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Abstract

The large availability of different types of cameras and lenses, together with

the reduction in price of video sensors, has contributed to a widespread use

of video surveillance systems, which have become a widely adopted tool to

enforce security and safety, in detecting and preventing crimes and danger-

ous events. The possibility for personalization of such systems is generally

very high, letting the user customize the sensing infrastructure, and de-

ploying ad-hoc solutions based on the current needs, by choosing the type

and number of sensors, as well as by adjusting the different camera pa-

rameters, as field-of-view, resolution and in case of active PTZ cameras

pan,tilt and zoom. Further there is also a possibility of event driven auto-

matic realignment of camera network to better observe the occurring event.

Given the above mentioned possibilities, there are two objectives of this doc-

toral study. First objective consists of proposal of a state of the art camera

placement and static reconfiguration algorithm and secondly we present a

distributive, co-operative and dynamic camera reconfiguration algorithm for

a network of cameras. Camera placement and user driven reconfiguration

algorithm is based realistic virtual modelling of a given environment using

particle swarm optimization. A real time camera reconfiguration algorithm

which relies on motion entropy metric extracted from the H.264 compressed

stream acquired by the camera is also presented.

Keywords [Distributed camera networks,Coverage maximization,Video

analytics,H.264 compressed domain]



“An idea that is developed and put into action is more important than an idea that

exists only as an idea”

-Gautama Buddha-
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Chapter 1

Introduction

In this chapter we introduce the history and various applications associ-

ated with video based surveillance. After the introduction we present the

relevancy of camera placement and reconfiguration for video surveillance

systems. A brief overview of the research in the area of camera placement

and configuration is presented. Brief introduction of the proposed solution

and its innovative aspects are also discussed.

1.1 Video based surveillance

Traditionally humans have been used for the job of visual surveillance until

the cusp of 20th century. Human based collaborative surveillance system

is a truly distributive surveillance system as each node acts as independent

yet collaborative part of the system. However since the start of the 20th

century video cameras are increasingly being used for surveillance, which is

quite cost effective and rigorous when compared with direct deployment of

humans. The first surveillance system was installed in Germany to watch

over the launch of rockets, it was designed and developed by noted ger-

man engineer Walter Bruch. In US first closed circuit surveillance system

was developed by Vericon in 1949. Early surveillance systems were just

used for monitoring as there was no way of recording and storing the data.

1



1.1. VIDEO BASED SURVEILLANCE CHAPTER 1. INTRODUCTION

The development of reel-to-reel media enabled the recording of surveillance

footage. These systems required magnetic tapes to be changed manually,

which was a time consuming, expensive and unreliable process, with the

operator having to manually thread the tape from the tape reel through

the recorder onto an empty take-up reel. Due to these shortcomings, video

surveillance was not widespread. VCR technology became available in the

1970s, making it easier to record and erase information, and use of video

surveillance became more common. Development of digital video compres-

sion and advancement in storage technology using semiconductor devices

has made video storage quite inexpensive. Owing to this fact surveillance

footage up to a month is being stored in most of the deployed systems. Dig-

ital video is generally recorded in one of the video compression standards

formulated by ITU-T.Most of the present day data is stored in H.264 [70]

compressed format. Video based surveillance is used in many areas of

application of which we list out few of the important.

Crime prevention An analysis published by researchers from Northeastern

University and Cambridge University in 2009, discusses the impact of video

surveillance on crime rate under various scenarios [69]. There was up to 51

percent decrease in crime rate in parking lots, up to 23 percent decrease

in case of public transport system and up to 7 percent in general public

spaces. As we can see from the study, video surveillance helps in crime

reduction just by deployment of the system. There is also a possibility of

surveillance footage giving us the evidence for any form of the crime that

has been committed.

Industrial process Continual monitoring of work environment is essential

in certain industries, where in circumstances can easily deteriorate be-

coming dangerous for the workers involved. In fact industries dealing in

2



CHAPTER 1. INTRODUCTION 1.2. CAMERA PLANNING

dangerous chemical substances are required to install video surveillance

under the mandate of the law.

Critical area monitoring As a part of day to day life and also some admin-

istrative duties, there are certain critical situations and tasks where there

will be utmost need for caution and transparency. Some of the situations

include critical areas in defence establishments, which house technologi-

cal know how of the systems, and also critical financial transactions in

banks and economic establishments. These kind of areas require round the

clock surveillance by the stakeholders. Video surveillance is highly helpful

in such situations. Markets and banks use constant video surveillance to

overcome these issues.

A typical surveillance monitoring split screen after the deployment of

cameras in commercial establishment looks like as in Fig.1.1. Given the

variety and the complexity of environment and video feed from various

cameras, there is a definite need for intelligent and collaborative framework

to address the deployment, data gathering and summarization of the video

streams from various cameras.

1.2 Camera planning

Given the critical tasks that a video surveillance system performs in modern

day scenarios, coverage of the environment involved is critical for many of

these tasks. In any given urban scenario, the number of sensors deployed as

a part of surveillance system is high. Hence a network of sensors deployed

has many possible configurations depending on the various combinations

of camera parameters. Depending on the placement and coverage, the cost

of the system deployed may vary dramatically. Centralized planning of

the camera network placement and configuration will result in consider-

3



1.2. CAMERA PLANNING CHAPTER 1. INTRODUCTION

Figure 1.1: A typical surveillance split screen

able increase in efficiency of the deployed system in terms of coverage and

quality of coverage. However in most scenarios the camera parameters

are set manually, depending on the individual judgement of the personnel

involved. Another important factor overlooked is camera placement with

respect to the light placement. Such a deployment generally leads to the

sub optimal video quality along with large number of blind spots in the

surveillance environment. The availability of a planning tool for the auto-

matic set-up of the sensing infrastructure given the map of the environment

to be covered, would allow optimizing the configuration of the camera net-

work, minimizing both the number of sensors and the black spots. This

procedure would be useful to carefully plan fixed installations but also to

achieve fast and efficient planning of temporary deployments (e.g., sports

events, fairs, exhibitions), where a rapid design is required, and spaces are

typically reconfigurable, as in presence of removable walls, pieces of furni-

4



CHAPTER 1. INTRODUCTION 1.3. CAMERA RECONFIGURATION

ture, equipment, and illumination systems. Furthermore, automatic tools

can be designed so as to take into account additional constraints, such as

the presence of obstacles, areas that are more difficult to reach with cables,

areas subject to privacy constraints etc.

1.3 Camera reconfiguration

Once the deployment of the system has been optimally achieved, there is

a need for continuous monitoring of the area. As there is always chance

of change in the environment or in the system itself. For example after

the deployment is done, occlusions may occur partially or completely cov-

ering the view of one or more cameras. In such scenario there would be

a definite blind spot in the area being previously covered by the camera.

Similar issues could arise in presence of camera malfunctioning. There

are also cases where in environment changes dynamically. For example in

surveillance scenarios, there may be a high likelihood of people moving in

one particular area at certain time and another area might have higher

likelihood at another time. In such scenario cameras need to reconfigure

themselves to observe people rather than pointing to areas with no move-

ment. Reconfiguration becomes much more important and flexible when

we are dealing with PTZ cameras. A system capable of detecting such

changes and reconfiguring itself, would require far less number or cameras

and also would capture more information of the same event at better reso-

lution. Hence there is a need for smart camera network which reconfigures

itself based on the changing environment. The advancement in camera

production technology and the increased sophistication of the devices, sig-

nificantly contributed to the diffusion of pan-tilt-zoom (PTZ) cameras, of-

ten replacing, or complementing the camera networks, usually consisting of

ordinary static cameras. In fact, the capability of repositioning the sensors

5
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to satisfy specific coverage requirements, tremendously increases the flexi-

bility of the network. The freedom to change the camera pan and tilt also

after the physical deployment, may also help in simplifying the topology of

the network, since with a reduced number of devices capable of being re-

configured, it is possible to satisfy the requirements in coverage that would

otherwise imply the use of a large number of static cameras to perform the

same task. PTZ cameras can also be utilized to design an intelligent dis-

tributed smart camera network, in which information is shared between the

cameras in order to perform collective tasks like reconfiguration, detection

and tracking. These aspects do not only increase the monitoring capabili-

ties of the network, but they also contribute to a better observation of the

events that take place in the area, as a reconfigurable camera system can

be utilized to track moving objects by continuously changing the camera

parameters according to the rules defined by the system architecture.

For the reasons mentioned above, cameras reconfiguration is an active

and relevant area of research. In this work we present a cooperative and

distributed camera reconfiguration algorithm for PTZ camera networks,

using motion field entropy and visual coverage as the metrics to be opti-

mized. In fact, while motion field entropy can be used to represent the

status variations of the monitored environment, it is however important to

guarantee the maximum visual coverage of the space. Furthermore, camera

reconfiguration algorithms require to be as reactive as possible, reducing

the computational burden to analyze the video, and satisfying real-time op-

eration. In order to achieve this, we base our algorithm on the H.264 [70]

stream, directly provided by the camera, and carry out the analysis in the

compressed stream, instead of acting in the traditional pixel domain. To

reduce the computational load required by the algorithm, we utilize some

existing features available in the H.264 bit stream, so as to skip the video

decoding and video feature extraction.

6
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1.4 The solution

There are two principal objectives of this doctoral study. One of the ob-

jectives is to propose a novel, low complexity camera placement and static

re-configuration algorithm for multi camera network and the other is to

propose a generic, smart, distributive,low complexity and dynamic recon-

figuration algorithm based on video analytics of the events that occur in

deployed environment.Overview of the system that we propose to develop

is shown in Fig.1.2

Figure 1.2: Overview of the proposed system

1.4.1 Camera placement and static reconfiguration

Camera placement generally involves arriving at an optimal locations and

parameters for the given number cameras in the network, so that coverage

of the network is maximized and the blind spots in the deployed environ-

ment are minimized. Both planning and reconfiguration are achieved in

the virtual domain by modelling both camera and environment. Optimal

solution should be obtained, given a set of user constraints pertaining to

possible installation locations of the camera. Static reconfiguration takes

7
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into account the static or long term changes that occur in the environments.

Examples are camera malfunction and occlusions.

The Research in this areas is broadly classified into three categories.

• Generate and Test Approach: In Generate and Test approaches all the

constraints and models are incorporated into a test simulation model

and solution is obtained by evaluating all possible configurations.

• Synthesis Approach: In case of synthesis approach we model the given

constraints as analytic functions. Despite being the most popular ap-

proach of the three, the task is somewhat complicated as it involves

so many parameters, and modelling a constraint in such high dimen-

sional space is difficult. In this approach various models are used to

describe different constraints, and then these models are solved for

various camera parameters using iterative solutions.

• Expert Systems: The Expert Systems approach addresses the high-

level aspects of the problem in which a particular viewing and illumi-

nation technique is chosen from a set of previous data which has been

accumulated over time. For instance, whether front or back illumi-

nation is more appropriate for the particular object and the features

to be observed. An expert system is primarily used for advice for a

certain set of tasks.

Considering the range of applications for which multi camera networks

are used we aimed at developing an algorithm, which is more generalist

and will work for range of applications with only a slight change in func-

tionality. We would also like to mention that the proposed algorithm will

be a combination of all three major lines of research in this area. As the

solution space and the static reconfiguration would be prompted by user

inputs, the user would also be able restrict the solution space according to

the application for which he intends to deploy, in line with the principles of

8
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expert systems. We want to model the aspects that are to be optimized as

analytic functions as is the case of synthesis approach. Similarly, we would

like to optimize the coverage by generating and simulating the camera net-

work response to the environment using virtual modelling technique, which

is in line with ’generate and test approach’.

Innovative aspects In general most of the present day camera planning al-

gorithms, concentrate on coverage maximization with a simplistic camera

model which has uniform coverage and also assume uniform lighting. How-

ever we feel that such a description of the problem is an oversimplification.

The innovative aspects of our approach are listed below.

1. Camera model We propose a three dimensional, realistic and innova-

tive camera model based on ray projection, with number of rays being

proportional to the resolution of the camera. Such a representation

allows us to measure the coverage in terms of pixel density.

2. Distortion modelling Optimization is also focused on minimizing per-

spective distortion as seen by the camera, made possible by the ray

projection camera model.

3. Environment model We also model the environment to its slightest

detail using modelling parameters like colour, texture, reflection coef-

ficient, and diffusion coefficient using POVray software [50]

4. Light modelling We model the light sources, often ignored in coverage

maximization problem. There is a possibility of modelling an array of

light models like circular, area, parallel etc. The attenuation rate of

light is also modelled based on the environment.

5. Entropy Along with coverage and distortion, entropy of the view as

seen by the cameras is also made a subject of optimization in order

9
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to get best possible views for the cameras. As the entropy or quality

of view is highly dependent on illumination and focal length of the

camera.

1.4.2 Dyanamic reconfiguration

Dynamic reconfiguration algorithm for the camera network helps in reduc-

ing the cost and also improving the efficiency of the system as discussed in

Section 1.3. The requirements of the algorithm are as follows

1. Real time operability Any dynamic system requires a real time re-

sponse, hence we need propose a real time video event detection and

information gathering algorithm. Which also requires low bandwidth

requirement in order to avoid delays.

2. Distributive algorithm We intend to propose a solution which is ro-

bust to sensor failures, hence the algorithm needs to be distributive.

Distributive architecture can also be easily implemented using net-

work of low power embedded devices rather than a high complexity

centralized computational unit.

3. Generic Since the video surveillance systems are deployed for variety

of applications, the solution should be as general as possible. Hence

the reconfiguration algorithm should not be biased towards any par-

ticular surveillance application.

Innovative aspects Apart from being distributive, low complexity and generic,

the algorithm has following innovative aspects.

1. Compressed domain The proposed algorithm completely operates in

compressed domain, thereby eliminating the need for decoding the
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video stream. This reduces the complexity as there is no feature ex-

traction, which is generally computationally very intensive. Com-

pressed stream also brings down the bandwidth requirement.

2. Motion entropy In this thesis we propose a generic quantitative mea-

sure for information in video directly derived from compressed video

bit stream. It will be the basis of the camera reconfiguration and cam-

era handoff. This metric can be used in many ways to achieve various

computer vision tasks like tracking, segmentation, anomaly detection

etc.

3. Scalability The Proposed algorithm is robust to sensor malfunction

and is easily scalable to any number of cameras without any further

addition of infrastructure or hardware.

4. Customizability Although proposed system is generic and is not biased

towards any computer vision application. User can easily train the

system to achieve desired result in many computer vision application

areas.

5. Deployment Algorithm relies on motion field as a basis for many of the

derived metrics. Which is extracted from the compressed bit stream.

Owing to the low complexity, the algorithm can be easily embedded

in the video encoder platform inside the camera hardware thereby

eliminating any requirement of additional hardware.

1.5 Thesis organization

Thesis is organized into six chapters, with each chapter describing the re-

search problems which constitute the doctoral study. Chapter 2 describes

the camera planning part of the thesis, state of the art, proposed algo-

rithms, and validation are discussed. Chapter 3 in turn describes the

11
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problem of light planning, proposed solution and its validation. Chap-

ter 4 entirely constitutes the discussion about video analytics, state of the

art and its relevance to the smart camera reconfiguration. We also propose

a generic metric for visual information in compressed domain. Proposed

metric is validated by utilizing it for object detection,segmentation and

fall detection. Chapter 5 discusses the reconfiguration of camera networks.

State of the art, proposed algorithm based on generic information metric

and its validation are also discussed. In chapter 6 we present the summary

of the study along with the many possible future works which we intend

to undertake.

12



Chapter 2

Camera Planning

In this chapter we discuss about the camera planning and static reconfigu-

ration. In order to serve various surveillance environments, both 2D and

3D camera planning models are presented. 2D model is more suited for

large environments and is of less complexity, whereas 3D model is more

accurate and is suited for complex indoor environments.

As discussed in the previous chapter, most of the algorithms in the state

of the art consider camera planning as a simplistic coverage maximization

problem. Camera models used are also uniform and fixed, such an assump-

tion is highly over simplistic. Further such a model would be only valid

for static cameras. Rendering these algorithms inapplicable for PTZ cam-

eras which are increasingly replacing the static cameras. Many of other

critical parameters like lighting and other radiometric properties are also

overlooked. As a solution to these problems we present two camera models

for planning based on the size of environment.

2.1 State of the art

A recent survey by Liu et al [40] summarizes the historical developments in

the area of camera networks planning and coverage modeling, along with

an overview of the research field also highlighting the open problems and

13
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challenges. In this section we will briefly introduce how the problem of

coverage maximization has been faced in literature, presenting the most

important milestones in this research area.

