion. In addition, there were incomplete questions like “Which states does

the Colorado?” from which we retrieved an incomplete dependency set.

When our algorithm can generate an ordered list of possible queries, the

top query is correct for 82% of the cases. Additionally, the correct answer

is contained in the first 10 candidates for 99% of the cases (excluding the

33 questions above).

This can be observed in Figure 7.1, which plots the Recall (of the correct

question) curve of the generative approach, i.e., the baseline. As pointed

out in the graphic, the correct query is found among the first three in 93%

of the cases. In fact with our generative algorithm we are able to assign a

high score to the correct pairings, but the pairings between a given question

and the correct generated query is not always the highest scoring option.

The reason is that we are very flexible when generating all possible queries

in order to reach an higher recall. However this leads to lower precision

and the need for improving it.

We obtain similar results with the Geo500 subset: we fail to generate

an answer in 18 out of the 250 pairs of the test set. We also found that

the correct answer is 78% of the times in the top position while it can be

retrieved among the first top seven in 98% of the cases.

While our ranking based on heuristic weights is rather robust and pro-
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Figure 7.1: Recall of the correct answer within different top k positions of the system

rank for Geo700 dataset

duce high recall, the accuracy on the top candidate can then be promisingly

increased with reranking.

7.3 Reranking Results

To improve the accuracy of our generative model, we used a preference

reranking approach (introduced in Section 5.3).

Figure 7.1 shows the plots of several systems’ Recall (of at least one

correct answer) according to different k-top candidate answers. In addi-

tion to the generative model (Baseline), the graph shows the accuracy of

different rerankers applied to the Baseline: these use the following ker-

nels: STKn+STKs, STKn×STKs and (1+STKn×STKs)
2 as the K factor

in Eq. 5.5, where n indicates kernels for questions and s for queries2, re-

2In the following we omit such indices, recalling that the first kernel is always applied to the question
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spectively. We note that reranking remarkably improves the results, e.g.,

(1+STKn×STKs)
2 retrieves the correct answers 94% of times by only using

the first two answers.

To assess our findings, we applied standard 10-fold cross validation and

measured the average Recall in selecting a correct query for each question.

The results for different models on Geo700 are reported in Table 7.1.

The first column lists the kernel combination by means of product and

sum between pairs of basic kernels used for the question and the query,

respectively. The other columns show the Recall of at least 1 correct answer

in the top k positions (more precisely the average of Recall@k over 10 folds

± Std. Dev).

Additionally, we evaluated the same kernels for reranking pairs gen-

erated from the Geo500 dataset. Figure 7.2 shows the Recall curve of

STK+STK, STK×STK and (1+STK×STK)2 along with the baseline re-

sults already introduced in section 7.2.

For this benchmark the trade-off between different kernel is not as clear

as the one evidenced in Figure 7.1. The reason could be that Geo700

have been evaluated using 10-fold cross validation, while Geo500 have

been split into 250 training pairs and 250 test pairs. While STK×STK

parse trees whereas the second kernel is applied to the trees of query derivations.

Table 7.1: Kernel combination recall (± Std. Dev) for Geo dataset

Combination Rec@1 Rec@2 Rec@3 Rec@4 Rec@5

NO RERANKING 81.4±5.8 87.6±3.8 90.8±3.1 94.0±2.4 95.0±2.0

STK + STK 83.5±3.6 90.4±3.5 94.2±2.9 95.8±2.0 96.7±1.7

STK × STK 86.5±4.0 92.6±3.7 95.3±3.2 97.0±1.8 97.7±1.4

BOW × STK 86.7±4.1 92.1±3.2 95.6±2.5 97.1±1.4 97.6±1.2

(1+STK2)2 87.2±3.9 94.1±3.4 95.6±2.7 97.1±1.9 97.9±1.4
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Figure 7.2: Recall of the correct answer within different top k positions of the system

rank for Geo500 dataset

outperforms STK+STK in the first position of the re-ranked list of pairs,

expanding our search space performances of advanced kernel combination

STK×STK and (1+STK×STK)2 do not improve consistently. However

we can see that whatever k we used, reranking performances on the top k

search space outperform the baseline of at least 2 points.

