
                                             

 
 

 

Erasmus Mundus Joint Doctorate School in Science for 

MAnagement of Rivers and their Tidal System 

 

 

 

Tesfaye Haimanot Tarekegn 

 

Downstream suspended sediment dynamics of 

reservoir sediment flushing 

 



                                             
 

 

November 2015 

 

 

 

 
Doctoral thesis in Science for MAnagement of Rivers and their Tidal System,  

 

Cycle: II 

 

Primary Institution: 

Department of Civil, Environmental and Mechanical Engineering, University 

of Trento 

Secondary Institution: 

Department of Physical Geography, Queen Mary University of London 

Supervisors: 

Prof. Maurizio Righetti, University of Trento 

Dr. Marco Toffolon, University of Trento 

Prof. Geraldene Wharton, Queen Mary University of London 

 

Thesis Examination Committee: 

Prof. Philippe Belleudy, LTHE-Université Grenoble Alpes, France 

Dr. Kees Sloff, Delft University of Technology, The Netherlands 

Prof. Luigi Fraccarollo, University of Trento, Italy 

 

 

 

 

 

 

 

 

Academic year 2015/2016 

 

Front Cover: Eibenstock Dam in Saxony, South East Germany. 

This page is intentionally left blank

https://www5.unitn.it/People/en/Web/Persona/PER0004353


i 

 

 
 
 
1

 This project has been funded with support from the European Commission. This publication reflects the views only 

of the author, and the Commission cannot be held responsible for any use which may be made of the information 
contained therein. 

 

 

The SMART Joint Doctorate Programme 

 

Research for this thesis was conducted with the support of the Erasmus Mundus Programme
1
, within the 

framework of the Erasmus Mundus Joint Doctorate (EMJD) SMART (Science for MAnagement of 

Rivers and their Tidal systems). EMJDs aim to foster cooperation between higher education institutions 

and academic staff in Europe and third countries with a view to creating centres of excellence and 

providing a highly skilled 21
st
 century workforce enabled to lead social, cultural and economic 

developments. All EMJDs involve mandatory mobility between the universities in the consortia and lead 

to the award of recognised joint, double or multiple degrees. The SMART programme represents 

collaboration among the University of Trento, Queen Mary University of London, and Freie Universität 

Berlin. Each doctoral candidate within the SMART programme has conformed to the following during 

their 3 years of study: 

i. Supervision by a minimum of two supervisors in two institutions (their primary and secondary 

institutions). 

ii. Study for a minimum period of 6 months at their secondary institution. 

iii. Successful completion of a minimum of 30 ECTS of taught courses. 

iv. Collaboration with an associate partner to develop a particular component/ application of their 

research that is of mutual interest. 

v. Submission of a thesis within 3 years of commencing the programme. 

 

 

 

 

 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

"የጥበብ መጀመሪያ እግዚአብሔርን መፍራት ነው።"  

መዝሙረ ዳዊት  ፻፲፩:፲ 

 

 



iii 

 

 
  

 

 

 

 

 

 

 

 

 

 

This work is dedicated to  

Lensa Esaw 

and 

Nathan Tesfaye 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 
  

ACKNOWLEDGMENTS 

 

Undertaking a PhD has been a big step in my life and it would not have been possible without continues 

support and involvement of many people since my early days in school. I wish to express my sincere 

gratitude to those who helped me shape my career and significantly improved my PhD research work. 

First, I would like to express my deepest gratitude to Prof. Maurizio Righetti and Dr. Marco Toffolon. 

Since the inception of my PhD work their positive impact was massive and I am always grateful for that. 

The patience, encouragement and optimism from you deserve great appreciation. ‘Graze mille Marco e 

Maurizio’. Second, I would like thank Prof. Geraldene Wharton for her continuous support and 

supervision during my stay at Queen Mary University of London. It was a great honour working with 

you and I am so grateful for your encouragement when times were rough. I would like to thank Dr. 

Annunziato Siviglia of ETH Zürich for his invaluable contribution to this work. 

I also would like to pass my indebted gratitude to Dr. Alvise Sartori of Point Grey Italy S.r.l. for giving 

me access to use high speed camera for the laboratory experiments.  I would also like to thank Dr. 

Emmanuel Mignot of INSA Lyon and Dr. Paul Grams of U.S. Geological Survey for sharing valuable 

research datasets which added a great value in this work. I would also like thank Dr. Chris Robinson of 

EAWAG and Prof. Alessandra Crosato of UNESCO-IHE for sharing datasets. 

I would like thank Fabio Sartori, Lorenzo Forti, Andrea Bampi and Paolo Scarfiello for their valuable 

support during my laboratory experiments in Hydraulic Laboratory of Trento University. The assistance 

from Hossain, Sabrina, Mahdi and Guiseppe was very valuable and I am very grateful. I am indebted to 

Marina Rogato and Lara Fiamozzini for their kind support in my administrative needs. 

I would like to thank my good friends Luca Adami and Umesh Singh for being so supportive and 

making my life a bit easier throughout my PhD. You have been a good friend indeed. I would like to 

thank all of my colleagues in SMART programme for the wonderful experience and memories. 

Most importantly I am so grateful to my wife, Lensa Esaw, for believing in me and following me all the 

way from home when I needed most. I am very grateful for everything and I hope the challenges away 

from Nathan have been paid off. 

Above all, I would like to thank my mum and my dad who always encouraged me to excel my life 

through education. I would not know where I would be without their mere recognition of positive impact 

of education. I am very thankful to my sister and all my brothers. Particularly, my special appreciation 

goes to my brother Fikre Haimanot and my late brother-in-law Diriba Tollesa who helped me so much. 

https://scholar.google.co.uk/citations?view_op=view_org&hl=en&org=11225417394779020737


v 

 

 
  

 ABSTRACT 

Reservoir sediment flushing is increasingly considered beneficial to reduce sedimentation of reservoirs 

and maintain sediment supply downstream of impounded rivers. Nevertheless, flushing of the 

accumulated sediments downstream of the dam also bears numerous negative impacts. In this study, first 

the most important downstream impacts of fine sediment releases of flushing were identified based on 

previously published research of twenty case studies in eleven countries. The results showed that the 

long-term as well as short term biological and physical impacts decreased with distance from the dam. 

The temporal scale of impacts on macro-invertebrates could span from few weeks or a month to several 

months while the effect on fish could last for a number of years. The impacts on downstream vegetation 

dynamics is driven by many years of flushing activities. The study also enabled proposing generic 

management strategies aimed to reduce the impacts.  

Second, fine sediment transport in coarse immobile bed, which is a common phenomenon downstream of 

dams during flushing releases, dam removal and also in many mountain and canyon rivers, was 

investigated. Particularly, the dynamics of the downstream erosion and transport of fine sediments 

released during sediment flushing was investigated based on a series of flume experiments that were 

carried out in immobile gravel bed and using a one-dimensional (1-D) suspended sediment transport 

model developed in the present study. In the framework of the flume experiment, firstly gravel bed 

roughness, porosity and roughness density were exclusively extracted from gravel surface elevation data 

in which developing a spatial filter to overcome elevation errors was carried out. Secondly a new 

technique to acquire fine sediment erosion in immobile coarse bed in running water condition was 

developed. The method proved to be the back bone of all fine sediment erosion experiments conducted in 

the present study and could be used for similar studies. This study presents a first work of direct 

measurement of erosion rate and characterizing its spatial heterogeneity in gravel bed. The experimental 

data of erosion rate of fine sediments showed that it varied spatially with high erosion rate on the stoss 

side of gravels and less on the lee side conforming to sweeps and ejections characteristics in coherent 

flow structure of gravel bed flows. Erosion rate was significantly affected by increase in roughness of 

immobile gravel bed with high erosion rate noticed when sand level was reduced although the effect on 

stream-wise velocity was not significant. The vertical profile of erosion rate was found to decrease 

linearly and showed an exponential decay in time in the gravel matrix.  

Third, a new non-equilibrium erosion rate relation is proposed. Drag force profile in the interfacial 

sublayer of clean gravel bed was found to be scaled well with roughness density and allowed predicting 

the effective shear stress distribution available for fine sediment entrainment with an empirical equation. 
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The new relation is a modified version of the pick-up rate function of van Rijn (1984b) in which the 

predicted shear stress in the roughness layer was implemented. The most important finding was that if the 

shear stress distribution in the interfacial sublayer is predicted, a relation for sand bed condition can be 

applied to predict fine sediment erosion rate in immobile gravel bed. This approach is conceptually 

superior to previous approaches where erosion rate in sand bed condition was scaled empirically for 

various fine sediment bed level within the interfacial sublayer.  

Finally, the effect of the interaction between hydrodynamic and sediment wave dynamics of sediment 

flushing on spatial pattern of sediment deposition was investigated. The 1-D model was developed to 

include major processes observed in sediment flushing: sediment wave celerity correction, variable bed 

roughness, bed exchange in immobile bed, hindered settling velocity and rough bed porosity. The 

proposed erosion rate relation showed encouraging results when implemented in the 1-D model. The 

wave celerity factor did not show significant effect on the spatial lag in immobile bed condition although 

was significant in sand bed condition. Variable bed roughness modified both the flow field and sediment 

deposition in which larger length of sediment deposit was noted. The immobile bed porosity allowed 

modelling clogged depth of fine sediments. The model was also found to be very valuable to investigate 

flushing scenarios that reduce significant deposition through the analysis of the dependence of deposition 

on peak-to-base flow and intermittence of releases. The highest peak-to-base flows produced the longest 

and thickest region of deposition while those with the lowest ratio produced the shortest and thinnest. A 

single flushing release followed by clear water release reduced area or length of sediment deposition more 

than intermittent flushing followed by inter- and post-flushing clear water releases. In the latter case, the 

peak of concentration reduced but remained higher for longer duration than the former, which suggests 

that a large quantity of clear water release has to be available. 

Overall, the present research represents a step forward in understanding relevant processes involved in the 

downstream transport of fine sediments released during sediment flushing and the associated impacts that 

can help the development of better management strategies and predictive tools. 
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1. INTRODUCTION        

Dams were built and used to regulate rivers over 5000 years including the period of ancient Egyptian 

civilization (Petts and Gurnell, 2005). Currently there are about 50,000 large dams worldwide (ICOLD, 

2013). These dams are operated to continuously trap sediment, without specific provisions for sustained 

long-term use (Morris and Fan, 2010), causing severe reservoir sedimentation problems. Today the total 

annual worldwide rate of loss of reservoir storage capacity due to reservoir sedimentation is about 0.5 to 

1.9 % (Liu et al., 2004a).  Reservoir sedimentation has even become a major setback for economic and 

sustainable development in many developing countries due to siltation of hydropower and irrigation dams 

(Basson, 2010). The altered flow regimes downstream of dams and the interruption of transfer of 

sediments from headwater source areas (Kondolf, 1997; Petts and Gurnell, 2005) have also brought 

significant changes to the flow and sediment regimes of many large rivers. Such changes have significant 

effects on downstream river substrate and ecological state thus resulting in disturbance of habitats for 

various aquatic organisms (Brooker, 1981).  

To reduce reservoir sedimentation, various active and passive techniques have been developed including 

sediment flushing, sluicing, dredging and soil conservation and watershed management (e.g. Di Silvio, 

2004).  Among these, sediment flushing, defined as the scouring of previously deposited sediments by 

hydraulic method and release through bottom outlets of the reservoir, is the most effective, economic and 

fastest method to reduce reservoir sedimentation  (Liu et al., 2002b). Sediment flushing can be beneficial 

not only by reducing sedimentation of reservoirs but also by increasing sediment supply downstream (e.g. 

Sumi and Kantoush, 2010). However,  the high flows induced by the sudden release of water and high 

concentration of fine sediments  often causes significant effects on downstream river reaches  (e.g. Ma et 

al., 2012). Its downstream biological, physical and chemical impacts are further complicated by the scale 

and extent of the impacts that vary depending on downstream river morphology, ecological diversity, 

channel characteristics, hydrologic regime, the type of flushing operations and other factors. A detailed 

analysis of downstream impacts of sediment flushing obtained from many contrasting case studies may 

improve our understanding and help to develop a common management strategy. Nevertheless, despite 

many scientific studies reported different case studies, there is a lack of a comprehensive inter-

disciplinary review of the impacts of fine sediment releases by flushing operations in various 

environmental and geomorphic settings. It can be argued that such analysis will be very useful to develop 

and propose best management strategies and identify suitable modelling exercises to assess downstream 

impacts. 
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Flushing operations introduce large quantity of fine sediments (non-cohesive suspended sediments in the 

size range from 0.062 mm to 2 mm) that are transported downstream. The channel bed downstream of a 

dam is usually deprived of sediment supply and suffers from continuous erosion of the channel bed and 

this leaves only coarser and immobile beds, which is often called a degraded and armoured bed (Kondolf, 

1997). Thus, the fine sediments released during flushing operations are transported in the immobile coarse 

bed (e.g. Wren et al., 2011). Similar phenomenon is also common in natural rivers such as mountain, 

alpine and canyon rivers whose bed consist of coarse bed  and distinguishable isolated roughness 

elements, such boulders or clasts (e.g., Wohl, 2000; Papanicolaou et al., 2004 )  that are transported in 

rare events and  most of the sediments passing  trough are fine sediments (Grams and Wilcock, 2014). 

Moreover, in many rivers  the sediment load comprises largely fine sediments and a decrease in fine 

sediment supply relative to transport capacity could lead to parts of underlying bed substrate become 

exposed and transport occurs over a bed that consists partially of fine sediment and partially of large 

immobile particles (e.g. Kleinhans et al., 2002). This transport phenomenon is complicated by non-

equilibrium transport and unsteady flows generated during flushing operations and the transport, 

entrainment and deposition of the released fine sediments in the immobile coarse bed becomes difficult to 

predict (Wren et al., 2011). Despite the relevance of this transport phenomenon in natural rivers and 

events such as sediment flushing very little research has been conducted to understand and model the 

processes of fine sediment transport in immobile coarse bed. Particularly, a proper description of erosion 

(entrainment) rates of fine sediments in immobile coarse beds are essential to develop predictive models 

for planning sediment flushing operations, post flushing cleaning of the clogged beds and including 

planning dam removal (e.g. Cui et al., 2008).  

Modelling the downstream transport of released fine sediments is very useful to understand main 

processes observed during flushing transport, identify release scenarios, and assess potential downstream 

environmental impacts. Most of previous modelling exercises of sediment flushing were aimed to 

understand deposition and erosion processes within the reservoir so as to improve flushing efficiency (e.g. 

Lai and Shen, 1996; Olsen, 1999; Chang et al., 1996; Lui et al., 2004b; Yang and Simões, 1998). 

Nevertheless, development of numerical models to study downstream transport processes and the 

downstream morphological effects of the released sediments has been limited until recently (e.g. Liu et 

al., 2004a; Rathburn and Wohl, 2001; Gallerano and Cannata, 2011; Tarekegn et al., 2014). The 

characteristics of the downstream transport of released fine sediments can be considered different from 

fluvial transport that occurs during flood events (e.g. Brandt and Swenning, 1999; Tarekegn et al., 2014). 

The transport during flushing operations is often characterized by time lag between released sediment and 

hydrodynamic waves, high sediment concentration and an immobile coarse channel bed, processes that 
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are not included in many existing sediment transport models.  Field observations of released liquid and 

solid discharges of sediment flushing indicate that a significant time lag occurs between the liquid and 

solid discharge as the waves propagate downstream (Brandt and Swenning, 1999; Brandt, 2005). These 

lags could lead to spatial lags in the waves and could affect the spatial pattern of sediment deposition (e.g. 

Tarekegn et al., 2014). Nevertheless, the mechanism how the temporal and spatial pattern of the 

deposition is controlled by the interaction between the two waves is not yet clear. Thus developing a 

simplified modelling tool that enable one to understand the effects of such interactions on the depositional 

pattern is useful, specifically to model the process at large spatial scale since the wave interactions are 

observed at larger spatial scales. In connection to this a proper description of the sediment wave celerity 

could prove crucial but in many numerical models this is neglected. Similarly since the sediment 

concentration is very high, sediment deposition could be significantly affected by hindered settling (van 

Maren et al., 2009) and model formulations that take into account this phenomenon are  required which 

are often lacking. On the other hand, modelling practices currently in use for predicting the transport and 

entrainment of fine sediments are developed for channel bed conditions that have the same grain size as in 

suspension. It is useful develop modelling approaches that predict the transport of the released fine 

sediment in immobile coarse bed which is a common phenomenon downstream of dams during flushing 

operations. In connection to this the prediction of sediment deposition within the roughness elements of 

the immobile bed is useful to quantify bed clogging and the variability in bed roughness that could affect 

the hydrodynamic wave.  

The PhD thesis is organized into five main parts. Chapter 2 describes a first work on comprehensive and 

inter-disciplinary review of major downstream impacts of sediment flushing practices.  The review 

focused on physical, biological and chemical impacts of sediment releases obtained from 20 different case 

studies in 11 countries reported by around 36 scientific studies. The review identified important 

management strategies to reduce downstream negative impacts of sediment flushing.  

Chapter 3, 4 and 5 are based on laboratory experiments involving non-equilibrium uniform fine sediment 

(d50 = 425μm and 500μm) transport in immobile gravel bed (d50 = 24.89mm). Chapter 3 describes 

immobile gravel bed roughness characterization based on random field approach and identifies the 

challenges of data acquisition by Position Sensitive Detector (PSD) laser sensors. In this Chapter gravel 

surface elevation data errors are identified and a normalized median filter was proposed to eliminate the 

errors. The effect of the errors on bed roughness characterization such as vertical length scale, horizontal 

length scale and second order structure function was significant. Thus a proper quality check is 

recommended. The gravel surface elevation data was finally used to estimate the vertical and horizontal 

length scales, bed porosity and roughness density that were used in Chapter 4 and 5. An important 
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observation from the bed roughness characterization was the roughness density can be scaled as a 

function of bed porosity and mean diameter of immobile gravel bed, thus a universal relation was 

developed. The developed relationship was used in drag force estimation in Chapter 5 and can also be 

useful to predict drag force in immobile coarse bed in general. 

In Chapter 4 and 5 experiments aimed to study non-equilibrium fine sediment erosion, by suspended 

transport, in immobile gravel bed are presented in detail.  Chapter 4 describes development of a very 

simple and economic laboratory scale imaging technique to estimate fine sediment erosion rate in 

immobile gravel bed in running water condition.  The method is found to be very useful to acquire very 

rapid changes in fine sediment bed level in the interfacial sublayer of immobile gravel bed at a spatial 

resolution as small as the mean diameter of the fine sediments. The method helps to estimate erosion 

(sediment pickup) rate in non-equilibrium transport condition and enable acquiring erosion datasets to 

characterize spatial and temporal characteristics of erosion in rough bed such as immobile gravel bed.  In 

Chapter 5 a set of ten experimental runs that were conducted to characterise spatial pattern of fine 

sediment erosion and derive a relation to predict non-equilibrium fine sediment erosion rate in immobile 

gravel bed are presented. The experimental datasets were used to investigate the relationship between 

spatial pattern of erosion and turbulent flow structure in immobile gravel bed, effect of immobile bed 

roughness on fine sediment erosion and selected flow variables and finally develop a non-equilibrium fine 

sediment erosion rate relation. Experimental datasets of flow in gravel bed were also used to characterise 

shear stress in the interfacial sublayer of gravel bed and its implications on fine sediment erosion.  The 

main output of this chapter is a new erosion rate relation.  

Chapter 6 describes development of a one-dimensional (1-D) suspended sediment transport model that is 

aimed to study characteristics of sediment and hydrodynamic waves of sediment flushing. The model is 

able to predict sediment concentration, thickness of sediment deposit in sand bed and in immobile gravel 

bed and identify optimal flushing scenarios. Flushing data of Cachí Reservoir is used in many of the 

model analysis. The erosion rate formula developed in Chapter 5 was also implemented in the numerical 

model and tested for its usability by comparing it with other two existing entrainment relations for 

immobile bed conditions. For this purpose, experimental datasets of deposition of fine sediment transport 

in immobile coarse bed were obtained from literature. Some of the important processes implemented in 

the numerical model include wave celerity factor, hindered settling velocity, immobile bed porosity, and 

variable bed roughness. The numerical model enabled to analyse the effect of wave celerity, immobile 

bed porosity and variable bed roughness on sediment deposition and test selected flushing scenarios that 

reduce significant sediment deposition downstream. 
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2. DOWNSTREAM IMPACTS OF FINE SEDIMENT RELEASES AND 

IMPLICATIONS FOR MANAGEMENT: AN INTERDISCIPLINARY 

REVIEW 

Summary 

Fine sediment releases downstream of dams during sediment flushing operations are becoming one of the 

most important environmental concerns of impoundments or dams. The recent booms in hydropower 

dams and increasing interests for river restoration have renewed the concerns about the impacts on 

rivers. However, there is a lack of a comprehensive inter-disciplinary review of the impacts of sediment 

releases by flushing operations in various environmental and geomorphic settings. Moreover, the 

environmental implications of the releases on river ecosystems remain complex and vary from one case 

study to another and could also depend on the mode of flushing operations and many other factors. In this 

chapter a systematic review and synthesis of selected downstream impacts of sediment flushing gathered 

from key literatures are presented. The review focused on biological, physical and chemical impacts of 

fine sediment releases on river channels downstream of dams. Finally, management strategies are 

recommended based on empirical evidences collected from twenty case studies obtained from published 

research. Impacts which need further studies are also recommended. 

2.1.INTRODUCTION 

Early researches (e.g. Petts, 1984) thoroughly described major morphological and ecological impacts of 

impounded rivers.  These studies identified the challenges of sediment depletion and hydrological and 

hydraulic alterations downstream of dams and their implications on various river ecological units and 

channel morphology.  But in most recent works there is an increasing concern over the increased 

sediment supply, arising from sediment releases by sediment flushing from reservoirs for the purpose of 

sedimentation management (e.g. Brandt and Swenning, 1999; Zuellig et al., 2002; Lui et al., 2004a; 

Asaeda and Rashid, 2012) and to maintain sediment supply or reduce sediment discontinuity downstream 

of dams (e.g. Sumi and Kantoush, 2010), on the physical, chemical and biological state of rivers 

downstream of dams. The recent global boom in hydropower dams (Zarfl et al., 2014) has renewed the 

concerns about the impacts on many rivers. Increasing interests for river restoration has also led to a 

number of dams to be removed (Grant and Lewis, 2015) which could lead to large quantity of fine 

sediments released downstream. Studies show that sediment releases significantly affect the downstream 

geomorphic and ecological state of a river (e.g. Rathburn and Wohl, 2001; Stanley and Doyle, 2002; 

Wohl and Cinderelli, 2000; Rathburn and Wohl, 2003; Brandt and Swenning, 1999). The impacts are 



23                                                                                                                                                      CHAPTER 2 

 

 
  

mainly related to elevated sediment flux and large liquid discharge with the associated alteration on 

channel bed morphology and deterioration of water chemistry in the receiving stream (Ma et al., 2012; 

Brandt and Swenning, 1999; Garric et al., 1990). Though many studies exist in the scientific literature 

reporting the downstream impacts of sediment releases, there is a lack of a comprehensive inter-

disciplinary review of the impacts of sediment releases by flushing operations in various environmental 

and geomorphic settings. Espa et al. (2014) highlighted only few studies reporting the impact of sediment 

flushing operations on aquatic habitats and biota.  In this study a systematic interdisciplinary review of 

the different downstream environmental (physical, biological and chemical) impacts of sediment releases 

(Section 2.3), are presented based on up-to-date literature resources. Finally best management strategies 

are proposed based on the empirical evidence obtained from the literature (Section 2.4).  

2.2.SEDIMENT FLUSHING FROM RESERVOIRS  

2.2.1. Sediment flushing characteristics 

Sediment flushing, defined as the scouring of previously deposited sediments by hydraulic method and 

release through bottom outlets of the reservoir, is the most effective, economic and fastest method to 

reduce severe reservoir sedimentation (Liu et al., 2004a). The released solid discharge (sediments) during 

flushing generally comprises of gravel, sand, silt, clay and sometimes mud itself (e.g. Mastrorillo and 

Dauba, 1999; Collier, 2002; Brandt and Swenning, 1999; Wohl and Cenderelli, 2000; Sumi and 

Kantoush, 2010; Takazi et al., 2002). The quantity of sediments released in the initial phase of release is 

very large reaching the peak after short period of time (Brandt and Swenning, 1999). Typically solid 

discharge – liquid discharge temporal pattern observed at downstream stations, during flushing 

operations, indicate that at the initial phase of sediment releases the peak of liquid discharge is released 

before the sediment peak (Brandt and Swenning, 1999) (Figure 2-1). This result in time lag between 

liquid and solid discharge and the lag increases further downstream and observed to govern the deposition 

of the released sediments (e.g. Tarekegn et al., 2014; Brandt and Swenning, 1999). The temporal lag is 

due to the difference in travel time of liquid and solid discharge and since most of sediments are released 

at the end of main flushing period and at the beginning of free flow phase. At initial phase of the release 

there is abundant stream power to erode and entrain river bed sediments downstream of the dam (e.g. 

Brandt and Swenning, 1999). The duration of the peak sediment load plays important role in the 

downstream impacts of flushing especially related to sediment deposition and physical harm to aquatic 

biota.  
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2.2.2. Characteristics of sediments deposited in reservoirs  

Sediments enter reservoirs as bed load, suspended load and also dissolved load and nearly all (>90%) will 

accumulate in the reservoir (e.g. Vericat and Batalla, 2005). The quantity of sediments carried in 

suspension exceeds those enter as bed load (coarser) by a factor of 5 to 10 (Scheuerlein, 1991) and so is 

the composition of the deposited sediments. The coarser sediments are deposited at the entrance of the 

reservoir while fine sediments typically deposit uniformly in the basin (e.g. Brandt, 2005) but mainly 

close to the dam (Bednarek, 2001; Huan and Lizano, 2014). The concentration profile in the water 

column is nearly uniform except in very upstream areas (e.g. Huan and Lizano, 2014).  

Reservoirs act as sinks for many inorganic and organic substances (Hannan, 1979) and may contain 

relatively high levels of nutrients (nitrogen and phosphorus) and organic matter, contaminants (metals and 

organic substances) and elements such as silica, iron and sulphur, organochlorine compounds (e.g. 

pesticides) and toxins such as hydrogen sulphide (Wildi et al., 2004; Teodoru and Wehrli, 2005; Graf, 

1990). The fine deposits have higher metal concentrations due to large volume ratio (Foster and 

Chalesworth, 1996). Deposits which are finer and near the dam within the reservoir basin are rich in 

nutrient and organic content (Asaeda and Rashid, 2012). The nutrient contents in the reservoir decrease 

away from the dam implying spatial heterogeneity of nutrient sources in the reservoir (Asaeda and 

Rashid, 2012). Figure 2-1 shows all the major components of sediment and water characteristics stored in 

the reservoir. 

 

Figure 2-1.Conceptual diagram of characteristics of reservoir storage, sedimentation and sediment 

releases  
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Furthermore, during flooding the organic matters are transported and deposit near the dam (de Junet et al., 

2005). The grain size distribution, porosity, shapes, contamination level, organic content of deposited 

sediments generally depends on the upstream watershed lithology, land-use activities, soil erosion control 

activities, hydrological setting and topography and the bed material of impounded river and its flow 

regime. In many reservoirs, the deposited sediments can range from silt and clay to boulders with more 

proportion of gravel in mountain reservoirs (Stillwater Science, 2002) and clay minerals also (Takazi et 

al., 2002).  

2.3.DOWNSTREAM IMPACTS OF SEDIMENT FLUSHING 

Reservoir sediment flushing has been used for reservoir sedimentation management over many decades 

with early studies on its environmental impacts reported in 1924 (e.g. Kanthack, 1924). Sediment flushing 

impacts on downstream river can be classified as physical, chemical and biological impacts.  The physical 

impacts are direct changes of flow discharge (Q), sediment load (Qs) and concentration (C), temperature 

(T) and river morphology. The chemical impacts are alterations of downstream river water and sediment 

quality especially the concentration of dissolved oxygen (DO), sediment-bound contaminants and excess 

nutrient supply.  The biological impacts are related to impacts on aquatic fauna (e.g. fish, invertebrates, 

vegetation). These impacts can be conceptualized as first, second and third order impacts based on Petts’ 

(1984) impact classification (Figure 2-2). The first order impacts occur immediately during flushing 

operation such as changes in DO, T, Q, C and Qs. The first order impacts lead to alterations in channel 

morphology, channel substrate compositions, fine sediment infiltration, and smothering of benthos and 

fish. Intermediate impacts on biota also exists which is related to immediate effect of high erosive power 

of hydrodynamic wave generated by the release.  The third order impacts are as the result of second order 

impacts such as lack of food availability for fish or change in flooding pattern and enhanced deposition of 

sediments.  Details of the physical, biological and chemical impacts are discussed in Sections 2.3.1-2.3.3. 
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Figure 2-2. Conceptual diagram of downstream impacts of sediment flushing (after Petts, 1984) 

 

2.3.1.  Physical impacts  

Table 2-1 shows the various physical impacts of sediment flushing. The discharge released during 

flushing operation can exceed few years return period flood (e.g. Camenen et al., 2013) and bank full 

discharge and water level of the natural flooding. It could reach up to 4-10 times more than the pre-

flushing discharge in river downstream of the dam (e.g. Brandt and Swenning, 1999; Collier, 2002). 

When flushed sediments are fine flow resistance in downstream channel will reduce and thus the water 

level will get lower (Sloff, 1991).  

The quantity of released sediments could range from several hundred cubic meters to thousands (e.g. 

Camenen et al., 2013; Brandt and Swenning, 1999; Wohl and Cenderelli, 2000; Sumi and Kantoush, 

2010; Collier, 2002). The peak concentration of the release can reach up to 249 g/l with a sediment load 

of 100 tons/s (e.g. Brandt and Swenning, 1999) and up to 1200 folds higher than the concentration under 

normal flow condition (e.g. Bergstedt and Bergersen, 1997). The sediment concentration however 

depends on regulatory measures of flushing operations (e.g. Espa et al., 2013; Crosa et al., 2010), 
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efficiency of the flushing operation (e.g. Scheuerlein, 1995), and period of flushing operations (e.g. 

Buermann et al., 1995). Generally the highest concentration is observed near the dam and decreases 

rapidly in downstream directions. The concentration at the peak of the release is significant in relation to 

adverse downstream impacts (Espa et al., 2014; Espa et al., 2013; Crosa et al., 2010). The changes in the 

discharge regime,  sediment regime and concentration affects sediment transport dynamics (Cui et al., 

2008),  turbulent flow structure and settling velocity (van Maren et al., 2009) and the sediment hysteresis 

(time lag) (Brandt, 1999) in rivers. 

Sediment flushing causes both channel degradation and aggradations (Brandt and Swenning, 1999). 

Figure 2-3 shows deposition observed following sediment flushing. Degradation occurs in upstream areas 

below the dam during initial phase of release due to high erosive power of the hydrodynamic wave. 

Aggradations occur both in channel bed and banks with more proportion in channel and decreases 

proportionally with distance from the dam (Brandt and Swenning, 1999; Wohl and Cenderelli, 2000). The 

deposits can reach over many hundred thousands of tones (Brandt and Swenning, 1999; Asaeda and 

Rashid, 2012). The deposition can block channels and could cause downstream flooding during flushing 

(e.g. Brandt and Swenning, 1999; Sloff, 1991). The deposited materials near the dam are coarse with the 

grain sizes decreasing proportionally with distance from the dam. Coarse deposits remain for extended 

period after flushing while fine deposits are eroded by subsequent flooding (e.g. Wohl and Cenderelli, 

2000; Doeg and Koehn, 1994). But fine sediment releases in steep rivers have shown no significant 

deposition (e.g. Gray and Ward, 1982, Espa et al., 2013). These show that the grain size of the released 

sediments and the timing of subsequent flooding control the long-term morphologic impacts of sediment 

flushing and also downstream habitat stability.  The fine sediments preferentially deposit in pools (Wohl 

and Cenderelli, 2000; Zuellig et al., 2002; Cui et al., 2008) and riffles and bars are also affected by 

deposition (Camenen et al., 2013; Wohl and Cenderelli, 2000; Asaeda and Rashid, 2012). Regular 

sediment flushing over many years (3 decades) causes long-term channel aggradations with more 

deposition in downstream reaches (e.g. Sumi and Kantoush, 2010). The long-term grain sizes of the 

deposits decreases proportionally with distance from the dam (e.g. Sumi and Kantoush, 2010) showing 

the short-term and long term impacts of flushing shows similar behaviour. This shows that flushing 

operations modify the long-term bed-material composition.  
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Figure 2-3. Channel and bank surficial deposits before (left) and after (right) sediment flushing of Cachí 

reservoir in Reventazón River at 2 km downstream of the dam (Brandt, 2005) 

The deposition of the fine sediments in the interstitial spaces of coarse bed could lead to bed clogging by 

infiltration of fine sediments (Schalchli, 1995). Figure 2-4 shows typical example of fine sediment 

deposition following sediment flushing resulting in destruction of habitats by internal and external 

colmation of gravel substrate.  Fine sediment infiltration modifies habitats of macroinvertebrates, 

salmonids, and other aquatic organisms by reducing exchange of water (e.g. Heppell et al., 2009), 

dissolved oxygen and particulate matters in the coarse substrate and hyporheic zone. Fine sediment 

releases during sediment flushing can lead to infiltration (Camenen et al., 2013) but some case studies 

reported no infiltration (e.g. Evans and Wicox, 2014). Subsequent high flows following sediment releases 

could re-work the bed and reduce residence time of the fine sediments limiting infiltration.  Coarse 

sediment releases however could enhance bed heterogeneity and thus increase available areas for refuges 

and increase in hyporehic exchange (Stewart, 2006).  Fine sediment release experiments in immobile 

gravel bed channel shows that sand sized sediments will infiltrate only few diameters of the immobile 

gravel bed, regardless of sediment release rate (Wooster et al., 2008). The rapid release of the fine 

sediments is less likely to increases sediment infiltration as compared to the same amount of releases over 

a longer time period (Wooster et al., 2008). Generally, the quantity  of fine sediment infiltrated is 

influenced by various  hydrodynamic and sediment parameters such as bed shear stress (Evans and 

Wilcox, 2013), suspended sediment concentration (Khullar et al., 2013), fine sediment cohesion 

(Packman et al., 2000), the arrangement of bed surface grains (Cooper and Tait , 2009), the occurrence of 

bed forms (Packman and MacKay,  2003), the existence of a vertical hydraulic gradient within the rough 

bed (Schälchli ,1992) and even the presence of a biofilm (Arnon et al., 2010).  Figure 2-5 shows the 

dynamic mechanism of infiltration of fine sediments in coarse bed. 
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Figure 2-4. Clean gravel substrate (left) and gravel clogged through internal and external colmation 

(Bechteler, 2006) 

 

Figure 2-5. Mechanism of fine sediment infiltration in coarse gravel bed (Evans and Wilcox, 2014) 

The changes in temperature of rivers downstream of dams by reservoir releases have been identified to 

have very significant impacts on instream-biota (Petts, 1984). There are very few studies that highlighted 

the effect of sediment flushing on thermal regimes in rivers downstream of dam. Alteration in temperature 

regimes during sediment flushing have shown increases (Gutzmer et al., 1996), decreases (e.g. Lui et al., 

2004a) and in some cases remains unchanged (e.g. Buermann et al., 1995). The temperature of the release 

observed to modulate DO concentrations and increased downstream from the dam (e.g. Lui et al., 2004a). 

Overall, temperature during flushing operations could increase or decrease depending on time of the year 

of the release, depth of reservoir outlets and whether the reservoir is in temperate or tropical climatic 

regions.  
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Table 2-1. Physical impacts of sediment flushing 

Dam and River Variables Physical impacts Remarks Source 

Cache Reservoir, 

Reventazone River 

(Costa Rica) 

Q,C, Qs, deposition High Q & C, bank 

and channel 

aggradation 

The timing of Q (>4 folds) & C (>249g/l), are affected. A 

deposition of  295,000 tons on 30 km stretch  

Brandt and 

Swenning (1999) 

 

Alto Mora Dam (Italy) 

 

Water level 

 

High increase 

 

Time to peak was short and peak remained constant for the 

period of release 

 

Brachi & Gallati 

(1992) 

Phalaborwa Barrage 

(South Africa) 

Q, C,T Increase in Q & C, no 

obvious change in T 

Q increase by nearly 5-year return flood and C up to 95g/l Buermann et al. 