A very simple model to describe the problem of coverage maximization

is the so-called art gallery problem (AGP), where the minimum number of

guards is to be determined for a given area [12]. A variant of the AGP is

known as the Watchmen Tour Problem (WTP), where guards are allowed

to move inside the area perimeter [7]. The objective in this case is to

determine the optimal number of guards and their route to guarantee the

detection of an intruder with an unknown initial position. Both approaches

can be useful to understand the problem, but are generally not suitable for

the application in real-world scenarios, when a real deployment of sensors

is required. Therefore, more sophisticated algorithms have to be adopted

to take into account the most important elements of the surrounding world,

which include constraints on observability [62], but also camera parameters

(field of view, focal length), and illumination parameters.

The HEAVEN system by Sakane et al [59] was proposed with the goal

of modeling the coverage exploiting a simulation tool. HEAVEN uses a

spherical representation to model the sensor configuration. To this aim, a

geodesic dome is created around the object, tessellating the sphere with

an icosahedron that is further subdivided in a hierarchical fashion by re-

cursively splitting each triangular face into four new faces. This process

can be implemented at different levels of detail, depending on the available

computational resources. The viewing sphere is centered on the object and

its radius is equal to a distance (chosen a priori) from the sensor to the

target object.

Another category of methods, defined in literature as synthesis ap-

proaches, aim to model the coverage constraints as analytic functions, and

formulating the problem in terms of satisfaction of constraints. The pro-
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cess typically turns out to be more complex as it involves many parameters,

resulting in a high-dimensionality space, in which the optimization has to

be performed. Nevertheless, and in case the computational cost is not the

first priority, modeling constraints as analytic functions can bring some

advantages. In fact, each requirement generates a geometric constraint,

which in turn is satisfied in a domain of admissible locations in the three-

dimensional space. The set of locations generated by each constraint can

then be intersected in order to determine the ones that best satisfy all con-

straints simultaneously. An early work in this area is proposed by Cowan

et al [13], in which camera locations are generated also with respect to

illumination planning.

A considerable portion of the present day research is carried out fol-

lowing these principles, also thanks to the ever-increasing available com-

putational power, different models can be defined for the relevant camera

parameters using iterative solutions. For example in [21] Erdem et al pro-

pose a camera positioning algorithm based on a binary optimization tech-

nique and using polygonal spaces presented as occupancy grids. Bodor et

al [5] propose an algorithm to optimize views so as to provide the highest

resolution of objects and motion in the scene.

Among the most recent proposals in camera positioning and reconfig-

uration algorithms, the work by Mittal et al. [45] presents a probabilis-

tic framework for object visibility in a multi-sensor environment. In the

work by Piciarelli et al. [52], the authors address the problem of camera

networks reconfiguration, by adjusting pan, tilt, and zoom. Expectation

Maximization is then used to maximize the coverage of salient portions

of the observed scene, identified by motion activity maps. In [47] Mun-

ishwar et al propose a framework for target coverage based on the spatial

decomposition of the network and optimizing the solution for individual

partitions. A recent work on camera planning by Morsley et al [46] dis-
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cusses how an iterative approach can be used to solve a complex problem

like camera positioning, stressing the fact that also for a limited number of

cameras, hundreds of thousands of configurations are possible. Similarly,

Song et al [63] describe a generalized framework for multi-camera tracking

using the Kalman consensus algorithm, along with reconfiguration using

game theory approaches.

In the work by liu et al [37] the authors propose a generalized statis-

tical framework for optimal deployment of large scale camera networks.

Although the proposed solution is evaluated in a simulated environment

it gives another perspective of the deployment problem, especially with

respect to large camera networks with special focus on user constraints.

Similarly in [41] authors propose a camera view quality criteria based on

application specific and environment specific functions However the algo-

rithm is targeted at quality of view rather than for coverage. In [11] Cheng

et al try to optimize the visual sensor networks with respect to the barri-

ers encountered in the coverage, however this is yet another paper which

addresses the optimization problem in application specific sense. State of

the art in this area is quite rich with lot of works evaluating the problem

in many unique perspectives, however there are many glaring deficiencies

which render most of the algorithms inapplicable in real scenario. The

deficiencies are summarized below.

1. Simplistic camera model : Camera model used in most of the cases very

simplistic, it is generally a triangle in 2D based algorithms or pyramid

and cone in most 3D algorithms. Such an assumption overlooks the

fact that object which is near to the camera has much more detail than

the one very far away even though both are covered. Also it overlooks

the another important aspect of black spots near the camera location.

Further the camera is assumed to be static with a fixed parameters.

This assumption is obsolete as the PTZ cameras have become more
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common, which have many configurations for a given location.

2. Light Modelling All the works in this area assume uniform illumina-

tion. Such an approximation might as well be valid during the day,

but is not at all acceptable during the night. Illumination is one of the

most critical aspects of any video surveillance system, as it has dra-

matic impact on accuracy and performance of most video processing

and computer vision algorithms. Hence for a successful deployment

of the surveillance system a proper estimation of lighting is absolutely

necessary.

3. Simplistic environment model Most of the works represent the envi-

ronment as a simple 2D map with lines representing objects or obsta-

cles. Such an assumption is simply un viable as they cannot correctly

describe the sensor response of the camera to that of the deployed

environment. Thereby completely ignoring the qualitative aspect of

the video that has to be recorded.

4. Distortion There are two types of distortions in a video, one is lens

distortion while the other is perspective distortion. Lens distortion

is easily rectified using interpolation and other techniques, however

perspective distortion cannot be eliminated as it results from the view

angle of the camera. None of the state of the art address this problem.

5. Reconfiguration Most of the systems proposed seem to think that cam-

era placement as one time task. Camera locations arrived at, by such

algorithms might work very efficiently but will at once become obso-

lete if any of the camera in the network fails. Such a situation would

require complete re installation of cameras, with algorithm provid-

ing new locations for remaining set of cameras. Therefore there is a

definite need for algorithm which provides a better configuration by
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optimizing other parameters apart from location.

2.2 2D modelling

In very large environments, blind spot that typically appears on the im-

mediate front of the camera is largely negligible. Most of the state of the

art algorithms which employ 2D camera model are useful in such scenario

However there are certain glaring inadequacies which have been addressed

by our 2D camera and environment model.We propose to model global

and local coverage as analytic functions of the camera parameters. While

global coverage aims at maximizing the visibility of the entire area, local

coverage focuses the attention on a limited number of hot spots or objects

of interest. For the optimization procedure, we adopt the PSO algorithm.

PSO [16] demonstrated to be effective in solving complex non-linear mul-

tidimensional discontinuous problems in a variety of fields [17]. Unlike

other multiple-agent optimization procedures such as Genetic Algorithms

(GA) [24], PSO is based on the cooperation among the agents rather than

their competition. Another motivation that lead us to the choice of PSO is

due to the random deployment of obstacles, as well as the topology of the

environments, making it difficult to find appropriate mathematical formu-

lations. During PSO optimization procedure, the particles of the swarm

iteratively change their positions in the solution space, searching for the

best location. The solution space is defined by selecting the parameters to

be optimized and giving them a certain range of variation. Consequently,

each parameter corresponds to a particular dimension of the solution space,

and each location in the solution space corresponds to a particular trial so-

lution. The goodness of the trial solutions is evaluated by means of a

suitable fitness function, which provides the link between the optimization

algorithm and the physical world.
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2.2.1 Global and Local Coverage

In order to model global coverage, we consider three conditions that need

to be satisfied, namely pixel density, quality of view, and light intensity.

Pixel density refers to the fact that the information obtained from an

image or a video is dependent on the number of pixels per surface area

of the environment. Pixel density can be modelled as a function of the

field-of-view and the resolution of the camera. In order to model the pixel

density, we propose to represent the camera as a point source and each

pixel of the CCD as the corresponding ray that emerges from the point

source. Accordingly, far away areas in the environment receive less rays,

corresponding to lower pixel density, whereas areas closer to the camera will

be intersected by a higher number of rays, thus achieving higher resolution.

An example about the mapping of the floor plan to the camera CCD is

illustrated in Fig. 2.1.

Figure 2.1: Pixel Mapping of Grid. Each area of the floor plan is captured by a number

of pixels that depends on the distance from the camera.

The quality of view of a target is related to the relationship between

feature detectability and distance of the target. Given a sensor resolution,
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the recognition of an object will strongly depend on its distance from the

camera: if it is too distant details will be unintelligible; if it is too close,

the whole object might not be visible entirely due to limited field-of-view

of the camera. To take into account this parameter, we model the vis-

ibility constraint as a Gaussian distribution that is computed along the

ray emerging from the camera. Fig. 2.2 shows the visibility of the object

modeled a Gaussian distribution. The optimal distance is located at the

center of the Gaussian, and needs to be specified according to the size of

the objects to be monitored (human, cars, etc.).

The light intensity at the object location will also affect quality of the

captured image, and it is therefore a very important parameter to be in-

cluded in the model. According to the standard decay of the light intensity,

we model it as an inverse square function of the distance from the light

source. This model is not exhaustive for illumination modeling, since it

does not take into account for example, of reflections and shadows. The

term is meant to model the light intensity of specific spots in the envi-

ronment, so as to change the cameras positioning also according to this

parameter.

As far as the local coverage is concerned, each area of interest (doors,

windows, statues, paintings, other objects, etc.) is modeled as a Gaussian

function of distance from the camera. The mean of the Gaussian defines

the optimal distance of the specific target from the camera, namely where

the quality of view for that particular target is maximum. This value

is related to the size of the target as well as its relevance in the scene.

We have also planned to include light intensity as a parameter in target

coverage, measuring the expected intensity of light at the target location.

For instance, if a target falls under an area of low light intensity, the camera

has to be placed closer to it.

Further details about the parametrization of all the above mentioned
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Figure 2.2: Quality of view. The optimal distance for observation depends on the objects

of interest for the specific scene.

elements are provided in next sections.

2.2.2 Camera Model

The parameterization of the camera model, as discussed above, includes

the three aspects of pixel density, quality of view, and illumination.

2.2.3 Assumptions

All simulations we present are carried out on the (X − Z) ground plane,

thus discarding the vertical dimension (Y ). From the optimization point

of view, the extension to the third dimension is straightforward. However,

it is worth noting that it is common sense to position the cameras either

on the ceiling or on the walls and usually at the same height, to first limit

the accessibility to non authorized users, and then to improve the visibility

on the scene. Under these assumptions, it is possible to approximate the

optimal camera positioning also regardless of the Y dimension. However,

from an algorithmic point of view the algorithm is scalable and it would

21



2.2. 2D MODELLING CHAPTER 2. CAMERA PLANNING

only require the definition of an additional constraint.

Equations and Constants

As we have pointed out in the previous section, the quality of view of

an object is modeled as a Gaussian distribution positioned along the ray

emerging for each pixel of the camera, as given in Eq. 2.1

Q(di) =
1√
2πσ

exp

(
−(di −Dopt)2

2σ2

)
(2.1)

where di is the distance of the cell on the i-th ray hitting it, and Dopt is

the optimum distance at which the object has maximum quality of view.

In the current scenario Dopt is chosen as a constant, which depends on the

application and varies on the purpose of camera deployment.

The second term we need to define is related to the information about

the light intensity at a given location, defined as in Eq. 2.2

L(dj) =
P

d2
j

(2.2)

where P is the power of the j-th light source with j ∈ {1 . . . S}, and dj

is the distance of the point from the light source.

As for the local coverage, the model is in Eq. 2.3:

Tk = exp

− (dk −Dopt
k )2

2σ2
dk
∗

S′∑
j

L(dj)

 (2.3)

where dk is the distance of the k-th target from the Nearest Visible

camera, σdk is the variance of the target coverage, and Dopt
k is the optimum

distance from camera for the k-th target where the quality of view is max-

imum. Ldj is the light intensity at the target location given by summation

of the contribution from all the light sources (S ′ ≤ S) hitting the target.
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While calculating the contribution of each light source, blockage of light

due to the presence of obstacles is also taken into account. Smaller values

for σdk will keep the cameras strongly focused on the targets, while higher

values for σdk will relax the constraint, accepting targets to be also decen-

tralized in the field-of-view of the camera. The parameter is in general

related to the environment size, as well as to the coverage requirements.

In order to determine the areas that are visible in the map, we have to

fix a threshold for visibility for the quality of view function. This threshold

is calculated in accordance with [20]. According to the standard 100 Lu-

mens is the required amount of light for casual observance of surroundings.

Lumens is a SI derived unit for the luminous flux, which is different from

radiant flux as it also takes into consideration human eye sensitivity. Now

we classify a given cell in a grid to be covered if and only if the total lumi-

nous flux in the cell is at least 100 Lumens, and the total quality of view

as defined by summation of Q(di) of individual rays that pass through cell,

is at least 0.5. Since the scale used here is 4 pixels per meter, 100 Lumens

corresponds to 1 watt per square meter according to most commercial light

manufacturers [1].

Algorithm

The proposed algorithm can be described in five steps, as explained here

after.

Step 1 - Determine the solution space. After reading the map, we need

to identify the solution space, consisting on the perimetral and internal

walls, and defined in terms of position and maximum orientation span.

In case the provided map also includes the presence of targets, given the

number of cameras, the algorithm will optimize the position of the devices,

by either focusing more on global or local coverage depending on the input

requirements.
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Step 2 - Calculate Global coverage. In order to calculate the global cov-

erage, the environment map is divided into a grid of NxN pixels. The

granularity of the grid is chosen depending on the map scale, as well as on

the accuracy in positioning that we want to achieve. The finer the grid,

the more accurate will be the result, at a cost of a higher computational

complexity. For each camera, the number of rays that pass through each

cell of the grid are computed. While estimating the number of rays, ob-

structions caused by the obstacles are also taken into account. The higher

the number of rays that cover a grid cell, the higher the pixel density, as

calculated in Eq. 2.4:

C(m,n) =
R∑
i=0

Q(di) ∗
S∑
j=0

L(dj) (2.4)

where C(m,n) is the final quality of view metric obtained for a specific

cell, while m and n give the location of the cell in the map. As we can see

from Eq. 2.4, this metric will weight the quality of view function measured

as in Eq. 2.1 considering the number of rays that intersect the cell (R).

Conversely, we can say that the number of pixels occupied by a particular

cell in the video frame is directly proportional to the number of rays that

pass through that cell in the grid. The light intensity component is instead

obtained by summing up the contributions of all light sources in that point

(S).

We then label the cell as “visible” only if the quality of view is higher

than a predefined threshold, fixed in accordance with a recommendation

from the European standard for lighting levels based on activity [20]. The

global coverage is estimated as the number of visible cells divided by total

number cells in the grid (Eq. 2.5).

CG =
Cellsvisible
Cellstotal

(2.5)
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Step 3 - Include Local coverage. For a given camera position the local

coverage is given by Eq. 2.3. Accordingly, overall local coverage is given

by Eq. 2.6:

CT =
1

T

T∑
k=0

Tk (2.6)

where T is the total number of target objects.

Step 4 - Fitness Function. We need now to define a fitness function

that will be used by the PSO algorithm as a target for the optimization.

The proposed fitness function combines both global and local coverage,

and each term can be weighted according to the users’ preferences and the

application requirements (Eq. 2.7).

F (CG, CT ) = (1− CG) ∗ w + (1− CT ) ∗ (1− w) (2.7)

In Eq. 2.7 CG represents the global coverage and CT represents the

local (target) coverage; w is the weight assigned by the user to balance the

tradeoff between global and local coverage. We can notice from Eq. 2.7

that, as soon as the global and local coverage approach 100%, the fitness

function converges to zero.

Step 5 - PSO. PSO is applied to the solution space defined in Step 1. At

each iteration, the particle position and velocity is updated, until conver-

gence. Convergence is usually achieved when the fitness function reaches

a minimum, or when a termination criterion is fulfilled (e.g., maximum

number of iterations).

2.3 3D modelling

To further enhance the accuracy and to also include various other factors

in camera planning we also present a 3D camera planning algorithm. This

algorithm is highly useful in scenarios where a more accurate modelling of
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the camera and environment are paramount. This model includes many ad-

ditional features like radiometric properties in terms of environment model.

Camera model is based on classic pin-hole camera model and is completely

replicated to obtain visual quality and perceived distortion.

2.3.1 Contribution

In this sub section we highlight the novel elements of our approach com-

pared to the solutions available in the literature. They can be summarized

into four distinctive features, as described in the next paragraphs.

Camera modeling

Most algorithms for camera networks planning use a model for the camera

that does not take into account the sensitivity in terms of quality of the

captured information. This is for example the case of surveillance systems,

which goal is to implement efficient algorithms capable of recreating the

human observation for event detection and analysis tasks. We propose a

realistic camera model, which simulates the camera view, and assesses the

visual quality for a given environment, by analyzing the scene in a virtual

domain. The advantage of using a virtual representation enables a highly

reliable evaluation of the camera configuration, providing a quantitative

metric, both in terms of visual quality and coverage. Pictorial representa-

tion of this ray projection camera model is shown in Fig.2.3

Illumination and radiometric properties

In computer vision applications, illumination is known to be a very critical

element, when setting up the camera network. We propose to model the

light sources with a proper attenuation and diffraction model, as it would

be observed in a real scenario. This will be computed in accordance with
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Figure 2.3: Ray projection on to the environment from focal point

the radiometric properties of the surfaces, namely their color and their

reflection coefficient.

