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Abstract 
Compared with triangular, square and Kagome honeycombs, hexagonal honeycombs have lower in-

plane stiffness, which restricts their multifunctional applications. Focusing on this problem, in this 

paper, we analytically study the in-plane elastic and transport properties of a kind of hexagonal 

honeycombs, i.e., the multifunctional hierarchical honeycomb (MHH). The MHH structure is 

developed by replacing the solid cell walls of the original regular hexagonal honeycomb (ORHH) 

with three kinds of equal mass isotropic honeycomb sub-structures possessing hexagonal, triangular 

and Kagome lattices. Formulas to derive the effective in-plane elastic properties of the regular 

hexagonal honeycombs at all densities are developed for analyzing the MHH structure. Results 

show that the hexagonal sub-structure does not improve much the elastic properties of the MHH 

structure. However, the triangular and Kagome sub-structures result in a substantial improvement 

by 1 magnitude or even 3 orders of magnitude on the Young’s and shear moduli of the MHH 

structure, depending on the cell-wall thickness-to-length ratio of the ORHH. Besides, the effective 

in-plane conductivities (or dielectric constants) of the three different MHH structures are also 

studied. The presented theory could be used in designing new tailorable hierarchical honeycomb 

structures for multifunctional applications. 

 

Keywords: In-plane effective moduli; In-plane effective conductivity (or dielectric constants); 

Original regular hexagonal honeycomb (ORHH); Multifunctional hierarchical honeycomb (MHH).  



  

 

1. Introduction 
Low-density cellular materials widely exist in nature and exhibit fascinating mechanical 

properties in the aspects of strength, stiffness, toughness, etc. [1-3]. As one kind of typical low 

density cellular solids, honeycombs, which are mainly used as cores of the light-weight sandwich 

panel structures [4-7], have been used in many diverse fields, such as aerospace and automotive 

industries. Apart from their peculiar low-density and mechanical properties, honeycombs also show 

other attractive functionalities, e.g., heat transfer, thermal protection, catalysis application and so on. 

In order to find optimal topologies for different multifunctional applications, varieties of prismatic 

honeycombs have been studied in recent years. 

Regarding the multifunctionality of honeycomb materials , Lu [8] and Gu et al. [9] reported 

that regular hexagonal metal cells, comparing with triangular and square cells, provide the highest 

level of heat dissipation, as comparable to that of the open-cell metal foams. Combining the 

experimental and numerical methods, Wen et al. [10] revealed that the overall thermal performance 

of metal honeycomb structures are superior to other heat sink media, such as metal foams, lattice-

frame materials, 3D Kagome structures and woven textile structures. Employing the topology 

optimization technique, Hyun and Torquato [11] showed that the effective conductivity of the 

regular hexagonal honeycomb is nearly approaching the Hashin-Shtrikman (H-S) upper bounds; 

while for triangular and Kagome honeycombs, both the in-plane effective moduli and conductivity 

are approaching the H-S upper bounds [12-13]. Besides, Evans et al. [14], Wadley et al. [15] and 

Wadley [16] reviewed the multifunctionalities and the fabrication technologies of the 

multifunctional periodic cellular metals with different topological structures. Hayes et al. [17] 

studied the mechanical and thermal properties of linear cellular alloys with square cells, and 

concluded that the mechanical and heat transfer characteristics of the honeycomb materials 

outperformed those of the open- and closed-cell metal foams with comparable relative density. 

Vaziri and collaborators focused on metallic sandwich panels with different kinds of cellular cores 



  

such as hexagonal honeycombs [18], square honeycombs [19-23], open-cell rhombic dodecahedron 

cellular structures [24] and pyramidal truss cores [25-28], and explored some of their 

multifunctional applications, such as energy absorptions [27], sustaining shock loadings [19-21] and 

underwater impulsive loadings [22-23]. 

Regarding the mechanical properties of honeycomb materials, Wang and McDowell [29] 

investigated the in-plane stiffness and yield strength of different periodic metal honeycombs, and 

showed that the diamond, triangular and Kagome cells have superior in-plane mechanical properties 

to the hexagonal, rectangular and mixed square/triangular cells. Fleck and Qiu [30] analyzed the 

damage tolerance property of 2D elastic-brittle isotropic honeycombs and reported that Kagome 

cells have much higher fracture toughness than those of the hexagonal and triangular cells.  

Another character related to honeycomb materials is the concept of hierarchy. Compared with 

their single length scale microstructure counterparts, structural hierarchy in natural materials can 

result in significantly higher stiffness or strength efficiencies (i.e. stiffness- or strength-to-weight 

ratios), and at the same time maintain their flaw-tolerance or energy-absorbing property [31-36]. 

Combining the low-weight property of cellular solids and the particular functions that natural 

hierarchical materials display, many researchers [37-44] have focused on the mechanical properties 

of the hierarchical cellular structures. Burgueno et al. [45] studied the hierarchical cellular designs 

for load-bearing bio-composite beams and plates. Kooistra et al. [46] investigated hierarchical 

corrugated core sandwich panels and revealed that second-order trusses could have much higher 

compressive and shear strengths than their equal-mass first-order counterparts when the relative 

densities are less than 5%. Fan et al. [47] studied two-dimensional cellular materials made up of 

sandwich struts and showed that the relevant mechanical properties of the materials were improved 

substantially by incorporating structural hierarchy. Inspired by diatom algae which contains 

nanoporous hierarchical silicified shells, Garcia et al. [48] revealed the toughening mechanism in 

the superductile wavy silica nanostructures by performing a series of molecular dynamics 

simulations. Taylor et al. [49] introduced the functionally graded hierarchical honeycombs by 