(1995) 

Rangipo Dam, 

Tongariro River  

(New Zealand) 

Substrate &  

deposition  

Channel aggradation Increased level of surface sand gravel deposit  

(sand eroded and dispersed by natural flooding) 

Collier (2002) 

Spencer Hydropower 

Dam, Niobrara River 

(US) 

T & C Small increase in T 

and high C 

An increase in daily water T by 3 – 4 
o
C and fourfold 

increase in C along  63.3km 

Gutzmer et 

al.(1996); Hesse & 

Newcomb (1982) 

Dashidaira Dam, 

Kurobe River (Japan) 

T Decreased very low T (9.0 - 17.5
o
C)  Lui et al.(2004a) 

Ova Spin Reservoir 

(Switzerland) 

T Increased High T during emptying than free flow through the reservoir Halgh (1996) 

Martin-la-Porte 

reservoir, Arc River, 

France 

Q, infiltration, 

deposition, Qs 

Q and C increased, 

sediment load 

increased 

Q exceeded few years return flood, few cms of infiltration in 

gravel bars, Qs up to 150000m3, C up to 50g/l, deposition 

over 1/3 of gravel bar 

Camenen et al. 

(2013) 

Halligan Reservoir, 

North Fork Cache la 

Poudre River (US) 

Qs ,deposition Qs of 5352 tons and deposition in pools (up to 4.3 m deep) 

with little in riffles  

Wohl and Cenderelli 

(2000) 

Dashidaira Dam, 

Kurobe River (Japan) 

C,Qs, deposition, 

substrate 

High C, Aggradation C of max 90g/l ,Qs of  910,000-1010,000 m
3 
 and large 

channel aggradation (mostly downstream)   

Sumi & Kantoush 

(2010) & Kantoush 

et al., 2011 

Weir, Armstrong Creek 

(Australia)  

C and Qs, deposition Increased Qs up to 100 m3 and C up to 4.61g/L, sand deposition near 

the weir and silt and fines upto  2km - 4.5km downstream 

Doeg & Kohen 

(1994) 

River Mur (Austria)   Qs, C & deposition High Qs &C Qs up to 80,000 m
3
 and C up to a maximum  of 11 mg/L, 

fine sediment deposit in bank zones  

Bechteler (2006) 

Valgrosina reservoir 

(Italy) 

C,Qs & deposition High C & Qs, no 

obvious deposition 

C up to maximum of 70-80 g/l and the latter  up to 249 g/l  

& Qs of 100 tons/s 

Espa et al. (2013)  

Crosa et al.(2010) 

Verbois dam, Rhone 

River (Switzerland) 

C C increased  C >45g/l (increased by 50 folds) Peter et al.(2014) 

Low head dam, Wind 

River (US) 

C Very high C C up to 18g/L, 1200 folds higher (peak C for 5hrs below the 

dam and for 18hrs at 29km downstream) 

Bergstedt 

&Bergersen (1997)  
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Dashidaira Dam, 

Kurobe River (Japan) 

Deposition ,Qs, C Channel aggradations, 

high Qs, high C 

28Mkg sediment deposit in 17km, C thousands more than 

normal C, sand deposition over  gravel bars 

Asaeda & Rashid 

(2012) 

Guernsey Reservoir, 

North  Platte  River 

(US) 

Deposition No deposition & 

change in bed 

composition 

no obvious deposition, even in pools or no change in river 

bed material was observed 

Gray& Ward (1982) 

Halligan Reservoir, 

North Fork Cache la 

Poudre River (US) 

Deposition  Increased deposition The deposition over more than 9.6 km of the river from the 

reservoir (thin deposit over riffle and larger deposit in pools) 

Zuellig et al.(2002) 

C - Sediment concentration, Q - Flow discharge, T - Temperature and Qs - Sediment load 
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2.3.2. Chemical impacts  

Sediment flushing operations have been shown to result in downstream changes in both the water and 

sediment quality (Table 2-2). Flushing introduces not only high concentration of sediments (high 

turbidity) but also flow with low dissolved oxygen (DO) (e.g. Hesse and Newcomb, 1982), elevated level 

of heavy metals (e.g. Peter et al., 2014), high concentration of ammonia (e.g. Roux, 1984), increased level 

of organic matter and nutrients (e.g. Takazi et al., 2007; Asaeda and Rashid, 2012), and also soluble 

reactive materials such as phosphorous (e.g. Gray and Ward, 1982).  The release of these chemical 

attributes beyond the required level will results in significant alterations in ecology of the river.    

The concentration of DO in water column and channel beds is very important for survival of fish species 

and it should not drop below 5mg/L. During sediment flushing the DO concentration could increase (e.g. 

Gray and Ward, 1982; Peter et al., 2014), decrease (e.g. Buermann et al., 1995; Brandt, 1999; Hesse and 

Newcomb, 1982; Takazi et al., 2007) or remains unchanged (Crosa et al., 2010) in downstream river. The 

reductions are due to the release of oxygen-depleted hypolimnic water, high oxygen demanding organic 

sediments (e.g. Takazi et al., 2007) and increased turbidity which shades primary producers reducing 

oxygen production (Brandt, 1999; Morris and Fan, 2010). The concentration of DO increases proportional 

to the distance from the dam due to oxygen rich water influx from tributaries and low oxygen demand by 

organic sediments as most deposit in upstream reaches (Buermann et al., 1995; Scheuelein et al., 1995). 

The concentration of DO is also regulated inversely by the temperature of the released flow (Lui et al., 

2004a). 

Sediment bound contaminants are released during flushing posing significant downstream environmental 

threats (Sloff, 1991). Flushing introduces large proportion of heavy metals (Wu and Hong, 1989; Peter et 

al., 2014), organic matter and ammonia (Asaeda and Rashid, 2012; Roux, 1984), chemical compounds 

(e.g. NO3
-
, SO4

+2
) (Peter et al., 2014), and excess concentration of nutrients (e.g. N and P) (Asaeda and 

Rashid, 2012; Asaeda, 2014), increases metal content in benthic invertebrates (Peter et al., 2014), affects 

trace metal partitioning, speciation and bio-availability (Peter et al., 2014). The downstream nutrient level 

in deposited sediments can increase up to 90 % and remain high for over a year (Asaeda and Rashid, 

2012; Takazi et al., 2007). This shows that the nutrient balance in downstream will be altered and this will 

lead to new nutrient equilibrium and colonization of plant species. The concentration of nutrients in the 

flow could remain high for several weeks if they are bound to suspended sediments (Gray and Ward, 

1982). An emission of CH4 from reservoir releases is larger than reservoir surface emission (Kemenes et 

al., 2007) despite no study reported the effect of flushing on downstream CH4 emission.  
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Table 2-2.Chemical impacts of sediment flushing 

Dam and River Variable Chemical  impacts Remarks Sources 

Spencer  Dam, 

Niobrara River (US) 

DO Decreased DO  dropped to 3.5 mg/L during 

flushing 

Hesse & Newcomb 

(1982) 

Dashidaira Dam ,  

Kurobe River (Japan) 

C,N , S ,EC and  DO Increased (C,N,C& EC) & 

decreased (DO) 

High organic content led to depletion 

of DO 

Takazi et al. (2007) 

 

Verbois dam, Rhone 

River (Switzerland)  

 

DO 

 

Both increase & decrease (DO) 

Peter et al. (2014) 

Heavy metals ( Ca
+2

,K
+
 and 

Na
+
 ) & NO

-
3  

Increase in heavy metals NO
-
3 increased by fourfolds  

Al, Co, Mn and Ni (dissolved) Increased   

Co, Cr, Ni, Fe and Pb  Increased After sediment flushing  

Mg
+2

, Cl
-1

 and SO
2-

4  Decreased   

Dashidaira Dam ,  

Kurobe River (Japan) 

Total nitrogen (TN) & 

phosphorus (TP)  

Increased TN  & TP   increased from 0.2mg  to 

26 mg (TN/L) and  0.002mg  to 13 

mg(TP/L)  respectively (>100 folds) 

Asaeda and Rashid 

(2012) 

Guernsey Reservoir, 

North  Platte  River (US) 

DO and dissolved  phosphorus   Increased high level of DO and increase in P for 

hours to weeks 

Gray and Ward 

(1982) 

  

Verbois and Geinissiat 

Reservoirs, Rhone River  

(Switzerland and France) 

 

Organic matter (OM) & 

ammonia (NH4) 

 

Increased 

 

OM increased  by  52% in suspended 

sediments and high levels of NH4 

(12mg/L)  

 

Roux (1984) 

 

Cache Reservoir, 

Reventazone River 

 (Costa Rica) 

 

DO 

 

Decreased 

 

DO decreased   during flushing events  

 

Brandt (1999) 

Phalaborwa Barrage 

,Olifants River (SA) 

DO Decreased A drop in DO to 0.1 mg/L for several 

hours 

Buermann et al. 

(1995) 

Dashidaira Dam ,  

Kurobe River (Japan) 

DO Decreased DO was observed to be related to T Lui et al. (2004a) 

Val Grosina reservoir, 

Adda River ( Italy) 

DO No obvious decrease Low OM &  low temperature effect Crosa et al.(2010) 

Gezhouba Resrevoir, 

Yangtze River (China) 

Pb Increased (in concentration) Wu and Hong 

(1989) 

DO-Dissolved Oxygen,  C-Carbon, N-nitrogen and S-Sulphur 
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2.3.3.  Biological impacts  

Of all downstream impacts of sediment flushing, biological impacts have been the most studied (Table 

2-3). Adverse biological impacts of sediment releases are due to the direct effects of increased flow and 

suspended sediments, nutrients and contaminants during flushing and due to downstream morphological 

alterations of river habitats following sedimentation of the released sediments (Crosa et al., 2010). The 

most common downstream biological impacts of sediment flushing are the negative effects on fish, and 

organisms living at the surface of river bottom (e.g. benthic invertebrates, underwater vegetation) and in 

the interstitial system of bottom sediments (e.g. juvenile stages of surface water organisms, groundwater 

organisms, and interstitial population proper). 

 

Figure 2-6. Main drivers of adverse impacts of sediment flushing on fish (increase (+) & decrease (-)) 

The negative impacts of sediment flushing on fish are driven by the physical, chemical and biological 

alterations in the river during and after the flushing. Sediment flushing affects fish by reducing biomass 

and density (Crosa et al., 2010), abundances (Mastorillo and Dauuba, 1999), changing age structure 

(Crosa et al., 2010) and reducing species diversity (Roux, 1984) during and after flushing.  Figure 2-6 

shows stresses imposed by sediment flushing that negatively impact fish species. Major alterations that 

occur and negatively affect fishes include low level of dissolved oxygen  (Buermann et al., 1995),  

increased turbidity or concentration (Buermann et al., 1995; Doeg and Koehn, 1994), pollution by 

contaminants (e.g. NH4) (Roux, 1984), lack of food availability (Collier, 2002), burial and modifications 

of habitats (Mastorillo and Dauba, 1999), deformation and dehydration of gills (Kinoshita et al.,2002) and 

drift by high velocity flow (Figure 2-6). The reduction in DO, high sediment concentrations  and  

agitation and flushing out of fish along with sediments are main causes of fish kills (Buermann et al., 
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1995; Roux, 1984; Moore et al., 1991; Buchholz and Knofczynski, 1988).The released sediment 

concentration during flushing exceeds the standard concentration for fish health, 25mg/L (Bilotta, 2012). 

High fish kills are among juveniles and varied among fish species (Crosa et al., 2010; Mastorillo and 

Dauba, 1999).  Changes in thermal regime during flushing are not reported to affect fish. The adverse 

impacts generally decrease proportional to the distance from the dam (Bechteler, 2006; Doeg and Koehn, 

1994) and vary among different fish species and age groups (Crosa et al., 2010; Mastorillo and Dauba, 

1999; Espa et al., 2013). Recovery of fish population to pre-release condition following sediment flushing 

could take large number of years (Doeg and Koehn, 1994; Crosa et al., 2010). 

Macro-invertebrates form central function in stream ecosystem and integrate every tropic level. The 

adverse impacts of flushing on macro-invertebrates are associated with reductions in number of taxa 

(abundance) (Gray and Ward, 1982; Espa et al., 2013; Crosa et al. 2010; Doeg and  Kohen, 1994; Hesse 

and  Newcomb, 1982; Peter et al.,2014), species diversity (Bechteler, 2006; Peter et al., 2014), density 

and richness (Zuellig et al., 2002; Collier, 2002; Peter et al.,2014), changes in benthic community 

function and structure (Zuellig et al., 2002) and elevated level of metals (Peter et al., 2014).   

 

 

Figure 2-7.The impact of sediment flushing on transitions of number of population of benthic organisms 

(IEA, 2006) 

Figure 2-7 shows the long term dynamics of number of benthic organisms in response to sediment 

flushing (IEA, 2006). The number of benthic organisms decreases immediately after sediment flushing 

(IEA, 2006) and remain low over few months (Peter et al., 2014). Generally, the impacts decrease 

proportional to the distance from the dam (Bechteler, 2006) and vary among ranges of taxa (Doeg and 

Koehn, 1994). The recovery of macro-invertebrates to pre-release condition could take few weeks or a 

month (Gray and Ward, 1982; IEA, 2006) to up to several months (Zuellig, 2002).  
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Figure 2-8. The downstream dynamics of vegetation growth and colonization due to long-term sediment 

flushing activities (increase (+)) 

Regular sediment flushing conducted over several years enhances vegetation growth in downstream 

morphological units such as gravel bars by supplying nutrients and building moist and thick layer of fine 

sediment deposits  (Asaeda and Rashid, 2012; Asaeda et al., 2014). It also activates colonization of 

certain vegetation species leading to some species out colonize the other (Sakamoto et al., 2010). The 

succession of vegetation enhances trapping of released sediments allowing more deposition and a change 

in flooding pattern and footprints of vegetation growth (Asaeda et al., 2014).  Nevertheless, no significant 

impact on crop growth is observed (Hori et al., 2006). Figure 2-8 shows the complex feedback 

mechanisms and dynamics of vegetation growth and colonization in downstream channel and gravel bars 

due to long-term flushing operations. Flushing also reduces in benthic algae abundances by smothering 

and drift (Gray and Ward, 1982b). 

In summary, many studies reported first order impacts (e.g. Brandt and Swenning, 1999; Peter et al., 

2014), with some on second order impacts (Brandt and Swenning, 1999; Collier, 2002; Wohl and 

Cenderelli, 2000; Tarekegn et al., 2014) and very many on third order impacts (e.g. Crosa et al., 2010; 

Espa et al., 2013; Asaeda and Rashid, 2012; Asaeda et al., 2014; Zuellig et al., 2002) of flushing. Of all 

impacts, biological impacts are the most studied impacts with most emphasis on fish and macro-

invertebrates. The impacts on vegetation dynamics is less documented (e.g. Asaeda and Rahid, 2012; 

Asaeda et al., 2014). In Section 2.4 some of the key recommendations aimed to mitigate the impacts are 

discussed. 
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Table 2-3.Biological impacts of sediment flushing 

Dam and River Variable Biological impacts Remarks Sources 

Val Grosina Reservoir, 

Adda River (Italy) 

Fish biomass and density Decreased  73% and  66% decrease in fish density and 

biomass 

Crosa et al. (2010) 

 Fish age structure High kills Long term-impairment of the age structure  

 

Labarre & Ferriers Dams, 

River Ariege (France) 

 

Fish abundance, habitat 

availability & use, 

species 

 

Decreased abundance 

 

Flushing changed habitat from boulders & 

pebbles to gravel, sand and mud  

Mastorillo &Dauuba 

(1999) 

  No mortality    

Val Grosina Reservoir, 

Adda River (Italy) 

 

Abundance of zoobenthic 

assemblages 

 

Impairment of 

benthic community 

 

Recovered after 3 months 

 

Espa et al. (2013); 

Crosa et al. (2010)  

     

Spencer  Dam, 

 Niobrara River (US) 

Fish kills High kills 22,500 fish kills during flushing Hesse & Newcomb 

(1982) 

 

Halligan Reservoir ,North Fork 

Cache la Poudre River (US) 

Fish kills High deaths 4000 rainbow and brown trout deaths  Wohl & Cenderelli 

(2000);Wohl  (1998) 

 

Weir  (flushing) in Armstrong 

Creek (Australia)  

 

Fish population 

 

High reduction 

 

Up to 93.2 % decrease at 150m below the weir 

 

Doeg & Kohen 

(1994) 

 Number of benthic 

invertebrates  

Decreased 63.90% and 39.70%  reductions in the abundance  

& number of taxa. Reductions varied from 25%  

to 100%  among various macroinvertebrate taxa 

    

Phalaborwa Barrage ,Olifants 

River (South Africa) 

Fish kills High no of deaths Due to high C (1500 mg/L) and  decreases in 

DO  (0.1mg/L) 

Buermann et al. 

(1995);Moore et 

al.(1991) 

Verbois & Geinissiat Reservoirs, 

Rhone River (Switzerland and 

France) 

-Fish kills, death of 

larvae and juveniles 

-Species diversity, 

composition & biomass 

-Death of fish,  larvae  

and  juveniles 

-Reductions  in 

species composition 

& biomass 

 

Anoxic flows resulted in death of all fish 

species Due to deposition  of sediments in 

channel habitats  

Roux (1984) 

 

Dashidaira Dam ,  

Kurobe River (Japan) 

 

Rainbow trout  

 

Gill deformation & 

 dehydration   

 

Takazi et al. (2002) 
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Sabo Dam,  

Hiru-Dani River  (Japan) 

 

Fish 

 

Block gill lamellas  

 

Due to adherence of smectite particles  

Kinoshita  

et al. (2002) 

St. Georgen &Murau Dams,  

Mur River (Austria)  

Fish population count Decreased No fish at 1km downstream of the dam. 

A loss of 75%  (4.5km ) & 75% (9km)    

Bechteler (2006) 

     

Verbois dam, Rhone River 

(Switzerland)  

Presence and number of 

species 

Absence of fauna & 

 decrease in species 

 

Invertebrate richness  Drastic decrease  Four folds decrease macroinvertebrate taxon 

richness 

Peter et al.(2014) 

Levels of metals  

( Al, Mn, Fe, Co, Ni) 

Increased in 

invertbrates 

  

 

Rangipo Dam, 

Tongariro River (New Zealand) 

 

Invertebrate density  

 

Significant decline 

 

Due to erosion of invertebrates associated with 

periphyton 

 

Collier (2002) 

 

Guernsey Reservoir, 

North  Platte  River (US) 

 

Number of 

macroinvertebrates  

 

Both significant 

decreases & 

increases 

 

90 % decrease in chironomids (family of flies) 

Increase in number of some invertebrates 

 (e.g. mayflies and oligochaetes) 

Gray & Ward (1982) 

Spencer  Dam, 

Niobrara River (US) 

Number of 

macroinvertebrates 

Decreased  Hesse & Newcomb 

(1982) 

 

Halligan Reservoir, 

North Fork Cache la Poudre 

River (US) 

 

Benthic 

macroinvertebrate 

density & taxa richness  

 

Decreased 

 

Significant decreases near the dam  

 

Zuellig et al.(2002) 

 

Dashidaira Dam ,  

Kurobe River (Japan) 

 

Number of benthic 

organisms  

 

Significant 

reductions  

 

Decreases in number of  benthic organisms (e.g. 

ant lion, stone fly, fly, caddis fly and other 

insects) 

 

IEA (2006) 

Dashidaira Dam ,  

Kurobe River (Japan) 

Channel vegetation cover Increased Colonization of herbaceous plants by nutrient 

supply and deposition 

Asaeda &  Rashid 

(2012), Asaeda et al. 

(2014),  Sakamoto et 

al. (2010) 

Dashidaira Dam ,  

Kurobe River (Japan) 

Vegetation succession 

and colonization 

Increased Enhanced sediment deposition and changed flood 

pattern 

 

Crop (rice) production  No effect No any effect on the growth, yield of rice & soil 

quality 

Hori et al. (2006) 

Guernsey Reservoir, 

North  Platte  River (US) 

Benthic algae 

abundances  

Significant decline 90 % reduction in benthic algae abundances with 

no recover for nearly a year 

Gray and Ward 

(1982b) 
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2.4. MANAGEMENT IMPLICATIONS AND RECOMMENDATIONS  

Sediment flushing is likely to remain as a widespread practice but scientific studies of the impacts of 

sediment releases can be used to inform management and develop recommendations for mitigating 

against the downstream impacts. The following management recommendations are drawn from empirical 

evidences obtained from the literature review.  

Firstly, flushing should be conducted regularly and more frequently, at least once per year, since it 

reduces the magnitude of the release and avoids high peak C (Crosa et al., 2010; Zuellig et al., 2002). A 

gradual release also reduces bed degradation, rate of increase in C, release rate of contaminated sediments 

and nutrients and deposition on bed substrate (Gray and Ward, 1982b) nevertheless  high rate of releases 

of short duration have minimal ecological impacts (Major et al., 2008; Downs et al., 2009). Inter-flushing 

clear water releases also reduce concentration peaks (Espa et al., 2013;Crosa et al., 2010). 

Secondly, flushing operations should be conducted in selected seasons of the year: considering post-

flushing water availability and spawning and recruitment seasons of fauna.  Avoiding flushing during 

spawning, emergence and recruitment seasons of fauna and dispersal and germination season of unwanted 

plant species reduces the impacts significantly (Gray and Ward, 1982b; Asaeda et al., 2014; Hesse and 

Newcomb, 1982). Flushing before flooding or snow melt season is highly recommended and reduces 

impacts (Collier, 2002; Wohl and Cenderelli, 2000). 

Thirdly, environmental impact assessment is important before planning sediment flushing operations. The 

assessment should focus on the characteristics of reservoir sediment deposits (physicochemical), quantity 

of solid and liquid releases, and downstream river channel gradient and cross-sections (Wohl and 

Rathburn, 2003; Downs et al., 2009; Lui et al., 2004a), the peak and duration of sediment concentration 

(Crosa et al., 2010; Scheurelein, 1995;Gallerano and Cannata, 2011), and scope for operational 

modification of flushing (Gutzmer et al., 1996; Fruchard and Camenen, 2012) and considerations for 

alternative methods such as hydro-suction (Hotchkiss and Huang, 1995), sediment bypassing (Sumi and 

Kantoush, 2010), environmental friendly flushing (Fruchard and Camenen, 2012). The downstream 

ecological units, potential impacts of the release, their recovery and responses, and period of recruitment 

and spawning, and suitability of tributaries for escape (Buermann et al., 1995) should also be studied.  

Finally, the magnitude of adverse impacts of sediment flushing and the time required for recovery are 

generally site specific. However, a general management recommendation for sediment flushing 

alternatives can be drawn. It is also important to highlight that numerical models would be very crucial 

for the environmental impact assessment, to identify proper peak concentration and test flushing 

scenarios. 
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2.5. CONCLUSIONS 

Fine sediment releases by flushing operations triggers a cascade of processes that cause complex 

responses with numerous downstream impacts and this study reports important negative implications of 

the practice and proposes management strategies. First, based on previously published research, a 

conceptual framework (Figure 2-2) of the first, second and third order impact of fine sediment releases is 

developed. The most important first order impacts are extremely high sediment concentration and load, 

high level of sediment bound contaminants and flooding. The high sediment concentration and load 

causes aggradation in channel and banks of downstream river although channel degradation could occur 

during initial stage of the release. The negative biological impacts of fine sediment releases are mainly 

due to the direct effects of increased flow and suspended sediments, nutrients and contaminants during 

flushing and downstream morphological alterations of river habitats following sedimentation of the 

released sediments. Of all impacts, biological impacts are the most studied impacts with most emphasis 

on fish and macro-invertebrates. The impacts on vegetation dynamics is less documented although it is 

observed that vegetation growth is initiated by nutrient rich fine sediment releases that eventually alter 

downstream channel morphology and flooding regime. The impacts of contaminants released during 

sediment flushing are not documented in most of the case studies which highlights particular attention. 

The spatial and temporal scales of adverse downstream impacts varied from case to case. It is found out 

that the downstream impacts of sediment flushing are proportional to the distance from the dam. The 

sediment concentration, grain size distribution of the deposits, channel and bank aggradation, effects on 

fish and macro-invertebrates, effect on dissolved oxygen concentration decreases with distance away 

from the dam. The grain size of the released sediments and the timing of subsequent flooding control both 

the temporal scale and long-term morphologic impacts of sediment flushing. The temporal scale of 

impacts on macro-invertebrates could span from few weeks or a month to several months while the effect 

on fish could last for a number of years. The impacts on channel vegetation are reported to be driven by 

many years of flushing activities unlike other impacts mentioned in this study. This study proposed 

general recommendations for best management practices based on experiences obtained from review of 

numerous reports of flushing activities conducted under different hydrologic, geomorphologic, ecological 

and operational conditions.  
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3.  IMMOBILE GRAVEL BED ROUGHNESS CHARACTERISATION 

 

Summary 

Gravel bed characteristics and roughness are widely quantified based on particle size distributions and 

random field of surface elevations. The gravel surface elevation data acquired in this work is by Position 

Sensing Detector (PSD) triangulation sensor which is commonly used for surface profiling and distance 

measurements at high resolutions. Nevertheless the data contained significant elevation errors 

characterized by unusual peaks. The peaks are observed to be directional and dominant on curved 

surface of the gravel particles whose curvature lies opposite to the direction of the receiver of the laser 

sensor. Thus, this study investigated the sources of the errors, quantified the errors and developed 

methods to remove them. The effect of the elevation errors on bed roughness characterisation is 

evaluated based on statistical roughness characteristics:  second order-structure functions, horizontal 

and vertical roughness length scales and statistical distributions. The error filtered data is finally used to 

quantify geometrical and roughness characteristics of the bed. Gravel bed porosity is estimated based on 

surface elevation data and independently with water displacement method. A theoretical relation for 

estimating roughness density is also developed based on gravel surface elevation data and for rough beds 

of selected roughness elements. It is found out that roughness density of gravel bed can be described 

based on solely on bed porosity and horizontal length scale. 

 

3.1.INTRODUCTION 

Channel bed roughness description is crucial since it controls various processes of flow hydrodynamics 

and channel morphology. The energy carried by flows is also modified by the resistance imposed by bed 

roughness which comprises of particle and form roughness (Griffiths, 1989). The resistance (a measure of 

energy loss by flow) depends on the channel bed material particle size, shape, orientation and spatial 

arrangements. Generally bed roughness controls the mean flow velocity, turbulence characteristics, and 

sediment transport processes. In gravel bed channels flows where there is no bed form flow resistance is 

due to particle roughness which is as a result of viscous drag on the bed surface and form drag due to 

small scale roughness elements, such as the gravel particles.   

 

In many practical applications and some hydraulic research activities (e.g. turbulence) the effects of bed 

particle roughness in near bed flow field is represented by a simple roughness length scales, such as 

equivalent sand roughness height, which are described by a single grain-size index, for instance, 



                                             

42                                                                                                                                                 CHAPTER 3 
 

  

representative grain size of the bed material (d50 or d84) (e.g. Nikuradse, 1933; Keulegan, 1938).  However 

many studies criticized such approach, first because field  measurements of roughness length scales 

varied 2 to 4 folds larger than representative grain sizes (e.g. Bathurst,1985), second, the approach does 

not take in to account the spatial heterogeneity of the bed surface and its impact on flow resistance 

(Cooper et al., 2008). Moreover, the complex arrangements of bed particles that affect bed roughness 

significantly such as orientations, packing, and protrusions are poorly represented by representative grain 

size. Cooper et al. (2008) highlighted that such representations are especially very poor in gravel bed 

conditions where the bed surfaces are very irregular and can have different magnitude of effects on flow 

resistance between low and high flow conditions. Nikora et al. (1998) highlighted that bed roughness will 

only be well predicted considering grain-size distribution, particle orientation, bed arrangement as well as 

concentration and geometry of features of bed surface. Currently there are comprehensive approaches to 

represent bed roughness based on statistical properties of bed surface data (e.g. Nikora et al., 1998).  

With the advancement of data acquisition technologies it is possible to measure gravel (river) bed surface 

elevations which enable one to capture bed spatial heterogeneity and bed surface geometry. The gravel 

bed surface can be considered as a random field of surface elevations Z(x, y, t), where Z is surface height 

at coordinates x and y at time t. Statistical analyses of bed surface elevation data proved to predict gravel 

grain orientations that are driven by water flow and also vertical and horizontal roughness scales (e.g. 

Nikora et al., 1998; Aberle and Nikora, 2006). Nikora et al. (1998) found out that hydraulic roughness can 

be well represented by scale dependent parameters that comprise vertical roughness scale and horizontal 

roughness scales which are both derived statistically from random field of surface elevations. Statistical 

tools such as probability distribution functions and two-dimensional (2-D) second order structure 

functions are widely used to quantify surface structure and roughness parameters (e.g. Nikora et al., 1998; 

Aberle and Nikora, 2006).  

The measurement of gravel surface as random field of surface elevations has become very common with 

availability of high resolution imaging and laser scanning techniques. However the accuracy of the 

measurement of the surface elevation and errors associated with the measurement techniques could affect 

estimation of bed roughness. Hodge et al. (2009) quantified errors in surface elevation data of gravel bed 

acquired by Terrestrial Laser Scanning (TLS) due to surface geometry, reflectivity and inherent 

instrument precision. The effect of such measurement errors on grain-scale roughness characterization 

requires careful assessment. PSD laser scanners are widely used in laboratory scale to acquire gravel 

surface elevation data (e.g. Mohajeri et al., 2014).   In this study gravel surface elevation errors associated 

with PSD laser scanning technique are explored. The main aims are to investigate the sources of the 

errors, quantify the errors and develop methods to remove the errors. For this purpose  high resolution 
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(1.0 mm) measurements of surface elevation of a gravel bed and a bed composed of spherical balls with 

different colours and surface texture (diameter = 25 mm) were conducted in laboratory flume. The effect 

of the errors on statistical parameters that describe grain-scale roughness and the spatial structure of the 

rough bed are investigated. The acquisition, post-processing, statistical analysis of gravel bed surface 

elevation data are presented and results are discussed.  

 

3.2.GRAVEL BED TOPOGRAPHY MEASUREMENT TECHNIQUES 

The most widely used non-contact or remotely sensed acquisition of micro-topography of gravel surfaces 

in both two- (2-D) and three- (3-D) dimensions are bed profilers, laser scanners and stereo-

photogrammetric techniques (Nikora et al., 1998; Smart et al., 2004). A new approach based on 3-D 

printing of gravel bed topography has emerged in recent year (Bertin et al., 2014). Acoustic bed profiler 

are widely and successfully deployed to acquire underwater bed topography (e.g. Coleman, 1997) despite 

their coarse spatial resolution which is limited by high sampling time requirements for fine scale data 

acquisition. Time of flight terrestrial laser scanners (TLS) and ground based light detection and ranging 

technologies have significantly improved spatial resolution as well as vertical accuracy (up to 0.5 μm - 

0.1 mm) of measurements of gravel bed surface topography both at laboratory scale (e.g. Aberle and 

Nikora, 2006; Cooper and Tait, 2009) and field scale (e.g. Hodge et al., 2009).  Laser scanning is the most 

precise wide range topography measurement technique and is widely used in gravel bed surface 

topography acquisition at laboratory scale (e.g. Aberle, 2007; Smart et al., 2004). The laser sensors are 

designed to reconstruct topography data based on the principle of triangulation. The sensors can be 

classified, based on the mechanism they detect light, as position sensing detectors (PSD) and charge 

coupled devices (CCD). The data acquired by TLS contain systematic errors and need careful post 

processing but laser scanners have no significant post processing requirements. Stereo-photogrammetric 

techniques make use of two overlapping images to reconstruct high resolution 3-D topography with in the 

common field of view of the images. The method is used in laboratory scale to acquire bed surface 

elevation with high horizontal (up to 1.5 mm) and vertical (1 - 2 mm) resolution (Butler et al, 2001; 

Brasington and Smart, 2003; Chandler et al., 2001; Bertin and Friedrich, 2014). This method is relatively 

easy to set up in the lab and in the field despite it requires careful calibration procedures (Bertin and 

Friedrich, 2014). Despite the development of many alternative measurement techniques, small 

measurement errors could significantly affect the quality of the surface elevation data and its derivatives 

(Lane et al.,2005) and the effect is more pronounced in low relief surfaces (Hodge et el.,2009). 
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3.3.PSD TRIANGULATION SENSOR AND OPERATION PRINCIPLES 

3.3.1. PSD triangulation sensor  

Position sensing detector (PSD) is a single element detector that converts incident light into continuous 

position data and single axis types are those often used in triangulation sensors. The detector chip has two 

output electric signals at its two ends that respond to the position of the imaged light spot in the detector. 

The amount of current from each output is proportional to the position of the imaged spot on the detector 

and the spot position is calculated from the relative values of the outputs as the ratio of the difference to 

the sum of the output currents. It is essentially an analogue device and is very advantageous in high speed 

data sampling (up to 200 kHz or faster). It also offers other advantages as it has a good dynamic light 

reception capability and very high natural resolution. However, it has some limitations that are mainly 

related to its lack of ability to display the profile of the detector pattern and it determines the centre of 

gravity of all lights that fall on the detector area to measure distance. When more than one light spot or 

other light falls on the detector it will report the position of the centre of all light which could possibly 

result in erroneous signal. The texture of the surface being measured can cause considerable variations in 

measurements of position as surface texture may distort the light spot. This will shift the centre of gravity 

of the light spot and thus measure erroneous position data. The laser scanner used in the laboratory 

measurement of gravel bed surface elevation uses PSD sensor. 

3.3.2. Operating principles 

PSD triangulation scanning is an active scanning system that uses laser light to probe the environment. 

This technique is called triangulation because the laser beam, the camera and the laser emitter form a 

triangle. The laser light source is used to project laser beam on the target being measured and a portion of 

the beam is reflected through focusing optics and received by the detector to reconstruct distance. The 

distance measurement by laser triangulation sensors are achieved by projecting a laser beam light onto the 

target and calculating the distance from a reference point by determining where the reflected light falls on 

a detector (Figure 3-1). As the point of laser beam falling on the object moves closer to or farther from the 

reference point, the spot position on the detector changes.  Figure 3-1 shows that the axes of the emitted 

and the received beams enclose an angle θ that changes if the target (surface A or B) is shifted closer (θ 

increases, θA) or farther (θ decreases, θB) with respect to the vertical of the emitted laser sensor.  The 

angle θ is determined by the position of the refracted beams (A1 and B1) on PSD. The distance of the 

target from the laser sensor is then easily obtained through geometrical relations involving the angle θ and 

the distance of the points.  
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Figure 3-1. Illustration of the principle of the triangulation laser sensor used to measure the elevation of 

two different points 

3.4.SOURCES OF ERRORS IN THE DATA 

Measurements of displacement by PSD laser triangulation sensor can be acquired in nearly any material 

including plastics, ceramics, rubber and paper (MEL Mikroelektronik GmbH, 2002). However, some 

measurement errors are inevitable depending on target reflectivity and target geometry although 

instrument design is important.  

3.4.1. Target reflectivity 

Laser triangulation operates by imaging the reflected spot of the light from the target on to the PSD thus 

whether the target is diffusive or specular will affect the quality of the measurements. The sensor 

performs well when the surface is characterised by diffuse reflectance as light is more likely to be 

reflected from the surface to the detector. The change in reflectivity of the target, which depends on 

colour and surface finish of the target, will change the level or intensity of light reaching the detector thus 

affecting the distance measurement. The distance is computed based on the centre of gravity of the entire 

reflected spot on the detector so it is very sensitive to spurious reflections from changing surface 

conditions that could reduce measurement accuracy. On the other hand a target with differential (partly 

low and partly high) reflectivity within the laser spot can falsely bias the centroid of the image of the spot 
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creating an error in measurements. However, small spot size detectors can reduce the effect of differential 

reflectivity. Thus measurements conducted in a consistent matte finish (using diffuse sensor head) or 

specular or highly polished targets (using specular laser head) are highly preferred for better performance. 

