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Abstract
Tuned Mass Dampers (TMDs) can represent an attracting solution to mitigate
vibrations of a structure under seismic excitation, but their effectiveness can be
considerably altered by the dynamic interaction with the foundation soil. The
available design criteria for TMDs do not account for these effects and can there-
fore lead to a non-optimised structural performance. In this paper an investiga-
tion on the dynamic interaction of the TMDwith the whole soil-structure system
is presented, with the objective of highlighting the system parameters governing
the response and the effectiveness of the device as seismic protection. An inter-
pretative model of the soil-structure-TMD system expressed in a rigorous non-
dimensional form is proposed, and an extensive global sensitivity analysis on its
performance under harmonic loading is carried out. The identification of the typ-
ical performance regions shows that the seismic effectiveness of a TMD ismainly
controlled by a limited number of parameters describing the structural behaviour
and the soil-structure interaction, such as the structure-to-soil relative stiffness
and those governing foundation rocking. The non-dimensional system parame-
ters leading to either a favourable or detrimental effect on the TMD performance
due to soil-structure interaction are also identified, and two design methodolo-
gies proposed in the literature are critically assessed in light of the framework
proposed.

KEYWORDS
foundation rocking, global sensitivity analysis, governing parameters, non-dimensional
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1 INTRODUCTION

TunedMassDampers (TMDs) are passive devices able to control vibrations in structures. In theirmost basic configuration,
a TMD is constituted of a mass connected to the main structure by means of translational linear springs and dampers.
By correctly designing the number of the devices and their position within the structure and tuning the characteristics
of the mass and the connecting elements, that is, their stiffness and damping coefficients, it is possible to significantly
decrease the accelerations and deformations of the structure, either in case of harmonic loading due to machinery or
random vibrations induced by wind or ground motion.1 In particular, this allows for an effective seismic enhancement
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of existing structures and design of new ones without resorting to more expensive base isolation or visually impacting
viscous or hysteretic damping systems.
Optimal tuning of a TMD is generally related to the significant natural frequencies of the structure. A widely used crite-

rion was proposed by Den Hartog,2 which provides the optimal analytical solutions for the mass, stiffness and damping of
a TMDused in a single-degree-of-freedom (SDOF) system, having fixed base and subjected to harmonic excitation. In Den
Hartog’s criterion, the optimal performance of the device is controlled by three non-dimensional parameters: the damping
ratio ξTMD = cTMD/(2×mTMD×ωTMD)= {6×μ/[8×(1+μ)×(2-μ)]}0.5, the frequency ratio α= ωTMD/ωs = 1/(1+μ)×[(2-μ)/2]0.5,
and the mass ratio μ = mTMD/ms, where mTMD, ωTMD, cTMD are the TMD mass, circular frequency and damping coeffi-
cient, respectively, and ωs is the fundamental circular frequency of the structure. The mass ratio is usually assumed as an
input in the design as is mainly dictated by practical needs, whereas the other two parameters are obtained accordingly.
While this criterion ensures the minimisation of deformation in the SDOF under harmonic loading, several studies have
shown that its effectiveness may no more be optimal in case of seismic loading3 or when the linear SDOF approximation
is not acceptable.4 Afterwards, several other studies were proposed for optimal tuning and location of single or multiple
TMDs, mainly based on numerical approaches.3,5–8 Notwithstanding, because of its simplicity and theoretically founded
assumptions, Den Hartog’s formulation is still the reference in the design of TMDs. Moreover, although strictly speaking
the TMD design should depend on the variable frequency content of a natural earthquake, Den Hartog’s criterion has
proved a near-optimal solution even in the case of pulse-like input.9
One of the caseswhere the SDOFapproximation is not acceptable iswhen soil-structure interaction cannot be neglected,

for which the available solutionsmay lead to detuning of the TMD from the dynamic response of the coupled soil-structure
system. This effect was recognised in some analytical studies and verified through experimental evidence. In Wu et al.10,
a frequency-independent numerical structural model was used to analyse the influence of soil-structure interaction on
the TMD effectiveness. It was highlighted that a coupled dynamic response between the soil and the structure can jeop-
ardise the effectiveness of a damper system mounted on the top of the structure. Similar conclusions were drawn by
Takewaki11, who proposed an analytical method for optimal placement of viscous dampers in linear-elastic building struc-
tures equipped with a TMD and resting on a frequency-independent, horizontal spring-dashpot element simulating soil-
structure interaction. A numerical structural model with frequency-dependent soil-structure effects was then proposed by
Ghosh and Basu12, using the tabular solutions provided by Wong and Luco13 for the horizontal and rotational impedance
functions, which were calibrated considering three values of the soil stiffness. Using the analytical solutions provided by
Den Hartog2, it was therein proposed to tune the device to the fundamental frequency of the soil-structure system. Liu
et al.14 developed a mathematical model to predict wind-induced oscillations of a high-rise building with a TMD installed
on top and accounting for the soil compliance. The frequency-independent expressions proposed by Wolf15 were used
to determine the swaying and rocking springs and dashpots for three soil cases. Some optimisation methods were also
developed by Farshidianfar and Soheili16–18, Bekdas and Nigdeli19 and Salvi et al.20 for the design of TMDs accounting for
soil-structure interaction, referring to specific soil-structure layouts.
A means for limiting TMD detuning due to soil-structure interaction is represented by the introduction of a multiple

TMD (MTMD) in the structural layout. In this regard, the numerical studies performed byWang and Lin21, Li et al.22, and
Li23 showed that a proper frequency-spacing of the MTMD can control the multi-resonance features of a soil-structure
system and the effect of torsional deformation modes. In this regard, a first experimental study was carried out by Jabary
and Madabhushi24 using the geotechnical centrifuge,25 considering a two-degrees-of-freedom system equipped with a
single or double TMD and resting on a sandy soil. In the mentioned paper, the greater efficiency of a double TMD to avoid
detuning due to soil-structure interaction and the relevance of foundation rocking was demonstrated. In recent years,
several variations of the original idea have been proposed to increase the effectiveness and robustness of TMDs: large
mass ratio TMDs,26 pendulum TMDs with friction,27 tuned inerter dampers,28–29 steel frames with aseismic floors.30 Also
in these studies, interaction with soil is generally ignored.
With the aim of defining a more general framework for the study of the effects induced by soil-structure interaction

on the seismic performance of TMDs, Gorini and Chisari31 proposed non-dimensional performance curves relating the
effectiveness of the device to the structure-to-soil relative stiffness, as a central factor influencing the TMD performance.
A large variability of the relative stiffness was therein taken into account, considering a TMD designed according to the
solutions proposed by DenHartog2 and by Ghosh and Basu.12 In this paper a comprehensive study on the effect of the soil-
structure interaction in the performance of TMDs is carried out. A general non-dimensional framework is proposed and
validated referring to a real case study. The governing, non-dimensional parameters controlling the TMD performance in
a generic, linear soil-structure system are identified and their effect assessed through the use of global sensitivity analysis
methodologies. The performance of the design methods proposed by Den Hartog,2 for fixed-base structures, and Ghosh
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F IGURE 1 Schematic layout of a planar structure equipped with a Tuned Mass Damper and resting on horizontal and rotational
dynamic impedance functions

and Basu,12 for coupled soil-structure systems, are investigated. The regions of the parameter space where the methods
provide conservative and un-conservative results are identified and relevant features of the response are highlighted.

