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SUMMARY

Our understanding of the molecular determinants of
cancer is still inadequate because of cancer hetero-
geneity. Here, using epithelial ovarian cancer (EOC)
as a model system, we analyzed a minute amount of
patient-derived epithelial cells from either healthy or
cancerous tissues by single-shot mass-spectrom-
etry-based phosphoproteomics. Using a multi-disci-
plinary approach,wedemonstrated that primary cells
recapitulate tissue complexity and represent a valu-
able source of differentially expressed proteins and
phosphorylation sites that discriminate cancer from
healthy cells. Furthermore, we uncovered kinase sig-
natures associatedwith EOC. In particular, CDK7 tar-
gets were characterized in both EOC primary cells
and ovarian cancer cell lines. We showed that CDK7
controls cell proliferation and that pharmacological
inhibition ofCDK7 selectively repressesEOCcell pro-
liferation. Our approach defines the molecular land-
scapeof EOC,paving theway for efficient therapeutic
approaches for patients. Finally, we highlight the
potential of phosphoproteomics to identify clinically
relevant and druggable pathways in cancer.

INTRODUCTION

The characterization of molecular determinants of cancer

has advanced tremendously in the past decades, mainly

due to advancements in high-throughput technologies. Deep
3242 Cell Reports 18, 3242–3256, March 28, 2017 ª 2017 The Autho
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sequencing approaches at the gene expression level can now

be complemented by proteomics. Mass spectrometry (MS)-

based proteomics has undergone enormous improvements in

the past few years because of more accurate instrumentation

and better methods for sample preparation and quantitation (Ae-

bersold and Mann, 2016). Proteomics has enabled the analysis

of the expressed protein complement of cells and entire tissues,

but it can also analyze post-translationally modified proteins (i.e.,

phosphorylated proteins [phosphoproteomics]) (Beck et al.,

2011; Kim et al., 2014; Lundby et al., 2013; von Stechow et al.,

2015; Wilhelm et al., 2014). As proteins and especially phospho-

proteins regulate the functional properties of cells (e.g., a phos-

phorylation site can reflect the activity state of a protein), phos-

phoproteomics has been employed for the identification of

potential pharmaceutical targets (Dias et al., 2015). Furthermore,

the implementation of proteomics in combination with genomics

to study cancer is now emerging (Mertins et al., 2016; Zhang

et al., 2016).

To identify tumor-associated signatures, onco-proteomics

studies have investigated cell lines, mice xenografts, or entire bi-

opsies (Geiger et al., 2012; Guo et al., 2015; Ntai et al., 2016;

Pozniak et al., 2016; Zhang et al., 2016). However, cell lines reca-

pitulate biology of neoplastic cells within an actual tumor only to

a certain extent, and other cell types may contaminate mouse

xenografts or entire tissues. In the latter case, discriminating

what is tumor specific from the contribution of cells of the tumor

microenvironment may be difficult. To overcome this issue, one

possibility is to analyze a purer cancer population (i.e., primary

cancer cells), as demonstrated for T cells (Mitchell et al., 2015)

or endothelial cells (van den Biggelaar et al., 2014). System-

wide phosphoproteomics studies of patient-derived-primary

cells are, however, underrepresented.
r(s).
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Here, we compared the phosphoproteome of human primary

epithelial cells derived from either neoplastic or healthy tissue,

thus focusing specifically on pure cell populations of different

origin. Besides overcoming the possible contamination of tumor

cells with other cell types, our strategy based on primary cells

can add new information to the recently published Clinical Prote-

omic Tumor Analysis Consortium (CPTAC) database, where the

molecular profile of the tumors was not compared with their

normal counterpart (Zhang et al., 2016).

We selected epithelial ovarian cancer (EOC) because it is the

most lethal gynecological tumor in developed countries. EOC

is a heterogeneous disease of which high-grade serous EOC is

the most common and lethal form (Gurung et al., 2013; Kurman

and Shih, 2016). Besides mutations in tumor suppressor genes,

few recurrent somaticmutations have been associatedwith EOC

(Cancer Genome Atlas Research Network, 2011; Jones and

Drapkin, 2013; Kurman and Shih, 2016). Furthermore, both the

ovarian surface epithelium (OSE) and the distal fallopian tube

epithelium (FTE) can give rise to high-grade serous EOC (Bowtell

et al., 2015). Therefore, defining themolecular landscape of high-

grade serous EOC and healthy ovarian tissues is challenging.

Primary ex vivo cultures of human FTE have been shown to be

reliable model for serous ovarian carcinogenesis (Levanon

et al., 2010). Here, we performed quantitative phosphoproteo-

mics of ex-vivo-cultured human ovarian epithelial cells and

included cells derived either from OSE and FTE or from high-

grade serous EOC to get a more accurate picture of ovarian can-

cer behavior. We developed a rapid and accurate method to

analyze less than 1 mg protein in 90-min run-on last-generation

mass spectrometers, the Q-Exactives (Kelstrup et al., 2012).