Differential reflectivity can be caused by sharp edges between different colours on the target and surface 

textures. ML/5-200 can perform well with a minimum diffuse reflection of 10% (MEL Mikroelektronik 

GmbH, 2002). 

3.4.2. Target geometry 

PSD sensor measurement performance is high when target is positioned normal to the laser head as it 

prevents tilt errors.  However, the effect of tilt on the measurement could also depend on the surface 

reflective properties of the target. For instance, ideally diffuse target will allow proper measurements on 

surfaces tilted 30
o
 or more from the normal. Laser triangulation sensors are also capable of measuring 

surface topography of curved surfaces especially when the laser beam is positioned facing directly toward 

the centre of the target curvature. Such sensor orientation eliminates any “tilt” seen by the laser. In 

addition, the orientation of the head should be such that the curved surface does not skew the laser 

triangulation angle. Figure 3-2 shows a proper sensor orientation (laser head moving towards right) that 

avoids deflection of laser be by target shape and obstruction by target features.   

 

                 

 

 

 Figure 3-2. The laser beam deflected by target shape (left) and obstructed by target features (right) 
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Gravel beds are characterised by various surface geometry and particle arrangements and orientations. 

Therefore, each particle has random tilt and surface curvature in different directions while the laser 

scanner sensor can only be oriented in one direction (stream-wise). Thus, measurements of bed surface 

elevation of gravel particles can be affected by target shape, tilt, obstruction and combinations of all. 

Figure 3-3 shows illustration of the laser acquisition orientation and a hypothetical gravel particle. Figure 

3-3  (left) shows that the reflected laser beam projected at P1 or further below could be potentially 

obstructed and deflected and could significantly affect the accuracy of elevation measurement. This 

shows that elevation errors could be expected in the curvature side of gravel particles that face opposite to 

reflected laser beam. There could also be differential reflectance especially at the edge of gravel particle 

due to reflectance of laser beam from the gravel edge and its bottom although the spot diameter is 2 mm. 

The laser light projected at P2 and P4 could be affected by target tilt effect but this could be minimal as a 

tilt as large as 30
o
 is expected to have good performance; no tilt effect at P3. The black arrows show the 

movement direction of laser head during data acquisition.  

 

                   

 

Figure 3-3.Gravel particle orientation and the acquisition orientation of the laser head (laser scans stream-

wise (left) and span-wise (right) directions) 

3.5.MATERIALS AND METHODS 

3.5.1.  Laboratory set up for data acquisition 

The surface elevation data of both sphere beds and gravel bed , that were placed in laboratory flume, were 

measured by M5L/200 laser scanner (MEL Mikroelektronik GmbH, 2002) with a stream-wise sampling 
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interval of Δx = 1.0 mm, a lateral spacing of Δy = 0.3 mm, and with a vertical  resolution of 0.1 mm. The 

different sampling intervals in x and y directions are due to minimum step width of the stepper-motor of 

the span-wise system of the laser scanner.  The laser scanner was mounted by two light emitting (optical 

distance sensor) sensors and a receiving (PSD) sensor positioned at an angle of 25
o
. This type of sensor is 

advantageous since it emits smaller light spot to register fine differences in object's structure and better 

accuracy with striped objects (light/dark transition within the spot). Table 3-1 shows the specifications of 

the laser scanner. The vertical range of data acquisition of the device is 200 mm (-100   to +100 mm) 

where only objects located in the distance range from 240 to 440 mm from the light spot (diameter = 2 

mm) of the laser are acquired at a sampling rate of 40 kHz. The type of output data output was in volts 

thus converted to mm after a proper calibration curve was developed.  The range of measurements in volts 

is ±10 V. The acquired surface elevation data of both the sphere beds and gravel bed were re-sampled to 

have equal intervals δx and δy = 1 mm before subsequent analysis using MATLAB
®
.  

 

Table 3-1. Technical specification of M5L-200 laser scanner 

Specifications Values 

Range  (mm) ±100  

Reference distance  (mm) 340  

Linearity error (μm) 600  

Resolution (noise)  (μm) 60  

Spot diameter (mm) 2  

Distance laser-receiver (mm) 150.5  

Laser wavelength (nm) 675  

 

3.5.2. Sphere bed materials and acquired data 

Before the measurements were conducted the flume was subjected to low light intensity level from the 

surrounding.  First, for the sphere beds, four wooden plates of 85 mm by 137 mm were prepared where in 

each plate 15 spheres of diameter 25mm placed as shown in Figure 3-4. The first set of spheres  were 

painted black polished (hereafter BP), the second black-opaque (hereafter BO), the third white-opaque 

(hereafter WO) and the last red-polished (hereafter RP). This colour arrangement allowed investigating 

the effect of target colour (reflectivity) on measurement accuracy of PSD laser scanner. Figure 3-5 shows 

the acquired surface elevation data of the sphere beds shown in Figure 3-4.   
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Figure 3-4. The spherical beds painted:  a) black polished b) white opaque, c) red polished and d) black 

opaque 

 

 

 

Figure 3-5. Measured surface elevation data of the four spherical beds: a) black polished, b) white 

opaque, c) red polished and d) black opaque 

The theoretical surface elevation data  of the spheres was also calculated as three-dimensional data using 

sphere formula of known diameter (in this case 25 mm), thus the true surface elevation of the bed is 

known a priori (Figure 3-6). The theoretical surface elevation data was used as a reference data to 

evaluate the elevation errors of PSD measurements. The corresponding surface elevation data acquired 
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by, for sphere bed painted white opaque, PSD laser scanner is shown in Figure 3-7. The elevation errors 

are evident on curved surface, mainly in y direction, of the spheres (the blue box in Figure 3-7).  

 

Figure 3-6. Theoretical surface elevation data (model) of sphere bed that was constructed by using sphere 

equation 

 

 

Figure 3-7. Measured bed surface elevations of sphere bed (white opaque spheres) 

The measured surface elevation data is referenced to have zero elevation at the bottom of the spheres so 

as to compare with theoretical surface elevation data. This was accomplished by first interpolating the 

elevation points that correspond to the bottom of the spheres or the level of the plate (shown in yellow 

vertical lines in Figure 3-7) and then by subtracting it from the   surface elevation data. Finally surface 

elevation data with a minimum of zero and maximum of 25mm (the crest elevation of the spheres) was 

obtained. 

3.5.3. Gravel bed materials and acquired data 

The gravel bed materials were prepared to investigate elevation errors of gravel surface elevation data 

acquired by PSD laser scanner and afterwards to characterize its roughness. The entire flume was first 
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filled with immobile coarse gravel particles to a thickness of 20 cm (Figure 3-8). The coarse gravel 

particles in the flume bed were prepared by screeding manually from upstream to downstream (in flow 

direction) in order to avoid gravel clustering. This procedure allows creating a gravel bed similar to water 

worked beds as reported in Aberle and Nikora (2006). The particle size distribution of the gravel bed 

material is shown in Figure 3-9. The particles are characterized by d50 = 24.9mm, d90 = 30.44mm, d84 = 

29.54mm, d16 = 19.64mm, σg =1.227 and Cu =0.42.  The gravel particles can be considered uniform and 

well-graded with coefficient of uniformity (Cu) less than 3 and geometric standard deviation (surface 

sorting) (σg) less than 3 (Tigrek and Aras, 2011). Figure 3-10 (top) shows the gravel bed material at the 

test (control) section (painted white) that comprises gravel particles in 180 mm x 180 mm area which is 

located 7.8 m downstream of the flume entrance (flume layout is plotted in Chapter 4) and surface 

elevation data acquired by PSD laser scanner. The acquired data is characterized by unusual spikes 

(erroneous surface elevations) that are related to the intrinsic limitation of PSD sensor which is used in 

the laser scanning of the gravel bed (Figure 3-10). The sensor seems to have limited capacity in capturing 

returning signal from gravel particles whose edges are laid opposite to sensor returning direction.  

 

Figure 3-8. Gravel bed materials filled in the laboratory flume and test section (yellow box) 

180mm 

400

mm 

180mm 

Laser scanner 
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Figure 3-9. Grain size distribution of gravel bed material used in laboratory flume 

Most of the erroneous elevation data are observed at the edges of the gravel facing downstream; surface 

elevation spikes shown with white dots (Figure 3-10, bottom). The erroneous data elements (surface 

elevation spikes) in the gravel surface elevation data have an elevation up to a maximum of 200 mm. The 

erroneous data should be filtered before subsequent analysis for roughness characterization.  In the 

following sections the development of filter methods that aim to reduce the elevation errors are developed 

and tested. 

 

 



                                             

53                                                                                                                                                 CHAPTER 3 
 

  

           

 

Figure 3-10. The gravel bed materials at the test section and the raw gravel surface elevation data 

acquired by PSD laser scanner (yellow box shows area of interest for further analysis) 

 

     

     

     Flow 
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3.5.4. Development of methods to reduce elevation errors 

In the present study two filter methods that use a threshold to detect erroneous data elements in the 

surface elevation data are devised and tested. The proposed methods are Adaptive Mean Filter (AMNF) 

and Normalized Adaptive Median Filter (nAMDF). Consider an elevation value in gridded data denoted 

by Z0, its n x n –neighbourhood data, denoted by 21 2 1
, , ...,

n
Z Z Z


, and Z  and mZ as the mean and 

median of  21 2 1
, , ...,

n
Z Z Z


(note that Z0 is excluded) respectively where n is filter window size. In 

AMNF if a residual β, defined as: 0Z Z    is larger than a user define threshold value (c) then that 

cell is identified as erroneous and removed. In this manner, AMNF identifies erroneous peaks surrounded 

by lower elevation points in the neighbourhood. A similar procedure is applied in Hodge et al. (2009) to 

remove erroneous peaks in gravel surface elevation data acquired by Terrestrial Laser Scanner (TLS). The 

normalized adaptive median filter is similar to AMNF filter however in this approach a more generalized 

or narrow range of threshold values is designed to detect the erroneous peak elevation elements. The 

approach is similar to the work of Westerweel and Scarano (2005) in which a universal optimal range of 

threshold value and optimal size of filter window was developed to detect and remove spurious data in 

Particle Imaging Velocimetry (PIV). In nAMDF a residual, ir  defined as: i i mr Z Z   is determined for 

each grid data in the neighbourhood 21, ..., 1iZ i n  , and the median mr  of  21 2 1
, , ...,

n
r r r


is used 

to compute a dimensionless residual β of Z0 as: 

 

 
0 m

m

Z Z

r








 (3-1) 

which is used to detect erroneous peaks (data elements). A minimum normalization level ε is introduced 

to correct β when 0mr   in cases of similar elevation values in the filter window. If β is larger than an 

optimal threshold value, c that cell is identified as erroneous and removed.  In both AMNF and nAMDF 

methods the removed cells are replaced by interpolation of the neighbouring data elements instead of 

replacing with the mean or median value evaluated within the filter window unlike Hodge et al. (2009) 

and Westerweel and Scarano (2005). This allows eliminating any contribution from erroneous data 

elements as the use of mean or median value of the filter window (neighbourhood grid values) still will 

contain elevation errors. In this manner the procedure is applied to all the cells in the data. The 

interpolation of removed cells is completed by applying the Inverse Distance Weighting interpolation 

technique where the neighbouring un-removed and relatively error free cells are used. The procedure is 

applied and tested for various radii and thresholds until an optimal radius and threshold value that reduces 
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the error significantly is obtained. The advantage of nAMDF over AMNF is that it gives very small range 

of threshold that does not vary significantly among grid points of surface elevation data to detect spurious 

elevation measurements. 

3.6.  RESULTS AND DISCUSSIONS 

3.6.1. Analysis of Surface Elevation Data of Sphere beds 

3.6.1.1.Characteristics of Elevation Errors in Sphere bed 

First, the statistical distributions of measured surface elevation data of sphere beds painted with different 

colour and surface finishes are investigated (Figure 3-11). Figure 3-11 shows that the mean, maximum 

and minimum elevations of BP and BO data are extremely affected by elevation errors and the elevations 

at the top of the sphere are the most affected ones. This shows that the surface elevation data acquired by 

PSD laser scanner contains elevation errors. The low reflectivity in combination with specular reflection 

from polished finish of the black painted spheres limits the performance of the PSD sensor. The white 

opaque and red polished spheres show very close agreement with the reference surface elevation data. 

The fact that red polished surface showing good measurement performance indicates that  target colour is 

more important rather than the nature of surface finish (polished or opaque (matte)).  

 

           

Figure 3-11.The distribution of surface elevation data of the reference theoretical bed (model) and the 

four sphere beds   

 

Figure 3-12 shows the elevation profiles taken along the crest of the test spheres and black opaque (solid 

line with square) and black polished (solid line) beds are extremely erroneous. The profiles of sphere bed 
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painted white opaque (broken line) and red polished (solid with star) are in close agreement with the 

reference (model) (dashed line). Nevertheless, there are directional elevation errors shown in blue boxes 

in Figure 3-12 and Figure 3-7. These erroneous regions of the data are due to target tilt and laser beam 

obstruction caused by target shape. These areas are sphere regions whose surface curvature facing 

opposite to the returning laser beam received by PSD detector as shown in Figure 3-3 (left).  
 

 

Figure 3-12. Elevation profile taken along the crest of the central five test spheres of surface elevation 

data of the spherical beds in Figure 3-5  

3.6.1.2.Performance of Proposed Filter Methods 

The datasets of black opaque and polished are discarded in this analysis since the entire elevation data 

was erroneous mainly due to target colour. The focus is to evaluate the performance of the filter methods 

to detect and remove the erroneous elevation grid points caused by mainly target shape. The sphere bed 

painted in white opaque spheres is selected since the elevation error is mainly due to target shape, which 

is a major cause of errors in gravel surface elevation data, rather than target colour. The proposed filter 

methods highlighted in Section 3.5.4 are tested to remove the directional erroneous peak elevations that 

are dominant on sphere curvature that lies opposite to returning laser beam (refer Figure 3-12). The 

sphere model plotted in Figure 3-6  is used as a reference data to evaluate the performance of each filter 

based on Root Mean Square Error (RMSE) and visual inspections. 

I. The AMNF Method 
The AMNF filter is applied and tested for various filter radii and threshold taking into account the 

anticipated elevation differences among neighbouring pixels. In this manner, high elevation values 

surrounded by lower ones in the neighbouring grids can be magnified by identifying points with high 

deviation from the mean local elevation within the filter window. The choice of a proper filter window 

and a threshold parameter is essential to avoid data smoothing (especially at lower threshold) and to 

remove erroneous or peak elevations selectively from the data (e.g. Hodge et al., 2009).   

 v 
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Figure 3-13. The RMSE of AMNF filtered surface elevation data for various thresholds and R=1-4mm 

Figure 3-13 shows RMSE of AMNF filtered data calculated using theoretical bed as a reference. It shows 

that a large threshold with small filter window and a small threshold with large filter window give better 

filter performance. A threshold of c = 2.0 mm and filter window, R = 4 mm significantly removed the 

erroneous data in surface elevation data of the spheres by AMNF (see Figure 3-14). Figure A-1 (in 

Appendix A) shows the distribution (histogram) of the filter parameter (β) which is used to identify the 

optimal threshold, c = 2 mm. The negative values of β are excluded since they do not indicate erroneous 

data elements that are characterize by unusual elevation peaks.  

 

 

 

Figure 3-14. Filtered surface elevation data by AMNF: peak removed (left) and the difference between 

unfiltered and filtered (right) 

The residuals (Figure 3-14, right) are calculated by subtracting filtered data from the raw data. Most of 

the modified surface elevation data elements are in the region of erroneous data elements (sphere 

curvature that lies opposite to returning laser beam) observed in the raw data. However, the use of AMNF 
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has some limitations since it needs trial and error to find an optimal threshold and filter window size. 

There is no any anticipated range of values for threshold parameter and the optimal threshold varies from 

data to data which makes the use of an optimal threshold of one data for another set of data problematic.  

II. The nAMDF Method 
The nAMDF method is applied after evaluating an appropriate ε, c and R. The selection of an optimal ε 

and R affects the estimate of the filter parameter β and identifying the erroneous data elements. Figure 

3-15 (right) shows the filter parameter (β) distribution for ε = 0.5mm and for radius of the filter (R = 1.0 - 

5.0 mm). The value of β comprises both negative and positive numbers and the positive values are those 

relevant to detect the erroneous peaks. It is important to note that there is not that much dependence of β 

on R especially when the value of ε is large. However the selection of optimal c based on statistical 

distribution of β should be with caution when the filter is evaluated for various R values.  Figure 3-15 

(left) shows the distribution of β for various normalization levels (ε = 0 - 0.5) and for R = 4.0 mm. As the 

normalization level (ε) increases the range of β gets narrow and this simplifies the choice of an optimal 

threshold for peak detection and removal compared to AMNF. The sensitivity of β with filter radius 

decreases with an increase in ε. For instance, when ε was increased to 0.5 the distribution of β remained 

similar for various radii (Figure 3-15, right). Over all the choice of an optimal c should be conducted with 

caution although the filter method establishes a narrow range of β distribution.  

 

  

       

Figure 3-15. The distribution of β of nAMDF for various ε (R = 4mm) (left) and R (ε = 0.5mm) (right) 
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Figure 3-16. The erroneous data elements (white areas) identified and removed for ε = 0 mm (left) and ε = 

0.5 mm (right) where R = 4 mm and c = 0.5  

The selection of a very small or near zero ε tends to identify non erroneous data as erroneous (Figure 

3-16, left). Especially at the top of the sphere bed the effect of small ε is significant in incorrectly 

identifying erroneous data elements (Figure 3-16, left). But with relatively larger ε solely erroneous 

elements of the data are identified (Figure 3-16 , right). Figure 3-17 shows the RMSE evaluated based on 

reference data for nAMND filter applied for various thresholds of selected filter windows (R). The 

parameters ε = 0.5 mm, R = 4 mm and c = 0.4 give the smallest RMSE and are optimal set of filter 

parameters that give best filter performance. 

 

 

Figure 3-17. The RMSE of nAMDF filtered surface elevation data for various thresholds and R = 1-4mm 
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Figure 3-18 (left) shows surface elevation data of the sphere bed filtered using the optimal set of 

parameters of nAMDF. The erroneous peak elevations are effectively removed while preserving most of 

non-erroneous elements.  Figure 3-18  (right) shows the difference between the raw and filtered data and 

it also shows that the errors are effectively removed. The percentage of elevation difference larger than 1 

mm between reference and filtered data by AMNF and nAMDF are 12.60 % and 13.00% respectively. 

The percentage of elevation differences that are larger than 1 mm between the reference and the raw data 

is 28.20%. Figure 3-19 shows longitudinal (along y = 38.0 mm) and transversal (along x = 51.0 mm) 

profiles along filtered (AMANF and nAMDF) and raw surface elevation data of the sphere bed. 

 
 

 

 
 

 

Figure 3-18.Filtered surface elevation data by nAMDF (left) and the difference with raw data (right) 

The longitudinal profiles in Figure 3-19 (top) show that erroneous elevation peaks are effectively 

removed by AMNF (circle) and nAMDF (black dot) and the elevation values at the edges of the spheres 

match well with the reference sphere profile (blue line). The transversal profile (Figure 3-19, bottom) also 

shows more clearly the elevation error as large as 10 mm is effectively removed. Both AMNF and 

nAMDF remove the erroneous surface elevation data elements with efficiency however AMNF need trial 

and error to identify optimal window and threshold parameter while nAMDF can easily overcome this 

limitation as the range of optimal threshold is very narrow. However, slight changes in normalization 

level could significantly change the distribution of β thus cautious evaluation is required. AMNF tends to 

smoothen the edges of the spheres but nAMDF preserves the edges and detects solely the erroneous 

elevations. 
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Figure 3-19. Elevation profile taken along y = 51.0 mm and x = 38.0 mm for unfiltered and filtered 

surface elevation data (green circles show regions of erroneous data) 

Table 3-2.The statistical parameters of the reference (MODEL), raw (DATA) and filtered (AMNF and 

nAMDF) surface elevation data  

  MODEL DATA AMNF nAMDF 

RMSE 0.00 1.95 1.44 1.43 

μZ 19.58 20.15 19.83 19.80 

σZ 4.15 4.44 4.35 4.30 

k 12.48 14.29 14.29 13.99 

S -0.59 -0.65 -0.54 -0.57 

К 2.02 2.00 1.94 1.94 

     μZ-mean surface elevation (mm) 

σZ-standard deviation of surface elevation (mm) 

k-geometric roughness height; 

S-Skewness; К-Kurtosis 
 

Table 3-2 shows the statistical comparison between the reference data, raw data, and filtered data for 

optimal radius (R) and threshold parameters (β) as well as normalization level (ε). The RMSE, mean and 

standard deviations of the surface elevations data filtered by AMNF and nAMDF are quite similar. The 

mean and standard deviation of the raw data is not very different from the model (reference data) however 
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the geometric roughness height is overestimated by raw data.  In the next sections the filters developed for 

sphere surface elevation data are applied on gravel surface elevation data that was acquired at the same 

spatial resolution and environmental conditions. 

3.6.2.  Analysis of Surface Elevation Data of Gravel bed  

3.6.2.1. Filtering Errors in Gravel bed Surface Elevation Data 

The filters that were developed based on elevation errors of sphere beds are further tested and applied to 

overcome the elevation errors noticed in gravel surface elevation data. This will improve bed roughness 

characterization based on random field approach.  The AMNF and nAMDF filters were applied directly to 

gravel data based on the range of threshold and filter window (AMNF: c = 2 mm and R = 4mm and 

nAMDF: ε = 0.5 mm, R = 4 mm and c = 0.4) optimal for the sphere datasets as a first step.  But with a 

slight adjustment of optimal parameters (c = 2.5 mm and R = 4 mm) of sphere datasets, the elevation 

errors (spikes) in gravel surface elevation data were effectively removed by AMNF preserving most of 

error free data elements (Figure 3-20).  In Figure A-2 (in Appendix A) the distribution of the filter 

parameter (β) which is used to identify the optimal threshold for gravel surface elevation data is 

presented. The negative values of β are excluded since they do not indicate erroneous data elements that 

are characterized by unusual peaks or spikes. The difference between the filtered and unfiltered data 

(Figure 3-20, right) shows there are still some regions around gravel edges where error free regions are 

also removed to some extent.  Both visual and qualitative evaluation of regions of erroneous data 

elements indicate the erroneous regions are removed.  

  
     

Figure 3-20. Gravel surface elevation data filtered by AMNF (left) and the difference with the unfiltered 

data (right) 
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Quantitatively the distribution (histogram) of elevation difference between the unfiltered and filtered data 

is evaluated and it shows negative differences which are caused by data smoothing by AMNF filter 

(Figure 3-22, left). A very small smoothing of edges is evident in the longitudinal profile taken along y = 

94 mm (Figure 3-23). The filter performance is also evaluated based on the distribution of mean elevation 

difference parameter which is designed to identify local discontinuities in the surface (Hodge et al., 2009). 

The mean elevation difference parameter (EZ) is calculated for each surface grid cell of AMNF filtered 

data using a three by three moving window. Large absolute values of EZ indicates a large difference in 

elevation between the central cell and the surrounding cells, hence rapid changes in elevation over 1 mm 

distances, which are  unlikely  to  occur  in  gravel  surfaces,  hence  probably represent the presence of 

erroneous data points (Hodge et al., 2009). Figure 3-22 (right) shows that the frequency of EZ larger than 

1mm has reduced dramatically by the filter. The percentage of EZ larger than 1mm has reduced from 

39.20% to 29.50% after AMNF filter is applied.  

 
 

Figure 3-21. Threshold parameter (β) for ε = 0.5 and R = 1-5 mm (left) and R = 4mm (right) 

The nAMDF filter is applied after appropriate normalization level ε, optimal radius R and threshold c are 

identified. Figure 23 (right) shows the range of β for both sphere and gravel are narrow and similar which 

could allow the transfer of the filter parameters from the sphere data. The distribution of the threshold 

parameter (β) for various filter radii and a given normalization level (ε = 0.5) does not vary as large as 

observed in the sphere data (Figure 3-15, right) instead it remains very similar over the range of radius 

(Figure 23, left).  As the normalization level increases, the range of β shrinks thus simplifying the choice 

of a threshold for peak detection and removal (Figure 3-15, left and Figure A-2 in Appendix A). 

Increasing ε also decreases the sensitivity of β to filter radius thus β remains similar for various radii as 

the ε value increases.  Nevertheless even though the distribution of β is similar for small and larger radius, 
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the same threshold applied at larger radius may not be more effective in detecting and removing the 

erroneous data elements.  

  

Figure 3-22. Distribution of the difference between the raw and filtered gravel surface elevation data (left) 

and elevation difference parameter (EZ) 

 

 

Figure 3-23. Elevation profile taken along y = 94mm for unfiltered and filtered gravel surface elevation 

data 

Figure 3-24 shows nAMDF filtered surface elevation data and the difference with the unfiltered (raw) 

data for optimal filter parameters:  ε = 0.5mm, R= 4 mm and c = 0.5 which are parameters used for sphere 

data. The erroneous elevations (spikes) are effectively removed by preserving most of error free data 

elements. The important observation is the optimal filter parameters of the sphere bed are directly applied 

and are able to effectively remove the errors in gravel surface data. There are no negative residuals 

(calculated as filtered data subtracted from the raw) evident in the histogram or distribution of surface 

elevation data after nAMDF is applied. This is due to no significant smoothing by the nAMDF filter 
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unlike AMNF filter (Figure 3-22). Figure 3-23 (green box) also indicates that the edges are not modified 

by nAMDF filter and solely the erroneous data elements are removed. The percentage of EZ larger than 

1.0 mm has also reduced from 39.20% to 26.80 % after nAMDF filter is applied. 

  

Figure 3-24. Gravel surface elevation data filtered by nAMDF (left) and the difference with the raw data 

(right) 

3.6.2.2.Statistical Analysis of Gravel bed Surface Elevation Data 

The main aims of the statistical analysis are to identify the distribution of the bed, estimate vertical 

roughness scale, and assess its similarity with water worked bed and to compare with literature values. It 

also enables to assess the effect of the elevation measurement errors on estimated roughness 

characteristics. Before statistical analysis of the gravel surface elevation data a de-trending procedure is 

applied. A planar trend is removed from the data using least square fitting procedure that de-trended the 

data both in span-wise and stream-wise directions. The de-trending allows to remove large scale trends 

(e.g. bed slopes) which could obscure the data properties and bias grain roughness statistics (e.g. Goring 

et al., 1999; Bertin and Friedrich, 2013).  The probability distribution function (PDF) of gravel surface 

elevation data allows comparison of gravel texture parameters such as statistical moments and bed 

properties. The first four moments of bed elevation distribution, mean (µz), standard deviation (σz), 

skewness (S), kurtosis (К) are calculated. The standard deviation of bed elevations (σz) is the characteristic 

vertical roughness scale (Nikora et al., 1998; Aberle and Nikora, 2006) and describes the variability in 

bed surface elevation. It is a measure of the range between high and low surface elevations with in a 

specific area (Curran and Waters, 2014). The skewness coefficient (S) quantifies the asymmetry of the 

PDF relative to the symmetrical normal distribution, S = 0, in order to describe the general form of the 
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bed surface. Figure 3-25 shows the probability distribution function (PDF) of raw (in diamonds) and 

filtered (in circles) gravel surface elevation data. 

 

Figure 3-25. Statistical distribution of filtered and unfiltered (raw) gravel surface elevation data 

The bed surface elevation distribution of the filtered datasets have a small negative skewness, S = -0.44 

(nAMDF) and S = -0.31 (AMNF) (Table 3-3 ) and Kolmogrov-Smirnov test fails at the 0.05 significance 

level for null hypothesis for normality which indicates a non-normal distribution. The distribution of 

water worked beds are positively skewed (Nikora et al.,1998; Aberle and Nikora, 2006) due to the 

coarsening of the gravel bed surface with accumulation of coarse grains of higher elevation with respect 

to mean bed level. The large and positive skewness, S = 6.04 in the raw data though is rather due to 

spikes of erroneous data. The geometric roughness, k = Zmax - Zmin is also significantly affected by 

elevation spikes in the raw data.  The skewness of the filtered datasets (nAMDF and AMNF) agrees well 

with literature values (e.g. Mohajeri, 2014) for screed bed. The elevation errors in the raw data over-

estimate the vertical roughness scale σz by three folds compared to filtered datasets (Table 3-3). 
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Table 3-3. The statistical characteristics of de-trended raw and filtered gravel surface elevation data 

 

Hx Hy μz σz k S К Lxo Lyo Lxo/d50 Lyo/d50 

Data 0.24 0.35 60.69 18.27 190.11 6.04 46.94 3.11 4.29 0.12 0.17 

AMNF 0.47 0.49 57.50 6.58 68.87 -0.31 3.23 13.52 13.00 0.54 0.52 

nAMDF 0.53 0.52 57.43 6.39 53.32 -0.44 3.04 12.00 12.00 0.48 0.48 

Lxo,yo – longitudinal (x) and transversal(y) horizontal roughness length scales  

Hx,y   –  longitudinal(x) and transversal (y)horizontal scaling exponents  

 

3.6.2.3. Gravel bed Spatial Structure  

The spatial bed surface particle orientation is found to be very important in characterizing bed roughness 

in open channel flow dominated by gravel beds (Cooper et al., 2008). The degree of surface particle 

organization or the spatial complexity of bed surface structures is usually assed by the generalized two-

dimensional (2-D) second order structure function (Goring et al., 1999). It provides measure of the 

correlations between bed surface elevations over a range of spatial scales and directions. It has been 

widely used to identify surface particle orientations (directions) and sources of bed roughness in gravel 

bed rivers (e.g. Marion et al., 2003; Aberle and Nikora, 2006; Mohajeri, 2014). The 2-D second order 

structure function, γ, of gravel surface elevation is calculated by using Equation (3-2) as indicated in 

Aberle and Nikora (2006) with a maximum spatial lag values (lx and ly) of  90 mm  not larger than one 

half of the dimensions (180 mm) in either the x or the y direction of the data. 

          
 

          
∑ ∑    (             )   (     )  

 
   

   

   

   
 (3-2) 

where lx = nδx, ly = mδy, δx and δy are the sampling intervals (1.0 mm), N and M are the total numbers of 

measuring (grid) points of bed surface elevations in x and y direction. Nikora et al. (1998) showed that at 

very large lags lx and ly the data are spatially uncorrelated and γ tends to be equal to 2σz
2 

of the data and 

the corresponding lags lx and ly at which γ  2σz
2 

can be used to derive characteristic stream-wise and 

span-wise length scales. The normalized 2-D second order structure function is obtained when γ is 

divided by 2σz
2
. 

The contour line plots in Figure 3-26 to Figure 3-28 show the 2-D second order structure function of raw 

and filtered gravel surface elevation datasets computed by Equation (3-2). There is no any clear spatial 

pattern in Figure 3-26 and this due to the erroneous data that obscure the actual grain scale surface 

elevation variations and pattern.  The contour lines in Figure 3-27 and to Figure 3-28 are characterized by 

an elliptical shape in lag ranges of   0.5d50 to d50. Geometrically, the elliptical shape of the contour lines 
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reflects the elliptical form of the dominant bed particles and the anisotropic surface structure of the bed. 

The gravel particles are somehow rotated during manual screeding to align their longest axis along the 

direction of screeding, which is downstream in flow direction. The contour pattern in Figure 3-27 and 

Figure 3-28 also shows that the major axes of the elliptical contours are aligned in the x-direction with an 

increasing lx. This indicates that majority of the particles tend to rest on the bed with their longer axis 

along the x direction though the magnitude of inclination towards stream-wise direction may not be as 

large as water-worked beds. The ratio of the length of major to minor radii of the ellipse for AMNF and 

nAMDF are 1.58 and 1.40 and are similar with literature values of gravel bed created by screeding (e.g. 

Mohajeri, 2014).  

 

 

Figure 3-26. The contour plot of normalized second order structure function of gravel surface elevation 

data (raw) 

 



                                             

69                                                                                                                                                 CHAPTER 3 
 

  

 

Figure 3-27. The contour plot of normalized second order structure function of gravel surface elevation 

data (AMNF filtered) 

 

Figure 3-28. The contour plot of normalized second order structure function of gravel surface elevation 

data (nAMDF filtered) 
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Figure 3-29. The stream-wise second order structure function of gravel surface elevation data 

 

Figure 3-30. The span-wise second order structure function of gravel surface elevation data 
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According to Nikora et al. (1998) γ (lx, ly) is a popular tool for investigating the scaling properties of 

various types of rough surfaces such as gravel surface elevation data. The longitudinal γ (lx, ly= 0)  and 

transverse  γ (lx= 0, ly)  structure functions  are found to have three distinct regions depending on the 

spatial lags, namely,  scaling region, transition region and saturation region (Nikora et al., 1998). At small 

lags there is a scaling region where the structure functions can be approximated by the power function γ 

(lx, ly = 0)/2σz
2 
~ lx

2Hx
 and γ (lx = 0, ly) /2σz

2 
~ lx

2Hy
.  The scaling exponents Hx and Hy (Hurst exponents) and 

the characteristic spatial scales (also called horizontal roughness scales) Lxo and Lyo that separate the 

scaling and saturation regions are estimated from the power relations (Nikora et al., 1998). The horizontal 

roughness scales are calculated as the lag distance at which the extrapolation of the linear relation in the 

scaling region and a line of γ =2σz
2
 intersect (yellow circles in Figure 3-29 and Figure 3-30 ) as proposed 

by Nikora et al. (1998). The results are reported in Table 3-3 and Figure 3-29 and 32. The stream-wise 

(longitudinal) horizontal roughness scales estimated from filtered data, Table 3-3, are similar to 

corresponding span-wise (transverse) roughness scale.  Such behaviour is reported by Nikora et al. (1998)  

for manually created beds in laboratory flumes while larger longitudinal scales in water-worked beds. 

However, the estimated horizontal roughness length scales of the raw data are small and are not similar to 

literature values. This is due to the erroneous data that obscure the actual grain scale surface elevation 

variations and spatial pattern. The vertical roughness length scale of natural water worked gravel-bed is 

less than half of the horizontal roughness scales (Nikora et al., 1998). The estimated horizontal roughness 

scales from the filtered data are within the upper limit of scaling region which is defined by 0.5d50 

(Nikora et al., 1998; Aberle and Nikora, 2006) (Table 3-3). The scaling exponents of filtered datasets in 

(Table 3-3) are also within the range reported in Nikora et al. (1998) in field and flume studies. Nikora et 

al. (1998) reported that scaling exponent (H) is found to be universal where H = 0.79±0.04 for streams 

and H = 0.5± 0.07 for flumes.  The similarity between Hx and Hy of the filtered data shows the bed is 

isotropic which agrees with Nikora et al. (1998) observation for both natural water worked and manually 

created gravel beds.  The similarity between horizontal roughness scales (Lx0 and Ly0) of filtered data 

(nAMDF) however shows   isotropic (Lx0 = Ly0) property of the random field of elevations, Z(x, y). But 

the AMNF filtered data shows a little difference between the Lx0 and Ly0 which shows anisotropic 

property could exist as shown in the 2-D contour plot (Figure 3-27). Nikora et al. (1998) reported that 

manually created gravel beds in laboratory scale showed isotropic (Lx0 = Ly0) bed property unlike natural 

gravel beds (Lx0 ≠ Ly0). It is very useful to note that the estimation of horizontal roughness scales are 

prone (sensitive) to elevation errors looking at the estimates from AMNF and nAMDF filtered data.  The 

ratio of  vertical roughness length scales σz = 6.40 mm (nAMDF) and σz = 6.58 mm (AMNF) to horizontal 

length scales are in the range of 0.48 to 0.53 (Table 3-3) which are within the reach of the average value 
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of 0.44 reported for natural streams (e.g. Nikora et al.,1998). The estimates for the raw data are 4.3 and 

5.87 which are way above literature values and show the significant effect of the elevation errors. 