Using STK+STK we obtain a Recall of 84.77%, while if we exploit the

product STK×STK, we achieve 87.31%. These results are rather exciting

since they compare favorably with the state-of-the-art.

Finally, we report the learning curve of one basic reranker STK×STK

in Figure 7.3. The plot shows that, as soon as a reasonable amount of

training data is used (i.e., 25% of 9 folds of 700 questions – one fold is used

for testing), the reranker improves on the baseline.



110 Experimental Evaluation on Reranking Mapping

Figure 7.3: Learning curve

7.4 Related Work

In this section we compare our result with similar learning approaches,

ignoring a substantial piece of related research that is not directly compa-

rable to our approach.

Early work on semantic parsing [Tang and Mooney, 2001] required either

the definition of rules and constrains in an ILP framework or manually pro-

duced meaning representations [Ge and Mooney, 2005; Wong and Mooney,

2006], which are costly to produce. Additionally, authoring systems where

developed by specifying a semantic grammar [Minock et al., 2008], which

requires large effort of human experts.

Table 7.2 shows the f-measure of some state-of-the-art systems to which

we compare. Such systems were tested on GeoQueries, according to

different experimental setups and data versions. The first half of the ta-

ble reports on systems exploiting the annotated logical form (deriving the
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answer) whereas the last five rows show the f-measure of systems only

exploiting the training pairs, questions and answers.
Precise [Popescu et al., 2003] is the only system evaluated on Geo700

in terms of correct SQL queries. The value reported in the table refers to

the correctness of answering questions if the expected SQL query (i.e., one

with equivalent result) is produced by one of the top k queries3. Also our

system can provide multiple answers and if we select the first k candidates,

we highly increase the Recall (within the first 2 we have an F1 of 90%).

Note that [Popescu et al., 2003] needed to rephrase some queries to achieve

their result.

Another system similar to ours, which applies SVMs and string kernel

is Krisp Kate and Mooney [2006]. The major difference is that it requires

meaning representations (following a user-defined MR grammar), instead

of SQL queries.

Recent work has also explored learning to map sentences to mean-

ing representations suitable for applying lambda-calculus [Zettlemoyer and

Collins, 2005; Wong and Mooney, 2007]. This kind of system require a

large amount of supervision. In particular, the system in Zettlemoyer and

Collins [2005] shows a Precision of 96.3% and a Recall of 79.3%, for an

f-measure of 86.9%, while our system shows a Precision of 82.8% and a

Recall of 87.2%, for an f-measure of 85.0%. Thus, our system trades-off 2

points of accuracy for avoiding large work for handcrafting resources, i.e.,

the semantic trees manually annotated for each question. Moreover, our

system is much simpler to implement.

A more recent work [Lu et al., 2008] does not rely on annotation and

shows a Precision of 89.3% and a Recall of 81.5%, for an f-measure of

85.2%. Their generative model coupled with a discriminative reranking

technique (ModelIII+R) is conceptually similar to our approach.

3Being k a small constant, not better defined by the authors.
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Table 7.2: Comparison between state of the art learning systems.

System Name Human Supervision Geo500 Geo700 Geo880

Precise Rephrase question - 87% -

Krisp Specify the grammar - - 81%

ModelIII+R - - - 85%

SemResp Define a Lexicon 80% - -

UBL Specify a CCG Lexicon - - 89%

MaNaLa/SQL - - 85% -

SemResp Define a Lexicon 73% - -

UBL Specify a CCG Lexicon - - 85%

DCS Define Lexical Triggers 79% - 89%

DCS+ Define an Augmented Lexicon 87% - 91%

MaNaLa/SQL∗ - 87% 85% -

It it worth noting that even though we used a dataset where each natural

language question is annotated (paired) with an SQL query, our generative

and reranking models4 do no rely on this annotation since we exploit the

paired SQL query only to retrieve the answer. For this reason our approach

is more flexible and adaptable since we just need natural language questions

to be paired with its answer instead of its corresponding logical form.