2 EQUATIONS OFMOTION FOR A LINEAR SOIL-STRUCTURE-TMD SYSTEM

Figure 1 depicts a linear soil-structure-TMD system, composed of a planar structure equipped with a TMD and resting
on a rigid shallow foundation subjected to horizontal ground motion 𝑢𝑔(𝑡) along X. The structure is characterised by its
mass, stiffness and damping matrices,Ms, Ks and Cs, respectively. The soil-structure interaction effects are reproduced by
a diagonal dynamic impedance matrix,32 that can be modelled as two sets of translational and rotational spring-dashpot
elements connected to the foundation of mass mf and moment of inertia If, the latter considered around an axis parallel
to the global direction Y and passing by its centroid projection on the base. The spring-dashpot elements are characterised
by frequency-dependent elastic stiffnesses kf,h and kf,r in the translational and rotational directions, respectively, and
damping coefficients cf,h and cf,r. These properties are a function of the soil mass density 𝜌s, the shear wave velocity 𝑉s
of soil and the semi-length of the foundation in the X and Y directions, 𝐿f ,x and 𝐿f ,y (Y-axis indicates the out of plane
direction).
The structure is equipped with a TMD of massmTMD placed at an elevation hTMD with respect to the foundation level

and connected to the structure by a spring with stiffness kTMD, placed in parallel with a dashpot of coefficient cTMD. The
TMD is constrained to move in the horizontal, X direction only. As a simplifying hypothesis, it is assumed that the struc-
ture deforms proportionally to its first mode of vibration, Φ1, normalised with respect to the structural mass. Under this
assumption the structure can be reduced to a SDOF system. The motion of this system induced by a horizontal accelera-
tion 𝑢̈g applied to the base is described by the following system of equations (with dots indicating derivatives with respect
to time):

𝑀𝑢̈ + 𝐶𝑢̇ + 𝐾𝑢 = −𝑀𝑖𝑢̈g (1)

in which the displacement vector 𝑢 = [𝑢0(t) 𝜑0(t) 𝑣(t) Δ𝑢TMD(t) ]T collects the degrees of freedom of the system, that is,
the horizontal displacement and rotation of the foundation, 𝑢0(t) and 𝜑0(t) respectively, the amplitude of themodal shape
𝑣(t) and the relative displacement Δ𝑢TMD(t) of the TMD with respect to the structure at the same elevation. The mass
matrix of the soil-structure-TMD system is symmetric, positive definite and reads:

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑚s + 𝑚f + 𝑚TMD 𝑚sℎG,s + 𝑚TMDℎTMD
√
𝑚m +𝑚TMD𝜙1 (ℎTMD) 𝑚TMD

𝑆𝑦𝑚 𝑟2g𝑚s + 𝐼f + 𝑚TMDℎ
2
TMD

ℎm
√
𝑚m +𝑚TMDℎTMD 𝜙1 (ℎTMD) 𝑚TMDℎTMD

𝑆𝑦𝑚 𝑆𝑦𝑚 1 +𝑚TMD [𝜙1 (ℎTMD)]
2

𝑚TMD𝜙1 (ℎTMD)

𝑆𝑦𝑚 𝑆𝑦𝑚 𝑆𝑦𝑚 𝑚TMD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2)
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in which𝑚s is the totalmass of the structure and𝑚m its effectivemodalmass: usingmass-normalisation, the participation
factor of the first mode is 𝑀𝜙𝑠 =

√
𝑚𝑚 ; ℎG,s = 𝑆𝑠∕𝑚𝑠 and 𝑆𝑠 represent respectively the elevation of the centre of mass

and the first moment of mass of the structure, the latter referred to the foundation base; 𝑟g =
√
𝐼𝑠∕𝑚𝑠 , where 𝐼𝑠 is the

moment of inertia of the structure with respect to an axis parallel to Y and passing by the base; ℎm = 𝑧𝑇𝑀𝜙1∕1𝑇𝑀𝜙1
defines the effective modal height of the structure; the term 𝜙1(ℎTMD) is the modal displacement in correspondence of the
TMD.
The damping and stiffness matrices are given below:

𝐶 = diag
(
𝑐f ,s 𝑐f ,r 𝑐𝜙s 𝑐TMD

)
(3)

𝐾 = diag
(
𝑘f ,s 𝑘f ,r 𝑘𝜙s 𝑘TMD

)
(4)

in which 𝑘𝜙s = 𝜙1
T
𝐾s 𝜙1 = 𝜔

2
s is the modal stiffness of the structure, equal to the square of its fundamental circu-

lar frequency, 𝜔s, and 𝑐𝜙s = 𝜙1
T
𝐶s 𝜙1 is the damping coefficient of the structure associated with the first modal shape;

finally, 𝑖 = [ 1 0 0 0 ]T . In this paper, the case of harmonic time history applied to the base is considered, expressed in the
form 𝑢g = 𝐴0 sin(𝜔i𝑡), where 𝑢g is the input displacement at the base, 𝐴0 and 𝜔i are the relative amplitude and circular
frequency, respectively.
Because the assumption of linear behaviour, it is convenient to divide both members of the equation of motion, Equa-

tion 1, by the amplitude of the input, 𝐴0. In this manner, the vector of the output quantities reads:

𝑈 = 𝑢∕ 𝐴0 =
[
𝑢0 (t) 𝜑0 (t) 𝑣 (t) Δ𝑢TMD (t)

]T
∕𝐴0 =

[
𝑈0 (t) Φ0 (t) 𝑈̄ (t) Δ𝑈TMD (t)

]T
(5)

in which 𝑈0(t) and Δ𝑈TMD(t) are non-dimensional, while the dimensions of 𝑈̄(t) and Φ0(t) are M0.5 and L–1 (M =mass;
L = length), respectively, as a consequence of the mass normalisation of the modal shape used in this study.

3 NON-DIMENSIONAL FORMULATION

3.1 Physical quantities and non-dimensional groups

The physical quantities having a role in the equations of motion are listed in Table 1. By considering the foundation
as a continuous slab, mf and 𝐼f can be easily derived knowing its mass density, ρc, plan dimensions, 𝐿f ,x and 𝐿f ,y , and
depth dw.
With the aim of developing a general formulation highlighting the relevant parameters governing linear, dynamic

soil-structure-TMD interaction, a non-dimensional formulation was developed. Following Buckingham pi-theorem, the
dynamic response of the system can be completely described by the 19 non-dimensional groups reported in Table 2.
The groups have a clear physical meaning and most of them are used in the literature to characterise the soil-structure
interaction effects and the seismic performance of structures equipped with a TMD. In detail, groups G1-G3 are the
basic parameters for the design of TMDs,2 commonly referred to as mass, frequency and damping ratio. Group G4 rep-
resents the elevation of the TMD normalised with respect to the fundamental modal height of the structure. Group
G5 controls the geometry of the foundation, while an indicator of the relative stiffness between the structure and
the soil is given by G6.33 Group G7 represents the slenderness of the system,33 while G8 represents the ratio between
the total structural mass and the mass of the idealised volume of soil interacting with it. Groups G10-G13 characterise
the equivalent SDOF system representing a generic structural layout in terms of damping ratio, participating mass and
geometrical features. In G14 the foundation mass density is normalised with respect to the modal characteristics of
the structure. Group G15 represents the dynamic interaction between the input motion and the response of the struc-
ture. Lastly, the non-dimensional response quantities, R1-R4, represent the dynamic amplification of the horizontal
displacements of the structure (R1), of the TMD (R2), of the foundation (R3) and the amplification of the foundation
rotation (R4).
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TABLE 1 Physical quantities of a linear soil-structure-TMD system