3.6.2.4.  Gravel bed Porosity Characterization  

The gravel bed porosity is estimated by applying two approaches: water displacement method and 

statistical analysis of gravel surface elevation data. The porosity of the gravel is calculated using a square 

tank filled with gravel materials, by measuring   depth of water displacement by gravel particles, as 

indicated in the Figure 3-31. The direct measurement of porosity in this way allows identifying the 

bottom of the interfacial sublayer.  The measurement setup has three main components: the measuring 

cylinder, the square tank containing the gravel and the water level measurement meter (a calliper). The 

measuring cylinder, is attached to the side of the tank, has a cross-sectional area of 14.03cm
2
 with a 

diameter of 4.23 cm. The square tank has a cross-sectional area of 784 cm
2
 (L = 28 cm, W = 28 cm and H 

= 50 cm).  Each incremental water level in the cylinder, which also means the water level in the tank for 

each added volume of water, is measured by the calliper manually. In order to estimate porosity two main 

measurements are conducted: the water level in the cylinder and the volume and mass of water that is 

added to the cylinder at every step.  

 

 

Figure 3-31. Porosity device for in-situ measurement of porosity profile of gravel material used in 

laboratory flume 

In the procedure first a known mass of water is added to a cylinder. The volume of the added water (V0) is 

estimated using the density of the water. The density of water is estimated based on known mass and 

Cylinder 

Tank  

Calliper  
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volume of water estimated before measurement of porosity since it depends on temperature of the water: 

999.73 kg/m
3
. To estimate the density of water the mass of 50 ml (measured by a pipette shown in Figure 

3-32) of water is determined by weighing it on the digital balance (Figure 3-32). The density is obtained 

by dividing the measured mass with the known volume of water. The mass of water is measured by 

digital balance whose accuracy is 0.001 g for measurements less than 10 g and 0.01 g for measurements 

up to 400 g.  

 

 

 

Figure 3-32. Digital balance (left) and pipette (right) for measurement of weight and volume of water 

respectively 

For each added mass of water the change in the water level in the cylinder is recorded. To estimate the 

porosity at each level in the gravel the volume of water occupying the void has to be known. Thus, the 

volume of water that enters the tank is obtained by subtracting the volume of water in the cylinder from 

the volume of water added to the cylinder each step. Since the cross-sectional area (A) of the tank varies 

with different water level in the tank, for each water level the cross-sectional area (A (Z) where Z is the 

water level) was calculated. First, water was filled progressively in the tank to estimate the tank cross-

sectional area at various water levels, before the gravel particles were filled in the tank for porosity 

measurement. The area was calculated by dividing a known amount of changes in the volume of water 

(∆Vw) in the tank for any change in the water level (∆Z) recorded in the cylinder. Figure 3-33 shows the 

area of the tank at varies along various sections of the tank around the mean (= 786.50cm
2
). Here the zero 

level is level at which maximum porosity is observed and corresponds to level of gravel crest in the tank. 

Flask  
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The level at which the areas are measured do not correspond exactly to the water level measurement for 

porosity calculation, therefore the mean of pairs of area were used.  Finally the porosity (Φ) is calculated 

as the change in volume of water in the tank divided by the product of change in the water level in the 

cylinder and the cross-sectional area of the tank at that water level: w(Z) = ΔV A(Z) Z   where

wA(Z) = ΔV ΔZ  and Z =  water level in the tank.  The calculated porosity (Figure 3-34) shows 

increasing trend in the porosity at the top layer of the gravel which is in the last 17.0 mm of the upper 

gravel layer while it oscillates between 0.30 and 0.40 at lower gravel layer.  

  

Figure 3-33. Variations in the area of the tank with water level in the measurement region of the tank 

height. 
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Figure 3-34. Porosity profile estimated from gravel surface elevation data and by water displacement 

method that show the gravel bed material porosity at various depths below gravel crest 

The porosity of gravel can also be estimated based on statistical analysis of gravel surface elevation data 

(e.g. Aberle, 2007, Nikora et al., 1998). The cumulative probability distribution function (CPDF) of 

gravel surface elevation data is widely used to estimate gravel bed porosity (Figure 3-34 , broken line).  

Nevertheless it predicts bed porosity mainly in the upper 70 % of gravel  layer (e.g. Aberle, 2007) since 

gravel surface elevation data cannot capture surface elevations below certain depths from the crest of 

gravel. Figure 3-34  shows that porosity profile estimated by water displacement method (yellow circles) 

agrees well with the estimate from gravel surface elevation data in the upper 60%. The estimate by water 

displacement method captures the bed porosity in the upper and subsurface layer of the gravel bed (Figure 

3-34) which allows identifying the bottom of the interfacial sublayer which is not possible with CPDF.   

Gravel crest elevation (Zc) 

Bottom of interfacial 

sublayer (Zt) 

Zc 

Zt 
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Figure 3-35. The 3-D view of nAMDF filtered surface elevation of data used for estimating geometric 

roughness function (porosity): the elevation values are with reference to crest elevation Zc = 0 

The crest level of the gravel bed Zc   = 69.23 mm is often computed as the elevation at 99 % of CPDF of 

gravel surface elevation data (Figure 3-35). The gravel crest elevation can bed set to zero by subtraction 

Zc from the surface elevation data (Figure 3-34). The region of increasing porosity in Figure 3-34 is the 

thickness of the interfacial sublayer and its bottom is the top of the subsurface layer (e.g. Nikora et al., 

2001). The bottom of the roughness layer Zt is obtained from porosity profile by water displacement 

method where the bed level below which porosity remains constant or the interface between interfacial 

and subsurface layer. The porosity in the subsurface regions does not go less than 0.2 - 0.3 (Nikora et al., 

2001). The bottom elevation of the interfacial sublayer in gravel surface elevation data is Zt = -17 mm and 

the porosity is 0.35.  

3.6.2.5.Gravel bed Roughness Density Characterization 

The total drag force exerted by flow on rough permeable bed is an important phenomenon in gravel bed 

or rough bed hydrodynamics since it affects the transfer of momentum between the free-surface flow and  

turbulent flow within the underlying  permeable layer (Pokrajac and Manes, 2008). Flows in vegetated 
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channels and gravel beds are also  affected by the drag force or flow resistance imposed by gravel 

particles or submerged vegetation (e.g. Poggi et al., 2004). The total drag force such bed conditions is 

generally described by the conventional quadratic drag parameterization (e.g. Poggi et al., 2004; Nikora et 

al.,2004) which involves roughness density, here after described as ‘a’, flow velocity and drag coefficient. 

The estimation of roughness density of gravel beds is very relevant in estimation of drag coefficient in 

gravel bed flows and to characterize total drag force in the interfacial sublayer or within the permeable 

layer. In two dimensional flows in rough permeable bed the roughness density is described as the frontal 

area of roughness elements per fluid volume and is given as the total frontal area of all the roughness 

elements intersected by the thin section within the averaging window divided by the fluid volume in the 

thin section (e.g. Nikora et al., 2004).  Mathematically it can be simplified as shown in Equation (3-3).  

 

A new procedure is developed to estimate roughness density from gravel surface elevation data (shown in 

Figure 3-36). First images are extracted every 1mm for a depth up to 25 mm below the gravel crest. The 

localized frontal area or solid interface of each gravel particle at particular depth is estimated as blob 

width. The width of each gravel particle at particular z is estimated by taking the blob widths (blue box in 

Figure 3-36) in longitudinal (x) and transverse (y) directions. The total width, W (z), of frontal solid 

segment of the thin section of gravels is estimated as the sum of the widths of all blobs for each image 

below the gravel crest.  The local roughness density (a (z)) is finally estimated as  

 

       
    

      
   (3-3) 

where Ao = the total surface area of each image and Φ(z)  =  gravel bed porosity. 

 

The roughness density of various bed configurations of selected theoretical roughness bed elements 

(Figure 3-37) which are often used in laboratory experiment of fine sediment transport (e.g. Grams and 

Wilcock, 2013) and rough bed hydrodynamics (Pokrajac and Manes, 2009; Seddighi et al., 2015) are also 

estimated to compare with gravel roughness density and to develop a theoretical relation. 
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Figure 3-36. Procedures followed to estimate roughness density from gravel surface elevation data 

Figure 3-38 shows the computed porosity profile for each bed where that of the gravel is estimated as 

indicated in Section 3.6.2.4. Generally the level of compactness in bed arrangement describes the porosity 

where only packed hemispheres (tetrahedral packing) show good resemblance to gravel beds unlike 

pyramids and loosely packed hemispheres (cubical packing) which show some similarity among 

themselves.  The porosity for all theoretical beds seems to be described as a function of the horizontal and 

vertical length scales of the roughness elements (R, b and h) except for gravel bed which is given as 

CPDF of log-normal distribution. The vertical (lz) and horizontal (lx) length scales for each bed is 

summarized in Table 3-4. 
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Figure 3-37. The spatial arrangement of the selected theoretical bed roughness elements  

 

Figure 3-38.  Bed porosity Φ (z) for the different arrangements of selected theoretical bed roughness 

elements and gravel bed 
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The roughness density of gravel bed is computed following procedure indicated in Figure 3-36  and 

shown in Figure 3-39 (square and diamond plots).  The estimates of the roughness density 10 mm below 

the gravel crest becomes a zero and this due to the incapability of the blob extraction method to resolve 

blobs below this depth. So only roughness density estimate up to z = -10 mm (~0.5dg) is taken to compare 

with the theoretical bed estimates.  In Figure 3-39  ax (z) and ay (z) are the estimated roughness density 

based on total width of blobs in x (circles) and y directions (diamonds) respectively and they are equal 

which shows that the frontal areas per unit volume of fluid in longitudinal and transverse directions are 

similar (in screed gravel bed) in gravel bed flow. Figure 3-40 shows the roughness density for theoretical 

beds (hemisphere and pyramid geometries). Here gravel bed, loose hemisphere bed and packed pyramid 

bed show some similarity in the upper portion of the roughness layer while high and low roughness 

density are observed in packed hemisphere and loose pyramid bed arrangements respectively. In all cases 

the roughness density increases from top to bottom of the roughness layer or interfacial sublayer.  

 

Figure 3-39. Localized roughness density a (z) of gravel bed computed theoretically (shaded circles) and 

extracted from gravel surface elevation data (unshaded squares& diamonds)  
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Figure 3-40. Localized roughness density a (z) for the different arrangements of selected theoretical bed 

roughness elements and gravel bed 

 

Figure 3-41. Dimensionless localized roughness density lxa (z) for the different arrangements of selected 

theoretical bed roughness elements and gravel bed 
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A collapse of dimensionless roughness density against bed porosity is also observed for all bed 

arrangements including gravel bed (shown in broken line in Figure 3-41).  Thus a theoretical relation (in 

Table 3-4) as a function of geometrical properties of the roughness elements, i.e. bed porosity and 

horizontal roughness length scales (summarized in Table 3-4) can describe roughness density a (z).  When 

the theoretical relation of roughness density of gravel is applied to gravel porosity data the estimated 

roughness density agreed well with the experimental estimates of roughness density (Figure 3-39). When 

the theoretical relation is applied to porosity data of other experiments (e.g. Dey and Das, 2012; Mignot et 

al., 2009)  and made dimensionless by the respective horizontal roughness length scales (d50 = 40 mm and 

d50 = 20 mm respectively) the plots collapse (Figure 3-42). The most important observation is that the 

roughness density of any rough bed can be described as function of geometrical properties of the 

roughness elements and the theoretical relation proposed here is validated based on roughness density 

measured from gravel surface elevation data. 

 

Table 3-4. The geometric characterization of the roughness density (a) and porosity (Φ) of gravel bed 

(Figure 3-35) and selected theoretical beds (Figure 3-37). The function Φ (z) for gravel bed has been 

represented by a CPDF of a log-normal distribution (shown in Section 3.6.2.4) of rough bed elevations 

with μz and σz the mean and the standard deviation of the log-transformed bed elevation Z.  
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Figure 3-42. The porosity of different gravel beds (top left), the relationship between theoretically 

computed dimensionless roughness density and bed porosity (top right) and theoretically computed 

roughness density with the porosity of gravel beds (bottom) 

 

3.7.  CONCLUSIONS 

 

Surface elevation data of gravel bed acquired by PSD laser sensor contains elevation errors that are 

caused by target shapes and orientations. The elevation errors can also be caused by surface colour which 

is noticed in surface elevation data of painted sphere beds. This study characterized the elevation errors of 

PSD laser scanner based on sphere beds and developed methods to reduce the errors and applied the 

results to gravel surface elevation data. Two filter methods (AMNF and nAMDF) are developed to 

remove the elevation errors and were well tested and verified based on reference data.  The nAMDF filter 

method is very effective in reducing elevation errors and the narrow range of filter parameters allows 
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selecting optimal values rather simple. It offers better alternative than  local high point filter proposed by  

Hodge et al. (2009) which is the AMNF filter in the present study. The local high filter ( Hodge et al., 

2009) and  AMNF  need  trial and error  procedures to obtain  optimal filter parameters which is 

sometimes problematic.  Although nAMDF optimal parameters of sphere bed were able to effectively 

remove errors in gravel surface elevation data their use for similar datasets cannot be generalized. 

 

The elevation errors in gravel surface elevation data showed significant effects on estimated gravel 

roughness scales  (horizontal and vertical length scales) and 2-D second order structure function which 

characterizes spatial structure of the bed (gravel particle orientations). The errors obscure the isotropic 

characteristics of the scaling regions and anisotropy of the random field of surface elevations. The vertical 

length scale and geometric roughness of the bed were highly overestimated. The bred roughness 

parameters estimated from the filtered data agreed with literature values of screed gravel bed.   The bed 

porosity obtained from CPDF of filtered data also agreed well with the estimate based on water 

displacement especially in the upper 60% of gravel bed layer. Nevertheless, perfect agreement was not 

noted since particle orientation, spatial organization and level of compactness of gravel particles in the 

porosity tank could be slightly different from the laboratory flume. The porosity data obtained from water 

displacement method, though, was very useful to identify the bottom of interfacial sublayer.  

 

The roughness density of various bed roughness elements showed dependence on horizontal length scales 

and bed porosity. This allowed developing a theoretical relation to predict roughness density as the 

function of geometrical properties of the bed, i.e. bed particle grain size and porosity. The development of 

the theoretical relation of vertical profile of roughness density is very useful to characterize drag force and 

drag coefficient in interfacial sub-layer of rough bed flows. It is often difficult to measure drag force 

directly especially in the interfacial sublayer. However, the measurement of flow velocity can be 

conducted with better accuracy, for example using PIV, thus the knowledge of roughness density will 

allow characterizing drag force. Finally, proper quality check and post-processing of gravel surface 

elevation data acquired by PSD laser scanner is very essential before extracting geometrical properties, 

roughness scales and roughness density of the bed.  
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4. FINE SEDIMENT EROSION RATE AND DYNAMICS IN IMMOBILE 

GRAVEL BED: METHODOLOGY 

 

Summary 

A new approach for measurement of fine sediment erosion rate in coarse immobile bed in laboratory 

experiment is presented. The method uses single laser line, video camera and a reflective mirror. It 

allows a non-intrusive, fast and accurate measurement of erosion rate in non-equilibrium transport under 

flowing water condition. The measurement method was conducted for flow depth that ranges from 3.0 cm 

to 8.0 cm. The procedures to extract laser lines from series of images and estimate rapid evolution of the 

erosion are presented and results show the effectiveness of the proposed methodology. The use of a 

mirror allowed measurement of depth of erosion with sub-millimetre (350µm) resolution. This study 

reports the first work of application of laser line technique to estimate erosion rate of fine sediments in 

interfacial sublayer of gravel bed dominated by suspended transport. This technique is very useful to 

acquire experimental datasets that could be used to describe the vertical profile of non-equilibrium 

erosion rate of fine sediments, its spatial heterogeneity and formulation of erosion rate relations in 

immobile gravel bed.  

4.1.INTRODUCTION 

The interaction between loose bed and flow field is an important process that controls the formation of 

bed forms and morphological evolutions.  In this regards, the exchanges of sediment particles, especially 

suspended sediments, with the loose bed due to gravitational action and turbulent flow derive evolution of 

bed configurations. Laboratory experiments have been used successfully to reproduce and visualize 

sediment-flow interactions and bed morphology (e.g. Lajeunesse et al., 2010). A laboratory experiment 

allows conducting measurements of the interactions between the water stream and the movable boundary 

under controlled conditions. It also eliminates the variations in external forcing thus allowing one to 

characterize real environments and model processes that evolve over much longer time scales than 

possible in the field (Limare et al., 2011; Visconti et al., 2010).  

There are currently several well tested techniques of laboratory measurements of flow characteristics as 

well as evolving bed morphology. For instance particle image velocimetry (PIV), acoustic Doppler 

velocimetry (ADV), ultrasonic doppler velocity profiler (UVP) are widely used in measurement of flow 

field.  There are also methods to measure bed profiles in movable bed such as miniature echo sounder 

(e.g. Kantoush et al., 2006),  joint use of triangulation laser sensor and an ultrasonic level transmitter (e.g. 
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Visconti et al., 2012), laser sheet technology (e.g. Huang et al., 2010; Soares-Frazão et al., 2007), moire 

method (Limare et al., 2011) and acoustic profilers and scanners (e.g. Lanzoni, 2000). The choice of the 

appropriate method is essential since the quality of data gathered from mobile bed experiments depends 

on the reliability and accuracy of the adopted measuring systems (Visconti et al., 2010). On the other 

hand, most and widely applied methods for bed profiling are stop and run approaches where water has to 

bed drained before bed acquisitions (e.g. Bertoldi and Tubino, 2005). Such measurement approaches are 

usually not applicable to monitor or acquire rapid evolution of bed morphology in the presence of water 

such as dike breach experiments and bed evolutions in non-equilibriums suspended transport.  Though 

devices such as acoustic profilers and acoustic scanners allow bed profiling in the presence of water 

overlying the bed (e.g.  Lanzoni, 2000; Thorne and Hanes, 2002), they cause undesirable morphological 

alterations such as  local scour since instruments should be placed inside water (Visconti et al., 2010). 

Moreover, time lapse acquisitions of change of bed evolution may not be possible and similarly sufficient 

spatial resolution is required to depict spatial heterogeneities of the bed and small scale changes during 

erosion. 

In recent years many developments have become available that allows one to measure bed evolution as a 

function of time in running water at laboratory scale (e.g. Abad and Garcia, 2009; Huang et al., 2010; 

Soares-Frazão et al., 2007; Visconti et al., 2010).  Huang et al., (2010) proposed a non-intrusive method 

that couples a colour camera and a laser stripe to record water flow mixed with a fluorescent dye.  By this 

method bed topography and water depth are reconstructed simultaneously from the colour images with 

high accuracy (0.6 mm) though the method is still to be tested at large scale. Soares-Frazão et al. ( 2007) 

applied laser sheet and a camera to reproduce the geomorphic evolution (changes in the cross-section) of 

a channel under dam-break flow conditions with an accuracy of 2.0 mm. In this method image of bed 

profile is taken by a digital camera while laser-sheet lights up a given cross-section. Then the two-

dimensional (2D) pixel coordinates of the laser profile is transformed to three-dimensional (3D) metric 

coordinates by a calibration procedure that defines affine transformation (Spinewine et al., 2003).  Abad 

and Garcia (2009) also applied similar bed profiling technique where a laser sheet is projected through 

water and the intersection of the laser sheet with bed is captured by a camera. The digital images are 

processed to reconstruct the bed profile in meandering experiment at laboratory scale.  Some 

photogrammetric techniques are recently developed for quasi-simultaneous measurements of bed 

topography and water depth (e.g. Limare et al., 2011). 

Suspended transport is the dominant mode of transport in the lower reaches of rivers, in tidal rivers, and 

along sandy beaches (van Rijn et al., 2007). In some occasions large quantity of fine sediments can be 

released during dam removal or sediment flushing operations where sediments are transported in 
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suspension in immobile coarse bed downstream of a dam (Wren et al., 2011). The exchange of the 

suspended particles in the flows with the bed is usually difficult predict (Wren et al., 2011) and direct 

measurement of the erosion rate in running water conditions will be useful to understand the processes. 

The direct measurement of the rate of fine sediment entrainment into suspension is however a challenging 

task and most studies focused on measurement of the near bed sediment concentration in equilibrium 

transport conditions to estimate  rate of sediment entrainment by suspension flow ( e.g. Garcia and Parker, 

1991; Cao , 1999; Rijn, 1984a; Grams and Wilcock, 2007). The near-bed concentrations are measured by 

in-situ sampling and analysis of the concentration in sediment laden flow (e.g. Garcia and Parker, 1991; 

Grams and Wilcock, 2007). Most of these experiments are conducted in sand bed conditions of uniform 

bed materials while few studies conducted measurements in coarse immobile beds (e.g. Grams and 

Wilcock, 2007; Khunle et al., 2013; Wren et al., 2013). van Rijn (1984b) conducted direct measurement 

of sediment entrainment (sediment pick up) into suspension flow in non-equilibrium transport condition. 

The sediment pick-up rate is measured directly by using a mechanical sediment lift by which sediment 

particles can be pushed upward at constant rate through a circular opening in the flume bottom filled with 

running water. The pick-up rate is estimated as the mass of sediment particles per unit area of the 

movable surface of the lift over measurement period.  

Due to the increasing ecological and environmental concerns of fine sediments in immobile beds, 

especially downstream of dams, laboratory based studies are emerging, in recent years,  to understand fine 

sediment erosion and entrainment processes in immobile coarse beds (e.g. Wren et al., 2011; Kuhnle et 

al., 2013; Wren et al., 2013; Grams and Wilcock, 2007).   Nevertheless measurement of fine sediment bed 

evolution and entrainment in the immobile bed matrix is found to be difficult. For instance, Grams and 

Wilcock (2007) and Kuhnle et al. (2013) measured changes in bed profile due to suspension transport by 

manual profiling using point gauges. Despite many developments to estimate bed evolution in 

morphodynamic laboratory experiments, the measurement of fine sediment erosion rates in immobile 

coarse beds is extremely lacking. On the one hand, existing measurements of fine sediment transport rate 

in immobile bed are based on surrogate variables such as measurement of suspended sediment 

concentrations (Khunle et al., 2013; Wren et al., 2013).on the other hand, measurement of bed evolution 

by suspended transport is conducted by stop and run procedure (e.g. Grams and Wilcock, 2007) which 

does not allow continuous monitoring of erosion rate and bed evolution.  

In this study a new non-intrusive methodology is developed to estimate evolution of bed topography and 

erosion rate of fine sediments in immobile coarse bed characterized by moving water in depth range of 

3.0 cm to 8.0 cm. The methodology has been successfully applied to measure longitudinal distribution of 

erosion rate and bed profile due to suspension transport in immobile gravel bed in non-equilibrium 
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transport conditions. The proposed technique couples a single line laser sensor, a digital video camera and 

reflective mirror. The method is non-intrusive, fast, simple and cheap technique to monitor bed evolution 

and erosion rate measurement in laboratory experiment.  Measurements of bed elevation and depth of 

erosion can be conducted at a resolution of 350µm with low resolution camera by using manually 

adjustable reflective mirror.  First the experimental facilities and experimental setup for erosion 

experiment and laser line measurement principle and setup are described in Section 4.2 and 4.3. Secondly, 

image acquisition and processing as well as methods developed for laser line extraction are presented and 

results are discussed in Section 4.4. In Section 4.5 and 4.7 estimation of erosion rate and fine sediment 

bed evolution in the immobile gravel bed are presented and the results are discussed.  The validation of 

the method is also presented.  

4.2.LABORATORY FLUME FACILITIES  

The experiments were conducted in tilting water circulating experimental flume whose length, width and 

depth are 16m, 0.4m and 0.7m respectively. The slope of the channel can be adjusted electronically from 

the horizontal plane to a value up to ib = 10%. These ranges of values allow a large range of flow 

conditions, very useful for obtaining a wide distribution of results. The optical level used in electronic 

device, used to measure slope, is able to evaluate the elevation of a point with a precision of 0.1 mm. The 

flume has a recirculation pump (maximum capacity of 13.33 l/min) and a water storage tank (maximum 

water storage of 15 m
3
) to deliver water to the flume inlet (refer Figure 4-1, top). The right lateral flume 

wall is glass supported by steel structure and the left lateral wall is plastic, both can be considered smooth. 

The water discharge is controlled by a gate valve and measured by an electromagnetic flow-meter 

connected to the inlet pipe, which has a maximum error in measurement of 0.005Q, where Q is the water 

discharge. The flume has manually adjustable outlet gate which is used to maintain uniform flow 

conditions. The flume is equipped with PSD laser scanner for surface elevation measurement. The 

coordinate x-, y- and z-axis show the stream-wise, span-wise and vertical coordinates respectively used in 

the description of experimental datasets. 
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Figure 4-1. The schematic layout of the laboratory flume and bed sediment materials (fine particles & 

immobile bed materials (natural sand and gravels) used in erosion experiments (top) and the control 

section and experimental setup (bottom) where E = erosion; D = deposition; qs= sediment load; Φ = 

gravel porosity; c = concentration; u=velocity; Zc= crest elevation; Zt= bottom of interfacial sublayer 

 

4.3.MEASUREMENT APPROACH  

4.3.1. Fine sediment erosion experimental setup  

The hydraulic conditions of the experiments are indicated in Table 4-1 where Run IX is selected to 

describe the method developed for erosion rate measurement. The erosion measurement is conducted in a 

control section (measurement section) of the flume at 7.8 m from the flume entrance where fully 

developed boundary layer is reached (Figure 4-1, top). The dimensions of the control section are 20.00 
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cm in span-wise and 12.20 cm in stream-wise directions as shown in Figure 4-1(bottom). The flume bed 

is initially filled with relatively uniform immobile gravel particles of median diameter (dg = 25.89 mm) 

with the standard deviation of bed surface elevations (σz) = 7.2 mm. Upstream and downstream of the 

control section natural sand materials (d50 = 1.25mm)  (black dots in Figure 4-1, bottom ), that are 

immobile, are filled in the roughness elements of the gravel bed up to the crest level (Zc in Figure 4-1, 

bottom) except in the test section where this was made below the bottom of the interfacial sublayer (Zt in 

Figure 4-1, bottom). The fine sediments (green dots in Figure 4-1, bottom) used in all experimental runs 

were Bakelite (phenol formaldehyde resin) particles of uniform grain size (ds = 425 µm and 500µm) 

crushed out of Bakelite plate whose specific gravity is 1.553. Bakelite particles are widely used materials 

for sediment transport experiment (e.g. Nnadi and Wilson, 1995; Nnadi and Wilson, 1992).  The mode of 

transport of the fine sediments was by suspension where u*/ws was larger than 1.0 (van Rijn, 1984a).  

Table 4-1. Hydraulic conditions of the experiment for erosion measurements 

Run I II III IV V VI VII VIII IX X 

ds (µm) 425         500 

w
s
 (m/s) 0.0232 0.0284 

H (m) 0.050 0.060 0.070 0.080 0.030 0.040 0.050 0.030 0.050 0.030 

So 0.0014 0.0014 0.0014 0.0014 0.0024 0.0024 0.0024 0.0034 0.0024 0.0034 

Fr 0.400 0.395 0.385 0.375 0.563 0.532 0.502 0.655 0.502 0.655 

Re 13990 16558 18958 20672 7971 11111 14066 9275 14066 9275 

B/H 8.00 6.67 5.71 5.00 13.33 10.00 8.00 13.33 8.000 13.333 

Q (l/s) 5.608 7.275 8.942 10.617 3.667 5.333 7.033 4.267 7.033 4.267 

U (m/s) 0.280 0.303 0.319 0.332 0.306 0.333 0.352 0.356 0.352 0.356 

u
*
 0.0251 0.0273 0.0294 0.0313 0.0257 0.0296 0.0329 0.0307 0.033 0.031 

k
s
 (mm) 7.31 9.12 11.72 15.00 3.22 5.62 9.08 3.66 9.077 3.661 

k
s

+

 183 248.94 344 469 82.9 166.1 299 112.2 299 112.2 

L
d
 (m) 1.69 2.02 2.31 2.57 1.08 1.37 1.62 1.05 1.618 1.054 

u*/ws
 1.080 1.176 1.264 1.347 1.107 1.273 1.418 1.320 1.160 1.079 

 

ds = median diameter of fine sediments (Bakelite particles); ws  = settling velocity (m/s); H = flow depth 

(m); So = gravel bed slope (m/m); Fr = U/√   = Froude number; Re = UH/ ν = Reynolds number; B/H = 

aspect ratio; Q = flow discharge; U = flow velocity (m/s); u* = shear velocity (m/s); k
s
 = equivalent 

roughness (mm); k
s

+

 = dimensionless Nikuradse sand equivalent roughness ; L
d
 = length of fully 

developed boundary layer (m); u*/w
s = suspension parameter. 

 

When shear velocity is higher than settling velocity suspended sediment transport is initiated (e.g. 

Bagnold, 1966; van Rijn, 1984a; Leeder et al., 2005). The fine sediments (Bakelite particles) were filled 

http://en.wikipedia.org/wiki/Phenol_formaldehyde_resin
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in the gravel matrix before running the experiment. Each experimental run was conducted under uniform 

flow condition where this was maintained by gradual and simultaneous adjustment of upstream valve for 

controlling inflow discharge and downstream gate level to control water level. Nevertheless, an additional 

amount of fine sediments were put above the crest level of the gravels up to two-third of the flow depth 

(Figure 4-3). By this it is possible to avoid erosion of the fine sediments from the gravel matrix before 

uniform flow condition is achieved. Each erosion measurement was conducted once the uniform flow 

condition is achieved and fine sediment level is above the gravel crest.  In Table 4-1, the dimensionless 

Nikuradse sand equivalent roughness k
s

+

= u*ks/ν shows that the present flows are in hydraulically rough 

condition (Nezu and Nakagawa, 1993). Equivalent roughness, ks is estimated based on stage-discharge 

measurements using Colebrook and White (1937) formula, where ν is the water kinematic viscosity. The 

aspect ratio (𝐵/  where 𝐵 is channel width) shows measurements can be classified as wide open channels 

(Nezu and Nakagawa, 1993). The shear velocity (𝑢*) is computed as: 𝑢* = √       where the hydraulic 

radius related to the bed (Rb) is calculated using the relation of Vanoni and Brooks (1957) as modified by 

Chiew and Parker (1994). The length of fully developed boundary layer is estimated by using Kirkgoz 

and  Ardichoglu  (1997) formula (e.g. Nikora et al. 1998) as shown in Table 4-1. Further, it is verified by 

measurements of vertical velocity profiles (acquired by UVP-Ultrasonic Doppler velocity profiler 

(Metflow, 2000)) taken at five selected sections from flume entrance (see Figure 4-2).  

 

Figure 4-2. Span-wise averaged stream-wise velocity profiles at selected sections along the flume   

 

The settling velocity of fine sediments is estimated by using Cheng (1997) formula: 
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where  , 𝐵 and   are coefficients which are given by   = 32.0 , 𝐵 = 1.0 and   = 1.5. The dimensionless 

particle diameter (  ) is given by:    = (𝜌𝑠−𝜌)gds /𝜌 2 where 𝜌𝑠 and 𝜌 are fine sediment and water 

densities. The experimental hydraulic conditions are selected to insure hydraulically rough flow (k
s

+

>70), 

subcritical flow (Fr < 1.0) and insure dominant mode of transport as suspension (u*/ws>1.0).  

 

Figure 4-3. Initial deposit of fine sediments filled in still water at the control section before the 

experiment is run 

4.3.2.  Set-up for the laser-line measurement technique 

The overall measurement principle involves laser light sheet, video camera and reflective mirror (Figure 

4-4). The method applies a single line laser sheet to enlighten a given longitudinal cross-section (shown in 

Figure 4-3 and Figure 4-4 in green). The trace of the laser line is imprinted onto digital images of a high 

speed video camera through the surface of the flowing water. A green laser line is used since it has better 

contrast with respect to the background fine sediment particles and was within the camera light sensitivity 

range. The laser module is a FLEXPOINT
® 

line laser type FP-53/4F-O30-HOM, wavelength 532nm with 

output power of 10mW and fan angle of 30
0
. FLEXPOINT

®
 line lasers have a Gaussian profile in that the 

power distribution along the line is extremely homogeneous.  

Water level 

Fine sediment deposit 

Mirror Reflected laser line  

Plexiglas 
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Figure 4-4. Set-up for the laser-line measuring technique for erosion rate. The green projected laser line 

on the gravel surface elevation shows a vertical plane (Plane 1) where fine sediment erosion is monitored. 

Another plane (Plane 2) was also selected for additional measurement which is discussed in later sections. 

The true shape of the laser line could be distorted by light refraction along air –water interface (Huang et 

al., 2010) and measurement of true bed morphology and flow depth in running water is problematic 

unless corrections for refraction are applied. To avoid such complexities images of the bed and the laser 

line in this experiment are captured by placing a transparent Plexiglas at the surface of the running water. 

The transparent Plexiglas was efficient to reduce the effect of surface turbulence and refraction on the true 
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shape of the captured laser lines.  The images are captured in video format from a mirror where the true 

reflection of the laser and the fine sediment bed were projected through the Plexiglas (see Figure 4-3 and 

Figure 4-4). Details of the use of the reflective mirror are presented in Section 4.3.3. The exact position of 

the laser line captures the rapid morphological evolution of the eroding fine sediments deposited in gravel 

matrix as a function of time. 

4.3.3. Principle of laser line measurement of erosion rate and bed evolution 

The principle behind the measurement of erosion rate by laser line is based on the assumption that the 

evolving shape of the laser line is a surrogate for bed evolution by sediment erosion. If there is no change 

in shape and position of the laser line in the image it shows that there is no erosion. Thus between any 

instant in time the shape changes can be reconstructed to estimate the depth of erosion along the projected 

laser line on the eroding bed. A series of digital images of laser line projected on immobile gravel bed 

filled with fine sediments was acquired during the experimental run until all the fine sediment materials 

were eroded. The position of the pixels of the images is indexed by two-dimensional column and row 

coordinates, L (c, r) where L = image. The laser line position and shape evolves depending on the vertical 

position of the fine sediments in the immobile gravel matrix. The displacement of the laser line between a 

pair of images taken at different instant of time indicates the depth of sediment that is eroded. To compute 

erosion rate the laser lines in image coordinates should be converted into fine sediment bed level by 

applying calibration factors and referencing to known elevation of the gravel surface elevation data. 

Therefore, the true vertical coordinate of the fine sediment bed level was thus computed based on known 

reference point in the image whose image coordinate is matched to the corresponding elevation value in 

the gravel surface elevation data (shown in Figure 4-4, top). In this manner all image coordinates along 

the laser line were assigned a true bed level (in mm) in reference to gravel surface elevation. Finally, the 

erosion (pick-up) rate (E, mm/s) of the fine sediments along the measurement section is calculated as the 

displacement in mean fine sediment bed level divided by the time interval between two acquisitions ∆t 

and corrected for porosity (e.g. Okayasu et al., 2011). The mean of fine sediment bed level along the 

entire measurement length was estimated by averaging the individual fine sediment bed levels along the 

length of the measurement section except in regions where the laser line and the gravel bed intersect. The 

estimation of E and bed evolution from the images involves pre-processing of the images and these 

include extracting centreline of the laser lines, calibrating the images and referencing the extracted data to 

true vertical coordinates (details are in Section 4.4 and Section 4.5).  
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4.4.IMAGE ACQUISITION AND PROCESSING 

4.4.1. Image characteristics  

The successive evolution of the shape and position of the laser line as erosion of the fine sediments 

progresses in the gravel matrix were recorded by a single colour camera in video format. A Sony DCR-

VX2000 DV charge-coupled device (CCD) video camera (hereafter SONY camera) that captures images 

at 25 frames per second (fps) and with a resolution of 768 x 576 pixels and Chameleon 1.3 MP Color 

USB 2.0  video camera (hereafter Chameleon camera) that captures 15 frames per second (fps) at a 

resolution of 1280 x 960 were used. The cameras are mounted on a tripod to view the sand filled bed 

reflected on a mirror (Figure 4-3) with no angle of inclination from the horizontal. The mirror is useful to 

enhance the vertical resolution of the measurement and exposure of the laser line in the gravel matrix 

which are not possible when the camera was positioned to capture the bed directly.  