Distortion

Distortions can be introduced at different levels of the acquisition and pro-

cessing stages. In particular, lens and perspective distortions are inherent

in the captured videos, and can seriously affect the system performance,

requiring image rectification. Such situations can be handled a priori, by

selecting the configuration of the camera network that reveals the smallest

level of distortion.

Scalability and user interaction

Most of the algorithms in the present state of the art do not consider the

evolution of the environmental conditions over time, which should trigger

a reconfiguration of the camera network. This is for example the case of

sensors failures, introduction of new sensing equipment, changes in the

environmental illumination, as well as spatial re-arrangements of pieces of

furniture and objects to be monitored.
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2.3.2 Metrics for visual quality assessment

Visual information

A good visibility of the observed scene is a fundamental step for a cor-

rect application of automatic analysis tools. Therefore, while planning the

camera configuration, several factors have to be taken into account. For

example, one has to position the cameras so that the image sensors are

exposed to the correct amount of light. Videos captured under good il-

lumination conditions will require less pre-processing and maximize the

gathered information. However, gauging directly the sensor response of

the camera is not a viable option, since planning should be done before

the actual positioning of the sensorial equipment in the environment. In

our system we deploy the virtual cameras in the synthesized domain. We

successively use the image generated by the virtual model to assess the

sensor response for various camera configurations. Considering that our

virtual model also includes the configuration of the light sources, such an

approximation turns out to be particularly realistic.

In order to measure the amount of information present in the captured

image we propose to start from the histogram of the image, by determining

the bins distribution. In fact, in presence of an under exposed image, the

histogram will be biased towards the lower levels, while for an over exposed

image, the histogram will likely be biased towards the higher intensity

levels.

In order to quantify the quantity of information in the image, we com-

pute the entropy, a metric that has already demonstrated to be effective

in measuring the quality of the captured image [27]. For a given configu-

ration of the i-th camera, and the corresponding captured image Ii, with

i ∈ {1, . . . , N}, let the intensity levels be Ω = (l1 < l2 < . . . li · · · < lN),

and the information content in the image be given by
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H(Ω) =
n∑

pi∈Ω

−pilogpi (2.8)

In Eq. (2.8) pi is the normalized region under each intensity level li ∈ Ω,

considering that the entropy is directly proportional to the information

content of the image. We then maximize the image information, given a

solution space, which consists in our case of all possible combination of the

camera position (X, Y, Z), pan, tilt, and zoom:

H(Ω)opt = argmax

(
n∑

ri∈Ω

−pilogpi

)
(2.9)

where i represents a single instance of the solution space.

Instead of considering the standard RGB space, the analysis is carried

out in the LAB color space, because of its property of being perceptually

uniform, meaning that the same distance computed over different points of

the color space, would correspond to an equal variation from a perceptual

viewpoint.

Fig. 2.4 shows three sample images generated with our virtualization

tool, at different levels of exposure, and the corresponding histogram dis-

tributions.

Distortion

There are basically two types of distortions, namely lens distortion and

perspective distortion. Generally speaking, in most cases lens distortion

can be corrected directly in the acquisition phase, and may not significantly

affect the quality of the image. Perspective distortion, instead, primarily

depends on the angle of view and focal length and can considerably dete-

riorate the visual quality of the collected data. Furthermore, perspective
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Figure 2.4: Images captured under different light exposure and corresponding histograms:

under exposed (left), correctly exposed (center), and over exposed (right).

distortion is not uniform across the image, therefore while planning the

camera network we have to make sure that the area of interest of a given

environment falls under the portion of image, which exhibits the minimum

amount of distortion. In Fig. 2.5 we show an example of the varying levels

of distortion in an image. The image consists of three spheres positioned

at different distances from the camera. All spheres have a radius of 0.5m.

We can observe from the figure that the sphere in the left most part of the

image is subject to severe distortion and appears like an ellipsoid with a

large difference between the major axis and minor axis. The level of dis-

tortion then progressively decreases, until, the sphere in the extreme right

of the image preserves the original shape. It is clear from the observation

that the camera should be positioned in such a manner that objects of

interest is not distorted.

We propose to measure the perspective distortion using image regis-

tration. By projecting the image points onto the object of interest, and

measuring the ratio of projected distance along the horizontal and vertical

directions, we can estimate the ratio of the perspective distortion. In an
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Figure 2.5: Example showing different levels of perspective distortion as captured by the

camera.
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ideal scenario, this ratio should be equal to the aspect ratio of the image.

In order to estimate the distribution of the distortion we need to compute

the mean and variance across the projection of the image plane on the area

of interest (Fig. 2.6). The mean value of the distortion D can be defined

as:

µD =
1

Ai
∗
∮

X(xi + dxi)−X(xi)

(Z(yi + dyi)− Z(yi)) ∗R
(2.10)

where Ai is the area of the entire image, xi and yi correspond to the

variations along X and Y on the 2D image plane, and R is the aspect

ratio. In the discrete domain, the equation becomes:

µD =
1

(Nw − 1) ∗ (Nh − 1)
∗

Nw−1,Nh−1∑
i=1,j=1

X(i+ 1)−X(i)

Z(i+ 1)− Z(i)

(2.11)

where Nw and Nh is the number of pixels in the horizontal and vertical

directions in the 2D image plane, respectively. Similarly, variance can be

calculated as:

σ2
D =

1

(Nw − 1) ∗ (Nh − 1)
∗

Nw−1,Nh−1∑
i=1,j=1

[
X(i+ 1)−X(i)

Z(j + 1)− Z(j)
− µD]2

(2.12)

After computing the mean and variance of the distortion, we can formu-

late a suitable cost function, resulting as the configuration that minimizes

both terms:

Dmin = argmin(µD) + argmin(σ2
D) (2.13)
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Figure 2.6: Projection of the area of interest on the image plane, to compute the distortion.

Coverage

With the term coverage, we refer to the portion of the environment visible

by each camera. Coverage has been historically modeled through a fixed

cone deriving from the field of view of the camera (2D or 3D), with uniform

distribution of quality. We believe though that this assumption is too

simplistic and may be valid only for very simple and static scenarios. In

our case we present a model of the field of view, in which rays are projected

from each pixel into the environment, thus assuming each pixel in the

camera as a light emitter hitting a portion of the observed real world.

Such a model should be as close as possible to the real world scenario, and

allows tracking the changes in the distribution of ray projections according

to the relative changes in the camera parameters. In order to compute the

percentage of the area covered by each camera, the environment is divided

into a grid of cells of equal square size. Each pixel is projected onto the

real ground plane and classified as belonging to a specific cell. The cells,

which have at least one ray intersecting them are classified as visible, and

all others are considered invisible to the camera.

Depending on the inclination of the camera and on the focal length, the

distribution of rays clearly changes. An optimal solution would require the
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maximum spread in the distribution of rays, so as to maximize the number

of visible cells. The number of rays intersecting the grid cell is a function

of the cell location (X, Y, Z), focal length f , camera location x, y, z, pan θ

and tilt φ:

Nrays(X, Y, Z) = F (X, Y, Z, x, y, z, φ, θ) (2.14)

Also in this case we can formulate a cost function for the area covered

in terms of the number of cells, which at least have one pixel projection on

them, normalized by the total number of cells. The maximization of this

condition implies:

Covmax = argmax

[
Count(Nrays(X, Y, Z) >= 1)

Ncells

]
(2.15)

2.3.3 Problem formulation and implementation

As for the metrics described in the previous paragraphs, entropy and distor-

tion are camera-specific and mutually exclusive, i.e, they do not influence

one with each other. Coverage, instead, has to be calculated collectively.

Initially, we formulate the cost function for both entropy and distortion

for each individual camera. Entropy, mean, and variance of distortion are

described in Eq. (2.8), Eq. (2.11), and (2.12). In order to normalize the

cost the equations can be expressed as:

Di = exp(−(µD + σ2
D)) (2.16)

Ei = [1− exp(−H(Ω)i)] (2.17)

and for each camera i, these values are maximized when entropy is max-

imum and distortion is minimum. In order to merge these two metrics

with the number of rays hitting the surface, the measure is multiplied by

the normalized value of the number of rays. Unless specified differently,
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entropy and distortion are equally important in the cost function. Taking

all these factors into account the formulation becomes:

Ci(Ei, Di) =
1

Nrays
∗ [Di/2 + Ei/2] (2.18)

Let there be N cameras that have to be positioned in the environment,

and let the area covered by each camera be defined as Ai for the i-th

camera. The total area covered by the network is given by:

⋃
∀i

Ai =
∑
∀i

Ai −
∑
i<j

Ai

⋂
Aj + ....+ (−1)n+1

⋂
∀i

Ai (2.19)

which corresponds to the sum of the individual contributions in terms

of coverage for the single cameras, minus the redundant area (overlap).

Hence, our cost function should increase the overall visible area while min-

imizing the overlap between cameras field-of-view, as shown in Eq. (2.20):

CV (∀i) =
1

Aenv
∗[∑

∀i

Ai −
∑
i<j

Ai

⋂
Aj + ...+ (−1)n+1

⋂
∀i

Ai

]
(2.20)

where Aenv is the total area of the environment. Combining the global

coverage and individual camera measures we obtain the final cost function:

Cfinal = wtask(CV (∀i))+

(1− wtask) ∗

[
1

N
∗ (

N∑
i=0

Ci(Ei, Di))

]
(2.21)

where wtask ∈ {0, . . . , 1} is application dependent and defined by the user.
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2.3.4 Particle swarm optimization

Solving a problem involving six parameters describing the 3D geometry of

the environment is a rather complex task, made even more critical due to

the presence of random obstacles, and the use of traditional problem solving

techniques like steepest descent is not a viable solution. Hence we propose

to use a global optimization technique, namely the PSO, which has been

already adopted in literature to solve camera planning problems [46] [74].

PSO [16], is a robust stochastic search technique based on the movement

and intelligence of swarms. It has demonstrated to be effective in solving

complex non-linear multidimensional discontinuous problems in a variety

of fields [17]. Unlike other multiple-agent optimization procedures such as

Genetic Algorithms (GA) [24], PSO is based on the cooperation among the

agents rather than their competition. Three main advantages of the PSO

over the GA can be identified. In the first place, PSO requires a reduced

algorithmic complexity, since it considers only one simple operator, that

is the particles velocity updating, while the GAs use three operators and

the best configuration among several options of implementation needs to

be chosen. Then, PSO parameters are easier to calibrate and to manip-

ulate. Finally, PSO has a major ability to prevent the stagnation of the

optimization process, thanks to a more significant level of control of its

parameters [58] [18]. Further PSO has been widely used for coverage max-

imization in visual sensor networks [25, 71, 73]. Further details about the

optimization algorithm, can be found in the relevant literature [16] [17].

2.3.5 Algorithm and implementation

As far as the camera model is concerned we have carried out the simulations

using the classic pinhole camera model. The rays, which number is equal

to the number of pixels in the sensor, are projected from the camera center

36



CHAPTER 2. CAMERA PLANNING 2.3. 3D MODELLING

on the surface plane. The orientation of the image plane is defined by the

pan and tilt of the camera (Fig. 2.7).

Figure 2.7: Model of the camera

[50]

In order to measure the visual information (as described in Section

2.3.2), we need a virtual environment to simulate the camera view, vi-

sualize and evaluate the obtained cameras position. For this purpose we

use Persistence of Vision, or POV-Ray, a ray tracing software [50]. This

software has a unique scene description language that can be used to repli-

cate the objects in the real world, including their radiometric properties.

Similarly, light sources can also be modeled, by specifying the attenuation

along the travel distance. Matlab is then used to simulate the ray trac-

ing and for image registration, starting from the simulated camera views

obtained from POV-Ray, using the geom3D library [35].

The proposed algorithm, consisting of five main steps, can be described

through the pseudocode shown in algorithm 1. Similarly pseudo code for

subsequent particle swarm optimization is given by algorithm 2.

Step 1 - Determine the solution space. After identifying the perimetral

and internal walls we need to determine the extent to which pan and tilt

can be varied based on the cameras location on the walls. The environment
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information is then converted into the POV-ray scene description language

and the PSO is initialized. At each iteration of the algorithm, the particles

are updated based on the fitness function.

Step 2 - Calculate entropy and distortion. Camera views are generated

using POV-ray and the values for entropy and distortion are evaluated to

obtain the camera measure in Eq. (2.18).

Step 3 - Calculate global coverage. The global coverage can then be

computed, also taking into account the overlapping areas among the cam-

eras. As described in the previous section, the surface area of the object

of interest is divided into a grid of cells of equal size, and the coverage

measure is calculated as described in Eq. 2.15.

Step 4 - Calculate configuration cost. The values obtained for each

camera are then combined according to Eq. (2.21), where user or task-

specific adaptation is also taken into account.

Step 5 - PSO. The fitness function is updated and the set of particles

in the swarm optimization are updated until the termination criterion is

reached.

2.4 Evaluation

This section deals with testing and evaluation of both 2D and 3D cam-

era planning models. Test scenarios and obtained results are extensively

discussed.

2.4.1 2D model

In this sub section we describe the scenarios used for the evaluation of

camera planning and static reconfiguration, using 2D camera model. As

mentioned in section 2.2 2D modelling of the environment is especially
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input : Surface S of object of interest divided into N ×M cells of equal size

input : Number of Cameras NC

input : Map I Description in POV-ray scene description language

input : Camera Resolution

output: Fitness Value

Initialize camera positions from PSO ;

Initiate the number of rays for each camera based on the video resolution;

Generate camera view using POV-ray ;

EOV ; % Quality of View of Cameras

DM ; % Mean of perspective distortion

DV ; % Variance of perspective distortion

goodCells = 0 ; % Number of cells with good coverage

C = 0; % Obtained coverage for each cell

for i← 1 to N do

for j ← 1 to M do

for k ← 1to NC do

pixelDensity ←RayIntersect(i, j, k);

C(i, j) = C(i, j) + pixelDensity(k);

end

if C(i, j) >= 0 then

goodCells ++ ;

end

if C(i, j) > 1 then

goodCells– ;

end

end

end

for k ← 1to NC do

EOV (k)← Entropyofview(k);

DM (k)← Distortion_mean(k);

DV (k)← Distortion_variance(k);

CM = CM + NormalizedRayIntersectCount(exp(−(DM(k) + DV(k)))/2 + (1−
exp(−EOV(k))/2);

end

Cg ← goodCells
N∗M ; % Compute global coverage

% The final output is a combination of global coverage and camera measure with

weight wG

F (CG,CM) ← 1− [Cg ∗ wG + CM(1− wG)];

Return F (CG,CM);

Algorithm 1: Fitness calculation
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input: Number of Particles

input: Number of Iterations

InitializeParticles;

for i← 1 to Number of Iterations do

for j ← 1 to Number of Particles do

F(j) = Fitness(j);

if F (j) <pBest(j) then

pBest(j ) ← F(j);

end

end

gBest = min(pBest(j));

for j ← 1 to Number of Particles do

CalculateVelocity(j);

UpdateVelocity(j);

end

end

Algorithm 2: Pseudocode of the PSO.

relevant in large environments with large number cameras. It offers a low

complexity alternative with only a slight reduction accuracy.

Scenarios

Without loss of generality and considering that cameras are usually posi-

tioned at the same height, simulations are performed in two dimensions,

thus discarding the height coordinate. Moreover, the number of rays cor-

responding to the pixels is downsampled by a factor 4, in order to make

the computational complexity tractable. Considering a standard camera

resolution of 640x480 pixels, this implies using 160 rays emitted by each

camera, which still represents a fairly dense sampling of the space. Uni-

form Illumination with a light intensity of 100 Lumens is considered for

the purpose of simulation in order to decrease the complexity. Such an as-

sumption is reasonable in any environment under the daylight conditions.

The field-of-view is fixed in the range between 5 and 90 degrees and opti-
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mum distance for quality of view is fixed at 40 pixels in the map, which

corresponds to sbout 10 meters in the real environment.

In order to assess the validity of our approach, we tested the algorithm

on three different maps. As far as the simulation procedure is concerned,

we initially determine the cameras position on the map, assuming that no

object is present. This is equivalent to optimizing only with respect to

global coverage.

After the initial setup, nine different objects of interest are placed in the

map. At this point the algorithm is required to re-align the cameras, keep-

ing the positioning of the sensors fixed. This implies that in determining

the new camera parameters, only local coverage is considered, thus setting

w = 0.

The environment maps used for the testing are shown in Fig. 2.8. Cam-

eras can be positioned along internal and perimeter walls of the environ-

ment. In the picture we also show the positioning of the targets that will

be introduced after the initial setup of the camera infrastructure is found.