  

performing a set of finite element analyses, and their results suggested that the elastic modulus of 

the functionally graded hierarchical honeycomb could be 1.75 times that of its equal-mass first-

order hexagonal honeycomb if the structure is designed properly. Different from the topology of the 

common hierarchical honeycomb structures [37-38, 43, 49], Vaziri’s group recently [50] developed 

a new hierarchical honeycomb structure by replacing every three-edge joint of a regular hexagonal 

lattice with a smaller hexagon, and showed that the elastic moduli of the hierarchical honeycombs 

with one level and two levels can be 2.0 and 3.5 times stiffer than their equal-mass regular 

hexagonal honeycomb, respectively. And more, inspired by natural materials, Chen and Pugno [42-

44] explored nanomechanics of 2D hierarchical honeycombs and 3D hierarchical foams. 

In this paper, following the above works, we analytically study the in-plane elastic moduli and 

thermal conductivity of the multifunctional hierarchical honeycomb (MHH). The term 

“multifunctional” is here used to describe a material that has different peculiar functions activated 

simultaneously by the same concept of “hierarchy”. The MHH structure is formed by replacing the 

solid cell walls of an original regular hexagonal honeycomb (ORHH) with three different isotropic 

honeycomb sub-structures possessing hexagonal, triangular or Kagome lattices. First, we derive the 

analytical formulas of the effective elastic moduli of the regular hexagonal honeycombs for all 

densities. Then, the in-plane Young’s, shear and bulk moduli of the three kinds of MHH structures 

are calculated. Besides, the effective in-plane conductivities of the three kinds of MHH structures 

are formulated through the H-S upper bounds.  

2. Effective in-plane elastic moduli of the regular hexagonal 

honeycombs for all densities 
Hyun and Torquato [51] analytically studied the effective in-plane properties of the regular 

hexagonal honeycomb for all densities via the three-point approximations and expressed the 

effective Young’s modulus eE  (Fig. 1b) as 
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in which φ  is the relative density of the hexagonal honeycomb, sE is the Young’s modulus of the 

constituent solid, ζ and η  are the three-point parameters (Fig. 1a). The simulation data of the 

effective Young’s modulus eE [51] are also provided in Fig. 1b. It is apparent that for the high 

density case ( 0.5φ ≥ ), the three-point approximations method matches very well the simulation 

data, but for the lower densities it overestimates the results. In the very low density case, the 

overestimation is so large that the three-point approximations method is not suitable.  

It is well-known that for the low-density regular hexagonal honeycombs, the Euler beam 

theory and the Timoshenko beam theory could be used to obtain very good analytical results for 

predicting their elastic parameters. Here, in order to get the analytical formulas for the in-plane 

elastic parameters of the regular hexagonal honeycomb at all densities, we apply the Euler beam 

theory and the Timoshenko beam theory to the entire range of the relative density and compare the 

results with the three-point approximations. Under the Euler beam theory, Torquato et al. [52] 

expressed the effective Young’s modulus eE  as: 

33
2
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s

E
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φ=             (2) 

On the other hand, Gibson and Ashby [3] studied the elastic properties of the low density 

honeycombs using the Timoshenko beam theory. For the regular hexagonal honeycombs, the 

effective Young’s modulus is given by: 
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in which sν  is the Poisson’s ratio of the constituent solid and ( )3 1 1t l φ= − −
 
is the cell wall 

thickness-to-length ratio.  

For honeycombs at all densities, the comparisons between the Euler beam theory, Timoshenko 

beam theory, three-point approximations method and the simulation data are plotted in Fig.1b. We 

can see that when 0.5φ ≤  the results calculated by the Euler beam theory matches very well the 



  

simulation data, while the results are well predicted by the three-point approximations when 

0.5φ > . Therefore, the effective Young’s modulus of the regular hexagonal honeycombs for all 

densities can be expressed as:  
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Besides, through the three-point approximations, Hyun and Torquato [51] also developed the 

expression for the effective in-plane bulk modulus ek  of the regular hexagonal honeycombs at all 

densities: 
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where sk  and sG  are the bulk and shear moduli of the constituent solid, respectively. 

Because of the in-plane isotropic properties, sk  and sE , ek , eG  and eE  satisfy the following 

relationships: 
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in which eG  and eν  are the effective in-plane shear modulus and Poisson’s ratio of the hexagonal 

honeycombs, respectively. Defining e sE E A=  and e sk k B= , Eqs. (4-8) provide the formula for 

eG : 
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          (9) 

Then, the effective Poisson’s ratio eν  of the regular hexagonal honeycombs can be derived through 



  

dividing Eq. (6) by Eq. (7): 

( )1 1e s
A
B

ν ν= − −            (10) 

To verify the expressions of eE , ek  and eG , Eq. (10) is depicted in Fig. 2 for the honeycombs 

at all densities with 1 3sν = . Note that in the calculations, the three-point parameters ζ  and η  are 

interpolated from Fig.1a and the relation ( )2 1s s sG E ν= +⎡ ⎤⎣ ⎦  
is used. 

Fig. 2 shows excellent agreement with the existing results [3, 53], that is to say, the 2D 

effective Poisson’s ratio flows to a fixed point as the percolation threshold is reached. Here eν tends 

to 1 for the extreme low densities and tends to the Poisson’s ratio of constituent solid 1 3sν =  for 

the extreme high densities. This implies the validations of Eqs. (4), (5) and (9). It is worth to point 

out that different from the formula in Ref. [3], here the Poisson’s ratio is not a constant when the 

relative density is low.  