Finally, we integrated quantitative phosphoproteomics and bio-

informatics analyses with biochemical assays and immunohisto-

chemistry (IHC) to validate our findings. Our comprehensive

phosphoproteomics analysis revealed differentially expressed

proteins and activated proteins between healthy and patholog-

ical samples, thus providing the ovarian cancer community

with a valuable resource to better understand the biology of

such a complex disease. These results complement and extend

the recently published study from the CPTAC investigators,

where the proteogenomic analysis of more than 100 high-grade

serous carcinomas has revealed novel pathways to stratify pa-

tients (Zhang et al., 2016). The main differences between that

approach and ours include the fact that the CPTAC consortium

did not analyze the normal counterparts of EOC (i.e., OSE and

FTE), and we have used pure cultures of primary cells as

opposed to whole tumor tissues. Moreover, we have used com-

plementary technologies (i.e., iTRAQ versus label-free methods

to quantify changes in protein abundance and post translational

modifications [PTMs]). In spite of these differences, we have
Figure 1. Proteomics of Patient-Derived Epithelial Cells Reveals Good

(A) Workflow of the proteomics analysis of epithelial cells derived from FTE, OS

Procedures).

(B) Numbers of identified proteins (blue) and phosphorylated sites (pink) in the 1

(C) Unsupervised clustering of the phosphoproteome dataset shows separation

(D) Heatmap of the Pearson’s correlation (R2) of the phosphoproteome data sho

(highlighted by black boxes). Numbers and letters indicate individual samples or

See also Figures S1 and S2 and Tables S1, S2, and S3.
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added new information to the published CPTAC dataset, under-

scoring the importance of integrating multiple technologies and

approaches to study cancer signatures.

Our strategy also revealed novel kinase-mediated functional

signatures in EOC. This may pave the way for innovative thera-

peutic approaches for EOC patients, given that only two drugs

having been licensed for EOC treatment in the last five years

(Symeonides and Gourley, 2015). To illustrate the power of our

approach for quantifying changes in human primary cells and

for identifying targetable kinases in cancer, we focused on the

role of cyclin-dependent kinase 7 (CDK7), and implicated this

signaling pathway in EOC cell proliferation.

RESULTS

Proteomics of Patient-Derived Cells Unveils
Differentially Expressed Proteins in FTE, OSE, and EOC
Our first goal was to assess if the ex vivo culture of patient-

derived epithelial cells would be a good model system for prote-

omics analysis of EOC cells and of their normal counterpart. To

this end, we compared the molecular profile of high-grade se-

rous EOC with those of non-neoplastic FTE and OSE. The prote-

ome and phosphoproteome of patient-derived primary cells

from FTE, OSE, and EOC were analyzed by high-resolution

quantitative mass spectrometry (Figure 1A; Table S1). Morpho-

logical examination and immunofluorescence staining for spe-

cific markers confirmed the epithelial nature of primary cells as

well as the absence of other contaminating cell types (Figure S1).

We extracted �700 mg protein from each cell culture, of which

1% was used for proteome profiling and the rest for enrichment

of phosphorylated peptides by TiO2-based chromatography

(Figure 1A, bottom). We quantified 5,561 proteins and 7,658

distinct phosphorylation sites using single-run liquid chromatog-

raphy-tandem mass spectrometry (LC-MS/MS) measurements

from 13 independent patient samples (four OSE, four EOC, and

five FTE) (Figure 1B; Tables S2 and S3). The distribution of phos-

phorylated peptides and sites was in line with previous studies

(Francavilla et al., 2013) (Figures S2A–S2D), and the coverage

of protein and phosphorylated peptides among technical repli-

cates (samples 1, 2, and 4) was high and reproducible (Figures

S2E–S2G; Table S1). Unsupervised clustering separated both

proteome (Figure S2H) and phosphoproteome (Figure 1C) ac-

cording to the origin of primary cells. Moreover, the abundance

of protein and phosphorylated peptides estimated by their

mass spectrometry signal intensities was reproducible with

Pearson correlation coefficients above 0.9 for samples of the

same origin (Figures 1D and S2I). These findings together

confirmed the high reproducibility of our samples. On the con-

trary, we found a poor correlation (R = 0.14–0.30) between the
Coverage of Phosphorylated Sites

E, and EOC (see also Figure S1, Table S1, and Supplemental Experimental

3 samples analyzed in this study. Data are presented as mean ± SD.

between tumor and healthy samples.

ws good overall reproducibility among samples deriving from the same tissue

technical replicates, respectively, according to Table S1.
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abundance of phosphorylated peptides and that of their corre-

sponding protein (Figure S2J), suggesting that the analysis of

both proteome and phosphoproteome is necessary to derive a

tissue-specific signature.

We first focused on the analysis of the proteome by performing

3D principal-component analysis (3D-PCA) of all the 5,561 iden-

tified proteins (Table S2; Figure 2A). The analysis clustered indi-

vidual samples according to the tissue of origin and separated

the proteome of EOCs from that of the two healthy tissues (Fig-

ure 2A). The LIMMA Bioconductor package, which accounts for

variability among samples and among proteins of the same sam-

ple (Wettenhall and Smyth, 2004), identified 49 differentially ex-

pressed proteins among the three cell types (Table S2). Hierar-

chical clustering separated these proteins in four main clusters

(Figure 2B; Table S2). Proteins that were specifically enriched

in EOC cells were represented in cluster 1; those present in

both FTE and EOC, but not OSE, were represented in cluster

2; proteins more abundant in non-neoplastic cells were repre-

sented in cluster 3; and those specific to OSE were represented

in cluster 4 (Figure 2B; Table S2). To validate our proteomics

approach, we selected proteins found in different clusters. Clus-

ter 1 contained the known EOCmarker MUC16 (or CA125) (Neu-

nteufel and Breitenecker, 1989). The D-3-phosphoglycerate

dehydrogenase PHGDH involved in serine biosynthesis (Luo,

2011) and the auxiliary subunit of GABA-B receptors KCTD12

(Cathomas et al., 2015) were chosen to represent cluster 2.