Experimental Results

As explained in Section 2.4.1, we will present the results obtained in the

selected scenarios by first illustrating the quality of the global coverage

achieved in the initial positioning, and then focusing on reconfiguration for

local (target) coverage.

Initial Positioning Initially, the environment in which the cameras have to

be deployed, do not include targets. Hence, the goal of initial placement is

global coverage maximization. In order to do so, we assume that initially

cameras are zoomed out (maximum field of view). At this stage, the aim

of the algorithm is to find the best position to achieve optimum global

coverage. In the obtained maps, different colors are used to illustrate the
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(a) (b)

(c)

Figure 2.8: Maps used for testing, with assignment of objects of interest.
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quality of the coverage in over the entire map. Areas which have maximum

coverage (i.e. when C(m,n) is greater than 100) are represented in white,

and areas which fall in the range 10 <= C(m,n) < 100 are represented in

green. Blue indicates areas, which satisfy 0.5 <= C(m,n) < 10. Red areas

represent zones of the environment, which are visible to cameras but fall

below our visibility threshold of 0.5. Black areas are not visible to cameras

due to the presence of obstacles.

Reconfiguration After the initial positioning is completed, 10 targets are

randomly distributed over the map. The goal of reconfiguration is to max-

imize target coverage; however, in most surveillance scenarios camera de-

ployment is fixed and does not allow repositioning after installation, unless

PTZ cameras are used. Hence, according to our model the only recon-

figurable parameters are pan and optical zoom. The algorithm is re-run

considering the absolute position of the cameras fixed, thus optimizing

target coverage.

Experiment 1 The input map to the algorithm is shown in Fig. 2.8(a). A

uniform illumination of 10 Lumens is considered, and the initial positioning

is performed with Optical and Digital Zoom both set to 1x, while pan is

a free parameter along with the x-z positions that can be adjusted to

obtain maximum coverage.The coverage map after the initial placement

of cameras is shown in Figure 2.9(a). After the Initial positioning of the

cameras, nine random targets are distributed over the entire environment

map as we can see from Figure 2.9(a) and Table 2.1 these targets are not

covered properly. The results obtained are shown in Figure2.9(b)

Table 2.1 summarizes the number of targets present in respective areas

before and after reconfiguration. The initial positioning of cameras is com-

pletely based on global coverage whereas, reconfiguration is entirely based
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Table 2.1: Target coverage for Map 1.

Configuration White Green Blue Red Black CT CG

Initial 0 2 0 7 1 0.3883 0.5015

Final 0 6 2 0 1 0.7443 0.4193

on local coverage. As can be seen from the figures in Table 2.1, CT has

increased both from quantitative and qualitative viewpoint. Initially only

two targets were sufficiently covered but after realignment only one target

has been left out and eight are covered. CG in turn signifies the global

coverage, as we can see from the table global coverage has decreased by

about 20 percent after reconfiguration, this is on the expected lines since

the reconfiguration is done entirely on the basis of target coverage.

Experiment 2 In the second experiment, the map of the environment is

changed and all the other conditions are maintained the same. Initial

coverage Map after the coverage based placement is given by Figure 2.10(a)

and the final placement after the reconfiguration is shown in Fig. 2.10(b).

Similar to the previous experiment results are presented in Table 2.2. As

we can see from Table 2.2, initially only three targets were in the visible

area but after the reconfiguration algorithm, a total of eight targets fall

under the visible area. Expectedly target coverage CT has increased from

0.5808 to 0.7764, since the number of targets covered has increased by 50

percent. Similarly there is a considerable reduction in global coverage.

Table 2.2: Target coverage for Map 2.

Configuration White Green Blue Red Black CT CG

Initial 0 2 1 5 1 0.5808 0.5433

Final 0 7 1 0 1 0.7764 0.4373

Experiment 3 In the final experiment we apply the algorithm on Map

3 under similar conditions and the initial and final coverage Maps are
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(a)

(b)

Figure 2.9: Map 1: (a) Initial positioning, and (b) after reconfiguration.
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(a)

(b)

Figure 2.10: Map 2: (a) Initial positioning, and (b) after reconfiguration.
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provided in Fig. 2.11. Table 2.3 summarizes the results obtained.

Initially there were only five targets in the visible area while all the

other targets were not covered. However, after the reconfiguration a total

of eight targets have become visible, while only two of them are not visible.

The corresponding CT has increased from 0.5461 to 0.8000. Decrease of

the global coverage is in expected range,

From the above experiments it is reasonable to say that performance of

the algorithm is consistent across various environment, maintaining in all

cases more than 50% improvement in the target coverage.

Table 2.3: Target coverage for Map 3.

Configuration White Green Blue Red Black CT CG

Initial 0 0 1 4 5 0.1973 0.5058

Final 0 4 3 2 1 0.6797 0.4806

2.4.2 3D model evaluation

In this sub section 3D model evaluation is presented, such a model is highly

accurate and descriptive. It is very useful when there is no limit on com-

putational complexity and requires highly accurate camera configuration.

Scenarios

In order to evaluate the performance of our optimization tool we present

here the results obtained in two virtual scenarios. We also demonstrate the

benefits of the solution when applied in a real context by comparing the

camera deployment obtained by our method with the existing pre-installed

cameras configuration. Eventually, we will apply common feature extrac-

tion and detection algorithms to demonstrate the improved efficiency of our

solution. In order to correctly represent the environment, its description

includes:
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(a)

(b)

Figure 2.11: Map 3: (a) Initial positioning, and (b) after reconfiguration.
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1. Geometry of all walls and floor in terms of planes, in a 3D coordinate

system. In case an object cannot be described in geometrical terms,

its nearest approximation is obtained as a combination of regular ge-

ometric shapes.

2. Texture information of the walls, ground plane, and other objects,

described using the POV-ray scene description language.

3. Radiometric properties, as diffusion of light over the surface and re-

flectivity.

4. The configuration of the illumination sources has also to be specified

(approximately) in terms of color of the light, power, shape, location,

and type (circular, cylindrical, parallel, spot etc.)

Virtual scenarios In order to test the algorithm, we will report here for

the sake of demonstration two different realistic environments of medium

size. The first environment (Fig. 2.12(a)) is a large empty hall of 15X15m2

in size, with walls that are 3m high. The room exhibits a texture in light

gray. The diffusion of the walls is set to 0.5, and the reflection coefficient

to 0.3. The remaining 0.2 corresponds to dissipation.

The second scenario, see Fig. 2.12(b), maintains the same properties

of the first map, but in addition we introduce a T -shaped wall in the hall

with the center of the T coinciding with origin of the environment reference

system. The introduction of the obstacle severely alters the environment

in terms of light spread and reflections.

In the third scenario, we introduce two C-shaped walls symmetrically

placed in between the Map. The idea is to explore the performance of

algorithms under different obstacle conditions. Two C-shaped walls are

added and the overhead view of the environment is shown in Fig. 2.12(c)
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(a) (b) (c)

(d)

Figure 2.12: Overhead view of the three maps and the lighting system.

As far as the lighting system is concerned, 16 white lights, each of them

with a wattage of 100W, are uniformly distributed in the environment. We

modeled the light source using so-called area lights, consisting of equidis-

tant two dimensional array of point light sources whose cumulative wattage

is equal to the value specified for the total light source.

Lights are placed at the height of 3m at a distance of 1.4m one from

each other both along Z and X (Fig. 2.12(c)). For the attenuation of light

we have used an inverse square function.

Real scenario To evaluate the validity of the proposed solution in a real

scenario, we have selected a suitable test site consisting of an apartment de-

signed to test assistive technologies for home automation. The apartment

has an inbuilt surveillance system with video cameras already installed

and calibrated. We propose to compare the existing surveillance system,

against our deployment, designed according to the algorithm proposed .
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For a fair comparison we simultaneously record with both systems a video

showing people moving arbitrarily in the apartment. After recording we

carry out both qualitative and quantitative evaluation. Due to the small

size of the evaluation site, coverage is only a limited problem, hence our

evaluation mainly focuses on the quality and the information content of

the videos. All the details of the space are appropriately modeled, includ-

ing color and texture. Even the natural light coming from the window is

modeled using a small light source. The image of the real scenario and its

virtual counterpart are shown in Fig 2.28 and 2.29, respectively.

Evaluation of the camera model

The metrics we have implemented to evaluate the camera positioning, are

based on entropy and distortion.

Entropy essentially corresponds to the amount of information, or level

of detail measured in the snapshot captured by the camera. It depends

on many factors including occlusions, orientation, lighting. However, one

element that greatly influences the level of detail in any image is the focal

length of the camera. In order to demonstrate the validity of the entropy

as a metric, we vary the focal length of the camera from 5mm to 85mm

and track the variation of entropy both qualitatively and quantitatively.

The environment used for testing (simulated using POV-ray) consists of a

large room (sized 4.6×4.85m2, with reflection coefficient 0.3, and a central

lighting of 100W) with a sphere of radius 0.5m positioned in the center.

The camera is placed image plane points towards the center of the sphere.

The origin of the coordinate system is located at the center of the room.

Fig. 2.13 shows the variation of entropy with respect to the focal length

in steps of 5mm from 5mm to 85mm for a total of 17 samples. The entropy

measure is calculated according to Eq. 2.17. In order to explain the graph

we have selected six images at various critical points in the graph, shown in
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Fig. 2.14. The corresponding focal lengths and entropy values are reported

in Table 2.4.

In Figure 2.14(a) most of the details of the environment are visible.

Consequently the entropy measure obtained for the image is also high. As

the focal length increases, we observe a progressive change in the entropy

curve with occasional transients, mainly due to the change in the amount

of details present in the captured snapshot. As can be seen from Figure

2.14(b-g) the variation of entropy is heavily dependent on the nature of the

environment and the objects being observed. Hence, it is imperative that

the camera system continuously re-adapts to optimize itself w.r.t entropy.
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Figure 2.13: Variations in the entropy values obtained at different focal lengths.

In order to validate the measure of distortion, we present a sample image

in Figure 2.15(a), where six spheres have been placed at various locations.
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(a) (b) (c) (d) (e) (f)

Figure 2.14: Images obtained at different focal lengths.

Table 2.4: Entropy and focal length of images

Figure Focal Length Entropy Measure

2.14(a) 5 mm 0.9568

2.14(b) 10 mm 0.3697

2.14(c) 25 mm 0.8357

2.14(d) 40 mm 0.5337

2.14(e) 55 mm 0.1274

2.14(f) 85 mm 0.2584

The location of the camera for this particular simulation is the same as

in the previous case, the focal Length is set to 4.2mm. The locations

of the spheres and mean distortions of each of them are listed in Table

2.5. Spheres are listed in the table following a clockwise arrangement

starting from the one closest to the top left corner of the image. Using the

camera model and the distortion metric, we have also divided the image

into zones of distortion as shown in Figure 2.15. Red areas indicate the

maximum distortion, while green areas exhibit the lowest level of distortion.

Comparing the two figures 2.15(a,b) and also by looking at the table, we

can clearly see that deformity of the spheres increases with the increase in

distortion.

Results for virtual test cases

In order to test both the initial placement and reconfiguration we initially,

position the predefined number of cameras according to the planning al-

gorithm presented in Section 2.3.3. Considering the size of the environ-

ment, the number of cameras is fixed to four. After the initial positioning,
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Table 2.5: Distortion and location of spheres

Location Distortion

-1,0.25,1.5 0.6400

1,0.25,1.5 0.3828

-1,0.25,.25 0.7018

1,0.25,.25 0.5471

-1,0.25,-.75 0.7511

1,0.25,-.75 0.6560

Figure 2.15: Sample image and distortion zones. Distortion is defined according to Eq.

(2.10). Colors corresponds to different levels of distortion: red correspond to µD > 0.8,

orange 0.8 > µD > 0.5, yellow 0.5 > µD > 0.2, and green 0.2 > µD > 0

one of the cameras (selected randomly) is turned off and the algorithm is

again applied to reconfigure in terms of PTZ. The absolute positions of the

remaining three cameras remain the same, as they are already deployed

(installed). Similarly to the previous scenario, another camera is turned

off and the reconfiguration is performed for the remaining cameras in order

to readjust the setup.

The radiometric constants used for the virtual environment are tabu-

lated in Table 2.6.

Evaluation on Map1 In this scenario maximizing the coverage is a rather

simple problem, due to the absence of obstacles. The main purpose of

placement is then to avoid redundancy (i.e covering the same area with
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Table 2.6: Environment radiometric constants
Property Constant

Fade distance 0.2

Fade power 2

Diffusion 0.3

Turbulence 1

multiple cameras, unless specifically requested), while maximizing the qual-

ity of the captured data. Placement locations along the walls have been

quantized at the rate of 0.5m both in X and Z. The focal length range

has been varied from 5mm to 85mm in steps of 5mm, while pan and tilt

vary from 0◦ to 180◦ and 0◦ to 90◦, respectively at steps of 1◦.

Figure 2.17 shows the snapshots obtained from the cameras after the

initial positioning. The total coverage obtained is 76.43%. As can be seen

from Table 2.7, whenever the coverage of the individual camera is very

small, it is compensated by low levels of distortion and high entropy, since

our formulation assigns equal importance to both coverage and quality.

The final coverage map is shown in Figure 2.16(a). For the sake of

visualization, a color code is used to describe the density of the rays that

intersect the cells of the grids. Cells colored in white, correspond to more

than 100 rays per cell, whereas green represents areas, which ray density

is between 10 and 100. Blue regions have a ray density between 1 and

10, and red areas have only one ray per cell. We can also observe from

the results that the area of intersection between FOVs of the individual

cameras is limited, which is one of the objectives of optimization.

Table 2.7: Map1: Entropy and distortion after the initial setup.

Cam ID Entropy µD σ2D Coverage (%)

1 0.2085 0.5566 0.2278 15.18

2 0.8935 0.4832 0.1952 3.07

3 0.1489 0.4682 0.0715 40.17

4 0.2131 0.3314 0.0545 40.54
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(a) (b) (c)

Figure 2.16: Map1: total coverage map after initial placement (a), reconfiguration 1 (b),

and 2 (c).

Figure 2.17: Map1: snapshots from four cameras.
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After the initial positioning, we now turn off the fourth camera, simu-

lating a malfunctioning. Due to the malfunction the system setup becomes

sub-optimal. In order to improve its performance, reconfiguration has to

be performed in terms of pan, tilt, and zoom, as the absolute positions are

fixed. The algorithm is then applied again, and the configuration is up-

dated. The resulting snapshots from the cameras are shown in Figure 2.18.

Table 2.8 lists the individual distortion and entropy metrics of the cameras.

The area covered reduces to 61%, compared to the 54%, which would have

been the case, if reconfiguration was not run. The overall coverage map

is provided in Figure 2.16(b). As can be seen from Table 2.8, camera 2

has extended the coverage area in order to compensate for the loss of one

camera in the network. Subsequently, its covered area has doubled, while

the entropy has halved.

Table 2.8: Map1: entropy and distortion after reconfiguration 1

Cam ID Entropy µD σ2D Coverage (%)

1 0.2124 0.5474 0.2139 14.87

2 0.4912 0.6216 0.3620 6.92

3 0.1479 0.4393 0.0661 40.13

4 OFF OFF OFF OFF

Figure 2.18: Map1: snapshots from the three cameras after reconfiguration 1.

The second reconfiguration implies turning off another camera in the

system, to further test the resilience of the algorithm. Camera 3 is then

turned off and reconfiguration is again performed. Figure 2.19 shows the

obtained results. The total coverage for the camera network is shown in
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Figure 2.16(c), while Table 2.9 showcases the quality metrics of the indi-

vidual cameras. The overall coverage has reduced to about 45%, compared

to 21.22%, the coverage obtained with only two cameras before reconfigu-

ration.

Table 2.9: Map1: entropy and distortion after reconfiguration 2.

Cam ID Entropy µD σ2D Coverage (%)

1 0.2124 0.5474 0.2139 14.87

2 0.4912 0.6216 0.3620 40.42

3 OFF OFF OFF OFF

4 OFF OFF OFF OFF

Figure 2.19: Map1: snapshots from two cameras after reconfiguration 2.

Evaluation for Map2 In this case Map 2 is subjected to the same sequence

of tests as Map1. As discussed in Section 2.4.2, Map2 exhibits a T-shaped

wall in between the map, which divides the environment into three rooms.

All the configuration parameters used in the previous simulation are kept

the same. Similarly to the previous case, the number of cameras that have

to be placed initially is four. The obtained results are shown in Figure

2.21, and the corresponding metrics are reported in Table 2.10, showing

a coverage equal to 62%, and minimum overlap across the views (Figure

2.20(a)).