 

Figure 4-5. RGB (top) and extracted green component (bottom) images of the projected laser line on 

gravel bed when the fine sediment bed level is negligible 

By adjusting the mirror in a vertical plane and moving it towards and away from the target as necessary 

enhances the exposure of the laser line in the gravel matrix. The videos were recorded in progressive 

mode in Mini DV cassettes using SONY camera but with Chameleon camera videos were recorded in 

AVI format.  During the imaging process the target background was kept dark and the video camera 

Reference point 

R1 

http://www.ptgreystore.com/chameleon-13-mp-color-usb-20
http://www.ptgreystore.com/chameleon-13-mp-color-usb-20
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shutter was made narrow so that the laser light is intensified and the background is suppressed. The video 

from Mini DV cassettes were extracted in uncompressed format by using Window Movie Maker
®
 to 

preserve the quality of the measurement. Finally image frames were extracted from the video in bitmap 

format using MATLAB
®
. Figure 4-5 (top) show one example of a colour image of the green laser line on 

gravel surface extracted from the video captured by SONY camera. Each of extracted colour images were 

coded as an MxNx3 array of intensity values for red, green and blue components.  In subsequent 

processing of the images the green laser component was enhanced by extracting the green band of the 

colour images (Figure 4-5, bottom). The images described in this chapter are for Run IX and are acquired 

by SONY camera. 

 

4.4.2.  Image calibration 

The images extracted from the videos were in pixel coordinates, L(c, r). The erosion rate as well as gravel 

surface elevation data should be quantified in mm. Since the measured erosion process was in in the 

gravel matrix as thick as the mean diameter of the gravel, accurate vertical scales within this region were 

essential. The conversion from pixels to mm is also a measure of the resolution of measurement. By 

adjusting the position of the mirror, the vertical resolution of the measurement was improved. It enabled 

to capture a single grain size of the eroding particles (fine sediments) by more than a pixel. Since each 

image was captured from mirror reflection of the target through the water and Plexiglas interface, images 

used for calibration were also taken under the same condition. The vertical scale is estimated based two 

images that capture a 10mm vertical shift of a calibration rod in the gravel matrix through running depth 

of water for which the erosion experiment was conducted (see Figure 4-6). The movement from P1 to P2 

was 28 pixels when estimated manually from the acquired images. Figure 4-6 show two images extracted 

from the video when the calibration rod was moved by 10mm from P1 to P2.  The length (dark solid lines 

in Figure 4-6) of the calibration rod (length of rod painted in blue) is 104 mm and the number of pixels 

along this length is 612. Thus, the vertical scale (Sv) and the horizontal scale (Sh) are 0.36 mm per pixel 

and 0.17 mm per pixel respectively. The vertical scale shows that a single fine sediment particle is 

represented by more than a pixel. 
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Figure 4-6. The images used for vertical and horizontal calibration 

 

4.4.3. Image pre-processing  

The detection of the exact position laser line in the images was one of the challenging tasks. This is 

mainly due to background noises, the effect of entrained particles moving through the laser sheet, the 

refraction due to the thickness of the Plexiglas, the hiding of laser line by the gravel particles and also low 

contrast of the laser line with respect the background immobile gravel bed (painted white) when the fine 

sediments level is below the gravel crest. Thus, pre-processing of the images was essential to detect and 

extract the position and the centreline of the laser line. To overcome these intrinsic problems 

systematically designed spatial filters and sampling procedures were developed.  In Figure 4-7 the 

developed image filtering procedures are presented and the details of each filter are described in sub-

sections. The arrows show each filter is tested for different values of filter parameters until the targeted 

noise removal at each step is achieved before moving to the next step.  

 

P2 

Rod length (104mm) 

P1 
Rod length (104mm) 
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Figure 4-7. The sequence of techniques applied in laser line extraction from raw images 

 

4.4.3.1. Adaptive Mean Filter  

First, an adaptive mean filter (AMF) with a user-defined mask was developed and applied (Equation 

(4-2)) (e.g. Sung et al., 2009). The mask in the filter is designed to reduce background noise, intensify the 

laser line and interpolate regions where there was no clear imprint of the laser line by using solely pixel 

values from the neighbouring laser line. Considering a  raw digital image L(c, r)  where  c = 1 to N and r 

= 1 to M,  Equation (4-2) is the mathematical description of  AMF, where  2n+1 and  2m+1  indicate the 

pixel number within the mask in x and y directions respectively.  

 

t+n h+m

c=t-n r=h-m
m

L(c,r)

L =
(2n+1)(2m+1)

 
 

(4-2) 

where L = the raw image intensity in the image coordinate (c, r), Lm =  the image that is intensified after 

adaptive mean filtering, t = n to (N-n), and  h = m  to (M-m) . 
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Figure 4-8.Unfiltered (top) and AMF filtered (bottom) images of laser line when fine sediment bed level 

is above gravel crest 

 

Figure 4-9. Unfiltered (top) and AMF filtered (bottom) images of laser line when fine sediment bed level 

is below gravel crest 
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AMF filter was used to remove unnecessary background noises and intensify relatively low-intensity 

pixels along the laser lines. The dimensions of the filter mask, n and m were selected based on the 

orientation of the laser line and the thickness (number of pixels a single laser line is imprinted) of the 

laser line in the raw image. The selection of   larger n = 13 along the laser line and an m = 5 value as large 

as the thickness of the laser line were found to be effective. Figure 4-8(top) and Figure 4-9(top) show the 

position of the laser line in the raw images and Figure 4-8 (bottom) and Figure 4-9 (bottom) show after 

the AMF filter was applied. 

 

4.4.3.2.  Morphological erosion filter  

A morphological erosion filter (EF) shrinks or thins objects in a grey scale image (e.g. Gonzalez et al., 

2004). In this type of filter the manner and extent of shrinking or thinning is controlled by the structuring 

element.  

 

 

Figure 4-10. EF filtered images of laser line when fine sediment bed level is above (top) and below 

(bottom) gravel 
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Mathematically a morphological erosion filter of L by structuring element S can be described in Equation 

(4-3) where S(x, y) for x = -X to X and y = -Y to Y and 2X and 2Y are dimensions of the filter mask.  

         ,   min L c x,  r y S x,  yefL c r    
 

(4-3) 

EF was applied to the mean filtered image (Lm) to remove the remaining background noises and to 

strengthen the intensity of the laser line. A square structuring element of size 9 x 9 was found to be 

effective. Figure 4-10 (top) and (bottom) show that the image intensity along the laser line is enhanced 

and the background noises are well reduced. 

4.4.3.3.  Morphological Top-Hat Filter  

A morphological top-hat filter (THF) is a commonly used for peak detection in image processing (e.g. 

Meyer, 1979).  

  

 

Figure 4-11. THF filtered images of laser line when fine sediment bed level is above (top) and below 

(bottom) gravel crest 

 

Reference point 
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Mathematically it is described as a function of erosion and dilation filters (Equation (4-4)). Dilation filter 

(DF) is obtained when the minimum is replaced by maximum in Equation (4-4). A top-hat filter preserves 

sharp peaks and eliminates other features, including image pixels with lesser contrast. 

            ,  c,  r  c,  r , x,  y , x,  ythfL c r L DF EF L S S 
 

(4-4) 

At the final stage of filtering, a THF with a square structuring element of size 9 x 9 was applied to AMF 

and EF filtered image (see Figure 4-11).  At this stage of pre-processing the laser line become thinner and 

converges to high intensity pixels (Figure 4-11) which allowed identifying the location of the centreline 

of the laser imprint in the raw image. 

4.4.4.  Extraction of laser centreline  

Despite the image filtering resulted in thinned laser line (see Figure 4-11) the centreline of the laser must 

be precisely extracted. The centreline is assumed to be the pixel with the highest pixel intensity. The peak 

intensity and its position was extracted using column by column search of maximum pixel intensity along 

columns taken across the laser line. The peak intensity is the maximum intensity along each column. The 

procedure was applied for entire columns of the image and the output is an image of the centreline of the 

laser line (Figure 4-12).  

 

Figure 4-12. The centre line of extracted laser lines when fine sediment bed level is above (top) and 

below (bottom) gravel crest 
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The extracted centre line of the laser line, following this procedure, in images of fine sediment bed (fine 

sediment bed level above gravel crest) and gravel bed is shown in Figure 4-12 (top and bottom 

respectively). The general procedure for the extraction of the laser line is summarized in the flow chart 

shown in Figure 4-7. Figure 4-13 shows the profiles of  pixel intensity taken across the laser line at each 

stage of image pre-processing  of an image acquired for fine sediment bed (left) and gravel bed (right). 

The profile plot in black line is the raw data while in red, blue and green are AMF, EF and THF filtered 

profiles respectively. The intensity profile of image containing the extracted laser line is plotted in black 

dashed line.  The figure shows that at each step the distribution of pixel intensity becomes narrower and 

narrower both in fine sediment bed and gravel bed showing the effectiveness of the filters under different 

surface conditions. Significant change in pixel intensity was noted when THF was applied.  

 

Figure 4-13. Profile of brightness intensity of pixels taken along image column at x = 232 pixels on fine 

sediment bed (left) and gravel bed (right) 

The accuracy of the extracted laser centreline is evaluated by computing the difference between the pixel 

coordinates, at selected sections across the laser line (in Figure 4-12), of peak intensity of the laser line of 

the raw image and image of the extracted centreline (the difference of the coordinates of the peak of 

intensity profiles in black and green in Figure 4-13).  Figure 4-14 and Figure 4-15 show the profile of 

pixel intensity taken across the laser line at selected sections in the raw image (in solid lines) and 

extracted laser line image (in broken lines). The accuracy is evaluated for condition when the fine 

sediment level is above gravel crest (fine sediment bed) (Figure 4-14) and when there is no fine sediment 

deposit (gravel bed) in the gravel (Figure 4-15).   
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Figure 4-14. Intensity profiles of image pixels across laser line (Figure 4-11, top) on the fine sediment bed 

surface at selected sections along x (solid & broken lines show profiles of pixel intensity of raw image & 

extracted centreline respectively)  

 

Figure 4-15. Intensity profiles of image pixels across the laser line (Figure 4-11, bottom) on gravel 

surface at selected sections along x (solid & broken lines show profiles of pixel intensity of raw image & 

extracted centreline respectively)  
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The actual position of the centreline of the laser line in the raw image of fine sediment covered bed is 

extracted with an accuracy of 1 - 2 pixels (0.36 - 0.72 mm) on average.  While the evaluation of the 

extraction of the centreline of laser line on the gravel surfaces showed slightly different result and the 

accuracy varied between 2-3 pixels (0.72-1.08 mm) on average. This is due to the fact that the laser lines 

in the raw image of gravel surface have equal peak intensities in more than one pixel across the laser line 

(solid lines in Figure 4-15). 

 

4.5. ESTIMATION OF FINE SEDIMENT BED LEVEL IN GRAVEL MATRIX 

The fine sediment bed level in the roughness elements is used to estimate erosion rate and to describe the 

reference fine sediment bed level for vertical profile of erosion rate. First, a series of grey scale images  

containing laser lines are extracted  from a video at time step (Δt)  = 0.24 seconds thus a total of 551 

images for a fine sediment bed level starting from  above the crest level of gravel  and within the 

interfacial sublayer of  gravel bed.  The images are selected in such a way that the first image is selected 

at time, t = 108 seconds (from the start of the experiment) when the position of the laser line is above the 

gravel crest and when there is no any net deposition. It is noticed that there is a net deposition in the 

region between 100 – 120 mm along x-direction for t = 0 to t = 20 seconds, t = 0 is the time at which the 

erosion experiment starts. The last image is selected at time, t = 240 seconds when there is no significant 

change in the position of the laser line (when it reaches the bottom of the interfacial sublayer).  Figure 

4-16 shows the extracted laser lines plotted in a single image and are used to estimate the fine sediment 

bed level along the laser lines.  

The fine sediment bed level is the position of the laser line and is only described in pixel-wise coordinates 

as shown in Figure 4-16. Therefore, the pixel coordinates with reference to gravel surface elevation data 

of the roughness elements has to be established. In this manner, the absolute (true) values are estimated 

based on gravel surface elevation data where a reference point R1 in the image coordinate is related to a 

known point whose elevation is known from measured surface elevation data of the gravels (Chapter 3, 

Figure 3-35). First, the image coordinate of R1, (Figure 4-5, top) is identified in the raw image. The 

elevation of R1 and the local crest of the gravel bed are known from the gravel surface elevation data (see 

Figure 4-4). The elevation at R1 is 65.08 mm and each image coordinate in y - direction of the laser lines 

is referenced to this value.  
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Figure 4-16. The positions of all laser lines (551) in image coordinate that are used to fine sediment bed 

level and erosion rates, Δt = 0.24s. 

Figure 4-17 shows the temporal evolution of fine sediment bed level of the fine sediment deposit above 

and in the gravel roughness elements estimated based on the position of laser line  positions extracted at 

Δt = 12 seconds for a duration of t = 0 -132 seconds. Figure 4-17 also shows that there is no any net 

deposition along the measurement section since no net increase in bed level is noticed. However, it is 

evident that the fine sediment bed level at the upstream end of the measurement section is lower than that 

of the level at the downstream section. This is due to the depletion of the fine sediment deposit at the 

upstream section by the water current coming from upstream before uniform flow condition is achieved.  

 

Figure 4-17. The temporal evolution of fine sediment bed level during the course of erosion (t = 0 - 132 

seconds, Δt = 12s) 

Thus the initial level of fine sediments along the measurement section is unequal when fine sediment bed 

level measurement commence.  Figure 4-18 shows the fine sediment bed level measured at a selected 

section (at 104mm in the control section) along Plane 1, Δt = 6.0s, as fine sediment erosion progresses. A 

sub-millimetre change in fine sediment bed level can be captured and measurements can be acquired up to 

a depth below the bottom of the interfacial sublayer. This shows that the method is very efficient to 

t = 0 
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monitor small changes in fine sediment bed level and acquire erosion rate with in the gravel roughness 

elements.    

 

Figure 4-18.  The temporal evolution of fine sediment bed level taken at section where length = 104 mm 

 

4.6.VALIDATION OF THE METHOD 

The accurate extraction of the laser line is essential to estimate the correct position of the fine sediment 

bed level within the roughness elements (gravel bed). Thus, it is important to verify whether the laser 

lines are precisely extracted and their positions are well reproduced with independent data. Gravel surface 

elevation data from the laser scanner (shown in Figure 3-35 and Figure 4-4) is available as an independent 

set of data whether elevation profiles of the laser line could reproduce the elevation variations among the 

roughness elements. Figure 4-19 shows the gravel surface elevation profile along Plane 1 extracted from 

the laser scanner gravel surface elevation data shown in Figure 4-4. A profile of the measurement section 

is extracted from image of the laser line taken when the fine sediment bed level in the roughness elements 

is negligible as shown in Figure 4-20. Estimating the vertical displacement between a known reference 

point R1 (blue line) (Figure 4-20) and laser line projected on the surface of the gravel roughness elements 

(Figure 4-20) enables estimating the gravel surface elevation along the measurement section (in blue box, 

Figure 4-19). In Figure 4-21 shows a horizontal line through R1, y = 111pixels is a reference line whose 

elevation is known (Z = 65.08mm) while the other line is the laser line extracted from the image shown in 

RGB (Figure 4-20). The elevation along the laser line in Figure 4-21 is computed by extracting the 
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vertical displacement between the reference line and the laser line. In Figure 4-22 an extracted vertical 

profile of laser scanned gravel surface elevation data (blue line) is compared with a vertical elevation 

profile extracted based on laser line method (black line). The root mean square error between the two 

profiles is 2.76mm. The laser line method captures very small details of gravel surface elevation profile 

due to high vertical and horizontal resolution. For instance, at x = 73 mm (x = 300 pixels) the depressions 

between two gravel particles are not captured by the laser scanner. However, the laser line method 

preserves small details that are not captured (e.g. depressions between gravels) by laser scanner profile.  

 

Figure 4-19. The 3-D view of laser scanned surface elevation profile of gravel along Plane 1 of the 

control section: Plane 2 is selected for additional fine sediment erosion measurements  

 

Figure 4-20. The image of projected laser line used to construct gravel surface elevation profile along 

Plane 1 
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Figure 4-21. The extracted laser line of gravel surface elevation following the procedures in Figure 4-7 

 

Figure 4-22. The comparison between surface elevation profiles by laser scanner and laser line method 

 

4.7. ESTIMATION OF DEPTH AND RATE OF EROSION  

4.7.1.  Estimation of depth of erosion in gravel roughness elements 

In order to estimate the depth of erosion, first, the mean of fine sediment bed levels in the measurement 

section (estimates at each pixel along the laser line) was estimated (Figure 4-16). The result is mean fine 

sediment bed level referenced to gravel surface elevations given in mm (Figure 4-23). The mean fine 

sediment bed level is computed only by averaging fine sediment bed levels (pixel values along the laser 

line) where progressive changes in fine sediment bed level were observed.  For instance, in situations 

when the laser line is below gravel crest averaging is done only in regions of fine sediment erosion thus 

regions of gravel protrusions are excluded in the averaging process. The regions of gravel surfaces along 

the laser line are identified using a simple approach. The image coordinates of the laser line along the 

gravel bed with no fine sediments is taken as a reference image (Figure B-3 and Figure B-4 in Appendix 
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B). If the difference in pixel coordinates along the laser lines of an image under consideration and the 

reference image is 0 or 1 or -1 that pixel is considered gravel surface. This procedure allows estimating 

the projected length of gravel and fine sediment bed along each laser line.  The total projected length of 

the laser line is 117.76 mm i.e. the projected length of the measurement section. Figure 4-28 (green 

circles) shows the proportion of projected length of fine sediment deposit plotted at each mean fine 

sediment bed level (∆t = 6.00 seconds), which is indirectly the measure of the proportion of void spaces 

among the gravel roughness elements.  

 

Figure 4-23. The temporal evolution of mean fine sediment bed level at different time steps for Δt = 0.24 

and 6.00 seconds  

The depth of erosion is estimated as the difference between pairs of mean fine sediment bed levels 

(shown in Figure 4-24) observed at  ‘t’ and ‘t + Δt’.  In Figure 4-24 computed depth of erosion based on 

mean sand elevation measured at Δt  = 0.24 (in green) seconds and Δt = 6 seconds (in black).  There is no 

any significant trend in the depth of erosion estimated from  data of mean fine sediment bed level for Δt= 

0.24s and it shows very irregular pattern even though mean fine sediment bed level shows a decreasing 

trend in time (see Figure 4-23). The time resolution, Δt = 0.24s, is too small to capture any significant 

change in mean fine sediment bed level and thus the actual signal can be obscured due to measurement 

accuracy which is in the range of 0.36-1.1 mm.  
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 Figure 4-24. The temporal evolution of depth of erosion estimated by using mean fine sediment bed level 

(black and green circles) and estimated based on exponentially fitted fine sediment bed level (broken line) 

  

Figure 4-25. The temporal evolution of cumulative depth of erosion estimated by using mean fine 

sediment bed level that shows the maximum depth of erosion 
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Theoretically the depth of erosion should decrease as the mean fine sediment bed level goes below the 

gravel crest. However, when mean fine sediment bed level sampled at Δt = 6s was used (shown in black 

circles Figure 4-24) the irregularity diminished and a clear decreasing trend of erosion depth is observed. 

Lest, some measurement details of the erosion depth may also be lost although assumed negligible in this 

case.  To avoid the irregularity of the estimated depth of erosion a realistic empirical relation can also be 

fitted to the measured mean fine sediment bed level.  However, finding a physically sound mathematical 

function is not very simple. An exponential function is widely used to predict the time evolution of scour 

phenomena at bed sills (e.g. Gaudio and Marion, 2003) which is a physical process that resembles the 

erosion of fine sediments in the present study.  

The cumulative or total depth of erosion is also calculated by summation of the estimated erosion depths.  

Figure 4-25 shows the total depth of erosion observed over time (t = 0 to 132 seconds) estimated from 

mean sand level data of Δt = 0.24 (in black) and Δt = 6.0 (in pink). It indicates the maximum depth of 

erosion at the end of the experimental run where no change in fine sediment bed level is noticed after t 

=100s. The total depth of erosion below gravel crest is Dmax = 19.45 mm (computed from t = 18 to 132 

seconds) which is somehow correlated well, although is a bit larger, with the thickness of the interfacial 

sub-layer, 17mm. 

4.7.2.  Estimation of erosion rate in gravel roughness elements 

The erosion rate (E, mm/s) is estimated as the ratio of the difference between a pair of mean fine sediment 

bed level (ΔZ) multiplied by (1- λ) where λ = sand porosity and the time step (Δt) which has to be 

described at a reference fine sediment bed level and is computed as the average of the pairs. This 

approach to estimate erosion or pickup rate is reliable (e.g. Okayasu et al., 2011).  In the present study, 

since the depth of erosion estimated based mean fine sediment bed level is scattered (Figure 4-24) , it is 

decided to  fit the mean sand level data with a mathematical relation before computing E.  An exponential 

function has been implemented after normalizing the mean fine sediment bed level by Zmin (minimum 

mean fine sediment bed level) and dg. The exponential function takes a form: z = ae
bt 

where 

*

min( ) gz Z Z d   and a (=1.06) and b (= -0.03).  Figure 4-26 shows the raw and fitted data of mean 

fine sediment bed level sampled at ∆t = 0.24s and 6.0s. The exponential function fits both datasets with 

large R
2
 = 0.98 thus capturing the temporal trend. The fitted data of ∆t = 6.0s is then used to estimate the 

erosion rate. Figure 4-24 shows the depth of erosion estimate based on raw experimental data (black 

circles) and fitted data (red circles) of mean fine sediment bed level. The plot with a broken line shows 

the depth of erosion estimated based on fitted data and captures the estimate form the raw data (black 
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circles).  The plot also shows that the depth of erosion decreases from starting above the gravel crest to 

the bottom of the interfacial sub-layer.  

 

Figure 4-26. The plot of experimental and exponentially fitted temporal evolution of mean fine sediment 

bed level data 

Figure 4-27 shows the vertical profile of erosion rate computed using raw (green) and fitted (yellow) 

mean fine sediment bed level. The erosion rate decreases from the gravel crest to the bottom of the 

interfacial sublayer linearly. Figure 4-28 shows the roughness geometric function Ф (z) (black diamonds) 

and the proportion of length of fine sediment deposit (green circles) at each mean fine sediment bed level. 

The decrease in the proportion of projected length of fine sediments follows the porosity profile until it 

reaches the bottom of the roughness layer. No change in the proportion of the projected length of the fine 

sediment deposit is noticed and remains at a value of 0.312 and Ф = 0.3243 (blue arrow in Figure 4-28). 

This shows that the proportion of the projected length of fine sediment deposit could predict the vertical 

profile of gravel porosity as well as the bottom of interfacial sublayer and can be considered alternative 

way of validating the measurement method.  Nevertheless, the spatial heterogeneity of porosity cannot be 

strictly predicted by this approach. In later sections, repeated measurement of erosion rate at another 

control section is presented. 
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Figure 4-27. The vertical profile of erosion rate, E in the interfacial layer of the gravel bed  

 

Figure 4-28. The proportion of the projected length of fine sediment deposit and bed porosity (roughness 

geometric function) computed at mean fine sediment bed level 
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4.7.3. Estimating spatially averaged Erosion Rate in gravel roughness elements 

In order to capture the spatial heterogeneity of erosion rate additional measurement of fine sediment 

erosion was conducted at Plane 2 at y = 37 mm, as large as 3dg away from Plane 1(see Figure 4-19 ). The 

measurement of erosion rate at Plane 2 is observed for duration of 32 seconds as the fine sediments 

depleted in very short period of time. The images are sampled every ∆t = 0.27 seconds and the mean fine 

sediment bed level is computed following procedures described for Plane1. The erosion depth calculated 

using mean fine sediment bed level data acquired at ∆t = 0.27 seconds showed no distinct trend as in the 

case of Plane 1. Thus, erosion rate is estimated based on exponentially fitted mean fine sediment bed level 

extracted every ∆t = 4.0 seconds where the exponential function fitted with coefficient of determination, 

R
2  

= 0.87. Figure 4-29 shows the experimental and the fitted data of mean fine sediment bed level where 

the exponential function takes a form: z = ae
bt 

where z = normalized mean fine sediment bed level and a 

(= 0.67) and b (= -0.1) are exponential coefficients.  

 

Figure 4-29. The plot of experimental and exponentially fitted temporal evolution of mean fine sediment 

bed level data (Plane 2) 

Figure 4-30 (in circles) shows the vertical profile of erosion rate measured along Plane 2 where there is a 

clear linear decrease in estimated erosion rate with depth. The spatially averaged erosion rate above and 

below gravel crest were estimated by averaging the vertical profiles of erosion rate measured along P1 

and P2 which correspond to the same mean fine sediment bed level. Figure 4-30 show the vertical profiles 
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of erosion rates measured at Plane 1, Plane 2 and the spatially averaged erosion profile estimated from 

fitted data of mean fines sediment bed level. The figure shows that high erosion rate is observed along 

Plane 2, both below and above gravel crest, which has relatively different gravel bed arrangement.   

 

Figure 4-30. Spatially averaged erosion rate in the interfacial layer of the gravel bed estimated based on 

fitted fine sediment bed level data 

 

4.8.CONCLUSIONS 

In this chapter results from a development of a new method to measure fine sediment erosion rate and bed 

evolution in laboratory experiment of suspended transport in immobile coarse bed are presented. The 

method applies single laser light sensor, video camera and reflective mirror. Erosion rate and bed 

evolution by non-equilibrium suspended transport can be measured with a resolution lower than the grain 

size of particles eroded from the bed. The important advantage is that the measurement method can be 

used to monitor rapid fine sediment erosion under running water that avoids stop and run approach 

common in laboratory measurements of bed evolution. The method also enables direct monitoring the rate 

of fine sediment erosion at various fine sediment bed level within the interfacial sublayer of the immobile 

roughness elements. The method can be of significant use to monitor rapid bed evolution such as dam-

break analysis at laboratory scale. Many studies focused on equilibrium transport of suspended sediment 
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where measurement of near bed sediment concentration is widely used to estimate erosion rate. The 

present method allows direct measurement of fine sediment erosion rate in immobile bed by suspended 

transport. The method is validated based on surface elevation data obtained by laser scanner and superior 

agreement was noted between laser scanner data and the proposed method. The present methodology can 

be used, at lowest cost, to collect accurate, non-intrusive and continuous measurements of bed evolution 

and fine sediment erosion rate. The use of multi-line laser sensors is expected to improve the estimation 

of, especially, spatially averaged rate of sediment erosion in immobile coarse bed conditions. The image 

processing procedures developed to extract the laser lines are very efficient for complex target surface 

geometry and could have application beyond the present study. The method can be easily applied for 

multi-line laser configurations which could improve the spatial coverage of measurements.  
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5. FINE SEDIMENT EROSION RATE AND DYNAMICS IN IMMOBILE 

GRAVEL BED: EXPERIMENTAL RESULTS 

Summary 

The transport of fine sediments in coarse immobile bed condition is a common phenomenon in many 

rivers under natural conditions and also downstream of dams during activities such as sediment flushing, 

dam removal and sediment bypassing. The entrainment, transport and deposition of fine sediments 

(suspended) in immobile coarse bed are very crucial for the stability of channel morphology and habitats 

of aquatic life. Thus, proper understanding of the dynamics of fine sediment erosion and entrainment in 

immobile coarse bed is essential for planning management activities. Particularly, the erosion or 

entrainment of fine sediments in non-equilibrium suspended transport condition is poorly understood 

although such transport conditions could often occur during sediment flushing operations. A series of 

experiments are conducted to characterize fine sediment erosion in immobile gravel bed in non-

equilibrium suspension transport. The results from erosion rate measurements are applied to describe 

profile of erosion rate and its spatial heterogeneity in immobile gravel bed. The effect of fine sediment 

level in the gravel roughness elements on fine sediment erosion rate and its relation with gravel bed flow 

structure is discussed. The erosion rate measurements are also used to develop a new relation for fine 

sediment erosion rate in immobile gravel bed to be used. The development of such relations is useful for 

the developing a numerical model to study fine sediment dynamics of sediment flushing. 

 

5.1. INTRODUCTION 

The transport of fine sediments in fluvial systems is an important component of the morphological and 

ecological states of many rivers. The largest components of total sediment transported by many rivers are 

fine sediments (Meade et al., 1990) and the supply of fine of sediments in rivers, especially in Alpine 

rivers, is even expected to increase significantly (Asselman et al., 2003). The transport of fine sediments 

is not limited only in alluvial rivers with sand beds but also in many of gravel and cobble bed rivers 

particularly in the form of suspension. For instance, in natural rivers such as mountain and Canyon Rivers 

whose bed consists of coarse bed (e.g. Wohl, 2000) that are transported in rare events and most of the 

sediments passing trough are fine sediments (Grams and Wilcock, 2014). Moreover, in many rivers the 

sediment load comprises largely fine sediments and a decrease in fine sediment supply relative to 

transport capacity could lead to parts of underlying bed substrate become exposed and transport occurs 

over a bed that consists partially of fine sediment and partially of large immobile particles (e.g. Kleinhans 

et al., 2002). During flushing operations, sediment-bypassing and dam removal large quantity of fine 
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grained sediments are also introduced downstream. In such occasions the  released fine sediments are also 

transported in the immobile coarse bed (e.g. Wren et al., 2011) since the channel bed downstream of dams 

are usually deprived of sediment supply and suffers from continuous erosion of the channel bed that 

leaves only coarser and immobile beds, which is often called an armoured bed (Kondolf, 1997). The 

transport, entrainment and deposition of fine sediments in immobile coarse bed such as gravel bed are 

also important for the stability of habitats and survival of aquatic species such as salmonid fisheries (e.g. 

Nelson et al., 1987; Lisle and Lewis, 1992). Therefore, there is a need, for better understanding of fine 

sediment transport processes in immobile bed and relations that could be implemented in numerical 

models to predict fine sediment transport in coarse immobile beds.  Many of existing relations and  

theories of fine sediment transport are developed for conditions in which the bed material and the 

transported load are the same which are not usually applicable and cannot be easily transferable to cases 

where fine sediments are transported in coarse immobile beds (e.g. Grams and Wilcock, 2013). In recent 

years few studies have been reported that focused on understanding the flow hydrodynamics and transport 

processes in immobile coarse beds (e.g. Kuhnle et al., 2013; Grams and Wilcock, 2007; Grams and 

Wilcock, 2013; Wren et al., 2014; Wren et al., 2011). However, the dynamics of fine sediment erosion 

and entrainment in immobile coarse bed yet lack full understanding and need detailed studies. 

Particularly, the erosion or entrainment of fine sediments in non-equilibrium suspended transport 

condition is poorly understood although such transport conditions could often occur during sediment 

flushing operations. The main aims in this study are to describe series of laboratory experiments that were 

conducted to investigate non-equilibrium fine sediment erosion rate in immobile gravel bed and develop a 

pick-up type erosion rate formula from the experimental datasets and analysis of flow characteristics in 

gravel bed. 

5.2.THEORY OF FINE SEDIMENT EROSION/ENTRAINMENT 

The mechanism of fine sediment erosion, entrainment and transport in immobile coarse beds such as 

gravels  has become  a subject of study in the last few years  (e.g. Grams and Wilcock, 2007; Pellachini, 

2011).  The entrainment of non-cohesive fine sediments in immobile coarse bed depends on the surface 

exposure of the fine sediments in the coarse bed (Grams and Wilcock, 2007; 2014), fraction (availability 

or abundance) of the fine sediments in the bed (Einstein and Chien ,1953;Grams and Wilcock, 2007; 

2014), the elevation of the fine sediment layer relative to the elevation of the coarse immobile bed (Garcia 

and Parker, 1991; Grams and Wilcock, 2007, 2014), and the interactions of the flow, the fine sediments 

and the immobile coarse grains in the variable roughness bed (Kuhnle et al. 2013). In very recent works 

(e.g. Pellachini, 2011; Khunle et al., 2013 ; Wren et al., 2014)  it is shown that the surface exposure of  

the fine sediments and the effective shear stress at a given sand elevation  in the immobile bed roughness 
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elements could be scaled with its bed porosity.  Figure 5-1 shows the different complex processes that 

derive fine sediment entrainment in immobile bed.  

  

Figure 5-1. Drivers of fine sediment transport and entrainment in coarse immobile bed 

In general, it is believed that, the entrainment (erosion) and transport of the fine sediments in the 

interstices of immobile coarse bed could be affected by two contrasting processes. While the fine 

sediments in the interstices of the gravel may be shielded from the shear stress of the flow (e.g. Kuhnle et 

al., 2013; Garcia and Parker, 1991), the local perturbations of the flow caused by the immobile gravel bed 

may also increase the shear stress on the interstitial fine sediments (e.g. Grams and Wilcock, 2007). On 

the one hand, the sand elevation with respect to the immobile coarse bed could reduce the entrainment or 

erosion rate by hiding effect exerted by the coarse immobile bed (e.g. Garcia and Parker, 1991). On the 

other hand, the turbulent wakes shed by the large coarse immobile bed could enhance local scour causing 

erosion of the fine sediments when flow separation occurs over the roughness elements. For instance, 

Nickling and McKenna Neuman (1995) reported enhanced entrainment in wind-tunnel experiments 

involving the emergence of large roughness elements in a deflating sand bed.  The elevated transport rate 

was evident when the roughness elements were initially exposed and increased turbulence by emerging 

surface roughness.  However, as the sand bed elevation continued to decrease a rapid transition from 

enhanced transport to extremely low transport rates was observed since all of the available bed shear 

stress was consumed by form drag on the bed roughness elements. Similar phenomena are reported in 
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open channel flows where emerging immobile bed roughness exert form drag that could result in 

reduction of shear stress available for fine sediment entrainment or erosion (e.g. Kuhnle et al., 2013; 

Wren et al., 2014; Papanicolaou et al., 2011). 