Number Symbol Dimension Description
Structure 1 𝒎𝐬 M Mass of the structure

2 𝒎𝐦 M Modal mass of the structure
3 𝝎𝐬 1/T Fundamental circular frequency of the structure
4 𝒄𝜙𝐬 M/T Damping coefficient of the structure
5 𝒉𝐦 L Modal height of the structure
6 𝒉𝐆,𝐬 L Barycentre height of the structure
7 𝒓𝐠 L Radius of gyration of the structure

TMD 8 𝒎𝐓𝐌𝐃 M Mass of the TMD
9 𝒉𝐓𝐌𝐃 L Height of the TMD
10 𝒌𝐓𝐌𝐃 M/T2 Stiffness of the TMD
11 𝒄𝐓𝐌𝐃 M/T Damping coefficient of the TMD

Soil-foundation 12 𝝆𝐬 M/L3 Mass density of soil
13 𝑽𝐬 L/T Shear wave velocity of soil
14 𝝆𝐜 M/L3 Mass density of the foundation
15 𝐝𝐰 L Depth of the foundation (Z-direction)
16 𝑳𝐟 ,𝐱 L Semi-length of the foundation in the X-direction
17 𝑳𝐟 ,𝐲 L Semi-length of the foundation in the Y-direction
18 𝝎𝐢 1/T Circular frequency of the input motion

Output 19 𝑼0 = 𝒖0 ∕𝑨0 - Normalised foundation horizontal displacement
20 𝚽0 = 𝝋0 ∕𝑨0 1/L Normalised foundation rotation
21 𝑼̄ = 𝒗∕𝑨0 M1/2 Normalised structural modal amplitude
22 𝚫 𝑼𝑻𝑴𝑫 = 𝚫𝒖𝑻𝑴𝑫∕𝑨0 - Normalised TMD horizontal relative displacement

F IGURE 2 Simplified, interpretative model of the soil-structure-TMD system used in the parametric study

3.2 Interpretative model and validation of the non-dimensional groups

In order to validate the non-dimensional formulation above, the response of a simplified numerical model under har-
monic loading of circular frequency ωi was considered, as depicted in Figure 2. The model is formulated to reduce
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TABLE 2 Non-dimensional groups of a linear soil-structure-TMD system: (A) model and (B) output parameters

(a) Model parameters
Non-dimensional groups Definition
G1. Mass ratio of the TMD 𝒎𝐓𝐌𝐃∕𝒎𝐦

G2. Frequency ratio of the TMD 1∕𝝎𝐬
√
𝒌𝐓𝐌𝐃∕𝒎𝐓𝐌𝐃

G3. Damping ratio of the TMD 𝒄𝐓𝐌𝐃∕2
√
𝒎𝐓𝐌𝐃 𝒌𝐓𝐌𝐃

G4. Normalised TMD height 𝒉𝐓𝐌𝐃∕𝒉𝐦

G5. Foundation embedment ratio 𝒅𝐰∕𝑳𝐟 ,𝐱

G6. Structure-to-soil relative stiffness 𝒉𝐦∕(𝑽𝐬 ⋅ 𝑻𝐬)

G7. Slenderness ratio 𝒉𝐦∕𝑳𝐟 ,𝐱

G8. Soil-structure relative mass 𝒎𝐭𝐨𝐭∕(𝝆𝐬 ⋅ 𝑳𝐟 ,𝐱
3
)

G9. Foundation aspect ratio 𝑳𝐟 ,𝐱∕𝑳𝐟 ,𝐲

G10. Damping ratio 𝒄𝜙𝐬∕(2 𝝎𝐬 𝒎𝐦)

G11. Effective mass ratio 𝒎𝐦∕𝒎𝐬

G12. Normalised rocking height (𝒉𝐆,𝐬𝒎𝐬 − 𝒉𝐦𝒎𝐦)∕[(𝒎𝐬 −𝒎𝐦)𝒉𝐦]

G13. Normalised radius of gyration 𝒉2𝐦𝒎𝐦∕(𝒓
2
𝐆𝒎𝐬) − (𝒉𝐆,𝐬𝒎𝐬 − 𝒉𝐦𝒎𝐦)

2∕[𝒓2𝐆𝒎𝐬(𝒎𝐦 −𝒎𝐬)]

G14. Normalised foundation mass density 𝝆𝐜 ⋅ 𝒉𝐦
3
∕𝒎𝐦

G15. Normalised frequency 𝝎𝐢∕𝝎𝐬

(b) Output parameters
Non-dimensional groups Definition
R1. Normalised structural deformation 𝑼 = 𝑼̄ × 𝜙(𝒉)

R2. Normalised TMD displacement 𝚫𝑼𝐓𝐌𝐃 = 𝚫𝒖𝐓𝐌𝐃(𝝎𝐢)∕𝑨0

R3. Normalised foundation displacement 𝑼0 = 𝒖0(𝝎𝐢)∕𝑨0

R4. Normalised foundation rotation 𝚽0 × 𝒉𝐦

to a simple SDOF with horizontal TMD in case of fixed base, otherwise all the physical parameters listed in Table 1
can be independently varied acting on the components of the system. The model is composed of a mass m2 placed
on top and connected to a lower mass m1 through the parallel combination of a translational linear spring, having
stiffness ks, and a dashpot, with damping coefficient cs. The mass m1, placed at a height h1, is in turn rigidly con-
nected to the foundation; a rotational inertia Irg is moreover applied at the top of the rigid body. The foundation
mass mf is supported by horizontal and rotational dynamic impedance functions, here calibrated on the solutions
proposed by Gazetas.32 The mass m2 is equipped with a TMD, whose elevation may range between the ground level
(hTMD = 0) and the top of the structure (hTMD = h1+h2). This model was implemented in the finite element solver
ABAQUS.34
In this case, the structural mass is equal to ms = m1+m2, where m2 is also the modal mass so that the modal height

is simply hm = h1+h2; accordingly, the barycentre height and the radius of gyration of the structure can be written
as hG,s = (m1h1+m2hm)/ms and rg = [(m1h12+m2hm2+Irg)/ms]0.5. The physical meaning of G12 and G13 is now more
evident: the former represents the height of the structure undergoing rigid motion normalised to the total height,
the latter is the ratio between the second moment of mass due to the concentrated mass and the total rotational
inertia.
For this simplified soil-structure-TMD system, a fully non-dimensional description of the equation of motion can be

derived:

