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Abstract

A simple graph is Py-indifferentif it admits a total order < on its nodes such that every
chordless path with nodes a, b, ¢, d and edges ab,bc,cd hasa <b<c<dora>b>c>d.
Py-indifferent graphs generalize indifferent graphs and are perfectly orderable. Recently,
Hoang, Maffray and Noy gave a characterization of Ps-indifferent graphs in terms of for-
bidden induced subgraphs. We clarify their proof and describe a linear time algorithm
to recognize Py-indifferent graphs. When the input is a Pj-indifferent graph, then the
algorithm computes an order < as above.
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1 Introduction

A simple graph G = (V, E) is called perfectly orderable if there exists a total order < on
V' with the following property: if a,b,c,d € V induce a chordless path (in jargon, a Pj)
with edges ab,bc and cd, then, either a > b, or d > ¢. The interest in perfectly orderable
graphs is motivated by the notable fact, pointed out by Chvétal [3], that the greedy coloring
algorithm applied along the order always produces an optimal coloring. A simple graph
G = (V,E) is called Pi-indifferent if it admits a Py-indifferent order, that is, a total order
< on V with the following property: if a,b,c,d € V induce a P, with edges ab, bc and cd,
then, either a < b < ¢ < d,ora > b > ¢ > d. The Ps-indifferent graphs were introduced
in [8] as a polynomially recognizable subclass of perfectly orderable graphs. The interest
in the subclass of P;-indifferent graphs comes from the fact that the recognition of perfectly
orderable graphs in general is NP-complete [10]. Recently, Hoang, Maffray and Noy [7] gave a
characterization of Py-indifferent graphs in terms of forbidden induced subgraphs. We clarify
their proof and give a linear time algorithm to recognize Pj-indifferent graphs. When the
input of the algorithm is a Py-indifferent graph, then a Pj-indifferent order is also obtained.
Our algorithm is based on the modular decomposition of the input graph.

After having completed the present work, we came to know that a linear time recognition
algorithm had been recently obtained by Habib, Paul and Viennot in [6]. A main original
contribution of this paper is however a slight simplification in the proof of the result of Hoang,
Maffray and Noy [7] with a more clear understanding of the properties and the relationships
among certain subclasses of interval graphs.
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As usual, Cj denotes the chordless cycle on k vertices. If S C V, then G[S] denotes
the subgraph of G induced by S, ie. G[S] = (S,{uv € E : u,v € S}). When we say “G
contains (a graph) H”, we mean “G contains H as induced subgraph”. Note that, if G is Py-
indifferent, then every induced subgraph of G is Ps-indifferent. The starting point and main
inspiration of the present work is the following forbidden induced subgraph characterization
of Ps-indifferent graphs, due to Hoang, Maffray and Noy [7].

Theorem 1.1 A graph is a Py-indifferent graph if and only if it contains no Cy with k > 5
and none of the graphs F1, ..., Fg shown in Fig. 1.

o
o

F, C, (n>4)

Figure 1: Forbidden subgraphs for Ps-indifferent graphs.

2 Interval graphs which are P,-indifferent
An interval graph is any simple graph which admits an interval representation.

Definition 2.1 (interval representation) Let G = (V, E) be a simple graph with n nodes.
Two integers l, and r, with l, < r, are associated to every node v of G so that {l, : v €
Viu{r, :veV}={1,...,2n}. The following property is the main requirement: uv € E if
and only if ly, <ly <1y orly <ly <14

In this section, we give a linear time algorithm, which, given an interval graph G, returns
either an Fy or an F; contained in G, or a Pj-indifferent order of V. A consequence is the
following fact, already implicit in [7].



Fact 2.2 An interval graph is Py-indifferent if and only if it contains no Fy and no Fy.

Proof: Is easy to check that neither Fy nor F; are Pj-indifferent. If an interval graph G with
no Fy and no Fx is given as input to the algorithm, then a Py-indifferent order is returned;
hence G is P,-indifferent. O

Linear time algorithms to recognize interval graphs and compute interval representations
of interval graphs are known [1, 4] (see p. 51 in [2] for an overview). Moreover, the following is
a well-known [9] characterization of interval graphs in terms of excluded induced subgraphs.

Lemma 2.3 (Lekkerkerker and Boland [9]) A simple graph is an interval graph if and
only if it contains none of the graphs shown in Fig. 2.
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Figure 2: Forbidden subgraphs for interval graphs.