Similarly to the routine adopted for Map1 we now turn off camera 4

and realign the camera parameters using the same algorithm (see Figure

2.22 and Table 2.11). The total coverage with three cameras is reduced to
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(a) (b) (c)

Figure 2.20: Map2: total coverage map after initial positioning (a), reconfigurations 1 (b)

and 2 (c).

Figure 2.21: Map2. snapshots from four cameras
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Table 2.10: Map2: entropy and distortion after the initial setup.

Cam ID Entropy µD σ2D Coverage (%)

1 0.2374 0.4545 0.1205 17.65

2 0.2305 0.3671 0.0442 17.85

3 0.2815 0.2584 0.0259 13.03

4 0.1279 0.3685 0.0733 23.03

about 61%, comparing well to 48% that would result in case no reconfigu-

ration would be performed. Figure 2.20(b) presents the color map of the

corresponding coverage after reconfiguration.

Table 2.11: Map2: entropy and distortion after reconfiguration 1.

Cam ID Entropy µD σ2D Coverage (%)

1 0.2446 0.4570 0.1255 17.01

2 0.2258 0.3822 0.0467 17.53

3 0.1170 0.3925 0.0634 26.85

4 OFF OFF OFF OFF

Figure 2.22: Map2: snapshots from three cameras after reconfiguration 1.

After turning off also the third camera (see Figure 2.23 and Table 2.12),

the total coverage reduces to 36%, which is marginally better than al-

most 35%, without reconfiguration. The reason for a limited increment in

coverage is due to the fact that the two cameras to be reconfigured are

obstructed by walls. The corresponding coverage map is shown in Figure

2.20(c).
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Table 2.12: Map2: entropy and distortion after reconfiguration 2.

Cam ID Entropy µD σ2D Coverage (%)

1 0.2124 0.5474 0.2139 18.45

2 0.4912 0.6216 0.3620 17.47

3 OFF OFF OFF OFF

4 OFF OFF OFF OFF

Figure 2.23: Map2: snapshots from two cameras after reconfiguration 2.

Evaluation for Map3 This environment consists of two symmetrically

placed walls, in the middle of a large hall way, such arrangement leads

to flooding of light in between the two walls and also between the hallway

boundary and the walls. Such an arrangement is generally done for Mu-

seum or art gallery. We have chosen this case to demonstrate the utility

of the algorithm in that context. Results obtained for the placement are

shown in the Figures 2.24 and 2.25(a) and the quality metrics are presented

in Table 2.13. If we observe the quality metrics of Camera 3 and 4, we can

clearly see that entropy has clearly decreased due to the flooding of light

and saturation of sensors. Coverage achieved is 48.53 percent.

Table 2.13: Entropy and Distortion for Map2 Initial Setup
Camera No. Entropy Distmean DistV ar Coverage

1 0.3675 0.5888 0.2768 0.1323

2 0.3641 0.5045 0.1640 0.1197

3 0.0086 0.4201 0.0756 0.1929

4 0.0172 0.4341 0.1098 0.1786

As part of reconfiguration Camera 4 is turned off and the other pa-

rameters of configuration are realigned according to the algorithm. Total

coverage is about 41.92 percent while with out realignment its 42.27 per-

cent. Coverage is virtually the same however there is marked increase in
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(a) (b) (c)

(d)

Figure 2.24: Snapshots from four Cameras after initial placement

(a) (b) (c)

Figure 2.25: Map3: total coverage map after initial positioning (a), reconfigurations 1 (b)

and 2 (c).
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quality metrics with entropy increasing and distortion decreasing. so for

negligible decrease in coverage the algorithm has increased the quality of

coverage markedly.

Table 2.14: Entropy and Distortion for Map1 after Reconfiguration 1
Camera No. Entropy Distmean DistV ar Coverage

1 0.3824 0.5872 0.2758 0.1244

2 0.5062 0.4549 0.1534 0.0978

3 0.0109 0.3551 0.0477 0.2129

4 OFF OFF OFF OFF

(a) (b) (c)

Figure 2.26: Snapshots from three Cameras after Reconfiguration 1

As per procedure camera 3 is also turned of and reconfiguration is per-

formed, the results obtained are shown in Figures 2.27, 2.25(c) and Table

2.15 there is further decrease of coverage at 20 percent while with out

reconfiguration its 22 percent however quality metrics have improved by

large percentage as we can see from the Table 2.15.

Table 2.15: Entropy and Distortion for Map1 after Reconfiguration 1
Camera No. Entropy Distmean DistV ar Coverage

1 0.4517 0.4524 0.1454 0.0956

2 0.5676 0.5406 0.2354 0.1034

3 OFF OFF OFF OFF

4 OFF OFF OFF OFF

Real-world evaluation

In the previous sections, the algorithm has been evaluated both in terms

of camera model and simulation in two virtual environments. However,
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(a) (b)

Figure 2.27: Snapshots from three Cameras after Reconfiguration 2

in order to prove the utility of the algorithm, a real world evaluation is

necessary. In order to do so we propose to test the algorithm by actually

designing a surveillance system for a real environment. The evaluation

is carried out by comparing the quality of the videos obtained from the

pre-existing installation and the planned cameras.

The tests have been carried out in a hall of dimensions 4.9×4.6m2. The

mentioned hall has a pre-existing camera system deployed and calibrated.

Three cameras are positioned at three corners close to the ceiling subtend-

ing an angle of approximately 45◦ for both pan and tilt. The snapshots of

the test environment are shown in Figure 2.28.

Figure 2.28: Panorama view of the test site.

In order to achieve the optimal planning of the cameras, the test site

has to be replicated using POV-ray scene description language. The visu-

alization of the test site in the virtual domain is shown in Figure 2.29.

After translating the environment into the virtual domain we apply our
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Figure 2.29: Panorama view of the test site as seen in the virtual environment.

algorithm to obtain the camera positions. Considering the limited size of

the room, we have chosen to position two cameras and compare against the

three pre-installed cameras. All devices used for validation are Axis 212

network cameras. The video snapshots obtained are shown in Figure 2.31.

The snapshots taken from the three unplanned cameras are also provided

for comparison in Figure 2.30.

As can be seen from the visual comparison, the pre-existing cameras

suffer from bad illumination and high level of perspective and radial dis-

tortion. It can also be noticed that the field of view is not very effectively

utilized, whereas in the planned configuration, the quality of illumination

is improved and the perspective distortion reduced. The two cameras are

complementary in terms of coverage, and still maintaining a very good

level of detail of the room.

Comparison and evaluation In order to quantify the effectiveness of our

algorithm, we asked two users to move randomly in the room. These

actions are simultaneously captured from all five cameras at the frame rate

of 15fps, for a total observation time of about 6 minutes. The comparison

between the planned and unplanned videos is computed in terms of three

measures, as reported hereafter.

1. Variance of entropy As entropy in an image represents the amount of
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Figure 2.30: Snapshots taken from the unplanned cameras. The limitations of this setup

are evident, as a large part of the images refer to non-relevant areas of the environment

Figure 2.31: Snapshots taken from the cameras positioned and configured according to

our optimization algorithm. The attention is now concentrated on the ground floor, where

relevant activities are more likely to occur.
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information, when an event occurs, there will a subsequent change in

the entropy of the video frames.

2. HOG people detector In order to test the effectiveness of the camera

placement we apply a basic HOG cascade person detector, and com-

pute the number of detections captured from both systems (planned

and unplanned).

3. STIP descriptor We also propose to include in the comparisons, the

number of extracted STIPs [34], widely adopted for action recogni-

tion and activity detection, in order to also account for the temporal

component.

Figure 2.32: Total coverage map for the test site.
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Entropy and variation In order to evaluate the entropy model we have

compared the values obtained from the unplanned and planned configura-

tions for all 5025 frames recorded by all cameras. The entropy variation

has been plotted in Figure 5.6, which shows on the top the plot for the

three videos recorded using the unplanned configuration. Camera 1, Cam-

era 2, and Camera 3 are identified in blue, red, and cyan, respectively.

Similarly, the second plot in Figure 5.6 showcases the entropy variation for

the two videos that have been recorded using the planned cameras, shown

in green and red, respectively. It is worth noting that plots report the

entropy variation values, obtained after subtracting the mean value, for a

better visualization. As can be seen from the figures, the plots obtained

from the three unplanned cameras appear to be uncorrelated and exhibit a

random nature among each other, whereas the plots for the planned cam-

eras are highly correlated one with each other. Peaks in the plots are in

this case correctly associated to the events occurring in the observed scene.

The values obtained for mean and variance are reported in Table 2.16. As

can be seen, the variance of the two planned cameras is identical, and sig-

nificantly higher than that of unplanned cameras. The only exception can

be noticed for Camera 3 in the unplanned configuration, since the cam-

era faces the two doors in the test site, which contribute to increasing the

entropy values.

HOG person detector Considering that the annotation of more than 5000

frames for each camera would be very time consuming, without loss of

generality we have downsampled the video to 3 fps, run the HOG people

detector and calculated the precision and recall. The obtained results are

presented in Table 2.17. The total number of actual persons is reported in

column 3, and the number of detections for the two persons are given in

columns 4 and 5. Column 6 indicates instead the false detections. Preci-
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sion, recall and F-measure are reported in columns 7, 8, and 9, respectively.

As can be seen from the table, the two planned cameras outperform the re-

sults achieved by the unplanned cameras in most of the cases. On average,

there is almost a 34% increase in the F-measure.

Table 2.16: Mean and variance of entropy across the frames.
Cameras Mean Variance

Unplanned

Camera 1 6.3274 0.0015

Camera 2 6.4058 0.0018

Camera 3 7.2077 0.0011

Planned
Camera 1 6.8157 0.0022

Camera 2 6.7047 0.0022

Table 2.17: Comparison for the HOG person detector. GT refers to the ground truth, P1

and P2 report the number of detections for the two subjects, respectively, and FP reports

the number of false detections.
Cameras GT P1 P2 FP Precision Recall F-measure

Unplanned

Camera 1 1522 202 317 8 0.98 0.34 0.5

Camera 2 1657 229 290 2 0.99 0.31 0.48

Camera 3 1648 313 458 97 0.89 0.47 0.61

Planned
Camera 1 1442 283 365 11 0.98 0.45 0.66

Camera 2 1610 454 548 6 0.994 0.62 0.75

STIP extraction STIPs are obtained for all the video 5025 frames. STIPs

have been extracted simultaneously on all cameras, using a patch size of 5

and 3 levels in the pyramid. The results obtained are tabulated in Table

2.18. As can be seen from the table the number of STIPs obtained for the

planned cameras is significantly higher when compared with the unplanned

ones, showing on average an increase of 33% for the same activity.
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Table 2.18: Number of STIPs obtained.
Cameras STIPs STIPs/frame

Unplanned

Camera 1 95083 18.92

Camera 2 79540 15.82

Camera 3 80166 15.90

Planned
Camera 1 112470 22.38

Camera 2 114391 22.76
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Figure 2.33: Plots reporting the difference in terms entropy variations for the unplanned

and planned configurations. A zoomed segment from frame 1000 to frame 2000 is also

shown in the last two plots. For the sake of visualization, the mean value of entropy has

been subtracted from each sample.
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Chapter 3

Light planning

Illumination is one of the most important aspects of any surveillance sys-

tem. The quality of images or videos captured by the cameras heavily de-

pends on the positioning and the intensity of the light sources in the en-

vironment. In this chapter we propose a novel 3D modelling of a given

environment in a synthetic domain, combined with a generic quality met-

ric, which is based on entropy measurement in a given image. The syn-

thetic modelling of the environment allows us to evaluate the optimization

problem a priori before the physical deployment of the light sources.

3.1 State of the art

Illumination is a very critical aspect in video and image acquisition, and

the quality of the captured images is directly dependent on the exposure

to light of the given scenario. Owing to this fact the success or failure of

any video surveillance algorithm heavily depends on the positioning and

the intensity of the light sources in the environment. A sub-optimal light

placement will result in a limited performance of the surveillance systems.

In particular two aspects need to be carefully taken into account: video

quality, and adaptation.
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Video quality. The sensors installed onboard video cameras are responsive

to light intensity in specific wavelengths, and the response of the sensors

is not linear across the range of responsiveness [30,72]. In case of incorrect

illumination, there is a chance that the sensor response falls in the non

linear region. In such scenario quality and details of the scene may be lost,

and may not be recoverable even after post processing. This will severely

impact the efficiency of the algorithms.

Adaptation. The decrease in the cost of video cameras and the increasing

efficiency of the algorithms for automatic scene analysis, has motivated the

adoption of automatic video surveillance systems able to continually track

the events, occurring in the observed scene, for activity monitoring and

anomaly detection. These systems operate in real time with an intent to

prevent untoward incidents. However, most descriptors used in computer

vision like for example SIFT [39], HOG [14], SURF [4], are highly sensitive

to the quality of illumination, since they essentially depend on the pixel in-

tensity variation. Therefore, a proper planning of the illumination sources

is of paramount importance.

Considering the issues mentioned above, positioning of light sources in

a given environment is very important for a successful deployment of any

computer vision algorithm. There has been a certain amount of work done

in this area. Murase et al. [48] devise an optimal illumination based on the

variation of contrast among the given set of objects in the obtained images,

mainly for object recognition purposes. Similarly Ellenrieder et al [19] ar-

rive at a suitable illumination considering the reflectivity of the surfaces

involved. In this case the focus is on the reflectivity model of the surfaces.

Further Borotschnig et al [6] present an efficient on line object recognition

algorithm with a provision for reconfiguration which also takes into ac-

count the illumination changes. However these algorithms are rather task
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specific and consider the given illumination condition rather than treating

light placement as the core problem. One of the first papers to address

light source placement as serious problem in camera planning system is by

Sakane et al. [60]. However, in this case, rather simplistic models are used

for both camera and light sources, which make the approach unreliable in

a real deployment. Reddy and Conci [55, 56] address the problem of the

light sources using inverse square attenuation of light with a model of equal

propagation of light in all directions.

3.2 Illumination and environment Models

In this section we describe the illumination and environment models used

to model the light sources and the environment in the 3D virtual space.

The discussion is very specific to illumination and radiometric properties.

3.2.1 Illumination model

The amount of light at any given area in a surveillance environment is a

complex function of various radiometric phenomena like diffraction, diffu-

sion, and reflection. In order to model the illumination in all these factors

are taken into account in the our model. This is possible thanks to the

POV ray software, which allows specifying the diffusion and reflection coef-

ficients. By incorporating these factors we can model the light sources in a

very accurate manner. In the POV ray software there is also a provision for

selecting the nature of light, as for example the type of light sources (cir-

cular, cylindrical, point, parallel etc.). In real world light attenuates as it

travels from the light source, and in our illumination model we adopted an

inverse square attenuation. Figure 3.1(a) illustrates a sample light source,

which has been simulated using our illumination model.
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(a) (b)

Figure 3.1: Example of a light source (a), and of the environment (b) generated using the

POV ray tracing software.

3.2.2 Environment model

As far as the environment is concerned, most of the present state of the

art only consider the geometric features. We in turn propose to include all

properties of the environment, which are likely to influence the illumination

of the environment. These include color, reflection coefficient, nature of the

surface of the walls etc. As mentioned earlier, the idea is to replicate the

environment in the minutest detail possible. In addition to these properties

we also take care of shadows and other illumination-related issues that may

affect the environment. Figure 3.1(b) shows the snapshot of the replicated

environment.

3.3 Proposed algorithm

After presenting the environment and illumination models, we introduce

hereafter the optimization algorithm. Initially the whole environment

where the cameras and light sources are to be fixed is given as an input

the algorithm in the form of geometric description along with the coloring

and radiometric properties in order for it be replicated in virtual domain.

Similarly, also the light positions and the nature of light sources is also
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given as input to the algorithm. It is then up to the PSO algorithm to

arrive at a solution, which returns the configuration at maximum entropy.

3.3.1 Entropy calculation

A good visibility of the observed scene is a fundamental issue for a cor-

rect application of automatic analysis tools. Therefore, while planning the

light source placement, several factors have to be considered, as the ex-

posure to the correct amount of light, avoiding over and under-exposure.

However, fitting the sensor response of the image sensors directly is not

a viable option, since camera planning should be done before the deploy-

ment. Instead, in our system we deploy virtual cameras that replicate the

performance of the camera in the real domain. We successively use the

images generated by the virtual model to assess the sensor response.

In order to measure the amount of information present in the captured

image, we propose to use the histogram of the image, by determining the

bins distribution. In fact, in presence of an under-exposed image, the

histogram will be biased towards the lower levels, while for an over exposed

image, the histogram will be likely biased towards the higher intensity

levels.