Finally, the transmembrane neuropilin-like protein DCBLD2

(Kobuke et al., 2001) belonged to cluster 3. With the exception

of MUC16, none of these proteins have previously been associ-

ated with EOC. Western blot (WB) analysis in independent

primary cell cultures confirmed the mass spectrometry results

for all the proteins (Figure 2C), indicating the reliability of our

approach. The levels of PHGDH and KCTD12 were also evalu-

ated on a larger cohort of samples by IHC on tissue microarrays

(TMAs). This analysis revealed higher expression of both pro-

teins in a significant proportion of high-grade serous EOC,

metastasis, and healthy FTE compared to OSE (Figure 2D).

These data suggested that our approach based on quantitative

proteomics of ex-vivo-cultured primary epithelial cells derived

from one specific cell type is well suited to capture the character-

istics of the original tissue, thus offering a reliable model for

further molecular analysis of serous ovarian carcinogenesis.

Phosphoproteomics of Patient-Derived Cells Identifies
CDK7 and POLR2A in EOC
As less than 1% of the proteome was differentially regulated in

the three cell types (49 out of 5,561 proteins), we hypothesized
Figure 2. Proteomic Analysis Discloses Differentially Expressed Prote

(A) 3D-PCA of all the proteins quantified in independent samples for each tissue

(B) Hierarchical clustering of the proteins differentially expressed in four independe

are highlighted on the right and separated by a black line. Protein intensity is pres

coded in blue and red, respectively. The proteins highlighted in the different clus

(C) Lysates from three independent samples derived from each tissue (see Table

used as loading control. The experiment was repeated twice with analogous res

(D) The two histograms show the intensity of the staining for PHGDH (top) and KC

(number of samples: 15 OSE, 18 fimbriae, 84 serous adenocarcinomas, and 34 m

(Wilcoxon test).

See also Table S2.
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that specific biological differences among tissues reside within

the signaling state of the proteomes, which can be probed by

analyzing the phosphoproteome . We first performed 3D-PCA

of all the 7,658 quantified phosphorylated sites (Table S3). The

projections of the data on the plane of the first two and three prin-

cipal components clustered individual samples according to the

tissue of origin and clearly separated the phosphoproteome of

EOCs from that of the two healthy tissues (Figure 3A), implying

that different signaling pathways are activated in the three cell

types. This idea was confirmed by KEGG (Kyoto Encyclopedia

of Genes and Genomes) pathway and GO (Gene Ontology) ana-

lyses. In particular, we observed a strong enrichment for spliceo-

some components as well as the overrepresentation of proteins

involved in cytoskeletal rearrangement in EOC compared to

healthy tissues (Figures 3B–3D). Next, we analyzed the differen-

tially regulated phosphorylated sites among the three cell types

with the LIMMA Bioconductor package (see above and Supple-

mental Experimental Procedures). We found 309 sites abundant

in OSE and FTE, but not in EOC (cluster A); 35 sites present in

both FTE and EOC, but not OSE (cluster B); and 448 highly abun-

dant sites in EOC (cluster C) (Figures 4A and S3A; Table S3). In

total, �10% of the phosphoproteome (792 out of 7,658) was

found to be differentially regulated in the three cell types. This

proportion of regulated phosphorylation sites was consistent

with previous data from large-scale phosphoproteomics of hu-

man cancer cells (Olsen and Mann, 2013). Furthermore, 495 of

the phosphorylated proteins whose sites were differentially regu-

lated among EOC, OSE, and FTE have been previously identified

in ovarian tumors (Zhang et al., 2016) (Figure S3B).

As shown in Figures 3B–3D, GO term analysis revealed a

remarkable enrichment for spliceosome components in EOC

(cluster C), confirming the results of PCA. Cell cycle and chromo-

some organizationwereGO terms enriched in both FTE and EOC

(cluster B) (Figure 4B). Finally, signaling, cytoskeletal organiza-

tion, and focal adhesion were enriched terms in healthy cell

types, both FTE and OSE, as compared to EOC (cluster A) (Fig-

ures 4B and S3C). These findings support the differential activa-

tion of specific signaling networks in each of the three cell types.

The specificity of many protein kinases is encoded in con-

sensus sequences surrounding the serine/threonine residues

that are phosphorylated. Thus, to identify the protein kinases

more active in tumors than in normal tissue, we performed a linear

sequencemotif analysis of the differentially regulated phosphory-

lation sites. This analysis revealed a strong bias toward arginine

and serine in close proximity to the phosphorylated sites in

cluster C compared to the sites in cluster A (Figure 4C), sug-

gesting higher activation of basophilic kinases in tumor cells.
ins

. Missing values have not been considered.

nt samples derived from each of the three cell types. The identified clusters 1–4

ented on the logarithmic scale with intensity below and above the mean color-

ters were selected for further validation.

S1) were subjected to WB analysis with the indicated antibodies. Vinculin was

ults.