3. MHH with isotropic hexagonal sub-structure 
3.1 Basic theory 

First of all, we consider the MHH with isotropic hexagonal lattice sub-structure (Fig. 3). Fig. 

3a is an ORHH with the cell-wall thickness and length denoted by 0t  and 0l , respectively; Fig. 3b is 

an equal-mass MHH with the cell-wall thickness and length denoted by 1t  and 0l , respectively. We 

can see that the cell-wall lengths of the ORHH and the MHH are identical. In particular, one of the 

MHH cell walls in Fig. 3b is shown in Fig. 3c, and the cell-wall thickness and length for hexagonal 

cells are denoted by ht  and hl , respectively. The out-of-plane depth is a constant and identical for 

both structures. 

The geometry of Fig. 3c implies: 

( )( ) ( )0 1 2 = 3 2h h hl nl n l n l= + + +          (11) 

where, n is the number of the solid hexagonal cell walls lying on the middle line of the MHH cell 



  

walls (e.g., in Fig. 3c, n=8). Defining 0/hl lλ =  as the hierarchical length ratio, rearranging Eq. (11) 

provides, 

1=
3 2n

λ
+

             (12) 

Then, defining N as the number of hexagonal cells away from the middle line of the MHH cell 

walls (e.g., in Fig. 3c, N=1), and M the total number of half-thickness hexagonal cells in a MHH 

cell wall (see Fig. A in appendix A), the relationship between M and N can be expressed as: 
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Besides, a geometrical analysis on Fig. 3c provides maxN , the upper bound of N , and 1t , the 

thickness of the MHH cell walls： 
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where, ‘fl[ ]’ is the floor function, which denotes the largest integer not greater than the term in the 

bracket. Then, rearranging Eq. (16) gives: 
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On the other hand, with respect to Eq. (14), the relation 

( ) ( )2
0 0 0 01 2 3 3 1 1 2 3 0M t l t lλ ⎡ ⎤− − ≥⎣ ⎦ should be satisfied. Considering Eqs. (12) and (13), this 

relation provides minN , the lower bound of N : 

2 0 0

0 0
min

2 13 2 (3 2) 1 1
3 2 3

2

t tn n n
l l

N ce

⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥+ − + − − +⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

     (18) 

where, ‘ce[ ]’ is the ceiling function, which denotes the smallest integer not less than the term in the 

bracket. Note that Eq. (18) may give min 0N = , in this case min 1N = . 

Defining the in-plane Young’s, shear and bulk moduli of the ORHH as OE , OG  and Ok , then, 

from Eqs. (4), (5) and (9), we find: 

( )( )
( )( ) ( ) ( ){ }

33                                                                                            0.5
2

2 1 1
 0.5

3 2 2 2 1 2 2 1 1

O O

O
O

O O O Os
O

O O O O O O O

E A
E

φ φ

φ ζ ζ η
φ

φ φ ζ ζ η φ ζ

⎧ ≤⎪
⎪= = ⎨ − + −
⎪ >

− − − − + − − − −⎡ ⎤⎪ ⎣ ⎦⎩

  (19) 

( )
( ) [ ]

2 1
1 1 2 ( 1)

s s O OO
O

s O s s O O

G kk B
k G k

φ ζ
φ φ ζ

−
= =

− + + −
        (20) 

( )4 2 1
O O O

s O O s

G A B
E B A ν

=
− −

          (21) 
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is the relative density of the ORHH, and Oζ  and Oη , interpolated from Fig. 1a, are the 

corresponding three-point parameters.  

Besides, Hyun and Torquato [11, 51] showed that the effective thermal conductivity of the 

regular hexagonal honeycomb nearly approaches the H-S upper bounds. Thus, defining the thermal 



  

conductivities of the ORHH and the constituent solid as Oσ and sσ , we approximately obtain: 

2
O O

s O

σ φ
σ φ

=
−

            (23) 

Note that due to the mathematical analogy, results for the effective thermal conductivity translate 

immediately into the equivalent results for the effective dielectric constant, electrical conductivity 

and magnetic permeability. 

Similarly, defining the in-plane Young’s, shear and bulk moduli and thermal conductivity of 

the hexagonal sub-structure as hE , hG , hk  and hσ , we obtain: 
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is the relative density of the hexagonal sub-structure, and hζ  and hη , interpolated from Fig. 1a, are 

the corresponding three-point parameters. Denoting the effective Poisson’s ratio of the hexagonal 

sub-structure by hν , the relation [ ]/ 2(1 )h h hG E ν= +  is satisfied. Then, combining Eqs. (24) and (26) 

gives, 

1 (1 )h
h s

h

A
B

ν ν= − −            (29) 



  

Thus, 
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At the same time, by treating the hexagonal sub-structure as a continuum and defining the in-plane 

Young’s, shear and bulk moduli and thermal conductivity of the MHH as ME , MG , Mk  and Mσ , it is 

easy to obtain: 
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and Mζ  and Mη , interpolated from Fig. 1a, are the three-point parameters corresponding to Mφ . 