In order to quantify the image information content, we measure the

entropy. For a given configuration Ii of the image I, with i ∈ {1, . . . , N}
let the intensity levels be Ω = (l1 < l2 < . . . li · · · < lN), and let the

information content in the image given by

H(Ω) =
n∑

pi∈Ω

−pilogpi (3.1)

where pi is the normalized region under each intensity level li ∈ Ω in the

LAB color space, and considering that the entropy is directly proportional

to the information content of the image as also suggested from the literature
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[27]. After having established the metric to measure the visual information

in an image, all we have to do is maximize the image information, given

a solution space resulting as all possible configurations of the light sources

in terms of positioning in (X, Y, Z). The entropy calculated according to

(3.1) will become the basis of the fitness function to be used by the PSO.

3.3.2 Particle Swarm Optimization

For the optimization procedure, we adopt the PSO algorithm. PSO [16]

demonstrated to be effective in solving complex non-linear multidimen-

sional discontinuous problems in a variety of fields [17]. Unlike other

multiple-agent optimization procedures such as Genetic Algorithms (GA)

[24], PSO is based on the cooperation among the agents rather than their

competition.

3.3.3 Algorithm

The proposed algorithm can be described in four steps, as explained here

after.

Step 1 - Determine the solution space. After identifying the roof and the

perimeter walls of the environment, possible light deployment positions are

identified and categorized as solution space. A set of particles positioned

randomly is chosen as the initial configuration of light positions. The

environment information is then converted into POV-ray scene description

language and the PSO is initialized. At each iteration of the algorithm,

the particles are updated based on the fitness function. Successively, the

POV-ray scene description language is updated according to the camera

location and the camera parameters.

Step 2 - Calculate Entropy. Camera views are generated using POV-ray

and the entropy is computed as per Eq. (3.1).
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Step 3 - Calculate configuration cost. The entropy calculated from the

individual virtual cameras in the POV ray space is added up to obtain

the configuration cost. The total entropy value is then normalized by

expressing it as negative exponential function.

Step 4 - PSO. The fitness function is updated with the obtained negative

exponential, and the set of particles in the swarm optimization are updated

until the termination criterion is reached. The equation of fitness function

is given in Eq (3.2) where H(Ω)1 and H(Ω)2 are the entropies obtained

from the snapshots of the two cameras.

F (I) = exp(−[H(Ω)1 +H(Ω)2]) (3.2)

3.4 Testing and results

Test Scenario In order to test this algorithm we have modelled a large

room with dimensions of 4.6X4.85 with doors, windows, and furniture

in the virtual space. Possible light placement locations are everywhere

across the ceiling. In order to simplify the problem, the number of light

sources is prefixed as four, with possible wattage from 10 to 50 watts. Two

virtual cameras are deployed along the coordinates shown in Table 3.1,

which have been generated by the camera placement algorithm proposed

by Reddy and Conci [57]. The virtual snapshot for the environment is

shown in Figure 3.1b. The reflection coefficient of the walls is fixed at

0.5 out of the maximum of 1. Light attenuation is modelled as an inverse

square function. Similarly, light sources are modelled as circular lights

facing downward from the ceiling. Given the environment information, the

implemented algorithm is used to find the best possible light configuration.

In order to eliminate the randomness of the PSO, the algorithm has been

run 5 times and the snapshots of the best result obtained has been shown in

79



3.4. TESTING AND RESULTS CHAPTER 3. LIGHT PLANNING

Figure 3.2. The location of the lights obtained after applying the algorithm

are given in Table 3.2, and the quantitative results are shown in Table

3.3. Column 1 and 2 list individual entropies obtained for each camera,

while column 3 shows the fitness function obtained as described by Eq.

(1). As we can see from the results, except iteration 2, all other results

have reasonable variance, in iteration 1, 2 and 4 the entropy has decreased

drastically in case of camera 2.

Comparison To further evaluate the performance of the algorithm, we

have compared the results of five iterations with a typical installation where

four lights are deployed equidistantly on the ceiling, with the power of 25

watts, which is a typical case of an indoor installations of such magni-

tude. After performing the simulation we have obtained a value for the

entropy of 6.8171 for Camera 1 and an entropy of 6.1785 for Camera 2 and

the fitness function scored 0.2727. The snapshots obtained from two cam-

eras are given in Figure 3.3. When we compare the obtained results with

our optimization we can see that in terms of fitness values and individual

entropies, four of the iterations are better than selecting an equidistant

placement.Also we can see from the Figures 3.2 and 3.3 that there is bet-

ter visual quality in case of algorithm based placement,where in walls are

clearly visible while absent in equidistant placement. Similarly, if we con-

sider the total light power wattage deployed, our solution also results in a

reduce power consumption compared to the standard deployment.

Table 3.1: Camera Locations.
Camera X Y Z Pan Tilt Zoom

1 2.25 2.4 2.325 54.07 -46.02 0.3883

2 2.25 2.4 0.325 -45 -54.09 0.4193
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Table 3.2: Light Locations.

Iteration Light 1 Light 2 Light 3 Light 4

1 [-1.84,2.45,0.4850] [2.3,2.45,1.4550] [1.38,2.45,0.97] [-0.92,2.45,-1.94]

2 [-0.92,2.45,-0.9700] [-0.92,2.45,1.4550] [-2.3,2.45,2.425] [1.38,2.45,0]

3 [-0.92,2.45,-0.9700] [-0.92,2.45,1.4550] [2.3,2.45,0.97] [-1.84,2.45,-0.4850]

4 [1.38,2.45,0.97] [-0.92,2.45,-1.94] [-0.92,2.45,-1.4550] [-1.84,2.45,-0.97]

5 [1.38,2.45,1.4550] [1.38,2.45,-0.4850] [0.46,2.45,1.94] [0.92,2.45,-1.4550]

Table 3.3: Results.
Iteration Camera 1 Camera 2 Fitness

1 6.7833 6.2912 0.2704

2 5.7491 5.7668 0.3161

3 7.4232 7.2145 0.2314

4 7.2070 6.0929 0.2645

5 7.2562 7.3565 0.2319

Table 3.4: Light Power in watts.

Iteration Light 1 Light 2 Light 3 Light 4

1 21.15 26.85 39.75 37.8

2 25.6 39.10 39.45 33.8

3 36.85 10.75 17.8 33.95

4 15.2 33.7 41.25 10.2

5 13.95 12.9 33.65 33.85

(a) (b)

Figure 3.2: Snapshots from two cameras after Light placement
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(a) (b)

Figure 3.3: Snapshots from two cameras Equidistant placement
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Chapter 4

Video Analytics

In this chapter we describe the relevance of the video analytics in com-

pressed domain to the current problem. Along with that we also present

some state of the art, compressed domain techniques developed as a part

of the study. These techniques have been partially used for quantifying the

information video scene, along with video segmentation for object localiza-

tion. These metrics and algorithms form a basis for event based real time

reconfiguration.

4.1 State of the art

In present day computer vision scenario research in the area of event de-

tection, action recognition etc. is quite mature [4, 8, 14, 34]. Accuracy

of the algorithms is quite high and many have been commercialized into

products [68]. However many of the algorithms are highly complex and

operate off-line, another important factor is they operate in traditional

pixel domain. Operation in pixel domain implies the video need to be de-

coded from its standard compressed format,in order for the algorithm to

be applied. In the context of the present study, real time reconfiguration

requires low complexity and video decoding adds another dimension to the

complexity. Hence our aim is o present a generic low complexity video
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event detection algorithm in compressed domain. Most of the work in

event detection is concentrated towards specific applications rather than a

generic algorithm. Prominent among the applications are video object seg-

mentation and tracking, and some other applications like fall detection,face

recognition, skin colour detection etc.

4.1.1 MPEG

Since MPEG 2 and MPEG 4 visual 2 are the early standards in video

compression most of the early work done is in this domain [3, 32, 33, 42,

67]. The main characteristics of this domain are the uniform block size

of 8 × 8, motion estimation at 8 × 8 block level unidirectional motion

prediction and absence of half pel and quarter pel motion estimation. This

resulted in low complexity and also low accuracy of the algorithms based in

MPEG domain. However MPEG-4 visual had object based video encoding

which was very useful for video object segmentation.some algorithms use

a combination of DCT coefficients and motion vectors, while on the other

hand the information embedded in the motion vectors is used exclusively.

In [75] Yu et al present an algorithm based on motion vector clustering

and background subtraction, applied in the DCT domain. In [3] Babu et

al propose a technique entirely based on motion, temporal accumulation,

and spatial interpolation of motion vectors. The authors in [22] apply a

clustering technique on the motion field for object segmentation. Porikli et

al. [53] use the spatial continuity of motion vectors and DCT coefficients

to extract the objects moving in the scene.

4.1.2 H.264

H.264 is the video standard developed by Joint video team (JVT) In-

stituted by both MPEG and ITU-T, which has been incorporated into
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MPEG-4 as part 10 profile. H.264 is presently the most widely used and

efficient compression standard adopted across the world, owing to this fact

most of the present day segmentation and tracking algorithms in com-

pressed domain concern this standard. Important distinguishing features

of H.264 include half pel and quarter pel motion estimation, motion es-

timation at 4 × 4 block level, variable block size and slice level encoding.

This has two consequences for the algorithms, the complexity of processing

the data increases manifold while also increasing the accuracy and preci-

sion and algorithms in this domain reflect this fact. Segmentation and

tracking based on H.264 have been active area of research since past 4 to

5 years immediately after the wide adoption of this standard. One of the

earliest and most cited work is [76] in this paper Markov random fields are

used on motion fields to discover the similarity and there by segmenting

the moving object. In [38] Liu et al utilize spatio temporal similarity of

motion field to achieve segmentation of the objects. Most recent work in

this is of Khatoonabadi et al [31] which utilizes markov random fields to

accumulate spatio temporal similarity to achieve tracking.

Video surveillance is data heavy task, amount of video gathered is as-

tronomical as video recording is done continuously with out break. Size of

video data is also huge, as video is nothing but series of images transmit-

ted at a given frame rate. With advent of video compression techniques,

video storage problem has been solved and all the surveillance videos are

stored in compressed format. In present day most popular and adopted

compression standard is H.264 proposed by joint video team of ITU-T and

MPEG [70], which achieves a compression of almost 99 percent. Further

there are specialized compression standards especially being developed for

video surveillance, as H.264 is the more general compression standard.

Compression standard dedicated for video surveillance would be highly

useful as it contains features like Region of interest etc. As discussed in
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section 4.1Most of the current computer vision algorithms which are highly

accurate operate on raw pixel data. Hence video has to be decoded from its

compressed format, in order to apply the algorithms. Video decoding and

storing raw data is computation and bandwidth intensive process. In the

context of present problem, we require a very fast real time event detection

algorithm for dynamic camera reconfiguration. Moreover even if enough

computational power and bandwidth are provided, such an implementa-

tion would require a heavy hardware. Forcing the implementation to be

highly centralized and leaving it vulnerable to breakdowns and failures. So

in order propose a distributive and low bandwidth algorithm, we propose

to operate entirely in compressed domain. Such an implementation would

reduce the overhead of video decoding and also reduces the bandwidth

requirement by large amount.

Any computer vision algorithm relies on feature extraction for perform-

ing a relevant task. Features like HOG,HOF,STIP etc are descriptors which

describe the image/video in compact possible form. Feature extraction is

an expensive operation computationally and require high computational

resources. Video encoder theoretically speaking is a best feature extrac-

tor, as the compressed stream can be used to reconstruct the video almost

identically. In compressed video, motion information is already embedded

in the motion vectors, residual and macroblock (MB) types (among other

parameters) can be used to accomplish various computer vision tasks.

4.2 Motion descriptors

In order to measure and monitor the movement of the objects in the cam-

era view, we propose a descriptor based on the disorder, or entropy, of the

motion vectors of the video. The standard for video coding H.264, as most

of its predecessors, achieves compression through a block-based algorithm,
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Figure 4.1: Motion vectors extracted from a frame of the standard video sequence Stefan.

The red arrows highlight the regions in which the motion field exhibits strong disorder.

where blocks have variable size from 4 × 4 to 16 × 16 pixels [70]. Motion

vectors are calculated for individual blocks in order to remove the temporal

redundancy of the video. The distribution of the motion vectors through-

out the frames gives us a very accurate insight about the analytics of the

video. The distribution of these motion vectors tends to exhibit more dis-

order whenever there is any moving object in the video frame; this is not

noticeable, for example, in presence of uniform global motion associated

with camera movement, in case the camera is static with no moving object

in the frame. An example is shown in Figure 4.1, and represents a frame

in a video sequence in presence of a moving camera; motion vectors are

overlaid on the picture. As can be seen, the motion vectors show a coher-

ent behavior along most of the video frame, as it is expected in case of

moving camera. However, the motion vectors distribution at the edges of

the moving object tend to have higher disorder. We propose to utilize this

aspect in order to measure the amount of information in the video frame.

87



4.2. MOTION DESCRIPTORS CHAPTER 4. VIDEO ANALYTICS

4.2.1 Motion entropy measure

As mentioned in the previous section, we choose to operate in compression

domain to achieve real time operational capabilities. Motion vectors are

chosen as the main features for analysis, as they are immune to changes

in bitrate and quantization parameters (QP) of the encoded H.264 video

stream. The disorder in the motion field represents the information content

in the video. In H.264, standard motion vectors are computed at 4 × 4

and the block size is based on the observed variance. Each motion vector

consists of two components representing distances in pixels along X and Y

direction from the best match found in the reference frame. In this context

we represent the pixel difference along X and Y as MVx(i, j) and MVy(i, j),

respectively, where i and j represent the location of a 4 × 4 block in the

video frame. After reading the motion vectors from the H.264 stream,

we group MVx(i, j) and MVy(i, j) into a 8 × 8 matrix, therefore each of

these blocks represents the motion vectors of a region corresponding to an

area of 32 × 32 pixels. On these super-blocks the 8 × 8 DCT transform

is performed according to Eqs. (4.1) and (4.2). After the transform, each

block describes the motion pattern of the 32 × 32 pixel region in X and

Y directions, respectively, which becomes our motion descriptor. In the

MD(c,d)
x (a, b) = [

1

4

7∑
a=0

7∑
b=0

MVx[(c−1)∗8+a, (d−1)+b]∗cos
(2a+ 1) ∗ π

16
∗cos

(2b+ 1) ∗ π
16

]

(4.1)

MD(c,d)
y (a, b) = [

1

4

7∑
a=0

7∑
b=0

MVy[(c−1)∗8+a, (d−1)+b]∗cos
(2a+ 1) ∗ π

16
∗cos

(2b+ 1) ∗ π
16

]

(4.2)

equation (c, d) represent the block location of 32 × 32 in the frame, (a, b)

represent the location of the 4× 4 block within the 32× 32 block.
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The choice for a block size of 32× 32 pixels is made to ensure minimum

variability of motion vectors which occurs in the case of 16 × 16 mode in

H.264 bit stream. The obtained result is a 2D DCT transform of 8 × 8

blocks of motion vectors. Inferring from the properties of the DCT trans-

form we can notice that DC values MD
(c,d)
x (0, 0), MD

(c,d)
y (0, 0) represent

the localized global motion and AC coefficients represent the variation in

motion vectors. The frequency of variation increases as we move towards

the bottom-right corner. We propose to accumulate the AC coefficients

to arrive at a measure of motion disorder. However, higher frequencies

represent more disorder in comparison to the lower ones, hence the accu-

mulation has to be done in a weighted manner. This is exactly the opposite

of what happens in image and video compressions, where lower frequencies

are usually more important. Therefore, we calculate the entropy values

along X and Y as EX and EY from the equations Eq. (4.3) and Eq. 4.4,

respectively. The unified entropy measure is given by Eq. (4.5)

EX(c, d) =
7∑

a=0

7∑
b=0

MD(c,d)
x (a, b) ∗ [2a−8 + 2b−8] (4.3)

EY (c, d) =
7∑

a=0

7∑
b=0

MD(c,d)
y (a, b) ∗ [2a−8 + 2b−8] (4.4)

EU(c, d) =
√
E2
X + E2

Y (4.5)

The aggregated entropy gives us a generalized measure of information

present in the video frame. This measure is independent of the number

of objects and patterns of motion in the scene. A frame level aggregated

metric is defined in (4.6)also defined which gives overall information in the

frame.
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GXY =

Width
32∑
c=0

Height
32∑
d=0

[EX(c, d) + EY (c, d)] (4.6)

4.3 Object detection and segmentation

4.3.1 Algorithm

Moving object that is to be segmented is characterized by a high spatial

motion entropy and high correlation in terms of temporal measure of order.

Conversely all the areas belonging to the background will be characterized

by low correlation and low spatial motion entropy. The combination can

be expressed as a function for each of the 4× 4 block in current frame, for

both the components along X and Y given by Eqs. 4.7 and 4.8.

MX(m,n) = EX

(m
8
,
n

8

)
∗OX(m,n) (4.7)

MY (m,n) = EY

(m
8
,
n

8

)
∗OY (m,n) (4.8)

Similarly, the probability of a given block belonging to the background

region in a current frame, is modeled through two independent Gaussian

distributions centered around zero and given by Eqs. 4.9 and 4.10.