⎛⎜⎜⎜⎜⎜⎝

𝐺5𝐺14

𝐺37𝐺9
+
1−𝐺11

𝐺11
+ 1 + 𝐺1

1−𝐺11

𝐺11
𝐺12 + 1 + 𝐺1𝐺4 1 + 𝐺1 𝐺1

Sym 1−𝐺13

𝐺13

(
1−𝐺11

𝐺11
𝐺2
12
+ 1

)
+
1−𝐺11

𝐺11
𝐺2
12
+ 1 + 𝐺1𝐺

2
4
1 + 𝐺1𝐺4 𝐺1𝐺4

Sym Sym 1 + 𝐺1 𝐺1

Sym Sym Sym 𝐺1

⎞⎟⎟⎟⎟⎟⎠
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×

⎛⎜⎜⎜⎜⎜⎝

𝑅 3

R 4

𝑅 1

𝑅 2

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

𝑐fh∕𝜔𝑖𝑚2 0 0 0

0 𝑐fr∕
[
𝜔𝑖𝑚2(ℎ1 + ℎ2)

2
]

0 0

0 0 2𝐺10∕𝐺14 0

0 0 0 2𝐺1𝐺2𝐺3∕𝐺14

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝑅̇3

𝑅4

𝑅̇1

𝑅̇2

⎞⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎝

𝑘fh∕
(
𝜔2
𝑖
𝑚2

)
0 0 0

0 𝑘fr∕
[
𝜔2
𝑖
𝑚2(ℎ1 + ℎ2)

2
]

0 0

0 0 1∕𝐺2
14

0

0 0 0 𝐺1𝐺
2
2
∕𝐺2

14

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝑅3

𝑅4

𝑅1

𝑅2

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

𝐺5𝐺14

𝐺37𝐺9
+
1−𝐺11

𝐺11
+ 1 + 𝐺1

1−𝐺11

𝐺11
𝐺12 + 1 + 𝐺1𝐺4

1 + 𝐺1

𝐺1

⎞⎟⎟⎟⎟⎟⎠
sin 𝜏 (6)

where τ=ωi×t is the normalised time,whilem2, ks andhm=h1+h2 constitute the reference basis arbitrary chosen to derive
all remaining quantities as a function of the non-dimensional groups. The full mathematical development is reported in
Appendix A.
The validation of the non-dimensional formulation, here omitted for brevity, consisted of verifying that different con-

figurations of the simplified model characterised by the same non-dimensional groups provide the same response under
harmonic loading with varying frequency.

3.3 Validation on a real case study

The interpretative model of Figure 2 is now validated against the results obtained on a more articulated numerical
model, relative to a seven-storey timber building equipped with a Den Hartog-type TMD and tested on a shaking
table.35 Poh’sie et al.36,37 calibrated a simplified three-dimensional model of the building, called herein 7-masses model,
against experimental evidence and more advanced numerical results: it was a lumped mass model in which each floor
was modelled as a translational-rotational inertial element connected to the next upper and lower floor by transla-
tional and rotational elastic springs. This model was then modified by Gorini and Chisari31 to account for soil-structure
interaction.
The interpretative model proposed in this work was used to reproduce the non-dimensional, TMD performance curve

obtained by Gorini and Chisari,31 shown in Figure 3 with filled circles, relating the TMD effectiveness to the structure-
to-soil relative stiffness, group G6. Consistently with Gorini and Chisari,31 the TMD effectiveness was defined as ηv =
(Fb(noTMD) - Fb(TMD))/Fb(noTMD), where Fb is the maximum horizontal inertial force (including the contribution of damp-
ing) at the base of the structure and the superscripts TMD and noTMD refer to the structure equipped with and without
the TMD, respectively. In light of the above, the validation of the proposed framework includes (1) the identification of

F IGURE 3 Comparison between the TMD effectiveness
evaluated with the 7-masses model of the reference timber
structure and the proposed interpretative model, varying group
G6 = 0.02–5.12
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TABLE 3 Derivation of the physical quantities of the simplified model as a function of the non-dimensional groups and of the chosen
basism2, ks and hm = h1+h2

𝒎1 =
1−𝑮11

𝑮11
𝒎2

𝒄𝜙𝐬 = 2 𝑮10
√
𝒎2 𝒌𝒔

𝒉1 = 𝑮12 (𝒉1 + 𝒉2)

𝑰𝐠 =
1 − 𝑮13

𝑮13
(𝒎1 𝒉

2
1 + 𝒎2 𝒉

2
𝐦) =

1 − 𝑮13

𝑮13
(
1−𝑮11

𝑮11
𝑮212 + 1)𝒎2 𝒉

2
𝐦

𝒎𝐓𝐌𝐃 = 𝑮1 𝒎2

𝒉𝐓𝐌𝐃 = 𝑮4 (𝒉1 + 𝒉2)

𝒌𝐓𝐌𝐃 = 𝑮
2
2 𝒌𝒔

𝒎𝑻𝑴𝑫

𝒎2

= 𝑮1 𝑮
2
2 𝒌𝒔

𝒄𝐓𝐌𝐃 = 2𝑮3
√
𝒎𝑻𝑴𝑫 𝒌𝑻𝑴𝑫 = 2𝑮1 𝑮2 𝑮3

√
𝒎2 𝒌𝒔

𝑽𝒔 =
𝑯

2𝝅𝑮6

√
𝒌𝒔

𝒎2

𝑳𝒇,𝒙 = (𝒉1 + 𝒉2) ∕𝑮7

𝑳𝐟 ,𝐲 = 𝑳𝒇,𝒙 ∕𝑮9

𝐝𝐰 = 𝑮5 𝑳𝒇,𝒙

𝝆𝒄 =
𝑮14𝒎2

𝒉3𝐦

𝒎𝒇 = 4 𝒅𝒘 𝑳𝒇,𝒙𝑳𝒇,𝒚 𝝆𝒄 = 4
𝑮5

𝑮37𝑮9
𝑯3𝝆𝒄

𝝆𝒔 =
𝐦1+𝒎2+𝒎𝒇

𝑳3
𝐟 ,𝐱
𝑮8

the properties of the interpretative model and (2) the comparison on the dynamic response of the structure, expressed in
non-dimensional form, with the 7-masses model.
The physical properties of the timber building are well-documented in Ceccotti et al.35 and Poh’sie et al.36,37 The relative

non-dimensional groups can be therefore computed according to the expressions in Table 2, that are:G1= 0.012,G2= 0.977,
G3 = 0.075, G4 = 1.376, G5 = 0.125, G6 = 0.016-5.124, G7 = 3.271, G8 = 3.212, G9 = 0.571, G10 = 0.041, G11 = 0.825, G12 =
0.130,G13 = 0.955,G14 = 25.263. The range of the structure-to-soil relative stiffness,G6, was defined according to the values
used by Gorini and Chisari31 to determine the TMD performance curve. From this, the equivalent mechanical properties
of the proposed, interpretative model were derived through the expressions reported in Table 3, obtained by inverting the
equations of the groups.
A steady-state dynamic analysis,34 providing the steady-state amplitude of the system response due to harmonic exci-

tation, was carried out for six configurations of the proposed model corresponding to different values of G6, named T1
to T6 in Figure 3, ranging from negligible soil-structure interaction effects (G6 < 0.08) to the condition in which the soil
behaves as a natural isolator for the structure (G6 > 0.8).31,33 The results are shown in Figure 3, demonstrating the ability
of the proposed model to simulate the dynamic response of a validated, more articulated numerical representation of the
reference soil-structure-TMD system. The TMD loses progressively its effectiveness as the soil-structure interaction effects
become appreciable (G6 >0.08), until producing even a detrimental effect on the structural performance for a very high
deformability of the foundation soil compared to the structural one.
It must be pointed out that while the effectiveness evaluated on the total inertial force allows for a fair comparison of

different models, it is not very representative of the stress state on a structure in case of damped systems. For this reason,
in the following discussion, the effectiveness will be defined based on the internal force, Fs, in the shear spring of stiffness
ks (see Figure 2), which represents the shear force at the base of the structure.