Combining Eqs. (19), (24) and (31) gives the relative Young’s modulus M OE E : 

M hM

O O

A AE
E A

=             (36) 

Similarly, from Eqs. (20), (25) and (32), we can get the relative in-plane bulk modulus M Ok k : 

M hM

O O

B Bk
k B

=             (37) 

And from Eqs. (21), (24) and (33), we obtain the relative shear modulus M OG G : 
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Finally, from Eqs. (23), (27) and (34), we get the relative thermal conductivity M Oσ σ : 
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3.2 Effect of N on the relative elastic moduli and thermal conductivity of the MHH 

with hexagonal sub-structure 

To investigate the influence of N  on the relative elastic parameters M OE E , M OG G , 

M Ok k and the relative thermal conductivity M Oσ σ , here, we discuss the following examples with 

parameters 16n = , ( )=1 3 2 0.02nλ + =  and 0 0 0.01t l = , 0.05, 0.1, 0.2 and 0.3. Then, we can find 

max 25N =  through Eq. (15), and minN  for each 0 0/t l  through Eq. (18). The results of the relative 

elastic parameters M OE E and M OG G , M Ok k  and the relative thermal conductivity M Oσ σ  versus 

N  are reported in Figs. 4-6, respectively. 

From Figs. 4a and 4b, we can see that for all the 0 0/t l  ratios considered, the optimal M OE E  

and M OG G , which vary between 1 and 2, exist as N increases. Note that the optimal M OE E  and 

M OG G  may do not correspond to the same N . The reason is that O sE E  and M hE E  are 

independent of the Poisson’s ratios sν  and hν  but O sG G  and M hG G  are dependent on them [51]. 

Figs. 5 and 6 show that the relative bulk modulus M Ok k  and the relative thermal conductivity 

M Oσ σ  increase with the increase of 0 0/t l , but they are generally less than 1 for all the 0 0/t l  ratios 

considered. This means that the effective bulk modulus and thermal conductivity of the MHH with 

regular hexagonal sub-structure are smaller than those of the ORHH structure. Of particular interest, 

there is an optimal value for the thermal conductivity, and this could be used to design low heat 

conductivity materials with an optimal topology. 



  

3.3 The effects of 0 0t l  ― the cell-wall thickness-to-length ratio of the ORHH 

To investigate the effects of the cell-wall thickness-to-length ratio 0 0t l  of the ORHH on the 

relative elastic parameters and thermal conductivity of the MHH structure, again, we use the 

examples given in Section 3.2. We maintain 16n = , 0.02λ =  but change 0 0t l  from 0.01 to 0.5 

with the incremental step of 0.01. In fact, under the same N , the value of M OG G  is in general 

weakly larger than M OE E  (Fig. 4), so here we only consider the relative Young’s modulus M OE E  

against 0 0/t l . At the same time, M Oσ σ  and M Ok k  generally are smaller than 1 for all 0 0/t l  as 

those shown in Figs. 5 and 6, thus, the discussion will not be treated in this section. 

Finally, the relationship between the maximum M OE E and 0 0/t l  is reported in Fig. 7. We can 

see that the maximum M OE E  increases before 0 0/t l  reaches 0.07 but after that it decreases. That 

is to say, the optimal M OE E  of the MHH with hexagonal sub-structure exists at 0 0/ 0.07t l = , of 

which the value approximately equals to 2. This result is comparable to the finite element result 

given by Taylor et al. [49]. 

4. MHH with triangular sub-structure 

4.1 Basic theory 

In this section, we substitute the ORHH cell walls with the equal-mass isotropic triangular sub-

structure, see Fig. 8. As defined in Section 3, the hierarchical length ratio is expressed as 

( )
0

1   1tl n
l n

λ = = ≥            (40) 

where, n is the number of solid triangular lattice cell walls lying on the middle line of the MHH cell 

walls. From Fig. 8c, according to the equal-mass principle, we can 

find 2 2
0 0 0

1 1 33
2 22 3 t t tt l t t l t M

⎛ ⎞
− = × −⎜ ⎟⎜ ⎟⎝ ⎠

, which gives 



  

0 0
2

0 0

1 4 3 11 1 1
33 2 3

t

t

t t t
l M l lλ

⎡ ⎤⎛ ⎞
⎢ ⎥= − − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

        (41) 

where, M is the total number of half thickness triangular lattice cells in a MHH cell wall and it has 

the following relationship with n and N (see Appendix B): 

( ) ( )22 2    (1 )
3

M N n N n N N n= − + − ≤ ≤         (42) 

in which N  is the number of triangular lattice cells away from the middle line of the MHH cell 

walls. Similar to that in Section 3, a geometrical analysis on Fig. 8c provides maxN , the upper bound 

of N , and 1t , the thickness of the MHH cell walls： 

maxN n=             (43) 

max

1

0 max

32    1 1
2

32              
2

t tN l t N N
t

l N N

⎧ ⎛ ⎞
+ ≤ ≤ −⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠= ⎨

⎪
× =⎪⎩

        (44) 

Then, rearranging Eq. (44) gives, 

max1

0

max

3    1 1

3                    

t

t

tN N Nt l
l

N N

λ
⎧⎛ ⎞

+ ≤ ≤ −⎪⎜ ⎟
= ⎨⎝ ⎠

⎪ =⎩

        (45) 

On the other hand, with respect to Eq. (41), the relation 

( ) ( )2
0 0 0 01 4 3 3 1 1 2 3 0M t l t lλ ⎡ ⎤− − ≥⎣ ⎦ should be satisfied. In conjunction with Eqs. (40) and 

(42), this relation gives minN , the lower bound of N : 

( )2 0 0

0 0
min

16 1 6 1 12 2 3 1 1
2 3

6

t tn n n n
l l

N ce

⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥− − − − − −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

     (46) 

Note that Eq. (46) may give min 0N = , in this case min 1N = . 