SemResp [Clarke et al., 2010] also learn a semantic parser from question-

answer pairs. They achieve the highest accuracy when tested on annotated

logical forms whereas when tested on answers their accuracy is lower (80%

vs. 73% in f-measure). In contrast, our system, evaluated on answers,

outperforms their best system in all setting, e.g., (85% vs. 80%).

4We refer to this system as MaNaLa/SQL∗, since it is an extension of the original MaNaLa/SQL

that performed semantic mapping exploiting (NL,SQL) trees. We report also the f-measure of this pilot

model in producing the correctness annotated SQL for sake of comparison, even if it has been discussed

in the previous Chapter.
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Another system evaluated both with logical forms and with answers is

UBL [Kwiatkowski et al., 2010]. Starting from a restricted set of lexical

items and CCG combinatory rules, it is able to learn new lexical entries

and achieves the best performance with Geo880 when trained with logical

forms.

In contrast, the best performing system that does not exploit the anno-

tation of the Geo880 is DCS [Liang et al., 2011]. It involves a lower level

of supervision with respect to UBL since it requires having a set of lexical

triggers (enriched by prototype triggers in DCS+) that is a much weaker

requirement than having a CCG lexicon.

However, the comparison of the systems above with ours on Geo500

shows that ours largely outperforms DCS (87% vs. 78% in f-measure).

Our system performs comparably to the version enriched with prototype

triggers, DCS+, even though we do not exploit such manual resources.

In summary, our system is competitive with other supervised parsers

as it: (i) only relies on the answers, i.e., without using any annotated

meaning representations (e.g. Prolog data, MR, Lambda calculus, SQL

queries); and (ii) requires much less supervision since there is no need to

build semantic representation. Our manual intervention only regards the

definition of few synonym relations, i.e., border and next to as synonyms

for traverse, since there are not such relations in Wordnet. The rest of

the lexicon is induced by the database metadata or obtained exploiting

Wordnet.

Finally, our system is competitive with the state-of-the-art defined in Lu

et al. [2008]. In fact, considering that the performance of ModelIII+R on

Geo880 has been tested using and independent test set of 280 pairs and a

600 training pairs, we can conclude that we perform comparably with this

unsupervised system. Even though we evaluated our results using 10-fold

cross validation on Geo700, our training data contains a similar number
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of pairs (i.e. 670) and we obtain the same results (85%). This is not

surprising since we use a very similar approach, i.e., a generative model

coupled with discriminative reranking. However, while the system above

learns a parser on meaning representations, we only need natural language

questions their answers (of course targeting a DB).



Chapter 8

Conclusions

In this research, we propose two novel models for mapping NL into SQL

based on robust machine learning algorithms, e.g. Support Vector Ma-

chines (SVMs), and effective approaches for structural representation, e.g.

Sequence and Tree Kernels Lodhi et al. [2000]; Collins and Duffy [2002];

Vishwanathan and Smola [2003]; Moschitti [2006]. More specifically, since

computational linguistics research Winograd [1972] has shown that such

mapping problem cannot be addressed with a full semantic approach, our

solution has to rely on shallow and statistical methods.

We approach the problem of deriving a shared semantics between natu-

ral language and programming language by automatically learning models

based on a syntactic representation of the training examples that we use

both for classification and re-ranking purposes. In our experiments we

consider pairs of NL questions and SQL queries as training examples.

We automatically annotated the pairs by means of our algorithm start-

ing from a given initial annotation. In particular we experimented with

the annotation available in GeoQueries250 and RestQueries corpora.

Our semisupervised algorithm allowed for adding new positive pairs, cre-

ating negative example set and also fixing some errors 1.

1Our datasets are be publicly available so that other system can compare with our benchmark corpora.

http://projects.disi.unitn.it/iKernels/

http://projects.disi.unitn.it/iKernels/
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To represent syntactic/semantic relationships expressed by training pairs,

we encode such pairs in SVM by means of kernel functions. We designed

innovative combinations between different kernels for structured data ap-

plied to pairs of objects, that, to the best of our knowledge, represent

a novel approach to describe relational semantics between NL and SQL

languages.