TD12 (bottom) in normal OSE, FTE, serous adenocarcinomas, and metastasis

etastases). Data are presented as mean ± SD. *p < 0.001 compared to OSE
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See also Table S3.
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The overrepresentation in EOC of substrate motifs for the baso-

philic kinases protein kinase A (PKA), protein kinase B (PKB, or

AKT), and protein kinase C (PKC) confirmed this hypothesis (Fig-

ure 4D). We then focused on spliceosome components that were

highly enriched in EOC (Figure 4B) and analyzed the 100 phos-

phorylated sites on spliceosome proteins for kinase preferences.

A stronger enrichment for MAPK/CDK substrate sites and the

general overrepresentation of proline-directed sites (64/100) -

against the 26 out of 100 sites enriched for basophilic kinasesmo-

tives - were specifically observed in this subset of Cluster C (Fig-

ures 4E and 4F; Tables S4 and S5).We therefore wonderedwhich

kinases were activated in cancer tissues that could explain the

enrichment for mitogen-activated protein kinase (MAPK)/cyclin-

dependent kinase (CDK), but not basophilic kinase substrates,

in this subgroup of cancer-specific proteins enriched for spliceo-

some components. We noticed that the proline-directed CDK7

was phosphorylated on a peptide covering the kinase domain

activation loop in not only EOC but also FTE (Figures S3D and

S3E; Tables S3 and S4). CDK7 therefore belonged to cluster B

(Figures S3D and 4B). The fact that CDK7 regulates both cell-cy-

cle-related events and polymerase II alpha (POLR2A)-mediated

transcription (Fisher, 2005) may explain why cluster B was en-

riched in nuclear proteins and proteins with a role in the cell cycle

(Figures S3D and 4B). Finally, although our analysis could not

exclude a role for other kinases, the presence of activated

CDK7 in EOC was consistent with the overrepresentation of pro-

line-directed kinase substrates and with the functional category

spliceosome among all the EOC sites (Figure 4).

Of the 26 phosphorylated proteins belonging to the GO term

spliceosome enriched in EOC (cluster C), 14 have previously

been associated to spliceosome core machinery or splicing fac-

tors in cancer (Papasaikas et al., 2015) (Figure 4E). We also de-

tected phosphorylated peptides covering the tandem seven-

amino-acid C-terminal domain (CTD) repeats of POLR2A, whose

phosphorylation is associated to the regulation of transcription

and alternative splicing (Muñoz et al., 2010) (Figures 4E and

S3F). Thus, we tested whether peptides in proteins with splicing

variants were overrepresented in EOC proteome compared to

the proteome of healthy cells. Mapping the 74,566 unique pep-

tide sequences identified in our dataset to the UniProt protein

database identified more than 50% of the peptides matching

to proteins with known alternative splice variants (Figure S3G).

We found a significant overrepresentation of peptides in proteins

with splicing variants among EOC-regulated phosphorylated

peptides (Figure S3H; Table S4), which suggests a higher degree

of splicing in tumor cells compared to healthy tissues. Taken

together, our results suggest crosstalk among CDK7 activation,

POLR2A phosphorylation, and the spliceosome machinery in

EOC (Figure S4).

CDK7 Is Activated in Ovarian Cancer
To test our hypothesis on the CDK7/POLR2A axis in EOC, we

first verified the activation of CDK7 and POLR2A by checking

for their phosphorylation status in primary cells and in a panel

of EOC cell lines. Immunoblotting analysis showed that both

CDK7 and POLR2A were phosphorylated in three independent

cultures of EOC, but not (or very little) in its healthy counterparts

(Figure 5A). The activation of CDK7 in EOCprimary cells was also
3248 Cell Reports 18, 3242–3256, March 28, 2017
confirmed in six different ovarian cancer cell lines (Figure S5A).

These findings validated our phosphoproteomics analysis,

which had assigned activated CDK7 to cluster B (EOC and

FTE; Figure S3D). Furthermore, IHC analysis on tissue biopsy

specimens supported CDK7 phosphorylation only in EOC and

FTE (Figure S5B). A similar pattern of active and total CDK7

was also observed in recurrent high-grade serous ovarian carci-

noma from patients previously subjected to primary debulking

surgery followed by carboplatin/paclitaxel chemotherapy (Fig-

ure S5C; Table S1). Figure S5C shows two representative sam-

ples of recurrent high-grade serous ovarian carcinoma out of

the 14 samples analyzed and found positive for active CDK7.

Network analysis of known CDK7-associated proteins high-

lighted cell-cycle regulation and RNA splicing as enriched bio-

logical functions (Figure S5D; Table S5). We also observed that

29% of the CDK7-associated proteins were related to patholog-

ical conditions, including EOC and other cancer types (Fig-

ure S5D; Table S5), which points to CDK7 as a potential drug

target. Furthermore, this analysis revealed a sub-network of

phosphorylated proteins centered on POLR2A, which were

also identified in our phosphoproteomics dataset on primary

cells (Figure S5E; Table S5). Therefore, our data confirmed the

existence of a functional link between CDK7 and POLR2A

(Kwiatkowski et al., 2014; Nilson et al., 2015).