GX(m,n) =
1√

2πσX
∗ exp

[
−MX(m,n)2

σ2
X

]
(4.9)

GY (m,n) =
1√

2πσY
∗ exp

[
−MY (m,n)2

σ2
Y

]
(4.10)

σX and σY are the variances of the Gaussians, which have to be determined

experimentally. The probability of the block belonging to the moving ob-

jects can be defined in Eqs. (4.11) and (4.12)
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P (Obj |OX) = 1−GX(m,n) (4.11)

P (Obj |OY ) = 1−GY (m,n) (4.12)

Finally the probability of the block belonging to moving objects both

with respect to X and Y is given by Eq.(4.13) as both of them are mutually

exclusive subsets.

P (Obj |OX , OY ) = P (Obj |OX) ∗ P (Obj |OY ) (4.13)

In the segmentation map, each 4 × 4 block is represented by the pixel

intensity proportional to its probability. In this way blocks belonging to

the background are not marked and the segmentation is achieved.

4.3.2 Tuning the variance

As described in the previous section, variance of X and Y is highly de-

pendent on the characteristics of the video, requiring to find a suitable

value for it. Theoretically the variance of the two Gaussians represents

the degree of freedom, for variation of OX and OY . High value of variance

will result in higher precision of segmentation and low values will ensure

high recall with relatively low precision. In our case we set the value of

precision to maximize the F-measure which is combination of both preci-

sion and recall. Further, the variance of both the components is highly

localized in context. Hence tuning of variance is carried out by expressing

it as function of respective mean. Objective of tuning is to maximize the

F-measure.

σ2
X =

[
mean[OX ] ∗M

]2

(4.14)
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σ2
Y =

[
mean[OY ] ∗M

]2

(4.15)

In order to demonstrate the effect of variance on the F-measure, in this

section we plot the variation of precision, recall and F-measure for the

sequence Stefan, for different values of variance in Fig.4.2. Variance is

expressed as mean square multiplied by a scalar factor.
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Figure 4.2: X axis represents variation of tuning factor M, mean of OX and OY is multi-

plied by M and then squared to get σ2
X and σ2

Y respectively

As we can see from the plot as the variance increases the precision also
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increases, while recall decreases. However, the F-measure value is more or

less stable within certain range. This plot has been carried out for the first

90 frames of the sequence Stefan, which is rather challenging due to high

camera movement, pan and tilt.

4.4 Fall detection

Motion entropy measure is a proposed in section 4.2.1 is a highly flexible

and generic metric for video event description. With small modifications it

can be easily adapted for variety of applications. In this section we present

its utility in fall detection. Fall detection is one of the selected basis for

camera reconfiguration in the current study. Reconfiguration is aimed at

providing the better view of fallen person. Such a system would greatly

improve the accuracy and timely response in emergency health care. This

is especially relevant in developed world which increasingly houses growing

percentage of aged population.

4.4.1 Proposed method

In the section 4.2.1 we defined motion descriptors and in previous section

their usage in detection of moving objects and segmentation. We approach

fall detection in similar manner. Fall detection can be described as a sudden

event which causes rapid variation of video features in temporal direction.

In line with that observation, the unified entropy measure defined also has

large value and also high variation across the frames during the occurrence

of the fall.

In order to identify potential candidate frames for the occurrence of fall,

we discard the frames which have lower entropy. Lower entropy frames

typically do not consist of any movement of objects, hence the likelihood

of occurrence of the fall in these frames is almost negligible. After selecting
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the frames with higher entropy with a cut off, which is specific to camera

orientation and illumination conditions, we further analyse these frames

for the detection of the fall. Similarly Figure 5.6 (a) shows the movement

of centroid of the person per frame. As we can see during the fall velocity

of centroid dramatically increases and then becomes zero.
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Figure 4.3: (a) Velocity of the centroid of the person per frame. (b) Variation of entropy

and the events as marked using ground truth.

Another aspect of fall is a sudden change in location of the centroid over

a very short number of frames. Since, whenever there is an occurrence of a

fall of a standing person, the orientation of the person changes dramatically,

we propose to utilize this aspect as well.

In order to further refine the accuracy of the prediction we apply another

observation which is very characteristic of the fall. Whenever the fall occurs

the person who has fallen down will become almost motion less, there by

decreasing the entropy measure defined in earlier section. Figure 4.3 (b)

illustrates the variation of entropy. We can notice that any sudden event

results in spurt of entropy. However in case of fall there is dramatic decrease

in entropy before a spike and later a fall.
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Figure 4.4: Flow chart of the proposed algorithm.

4.4.2 Algorithm

Let the frame at the time instant i for a given video stream from a surveil-

lance camera be Fi, then entropy measure of that frame is given by E(Fi)

and the centroid of the segmented person as a pixel location in a video is

given by C(Fi) and the distance travelled by the centroid or velocity per

frame is given by:

V (Fi) = Euclidean(C(Fi), C(Fi−1)) (4.16)

After defining these terms the proposed algorithm is given flowchart shown

in Figure 4.4. As mentioned in earlier section, we check for the high vari-

ance condition of entropy and also velocity of moving object. After that

we check for sudden drop of entropy in neighbourhood to check for the fall.

Thresholds Th1, Th2 and Th3 are dependent on mean and variance of en-
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tropy and velocity. Main purpose of these thresholds is to detect the peaks

that occur for the entropy measure and also to detect the peak changes

in velocity of the centroid. Ideally any values which fall above mean of

the entropy and velocity should be considered, however background noise

also contributes significantly to motion entropy and is largely dependent

on deployed environment and is best learned in a given camera scenario.

4.5 Results

4.5.1 Video segmentation

In this section we present the results of video segmentation algorithm pro-

posed in section 4.3. The algorithm proposed uses motion descriptors which

form the basis for reconfiguration. Results reinforce the effectiveness of the

motion descriptors in computer vision tasks.

In order to demonstrate the capability of the algorithm in segmenting

moving objects, we report here the qualitative evaluation on four standard

video sequences used in video compression, which exhibit different types

of motions in Figs.4.6and 4.7. All the sequences are encoded using the

JM 18.1 encoder using following configuration: intra period is set to 30,

motion search range is [−32, 32], 3 reference frames are used, and full block

search is used for motion estimation. All sequences have a resolution of

352× 288. We have also considered sequences from the iLids dataset [28],

which represent a standard surveillance scenario. These videos instead

have a resolution of 720×576. Samples of segmentation of iLids sequences

are shown in Fig.4.8

The scalar factor M is kept unaltered for all sequences and set to 0.25,

except for Stefan and Mobile. For Stefan, owing to high camera motion we

set M = 1.5, while for the Mobile sequence, which shows a highly disper-

sive motion with low values, the best performance was obtained by setting
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Table 4.1: Comparison of the results obtained with the proposed method against the

reference approach.
Sequence Precision Recall F1

Mobile
Proposed 0.88 0.65 0.77

[43] 0.96 0.60 0.74

Stefan
Proposed 0.65 0.67 0.65

[43] 0.39 0.97 0.49

Table Tennis
Proposed 0.74 0.77 0.76

[43] 0.91 0.67 0.75

M = 0.15. However, considering that the sequences exhibit completely

different scenarios, an ad-hoc tuning is necessary. In order to evaluate the

obtained results quantitatively we have compared the algorithm with a re-

cent video segmentation algorithm in H.264 domain [43] and the obtained

precision, recall and F-measure are reported in Table 1 in the columns 3,4,5

respectively. As can be noticed, the algorithm outperforms the reference

method in video segmentation in the compressed domain. Figure 4.5 shows

frame to frame comparision of F1-measure between the proposed and ref-

erence methods for the stefan sequence. As we can see, proposed method

performs better than the reference methods in terms of variance. However

there is a dip in F1 measure from frame 15-20 as there is very little or zero

motion during that period.
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Figure 4.5: frame by frame comparison of proposed algorithm with reference method [43]
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Computational complexity The proposed algorithm operates completely

in the compressed domain, exclusively relying on motion vectors. Major

computations involve 8 × 8 DCT transforms spatially and 8 point DCT

transforms temporally. Let the height and width of the frame be W and

H, then the total number of 32×32 pixel blocks becomes, considering both

directions X and Y, 2∗W32 ∗
H
32 . If the fast DCT proposed by Chen et al. [10]

is used, the total number of computations for spatial motion descriptors

SMD is given in Eq. (4.17)

C = 2 ∗ W
32
∗ H

32
∗ 64 ∗ log108 (4.17)

Similarly, the computational complexity for temporal motion descriptors

(TMD) is given by Eq. (4.18)

CTMD = 2 ∗ W
4
∗ H

4
∗ 8 ∗ log108 (4.18)

The method is implemented in C on a standard desktop computer with

Intel processor clocking at 3.0 GHz. The time taken for processing one

frame, is about 15 milliseconds on average for a CIF sequence, comparing

to the algorithm proposed in [43], which takes about 125 milliseconds per

frame. Another important fact is integration of the proposed method into

H.264 encoder is straight forward, hence can be deployed directly in the

surveillance camera hardware.

4.5.2 Fall detection

This section presents the result of fall detection in terms of accuracy and

comparison with state of the art. Subsequently we also present the results

of reconfiguration achieved using PTZ cameras.
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Figure 4.6: Results obtained for a set of standard benchmarking sequences 1.
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Figure 4.7: Results obtained for a set of standard benchmarking sequences 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.8: Samples taken from the i-Lids dataset.
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Detection

Since the algorithm operates in the compressed domain, we had to convert

all the videos in the dataset [2] into the H.264 format using the JM H.264

reference encoder [26], at the frame rate of 25 frames per second. The

thresholds necessary for a proper operation of the algorithm are learned

for each camera and are maintained constant for that particular camera

for all scenarios. Fall is defined as an event lasting 5-10 seconds, starting

from the momentary stop by the subject just before the fall and ending

with a motion less layover of the subject. The total number of correct fall

detections, as compared to the ground truth, are deemed as true positives

(TP), while false detections are termed as false positives (FP). Finally,

true falls which have been skipped by the detector are termed as false

negatives (FN ). The results obtained for the video dataset are given in

Table 4.2 in terms of Precision, Recall and F-Measure. A comparison with

respect to the state of the art techniques is provided in 4.3. As can be

seen, the fall detection algorithm performs reasonably well especially given

the fact that it operates in real time. The algorithm fails to detect the

falls, when the subject is very far away from the camera and subsequently

the motion entropy generated by the subject is very low. In such scenario

noise becomes dominant thereby causing false detections. Another scenario

where the algorithm fails is in case of actions, which correspond to bending

down on the floor etc. However, since we also took into consideration the

momentary fall entropy, just after the fall most of such false detections

have been resolved.

Table 4.2: Performance of the algorithm on the dataset [2].

Precision Recall F-Measure

0.89 0.86 0.88
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Table 4.3: Comparison to the state of the art approaches described in [23].

Our method K-NN C4.5 SVM Bayes Feng et. all

Sensitivity 0.86 0.75 0.85 0.95 0.80 0.98

Comparison

Our algorithm completely operates in the compressed domain. Hence it

has the advantage of being very light in terms of computational and mem-

ory requirements. Nevertheless it compares very well with the other pixel

domain state of the art fall detection methods as we can see from the table

4.3. Our method also provides a significant improvement with respect to

other compressed domain methods like [36]. Most of these methods rely

on the segmentation of moving object and the trajectory of its centroid,

and also include other features like velocity of centroid. Present algorithm

also uses these aspects, but it turns out to be more robust as it also ex-

ploits the motion disorder as one of the factors to determine fall detection.

Furthermore, the compressed domain method presented in [36] uses AC

and DC coefficients along with motion vectors to achieve object segmenta-

tion, which are heavily dependent on the quantization parameter used for

encoding the video bit stream. The proposed method, instead is entirely

based on motion vectors, which are independent with respect to changes in

QP. In terms of complexity our solution offers the lowest complexity of all

compressed domain methods as it operates at the level of 32 × 32 blocks,

and the number of operations required for processing one frame are 5.2K,

16K, 48K, 106K computations for CIF, VGA, HD, full HD resolutions,

respectively.
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Chapter 5

Reconfiguration

In this chapter we discuss the types of reconfiguration and the proposed

approach to achieve them. Reconfiguration is broadly divided into two cat-

egories, static and dynamic. Static reconfiguration is triggered one time

event like camera failures and environment change. Dynamic reconfigu-

ration on the other hand takes place continuously and automatically with

respect to the video events that take place in the environment.

5.1 State of the art

Research in camera reconfiguration is in a nascent stage, Micheloni et al.

summarized the current state of the research in [44]. In general, camera

reconfiguration is performed with respect to a specific task. One of the

earliest works to consider PTZ cameras is [49]. In this work PTZ cameras

were specifically used for tracking. In another instance Quaritsch et al. [54]

adopt reconfiguration to achieve better tracking over multiple cameras.

Scotti et al. [61] utilize PTZ cameras along with omnidirectional cameras

in order to achieve tracking of objects at higher resolution. Another work

combining omnidirectional and PTZ cameras for tracking is [9]. Here the

authors approach the problem analyzing the spatial correlation, in order to

map the targets across two types of cameras. Similarly, Picarelli et al. [52]
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apply reconfiguration to avoid occlusions, which may occur in presence of

changes in the environment. Karuppiah et al. [29] propose a smart camera

reconfiguration algorithm exploiting the a priori knowledge of floor plans,

and drive the reconfiguration process based on the changes that take place

over time. Another work, which specifically deals with the reconfiguration

of PTZ cameras is presented in [51], but in this case the model of the

camera is fixed and does not well apply to the case of PTZ cameras. One

of the few works to approach the problem of PTZ camera reconfiguration

in a general sense rather than in an application specific scenario, is [64].

The authors propose a decentralized algorithm for reconfiguration based

on game theory. Another similar work is presented in [15].

We have observed that a common deficiency of all the above algorithms

is that they often do not consider zoom as a reconfigurable parameter. It is

also worth noting that another important limitation in the state of the art

is in the fact that most algorithms address the issue of reconfiguration as a

separate problem from change detection. In fact, ideally, a reconfiguration

algorithm should also include a methodology for change detection to trigger

the reconfiguration when needed. This is one of the major aspects that we

include in the current study, by proposing a low-complexity reconfiguration

algorithm, which also includes the capability of detecting the changes in

the environment. Another very important fact, which is often overlooked

in smart camera systems, is the overall complexity of the system.

5.2 Static reconfiguration

In surveillance scenarios where the video feed is continuous with cameras

continually relaying it. There is high chance of malfunction in such sce-

nario. In fact it is regular feature where in one of the cameras in environ-

ment malfunctions and leads to surveillance blind spot. Such situations
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may lead to serious consequences in terms evidence collection crime pre-

vention. There also a high chance of perpetrator disabling the camera

facing the crime scene. In this context reconfiguration of the rest of cam-

eras to cover the blind spot is highly desirable and effective temporary

measure. Similarly there may be additional scenarios where in the change

environment may lead to occlusion of one of the deployed cameras. Cam-

era reconfiguration also comes in handy in such situations. Although the

cameras are fixed, advent of PTZ cameras has opened up has made recon-

figuration a necessary part of a smart and realistic camera network.

Since the reconfiguration is static, the previous camera models defined

in chapter 2 can be used to carry out simulation in virtual domain. Best

possible configuration for the changed circumstances is achieved by carry-

ing out simulation in virtual domain. Particle swarm optimization is used

to arrive at a best solution with the changes in environment or cameras

being replicated in the virtual domain. However only changeable param-

eters in this simulation are pan,tilt and zoom, while the positions (x, y, z)

of the cameras are fixed. Hence static reconfiguration is an extension of

camera planning problem with reduced parameter space. It is achieved by

optimizing the camera parameters while keeping (x, y, z) constant. Vali-

dation of the proposed models with respect to static reconfiguration has

been presented in chapter 2.

5.3 Dynamic reconfiguration

Dynamic reconfiguration involves continuously and collectively changing

camera parameters of all the cameras in network, in order to get a best

possible view of all the moving targets in the environment. Such an ar-

rangement would greatly increase the effectiveness of the surveillance sys-

tems. It will also lead to cost reduction by reducing the required number of
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sensors for a given environment. Better view of the moving targets would

improve the accuracy and effectiveness of the computer vision algorithms

like face detection, tracking etc. However another important factor that

has to be taken into account is the overall coverage of the environment.

While performing these changes of camera parameters, the overall mini-

mum coverage should be maintained.

5.3.1 Area metric

Figure 5.1: Segmented set of objects projected onto the environment using the camera

model and current parameters.

As mentioned section 4.2.1 motion entropy metric defined in (4.6) forms

the basis for reconfiguration. However the proposed metric does not quan-

tify information in the context of whole object i.e metric does not care

whether the whole object is visible or not. It simply gives the extent

of information in the video frame, such information may not be useful.