4 GLOBAL SENSITIVITY ANALYSIS

4.1 The elementary effect method

With the aim of identifying the most important non-dimensional groups in the response of a linear soil-structure-TMD
system, a global sensitivity analysiswas carried out bymeans of theElementaryEffect (EE)Method.38 Themethod involves
the evaluation of the elementary effect EEi of the group Gi on the scalar response 𝜼when Gi is moved of a step Δi keeping
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TABLE 4 Ranges of variability of the input non-dimensional groups

Group Range
G1 0.005-0.05
G2 Function of G1

G3 Function of G1

G4 1.0-1.5
G5 0.1-0.5
G6 0.0-0.6
G7 0.5-5.0
G9 0.1-1.0
G10 0.02-0.1
G11 0.6-1.0
G12 0.0-1.0
G13 0.0-1.0
G15 0-5

the other groups fixed. For the problem at hand, η represents the effectiveness of the TMD in mitigating the maximum
base shear Fs in the structure (internal force in the shear spring of stiffness ks in the model of Figure 2) and is therefore

defined as 𝜼 = 𝑭
(𝐧𝐨𝐓𝐌𝐃)
𝒔 −𝑭

(𝐓𝐌𝐃)
𝒔

𝑭
(𝐧𝐨𝐓𝐌𝐃)
𝒔

. The elementary effect therefore reads:

𝑬𝑬𝒊 (𝜼) =
𝜼 (𝑮1, … , 𝑮𝒊−1, 𝑮𝒊 + 𝚫𝒊, 𝑮𝒊+1, … , 𝑮𝒌) − 𝜼 (𝑮1, … , 𝑮𝒊−1, 𝑮𝒊, 𝑮𝒊+1, … , 𝑮𝒌)

𝚫𝒊
(7)

where k is the overall number of groups.
The global sensitivity measure of Gi is the finite distribution Fi composed of all possible EEi. To represent a EEi distri-

bution estimated from a sample composed ofNS points, the original formulation proposes the average μi and the standard
deviation σi, where the former is positive if, on average, an increase of Gi leads to an increase of η and negative otherwise.
Conversely, the standard deviation σi is a measure of the nonlinearity of the effect and the possible interaction with other
parameters. Furthermore, Campolongo et al.39 proposed to use the parameter 𝝁∗

𝒊
= 1∕𝑵𝑺

∑𝑵𝑺
𝒊 = 1

|𝑬𝑬𝒊|. It was therein
shown that this quantity represents a good proxy for the total-effect sensitivity index Sti40 in the Sobol method,41 that is,
the contribution to the total output variance given by the i-th parameter alone and its interactions with other parameters.
This allows one to rank parameters, as a large value of 𝝁∗

𝒊
indicates an input with important ’overall’ influence on the

output.
The NS different EEs may be computed by different techniques, starting from the original formulation based on

trajectories.38 Here the procedure proposed by Campolongo et al.42 based on radial One-At-the-Time samples was fol-
lowed. The method is implemented in the Matlab/Octave toolbox SAFE.43

4.2 Variability of the samples

The ranges of the groups, reported in Table 4, were chosen to account for a large variability in the geometry andmechanical
properties of soil-structure systems equipped with a TMD. In design practice, the TMD mass ranges between 0.01 and
0.03 times the mass of the structure while a wider range was used in the sensitivity analysis (G1 = 0.005-0.05). Groups G2
and G3 were considered as dependent on G1, according to the methodologies proposed by either Den Hartog2 or Ghosh
and Basu.12 The TMD elevation ranged from the modal height of the first structural mode (G4 = 1) and the top of the
structure (G4 = 1.5, considering that, assuming a linear modal shape, the modal height is at about 2/3 the height of the
building).
Group G5 considered realistic cases for the geometric ratio of the foundation. The range for G6 was defined in accor-

dance with the results obtained by Gorini and Chisari31 to include cases in which soil-structure interaction is negligible
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(G6 <0.08) or leads to a dynamic responsemainly controlled by the compliance of the foundation soil (G6→ 0.6). As it was
shown that G6 >0.6 leads essentially to uncoupling between the response of soil and that of the structure (soil as natural
isolator), a value of 0.6 was considered as upper bound.
The slenderness ratio of the structure included either squat (G7 close to 0.5) or slender (G7 close to 5.0) structures,

leaving out the case of very tall buildings (G7 >5.0) for which the assumption of an equivalent SDOF description is no
longer acceptable.
The soil density was set equal to ρs = 2.0 Mg/m3 as a typical value for soils, while ρc = 2.5 Mg/m3 since the foundation

is assumed to be a reinforced concrete slab. As a consequence, groups G8 and G14 are not necessary to characterise the
system. Both the cases of strip and square foundations were taken into consideration through group G9 = 0.1-1.
Typical values of the damping ratio G10, ranging from 2% to 10%, were considered. Under the assumption of a dynamic

response governed by the first vibration mode, the effective mass ratio, G11, was limited to be greater than 0.6. Finally, as
seen for the reference model described in Section 3.2, G12 and G13 ranged from 0 to 1.

4.3 Analysis settings

The EE method was used to rank the non-dimensional groups based on their impact on the effectiveness η of the system.
The maximum amplification factor of the base shear force was evaluated by means of a series of steady-state dynamic
analyses by varying G15 (normalised input frequency) in the range [0.0, 5.0]. The interpretative model (Figure 2) was
perturbed by a harmonic ground motion of unit amplitude at the free node of the horizontal dynamic impedance. To
investigate the appropriateness of the fixed-base approximation involved in the design of a TMD, the effectiveness was
evaluated considering a fixed base, 𝜼𝐟 𝐢𝐱𝐞𝐝, or a compliant base, 𝜼𝐝𝐞𝐟 .
As far as the EEmethod is concerned, the number of input parameters related to the system configuration are k= 11, as

G2, G3 are considered as a function of G1, by virtue of the TMD design criteria considered in this study, and G8 is assumed
constant. Considering NS = 500 base sample points, determined by means of Latin Hypercube quasi-random sequence,42
the total number of evaluations required by the method is NS×(k+1) = 5500. As mentioned above, the sensitivity analysis
was performed on systems in which the groups characterising the TMD, G2 and G3, were determined by means of Den
Hartog’s (DH) or Ghosh and Basu’s (GB)method. This latter case implies the determination of the fundamental frequency
of the coupled soil-structure system and the application of the same formulas reported for DenHartog’s method using this
frequency instead of the structural frequency.