To validate the crosstalk of CDK7with POLR2A and the CDK7,

proline-directed signature in EOC, we performed a large-scale

quantitative phosphoproteomics experiment in the EOC cell

line OVCAR3. We selected this cell line because it recapitulates

several biological feature of high-grade serous EOC, including

TP53 mutations and substantial gene copy-number alterations

(Domcke et al., 2013). Untreated cells were compared to cells

treated with THZ1, a specific inhibitor of CDK7 that covalently

binds to a conserved cysteine in the kinase domain of CDK7

(Kwiatkowski et al., 2014). The mitogen-activated protein kinase

kinase (MEK) inhibitor U0126 (Duncia et al., 1998) was used as

control (Figure S6A). The specific effects of THZ1 and U0126

treatment on the phosphorylation of POLR2A and extracellular

signal-regulated kinases (ERK), respectively, were confirmed

by WB analysis (Figure 5B). We quantified 13,194 phosphoryla-

tion sites using label-free quantitation (Table S6) and observed

high reproducibility between biological replicates with Pearson

correlation coefficients above 0.75 (Figure S6B). The quality of

this phosphoproteomics dataset was comparable to that

observed in primary cells, as assessed by high reproducibility

of the independent biological replicates (Figures S6B–S6F). By

hierarchical cluster analysis of the difference in phosphorylated

peptide intensity between treated and untreated controls, we

identified four main groups of phosphorylation sites: 1,896 sites

affected by inhibition of CDK7, 3,149 sites affected by MEK inhi-

bition, 4,781 sites affected by inhibition of both kinases, and

3,361 sites that were unaffected by either treatment (Figure 5C).

As expected, linear sequence motif analysis of the amino acid

sequence surrounding the phosphorylation sites revealed a sig-

nificant overrepresentation of proline-directed sites among the

MEK-associated proteins (Roskoski, 2012) (Figure 5D). We

observed overrepresentation of proline-directed sites among

CDK7-associated proteins as well, but these sites also have sig-

nificant enrichment of arginine in �3 position (Figure 5D). The



A
4035302520151050

Spliceosome

Cell cycle

Ribosome
Focal adhesion

ErbB signaling pathway

-log pvalue

Cluster A: up-regulated in FTE/OSE
Cluster B up-regulated in FTE/EOC
Cluster C: up-regulated in EOC

B

C

E

454035302520151050

PKC kinase
Akt kinase

PKA kinase
MAPKAPK1 kinase

14-3-3 domain
CDK1,2,4,6 kinase

ZIP kinase
CDK kinase
ATM kinase

-log pvalue Substrate  Motif Cluster C 

C
luster A

:
up in FTE

 and O
S

E
C

luster B
:

up in FTE
 and E

O
C

C
luster C

:
up in E

O
C

D

F

Cluster C

Cluster A

25

-25

P 
va

lu
e=

 0
.0

5
%

 d
iff

er
en

ce

P
-s

ite

-6      -5      -4      -3      -2      - 1                1       2      3        4       5        6

88

-88

P 
va

lu
e=

 0
.0

5
%

 d
iff

er
en

ce

-6      -5      -4      -3      -2      - 1              1       2        3       4       5       6

P
-s

ite

PRPF3

SLU7

RBM25
U2AF2

PRPF4

SRSF9

RBM8AHNRNPCDDX5

SRSF3

POLR2A

SRSF2 SRSF6 SRSF11

PRPF4B

TRA2B

SRRM2

THRAP3

RBM4

SRRM1

HNRNPA1

BUD13

SNRNP200

CWC22

PNNHNRNPU

significant after PCA

Transcription Factors

Kinases

Cluster C: spliceosomespliceosome core components

splicing factors

ABC
ABC
ABC

MAPK/CDKs kinases motif

Basophilic kinases motif
Both

Chromatin organization

Protein localization
Cytoskeleton organization
Chromosome organization

26   27   28    29   17    16   15    14   13     4      3     2      1
FTEOSE EOC

- 4 4

log Intensity

(legend on next page)

Cell Reports 18, 3242–3256, March 28, 2017 3249



dual RXXSP motif overrepresented among CDK7 targets in

OVCAR3 cells was analogous to the enriched phosphorylation

site sequence motif found among spliceosome components in

patient-derived EOC (Figure 4F). The similarity with primary cell

phosphoproteomewas further confirmed by the overrepresenta-

tion of RNA splicing and spliceosome components among the

CDK7-associated proteins. On the contrary, MEK-associated

proteins were enriched for proteins involved in cell-cycle regula-

tion (Figure 5E). We also quantified several CDK7-regulated

phosphorylated peptides containing serine 5 (S5) in the CTD re-

peats of POLR2A (Figure 5F). The phosphorylation of S5 in the

CTD repeats of POLR2A is crucial for POLR2A function (Kwiat-

kowski et al., 2014; Muñoz et al., 2010). Interestingly, many of

these sites were identical to those found upregulated in EOC

(Figure 5F; Tables S4, S5, S6, S7, and S8). Both a highly intercon-

nected sub-network centered on POLR2A and several transcrip-

tion factors and spliceosome components were found among

the CDK7-associated proteins in OVCAR3 cells, with a signifi-

cant fraction of phosphorylated proteins that overlapped with

those identified in patient-derived EOC (Figures 5G and S6G;

Table S6). Altogether, these findings confirmed the functional

crosstalk among CDK7 activation, POLR2A phosphorylation,

transcription, and spliceosome components in EOC cell lines

and patient-derived cells.