5.3.FLOW CHARACTERISTICS IN GRAVEL BED  

The flow structure in immobile rough bed is very important in modulating the entrainment and transport 

of fine sediments (Sambrook and Smith, 2005; Papanicolaeou et al.2011; Wren et al., 2011), mainly due 

to spatial variability of flow characteristics in near bed region and also due to secondary currents created 

by immobile obstacles (e.g. Nezu and Nakagawa, 1993). The turbulent bursting phenomenon is one of the 

factors that control sediment entrainment and the frequency of occurrence and magnitude of such events 

depends on the spatial organization of the roughness elements (Papanicolaou et al., 2001). Moreover, the 

erosion and transport of fine sediments in immobile gravel bed is further complicated by continuous  

modification  of the  bed geometry  by the fine sediments in interstices of  the immobile bed that 

eventually affect  the flow structure and shear stress distribution (e.g. Kuhnle et al., 2013; Wren et al., 

2011;Sambrook-Smith and Nicholas, 2005). The total drag force by the roughness elements controls the 

shear available for sediment erosion in the interstices of the roughness elements. Thus, as a first step, 

characterizing the shear stress profile in immobile clean gravel bed is essential to conceptualize the shear 

stress available for fine sediments below gravel crest. In this section, the theory of bed shear stress 

distribution and geometric properties of the roughness elements in gravel bed flow are discussed and 

some experimental datasets are presented and analysed to relate its implication for fine sediment erosion 

and transport.  A case of two dimensional, steady, uniform and turbulent open channel flow conditions in 

immobile gravel bed is considered.  For these flow conditions, the double averaged momentum equation 

in the stream-wise direction is given as (e.g. Nikora et al., 2007): 
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τt (z) = total fluid shear stress; and fd (z) = total form drag force exerted on a unit fluid volume (dVf= 

ΦdV0) by gravel roughness elements (or by the fluid exerts on individual roughness elements) within the 

averaging domain; p = fluid pressure; and nx is the unit vector normal to the surface S of the section of 

bed described by the area of the averaging domain (Ao). The total fluid shear stress comprises three 

components: viscous, turbulent, and form-induced (or dispersive) stresses respectively as in Equation 

(5-2). The form induced stresses are small at greater distance from the bed and increase slightly toward 

gravel crests (Aberle et al., 2008). The total drag force is zero above gravel crest and can be approximated 

by only the drag due to pressure forces considering the viscous forces negligible or very small. Equation 

(5-3) can be described by flow parameters and roughness element geometric characteristics in the 

interfacial sublayer.  The net pressure drag force, dFd, acting on the thin section of roughness elements of 

the total width W and thickness dz within the averaging domain at the vertical coordinate z can be 

described by using a conventional quadratic drag parameterization  as dFd= 0.5ρCdWdz
2

u (Nikora et al., 

2004). Thus drag force per unit fluid volume is given as: 
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(5-4) 

 

 

where Fd = total drag force per unit area; CD = drag coefficient depending on the roughness elements 

shape, density, and spatial arrangements; u  = double averaged flow velocity; Wdz = total frontal area 

of all the roughness elements intersected by the thin section within the averaging domain; and a = 

Wdz/Afdz = Wdz/ΦAodz  = local roughness density (i.e., roughness frontal area per fluid volume); Af = 

fluid area of the averaging domain. The double averaged flow velocity distribution in interfacial sub-layer 

of gravel bed flow is known to be approximately linear profile (e.g. Mignot et al., 2009; Nikora et al., 

2001, 2004a)  and  a polynomial profile is also reported (e.g. Dey and Das, 2012). Experimental datasets 

showed that the roughness density can be described as a function of roughness geometric function (bed 

porosity) and mean diameter of roughness elements and increases exponentially from top to bottom of  

interfacial sub-layer (see in Chapter 3). 
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The integration of Equation (5-1), neglecting viscous shear stress, gives the longitudinal total shear stress 

distribution as (e.g. McLean and Nikora, 2006; Nikora et al., 2001): 
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(5-5) 

 

 

It is evident from Equation (5-5) that, in clean gravel bed, the available effective shear stress in the 

interstices of the roughness elements can be estimated from momentum supply if the drag force (Fd) is 

known and this assumption can be applied in immobile gravel bed with fine sediments which erode 

rapidly by suspended transport. 

 

 

Figure 5-2. Conceptual diagram of momentum supply and fine sediment (black dots) erosion in immobile 

gravel bed 
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Figure 5-2 shows a conceptual diagram of longitudinal momentum supply between any z to free surface 

(zw) (blue line), distribution of total shear stress, vertical profile of porosity Φ (roughness geometric 

function) and fine sediment deposition in coarse bed where  η  = fine sediment bed level below gravel 

crest  and ζ = thickness of interfacial sub-layer. In the interfacial sublayer (zt < z < zc ) the momentum 

supply is partially absorbed by the drag and partially transferred by the fluid shear stress (dashed blue 

line) where the momentum supply at the gravel crest is denoted by τ0 = ρgHSo. The shear stress 

responsible for fine sediment entrainment below gravel crest, τt (z), generally decreases from the top to 

the bottom of the interfacial sublayer (Figure 5-2).  In contrast the total drag force (Fd) increases within 

the interfacial sublayer with little total shear stress left to entrain fine sediments from the coarse bed. 

 

In this study the profiles of drag force (Fd) in the interfacial sublayer of clean immobile bed from 

experiments reported by Mohajeri (2014), Mignot et al. (2009) and Dey and Das (2012) are analysed. The 

aim is to characterize Fd based on experimental evidences and to scale shear stress in the interfacial 

sublayer. The reductions in bed shear stress are directly related to momentum sink by the drag force 

induced by roughness elements below gravel crests.  Figure 5-3  shows the distribution of observed fluid 

shear stress, τt (z), and estimated total drag force, Fd (z), within the interfacial sublayer of gravel bed of the 

three experiments.  The total drag force is estimated taking the difference between the momentum supply 

and total fluid shear stresses. The shear stress generally shows a decreasing trend while the total drag 

increases and reaches to a point where it exhibits a relatively very gradual decrease and this is evident in 

the data of Mignot et al. (2009). It is worth nothing that the data points of the three experiments for shear 

stresses, in the interfacial sublayer, do not collapse but that of the total drag force do well (Figure 5-3, 

broken line). Moreover, despite a linear decrease in the vertical distribution of flow velocity (Figure C-8, 

Appendix C) in the interfacial sublayer the total drag force increases which shows that the roughness 

density partly derives the increasing pattern of the drag force.  This study attempted to test the 

relationship between dimensionless drag force and the corresponding dimensionless roughness density for 

the three experimental runs (Figure 5-4). 
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Figure 5-3. Dimensionless shear stress (top) and total drag force (bottom) distribution in roughness layer 

estimated from experimental data 
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Figure 5-4. The relationship between dimensionless drag force and dimensionless roughness density 

below gravel crest for datasets of clean bed experiments of published research 

 

It shows that most of the experimental data points of the three experiments collapse and thus it can be 

argued that a single empirical relationship can be used to scale the drag force. Thus, an empirical relation 

of the form shown in Equation (5-6), where co and c1 are empirical coefficients, is obtained to be 

appropriate to scale the drag profile and by this the shear stress distribution. The broken solid line is the 

empirically fitted dimensionless drag force where the empirical coefficients are: co = 1.014 and c1 = -1.20. 
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The effective shear stress, τe, available (for sediment entrainment) below gravel crest will be the 

difference between momentum supply minus total drag force, described by Equation (5-7), thus, given by: 
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Figure 5-5. Drag force per unit volume (top) and drag coefficient (bottom) in interfacial sublayer   
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The drag coefficient (CD) profile in the interfacial sublayer is also computed by solving Equation (5-4) 

since the total drag force, velocity profile (see Figure C-8, Appendix C) and roughness density (see 

Chapter 3) are known and obtained from the three experiments. First, the drag force per unit volume is 

computed and then the drag coefficient is estimated. Figure 5-5 (top) shows that the vertical profile of fd, 

drag force per unit volume (not per fluid volume), shows decreasing trend and the estimates of each 

experiments collapse (along broken line) when made dimensionless (using horizontal length scale, d50  and 

ρu*
2
).  The CD also increases in the interfacial sublayer and most of the estimated values are within the 

experimental ranges of CD estimated for rough beds (e.g. Schmeeckle et al., 2007). It is worth to 

recognize that the increasing pattern in drag force in the interfacial sublayer is not influenced by the 

decreasing trend of velocity profile and rather is related to the increase in the roughness density and CD. 

 

Figure 5-6. The relationship between fluid shear stress and bed porosity, Φ in interfacial sublayer 

Figure 5-6 shows there is no unique relationship between porosity and fluid shear stress, in all the three 

experiments, although the dimensionless shear stress shows a linear increases with an increase in bed 

porosity. It is also worth to note that the relationship between shear stress and bed porosity seems to be 
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different from one experiment to another while the relationship between drag force and roughness density 

does not vary in the region of the interfacial sublayer. This shows that dimensionless drag force 

distribution from different experiments can be described by a single empirical equation.  

 

5.4. SPATIAL CHARACTERISTICS OF FINE SEDIMENT EROSION  

The hydrodynamics of gravel bed flows are strongly influenced by the spatial heterogeneity of the bed 

topography caused by spatial arrangement and orientations of gravel particles (Sarkar and Dey, 2010; 

Papanicolaou et al., 2001; Nikora et al., 2004).  The spatial heterogeneity of the bed topography results in 

spatial heterogeneity in the flow quantities such as shear stress, flow velocity, and turbulent intensity, 

which control the transport of fine sediments in-among the roughness elements and/or in the interfacial 

sublayer. The heterogeneity in turbulence structure and characteristics could lead to heterogeneity in 

entrainment or erosion of fine sediments from gravel roughness elements.  Here the spatial pattern of the 

vertical profile of erosion rate is investigated based on experimental datasets of Run IX to understand the 

spatial heterogeneity of erosion rate and its relation with the bed configurations of the roughness 

elements. In order to capture the spatial heterogeneity of erosion rate measurements were conducted along 

two planes (Plane 1 and 2).The vertical profiles of erosion rate are extracted at the stoss and lee side of 

the roughness elements at Plane1 and Plane 2. Figure 5-7 shows the sections (blue lines) at which the 

erosion profiles are extracted.  In Figure 5-8 the temporal evolution of fine sediment bed level (left) and 

the estimates of the vertical profile of erosion rates (right) at C1 (stoss), C2 (lee) and C3 (stoss) of Plane 1 

are plotted. In similar manner Figure 5-9  shows the temporal evolution of fine sediment bed  level (left) 

and the estimates of the vertical profile of erosion rates (right) at C4 (stoss), C5 (intermediate), C6 (lee) 

and C7 (stoss) of Plane 2.  The erosion rate in the roughness layer at the stoss side (C1, C3, C4 and C7) of 

the gravel particles is generally larger in both cases (Plane1 and Plane 2) than the estimates at the lee side 

(C2 and C6). The estimates of erosion rate between closely packed gravel particles (C5) shows larger 

erosion rate than the lee side.  
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Figure 5-7. Sections (Plane 1 and Plane 2) at which erosion profiles are estimated for evaluation of spatial 

heterogeneity   

   

Figure 5-8. Temporal evolution of fine sediment bed level (fitted data in broken lines) (left) and erosion 

profiles (right) extracted at Plane 1 along the sections in Figure 5-7 (top) 

C1 C2 C3 

C4 C5 C6 C7 
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Figure 5-9. Temporal evolution of fine sediment bed level (fitted data in broken lines) (left) and erosion 

profiles extracted at Plane 2 along the sections in Figure 5-7 (bottom) 

Previously published research shows that near-bed flow structure is affected by bed topography (Sarkar 

and Dey, 2010; Papanicolaou et al., 2001; Sambrook Smith and Nicholas, 2005). This is dictated by the 

high proportion of upward flow that occurs in the stoss side while downward flow that occurs in the lee 

side.  Mohajeri (2014) showed that sweep events are particularly common at downstream side of gravel 

crests (lee), while at upstream side of gravels (stoss) ejection events. Thus, the occurrence of upward flow 

in stoss side and downward flow in the lee side of gravels tend to entrain sediments from the lee side thus 

increasing the erosion rate in the vicinity while sweep dominated areas such as the lee side will have 

lesser erosion rate. Keshavarzi et al. (2012) reported similar observation in sand ripple experiments where 

they observed more entrainment in the upstream and more deposition in downstream side of sand ripples 

based on measurement of the number of particles deposited and entrained. They reported that the 

entrainment and deposition characteristics were well correlated with the probability of occurrence of 

sweep and ejection events along the ripple. On the other hand, as the fine sediment bed level in roughness 

elements decreases the duration of high-magnitude turbulent events increases at the stoss side and the 

peak of the roughness elements and the effect is less substantial in gap between roughness elements 

(Sambrook Smith and Nicholas, 2005). This phenomenon may also lead accelerated erosion rate in the 

stoss side.  

5.5.THE EFFECT OF GRAVEL BED ROUGHNESS ON EROSION RATE 

For the purpose of investigating the effect of changes in the roughness of gravel bed roughness on erosion 

of the fine sediments, the immobile sand (natural) bed level (coverage) in the immobile grave bed 

upstream and downstream of the experimental control section was reduced manually. 
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Figure 5-10. The photo of the gravel bed upstream of the control section for full (left) and partial sand 

cover (right) conditions 

 

 Figure 5-11. Roughness geometric function along measurement planes (P1 and P2) for full and reduced 

sand level (cover) over a total length of 40cm  

 

Flow 
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The immobile sand particles coverage and level was reduced mechanically using a vacuum cleaner by a 

few millimetres (~10 mm) for a length on average 1.5 m upstream and 0.5 m downstream of the control 

section. This allows studying the effect of changes in equivalent roughness height on the rate of erosion of 

fine sediments in the gravel matrix. The immobile sand level is reduced for a length of 1.5 m upstream to 

reach enough length of flow to adapt to the local bed roughness as sand is filled from the inlet of the 

flume down to the control section. Figure 5-10 shows the images of the part of gravel bed upstream of the 

control section taken before (left) and after (right) sand level is reduced. Figure 5-11 shows the roughness 

geometric function calculated for surface elevation of gravel along Plane 1 (left) and Plane 2 (right) 

before and after (shaded) sand level is reduced. The total length, along which the surface elevation profile 

is extracted, was 40cm with 25cm upstream and 13.2cm downstream of the control section. The standard 

deviation of elevation (σz) of the gravel surface elevation which is a measure of vertical roughness length 

scale along Plane 2 before and after sand bed level reduction is 5.72 mm and 6.97 mm respectively. For 

Plane 1 σz is 7.9 mm and there is no significant change when sand level is reduced. Nevertheless, as 

shown in Figure 5-11, when sand bed level is reduced more void spaces are observed for elevation larger 

than -15mm along Plane 1 while it is below gravel crest for Plane 2, thus increasing the roughness at the 

bed.  

The characteristics of flow velocity in response to changes in equivalent roughness height (due to 

reduction in immobile sand from the gravel matrix) of the immobile gravel bed are investigated. The 

vertical profiles of stream-wise velocity were measured (using UVP) before and after the immobile sand 

fill were reduced in the gravel matrix. The velocity measurements were conducted at six verticals in span-

wise direction with spacing between the verticals set 42 mm, the first and last verticals are 92 mm from 

the flume wall. Three measurement sections in the stream-wise direction are selected which are at 6.11, 

6.36 and 6.61 m from the flume entrance. The velocity profiles are measured for flow depth, h = 0.05m, 

discharge, Q = 5.6 l/s, bed slope, So = 0.0014.  Figure 5-12 shows the span-wise averaged velocity 

profiles at the three cross-sections (circle, diamond and square markers) for full sand (shaded plots) and 

partial sand (unshaded plots) conditions. As the sand level reduces the flow resistance increases and there 

is a general trend in which the velocity measured at each flow depth is slightly less than full sand cover 

condition at all measurement sections (Figure 5-12).  
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Figure 5-12. The span-wise averaged velocity profiles at the selected sections where shaded plots are for 

full sand cover condition 

In Figure 5-13 the spatially averaged velocity (average of the three measurement sections) profiles for 

partial and full sand cover is indicated. It shows that the velocity profile along the flow depth for partial 

sand cover condition is lower compared to full sand cover. In Figure 5-14 the percentage reduction, 

compared to full sand condition, in velocity at each flow depth is plotted. It clearly indicates that the 

difference is very small (3.0 - 5.0 %) near the bed (z/h < 0.1) and near free water surface (z/h > 0.3) with 

the largest (7.0 %) difference observed at z/h = 0.2. Since the percentage reduction, in general, is 

relatively small, i.e., 3.0 - 7.0 %, it shows that the effect of the reduction in the sand level, in this 

experiment, on the velocity profile is not very significant.  Wren et al. (2011) conducted measurement of 

velocity profiles for incremental sand level in gravel bed (relative submergence,  h/dg = 6) and observed 

stream-wise velocity was insensitive and there was no clear trend for the ranges of roughness  

investigated despite they observed increment in Reynolds shear stress profile as the sand level reduced. In 

other study Sambrook Smith and Nicholas (2005) conducted experiment on the effect of sand addition to 

roughness elements on coherent structures and they observed a general trend of  increment in near bed 

stream-wise velocity  as the sand fill in effective roughness increases. 



                                             

135                                                                                                                                                 CHAPTER 5 
 

   

 

Figure 5-13 . The spatially averaged (of 3 sections) velocity profiles for full and partial sand cover 

conditions 

 

Figure 5-14. Percentage reduction in spatially averaged velocity due to reduction in sand level (cover) 
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A near constant velocity in near bed region (Figure 5-15)  is observed for both partial and full sand 

condition and this might be due to occurrence of larger scales of turbulence that are able to mix the near ‐ 

bed region, creating a zone of near constant velocity. The regions of near constant velocity is observed for 

z/h < 0.031 which shows similarity with Grams and Wilcock (2007) experiment for h/dg = 4. Wren et al. 

(2011) showed that such near constant velocity region was not observed for large relative submergence 

(e.g. h/dg = 6) as there is small scale roughness in such flow conditions. 

 

Figure 5-15. Profiles of normalized spatially averaged stream-wise velocity for partial and full sand cover 

conditions 

Although changes in sand coverage observed to affect spatially averaged velocity profile slightly, the 

effect on estimated erosion rate is worth explanation. Figure 5-16  (top) shows the vertical profile of 

erosion rate of fine sediments in the control section for partial and full sand cover condition at Plane 1.  

There is generally larger erosion rate in the interfacial sub-layer for partial sand cover (increase in 

immobile bed roughness). As shown in Figure 5-16  (bottom) the reduction in sand level (increase in 

immobile bed roughness) has significant effect on erosion rate of fine sediments near the last one-third of 

the interfacial sub-layer, up to 1.5-2.0 fold increase in erosion rate at Plane 1 where EPS and EFS denote 

erosion rate for partial sand and full sand conditions respectively.  
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Figure 5-16. Effect of sand level (cover) on estimated vertical profile of erosion rate (Plane 1): erosion 

rate (top) and ratio of erosion rate (bottom) under partial to full sand condition  
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Near the gravel crest, upper two third of the roughness layer of  Plane 1, the increase in erosion rate of 

fine sediments due to sand level reduction, is in the range of 1.4-1.45 folds. When the sand level 

decreases in the gravel bed upstream and downstream of the control section the effective roughness of the 

gravel bed increases. This results in increased turbulent intensity, Reynolds shear stress and increment in 

total duration of high magnitude turbulent events (Sambrook Smith and Nicholas, 2005) that could lead to 

increased sediment entrainment. 

 

5.6. DEVELOPMENT OF EROSION RATE FORMULATION  

5.6.1. Theoretical background 

The component of turbulent flux of suspended sediments near a flat and erodible bed that is directed 

upward normal to the bed is often termed as rate of erosion or more accurately, entrainment of bed into 

suspension per unit bed area per unit time (Garcia, 2008). It is described as a function of turbulent 

fluctuations of concentration and vertical flow velocity averaged over turbulence (Garcia, 2008) since it is 

predominantly controlled by turbulent bursting (Sutherland, 1967). The determination of the entrainment 

flux is one of the pivotal components of modelling suspended sediment transport and morphological 

evolution (Celik and Rodi, 1988; Cao et al., 2004). In equilibrium steady uniform suspension, there is 

neither net erosion nor deposition from the bed, the dimensionless rate of entrainment (volume of 

entrained sediment per unit bed area per unit time) can be assumed equal to near bed sediment 

concentration or rate of deposition is equal to the rate of erosion or entrainment (Parker, 1978). This 

assumption has been fundamental basis for development of many erosion/entrainment relations although 

not applicable for non-equilibrium conditions. In steady flow and non-equilibrium transport condition, the 

sediment entrainment and deposition are rather considered independent processes (van Rijn, 1984b).  

 

There are many empirical and semi-empirical formulations have been developed to predict the 

entrainment rate of fine sediments in uniform grained sand beds (e.g. Garcia and Parker, 1991; van Rijn, 

1984a; Cao, 1999; Celik and Rodi, 1988; Zyserman and Fredsoe, 1994; Smith and McLean, 1977).  Most 

of these models are developed empirically based on measurement of near bed sediment concentrations 

under equilibrium suspended sediment transport conditions conducted in laboratory flumes. These 

entrainment models are widely used in suspended sediment transport modelling from small scale to large 

scale modelling applications (e.g. van Rijn, 1984a; Smith and McLean, 1977; Zyserman and Fredsoe, 

1994) where bed sediments are similar to particles in suspension. van Rijn (1984b) developed a pick-up  

(erosion)  rate formula for  non-equilibrium transport conditions that was valid for particle size ranges of 
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130-1500μm. It was found to be a reliable relation to predict fine sediment transport in rapid 

morphological evolutions (e.g. dam break) characterised by non-equilibrium transport (e.g. Iervolino et 

al., 2010). van Rijn (1984b) can also be used for unsteady flow conditions (e.g. Nielson, 1992). It can be 

argued that quite many entrainment or erosion rate formulations exist which offer alternatives for 

modelling transport of suspension in erodible fine sediment bed. Nevertheless, modelling suspension 

transport of fine sediments in immobile bed conditions has rather been more complicated. There are 

limited studies that have been conducted to predict fine sediment entrainment, erosion and transport rates 

in immobile coarse beds (e.g. Grams and Wilcock, 2007; Grams and Wilcock, 2007; Kuhnle et al., 2013; 

Grams and Wilcock, 2013; Wren et al., 2014).   

 

There are only few studies that developed relations to predict fine sediment entrainment from immobile 

coarse bed although their limitations are yet to be tested.  Grams and Wilcock (2007) developed a logistic 

function that corrects fine sediment entrainment rate of sand bed (Garcia and Parker, 1991) to predict 

entrainment rate for sand bed level in immobile coarse bed. The function is developed empirically by 

fitting an empirical relation to the data of the ratio of observed near bed sediment concentration for 

selected sand bed level in immobile bed to the entrainment rate by Garcia and Parker (1991). The 

immobile coarse bed used in the experiment was hemispheres of uniform diameters (10 cm) with cubical 

arrangements. The function applies no correction for sand bed level as large as half of the radius and this 

may lead to over-estimation of the entrainment (e.g. Kuhnle et al., 2013).  Kuhnle et al. (2013) and Wren 

et al. (2014) developed empirical relations that predicted the total transport rate of fine sands (mainly bed 

load) in immobile gravel bed and cobble bed respectively. The sand transport rate was predicted as a 

function of effective shear stress, sand bed elevation and bed porosity profile of gravel or cobble. The 

same relationship between bed shear stress, sand elevation (level), and sand transport rate was found to be 

valid for both gravel and cobble experiments. They scaled total bed shear stress by a porosity profile to 

estimate effective shear stress below gravel crest which is a crucial assumption which has to be verified. 

Since their relationships are developed for total fine sediment transport their application for suspended 

transport prediction is limited. Cui et al. (2008) proposed a simple roughness and partial sand coverage 

correction to adjust sand transport rate relation by Brownlie (1982) for immobile bed condition. Since the 

relation calculates transport rate based on bed roughness of sand particles the roughness has to be 

corrected for transport over gravel the bed, which has higher roughness. In this manner the correction for 

roughness is introduced to adjust the overall roughness and partitioning the shear stress into that exerted 

on roughness elements of the immobile bed and that exerted for fine sediment transport. Moreover, since 

the relation was also developed for full sand bed condition a correction has to be applied when sand layer 

is thin enough exposing gravels.  The corrections for bed roughness and partial sand coverage are 
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described as a function of roughness height of clean gravel bed (twice the mean diameter), roughness 

height of sand bed (twice the mean diameter) and thickness of sand deposit. The corrections are found to 

improve model prediction of sand pulse releases of dam removal (e.g. Cui et al., 2008; Stillwater Science, 

2002). Despite few studies of fine sediment erosion or entrainment in immobile coarse bed, relations that 

could be useful to predict erosion rate in non-equilibrium and unsteady flow conditions remains lacking.   

Therefore, experimental studies that are conducted in non-equilibrium conditions would be very useful.   

In the following sections the experimental datasets are presented and are described and an alternative 

entrainment formulation is devised based on aforementioned theoretical backgrounds.  

5.6.2. Description of vertical erosion profiles from experiments 

As shown in Table 4-1 ten experimental runs (Run I-X) were carried out for flow depth that ranges from 3 

cm to 7 cm. Figure 5-17 (top) shows the temporal evolution of raw data (scattered markers) and 

exponentially fitted data (broken lines) of the mean fine sediment bed level for each experimental runs 

sampled every ∆t = 6s from which the vertical profile of fine sediment erosion rates (Figure 5-17, bottom) 

are estimated. The raw mean fine sediment bed level of each run is fitted to an exponential function of 

type:  z =ae
bt
 where z = normalized mean fine sediment bed level and a and b are coefficients which 

varied among the different runs, as described in Section 4.7.2 of Chapter 4, before it was used in the 

estimation of erosion rate (broken lines in Figure 5-17 , top).  In Figure 5-17 (bottom) the profiles of 

erosion rate estimated for each run (combinations of flow depth (H) (3-7cm), bed slope (So) (0.0104-

0.0304) and fine sediment grain sizes (d50) (425 and 500µm)) are presented. The figure is plotted for 

various ratios of shear velocity (u*) to settling velocity (ws) which are indicators of the mode of transport 

(e.g. Bagnold, 1966). The settling velocity is estimated by using Cheng (1997) formula indicated in 

Equation (4-1). Estimated erosion rate for u*/ws = 1.42 is the largest while the lowest erosion rate is 

observed for u*/ws = 1.11.  The lowest u*/ws is not necessarily related to the lowest erosion rate while in 

the other case the same u*/ws = 1.08 resulted in different erosion rates, for instance, for H = 3cm, S0 = 

0.0304, d50 = 500μm (green circle) and H = 5cm, S0 = 0.0104, d50 = 425μm (red circle) the erosion rates 

are quite different where the latter is larger.  It is worth noting that the vertical profile of erosion rate for 

each experimental runs follow a linear trend with elevation below the gravel crest.  Such trend is 

physically sound since the first derivative of the exponentially decaying mean fine sediment bed level is a 

function of the mean fine sediment bed level and an empirical constant (
* *

minZ t = c(Z - Z )  where c = 

an empirical constant).   
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Figure 5-17. Temporal evolution of mean fine sediment bed level (top) and the vertical profiles of erosion 

rates (H = 3 - 7 cm and u*/ws = 1.08 -1.42) (bottom) 
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Figure 5-18. Temporal evolution of cumulative (total) depths of erosion from gravel crest to bottom of 

interfacial sublayer (top) and the dimensionless depth of erosion (bottom) 
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Figure 5-18 (top) shows the total depth of erosion below gravel crests for experimental Runs I, II, V, VI, 

VIII, IX, and X along Plane 1. The cumulative depth of erosion (S) for all these runs can be predicted by a 

single exponential function of time if it is made dimensionless.  Thus, the cumulative depth of erosion is 

made dimensionless by the thickness of interfacial sub-layer (ζ) and the time is made dimensionless by 

the total time required to erode a total depth equivalent to ζ. Figure 5-18 (bottom) shows that the 

normalized total depth of erosion of all runs, when properly made dimensionless, seems to nearly collapse 

around a single exponential relation shown in black dots. The exponential equation takes the form: S* = 

1.0 - e
αt

* where S* = S/ζ and t* = t/tζ where tζ   is the time scale required to erode ζ which is estimated 

based on above gravel crest erosion rate and α = empirical coefficient which in this case is α = -0.99. It 

can be argued that if the thickness of interfacial sub-layer and rate of erosion above gravel crest is known 

the cumulative (total) depth of erosion and thus the mean fine sediment bed level can be reconstructed. 

5.6.3. Description of experimental data and formulation of erosion rate relation 

The erosion rate (E, m/s) computed for each experimental run could be related to hydraulic variables and 

sediment characteristics to derive an empirical relation for estimation of fine sediment erosion rate in 

immobile gravel bed. In many earlier studies (e.g. van Rijn 1981; van Rijn 1982; van Rijn,1984a) 

transport of bed material is described as a function of dimensionless bed material particle diameter (D*) 

and dimensionless transport stage parameters (T) which is described as a function of bed shear stress and 

critical shear stress according to Shields.  van Rijn (1984b) extended these approaches further to predict 

suspended sediment pick-up or erosion rates.  This approach is conceptually robust in unsteady flow, 

since it does not make the assumption of instantaneous equilibrium between the bed shear stress and near-

bed concentration. Many suspended sediment entrainment formulas are based on equilibrium transport 

assumptions (e.g. Garcia and Parker, 1991; Grams and Wilcock, 2007). van Rijn (1984b)  is practically 

relevant especially to model sediment transport phenomenon downstream of dams during sediment 

flushing, since it is characterized by unsteady flow and non-equilibrium sediment transport conditions. 

The dimensionless erosion rate or pick up rate (in m/s) of sediments can be described as     
 

      
    , 

where ∆ = ρs/ρ - 1 and g = gravitational acceleration, following Einstein (1950). The dimensionless 

erosion (pickup) rate in non-equilibrium transport of sand in fully sand covered bed can be described as 

follows according to van Rijn(1984b): 

 
0.3 1.5

*0.5( )s

E
D T

gd



 

(5-8) 
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where 

c

c

T
 




  

where θ  = bed shear stress (= u*
2
/∆gds ); θc = critical shear stress according to Shields; 𝜺 = empirical 

coefficient; D* = dimensionless grain size (= ds (∆g/ υ
2
)

1/3
 ), where υ = kinematic viscosity of water = 10

-6
.   

 

In this study van Rijn(1984b) relation  is evaluated with experiment datasets of seven runs measured  in 

fine sediment bed condition, i.e. when the immobile bed was covered by the fine sediments (fine sediment 

bed level was above gravel crest) which represents erosion rate in fine sediment bed. First, the 

experimental data of erosion rate measured in fine sediment bed condition was related to bed material 

related parameter, D
*
 and bed shear stress related parameter, T following Equation (5-8) and the result is 

compared with calculated pickup rate formula of van Rijn (1984b). This enabled to evaluate whether the 

experimental data sets are within reasonable range of prediction by relations developed in similar 

conditions and also to obtain an empirical coefficient for the present study.  A value of 𝜺 = 0.000169 was 

obtained which is smaller than   = 0.00033 of van Rijn (1984b) relation.  This shows that  the estimate of 

the erosion rate by van Rijn (1984b) formula is larger by nearly twice when compared to the experimental 

data of this study.  However, it can be considered acceptable since such discrepancies are expected to 

exist and in all subsequent analysis of experimental results and formulations the empirical coefficient 𝜺 = 

0.000169 is used.  

 

Figure 5-19 shows above crest dimensionless erosion rate of the selected experimental runs (I, II, IV, V, 

VI, VIII, and IX) (diamonds) and estimated based on van Rijn (1984b) formula (circles) plotted in log-log 

scale. It shows that there is a linear relationship between above crest dimensionless erosion rate and   D* 

0.3
T 

1.5
. The error bar is computed considering measurement uncertainty of fine sediment bed level by 1 

pixel (= 360μm) as described in Section 4.4.4. The above crest erosion rate for each experimental run is 

estimated by taking the slope of the mean fine sediment bed level time series (e.g. Figure 4-26) just above 

gravel crest. 
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Figure 5-19. Dimensionless erosion rate as a function of transport stage parameter (T) and dimensionless 

grain size (D*) 

The prediction of the rate of erosion below gravel crest is difficult since it is controlled by many 

contrasting variables (Wren et al., 2014, 2011). The main factors that control the entrainment or erosion 

of fine sediments in immobile coarse bed include the fine sediment bed level below gravel crest (η), 

fraction of fine sediments  available in the coarse bed, the net shear stress acting on the fine sediment 

below the gravel crest, the grain size of the fine sediments  and immobile bed materials, and relative 

roughness (Grams and Wilcock, 2013; Kuhnle et al., 2013; Wren et al., 2014, 2011). Earlier studies (e.g. 

Kuhnle et al., 2013; Wren et al., 2011, 2014) argued that fraction of  fine sediments   available  in the 

coarse bed and the net shear stress acting on the fine sediment particles below the gravel crest can be well 

scaled at a given sand depth or level by roughness geometric function  (Φ).  In this study the total drag 

force is found to be well scaled (as discussed in Section 5.3) as a function of roughness density and thus 

the effective shear stress in the interfacial sublayer can be estimated from the momentum supply instead. 

This approach is conceptually superior and physically sound as the total drag force is theoretically 

described as a function of roughness density while there is no physical basis to scale shear stress with bed 

porosity.  
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The experimental observations of the erosion rate below gravel crest show a decrease in erosion rate with  

fine sediment bed level  below gravel crest (see Figure 5-17) where θ (η =0) = dimensionless Shields 

number at gravel crest, η = 0. The erosion rate below gravel crest decreases as a result of progressive 

decline in effective shear stress by drag force. The total bed shear stress observed at gravel crest is 

potentially partitioned between the shear on the immobile coarse bed and on the fine particles when fine 

sediment bed level goes below the gravel crest.  Equation (5-8) can be directly applied to calculate shear 

stress based on measured erosion rates at selected fine sediment bed levels below gravel crest by 

assuming that the erosion rate from the fine sediment bed below the gravel crest is similar to a case of 

fully sand covered bed. The estimated shear stress is plotted with thick lines in Figure 5-20 and it 

decreases as the fine sediment bed level decreases. Nevertheless the estimate varies from run to run where 

high reduction in shears stress is evident for high velocity flow and less reduction in the cases of low 

velocity flow conditions (Figure 5-20). The result is physically sound since the drag force is high when 

the flow velocity is high leading to high reduction in shear stress.  

 

 

Figure 5-20. Shear stress profile computed using Equation (5-8) (thick line) based on measured erosion 

rates below gravel crest and estimated with Equation (5-7) (thin lines)  
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Figure 5-21. Dimensionless drag force estimated at selected fine sediment bed level: estimates from 

momentum balance (thick lines) and calculated based on Equation (5-6) (thin lines) 

As shown in Equation (5-6) the drag force in clean gravel bed can be scaled as a function of the roughness 

density of the immobile gravel bed. In the present study the total drag force for the selected experimental 

runs  at selected fine sediment bed level below gravel crest (η)  is estimated as the difference between the 

momentum supply and  shear stress estimates from erosion rate data (thick lines in Figure 5-20) and the 

result is presented in Figure 5-21 (thick lines). The dimensionless drag force of each experimental run is 

then plotted against the dimensionless roughness density and nearly all collapse along  experimental 

datasets obtained in clean gravel bed  (e.g. Dey and Das, 2012; Mignot et al., 2009)  (see Figure 5-22).  

When the estimated total drag force of each run are fitted in Equation (5-6) the empirical coefficients co = 

1.01 and c1 = -0.80 are obtained which are close to the estimates from the experiments in clean bed 

conditions shown in Figure 5-4. The broken line in Figure 5-22 shows the fitted dimensionless total drag 

force.  It is worth noting that the values of the empirical coefficients (co and c1) varied from run to run and 

the uncertainty of each empirical coefficient was calculated based on the uncertainty calculated for shear 

stress. The uncertainty of the shear stress is estimated based on uncertainty of fine sediment bed level 

measurements indicated in Section 5.6.3. The plots of the error bar for estimated empirical parameters are 

shows in Figure C-10 (Appendix C). Therefore, the  values of the experimental coefficients (co = 1.01 and 

c1 = -0.80) used in the prediction of below crest erosion rate are the mean of the empirical coefficients of 
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all experimental runs which lie within the uncertainty bands of all runs. Figure 5-21 (thin line) show the 

estimate of drag force with the empirical coefficients (co = 1.01 and c1 = -0.80) which are close the 

estimate from momentum supply (the thick line). In Figure 5-20 the shear stress profiles estimated based 

on empirically fitted drag forces are plotted in thin lines. The estimates are closer to the shear stress 

calculated from below gravel erosion measurements (thicker lines in Figure 5-20).  

 

 

 

Figure 5-22. The relationship between dimensionless drag force and dimensionless roughness density 

below gravel crest for datasets of clean bed and this study show roughness density could be used to scale 

drag force  

In this study it is assumed that if the shear stress below gravel crest is properly scaled, the erosion rate 

below gravel crest can be predicted with formulas developed for sand bed conditions. Thus the main 

purpose is to evaluate whether it is possible to predict below crest erosion rate by implementing predicted 

shear stress below gravel crest by Equation (5-7) in Equation (5-8).  First, the relationship between 

observed (experimental) below crest dimensionless erosion rate and the dimensionless shear stress at 

gravel crest was evaluated as shown in Figure 5-23. This was conducted to evaluate if the linear 

relationship observed for above crest condition is valid also below crest as pointed out in Section 5.6.3. 

The dimensionless below crest erosion rates of the experimental runs at Plane 1 were extracted from 
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vertical profiles of erosion rates (at η = 5 mm, 10 mm and 15 mm) in Figure 5-17 and plotted against 

D*
0.3

T
1.5

 as shown in Figure 5-23. Figure 5-23 shows that the linear trend observed in Figure 5-19 is also 

valid below gravel crest.  