5 SEISMIC PERFORMANCE OF THE TMD

The results of the sensitivity analysis are aimed at addressing the following points:

a. Identifying the parameters that control the dynamic response of a linear soil-structure-TMD system;
b. Analysing the effects of soil-structure interaction on the seismic performance of TMDs;
c. Identifying the ranges of the non-dimensional groups inwhich the design criteria at hand lead to an optimised response

of the TMD, as well as the ranges in which the TMD has an unfavourable effect on the structural performance.

5.1 Governing parameters

The EE method is firstly applied to identify the non-dimensional groups that mostly influence the soil-structure-TMD
interaction considering DH criterion, configuration named DH TMD. Figure 4A shows the μ* value for each non-
dimensional group computed on the effectiveness 𝜼𝐟 𝐢𝐱𝐞𝐝 and 𝜼𝐝𝐞𝐟 , and Figure 4B the relative average μ and standard
deviation σ.
As it is expected, the effectiveness of DH TMD on a fixed-base structure is only governed by structural damping, G10,

and by the device mass ratio, G1. When soil-structure interaction is considered, it is evident that the TMD performance
is governed by several other factors in addition. Soil-structure interaction partly reduces the influence of the structural
damping as a consequence of soil compliance, expressed by the structure-to-soil relative stiffness, G6. This group controls
the dynamic coupling between structure and soil, and its importance for a proper tuning of TMDs was already pointed
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(A)

(B)

F IGURE 4 Representation of (A) the elementary effect μ* for each non-dimensional group using Den Hartog’s design criterion,2 and (B)
the EEs’ relative average μ and standard deviation σ for the deformable-base case

(A)

(B)

F IGURE 5 Representation of (A) the elementary effect μ* for each non-dimensional group using Ghosh and Basu’s design criterion,12

and (B) the EEs’ relative average μ and standard deviation σ for the deformable-base case

out in some previous works.10,12,14,31 A significant influence on the TMD performance is also associated with groups G7,
G9 and G13, which are related to the foundation rocking detuning the response of the translational TMD. The effect of the
other groups is instead much more limited.
Figure 4B highlights further characteristics of the groups: among the influential parameters, G1 has a positive μ value,

meaning that increase of the mass ratio produces an increase of the TMD effectiveness, while the opposite holds for G6,
G7 and G10, that is, stiff structures compared to the foundation soils, slender or highly damped structures are on average
less sensitive to the positive effect of the TMD. G9 andG13 have μ close to zero and high σ, meaning that their effect on the
effectiveness can be either beneficial or detrimental. In light of the above, it can be deduced that the system parameters
governing the effectiveness of a Den Hartog-type TMD are G1, G6, G7, G9, G10, G13.
In Figure 5, the same procedure is applied to identify the parameters controlling the effectiveness of a TMD designed

according to GB criterion, configuration termed GB TMD. The performance of the device is noticeably more affected by
the structure-to-soil relative stiffness, even though some other groups, G7, G10, G13, G1 and to a minor extent G9, play a
significant role. In the μ-σ plot for GB TMD (Figure 5B), the most relevant differences compared to DH TMD concern G7
and G13, whose average effect is definitely favourable, indicating that a GB TMD is a more efficient means for controlling
vibration in structures with significant rocking deformation modes. The high variability of these effects (high σ) implies
correlation with the other parameters.
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F IGURE 6 Representation of the Tuned Mass Damper (TMD) performance in the plane 𝜼𝐟 𝐢𝐱𝐞𝐝-𝜼𝐝𝐞𝐟 (𝜼𝐟 𝐢𝐱𝐞𝐝 = TMD effectiveness for the
fixed-base case; 𝜼𝐝𝐞𝐟 = TMD effectiveness for the case with compliant base), using (A) Den Hartog’s and (B) Ghosh and Basu’s design criteria

5.2 Features of linear, dynamic soil-structure-TMD interaction

Figure 6A plots the performance points (𝜼𝐟 𝐢𝐱𝐞𝐝, 𝜼𝐝𝐞𝐟 ) obtained for all the samples using a DH TMD. As first evidence,
all the performance points are located in the semi-plane 𝜼𝐟 𝐢𝐱𝐞𝐝 > 0, indicating that the use of a DH TMD in a structural
layout characterised by a predominant mono-modal response and fixed base always reduces the maximum internal forces
in the structure. On the contrary, if compliant base is considered, the TMD can assume negative effectiveness 𝜼𝐝𝐞𝐟 <0,
meaning that neglecting soil-structure interaction in design may worsen the structural performance. Most of the points
are located around the so-called Neutral Line 𝜼𝐝𝐞𝐟 = 𝜼𝐟 𝐢𝐱𝐞𝐝 (NL), as it appears evident from the percentage distribution
of the samples N/Ntot in terms of 𝜼𝐝𝐞𝐟 ∕𝜼𝐟 𝐢𝐱𝐞𝐝, shown in Figure 7. The NL is the locus along which the soil-structure
interaction has no effect on the TMD performance and determines a boundary between two different behaviours: when
𝜼𝐝𝐞𝐟 ∕𝜼𝐟 𝐢𝐱𝐞𝐝 >1 the soil-structure interaction magnifies the TMD performance compared to the fixed-base system (47% of
the samples), identifying the so-called Region 1 in the 𝜼𝐟 𝐢𝐱𝐞𝐝-𝜼𝐝𝐞𝐟 plane, while it reduces the TMD effectiveness when
𝜼𝐝𝐞𝐟 ∕𝜼𝐟 𝐢𝐱𝐞𝐝 <1. In the latter case, the TMD partly attenuates structural oscillations as long as 𝜼𝐟 𝐢𝐱𝐞𝐝 >𝜼𝐝𝐞𝐟 >0 (47% of
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F IGURE 7 Distribution N/Ntot of the samples varying the effectiveness ratio 𝜼𝐝𝐞𝐟 /𝜼𝐟 𝐢𝐱𝐞𝐝

the samples), that is also referred to as Region 2, while it magnifies the response when 𝜼𝐝𝐞𝐟 <0 (6%), condition named
Region 3.
In Region 1 soil-structure interaction improves the TMD performance because it produces a moderate alteration of

the vibration modes of the overall system, exalting the first mode of the fixed-base structure for which the TMD is
designed. In Region 2 the structural deformations are partly mitigated by the TMD due to the coupled dynamic response
of the soil-structure system causing a more substantial modification of the dynamic response: compared to the fixed-
base case, the significant vibration modes of the soil-structure system can be much different and characterised by a
combination of translation and rotation. Almost half of the samples exhibits such an intermediate response, in which
a Den Hartog-type TMD still appears as a useful solution to control structural vibration, although its performance is no
longer optimised. When the performance points belong to the Soil Isolation Line (SIL), 𝜼𝐝𝐞𝐟 = 0, the soil acts as a natu-
ral isolator for the structure and the TMD loses completely its effectiveness, as already demonstrated in some previous
works.12,15,31
An optimised design of TMDs should aim at moving as many performance points as possible to Region 1. As a first

attempt in this direction, a second sensitivity analysis was carried out considering the same samples in which however
the design method proposed by Ghosh and Basu12 was employed. Figure 6B shows the resulting performance points and
the relative distribution is depicted in Figure 7. In comparison with DH criterion, there are much less points in Regions
1 and 3, in favour of a larger concentration in Region 2. Consequently, GB criterion appears as a means for reducing
the number of critical cases in which soil-structure interaction has a detrimental effect (Region 3), leading however to a
structural performance that is globally worse than the response produced by DenHartog’s solution. This can be attributed
to the fact that the first mode of vibration of the soil-structure system, used to tune the TMD, may not be a pure structural
mode as it may include a combined translational-rotational motion of the foundation, and thus may not be controlled by
a translational TMD.
In Figure 8, the two design methods are compared by plotting the performance points in the plane 𝜼𝑫𝑯