As CDK7 has recently emerged as a prominent target for treat-

ing cancer (Cao and Shilatifard, 2014; Christensen et al., 2014),

we tested EOC sensitivity to THZ1 using five EOC cell lines

(OVCAR3, SKOV3, HEYA8, COV362, and COV318). THZ1 treat-

ment reduced the activation of POLR2A after 4-hr treatment as

well as cell proliferation after 72-hr treatment in all cell lines (Fig-

ures 6A and 6B). The inhibition of phosphatidylinositol 3-kinase

(PI3K), one of the few genes known to be mutated in ovarian

cancer (Cancer Genome Atlas Research Network, 2011), with

LY294002 was used as a control. Finally, THZ1 treatment did

not affect the proliferation of HeLa, A549, or MCF7 cancer cells

(Figure 6C), which are of cervix, lung, and breast cancer origin,

respectively, implying that CDK7 inhibition is specific for EOC.

To verify the causal link between CDK7 activation and POLR2A

phosphorylation, we transfected OVCAR3, COV318, or COV362

cells with two different small interfering RNA (siRNA) sequences

against CDK7. Ablation of CDK7 reduced dramatically the phos-

phorylation of POLR2A in all the cell lines (Figure 6D). Moreover,

CDK7 knockdown also resulted in the inhibition of cell prolifera-

tion for all three cell lines (Figure 6E), thus supporting the role of

CDK7 in EOC cell proliferation.
Figure 4. The EOC Phosphoproteome Is Enriched in Proteins Belongin

(A) Hierarchical clustering of the 792 phosphorylated sites differentially expressed

clusters termed A–C are highlighted on the right and separated by a black line. T

intensity below and above the mean color-coded in blue and red, respectively.

(B) Biological Processes (GO term) enriched in each of the three clusters.

(C) Sequence motif analysis of the ± six-amino-acid residues flanking the regula

(D) Kinases substrate motif enriched in cluster C.

(E) Network of proteins belonging to the GO term spliceosome (cluster C; Tabl

phorylated sites were found in the PCA analysis (Figure 3A) are represented with a

pink, respectively. The light blue and pink clouds surrounding two distinct group

splicing components shown in Papasaikas et al. (2015). The color of the text is b

(F) Sequence motif analysis of the ± six-amino-acid residues flanking the 100 pho

See also Figures S3 and S4 and Tables S4 and S5.
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Altogether, our data show the specific activation of a CDK7/

POLR2A axis in EOC cells and implicate CDK7 in the regulation

of EOC cell proliferation.

DISCUSSION

Our proteomics and phosphoproteomics approach, applied to a

low amount of patient-derived epithelial cells, uncovered a pre-

viously unknown molecular signature of EOC, paving the way

for a better understanding of EOC biology and for unique oppor-

tunities of therapeutic intervention.

The analysis of less than 1 mg protein for each ovarian tissue

reached a deep coverage of differentially expressed proteins

and phosphorylation events in line with previous studies (for

instance, Elschenbroich et al., 2011; Kim et al., 2008; Waldemar-

son et al., 2012). It is worth noting that we reached such coverage

of signaling events under steady-state growing conditions. While

on one hand this allows an unbiased analysis, on the other it does

not address the possible effect of individual hormones or growth

factors.We believe that this simple and robust protocol can easily

be implemented in translational laboratories focusing on cancer

signaling and phosphoproteomics. Soon, it may even be routinely

used in the clinic and complement IHC analysis. As methods for

sample preparation rapidly improve (Batth andOlsen, 2016; Kulak

et al., 2014), mass spectrometry-based proteomics is now robust

and sufficiently reproducible to allow large-scale analysis of clin-

ical material (Guo et al., 2015). Phosphoproteomics in particular

promises to become a powerful complementary technology to

transcriptomics and single-cell RNA sequencing for the analysis

of patient samples. This is due to the fact that the analysis of pro-

tein or mRNA abundance alone cannot always predict changes in

the level of phosphorylated proteins and hence the activity state

of cellular signaling networks. Deregulation of protein phosphory-

lation is a key driver of tumorigenesis; thus, the analysis of cancer

phosphoproteomes is crucial not only for gathering information on

cancer cell biology but also for drug discovery (Dias et al., 2015;

von Stechow et al., 2015). Targeting signaling networks might

emerge as the most effective personalized treatment for patients

in the near future.

In this study, phosphoproteomics of a specific cell type (pa-

tient-derived epithelial cells) resulted in the identification of a

unique cancer signature that was also validated by IHC on whole

sections and by TMA. Therefore, primary cells represent a useful

in vitro model to recapitulate, at least to some extent, the histo-

pathological complexity of cancer. We envision that, together
g to Spliceosome

in four independent samples derived from each of the three cell types. The three

he intensity of phosphorylated sites is presented on the logarithmic scale with

ted phosphorylation site identified in cluster C compared to cluster A.

e S4) based on STRING and visualized in Cytoscape. Proteins whose phos-

pink border; transcription factors and kinases are color-coded in light blue and

s of proteins are based on the comparison of this dataset with the analysis of

ased on the sequence motif analysis shown in (F).

sphorylation sites belonging to the GO term spliceosome enriched in cluster C.



Figure 5. Phosphoproteomics Identifies CDK7-Associated Proteins

(A) Lysates from three independent samples derived from each tissue (see Table S1) were subjected to immunoblotting with the indicated antibodies. Tubulin was

used as loading control. The experiment was repeated three times with analogous results.