  

Like the discussion in Section 3, we would like to analyze the effective elastic moduli and 

thermal conductivity of the triangular lattice sub-structure. As already mentioned in the introduction, 

Hyun and Torquato [11] showed that for triangular and Kagome honeycombs, both the in-plane 

effective moduli and conductivity (or dielectric constant) are approaching the H-S upper bounds 

[12-13]. So, we approximately use the H-S upper bounds to calculate the effective elastic moduli 

and thermal conductivity of the triangular lattice sub-structure. Defining the in-plane Young’s, shear 

and bulk moduli and thermal conductivity of the triangular sub-structure as tE , tG , tk  and tσ , we 

obtain: 

3 2
t t

t
s t

E A
E

φ
φ

= =
−

           (47) 

1
t t s s

t
s t s s

k G kB
k G k

φ
φ

= =
− +

          (48) 

( ) ( )( )
1

2 1 1 1 2 1
t t

t
s s t s s

G C
E G k

φ
ν φ

= =
+ − + +

        (49) 

2
t t

s t

σ φ
σ φ

=
−

            (50) 

where, 

2
12 3 3   
3

t t t
t

t t t

t t t
l l l

φ
⎛ ⎞ ⎛ ⎞

= − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

         (51) 

is the relative density of the triangular sub-structure. Denoting the effective Poisson’s ratio of the 

triangular sub-structure by tν , the relation [ ]/ 2(1 )t t tG E ν= +  holds. Then, combining Eqs. (47) and 

(49) gives, 

1 1
2

t
t

t

A
C

ν = −             (52) 

Thus, 

( )
( )

2 1 1 4 1
12 1

t tt t t

t t tt t

EG C
k AE

ν ν
νν

+⎡ ⎤ −⎣ ⎦= = = −
+−⎡ ⎤⎣ ⎦

        (53) 



  

At the same time, by treating the triangular sub-structure as a continuum and defining the in-

plane Young’s, shear and bulk moduli and thermal conductivity of the MHH with triangular sub-

structure as ME , MG , Mk  and Mσ , we have: 

( )( )
( )( ) ( ) ( ){ }

33                                                                                                0.5
2

2 1 1
 0.5

3 2 2 2 1 2 2 1 1

M M

M
M

M M M Mt
M

M M M M M M M

E A
E

φ φ

φ ζ ζ η
φ

φ φ ζ ζ η φ ζ

⎧ ≤⎪
⎪= = ⎨ − + −
⎪ >

− − − − + − − − −⎡ ⎤⎪ ⎣ ⎦⎩

  (54) 

( )
( ) [ ]

2 1
1 1 2 ( 1)

t t M MM
M

t M t t M M

G kk B
k G k

φ ζ
φ φ ζ

−
= =

− + + −
       (55) 

( )4 2 1
M M M

t M M t

G A B
E B A ν

=
− −

          (56) 

2
M M

t M

σ φ
σ φ

=
−

            (57) 

where, 

2

1 1 1

0 0 0

2 1   3
33M

t t t
l l l

φ
⎛ ⎞ ⎛ ⎞

= − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

         (58) 

and Mζ  and Mη , interpolated from Fig. 1a, are the three-point parameters corresponding to Mφ .  

Combining Eqs. (19), (47) and (54) gives the relative Young’s modulus M OE E : 

M tM

O O

A AE
E A

=             (59) 

Similarly, from Eqs. (20), (48) and (55), we can find the relative bulk modulus M Ok k : 

M tM

O O

B Bk
k B

=             (60) 

And from Eqs. (21), (47) and (56), we obtain the relative shear modulus M OG G : 

( )
( )2 1

2 1
O O sM M tM

O M M t O O

B AA B AG
G B A A B

ν
ν

− −
=

− −
        (61) 

Finally, from Eqs. (23), (50) and (57), the relative thermal conductivity M Oσ σ  is derived: 



  

( )
( )( )

2
2 2
M t OM

O O M t

φ φ φσ
σ φ φ φ

−
=

− −
          (62) 

4.2 Effects of N  on the relative elastic moduli and thermal conductivity of the 

MHH with triangular sub-structure 

As discussed in Section 3, the influence of N  on the effective elastic moduli and thermal 

conductivity of the MHH with triangular sub-structure are studied, here we consider other examples 

with parameters 20n = , 1 0.05nλ = = , 0 0 0.01t l = , 0.05, 0.1, 0.2 and 0.3. Then, we immediately 

obtain max 20N =  by Eq. (23) and the lower bound minN  for each 0 0t l by Eq. (46). The results of 

the relative elastic moduli M OE E , M OG G , M Ok k  and the relative thermal conductivity M Oσ σ  

versus N  are reported in Figs. 9-12, respectively. 

From Figs. 9 and 10, we can also see that the relative Young’s modulus M OE E  and the 

effective shear modulus M OG G  increase with the increase of N , and the thickness-to-length ratio 

0 0t l  has a strong influence on them. With respect to its equal-mass ORHH, the enhancements of 

the relative Young’s and shear moduli of the MHH with triangular sub-structure can be 1 order (Figs. 

9c and 10c) or even 3 orders of magnitude (Figs. 9a and 10a). Although the enhancement on 

Young’s modulus of the MHH with triangular sub-structure decreases with the increase of 0 0t l , for 

a relatively small 0 0t l  (less than 0.3), its stiffening effect (Figs. 9 and 10) by the triangular sub-

structure is much larger than that of the hexagonal sub-structure (Figs. 4a, b). 