Moreover, if the target is close to the camera, it is likely that it will cover a

large portion of the image plane, thus decreasing the automatic observabil-
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ity of the event, mainly due to over segmentation, and making the image

less suitable for feature extraction and analysis. Furthermore, the entropy

metrics obtained for such situations are considerably high, leading to im-

proper handling of camera reconfiguration. In order avoid such situations

we propose to combine the motion entropy metric with the information

about the area occupied by the moving object (or set of objects), in order

to obtain a more balanced metric as a basis for reconfiguration. The ob-

jects observed by a camera are defined as the largest bounding box in the

video frame that include all the detected and segmented objects using the

method proposed in the previous section. This rectangle is then projected

onto the real environment using the camera model and its current param-

eters. After the area has been obtained, it is normalized and combined

with the entropy metric, which is used for camera reconfiguration in target

mode (see Eq. (5.1)).

TA = W ∗B (5.1)

W and B in the equation are calculated as shown in Figure. 5.1

5.3.2 Camera network architecture

In order to efficiently handle and monitor the given surveillance scenario,

we propose to operate the cameras in two modes, namely target and global

mode. During operation, cameras in the network switch between the two

modes based on the information coverage metrics. The detailed description

of each mode is given in following subsection.

Camera modes

Global Mode The primary function of the camera in this mode is to ensure

maximum coverage and visibility on the scene. All the cameras in this
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mode are utilized to maintain at least the minimum amount of coverage

as specified by the user. The total number of cameras in this mode can

never be zero. These cameras also perform the role of scouting for any

moving object detection. A given camera can switch from global mode

to target mode only if certain conditions specified by the algorithm are

met. One of the conditions to be met is that the coverage provided by the

residual cameras in the network is greater than or equal to global coverage

requirements.

Target Mode In this mode the primary function of the camera is to extract

as much information as possible of to the object or set of objects, to which

it has been assigned. While the objects are moving,target mode camera

changes its PTZ parameters to attain the best possible view of the targets.

The camera will switch back to global mode once the target moves out of

range of the camera field of view; at this point the global camera in the

network, which has the highest information metric for that target will then

switch to target mode to continue monitoring the moving object.

Figure 5.2: Target mode operation of the camera.

Monitoring is achieved by continuously adjusting the pan, tilt, and zoom

of the camera. This process continues until the camera is assigned either to

another object or switches back to global mode. The principle criterion for

reconfiguration is to maintain the midpoint of the defined rectangle along

the camera axis (through pan and tilt). Another objective is to ensure
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that the height of the rectangle occupies around 60-80 percent of the video

frame height (through zooming).

Since the rectangle may consist of a set of objects potentially showing

rapid transitions in size, the reconfiguration is carried out according to the

average width height of the rectangle over a time window. This ensures

that the camera does not track random motion in short bursts. Figure.

5.2

5.3.3 Camera network and operation

Figure 5.3: Various stages in transition of cameras from global to target mode.

Let us assume there are N cameras in the camera network that is to be

deployed in the given environment. Each camera acts as an independent

node in a mesh network and can communicate with any other camera using

a predefined protocol. Initially the best configurations for various combi-

nations of cameras varying from K to N are calculated according to the

positioning algorithm proposed in [57]. The total number of configurations

is given by:

Nc = NCK + NCK+1 + NCK+2............+
NCN (5.2)

where K is the minimum number of cameras, which are to be main-

tained in global mode, either owing to visual coverage requirements or
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user specification. All these configurations are stored in each of the cam-

era node. When the system is turned on all the cameras initially set into

global mode. Now, let there an be a moving object i detected by a camera;

its physical world location is given by

OX,Y,Z = P (x, y) ∗ T (θ, φ, f) (5.3)

where (X, Y, Z) represents the physical world location of object (x, y) is

the pixel location as seen by the camera. The transformation T (θ, φ, f)

is based on pan, tilt, and zoom of the camera at that instant and the

pinhole camera model presented in [57]. If there are more objects in view,

the largest rectangle which encompasses all the objects is taken. From

the spread of objects in the environment, the area metric in Eq. 5.1 is

calculated and combined with the unified entropy as defined by Eq. (4.6)

according to:

Mi = 1− exp[−T iA ∗GXY ] (5.4)

Successively, the camera transmits the object location and the com-

bined metric to all other cameras. In order to remove noise and also due

to the moving nature of the objects, location and entropy are calculated

as a moving average over a period of time. The transmission interval is

application-dependent. Each camera then compares the combined metric

Mi of the other cameras observing the same object or set of objects. The

camera with the highest entropy will switch to target mode and will be

assigned to that particular target. The switching only happens if the total

number of global mode cameras in the network is greater than K. After

switching, the remaining cameras in global mode switch to the correspond-

ing configuration referring to that particular combination. An example is

shown in Figure. 5.3. As can be seen from the figure, all three cameras

are initially in global mode (represented in blue); once the objects appear
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in the scene, cameras are classified into groups based on the visibility of

the objects. In the second stage, the combined measure defined earlier is

compared across two cameras with respect to object visibility. This tran-

sition stage is represented in yellow. Finally, in the third stage, cameras

with high metric are assigned to respective targets, while the others revert

to global mode. The transition stage is repeated at equal time intervals

in order to verify the assignments. The technical aspects of this transition

are shown in Algorithm. 3. While assigning the targets algorithm assumes

equal importance for all the targets, irrespective of their location unless

specified by the user. The Algorithm is repeated at the end of the time

interval as set by the user.

5.4 Validation

In this section set up for the reconfiguration and subsequent reconfiguration

results are presented. In principle reconfiguration is based on the target

mode described in section 5.3.2.

5.4.1 Fall detection

Setup

Reconfiguration of the camera is triggered by the fall detection algorithm

mentioned in the section 4.4. The basis for reconfiguration is the fallen

person. The main aim of the reconfiguration of the camera is to get the

best possible view of the subject. In order to do so, we adjust the camera

parameters in such a manner that the person to be observed falls at the

centre of the image plane. Further precaution is also taken so that the per-

son does not fill the entire image plane of the camera. This can be achieved

in most PTZ cameras by specifying the particular area in a video frame, by

using the available CGI (Commond Gateway Interface) commands. In this
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scenario, the segmented object is selected as the area of interest. Cameras

automatically adjust alignment at the midpoint of the area specified.

After the reconfiguration is complete in order to make the person fully

visible, the new parameters of the camera are set using the subject seg-

mentation information. This helps understanding the reason of fall and

further monitoring of the person after the fall, that is especially relevant

for elderly people living alone and monitored for their care.

Figure 5.4: Reconfiguration of the camera carried out to guarantee full visibility of the

subject of interest.

To show the reconfiguration capability, we deployed a set up in a real

environment and observe its performance during the occurrence of fall. To

this extent we used two cameras “Sony SNC-EP521 indoor”, day/night,

with PTZ. These IP cameras are equipped with a 36x optical zoom allowing

operators to cover large, open areas and zoom in for detailed close-up shots.

Panning can span from 0 to 340 degrees, with max 105 degrees tilt, and

their configuration can change using built in network commands. The

cameras have been installed in our Department facility, and falling events

have been recorded thanks to the collaboration of volunteers.
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Result

the video stream obtained from the camera has a resolution of 720 × 576

pixels and a frame rate of 25 frames per second. The H.264 bit stream

obtained from the camera is encoded in the baseline profile. In order to

access the Network Abstraction Layer (NAL) packets from the camera we

have used the functions available in the ffmpeg library [66]. Fall detection

and moving object segmentation are implemented using the motion vectors

extracted from the H.264 (JM 18.6 version) decoder [26]. In order to control

the camera automatically the curl library functions [65] are adopted. The

whole set up is implemented on an Intel i5 processor, 3.10 GHz.

Fall detection and subsequent reconfiguration is shown in Figure 5.5. As

we can see from the images, fall of the person occurs towards the end of

the image in one of the frames. However, camera instantly reconfigures to

bring back the view of the fallen person. This shows that the algorithm

works in real time and is robust enough to work in tricky illumination

conditions.

5.4.2 Entropy based reconfiguration

Final section deals with the generic reconfiguration algorithm proposed.

Algorithm is proposed based on motion entropy. Ultimate aim of this

reconfiguration algorithm as mentioned in chapter 5 is to concentrate all

the video sensors on the area which has highest information. However

there is a restriction that the overall, coverage of the environment should

be maintained.

Implementation and testing scenario

In order to test the algorithm, we have deployed a camera network com-

posed of two PTZ cameras. The cameras we have selected are Sony EP521,
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because of their wide optical zoom (36x). Cameras have been deployed

in the university wired network and accessed via IP address. The video

stream obtained from the camera has a resolution of 720× 576 pixels and

a frame rate of 25 frames per second. The H.264 bit stream obtained from

the camera is encoded in the baseline profile. In order to access the NAL

packets from the camera we have used the functions available in the ffmpeg

library [66]. Motion field entropy calculation and object segmentation are

accomplished using the motion vectors extracted from the H.264 (JM 18.6

version) [26] decoder. In order to control the camera automatically the curl

library functions [65] are adopted. The whole set up is implemented on

an Intel i5 processor, 3.10 GHz. In terms of complexity algorithm requires

5.2K, 16K, 48K, 106K computations per frame for CIF, VGA, HD, full

HD resolutions, respectively, which is negligible when compared against

the video encoder complexity. Hence the proposed algorithm can be seam-

lessly deployed in a video encoder embedded in the camera. Cameras are

deployed in a long corridor of about 15m in length and 3m wide in the uni-

versity building. Cameras are deployed in the best positions in accordance

with the algorithm proposed in [57] and this constitutes global mode con-

figuration of the camera. Evaluation is performed by observing the change

in configuration of the cameras with respect to movement of the people

in the corridor. Observed changes in configuration are compared with ex-

pected behaviour as defined by the proposed algorithm. In this particular

deployment, minimum number of global cameras is fixed at one and target

camera tracks the objects in such a manner that they occupy 70 percent

of the video frame height.

Evaluation of entropy metric

In order to evaluate the metric based on the motion field disorder, we

plot the variation of the entropy for both cameras, in presence of motion
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of people across the deployed corridor from one end to another end (see

Figure. 5.6). As can be seen, the entropy metric oscillates in the range

20-40 with a random nature, whenever there is no motion. However, as

a person moves by the camera, a noticeable increase in entropy is visible.

For example, as the person moves by camera 1 (marked in Red) there is

sudden increase in entropy and camera 1 switches to target mode. After

the target has moved away from camera, entropy gradually reduces, and

switches back to global mode. We can notice a similar behaviour from

camera 2 (in blue), which takes over for camera one, when the target

comes closer, thus switching to target mode.

5.4.3 Algorithm evaluation

In order to evaluate the algorithm we observe the camera behaviour in

light of a predefined movement of a moving object. As a part of this the

person walks from one end of the corridor to the other and then back to

the initial starting point. The path followed by people and the point at

which the reconfigurations happen are shown in Figure. 5.8

We observe the state transitions during these process. Initially, in Fig-

ure. 5.7 the global mode of both cameras is presented. The series of images

where camera 1 transits from global mode and then follows the moving ob-

ject in target mode, are shown in Figure. 5.5 A the target moves out of

range of the camera, it reconfigures itself back to global mode. Similarly

also camera 2 follows the same routine as the target approaches it and

moves out of range (Figure. 5.10). On the whole, the setup performs sat-

isfactorily with respect to reconfiguration. The only limitation we have

experienced is in the robustness to rapid changes in the reconfiguration,

since the total time required for repositioning the sensors is about 3s due

to the network delay issues. This could be overcome by deploying the

algorithm in the H.264 encoder embedded in the camera.
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input : Object locations OL across Camera network

input : Combined Camera Measures for all cameras Cmode

input : Minimum Global Cameras GCmin

output: Camera modes Cmode

CMC ; % Combined Camera Metric using Area TA and EU

OL ; % Object Locations using pinhole Camera Model OL

Nobj ; % Number of object sets across camera network Nobj

CSobj = φ ; % Set of Cameras per object

Cmode = Global ∀ Ncameras ; % All cameras are initially in global mode

TC =0 ; % Cameras in Target Mode

for i← 1 to Nobj do

for j ← 1 to Ncameras do

if Visibility(i, j) == 1 then

CSobj(i) = CSobj(i, :)
⋃

j ;

end

end

end

for i← 1 to Nobj do

DescendingSort(CSobj(i, :), CMC) ;

end

for i← 1 to Nobj do

while Ncameras − TC >= GCmin do

Cmode (CSobj(i, 1))= Target;

TC =TC +1;

end

end

Return Cmode;

Algorithm 3: Stage transition of cameras from global to target and vice versa.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 5.5: Fall detection and subsequent reconfiguration of the camera for better view.
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Figure 5.6: Variation of entropy metric with movement of people.

Figure 5.7: Global mode configurations of Camera 1 and Camera 2.

Figure 5.8: Path followed by people with respect images shown in Figures. 5.9 and 5.10.
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Figure 5.9: Camera 1 switches to target mode; as the target moves out of range, it transits

back to global mode.
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Figure 5.10: Camera 2 switches to target mode; as the target moves out of range, it

transits back to global mode.
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Conclusion

Video surveillance is increasingly being used as a means to deter and iden-

tify crime. It also plays a role of documenting and recording events, which

could be very important in certain scenarios. This is especially true for ur-

ban environments. Given the complexity of urban infrastructure, resulting

occlusions and many other factors like lighting etc. Camera placement and

configuration essentially determines the efficiency of the video surveillance

system. In constantly changing urban scenario objects of interest move

around, camera system does not remain optimal if it fails to adapt to the

situation.

In light of above mentioned requirements, present day camera systems

are in need of augmentation by a framework which configures the camera

network, continually monitors the environment for change and reconfigures

the network to suit the changing environment. Aim of this doctoral study

is to propose such a framework with minimum possible computational com-

plexity. Proposed method for camera planning and static reconfiguration

are based on state of the art camera and environment models. Dynamic

reconfiguration algorithm utilizes video features in compressed video bit

stream for event detection, based on which real time reconfiguration is

achieved.

123



CHAPTER 6. CONCLUSION

Chapter 2 presents the camera and environment models used in camera

planning along with the extensive discussion about the state of the art

in this particular field. Camera model is based on many visual quality

metrics like pixel density, perspective distortion and visual information.

Planning is achieved by simulating the models and optimizing the camera

parameters in virtual domain. Static reconfiguration which is based on

one time events is also demonstrated and tested in the chapter. Finally in

a real scenario comparison of the algorithm based system and traditional

system is presented.

Chapter 3 Describes the light planning problem and its relevancy to

camera planning. Present state of the art of light planning is also dis-

cussed. State of the art light planning algorithm with a focus on visual

entropy is proposed and its validation is achieved by simulating the envi-

ronment,camera and light models in virtual environment.

Chapter 4 is mainly about compressed domain video processing which

forms the basis of camera reconfiguration in our work. Chapter starts with

a brief discussion about compressed domain video processing for various

computer vision tasks. A quantitative information metric for visual in-

formation called motion entropy is introduced. Motion entropy is based

on disorder of motion field extracted from compressed video bit stream.

Validity of this metric is demonstrated by utilizing it for two applications,

namely video segmentation and fall detection. Both the results are com-

pared with state of the art in their respective domains. Segmentation is

further used as one of the basis for reconfiguration.

In chapter 5 we start off with state of the art of reconfiguration in

multi camera networks. We then propose a distributive, low complexity,

scalable dynamic reconfiguration algorithm based on motion field entropy

and moving object localization. Algorithm is generic in nature and is

not biased towards any particular task and is also of very low complexity.
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Since the operation is in compressed domain, process of video decoding and

feature extraction is eliminated. Proposed algorithm is also fully scalable

in terms of number of cameras. Algorithm is tested by implementing a

network of two PTZ cameras. In order to validate the system, an expected

camera behaviour is charted out based on pre determined motion of the

objects. Expected camera behaviour is compared with actual behaviour

during the experiment for validation.

Applications Proposed framework has extensive applications in many ar-

eas. Efficiency of the video surveillance would be increased manifolds by

augmenting the existing system with present framework. Almost all the

computer vision methods will increase in efficiency by using the proposed

framework. This is possible since the proposed system will continually re-

configure itself to produce a best possible view of a moving object in terms

of visual information. Framework also addresses the common video surveil-

lance problems like illumination changes, sensor malfunction and scaling of

the system. Dynamic reconfiguration is especially useful in object tracking

and face detection.

Future work In the proposed framework, dynamic reconfiguration has

been only validated for the network of two cameras. We would like to

extend it to the large network of the cameras to further validate the scal-

ability and distributiveness. Motion entropy metric proposed in the study

is a highly generic metric for video information. Hence there is a high pos-

sibility of training the dynamic reconfiguration algorithm for many of the

specific computer vision tasks. We would also like to introduce a neural

network based on line self learning capability for the system, making it

more efficient and responsive to the given situation.
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