𝐝𝐞𝐟
− 𝜼𝑮𝑩

𝐝𝐞𝐟
, where

𝜼𝑫𝑯
𝐝𝐞𝐟

and 𝜼𝑮𝑩
𝐝𝐞𝐟

are the effectiveness of the DH and GB TMDs, respectively, both referred to the case with compliant base.
This representation highlights the percentage of samples in which:

- Case 1 (C1): DH criterion is preferable (𝜼𝑫𝑯
𝐝𝐞𝐟

> 𝜼𝑮𝑩
𝐝𝐞𝐟

> 0, 65.56% of the samples);
- Case 2 (C2): GB criterion is preferable but DH still achieves some performance gain (𝜼𝑮𝑩

𝐝𝐞𝐟
> 𝜼𝑫𝑯

𝐝𝐞𝐟
> 0, 13.55% of the

samples);
- Case 3 (C3): the two criteria lead to the same, positive TMD effectiveness (𝜼𝑮𝑩

𝐝𝐞𝐟
= 𝜼𝑫𝑯

𝐝𝐞𝐟
> 0, 14.73% of the samples);

- Case 4 (C4): GB criterion should be definitely used in place of DH since the latter has a detrimental effect on the
structural performance (𝜼𝑮𝑩

𝐝𝐞𝐟
> 0 and 𝜼𝑫𝑯

𝐝𝐞𝐟
< 0, 3.98% of the samples);
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F IGURE 8 Comparison between the Tuned Mass Damper (TMD) effectiveness in a structural system with compliant base obtained
using Den Hartog’s criterion, 𝜼(𝐃𝐇)

𝐝e𝐟
, and Ghosh and Basu’s criterion, 𝜼(𝐆𝐁)

𝐝𝐞𝐟

F IGURE 9 Frequency (%) of the cases C1-C6 (see Figure 9) in the performance regions 1, 2 and 3 (see Figure 7)

- Case 5 (C5): DH criterion should be definitely used in place of GB (𝜼𝑫𝑯
𝐝𝐞𝐟

> 0 and 𝜼𝑮𝑩
𝐝𝐞𝐟

< 0, 0.2% of the samples);
- Case 6 (C6): both methods lead to a performance loss (𝜼𝑫𝑯

𝐝𝐞𝐟
< 0 and 𝜼𝑮𝑩

𝐝𝐞𝐟
< 0, 1.98% of the samples).

In order to relate the information about the convenience of using DH or GB criterion (Cases 1–6 above) to the alter-
ation of the TMD effectiveness as an effect of soil-structure interaction (Regions 1–3 in Figure 6), Figure 9 illustrates the
distribution of the samples for each case in the three TMD performance regions, the latter referring to the distribution
obtained with DH criterion (Figure 7A). Regions 1 and 2 are composed of samples in which both DH and GB lead to a
positive effectiveness of the TMD. More in detail, the main contribution to Region 1 is given by the samples for which DH
is preferable to GB and, to a minor extent, by samples in which the two criteria show the same effectiveness. In Region 2,
there is not a marked preference in using one criterion or the other so that the best design strategy should be chosen case
by case. As expected, the samples in Region 3 belong to cases 4 and 6; however, in this region bothmethods are ineffective.

5.3 Relationship between the TMD performance and the soil-structure layout

The configurations of the soil-structure-TMD system associated with the three performance regions identified above are
explored in this section, in order to determine the ranges of the governing parameters that maximise the TMD effective-
ness. Figures 10, 11 and 12 show the relative frequency densities of the non-dimensional parameters in Regions 1, 2 and 3,
respectively, in which Ntot(i) is the total number of samples in Region i and ΔGj is the amplitude of discretisation of Gj.
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F IGURE 10 Relative frequency density N/(Ntot
(1)×ΔGi) of the samples Ntot

(1) in Region 1 (ΔGi is the amplitude of the class Gi), relative
to (A) the mass ratio of the TMD, (b) the structure-to-soil relative stiffness, (C) the slenderness ratio, (D) the foundation aspect ratio, (E) the
damping ratio and (F) the normalised radius of gyration

Each plot depicts three curves representing the original random input density of the samples (black dashed line) and the
densities of the performance points using DH (thick black line) and GB criteria (thick grey line). The significant ranges of
the governing groups for each region are summarised in Tables 5 and 6. They are identified by a marked increment Δ>0
of the performance points with respect to the input random density.

5.3.1 Region 1: 𝜂𝐝𝐞𝐟 /𝜂𝐟 𝐢𝐱𝐞𝐝 >1

Region 1 represents the most favourable condition in which the TMD performance is magnified by soil-structure interac-
tion. In this region, the TMD mass does not appear to have sensitive influence, as seen in Figure 10A. From Figure 10B
it can be inferred that the condition 𝜼𝐝𝐞𝐟 /𝜼𝐟 𝐢𝐱𝐞𝐝 >1 can be mostly obtained when the structure-to-soil relative stiffness is
lower than 0.3, for DH criterion, and 0.27, for GB criterion (negligible soil-structure interaction). A very low number of
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F IGURE 11 Relative frequency density N/(Ntot
(2)×ΔGi) of the samples Ntot

(2) in Region 2 (ΔGi is the amplitude of the class Gi), relative
to (A) the mass ratio of the TMD, (B) the structure-to-soil relative stiffness, (C) the slenderness ratio, (D) the foundation aspect ratio, (E) the
damping ratio and (F) the normalised radius of gyration

TABLE 5 Significant ranges for the governing parameters using Den Hartog’s criterion

Group Region 1 Region 2 Region 3
G1. Mass ratio of the TMD – – 1.5 - 2.4%
G6. Structure-to-soil relative stiffness <0.3 >0.3 >0.46
G7. Slenderness ratio <1.4 – >3.0
G9. Foundation aspect ratio <0.37 – –
G10. Damping factor – <4.5 % –
G13. Normalised radius of gyration – <0.3 –
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F IGURE 1 2 Relative frequency density N/(Ntot
(3)×ΔGi) of the samples Ntot

(3) in Region 3 (ΔGi is the amplitude of the class Gi), relative
to (A) the mass ratio of the TMD, (B) the structure-to-soil relative stiffness, (C) the slenderness ratio, (D) the foundation aspect ratio, (E) the
damping ratio, and (F) the normalised radius of gyration

TABLE 6 Significant ranges for the governing parameters using Ghosh and Basu’s criterion