Our algorithm works on the interval representation of the input interval graph G = (V, E).
The algorithm scans the integers in the interval [1,2n] from left to right. During the scan,
three sets of nodes Sy, S; and S are maintained. For every node v, and for j = 0, 1,2, let ¢/
be the first instant in the interval [1,2n] for which v € Sj. (Let t) = +oo if v never enters
Sj). At every instant ¢, the sets Sp,.S1 and Sy are as follows:

So(7) contains a node v € V iif [, < i < ry;
S1(7) contains a node v € Sp(7) iif there exists a node u with [, < r, < 4;

Sy(i) contains a node v € Sy(4) iif there exists a node u with I, < r, <4 and t} < ,.

In practice, a node v is in Sy(z) for i € [l,,r,). A node v, which ever enters S;, will be in
S1(i) for i € [t}, 7). A node v, which ever enters So, will be in S5(i) for i € [t2,7,).



When i = r,, then we declare v to be a u-dangerous node for all those nodes u € Sa(ry)
and such that t2 < [,,.

This is the first phase of our algorithm. Note that, by reversing an interval representation
of G, a second interval representation of G is obtained. The second phase of our algorithm
is identical to the first, only that it is performed on the reversed interval representation.

Claim 2.4 Assume a node v to be declared u-dangerous both in the forward phase and in the
backward phase. Then G contains an Fy.

Proof: 1t suffices to show that if v is u-dangerous in the forward phase of the algorithm, then
ry < 1 and there exists two nodes a and b such that I, < r, <, < rp <.

If v is u-dangerous w.r.t. the forward phase, then u € Ss(r,) (which accounts for r, < r,)
and t2 < I,,. Therefore, there exists a node b with r, = ¢2 and t,% < ly. Finally, there exists a
node a with [ < r, = t%. Obviously, tﬁ > [,. Summarizing, I < ro <ly < 71p < ly. O

The following relation <* on V' is equivalent to the one introduced in [7] after Remark 2.
e Overlap rule. If u,v € V with [, <, < ry < 7y, then u <* v.

e Containment rule. If v is declared u-dangerous in the forward phase, then u <* v.
If v is declared u-dangerous in the backward phase, then v <* u.

Note that u <* v implies uv € E. Moreover, by Claim 2.4, when G contains no Fj, then
<* is antisymmetric.

Claim 2.5 If G contains no F7; and <* is antisymmetric, then the relation <* is acyclic.

Proof: The following relation is clearly acyclic: u <’ v iff I, < I,,. Therefore, in every cycle of
<*, a v <* u for which v is u-dangerous (backwards), must appear. Let z be the predecessor
of v in the cycle. We assume that z £* u since otherwise, considering z <* u instead of
z <* v and v <* u, a shorter cycle of <* is obtained. Let a and b be two nodes which cause
v to be u-dangerous, i.e., 1, <lp < 1y <ly < Tp-

Case 1: assume r, < lp. Since vz € E, then r, > l,,; hence r, > [,,. If [, <[, then z <* u
by the overlap rule. Otherwise, if [, > [, then z is u-dangerous as well as v. Again z <* u.

Case 2: assume [, < r, < ry. If I, <[, then z <* u by the overlap rule. Assume therefore
[, > 1. Since z <* v and r, > 1y, then the interval [I,,r,] contains the interval [l,,r,] and v
is z-dangerous (forwards). However 7, <l < r, < l,. Therefore v is z-dangerous also in the
backward phase, contrary to our assumptions.

Case 3: assume r, > 1. Since z <* v and r, > r,, then v must be z-dangerous
(forwards). If r, < l,, then v is z-dangerous also in the backward phase, contrary to our
assumptions. Assume therefore r, > [,. Let b’ and a’ be two nodes which cause v to be
z-dangerous (forwards), i.e., ly < ry <l < ry <l,. If ry <I,, then also u is z-dangerous
in the forward phase and by the containment rule z <* u. Assume therefore ry > [,. If
rq < ly, and since ry < I, then v is u-dangerous also in the forward phase, contrary to our
assumptions. Assume therefore r, > I,,. But now, u,v, 2,a,b,a’,b’ induce an F%, contrary to



our assumptions. O

By Claims 2.4 and 2.5, when G contains no F; and no F7, then there exists a total order
<T on V containing <*.