 

 

Figure 5-23. Dimensionless erosion rate above and below gravel crest where T estimated based on shear 

stress at gravel crest 

When the bed shear stress in Equation (5-8) is replaced by τe (η) for η = 5 mm, η = 11 mm and η = 14 mm 

and compared to observed below crest erosion rates of the experimental runs a very good agreement is 

obtained (see Figure 5-24). In Figure 5-24 the plots in black, blue and red filled markers are the predicted 

erosion rate and are within the measurement uncertainty or error bands of observed erosion rate below 

gravel crest.  The result shows that below gravel crest erosion rate, in non-equilibrium fine sediment 

transport in immobile bed, can be predicted by pickup rate formula of  sand bed  of  van Rijn (1984b) 

provided that  the shear stress below the immobile gravel crest is well scaled at each fine sediment bed 

level. Thus, the proposed new formulation reads as: 
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where  

1c a(η)2

e * oτ (η) = τ(η) -ρu (1-c e )  and E (η) = erosion rate at fine sediment bed level η; τe (η) = effective 

shear stress at fine sediment bed level η and Co = 1.01 and C1 = -0.80; τ (η) = total momentum supply; τc = 

critical shear stress from Shields; and 𝜺 = 0.000169 is an empirical constant. 

 

In Figure 5-25 the plot of the experimental data of dimensionless erosion rate against D*
0.3

T
1.5 

estimated 

from predicted or scaled shear stress below gravel crest at selected fine sediment bed level (η = 5 mm, 10 

mm and 15 mm).  The experimental data points of above  and below gravel crest erosion rates seem to 

overlap along a line depicting the strong relationship between dimensionless erosion rate and D*
0.3

T
1.5

.  

The plots in diamond are those measured above gravel crest (i.e. a condition similar to sand bed). A 

similar plot of dimensionless erosion rate against D*
0.3

T
1.5 

estimated from momentum supply (τ) is 

indicated in Figure C-11 (Appendix C). In this case no any clear relationship is evident. 

  

Figure 5-24. Predicted dimensionless erosion rate below gravel crest plotted against T estimated from 

shear stress at gravel crest  
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Figure 5-25. Observed dimensionless erosion rate plotted against T estimated from shear stress calculated 

below gravel crest (circles) and shear stress at gravel crest (diamond)  

  

Figure 5-26. Measure of goodness of fit: the predicted versus measured below crest erosion rates 
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Figure 5-26 shows that the predicted erosion rate for selected fine sediment bed level below gravel crest 

(η = 5, 11 and 14 mm) show good agreement for larger estimates of erosion rate but a bit of over 

prediction for smaller estimates. 

5.6.4. Characteristics of erosion in partial sand cover condition 

The characteristics of erosion profile and rate when the immobile sand level (coverage) is reduced 

upstream and downstream of the control section (refer Section 5.5) is presented based on data collected 

along Plane 1 for reduced immobile sand bed level.  The experimental runs for partial sand cover are 

sampled at higher temporal time scale (∆t = 0.24 s) but no clear trend in erosion rate was evident due to 

the reason discussed in Section 4.7.2.  Thus the mean fine sediment bed level was re-sampled every ∆t = 

4.8s (shaded circles in Figure 5-27) and fitted (broken lines in Figure 5-27) to an exponential function (as 

discussed in Section 4.7.2 of Chapter 4) before it was used in the estimation of the erosion profile (Figure 

5-27).  

 

Figure 5-27. Temporal evolution of mean fine sediment bed level for Run VI, VIII, IX and X for partial 

sand cover condition 

Figure 5-27 shows the mean fine sediment bed level of experimental runs (Run VI, VIII, IX and X) along 

Plane 1. The mean fine sediment bed level data show relatively large gradient indicating high erosion rate 

compared to full sand condition (Figure 5-17, top). In Figure 5-28  the vertical profile of erosion rates for 
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partial and full sand conditions for Run VI, VIII, IX and X are plotted where lines with diamond markers 

indicate the partial sand cover condition. Note that the vertical profiles of erosion rates are computed from 

the fitted mean fine sediment bed level data. The erosion rate below the gravel crest for experiments 

conducted in partial sand condition are larger than that of full sand for the same shear stress or suspension 

parameters (Figure 5-28). Such behaviour of the erosion profile can be directly related to the increase in 

effective roughness height of the immobile gravel bed since the sand level is low in the immobile gravel 

bed upstream and downstream of the control section. As highlighted in Section 5.5 the increase in 

effective roughness height in increases turbulent intensity, Reynolds shear stress and also the total 

duration of high magnitude turbulent events (Sambrook Smith and Nicholas, 2005)  and this could lead to 

increased sediment entrainment or erosion. 

 

Figure 5-28. Comparison of vertical profiles of erosion rates for full (circles) and partial (diamonds) sand 

conditions 

Figure 5-29 shows dimensionless erosion rate plotted against the dimensionless shear stress as described 

in Equation (5-8) for each experimental runs of full (unshaded  square markers) and partial (shaded square 

markers) sand cover conditions. The figure shows the dimensionless erosion rates at selected depths 

below gravel crest for partial sand cover are related to above crest shear stress.  The broken lines are 

linear regression fitted lines to the scattered data points. There is a linear relationship between 
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dimensionless erosion rate (E*) and above crest transport stage parameters (D*
0.3

T
1.5

) which is observed in 

full sand cover condition (Figure 5-29). The same relation is also valid for partial sand condition despite 

limited number of observations. The erosion rate for the same dimensionless shear stress applied under 

partial sand cover condition is observed to be as large as 1.5 to 3 folds of full sand condition.  

 

Figure 5-29. Dimensionless erosion rate of fine sediments as a function of T (estimated based on shear 

stress at gravel crest) and D* for full (unshaded squares) and partial (shaded squares) sand conditions 

 

5.7. CONCLUSIONS 

In this study the characteristics of fine sediment erosion by suspension flow in immobile gravel bed are 

presented. An alternative non-equilibrium fine sediment erosion (pick-up) rate relation is proposed from 

the analysis of the experimental data and data of flow hydrodynamics in gravel bed. The most important 

observations from this study include the spatial dependence of erosion rate on the immobile bed 

topography, the effect of immobile bed roughness on flow velocity and fine sediment erosion rate,   and 

the link between drag force and roughness density and the relevance to estimate effective shear stress for 

fine sediment erosion in interfacial sublayer. 
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The experimental datasets showed that the temporal evolution of mean fine sediment bed level of eroding 

fine sediments in the immobile bed roughness elements generally showed an exponentially decaying 

pattern, which is expected as the fine sediment deposit among the roughness elements continuously erode. 

The estimates of the vertical profiles of erosion rate in the interfacial sub-layer are found to follow a 

linear trend with the depth of fine sediments in the layer. The spatial pattern of erosion rate varied 

significantly with larger erosion observed in the stoss side while smaller erosion in the lee side of gravel 

particles which agrees with literature evidences of turbulent flow structures in gravel bed flows. The 

changes in bed roughness of the gravel particles upstream and downstream of the experimental control 

section is found to affect the erosion rate where increase in equivalent roughness (by reducing the 

deposited level of immobile sand in gravel matrix) of the gravel bed intensified the erosion rate 

significantly. Measured stream-wise velocity profiles were also observed to be affected although not very 

significant. In fact, the effect of changes in roughness (immobile sand level in gravel matrix) on velocity 

may also depend on the relative submergence of the flow (e.g. Grams and Wilcock, 2007).  

The analysis of drag force estimates from datasets obtained from three different published experimental 

studies showed that it can be scaled properly in the interfacial sublayer with roughness density of the 

immobile coarse bed. Thus, the effective (below crest) shear stress can be formulated as a function of 

momentum supply and drag force. This allowed developing an erosion rate formula for fine sediment 

transport in immobile gravel bed based on properly scaled shear stress (effective shear stress) 

implemented in van Rijn (1984b) non-equilibrium fine sediment transport formula. It can be argued that 

formulas such as van Rijn (1984b), developed for sand bed condition, can be directly applied if the 

effective shear stress at each fine sediment bed level below the gravel crest is properly predicted. The 

comparison of the predicted erosion rate and the estimates based on scaled shear stresses at each bed level 

of fine sediments indicated good agreement. The result revealed that proper scaling of shear stresses 

below gravel crest could be sufficient to predict erosion rate below crest level of immobile roughness 

elements with erosion formulas developed for sand bed conditions, which in this case applies for non-

equilibrium transport conditions. This approach is conceptually superior and physically sound when 

compared to Grams and Wilcock (2013)  approaches where above crest erosion rate is directly scaled 

empirically  to predict the erosion rate when fine sediment bed level goes below gravel crest. Moreover, 

Grams and Wilcock (2013)  relation was developed from experiments that were conducted in artificial 

bed with relatively simple geometry (hemispheres) which does fully represent the complex bed roughness 

characteristics in natural gravels. Moreover, over-prediction of entrainment rate was also noticed in 

Grams and Wilcock (2013) relation especially for small fine sediment bed level below immobile bed 

crest. Although some studies (e.g. Kuhnle et al., 2013;  Pellachini, 2011) argued that below crest effective 
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shear stress can be scaled with the bed porosity but the analysis in this study indicated that the drag force 

is found to be scaled properly for the experiments under consideration. The observed dimensionless shear 

stress data points in the interfacial sublayer, however, were found to be rather scattered and when plotted 

against porosity the relationship varied from experiment to experiment (see Figure C-9 , Appendix C).   

Finally, the predictive capability of the developed erosion rate relation is tested by applying it in 1-D 

numerical model developed to study sediment wave dynamics of reservoir sediment flushing and the 

results are discussed in Chapter 6. 
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6. MODELLING SUSPENDED SEDIMENT WAVE DYNAMICS OF 

RESERVOIR FLUSHING 

Summary 

Flushing of fine sediments from reservoirs is one of the most effective techniques to reduce reservoir 

sedimentation, but the sudden release of high suspended sediment concentration can have adverse effects 

on the receiving water body. Field observations of sediment flushing operations have shown that the 

released volume of water and sediments propagate downstream through different types of waves. In 

particular the hydrodynamic signal travels faster than the sediment signal resulting in the splitting of the 

two waves. Since the sediment wave lags behind, deposition is enhanced in the tail of the hydrodynamic 

wave, where velocity decreases and cannot sustain the sediment in suspension: the separation phase of 

the two waves controls the deposition process of the released suspended sediments. Thus, in this study a 

one-dimensional numerical model is developed to evaluate the interaction between the two waves and the 

spatial and temporal patterns of sediment deposition. The mathematical model accounts for the reduction 

of the depth-averaged sediment transport velocity as a function of Rouse number, which was neglected in 

most of the models. This study focused on a very simple case, considering a channel with rectangular 

cross-section, constant slope and width, and assuming that the bed is initially composed of non-erodible 

(immobile) coarse material. In this framework, the present study isolated the process of transport and 

deposition of the released fine sediments only. The study showed that the correction factor for sediment 

wave celerity enhances the deposition because of the anticipated separation from the hydrodynamic wave. 

The peak-to-base flow and intermittence of flushing release also play an important role in determining 

the length and volume of the deposited material. More in general, a series of feedbacks can be 

highlighted, the most important being the reduction of bed roughness in the regions of deposition of fine 

sediments. This work represents the first step toward the understanding of the dynamics of the waves 

originated by flushing operations, and hence toward strategies that may reduce downstream negative 

impacts. 

6.1. INTRODUCTION 

Reservoir sedimentation has become one of the most challenging problems of the current generation of 

dams with annual worldwide loss rate of storage capacity by 0.5 - 1.9% (White, 2001). Among the 

various methods developed up to date to tackle the problem, sediment flushing (release of deposited 

sediments through bottom outlets of dams) is the most effective, economic and fast method (Liu et al., 

2004a). However it may often have significant effects on downstream river reaches due to the high flows 
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induced by the sudden release of water and high concentration of fine sediments (Espa et al., 2013; Crosa 

et al., 2010; Downs et al., 2009). The concentration can be extremely high, exceeding 100 g/l and in some 

cases even up to 1000 g/l (Morris and Fan, 2010), and fine sediments after flushing operation could 

infiltrate to significant depths in the river bed especially in gravel-bed interstices (Camenen et al., 2013). 

This may impact the downstream aquatic environment by, for instance, modifying fish survival conditions 

due to clogging of interstices, altering the channel morphology and destroying habitats type and stability 

(Wohl and Rathburn, 2003) or affecting the vegetation dynamics (Asaeda and Rashid, 2012; Camenen et 

al., 2013). The high concentration can reduce sediment deposition by hindered settling especially in 

condition when the flow is hyperconcentrated (concentration larger than 200 - 300 g/l) (van Maren et al., 

2009). 

 

Therefore, sediment flushing operations should be designed so as to safeguard the riverine ecosystems 

and at the same time reduce loss of storage of reservoirs. Many studies have given increasing attention to 

the downstream impacts of reservoirs. These studies focused on downstream morphological changes and 

environmental impacts due to sediment depletion and altered seasonal hydrograph (Wohl and Rathburn, 

2003) with fewer studies concerning the impacts of sediment releases from reservoirs by flushing 

operations. Some field studies reported on the erosion and depositional processes that occur in 

downstream river during flushing operations (e.g. Brandt and Swenning, 1999; Camenen et al., 2013; 

Espa et al., 2013; Wohl and Cenderelli, 2000), and flume experiments were conducted to examine coarse 

and fine sediment releases (Cui et al., 2008). Numerical models are crucial to evaluate the effects of 

different operations on the morphological and ecological quality of downstream rivers (e.g. Liu et al., 

2004a; Rathburn and Wohl, 2001). 

 

During sediment flushing operations two pulses are typically released in the downstream reach: a larger 

liquid discharge and a considerable amount of solids. These two pulses can be seen as waves travelling 

with their own celerities. The first wave transports the signal of a hydrodynamic variable (depth, 

discharge or velocity) with the celerity of flood waves, thus higher than the cross-sectional averaged flow 

velocity (e.g. Toffolon et al., 2010). The second wave is associated with the concentration of suspended 

sediments or dissolved substances, water temperature, etc. Since its celerity is equal, or smaller as in the 

case of suspended sediments, than the flow velocity, the two waves travel with different speeds and tend 

to separate. For instance, this behaviour is noticeable downstream of hydropeaking releases characterized 

by different temperatures (Toffolon et al., 2010; Zolezzi et al., 2011). 

 

Field investigations downstream of reservoirs similarly show that there is a time lag between the signals 
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of suspended solid and liquid discharge. Measurements are available for the Cachí reservoir in Costa Rica 

(Brandt and Swenning, 1999; Brandt, 2005) showing that the phase lag in- creases as the two waves travel 

in the downstream river: at three stations (10, 30 and 70 km) there exists a time lag of 2, 5 and 7 hours 

between sediment and discharge peaks, respectively. This time lag in the suspended sediment trans- port 

and its interaction with the hydrodynamic wave control the depositional pattern of the suspended 

sediment carried by the release. Since the sediment wave lags behind, deposition is enhanced in the tail of 

the hydrodynamic wave, where velocity decreases and cannot sustain the sediment in suspension: the 

separation phase of the two waves controls the deposition process of the released fine sediments. 

Nevertheless, no attempts have been made to understand the mechanism how the temporal and spatial 

pattern of the deposition is controlled by the interaction between the two waves. Previous studies (e.g. 

Rathburn and Wohl, 2001; Gallerano and Cannata, 2011; Liu et al., 2004a) focused mainly on the study 

of morphological evolution and suspended sediment concentration after sediment flushing. Moreover, the 

celerity of sediment waves is assumed equal to the depth averaged flow velocity in many models, but this 

assumption might be misleading in modelling suspended sediment transport that are mostly transported 

near the bed, where the velocity is smaller. 

 

On the other hand, channel beds downstream of a dam is usually deprived of sediment supply and suffers 

from continuous erosion of the channel bed (Kondolf, 1997) and this leaves only coarser and immobile 

beds, which is often called a degraded and armoured bed (Kondolf, 1997). Thus, the fine sediments 

released during flushing operations are transported in the immobile coarse bed (e.g. Wren et al., 2011). 

Similar phenomenon is also common in natural rivers such as mountain and canyon rivers whose bed 

consist of coarse bed that are transported in rare events and most of the sediments transported are fine 

sediments (Grams and Wilcock, 2014). This study aims to characterize sediment flushing wave dynamics 

in immobile coarse bed composed by gravel, where bed roughness is controlled by the fine sediment 

deposition within the gravel matrix also when the deposition level does not exceed the top of the coarse 

material. In this situation, the entrainment of fine sediments is also hindered because of the reduction of 

the shear stress. The porosity of coarse immobile bed also plays important role in the deposition and 

entrainment of fine sediments in the matrix of immobile coarse bed. Thus understanding the deposition 

characteristics of the released sediments in such bed conditions when porosity is taken into account is 

important to design the discharge required to clean up the sediments clogging the immobile matrix. Model 

based studies of characterizing flushing wave dynamics and the implication on deposition of released 

sediments are lacking. Thus, this study attempted to reveal the relevance of coarse immobile bed porosity, 

bed roughness changes, celerity factor and hindered settling velocity in predicting the deposition pattern 

of suspended sediments of flushing releases. 
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First, in Section 6.2 the development of the numerical model and the key processes included are briefly 

presented. An approach to describe sediment flux in immobile bed is presented and implemented in the 

numerical model. Selected entrainment relations for sediment transport in immobile bed are also 

discussed. The description of bed porosity and the effect on characteristics of sediment deposition are also 

presented. Second, sediment wave dynamics for different celerity formulation and bed roughness 

parameterization are presented. In connection to this sediment deposition patterns for selected flushing 

release scenarios are evaluated. Selected entrainment relations for fine sediment transport in uniform sand 

bed are implemented in the model and their predictions are evaluated. Finally, in Section 6.4 conclusions 

and directions for further works are highlighted. 

 

6.2.  FORMULATION OF THE MODEL  

6.2.1. Simplified case study 

In this study, the focus is on a very simple case in order to highlight only some selected features of the 

complex processes occurring during sediment flushing operations. In particular, the river bed is assumed 

to be initially composed by coarse sediments only. This initial bed is not erodible, as in the case of a 

gravel-bed river subject to a relatively low discharge that is not able to move the coarse sediment matrix. 

During flushing operations a given amount of water and fine sediments is released in a limited time 

period, producing two waves traveling downstream. The fine sediments are transported by the flood 

wave, but the initially high concentration can produce deposition. Part of these deposits can be slowly 

eroded and possibly deposited again in a downstream region. The aim of this work is to study the 

dynamics of these depositional patterns in order to have a clear description of the role of some different 

factors. Among the most important processes, this study analyses: the dynamics of the separation of the 

flood wave from the sediment wave; the role of the bed roughness that changes depending on the type of 

sediments in the bed surface layer (either fine or coarse); the sensitivity of the results with different 

formulations of the fine sediment erosion. 

 

6.2.2.  Governing Equations 

This study focuses on the large-scale dynamics of sediment transport and, as a first approximation, with 

no consideration for any lateral distribution of the variables along the cross-section. Thus, a one-

dimensional (1-D) description of the system is adopted. The variables introduced include Q for the water 

discharge, A for the cross-section area, and B for the top width. Thus U = Q/A is the cross-sectional 

averaged velocity, h = A/B is the averaged depth and q = Q/B is discharge per unit width. Moreover, the 

cross-section is assumed as rectangular and wide enough to approximate the hydraulic radius by means of 
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the flow depth. This approximation can be easily relaxed in further studies dealing with the local 

distribution of depositional patterns. 

The hydrodynamic wave can be described by the usual 1-D Saint-Venant shallow water equations 
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where t  =  time, x  = the longitudinal spatial co-ordinate, β = the coefficient accounting for the deviation 

of local values of momentum from its cross-sectional average, g the gravitational acceleration, S0 = the 

local bottom slope, Sf = the local energy slope, I1 =  the hydrostatic pressure force term, I2 = the pressure 

forces in a volume of constant depth due to longitudinal variations (e.g. Siviglia and Toro, 2009). 

 

The transport of suspended sediment is governed by the continuity equation of the solid phase 
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where C =  the depth-averaged volumetric sediment concentration, α = the correction factor for sediment 

wave celerity, K  = the longitudinal diffusion/dispersion coefficient, E and D  = sediment entrainment and 

deposition from/on the bed respectively. The sediment exchange E - D with the bottom layer is evaluated 

at the interface between the mobile bed and the water column where the near bed suspended sediment 

concentration is estimated. The net flux of sediment across such an interface can produce a variation of 

the volume of sediment deposition which is a measure of bed elevation 
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where ξ is the volume of sediment deposit per unit surface area and p is the porosity of bed  fine 

sediments. For sake of simplicity, the effect of bed load in the Exner Equation (6-4) is neglected. 

The unknown variables in the governing equations are A, Q, C and ξ, while the terms Sf , E, D are 

determined by means of empirical closure relationships, which are discussed in the following sections. 

The estimate of the diffusion/dispersion coefficient K depends on the distance from the release point (e.g. 

Rutherford, 1994). In the intermediate field it can be estimated by Elder (1959) formula, while in the far 

field the Fischer's relationship (Fischer et al., 1979) is typically used. In this work Fischer's relationship 

given by: K = 0.011B
2
U

2
/hu* is used. 

 

6.2.3.  Flow resistance and bottom shear stress 

Flow resistance in mobile-bed conditions depends on two main factors: the so-called skin friction, which 

represents the drag force exerted by the single sediment grains of the bed surface, and the resistance due 

to bed forms of different sizes (mainly ripples and dunes in sand-bed river; for the cross-section averaged 

effect of alternate bars see Francalanci et al. (2012)). While the total resistance determines the flow 

conditions, the skin friction is important for sediment transport because sediment movement depends on 

the force acting on individual grains (e.g. van Rijn, 2007). This study introduces the dimensionless Chézy 

coefficient χ = U/u*, where u* is the friction velocity (=√      in uniform flow conditions). 

Two bed roughness parameterizations are considered: when fine sediment in bed (deposited) and 

transported are similar and when fine sediments are transported in immobile coarse bed. For the latter, 

this study considered a transport condition when fine sediments are released from impoundments (dams) 

and transported in riverbed composed of relatively less mobile (immobile bed) coarse gravel. Such 

transport and flow conditions are common phenomena downstream of dams during sediment flushing 

operations and dam removals (e.g. Wren et al., 2011; Cui et al., 2008; Grams and Wilcock, 2014). The 

immobile coarse gravel material can be characterized by a fixed bed roughness coefficient (determined by 

χg, where χg stands for Chézy coefficient of clean gravel bed), and considering that bed form resistance is 

not present for gravel-bed conditions. The fixed roughness is estimated by means of the Strickler 

coefficient based on Meyer-Peter and Müller (1948) formula and converted to Chézy coefficient, which 

solely depends on the mean grain size of gravel particle, dg  (= mean diameter of immobile gravel bed 

materials). Moreover, this study assumes that a single characteristic grain size ds (= mean diameter of fine 

sediment materials) can be used to describe the fine sediment transport, for which bed forms increasing 

flow resistance can develop. 
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In order to estimate the bed form resistance when the bed comprises purely fine sediments (or when fine 

sediments are deposited over the immobile bed), the approach proposed by Wright and Parker (2004) is 

adopted, where the total shear stress τ  = τs + τf is the sum of the shear stress acting on the sediments, τs = 

ρgS0hs, and that due to bed forms, τf . The skin-related flow depth hs is determined through the 

relationship 
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where ks = 3d90 is the grain equivalent roughness (van Rijn,1984a). Wright and Parker (2004) propose the 

following relationship,  
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between the Shields number related to the skin friction, θs = τs /(ρg(s-1)ds), and the total, θ = τ /[ρg(s-

1)ds]. Here Fr =U/√     is the Froude number and s = 2.65 is the relative density of sediments with 

respect to water. The total Chézy coefficient is then calculated as 
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This approach allows for an implementation of changes in bed roughness that takes into account the 

changes in bed forms with the flow conditions, i.e. a feedback between the hydrodynamics and the 

morphodynamics is established. Villaret et al. (2013) show that the use of a constant bed roughness leads 

to an overall reduction in the sediment transport rates. The friction slope Sf is finally calculated as 
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where R = hydraulic radius, which can be approximated by flow depth h exploiting the assumption of 

wide rectangular cross-section.  

 

Figure 6-1 shows the conceptual framework of fine sediment transport (deposition and entrainment or 
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erosion) in immobile gravel matrix and the parameters used for bed roughness characterization where η = 

the thickness of fine sediment deposit in the coarse immobile gravel bed. When the thickness of fine 

sediment (sand) deposit decreases enough, it goes below the immobile gravel crest level resulting in 

emergence of gravel protrusions. As a result the bed roughness changes creating a rougher bed, and this 

change in roughness is purely due to level of deposit in the coarse immobile bed. Thus, the bed roughness 

for hydrodynamic computation is estimated as a function of the sand level below the gravel crest, the 

roughness of clean gravel bed and pure fine sediment bed, and the thickness of interfacial sub-layer of the 

immobile gravel bed. The thickness of the interfacial sub-layer is approximated by ζ = 1.5dg  (e.g. Nikora 

et al., 2001). The flow resistance or bed roughness when the fine sediment bed level is within the 

interfacial sublayer is expressed as a simplified linear function of the depth (thickness) of fine sediments 

(η) and Chézy coefficient of a sand bed (  ) and gravel bed (
g )  (after Mignot et al. (2009)) and given 

as: ( ) /g g      . The vertical variability of the dimensionless Chézy coefficient with fine 

sediment bed level inside the gravel framework occurs between a value of 0.3 and 0.6 (Mignot et al., 

2009; Pellachini, 2011). The full description of the formulation is discussed in Pellachini (2011). 

 

 

 

Figure 6-1. Conceptual diagram of water column, fine sediment erosion (E) and deposition (D) in the 

gravel matrix which depict variations in bed roughness with fine sediment bed (sand) (black dots) level 

where qs = sediment load per unit width; c and u = profiles of concentration and flow velocity; Zc = gravel 

crest; Zt =bottom of roughness layer; Φ = gravel porosity 
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It is important to take into account that two conditions affect the fine sediment transport in the immobile 

bed: 1) the partition of the total bed shear stress on gravel particles and fine sediment particles and; 2) the 

surface (area) coverage of the fine sediments in the gravel bed or gravel matrix. The gravel protrusions 

decrease as the sand elevation (bed level) in the gravel increases, thus decreasing the turbulent fluid shear 

stress (Kuhnle et al., 2012). When the sand elevation is above the gravel crest (Zc) the channel bed 

becomes a purely sand bed condition. This study assumes that the reference point for sand elevation in the 

gravel roughness elements is taken as the elevation below the gravel crest where sand entrainment is very 

small. This point can be considered as the bottom of the roughness sublayer (Zt), where fluid (turbulent) 

shear stresses are nearly negligible. In Figure 6-1the vertical profile of the immobile gravel bed porosity 

is denoted by Φ. 

 

6.2.4. Sediment flux at the bed 

Deposition and entrainment fluxes of fine sediments at the bed are estimated by empirical relationships. 

The deposition flux can be readily calculated as (Richardson and Zaki, 1954) 

 bD wC  (6-9) 

where w is the effective settling velocity of a single particle settling and velocity Cb is the near bed 

concentration. The effective settling velocity is calculated as w = w0(1-C)
m 

 (after Richardson and Zaki, 

1954) to account for the effect of sediment concentration on settling velocity. The hindering factor m 

indicates the effects of high sediment concentration for particle sizes of 50-500 μm (van Rijn, 1984a); this 

study assumes a value m = 4.45Rp
0.1

 , where Rp  = w0ds/ν is the particle Reynolds velocity and ν the 

kinematic viscosity of water. In a sediment-laden turbulent flow in vigorous conditions, for instance in 

sediment flushing operations, high concentrations (c > 0.01, c = local concentration) could occur in the 

near-bed layer. In such situations ’hindered’ settling occurs, thus the settling velocity of a grain in 

isolation needs to be corrected to take account of both grain-grain and grain-fluid interactions (Li and 

Davies, 2001).  

The settling velocity in quiescent water w0 is calculated following Dietrich (1982) relation: 

 2 3 4

0 1 2 e 3 e 4 e 5 e( 1) exp ln(R ) [ln(R )] [ln(R )] [ln(R )]s p p p pw s gd b b b b b        where Rep = 

  √ 𝑠        / ν is the particle Reynolds number and b1 = 2.891394, b2 = 0.95296, b3 = 0.056835, b4 = 

0.002892 and b5= 0.000245. The near bed concentration is related to the depth-averaged concentration C 

through the relation Cb = γC, where γ is an empirical adaptation coefficient of suspended load (Wu and 

Wang, 2007). The estimate of γ can be obtained by depth integration of Rouse profile, Equation (6-17), as 
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shown in Equation (6-20). However, following Cao et al. (2004), Cao et al. (2006), and Wu and Wang 

(2007), this study adopts a minimum value of γ = 2 as necessary.  

 

The entrainment flux E, which describes the erosion of sediments from the bed, is a function of the 

hydrodynamics and of the sediment characteristics. In order to describe the process in a simpler way, this 

study introduces the concept of dynamic equilibrium concentration whereby deposition of sediments 

equals erosion (Cao and Carling, 2002; Celik and Rodi, 1988), and hence introduce the equilibrium near-

bed concentration Cb= Ce for which 

 eD wC E   (6-10) 

There are a wide variety of empirical and semi-empirical formulations to estimate sediment entrainment 

from channel bed materials composed of mainly uniform fine sediments. Four widely used entrainment 

relationships are tested to estimate entrainment flux: van Rijn (1984a) (hereafter indicated as VR), Smith 

and McLean (1977) (SM), Garcia and Parker (1991) (GP) and Zyserman and Fredsoe (1994) (ZF). The 

reference level at which the entrainment flux estimates vary among level (Zr) at which the different 

relations and it is given as 0.05H, 2d50, max(ks,0.01H), and 26.3(θ − θc)d50+ ks for GP, ZF, VR and SM, 

respectively.  

 

The relationships can be cast in a common form, 

 
n

e

aT
C

b
  (6-11) 

where a and n are constants. The values of the constants is reported in Table 6-1, where θs = skin-related 

Shields number, θc = the critical value sediment motion, Zr = the near-bed reference level, and T = 

dimensionless transport variable that is a function of shear stress (θ and θc).  
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Table 6-1. Parameters used in Equation (6-11) 

Authors a T b n 

SM γ0 (θ -θc)/θc 1+aT 1.00 

GP 1.3x10
-7

 u*Rep
0.6

/w 1+3.33aT 5.00 

ZF 0.331 θ -θc 1+2.17aT 1.75 

VR 0.015 (θ -θc)/θc ZrRep
0.6

/d50 1.50 

 

Since we assume that the bed is not erodible and that only the fine sediments are transported and 

eventually deposited, a limit exists for the amount of entrained material. Referring to Equation (6-4), the 

maximum erosion rate is determined by the already deposited material. Thus, in a computational time step 

∆t, the actual erosion is 

 0

(1 )
min ;

p
E E D

t

 
  

 
 (6-12) 

where E0 is the theoretical value determined by Equation (6-10).  

The entrainment rate or erosion rate or pick up rate of fine sediments in immobile coarse bed cannot be 

predicted by formulas described in Table 6-1. Thus, formulations that are specifically developed to 

predict entrainment or erosion rate must be used. The present study considered entrainment relations by 

Grams and Wilcock (2014), Cui et al. (2008) and the erosion rate formula proposed in Chapter 5. Grams 

and Wilcock (2014) formula corrects the entrainment rate formula of sand bed condition by Garcia and 

Parker (1991) when the fine sediments are within the interfacial sublayer. The correction function is given 

by:  
2.8

9.3( / 0.13)( ) (0) 1E E e  


    for η/ζ < 1 where ζ = R for hemispherical bed.  While the 

formulation by Cui et al. (2008) is not specifically developed for fine sediment entrainment in immobile 

bed. Nevertheless, Cui et al. (2008) developed a simple correction function, to estimate transport rate of 

fine sediments in immobile coarse bed, by considering the roughness differences between a gravel bed 

and sand bed at grain size scale, and by this partitioning the total shear stress on sand and gravel particles. 

Cui et al. (2008) also included an additional correction that takes into account partial sand coverage in the 

coarse immobile bed. This correction function is given by:   
7/20

( ) (0) ( ) ( )s sE E k k      

for   η/ (ζ - ks) < 1 where ζ = 2dg is roughness height of gravel and ks = 2ds is roughness height of fine 

sediment. The derivation and mathematical description of the correction function is presented in Cui et al. 

(2008). This correction is applied on VR formula of fine sediment entrainment in sand bed condition to 

estimate entrainment rate in immobile coarse bed by suspension flow. The erosion rate formula developed 
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in Chapter 5 is also evaluated in the numerical model to predict sediment entrainment in immobile bed 

from experimental data obtained from Grams and Wilcock (2014). The plot of theoretically analysed 

erosion rates based on the correction functions of the three different formulations considering transport of 

fine sediments in hemispherical bed (from Grams and Wilcock (2014)) and coarse immobile gravel bed 

with flow rate, bed slope, and fine sediment grain sizes: q = 0.80m2/s, S0 = 0.007, and d50 = 230μm and 

d90 = 320μm respectively is presented Figure 6-2. Figure 6-2 (in diamond) shows that the estimates of fine 

sediment erosion rate by Grams and Wilcock (2014) exhibit no difference with respect to the estimate in 

sand bed condition mid-way through the interfacial sublayer (> 0.5ζ, where ζ = R for hemispheres and ζ = 

dg for gravels). It is also clear that erosion rate increases steadily in the lower part of the roughness layer. 

The estimates by the method presented in Chapter 5 and by Cui et al. (2008) show a different distribution 

of erosion rate in the interfacial sublayer as compared to Grams and Wilcock (2014). They show also a 

very similar trend especially in the upper part of the interfacial sublayer (in circle and square). 

Nevertheless, Cui et al. (2008) relation varies among η / ζ (refer Cui et al. (2008)), thus the good 

agreement with the relation in Chapter 5 may fail to agree for some values of  η/ζ other than discussed 

here. 

 

Figure 6-2. The ratio of erosion rates below gravel crest, E (η), and above or at crest of gravel, E (0), 

estimated by different relations 
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6.2.5. Characterization of immobile gravel bed porosity 

The transport of fine sediments in immobile bed is closely related to the porosity of the immobile bed. 

The bed porosity directly affects the bed permeability and bed permeability increases flow resistance and 

modifies spatial structure of the flow in the vicinity of roughness elements (Pokrajac and Manes, 2009). 

The flows in the interstices are strongly dominated by wakes shade by the immobile grains (Grams and 

Wilcock, 2014). The fine sediments occupying the porous interstices modifies the flow structure and 

intensity of the turbulent wakes affecting erosion and entrainment process of the fine sediments (Wren et 

al., 2013). The bed porosity also determines the proportion of fine sediments and effective fluid shear 

stress in the interfacial sublayer of the immobile gravel bed (Kuhnle et al., 2012). Overall, the quantity of 

fine sediments entrained during sediment transport over immobile bed depends on bed porosity and the 

flow required to clean up the fine sediments should be designed taking into account the effect of changing 

porosity in the immobile bed. The present study describes such process in the numerical model and 

evaluates the effect on thickness of sediment deposit and entrainment. 