(B) OVCAR3 cells treated with DMSO (control), the CDK7 inhibitor THZ1, or the MEK inhibitor U0126 were subjected to immunoblotting with the indicated an-

tibodies. THZ1, but not U0126, inhibits POLR2A phosphorylation. Tubulin was used as loading control. Lanes 1–3 represent independent biological replicates.

(legend continued on next page)

Cell Reports 18, 3242–3256, March 28, 2017 3251



with tumor xenograft models (Ricci et al., 2014), proteomics of

patient-derived cells will be used to study the biology of EOC

and other cancer types at an unprecedented molecular resolu-

tion to identify tumor-specific markers. Similar analyses need

to be conducted on samples from tumor of different origin,

thus improving our molecular understanding of tumorigenesis.

EOC is most often diagnosed at a rarely curable late stage.

Proteomic profiling of patient-derived samples may lead to the

discovery of predictive markers that would guide the therapeutic

decision-making process (Lee and Kohn, 2010). For example,

PHGDH has been associated with cell proliferation (Du et al.,

2010) and metabolic alterations in cancer (Luo, 2011). Here, we

demonstrated that the high expression of PHGDH correlates

within high-grade serous EOC (Figure 2). Thus, our data provide

the rationale for testing the inhibition of PHGDH activity as a

novel approach for EOC treatment (Pacold et al., 2016). Another

relevant aspect of our analysis is the possibility to contribute to

clarify the issue of EOC origin. Both the proteome and the phos-

phoproteome of primary cells exhibited clusters of hits in com-

mon between FTE and EOC, but no significant overlapwas found

between EOC and OSE (Figures 2, 3, and 4). These results,

therefore, lend further support to the notion that at least a high

proportion of high-grade serous EOC derives from the FTE

(Bowtell et al., 2015).

Our phosphoproteomics analysis pointed to the cyclin-

dependent kinase CDK7 as a potential player in EOC develop-

ment. In particular, we observed that the association of CDK7

phosphorylation with the activation of its target, RNA polymer-

ase II (POLR2A), was a specific feature of patient-derived can-

cer samples and cancer cell lines (Figures 4, 5, and 6). Indeed,

CDK7 phosphorylation was also detected also in FTE cells,

although to a lesser extent, but no POLR2A activation was

found. Mechanistically, it is possible that CDK7 activity in FTE

was too low to allow for POLR2A phosphorylation. Alternatively,

CDK7-mediated activation of POLR2A occurs in a tumor cell

context-dependent manner. Regardless of the underlying

mechanisms, these data suggest that the CDK7/POLR2A

axis, rather than CDK7 activation alone, is involved in EOC

development, and further research is warranted to elucidate

how this axis influences the pathobiology of EOC. Our results

might open a novel therapeutic window for the treatment of

EOC, in line with recent studies reporting that blocking CDK7

with THZ1, a covalent inhibitor of CDK7 (Kwiatkowski et al.,

2014), specifically killed triple-negative breast cancer cells

(Wang et al., 2015). Perhaps CDK7-dependent phosphorylation

of POLR2A (Figure 6) is responsible for cancer cell proliferation,

in line with recent data linking POLR2A activation with colon
(C) Hierarchical clustering of proteins differentially phosphorylated upon treatmen

the left and separated by a black line. Protein intensity is presented on the logari

coded in red and blue, respectively.

(D) Sequence motif analysis of the ± six-amino-acid residues flanking the phosph

(bottom) proteins.

(E) GO term biological processes enriched in the CDK7 or MEK cluster.

(F) List of the phosphorylated sites of POLR2A identified in OVCAR3 that are CD

POLR2A. S2 and S5 refer to the position of the phosphorylated serine in the rep

(G) Network based on STRING and visualized in Cytoscape of the CDK7-associa

shown on the left. For a complete list, see Figure S6 and Table S6. CDK7-assoc

See also Figures S5 and S6 and Table S6.
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cancer (Liu et al., 2015). For example, the CDK7 inhibitor

THZ1, which does not interfere with CDK7 phosphorylation

(Kwiatkowski et al., 2014), can be combined with the blockade

of transcriptional regulators (Asghar et al., 2015; Gonda and

Ramsay, 2015). However, future studies should address how

one can control for the dual role of CDK7 during cell cycle

and activation of transcription (Fisher, 2005). The EOC-specific

signature CDK7/POLR2A/spliceosome component is an attrac-

tive target for pharmacological intervention, as alternative

splicing is a key element in gene expression and has been asso-

ciated to diseases (Tazi et al., 2009).

In the context of cutting-edge and multidisciplinary analysis of

cancer signatures, determining changes in both the transcrip-

tome and proteome will complement classical IHC studies,

providing molecular biomarkers and targets for personalized

treatments. Identifying cancer biomarkers by proteomics inves-

tigations, for example by quantitative phosphoproteomics of ex-

vivo-cultured patient-derived primary cells, could lead to better-

informed decisions about treatment, which translates into real

benefits for patients.

EXPERIMENTAL PROCEDURES

Tissue Samples

All tissue samples were obtained upon informed consent from women (age

45–75 years) undergoing surgery at the Gynecology Division of the European

Institute of Oncology (Milan) and collected via standardized operative pro-

cedures approved by the Institutional Ethical Board (European Institute of

Oncology, Milano, Italy). Table S1 contains a list of the samples together

with the patients’ diagnosis and the use of each sample in this study.