Group Region 1 Region 2 Region 3
G1. Mass ratio of the TMD – – –
G6. Structure-to-soil relative stiffness <0.27 >0.27 >0.5
G7. Slenderness ratio >2.9 <2.9 2.3 - 4.3
G9. Foundation aspect ratio – – <0.28
G10. Damping factor – <4.5% –
G13. Normalised radius of gyration – <0.3 0.36 - 0.8
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cases occurs forG6 >0.3, for which the deformability of the soil becomes predominant compared to the structure deforma-
bility.
Focussing on DH criterion, the distribution of the slenderness ratio (Figure 10C) shows that in Region 1 there is a slight

concentration of samples for G7 <1.4, including squat structures, while the number of samples decreases significantly
when G7 >2.9. This again draws attention to the possible negative effect of the structural slenderness on the TMD perfor-
mance, with possible occurrence of rocking. A completely opposite trend is instead produced by the use of GB criterion,
that is, more prone to optimise the TMD performance for slender structures. More specifically, when the fundamental
frequency of the soil-structure system is equal to that of the structure with fixed base, GB reduces to DH and accord-
ingly the loss of effectiveness using DH for high G7 must be ascribed to tuning the TMD to a soil-structure coupled mode
of vibration, involving foundation sliding or rocking, that does not necessarily correspond to the mode that magnifies
deformations in the structure.
An elongated shape of the foundation in plan (G9 <0.4) appears preferable to a squared foundation to avoid detuning

of a DH TMD in virtue of the higher confining effect of the soil in the transverse plane with respect to the direction of
motion.32
Definitely, the effectiveness of a DH or GB TMD is maximised mainly in structures characterised by a limited rocking

response, resting on foundation soils causing modest soil-structure interaction effects. The last result implies that the
fundamental vibrationmode of the soil-structure system ismainly translational, so that the TMDcan be activated properly.

5.3.2 Region 2: 0 < 𝜂𝐝𝐞𝐟 /𝜂𝐟 𝐢𝐱𝐞𝐝 ≤1

In most of the cases the TMD effectiveness is partly inhibited by the soil compliance, with ratio 0 < 𝜼𝐝𝐞𝐟 /𝜼𝐟 𝐢𝐱𝐞𝐝 ≤1 (larger
structural oscillations than the fixed-base case). In Figure 11 it is evident the concentration of samples for G6 >0.3, where
the compliance of the foundation soil alters the dynamic response of the structure. Other substantial increments of the
relative frequency density occur for low values of the structural damping G10 and of the normalised radius of gyration
G13. The latter refers to structures with high rotational inertia with respect to a centroidal axis, such as structures with
large floors or having masses with large eccentricity with respect to the vertical axis. Therefore, a typical soil-structure
layout for Region 2 refers to relatively high structure-to-soil relative stiffness, low structural damping and normalised
radius of gyration. In these cases, GB criterion presents a higher ability to limit the loss of effectiveness of the device in
medium-slender structures (G7 <2.9) with large rotational inertia.

5.3.3 Region 3: 𝜂𝐝𝐞𝐟 /𝜂𝐟 𝐢𝐱𝐞𝐝 ≤0

Region 3 represents the worst condition in which the use of a TMD designed with DH or GB criterion magnifies struc-
tural vibration. Only a limited number of cases exhibits such a response. A typical element in this region has a low
TMD mass (1.5% < G1< 2.4% in Figure 12A), high structure-to-soil relative stiffness (Figure 12B) and high slenderness
(Figure 12C). A more irregular trend is associated with the other features of the soil-structure layout, G9, G10 and G13.
Hence, in Region 3 the device is detuned by the large deformability of the foundation soil compared to the structural
one. This feature, combined with a high slenderness of the structure, enhances the rocking response, implying a negative
influence of the TMD on the structural performance. In these situations, the use of a translational TMD is therefore not
recommended.

6 CONCLUSIONS

In this paper, a general non-dimensional formulation governing the linear soil-structure-TMD interaction under dynamic
conditions was presented based on which an interpretative model was developed. This model, which replaces the more
common SDOF system assumed under fixed base conditions, was validated against the results of amore refined numerical
model and then employed in an extensive analysis on the performance of TMDs. The discussion was restricted to the case
of harmonic ground motion, as an important starting point for more detailed analyses.
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The sensitivity analysis indicated that the effectiveness of the TMD is mainly controlled by a limited number of non-
dimensional parameters. In addition to the parameters provided by Den Hartog’s solution (mass, frequency and damping
ratios of the TMD) and the structural damping, there are some other governing factors directly related to soil-structure
interaction: the structure-to-soil relative stiffness, the foundation aspect ratio, the slenderness and normalised radius of
gyration of the structure.
The results of the sensitivity analysis can be used for a preliminary evaluation of the seismic performance of conven-

tional TMDs in a soil-structure system. Examining the response under various configurations, three regions have been
identified, that is, where soil-structure interaction can have a beneficial, neutral or negative effect on the TMD perfor-
mance. Compared to the fixed-base case, the TMD performance is magnified by soil-structure interaction in layouts char-
acterised by a limited rocking response, such as squat ormedium-slender structures, and by amoderate dynamic coupling
between the structural and soil responses (Region 1). In these cases, Den Hartog’s solution still represents an optimised
design criterion and appears preferable to the one proposed by Ghosh and Basu.
Soil-structure interaction has a negative effect on the TMD performance primarily when the soil stiffness is much lower

than the structural stiffness (Region 3). In these cases, the dynamic behaviour of the structure is essentially controlled by
the foundation soil, with a combined sliding and rotation of the foundation causing a complete detuning of the trans-
lational TMD. Nonetheless, in most cases TMD and soil concur to mitigate to a certain extent the internal forces in the
structure (Region 2): the TMD loses partially its effectiveness, with structural oscillations greater than those in the fixed-
base case, and Den Hartog’s criterion can no longer be intended as an optimised solution. These cases refer primarily to
structures for which the dynamic interactionwith the foundation soil is exalted. In this region, the choice between the two
design solutions needs to be evaluated case by case. Therefore, this class of soil-structure systems constitutes the effective
target of an optimised design criterion for TMDs, which should be based on the factors governing the performance of the
entire soil-structure-TMD system.
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APPENDIX A
NON-DIMENSIONAL EQUATION OFMOTION
The equation of motion for the simplified soil-structure-TMD system introduced in Section 3.2 reads:

⎛⎜⎜⎜⎜⎝

𝑚𝑓 +𝑚1 + 𝑚2 + 𝑚TMD 𝑚1ℎ1 + 𝑚2 (ℎ1 + ℎ2) + 𝑚TMDℎTMD 𝑚2 +𝑚TMD 𝑚TMD
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2
+ 𝑚TMDℎ

2
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Sym Sym 𝑚2 +𝑚TMD 𝑚TMD

Sym Sym Sym 𝑚TMD
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𝑢̈𝑔 (8)

In order to derive a non-dimensional form of Equation 8, the quantitiesm2, ωi and hm = h1+h2 are arbitrary chosen to
constitute the reference basis (quantities containing the three fundamental physical dimensions of the problem that are
length, mass and time). The remaining quantities are uniquely determined as a function of the non-dimensional groups,
as reported in Table 3. These expressions can be substituted into Equation 8:
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A fully non-dimensional formulation of the equation of motion can be finally obtained by normalising time as τ= ωi×t
and dividing both members of Equation 9 by ωi2, giving Equation 6 shown in Section 3.2.
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