The relative bulk modulus M Ok k  and the relative thermal conductivity M Oσ σ  shown in Figs. 

11 and 12 have the same varying trends with those of the MHH with hexagonal sub-structure 

reported in Section 3.2. The discussion is the same as before. 

5. MHH with isotropic Kagome sub-structure 

5.1 Basic theory 

Kagome honeycomb has been revealed to have pronounced higher fracture toughness [30] and 



  

better thermal-mechanical performance than the triangular honeycombs [54]. Therefore, in this 

section, we will consider the third topology of the MHH, namely, substituting the ORHH cell walls 

with their equal-mass Kagome sub-structure (Fig. 13), and study its effective elastic moduli and 

thermal conductivity. In this case, the hierarchical length ratio is expressed as: 

0

1   4,  6,  8,  10 kl n
l n

λ = = = L          (63) 

where, kl  is the side length of triangles in Kagome cells and n  is the number of sides of the 

effective triangles on the middle line of the MHH cell walls. As discussed before, here, the equal-

mass principle provides 2 2
0 0 0

1 33
22 3 k k kt l t t l t M

⎛ ⎞
− = × −⎜ ⎟⎜ ⎟⎝ ⎠

, and k kt l  is derived as: 

0 0
2

0 0

1 2 3 11 1 1
33 2 3

k

k

t t t
l M l lλ

⎡ ⎤⎛ ⎞
⎢ ⎥= − − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

        (64) 

where, M is the total number of triangles in a MHH cell wall, and it is expressed with n  and N  as 

(see Appendix C): 

( )2    (1 )
2
nM N n N N= − ≤ ≤          (65) 

in which N  is the number of the Kagome representative cells (e.g., in Fig. 13c, 1N = ) away from 

the middle line of the MHH cell walls. Similar to that in Sections 3 and 4, a geometrical analysis on 

Fig. 13c provides maxN , the upper bound of N , and 1t , the thickness of the MHH cell walls： 

max 2
nN =             (66) 

( ) max

1

0 max

2 3 2    1 1

32               
2

k kN l t N N
t

l N N

⎧ + ≤ ≤ −
⎪

= ⎨
⎪ × =
⎩

        (67) 

 Then, rearranging Eq. (67) gives 



  

max1
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2 3    1 1

3                                 

k

k

tN N Nt l
l

N N

λ
⎧ ⎛ ⎞

+ ≤ ≤ −⎪ ⎜ ⎟
= ⎨ ⎝ ⎠

⎪ =⎩

        (68) 

On the other hand, with respect to Eq. (64), the relation 

( ) ( )2
0 0 0 01 2 3 3 1 1 2 3 0M t l t lλ ⎡ ⎤− − ≥⎣ ⎦ holds. In conjunction with Eqs. (63) and (65), this 

relation gives minN , the lower bound of N : 

0 0

0 0
min

4 3 11 1
3 2 3

2

t tn n
l l

N ce

⎡ ⎤⎛ ⎞
⎢ ⎥− − −⎜ ⎟
⎢ ⎥⎝ ⎠= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

        (69) 

Also, it should be note that Eq. (69) may give min 0N = , for this case min 1N = . 

Here, we again approximately use the H-S upper bounds to analyze the effective elastic moduli 

and thermal conductivity of the Kagome lattice sub-structure. Defining the in-plane Young’s, shear 

and bulk moduli and thermal conductivity of the Kagome sub-structure as kE , kG , kk  and kσ , we 

obtain: 

3 2
k k

k
s k

E A
E

φ
φ

= =
−

           (70) 

1
k k s s

k
s k s s

k G kB
k G k

φ
φ

= =
− +

          (71) 

( ) ( )( )
1

2 1 1 1 2 1
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k
s s k s s

G C
E G k

φ
ν φ

= =
+ − + +

        (72) 

2
k k

s k

σ φ
σ φ

=
−

            (73) 

where, 

2
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3

k k k
k

k k k

t t t
l l l

φ
⎛ ⎞ ⎛ ⎞

= − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

         (74) 

is the relative density of the Kagome sub-structure. Denoting the effective Poisson’s ratio of the 



  

Kagome sub-structure by kν , employing [ ]/ 2(1 )k k kG E ν= + and combining Eqs. (70) and (72) give 

1 1
2

k
k

k

A
C

ν = −             (75) 

Thus, 

( )
( )

2 1 1 4 1
12 1

k kk k k

k k kk k

EG C
k AE

ν ν
νν

+⎡ ⎤ −⎣ ⎦= = = −
+−⎡ ⎤⎣ ⎦

        (76) 

Again, by treating the Kagome sub-structure as a continuum and defining the in-plane Young’s, 

shear and bulk moduli and thermal conductivity of the MHH with Kagome sub-structure as 

ME , MG , Mk  and Mσ , we have: 

( )( )
( )( ) ( ) ( ){ }
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where, 
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         (81) 

and Mζ  and Mη  interpolated from Fig. 1a are the three-point parameters corresponding to Mφ .  