Claim 2.6 If <* is antisymmetric and acyclic, then <™ is a Py-indifferent order.

Proof: Let a,b,c and d be four nodes inducing a chordless path with edges ab,bc and cd.
By eventually exchanging b with ¢ and a with d, we can always assume that [, < [.. Hence,
Iy <l. <1y < re, for otherwise d could not be adjacent to ¢ without being adjacent to a.
Therefore I <71, <l. <7y <lg<r.and b<T c.

If r. < rq then ¢ <™ d. Otherwise, if rqy < 7., then d is c-dangerous in the forward phase
and ¢ <T d anyhow.

If r, < 7p then a <™ b. Otherwise, if 7y < g, then a is b-dangerous in the backward phase
and a <T b anyhow. O

2.1 Running time and general outline of the algorithm

The forward phase (and hence the backward phase) of the algorithm is easily implemented
to run in linear time. More precisely, the total cost of updating Sy during one scan is O(V),
whereas the total cost of updating S; and Ss is O(FE). Indeed, at every step in the interval
[1,2n] a single node v enters or leaves Sy. In case v leaves Sy, then some neighbors of v can
enter Sy or Sy or be declared v-dangerous. For the sake of clarity, a formal description of the
updates to be performed at Step i is given here below.

Step (i): Let v be the node such that i € {l,,r,}. If i = [,, then node v enters Sj.
Otherwise, if i = r, then

(1) node v exits Sy, S1 and Sa;

(2) put in S; every node u € Sy \ S; and set t} := i;

(3) put in S every node u € Sp \ S with t. < I, and set t2 := i

(4) for every node u € Sy with t2 < I,,, declare v to be u-dangerous.

Note that only the nodes in Sy can go into S7 or Sy or become v-dangerous. Moreover,
all nodes in Sy are neighbors of v.

After the two scans, if a node v turns out to be u-dangerous both in the forward and
in the backward phase, then the proof of Claim 2.4 shows how to produce an F4 contained
in G in constant time. Assume therefore <* to be antisymmetric. Testing the acyclicity of
<* amounts to test the acyclicity of a digraph with V as vertex-set and with at most |E|
arcs. (Remember that u <* v implies uv € E). It is well known that this can be done in
linear time, while at the same time computing a total order <* on V which contains <*.
(Every acyclic digraph contains a source. Keep removing source nodes one after the other.
If all nodes get removed, then let <* be the order in which the nodes have been removed.
Otherwise, if at a certain point no node is source, then a cycle is obtained in at most n steps,
going backwards starting from any node. Moreover, a chordless cycle can be easily obtained



in linear time). If a chordless cycle C is returned, then the proof of Claim 2.5 shows that
the nodes in C induce an F7 in G. If the antisymmetric relation <* is acyclic, then the total
order <7 is Ps-indifferent by Claim 2.6.

3 Modules

If u is adjacent to v in a graph G, we say that u sees v in G, otherwise we say that u misses
v in G. A module of an undirected simple graph G = (V, E) is a non-empty set X of nodes
such that every node v € V'\ X either sees all nodes in X or no node in X. By definition, all
singletons and V itself are modules — called the trivial modules of G. A graph is prime if it
has no nontrivial modules.

In Subsection 3.1, we describe a linear time algorithm to decide if a given prime graph
is Py-indifferent. In Subsection 3.2, we report some basic facts in modular decomposition
theory and show how to reduce the recognition of Py-indifferent graphs to the special case
when the input graph is prime.

3.1 Prime graphs

In this subsection, we show that every prime graph is an interval graph, provided it contains
no C} with £ > 5 and none of the graphs Fi,..., Fg shown in Fig. 1. This result was first
given in [7], while the key Lemma 3.1 already appeared in [8, 12]. Combining this with the
algorithm in Section 2, we obtain a linear time algorithm to decide if a given prime graph is
Py-indifferent.

Lemma 3.1 ([8, 12]) If G is a prime graph containing no Fi, Fy, F3, then G contains no
Cy.

Proof: Short proofs can be found in [7], [8] or [12]. O

Corollary 3.2 ([7]) Let G be a prime graph containing no Cy with k > 5 and none of the
graphs Fy, ..., F3. Then G is an interval graph.