Cell Culture

To derive OSE and FTE cells, healthy ovarian cortical tissues and fimbriae were

incubated with dispase and red blood cells were eliminated. EOC cells were

derived either from peritoneal fluid (ascites) or from tumor biopsy specimens.

All primary epithelial cells were cultured on collagen-I-coated plates for a

maximum of three passages. All cell lines were purchased from ATCC and

maintained in the indicated conditions.

Cell Lysis and Assays

After the indicated treatment, cell extraction and immunoblotting or cell prolif-

eration assay were performed as described previously (Francavilla et al.,

2013).

Immunofluorescence

Primary cells were fixed with 4% paraformaldehyde (PFA) and incubated with

primary antibodies for 2 hr at room temperature. All secondary antibodies were

incubated for 1 hr at room temperature, and nuclei were counterstained with

DAPI. Coverslips were then mounted with Mowiol. Images were acquired

with an OLYMPUS BX63 microscope (203 objective) and processed by the

software Fiji.
t with the CDK7 or MEK inhibitor. The four identified clusters are highlighted on

thmic scale with treated/control intensity below and above the mean colored-

orylated site identified among the CDK7-associated (top) or MEK-associated

K7 regulated and/or found in patient-derived cells. CTD, C-terminal domain of

etitive stretch of amino acids found in the CTD of POLR2A.

ted proteins (from C). Only the proteins also found in patient-derived cells are

iated proteins enriched in the POLR2A cluster are shown on the right.



Figure 6. CDK7 Inhibition Affects the Proliferation of Ovarian Cancer Cells

(A) Lysates from different ovarian cancer cell lines, either untreated or treated with DMSO, the PI3K inhibitor LY294002, or the CDK7 inhibitor THZ1 for 4 hr were

subjected to immunoblotting with the indicated antibodies. Vinculin was used as loading control. The experiment was repeated three times with analogous

results.

(legend continued on next page)
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IHC Staining

The IHC analysis was carried out on four healthy ovaries, four healthy FTE, four

primary EOC, and 14 recurrent EOC (Table S1). Immunostaining was per-

formed on 3-mm sections from formalin-fixed, paraffin-embedded tissue sam-

ples. Dako EnVision+ System-HRP Labeled Polymer was used for detection, in

combination with Dako chromogen substrate (Liquid DAB+ Substrate Chro-

mogen System). Sections were counterstained with hematoxylin. Pictures of

stained sections were acquired with the scanner Aperio ScanScope XT (203

objective). IHC staining was assessed by a trained pathologist (G.B.).

TMA

TMA analysis was carried out as previously described (Zecchini et al., 2008).

Pictures of stained TMAs were acquired with the scanner Aperio ScanScope

XT (203 objective). IHC scoring was performed by a trained pathologist

(G.B.).

Sample Preparation for Mass Spectrometry

The pellet of primary cells or of OVCAR3 cells was dissolved in denaturation

buffer, and 700 mg protein from each sample was analyzed. Proteins were di-

gested with endoproteinase Lys-C and sequencing grade modified trypsin.

Peptides were purified using reversed-phase Sep-Pak C18 cartridges and

eluted with 50% acetonitrile. A small amount of the eluted peptides (1%)

was taken for proteome analysis. The remaining peptides were used for the

analysis of phosphoproteome as previously described (Jersie-Christensen

et al., 2016).

Mass Spectrometry Analysis

Peptide mixtures were analyzed using an EASY-nLC system (Proxeon) con-

nected to a Q-Exactive mass spectrometer (Thermo Fisher Scientific), as

described previously (Kelstrup et al., 2012).

Raw Files Analysis

Raw data were analyzed by the MaxQuant software suite (Cox and Mann,

2008), version 1.4.1.4, using the integrated Andromeda search engine (Cox

et al., 2011). Only peptides with an Andromeda score >40 were included.

Data Analysis

The samples were grouped in three categories representing EOC, FTE, and

OSE and we used the LIMMA package of Bioconductor in R (Wettenhall and

Smyth, 2004) to detect significant changes in abundance among the three

groups.

Statistics

All experiments were performed at least three times. The mass spectrometry

data were normalized before further analysis. p values were calculated by Stu-

dent’s two tailed t test, Wilcoxon test, or Fisher’s exact test, as indicated. A

statistically significant difference was concluded when p < 0.05 or p < 0.001

as reported in the figure legends.

ACCESSION NUMBERS

The accession number for the mass spectrometry proteomics data reported in

this paper is ProteomeXchange: PXD003531 (Vizcaino et al., 2010) (project

name: Proteomics of Primary cells derived from Ovarian Cancer; reviewer ac-

count details: reviewer24193@ebi.ac.uk; password: DdbisBPj).
(B) Cell proliferation of ovarian cancer cells treated for 72 hr with the indicated inh

compared to untreated cells or cells treated with DMSO. Black line represents u

(C) Cell proliferation of cancer cells of different origin treated for 72 hr with THZ1

Black line represents untreated cells at time 0.

(D) Lysates from OVCAR3, COV318, or COV362 cells, either not transfected or tr

siRNA, were subjected to immunoblotting with the indicated antibodies.

(E) Cell proliferation of EOC cell lines treated as in (D) for 72 hr. Data represent them

treated with control siRNA. Black line represents untreated cells at time 0.
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