Given the good results in classification, we have approached question an-

swering targeting database information by automatically generating SQL

queries in response of the posed question. The generative model exploits

grammatical dependencies and metadata and can deal with complex natu-

ral language questions, containing subordinates, conjunction and negation

and nested SQL queries.

Additionally, we firstly experimented with a supervised preference rerank-

ing kernel, which is able to boost the accuracy of our generative model

(which is instead unsupervised). The underlying idea that we propose for

building and combining clauses sets is novel.

It should be noted that state-of-the-art systems depend on corpora

specifically annotated for the tasks implemented by these systems. This is

a major limitation in their success, usability and portability. These corpora

are often very large since systems perform better with larger training data.

In fact, finding a method for effectively learning from limited amounts of

data is challenging. In this respect, our approach is very valuable as we do

not need any annotated training set and tailored grammar or lexicon, since

we use database metadata and grammar dependencies in the NL questions,

where the answer can be just a NL text.

Given the high accuracy, the simplicity and the practical usefulness

of our approach, e.g., we can generate the correct question in the first

5 candidates in 95% of the cases, we believe that our methods can be

successfully used in the future for real-world applications.
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In the experiments, we have shown that our generative model, when

coupled with a tree-kernel based reranking, achieves state-of-the-art per-

formance when tested on two publicly available corpora.

The main contributions of this study are: (i) we generated a dataset of

positive and negative pairs of NL questions and SQL queries represented

by means of their syntactic trees; (ii) we learned a classifier for detecting

correct and incorrect pairs of questions and queries using kernel methods

along with SVMs; (iii) we implemented an SQL query generator that cre-

ates a weighted list of candidate SQL queries where the top scored is the

correct one with a fairly high precision and (iv) we exploited an SVM ranker

trained with structural kernels to reorder the candidate list to improve the

generation performance.

Finally, we have also shown that kernel product can be effective and

that syntax is important to map into programming languages but also

for generating new queries. Nevertheless we have shown that automatic

generation of semantic grammars is viable.

8.1 Future Work

In the future we plan to experiment with datasets in different domains.

One example could be the no longer current airlines reservation system

included in the ATIS distribution [Pallett et al., 1994].

Moreover, given that current challenges in Semantic Web tackle simi-

lar problem Cimiano and Minock [2009] (scaling question answering ap-

proaches to Linked Data, i.e. Question Answering over Linked Data),

it would be interesting to apply our algorithms to semantic search and

question answering over RDF data (e.g. testing our model on the Mu-

sicBrainz corpus).

Some of our experiments have shown that the major limitation of our
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approach is dealing with questions whose answers are empty (e.g. “State

bordering Alaska?”). The reason is that we can’t recognize if an empty

answer is the outcome of a correct SQL query generation or the result

of something wrong in the process. While other systems overtake this

problem (e.g. for the Jobs corpus, where almost half of the answers are

empty, Liang et al. [2011] randomly generated values for each empty field)

a fair solution could be the development of a SQL meaning checker that

recognizes when an empty answer is a plausible result or not.

Last but not least, since our learning algorithm is language indepen-

dent, we plan to extend our generative model to other languages (the

GeoQueries250 questions are also available in other languages).

Our system could be largely improved augmenting the SQL grammar

used by our generative algorithm, taking into account GroupBy, Or-

der, and Limit clauses to handle more difficult questions, like for example

“What it the total population of the ten largest capitals in the US?”.

Moreover, this approach could be easily extended to allow for cross-

domain questions, as long as IS embeds shared metadata between multiple

databases. For example, if we have both GeoQuery and RestQuery

data in the same database systems, we could find an answer for cross-

domain questions like “Which is the best Italian restaurant of the capital

of California?”.

We are also interested in investigating ways to apply the classification

approach to the inverse task. This could be particularity useful in real

world database systems where students try to write their own SQL queries.

They would benefit from a feedback from an automatic system that en-

riches the query result with its possible interpretation in human language.

In addition we would like to extend this research by focusing on ad-

vanced shallow semantic approaches such as predicate argument structures

Giuglea and Moschitti [2006].
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