Combining Eqs. (19), (70) and (77) gives the relative Young’s modulus M OE E : 

M kM

O O

A AE
E A

=             (82) 

Similarly, from Eqs. (20), (71) and (78) we can get the relative bulk modulus M Ok k : 



  

M kM

O O

B Bk
k B

=             (83) 

And from Eqs. (21), (70) and (79) we obtain the relative shear modulus M OG G : 

( )
( )2 1

2 1
O O sM M kM

O M M k O O

B AA B AG
G B A A B

ν
ν

− −
=

− −
        (84) 

Finally, from Eqs. (23), (50) and (57), we find the relative thermal conductivity M Oσ σ : 

( )
( )( )

2
2 2
M k OM

O O M k

φ φ φσ
σ φ φ φ

−
=

− −
          (85) 

5.2 Effects of N  on the relative elastic moduli and thermal conductivity of the 

MHH with Kagome sub-structure 

In this section, we consider the examples with parameters 20n = , 1 0.05nλ = = , 0 0 0.01t l = , 

0.05, 0.1, 0.2 and 0.3. Then, Eq. (66) provides max 10N =  and Eq. (69) the lower bound minN  for 

each 0 0t l  . The results of the relative elastic moduli M OE E , M OG G , M Ok k  and the relative 

thermal conductivity M Oσ σ  versus N  are shown in Figs. 14-17, respectively. 

Comparing Figs. 14 and 15 with Figs. 9 and 10, we can see that the Young’s and shear moduli 

of the MHH with Kagome sub-structure are similar to those of the MHH with triangular sub-

structure, so the discussion is the same as before. 

However, it is worth to say that, different from the MHH with hexagonal and triangular sub-

structures, the relative bulk modulus M Ok k  and the relative thermal conductivity M Oσ σ  of the 

MHH with Kagome sub-structure become larger than 1 with the increase of 0 0/t l (Figs. 16 and 17). 

This is to say, when 0 0/t l  is large enough, the effective bulk modulus and thermal conductivity of 

the MHH with Kagome sub-structure could be greater than those of the ORHH structures.  

6. Comparisons of hexagonal, triangular and Kagome sub-structures 

Comparing the examples discussed in Sections 3 to 5, it is apparent that for the same ORHH, 



  

the in-plane stiffness enhancements of the MHH with triangular and Kagome sub-structures could 

be much greater than that with the hexagonal sub-structure. To illustrate this point clearly, one more 

example with the parameters 0 0 0.1t l =  and 1 20λ =  is analyzed, and the result is plotted in Fig. 

18, in which the relative Young’s modulus M OE E  against N for the MHH with the above three 

sub-structures are depicted. Interestingly, we find that the relative Young’s moduli of the MHH with 

triangular and Kagome sub-structures increase as N increases, but it is inverse for the MHH with 

hexagonal sub-structure. And more, the Young’s modulus of the MHH with Kagome sub-structure 

is improved most with respect to the ORHH. 

For the comparisons on bulk modulus and thermal conductivity of the three MHHs, the 

parameters 0 0 0.3t l =  and 1 20λ =  are employed, and the results are depicted in Figs. 19 and 20. 

From the two figures, we can say that the MHH with Kagome sub-structure is the optimal structure 

to design the elastic moduli and transport properties of the multifunctional regular hexagonal 

honeycomb. 

7. Conclusions 

In this paper, we have studied the in-plane elastic and transport properties of the MHH, which 

is formed by replacing the ORHH solid cell walls with three types of equal-mass isotropic 

honeycomb sub-structures. The analytical results show that with the hexagonal sub-structure it is 

difficult to greatly increase the Young’s and shear moduli of the MHH. Different from the 

hexagonal sub-structure, triangular and Kagome sub-structures share a similar improvement on the 

MHH’s Young’s and shear moduli, and the improvement is substantial, from 1 order to 3 orders of 

magnitude depending on the cell-wall thickness-to-length ratio 0 0t l  of the ORHH. At the same 

time, if 0 0t l  is large enough, the effective bulk modulus and transport ability of the MHH with 

Kagome sub-structure can be larger than those of the ORHH structure. These interesting results 

show a possibility to design hierarchical honeycombs for multifunctional applications, e.g., the 

metal MHH can be used as the core of light weight sandwich panels in electronic packages and 



  

airborne devices, where both the structural and thermal characteristics are desirable. 

Acknowledgements 

The research related to these results has received funding from the European Research Council 

under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant 

agreement nu [279985] (ERC Starting Grant, PI NMP on “Bio-inspired hierarchical super 

nanomaterials”). Y. Sun and Q. Chen appreciate the China Scholarship Council (CSC) for the 

financial supports. 



  

 

Appendix A: MHH cell wall with hexagonal sub-structures 

Fig. A.1 shows the representative cell walls of the MHH with regular hexagonal sub-structures 

shown in Fig. 3b. The mass of the sub-structure is distributed uniformly among the half-thickness 

hexagonal sub-structure cells within the blue hexagon. 

From Fig. A.1 we can see that the number of the half-thickness hexagonal sub-structure cells 

M can be determined by n and N as the following form: 

( ) ( ) ( )12 1 2 4 2 2 1 4
6 3N N

nM N n n n A N n A= + + + − = + + −⎡ ⎤⎣ ⎦      (A.1) 

in which 1 1 6A = and 2 1A = .  