Proof: By Lemma 3.1, G contains no Cy. Check that each one of the forbidden induced
subgraphs for interval graphs, given in Fig. 2, contains a Cy (k > 4) or one of Fy,...,Fg. O

Let G be the prime graph given as input. Thanks to the algorithm of Booth and Lueker [1],
we can decide in linear time if G is an interval graph. If G is not an interval graph, then the
algorithm of Booth and Lueker returns (in linear time) one of the graphs shown in Fig. 2.
Hence, by Corollary 3.2, we can produce in linear time a Cy with k > 5 or one of Fi,..., Fg.
Note that none of these graphs is Ps-indifferent. Therefore, G is not Pys-indifferent.

If G is an interval graph, then the algorithm of Booth and Lueker returns (in linear time)
an interval representation of G. Now we apply the algorithm given in Section 2. This linear
time algorithm will (1) either return an Fj or an Fy contained in G, hence proving that G is
not Py-indifferent; (2) or return a Ps-indifferent order for G.



3.2 Modular decomposition

In this subsection, we show how to reduce the recognition of Ps-indifferent graphs to the
special case when the input graph is prime. The reduction is based on the notion of modular
decomposition of an undirected graph as introduced by Gallai in [5]. This decomposition is
also known as substitution decomposition, prime tree decomposition, and X -join decomposi-
tion. We refer to [2, 13] for an introduction to modular decompositions and to [11] for a
survey on the many aspects of this subject. The few properties needed are given ’de facto’ in
Definition 3.4 here below. The existence of a linear time algorithm to compute the modular
decomposition of the input graph G is fundamental to our solution. In 1994, McConnell and
Spinrad [14, 13] gave a linear time algorithm to compute the modular decomposition of any
graph. We will not go into the details of their algorithm either, and assume the modular
decomposition of G to exist and to be given as part of the input.

The following observation points out the role of modules in recognizing P;-indifferent
graphs and in computing P,-indifferent orders.

Observation 3.3 Let X be a module of G and let x be any node in X. If z1,...,2, is a
Py-indifferent order w.r.t. G[X] and u1,...,u; = «,...,uq is a Py-indifferent order w.r.t.
GV \ X U{z}], then u1,...,%i_1,%1,--.,Tp, Uit1,---,Uq 5 Py-indifferent w.r.t. G.

Proof: If X is a module of G, then every P, of G has either zero, or one, or four nodes in X,
and if it has one, then this node is a leaf of the P;. Clearly, every P, that has zero or four
nodes in X is properly ordered. Moreover, if ab, bc, cd is a Py of G with solely d in X, then
ab, bc, cd is properly ordered as well as ab, be, cz. O

Definition 3.4 (modular decomposition of an undirected graph G = (V, E))

An out-directed tree T with root r is given. The leaves of T correspond to the nodes in V.
Every non-leaf node has at least two children and is given a label in {0,1,2}. For every node
t of T, let V; be the set of those nodes in V which correspond to the leaves which can be
reached from t in T. Let ty,... 1 be the children of t. Let V; be any subset of Vi such that
VinVy|=...=|VinNV; | = 1. We require the following properties to hold:

e V; is a module of G for every node t of T;

if t is labeled 2, then G[IA/}] is prime;

if t is labeled 1, then G[Vt] is a complete graph;

if t is labeled 0, then G[V}] is a complete graph.

Computing a Pj-indifferent order for G corresponds to compute a Ps-indifferent order for
G[V;]. By Observation 3.3, and by the properties expressed in Definition 3.4, this can be
done rfzcursively as follows. Let ¢ be any node of T". Let t,...,t; be a P;-indifferent order
for G[V;]. For i = 1,...k, let t; be the child of ¢ such that ¢, € V;, and let ut,... ,uﬁli be a Py-
indifferent order for G[V;,]. Then a Ps-indifferent order for G[V}] is obtained by juxtaposing



the Py-indifferent orders for G[V;,], ..., G[V;,] as follows: ui,... ,u,lll, coukl ,u’,ﬁk. It only
remains to show how to compute a Ps-indifferent order for G [IA/}] or find a forbidden subgraph
in G [IA/}] in linear time. If ¢ is labeled 0, then @[Vt] is a complete graph and any total order on
V, is Py-indifferent. The same conclusion holds if ¢ is labeled 1 and G[V}] is a complete graph.
When ¢ is labeled 2, then G[V;] is prime and we can resort on the linear time algorithm given
in Subsection 3.1.
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