Here, NA  depends on N , we find it generally expressed as: 

( )2 1 ( 1) 1
    ( 1)

6N

N N
A N

+ − +
= ≥          (A.2) 

Appendix B: MHH cell wall with triangular sub-structures 

Fig. B.1 schematically shows the cell walls of the MHH with triangular sub-structures (Fig. 8b).The 

hierarchical length ratio is 1 nλ = . M is the total number of the half-thickness triangular cells in 

one sub-structure cell wall. It is easy to get the following relation between M, N and n: 

( ) ( )

( ) ( )

( ) ( )

21:  2 2 1 1 1
3

22 :  2 2 2 1 1 2 2
3

23:  2 2 3 1 1 2 2 3 3
3

N M n n

N M n n

N M n n

= = × − + −

= = × − − − + −

= = × − − − − − + −

       (B.1) 

Then, by inductive method, we find: 

( ) ( )22 2    1
3NM n N B n N N n= × − + − ≤ ≤        (B.2) 

with 



  

2
NB N=             (B.3) 

Substituting Eq. (B.3) into Eq. (B.2) gives: 

( ) ( )22 2    (1 )
3

M N n N n N N n= − + − ≤ ≤         (B.4) 

Appendix C: MHH cell wall with Kagome sub-structures 

 
Fig. C.1 schematically shows the cell walls of the MHH with Kagome sub-structures. The 

hierarchical length ratio is 1 nλ = . M is the total number of the triangular cells contained in one 

Kagome sub-structure cell wall. Then, the relationship between M, N and n are expressed as: 

( )
( )
( )

1:   2 1 0

2 :   2 2 1 2

3:   2 3 1 2 4

N M n

N M n

N M n

= = − −⎡ ⎤⎣ ⎦
= = − −⎡ ⎤⎣ ⎦
= = − − −⎡ ⎤⎣ ⎦

         (C.1) 

Then, by inductive method, we find: 

( )2 1   1
2N
nM N n C N= − − ≤ ≤⎡ ⎤⎣ ⎦          (C.2) 

with 

( )1NC N N= −            (C.3) 

Substituting Eq. (C.3) into Eq. (C.2) gives: 

( )2    (1 )
2
nM N n N N= − ≤ ≤          (C.4) 
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Figure Captions: 
 
Fig. 1 (a) Three-point parameters ζ and η  for the regular hexagonal honeycomb [51] (Hyun and 

Torquato, 2000) vs the relative density φ ; (b) Effective Young’s modulus e sE E of the regular 

hexagonal honeycomb vs the relative densityφ  predicted by different methods. 

Fig. 2 The effective Poisson’s ratio eν  of the regular hexagonal honeycomb with 1 3sν =  vs the 

relative densityφ . 

Fig. 3 (a) The original regular hexagonal honeycomb (ORHH); (b) the tailorable multifunctional 

hierarchical honeycomb (MHH) with hexagonal sub-structure; (c) amplification of a hexagonal 

lattice cell wall in (b) (the cell walls marked by blue circle suggest n=8 and the dash line denotes 

the middle line of the MHH cell wall). 

Fig. 4 (a) The relative Young’s modulus M OE E  vs N  for different 0 0/t l ; (b) The relative shear 

modulus M OG G  vs N  for different 0 0/t l . 

Fig. 5 The relative bulk modulus M OG G vs N  for different 0 0/t l   

Fig. 6 The relative thermal conductivity M OG G vs N  for different 0 0/t l  

Fig. 7 The maximum M OE E  vs 0 0/t l  

Fig. 8 Schematics of (a) the ORHH; (b) the tailorable MHH with triangular sub-structure; (c) 

amplification of a trianglar lattice cell wall in (b). 

Fig. 9 The relative Young’s modulus M OE E  vs N  for different 0 0t l : (a) 0 0 0.01t l = ; (b) 

0 0 0.05t l = ; (c) 0 0 0.1, 0.2, 0.3t l = . 

Fig. 10 The relative Young’s modulus M OG G  vs N  for different 0 0t l : (a) 0 0 0.01t l = ; (b) 

0 0 0.05t l = ; (c) 0 0 0.1, 0.2, 0.3t l = . 



  

Fig. 11 The relative bulk modulus M Ok k  vs N  for different 0 0/t l  

Fig. 12 The relative thermal conductivity M Oσ σ  vs N  for different 0 0/t l  

Fig. 13 Schematics of (a) the ORHH; (b) the tailorable MHH with Kagome sub-structure (in this 

paper the red dashline is for the convenience of linear dimension); (c) amplication of a Kagome 

sub-structure cell wall in (b); (d) the representative cells for the Kagome honeycomb. 

Fig. 14 The relative Young’s modulus M OE E  vs N for different 0 0t l : (a) 0 0 0.01t l = ; (b) 

0 0 0.05t l = ; (c) 0 0 0.1, 0.2, 0.3t l = . 

Fig. 15 The relative Young’s modulus M OG G  vs N for different 0 0t l : (a) 0 0 0.01t l = ; (b) 

0 0 0.05t l = ; (c) 0 0 0.1, 0.2, 0.3t l = . 

Fig. 16 The relative bulk modulus M Ok k  vs N  for different 0 0/t l  

Fig. 17 The relative thermal conductivity M Oσ σ  vs N  for different 0 0/t l  

Fig. 18 The relative Young’s modulus M OE E  vs N for different sub-structures with the same 

parameters 0 0 0.1t l =  and 1 20λ = . 

Fig. 19 The relative bulk modulus M Ok k  vs N  for different sub-structures with the same 

parameters 0 0 0.3t l =  and 1 20λ = . 

Fig. 20 The relative thermal conductivity M Oσ σ  vs N  for different sub-structures with the same 

parameters 0 0 0.3t l =  and 1 20λ = . 

Fig. A.1 Schematics of MHH cell walls in Fig. 1b: (a) 1N = ; (b) 2N = . 

Fig. B.1 Schematics for the representative cell walls of the MHH with triangular sub-structures: 

(a) 1N = ; (b) 2N = . 

Fig. C.1 Schematics for the representative cell walls of the MHH with Kagome sub-structures: 

(a) 1N = ; (b) 2N = . 
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