 

The thickness of sediment deposit is estimated considering immobile gravel bed that takes into account 

the thickness of the interfacial layer and the porosity function of the immobile bed (Φ). In Equation (6-4) 

the volume of fine sediment deposit per unit area is computed by the numerical model. When the channel 

bed is an immobile coarse bed, the volume of deposition per unit area changes because the area of 

deposition changes with the porosity of the immobile coarse bed. In this case the porosity function is used 

to estimate the thickness of sediment deposit (η) in the interfacial sublayer. The thickness of sediment 

deposit (η) is formulated for two conditions: when the volume of fine sediment deposit per unit area (ξ) is 

larger than the total void of the immobile bed per unit area (η0) and when it is smaller than η0. The 

relationships are given as: ( )f  for the former and  
0       for the latter where 

0
0

( )z dz


    and  0
( ) ( ) 0f z dz



     . The equation ( )f   can be solved by iterative 

procedure or analytically, depending on the equation describing the bed porosity, to compute the 

thickness of the sediment deposit in the interfacial sublayer. In the present study two types of bed 

condition are considered to model fine sediment transport dynamics: hemispherical bed (diameter 2R = 

150 mm) and gravel bed (dg = 35 mm). The porosity of the hemispherical bed and gravel bed are given as: 

 2( ) 1 ( 2 3) 1 ( )z z R     and  ( ) ( ) ( ) 1 ( )t g tz z z d z      respectively where the porosity 

of immobile gravel bed material is approximated by a linear relation in the interfacial sublayer. 
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6.2.6. Sediment wave celerity 

Many suspended sediment transport models assume that advection occurs with the depth-averaged flow 

velocity U. However, since the vertical distribution of both longitudinal velocity and suspended sediment 

concentration is not uniform, the depth-integrated transport is 

 

 

r

h

s

z

q cudz CUh   (6-13) 

 

where u(z) and c(z) are the vertical profiles of velocity and concentration, respectively, z is the vertical 

coordinate with origin at the bed level, and α is the correction factor already introduced in Equation (6-3). 

Since velocity increases upward approximately following a logarithmic profile while the suspended 

sediment concentration is maximum toward the bottom, the overall transport is less that the product CUh 

that could be expected for a tracer uniformly distributed along the vertical. Thus it is important to estimate 

the value which contains the Einstein integrals (Einstein, 1950).  

 

 
r

r r

h

Z

h h

Z Z

cudz
h

udz cdz
 



 
 (6-14) 

 

In order to express the sediment wave celerity explicitly, Equation (6-3) can be rewritten as 

 

 
1

(1 )
C C C E D A

U KA
t x A x x h t

 
      

     
     

 (6-15) 

 

where the longitudinal variation of  α  have been neglected. Two interesting features can be deduced from 

Equation (6-15). First, the sediment wave celerity is αU, which is in general slower than the depth-

averaged velocity U (≤ 1 always); hence, the separation between the hydrodynamic wave and the 

sediment wave is enhanced. Second, an additional source term arises in Equation (6-15) when α ≠ 1. This 

term can increase the concentration in the falling phase of the hydrodynamic wave (∂A/∂t < 0) producing 

values higher than the previous maximum even without a net erosion from the bed (E - D > 0), an 

occurrence that is usually not possible in standard advection-diffusion problems. 
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In general, the value of α from Equation 22 cannot be calculated analytically. However, an approximate 

solution can be obtained by assuming logarithmic profile of velocity 

 

 
*

0

ln
u z

u
z

 
  

 
 (6-16) 

 

where z0 = 0:033ks; u* = bed-shear velocity; κ = the von Karman constant; and ks = bed roughness. It is 

assumed that the bed roughness to be equal to grain roughness thus ks = 3d90 (van Rijn, 1984a) is adopted 

where d90 = 90% particle diameter of sediment material and the simplified Rouse profile for the 

suspended sediment concentration 

 

 

0R

b

r

z
c C

z



 
  

 
 (6-17) 

 

based on a linear diffusivity profile, where R0 = w/ κ u*  is the Rouse number. The reference level (zr) is 

also taken as ks = 3d90. Huybrechts et al. (2010) propose a simplification of the Einstein integrals that 

provides the analytical solution 

 

 

*
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1

ln
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I


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 (6-18) 

 

where  zr
*
 = zr/h and the two integrals read 
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 (6-19) 

 

The depth-integration of the Rouse profile simplified as in Equation (6-17) gives an analytical relation 

between the mean (depth-averaged) concentration (C) and the reference concentration (Cb): 
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 (6-20) 

 

6.2.7. Numerical Solution 

The mathematical model solves Equations (6-1), (6-2) and (6-3) in a fully coupled manner. Following 

Siviglia and Toro (2009), the operator splitting method for Advection-Reaction-Diffusion Splitting 

(ARDS) is used. First, the advection-reaction part is computed at each time step by the Weight Average 

Flux (WAF) scheme, which is second-order accurate in space and time. An explicit finite volume 

conservative discretization of advective-reactive is adopted, and the time step is chosen according to the 

Courant-Friedrich-Levy (CFL) condition in order to ensure stability to the numerical scheme. Then, the 

solution of the first step is used as initial condition to solve the advection-diffusion problem by means of 

a non-linear version of the Crank-Nicolson method (Crank and Nicolson, 1947), an unconditionally stable 

implicit second-order finite difference method. The conservative form of the system of the governing 

Equations (6-1), (6-2) and (6-3) is given as follows: 

 

 
( )

t x x x

      
     

     
S U

U F U U
K( )  (6-21) 

 

where U = vector of unknowns; F(U) = flux vector; S = source term vector; K = diffusive tensor. 
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The Jacobian matrix associated to the flux is as follows: 
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where β and B are taken as unity. The advective-reactive part is described by non-linear system of 

differential equations shown in Equation (6-25). 
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 
 
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An explicit finite volume conservative discretization of advective-reactive gives 
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where Δt = time step; Δx = spatial step; i = spatial node; k = time step index; Fi+1/2 = numerical flux at x = 

xi+1/2  and Si = numerical source term. The weighted average state (U
k 

i+1/2) is determined by TVD version 

of WAF scheme (Toro, 2001) as shown in Equation (6-27). 
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c A 
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

   U U U U U  (6-27) 

 

where cj = SjΔt/Δx = Courant number related to wave speed; Sj and Aj = WAF limiter function. The 

numerical flux, for WAF Scheme, is finally obtained as: 

 

  1/2 1/2i i F F U  (6-28) 

 

The advective-diffusion problem is described by the following non-linear system of differential equations: 

 

 
t x x

   
  
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x

CA C
D A  (6-29) 

 

6.3. RESULTS AND DISCUSSION 

6.3.1. Model inputs and initial conditions 

First, sediment concentration and bed elevation data from a series of flume experiments that were 

conducted by Grams and Wilcock (2014) for fine sediment transport by suspension in immobile 

hemispherical bed (diameter = 150 mm) were used in this modelling work. The immobile hemispheres 

were arranged in tetrahedral packing (e.g. Frings et al., 2008) and experiments were run in 84 m long 

flume for uniform flow depth = 60 cm, channel bed slope = 0.0005, channel width = 2.74 m. The data 

were collected in a test section of 40 m located 17 m from downstream end of the flume outlet. Non-

uniform sediments, d50 = 130 µm were fed for 90 min and segments of experiments were run for a total 

duration of 661 min (see the details of Run 1 in Grams and Wilcock (2014)). The sediment feed rate were 

converted to volumetric concentration and used as an upstream boundary condition to test the numerical 

model developed in this study (see  Figure 6-3). In the modelling exercise clean water and a uniform flow 

was imposed as an initial condition and no fine sediment deposit in the hemispherical bed. The modelling 

was conducted assuming the fine sediments are nearly uniform with d50 = 130μm and d90 = 200μm. 
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Second, although flushing operations are common practices, exhaustive information is usually not 

available for the input data, the calibration and the validation of a modelling exercise like the one this 

study is presenting. One of the most documented case studies is the Cachí Reservoir flushing in Costa 

Rica (Brandt, 2005). Therefore, most of the input variables are adopted from that case for sediment wave 

dynamics and transport characterization. The main model inputs are summarized in Table 6-2. For sake of 

simplicity, the upstream boundary conditions are defined in the form of a rectangular shaped hydrograph 

and sedimentograph and are plotted (in black) along with the observed discharge (in blue) and sediment 

concentration (in green) data at 10 km downstream of the dam (see Figure 6-4). 

 

Initially, clean water (C = 0) and uniform flow are imposed along the whole river, whose slope is 

assumed constant. The channel cross-section is assumed rectangular and wide, so that just the discharge 

per unit width q = Q/B is considered. All sediment flushing modelling exercises presented in this study 

were conducted considering transport in immobile gravel bed, unless and otherwise stated, and the 

immobile coarse bed is assumed clean as an initial condition. The simulation domain length (Ld) is 500 

km so as to observe the sediment wave dynamics over a long spatial scale. 

 

Table 6-2.Input datasets used for modelling the sediment flushing of Cachí Reservoir 

Model parameter Value 

Base unit discharge qb 0.62 m
2 
s

-1
 

Peak  unit discharge qp 4.0 m
2 
s

-1
 

Release duration tp 3 hr 

Bed slope S0 0.007 

Base sediment concentration C0 0 g l
-1

 

Peak sediment concentration Cp 344.5 g l
-1

 

Grain size of fine sediments ds 230 μm  

Grainsize of immobile gravel dg 35 mm 

Sand porosity p 0.40 

Roughness of immobile gravel bed χg 26/(3dg)
1/6

 

Simulation period 30 hr 

Spatial steps Δx 50 m 

Courant-Friedrich-Levy CFL 0.95 
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Figure 6-3. The flow and concentration boundary conditions of experiment (Run 1) of Grams and 

Wilcock (2014) conducted in immobile bed conditions and used in numerical model testing 

 

Figure 6-4. The flow and concentration boundary conditions used for sediment flushing modelling of 

Cachí Reservoir 
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6.3.2. Model testing of fine sediment transport in immobile bed conditions  

Here the comparisons of the numerical simulation of fine sediment transport in immobile hemispherical 

bed and the corresponding experimental observations of Grams and Wilcock (2014) are presented where 

the boundary conditions in Figure 6-3 were used as model inputs. The main aim is to test the model 

performance and fine sediment entrainment or erosion relations from previous research and developed in 

Chapter 5. Thus, three fine sediment erosion or entrainment relations (presented in Section 6.2.4) of 

immobile bed condition were implemented in the numerical model. Figure 6-5 shows the thickness of fine 

sediment deposit simulated by the numerical model at selected time steps t = 90, 150, 300 and 660 min 

and compared to experimentally observed deposit thickness (solid plots) obtained from Grams and 

Wilcock (2014). Though the main purpose here is not to validate the model prediction of bed sediment 

thickness it is evident that there is a good agreement qualitatively in the spatial pattern of simulated 

sediment thickness for the different entrainment relations used. The predicted thickness of fine sediments 

by Grams and Wilcock (2014) formula shows that the deposited sediment in the first quarter of the test 

section is subsequently eroded and at time steps t = 300 and 660 min nearly all sediments are re-

suspended (no sediment deposit on the bed). While in the case of Cui et al. (2008) (diamonds) and 

formula developed in Chapter 5 (triangles) the simulated sediment deposit show higher thickness of 

deposit in the first quarter of the domain as observed in the data. But no sediment deposit is evident in the 

downstream three-fourth of the test section. It is worth noting that the model is not calibrated and the fine 

sediments are assumed uniform although the sediments fed during the experiments were non-uniform and 

so were the datasets used here. The transport of non-uniform sediments shows difference from uniform 

sediments even though the mean grain sizes are the same (Wu et al., 2000). This could be attributed to the 

hiding, exposure, and armouring among different size fractions and may significantly affect sediment 

transport and morphological changes (e.g. Wu et al., 2000). This indicates that the simulated sediment 

deposits may not be able to capture observations of non-uniform sediment experiments. Thus, direct 

comparison of the simulated and observed sediment deposits is not emphasized here. Nevertheless, the 

comparison of different entrainment relation is possible. The predictions by Cui et al. (2008) and formula 

developed in Chapter 5 show good agreements with the observations qualitatively and can be considered 

useful. Despite Grams and Wilcock (2014) relation was found to be reliable when applied in 2-D 

advection-diffusion model to predict non-uniform sediment transport (Grams and Wilcock, 2014), it is 

also worth noting that erosion rate could be over-predicted by Grams and Wilcock (2014) formula as 

discussed in Section 6.2.4. For instance for uniform sediment simulation conducted in this study less 

deposition was noticed as shown in Figure 6-5 and all deposited sediments, including sediment deep in 

the roughness elements, were entrained at the end of the simulation (refer to Figure 6-5 and Figure 6-6). 
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The description of variable gravel bed porosity as a function of sediment deposit or level in the immobile 

hemispherical bed is discussed. The bed porosity consideration allows estimation of sediment deposit 

thickness within the interstices of hemispherical bed. Two bed porosity parameterizations are considered 

to evaluate the effect: Φ < 1 and Φ = 1. In the latter case the bed porosity is assumed to be constant 

regardless of sediment depth but the entrainment is described as a function of depth of sediment deposit 

(thickness). In this consideration more storage volume (void) is available compared to Φ < 1 where 

porosity varies with fine sediment deposit in the interfacial sublayer of the immobile hemispherical bed. 

The behaviour of sediment deposition is found to be different when the variation in gravel bed porosity 

with sediment deposition in the immobile bed matrix is taken in to account as described in Section 6.2.5. 

Figure 6-6 shows that the elevation of sediment deposit below crest increased in all cases (entrainment 

formulations) showing the deposit thickness has increased when porosity is considered. The thick solid 

line shows the bottom of hemispheres and η - ζ = 0 indicates the crest. When porosity is considered a 

volume of sediment deposited in the case of constant porosity will have less deposit thickness than a 

similar volume deposited in the interstices. The consideration of porosity is important for two reasons: 

first it allows the entrainment relation use the actual depth of sediment deposit in the immobile layer to 

calculate entrainment rate, and second such consideration is also essential to model the clogged depth of 

sediment, which could be under-predicted when the porosity of immobile bed is not considered (Φ = 1). It 

could be also useful to design flushing discharges. In Figure 6-7 simulated sediment concentrations are 

plotted for time steps t = 90,150,300 and 660 min. It shows that the sediment concentration remains 

higher compared to the case with constant immobile bed porosity considerations. This could be argued in 

such a way that as the sand thickness is higher the entrainment rate will be higher resulting more 

sediments in suspension as far as the entrainment rate is not high enough to remove large portion of the 

deposited fine sediments. The figure also shows that the peak of sediment concentration is attenuated and 

delay in response of concentration when Φ = 1. This phenomenon is due to larger storage of fine 

sediments in the immobile bed matrix in the case of constant porosity (Φ = 1). Similar characteristics of 

sediment concentration can be noticed in longitudinal dispersion of tracers in river channels with dead 

zone storages (Davis and Atkinson, 2000). 
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Figure 6-5. The observed (black solid) and simulated fine sediment bed level in immobile hemispherical 

bed for Φ = 1. 

 

 



                                             

180                                                                                                                                                 CHAPTER 6 
 

   

 

Figure 6-6. The observed (black solid) and simulated fine sediment bed level below the crest of immobile 

hemispherical bed considering immobile bed porosity (Φ < 1) 
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Figure 6-7. The simulated fine sediment concentration for conditions with immobile bed porosity (Φ < 1) 

and Φ = 1 
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6.3.3. Modelling downstream sediment and hydrodynamic waves of flushing releases  

This section focuses on presentations of the results of the numerical model simulations of sediment 

flushing of Cachí Reservoir as case study where the boundary conditions in Figure 6-4 and model 

parameters in Table 6-2 were used as model inputs. The results focus on characteristics of downstream 

hydrodynamic and sediment wave dynamics, characteristics of wave celerity and its effect on sediment 

deposition, the effects of gravel bed roughness and porosity on sediment deposition and evaluation of 

selected fine sediment entrainment relations. The results are presented in the following sub-sections. 

6.3.3.1. Sediment and hydrodynamic waves 

The characteristics of sediment waves and hydrodynamic waves are evaluated based on simulated profiles 

of sediment concentration and flow depth. Figure 6-8 shows the simulated longitudinal profiles of the 

waves of flow depth and suspended sediment concentration, highlighting the different phases. At the 

initial stage after the release the two waves are in phase (Figure 6-8 a). As the waves travel downstream, 

they start to separate (Figure 6-8 b and c) with the separation distance increasing further downstream, and 

finally they become completely separated (Figure 6-8 d). Brandt (2005) noted an increasing time lag 

between the liquid and solid discharges observed at selected downstream stations during sediment 

flushing operations of the Cachí Reservoir as the two waves travel further downstream. Such physical 

phenomenon could contribute significantly to the spatial lag observed in simulated spatial dynamics of 

flow depth and sediment concentrations. Figure 6-8 also shows that the thickness of simulated deposition 

enhanced as the waves separate. It is also evident that most of the deposition occurs at the tail of the 

hydrodynamic wave since the energy to carry the fine sediments declines. At the same time, the 

concentration wave decreases in the region where there is sediment deposition. It can be argued that 

spatial interaction between the two waves could control the spatial pattern of the deposition of released 

fine sediments. The temporal pattern of simulated flow depth, deposition thickness and concentration at 

different time steps (Figure 6-9) also indicate an increasing lag in time as we go further downstream from 

the release point (from 5 km to 150 km), this agrees qualitatively with Brandt (2005) field observations. 

The peak of the flow depth arrives earlier than the peak of sediment concentration and large concentration 

and sediment deposit are evident on the falling limb of the flow depth. In this particular case, the 

subsequent clean-up of the deposited sediments from the immobile coarse bed is quite evident since the 

base flow carries enough energy to entrain all the deposited sediments. 



                                             

183                                                                                                                                                 CHAPTER 6 
 

   

 

Figure 6-8. The various phases of the spatial wave dynamics: depth (H) (blue line), concentration (C) 

(dark broken line) and deposition thickness (η) (red line) at selected time steps 
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Figure 6-9. The various phases of the temporal wave dynamics: depth (H) (blue line), concentration (C) 

(dark broken line) and deposition thickness (η) (red line) at selected downstream stations 
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6.3.3.2. Effect of sediment wave celerity 

6.3.3.2.1. Wave celerity factor: Characteristics 

The relationship between the celerity factor and selected hydraulic variables (discharge, depth, Rouse 

number, and relative roughness) are analysed for five different grain sizes. Figure 6-10 shows the plots of 

the relationships of depth, discharge, Rouse number, and relative roughness with α. The calculated range 

of variation of α applied in the model is between 0.93 and 0.97 (shown in Figure 6-10 for d50 = 230μm). 

There is high dependence of α on flow depth and discharge for a given sediment grain size (Figure 6-10a 

and b). As the flow depth or discharge increases the celerity factor generally increases regardless of the 

grain size. The celerity factor for fine sediment particles is higher since the Rouse number is relatively 

small as a result giving a more uniform concentration profile. For increasing Rouse numbers the celerity 

factor decreases regardless the sediment grain size (Figure 6-10c). The relationship between relative bed 

roughness and the celerity factor (Figure 6-10d) is similar to the case of Rouse number such that as the 

relative bed roughness increases the celerity factor decreases regardless of the grain size. We also 

investigated the computed celerity factor for two different description of the reference height (zr). We 

found that the ranges of variation of the computed celerity factor α with depth and discharge for the 

different grain sizes remained the same for zr = 2d50 and zr = 3d90. Thus, defining the reference height (zr) 

as 2d50 (Zyserman and Fredsoe, 1994) or as 3d90 (e.g. van Rijn, 1984a) does not affect the estimated value 

of α. 

6.3.3.2.2. Wave celerity factor: Effects on sediment and hydrodynamic waves 

The effect of wave celerity on sediment and hydrodynamic wave interactions and sediment deposition are 

evaluated based on a correction on the advection velocity of sediment by taking into account the vertical 

profile of concentrations and flow velocities. Figure 6-11  shows the simulated longitudinal profiles of 

suspended sediment and the hydrodynamic waves at different time steps for two cases: when the sediment 

wave celerity is corrected (α < 1) and when the regular assumption that the sediment wave travels with 

average flow velocity (α = 1). In the latter case (shown in Figure 6-11 in broken lines) less deposition 

thickness is observed comparatively since the wave separation is less enhanced. This subsequently 

resulted in an increase in the local sediment concentration as noticed in Figure 6-11. This agrees well with 

two-dimensional (2-D) model simulation results reported by Huybrechts et al. (2010). The total volume of 

simulated sediment deposit per unit width (
sV ), in the simulation domain, is computed by integrating the 

depth over the length of simulation domain (
0

dL

sV dx  ) for the two cases: with (α < 1) and without (α 

= 1) the celerity factor. 
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Figure 6-10. The relationship of celerity factor with flow depth (H), discharge (q), Rouse number (R0), 

and relative roughness (z*r ) 

 

Figure 6-12 (top) shows the difference between the estimates for α < 1 and α = 1. It shows that the 

volume of sediment deposit is higher when α < 1. The length of sediment deposit is also computed, for 

sediment thickness larger than 1.0 mm, for the two cases. Figure 6-12 (bottom) shows that the length of 

sediment deposit is higher (up to 6 - 8 km) when α = 1 and the hydrodynamic wave tends to spread the 

sediment over a larger area since the wave separation is less. Generally, it can be argued that the regions 

of sediment deposition are relatively different. It is also observed (Figure 6-11 c, d) that without celerity 

factor the suspended load is over-predicted compared to the case with α < 1. Huybrechts et al. (2010) 

reported a good agreement between 2-D model simulations of suspended load with three-dimensional (3-

D) model results when celerity factor was taken into account in 2-D model. The effect of the celerity 

factor is also more evident and higher on the suspended load than on the concentration since the 
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estimation of the suspended sediment load is directly related to the correction factor. Particularly, the 

wave front of the suspended load is larger when α = 1 since the peak of the concentration and the flow 

depth at the tail of hydrodynamic wave, which are lower in the case of α < 1, are higher. The temporal 

wave dynamics are presented in Figure D-12 (Appendix D). 

 

Figure 6-11. The various phases of the spatial wave dynamics with celerity correction α < 1 (solid lines) 

and without (α= 1, broken lines): flow depth (h) (blue line), concentration (C) (dark line), and suspended 

load (qs) (green line) and deposition thickness (η) (red line) 
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The effect of wave celerity factor when channel bed is dominated by sand (fine sediment) materials is 

also evaluated. This enables to evaluate its effect on the wave dynamics and deposition when the channel 

bed is smooth. Figure 6-13 shows the simulated longitudinal profile of suspended sediment and the 

hydrodynamic waves at different time steps for two cases when the released sediments are transported in 

sand bed condition. The sediment and hydrodynamic waves are similar to the characteristics observed in 

the immobile bed condition. Nevertheless, the time and distance at which sediment and hydrodynamic 

waves completely separate are quite different. At time step t = 28 hr the waves become more or less 

completely separated in immobile bed conditions nevertheless in the latter case this occurs at later time 

steps (see Figure 6-13). Thus, it could be argued that in channel composed of smooth bed sediments will 

be deposited further downstream. The effect of wave celerity on the volume of sediment deposits showed 

also similar to the case noted in immobile bed condition (Figure 6-14, top). However, the effect on length 

of sediment deposit was rather opposite where a larger length of sediment deposit was noticed when α < 1 

(Figure 6-14, bottom). Overall, the sediment wave celerity affects the spatial pattern of sediment 

deposition of released fine sediments and its proper implementation in numerical model is expected to 

improve the modelling of suspended sediment deposition and transport. 

 

Figure 6-12. The difference between volume of simulated sediment deposit per unit width and length for 

α< 1 and α= 1 
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The characteristics of sediment wave for no bed exchange (E - D = 0) is analysed to highlight the effect 

of additional terms in sediment continuity equation when α is taken in to account (refer Equation (6-15)). 

Figure 6-15 shows the simulated longitudinal sediment concentration and loads at time step t = 20 hr for α 

< 1 and α = 1 respectively when there is no bed exchange. When the celerity factor is applied there is 

increment of sediment concentration (Cp = 370.00 g/l), larger than concentration applied at the boundary 

(Cp = 344.50 g/l), at the tail of concentration wave and at the tail of the hydrodynamic wave. When the 

celerity factor is not applied (α = 1) such local increase in concentration is not evident at all. . As shown 

in Equation (6-15), the last term of the equation contributes to this behaviour in concentration where there 

is a gradient of flow depth in time. On the other hand, as shown in Figure 6-15 (in green) the sediment 

load shows a little decrease at its front with its peak lower than the case of α = 1. Figure 6-16  shows the 

time evolution of sediment load and concentration at selected downstream station (x = 15 km and 80 km 

from release point) where sediment and hydrodynamic waves are together and on verge of separation in 

time respectively. The elevated concentration for α < 1 exists at each station but with higher increase 

when the recession limb of depth gradient is higher and decreases when the hydrodynamic wave flattens. 

With the celerity factor sediment load wave shows some decrease at its front at the front of the 

hydrodynamic wave (see Figure 6-16 a & b) though it is too little. The effect of the celerity factor on the 

local increment of sediment concentration is evident only on the tail of the spatial hydrodynamic wave 

and recession limb of rising limb temporal dynamics of hydrodynamic wave (region between the vertical 

dark lines). When the two waves are fully separated (Figure 6-16b) the local increment gradually 

decreases since the gradient of the hydrodynamic wave is separated from the sediment wave. Overall, the 

local increase in sediment concentration, due to the celerity factor, does not increase the sediment load. 

Finally, the last term in Equation (6-15) as well as the celerity factor can be relevant in modelling 

suspended sediment transport. 
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Figure 6-13. The various phases of the spatial wave dynamics with celerity correction α< 1 (solid lines) 

and without (α = 1, broken lines) in sand bed condition: flow depth (h) (blue line), concentration (C) (dark 

line), suspended load (qs) (green line) and deposition thickness (η) (red line) 
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Figure 6-14.  The difference between volume of simulated sediment deposit per unit width and length for 

α < 1 and α = 1 in sand bed condition 

 

Figure 6-15. Sediment concentration C and sediment load qs at t = 20 hr for α < 1 (solid lines) and α = 1 

(broken lines) when E - D = 0 
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Figure 6-16. Sediment concentration C and sediment load qs at distance = 15 km (a) and 80 km (b) for α < 

1 (solid lines) and α = 1 (broken lines) when E - D = 0 
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6.3.3.3. Effect of variable bed roughness 

The effect of bed roughness description, applied for computation of the flow hydrodynamics, on 

simulated sediment deposition and flow depth is analysed. Figure 6-17 shows simulated longitudinal 

profiles of sediment deposition thickness, flow depth and concentration for variable and constant bed 

roughness descriptions. When the bed roughness is variable (described as a function of sand level in the 

roughness elements) the flow depth (blue solid line in Figure 6-17) decreases in region of sediment 

deposition and increases when there is no deposit. This is driven by the changes in bed roughness since 

the bed gets smoother as the sand level increases in the interfacial sublayer of gravel roughness elements 

thus reducing the bed roughness. On the other hand when the bed roughness is constant there is no change 

in the flow depth (Figure 6-17, blue broken line) in regions of sediment deposition. The flow depth is 

shallower compared to variable roughness case and the peak of the hydrodynamic wave is even much 

lower. The hydrodynamic wave also travels faster in the case of constant roughness description which 

could affect the location of sediment deposition in the simulation domain. Nevertheless, rather similar 

thickness of sediment deposit per unit length is observed in the two cases although the variable bed 

roughness case showed a bit higher.  

 

Figure 6-17. Simulated flow depth, sediment concentration and deposition thickness for variable (solid 

lines) and constant (broken) bed roughness at time step t = 27 hr 
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This can be noticed from estimates of the difference in the simulated thickness of sediment deposit per 

unit length (the measure of sediment thickness) of the two cases which is very small, a difference not 

larger than 1.5 mm (Figure 6-18, top). The length of deposition (indicator of the area covered by sediment 

deposition), on the other hand, is found to be larger for rough bed as shown in Figure 6-18 (bottom). 

 

Figure 6-18. The difference between sediment deposit per unit length for variable (solid lines) and 

constant (broken) bed roughness 

 

6.3.3.4. Evaluation of entrainment relations 

The reliable estimation of the bottom sediment flux is the most important and challenging component in 

suspended sediment transport modelling, especially due to the empiricism of many of existing 

relationships. In many occasions the rate of entrainment are expressed as near bed equilibrium 

concentration and four different relations (VR, SM, GP and ZF) are tested considering sand bed 

condition. Estimates of entrainment rate (CE, equilibrium near bed concentration) by ZF and GP relations 

are larger than those of VR and MS (Figure 6-19, top). Such differences can be attributed to the difference 

in reference level above the bed where the near bed equilibrium sediment concentration is estimated, 

some very close to the bed, as a large as bed grain size (e.g. ZF), others further above the bed, a fraction 

of the flow depth (e.g. GP). The reference level is important since the prediction of erosion rate depends 
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on the estimated sediment concentration at the reference level, in addition to the grain size and shear 

stress.  

 

 

Figure 6-19. Comparison between different entrainment relation formulas (a) and deposition profiles for 

SM and VR formulations (b) at t = 18 hr 

The higher estimate of entrainment rate by GP can be related to higher exponent of the shear stress (i.e. 

shear velocity) in the empirical equation which could lead to higher erosion rate when the flow velocity is 

larger (Garcia, personal communication) such as in the case of flushing flows (where in this case θ =  5.5 
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to 18). The estimate by ZF is the largest among all and such over-estimation is more likely related to the 

definition of reference level (= 2d50), which is very close to the bed given the bed sediments are very fine 

(d50 = 230μm) and also high bed shear stress. The high entrainment rate by ZF is also highlighted by Cao 

(1999). SM and VR estimates of erosion rate are relatively in close agreement with GP although this 

agreement is not reflected in simulated depth of deposition (Figure 6-19, bottom).  

 

Figure 6-20. Comparison of simulated sediment deposition volume, length and thickness for different 

entrainment relations 

The overall observation entails that the thickness of the simulated sediment deposits are directly related to 

the estimates of the entrainment rates since deposition rate was estimated with the same relation in all 

cases. The effect on simulated sediment deposition thickness can be noticed from Figure 6-19 (bottom) 

and Figure 6-20. Larger volumes of sediment deposition are observed in the case of VR and SM (Figure 

6-20). Thus, selection of entrainment relations to study events such as flushing waves at large spatial 

scales need to take into account such effects. There are some studies that indicate VR is well suited in 

large scale applications (e.g. Duan and Nanda, 2006; Harris and Wiberg, 2001; Duan and Julien, 2010) 

and in high velocity flow and transport conditions (Voogt et al., 1991) and using this relation can be 

useful. 
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6.3.4. Analysis of release scenarios of sediment flushing  

In this section the spatial patterns of sediment deposition for selected flushing releases are investigated. 

The input parameters indicated in Table 6-2 were used except those related to flow and sediment 

boundary conditions.  The flushing release scenarios are designed based on different peak to base flows as 

shown in Figure 6-21 (in broken lines is discharge). For all selected release scenarios the total quantity of 

flushed sediment loads and liquid discharges are equal and the only difference lies on ratio of base to peak 

flow discharge and temporal pattern of the concentration. The base flow has limited capacity to carry all 

the released fine sediments, so more deposition is anticipated for large peak-to-base flow ratios. Figure 

6-22 shows the simulated volume, thickness and length of sediment deposition in the simulation domain 

after the release of sediments for different peak-to-base flow ratios (qp/qb = 4.7, 6.25, 7.80 and 13.0). The 

total volume of sediment deposit (Vs) for releases of small ratios (qp/qb = 4.7 and 6.25) are observed to be 

lower than larger ratios (qp/qb = 7.8 and 13) mainly in the falling limb of the releases (Figure 6-22, top). 

The length of sediment deposition regions shows that it was larger for lower ratios (qp/qb = 4.7 and 6.25) 

in the rising limb of the releases and smaller in the falling lime compared to larger ratio releases (qp/qb = 

7.80 and 13.0) (Figure 6-22, middle).  

 

Figure 6-21.  The different release scenarios designed based on peak to base release discharges: 

concentration (C) (solid lines) and discharge per unit width (q) (broken lines) 
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In Figure 6-22 (bottom) the volume of sediment deposit is plotted against the corresponding length (area 

coverage). The thickness of sediment deposit (Vs /L) shows a similar pattern to the sediment volume 

(Figure 6-22, top) where the higher the release ratio the higher is the deposit thickness. The results 

indicate that the ratio of the peak-to-base flow can significantly control the volume, thickness and area 

coverage of sediments that deposit during flushing operations. The release with highest ratio produced the 

longest and thickest region of deposition, while the one with the lowest ratio produced the shortest and 

thinnest. Thus, a proper selection of this ratio might help to plan a flushing operation with minimal 

deposition and reduce the downstream environmental impacts. 

 

Figure 6-22. Comparison of volume of sediment deposit (top), length of sediment deposition (middle) and 

volume of sediment deposit per unit length (bottom) for selected peak-to-base flow releases 
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Figure 6-23. The different release scenarios (intermittent) followed by clear water releases: broken lines 

(q) and solid lines (C) 

Five scenarios which consider sediment flushing followed by clear water releases for two conditions: 

single flushing and intermittent (two peak releases separated by no flushing period) flushing (refer Figure 



                                             

200                                                                                                                                                 CHAPTER 6 
 

   

6-23) are evaluated for sediment deposition with a base release, qb = 0.32 m
2
/s and peak release of 

duration 4hrs, qp = 3.20 m
2
/s. The duration of clear water releases in all scenarios are also the same.  

 

Figure 6-24. Comparison of volume of sediment deposit (top), length of sediment deposition (middle) and 

volume of sediment deposit per unit length (bottom) for selected flushing followed by clear water releases 

In all scenarios the amount and temporal pattern of concentration and the total duration of peak releases 

are the same. The scenarios are designed by selectively changing the released quantity of liquid 

discharges. The total quantity of liquid and solid discharges in scenario 1, 2 and 3 are the same except 

scenario 4 and 5 where additional clear water releases are introduced. In scenario 1 and 2 the peak to base 
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flow is 10 but released in single and intermittent patterns respectively. In scenario 3 inter-flushing clear 

water release are assumed. In scenario 4 and 5 inter-flushing clear water releases and post-flushing clear 

water releases are assumed. Figure 6-24 shows the simulated sediment deposition volume, proportion and 

length computed over the entire length of the simulation domain.  The proportion of volume of sediment 

deposition for scenario 1 is larger than that of scenario 2 despite the same quantity of liquid and solid 

discharge are released. The intermittent release (scenario 2) shows relatively lower proportion of sediment 

deposition at the end of simulation but large sediment deposition can be noticed during the inter-flushing 

period (11-15 hrs).   When the inter-flushing clear water release was increased from qb to 0.5qp (1.6 m
2
/s) 

(scenario 3)  no significant difference in the proportion of volume sediment deposit was noticed at the end 

of simulation  when compared to scenario 2 except during the inter-flushing release period where the 

deposition noticed was less (Figure 6-24, middle).  Scenario 4 and 5 show the deposition patterns when 

post-flushing clear water releases are considered. It can be noticed that the proportion of sediment deposit 

in scenario 4 is much lower than scenario 1 at the end of simulation and this shows that post flushing 

clear water release reduced the deposition significantly (Figure 6-24, middle). In scenario 5 the proportion 

is even much lower since clear water releases were applied during the inter-flushing period and post-

flushing (Figure 6-24, middle). When scenario 4 and 5 are compared a single flushing with sufficient 

clear water release showed similar proportion of deposition as scenario 5 at the end of simulation (Figure 

6-24, middle).  The total length of sediment deposit at the end of simulation was the lowest for scenario 5 

but for all intermittent releases the length remained nearly the same and higher than scenario 4 (Figure 

6-24, bottom). On one hand, this shows that a single flushing release followed by clear water release 

could reduce area or length of sediment deposition.  On the other hand, intermittent flushing releases 

followed by inter-flushing and post-flushing clear water releases does not necessarily decrease the volume 

and length of sediment deposition. Single flushing releases of large peaks are more likely to reduce length 

and depth or volume of deposition.  This agrees with argument that rapid release of the fine sediments is 

less likely to increase sediment infiltration (or deposition) (Wooster et al., 2008).  It was also indicated 

that high rate of releases of short duration have minimal ecological impacts (Major et al., 2008; Downs et 

al., 2009).  Figure D-13 (Appendix D) shows the simulated volume of suspension (as percentage of total 

sediment volume) and peak concentration (as proportion of input peak) in simulation domain for 

simulation period. The volume of suspended sediment at the end of simulation was smaller in single 

release scenario followed by scenario 3 and 4. The peak of sediment concentration is higher (could go 

even larger than the concentration of input) for single releases but lasted shorter than intermittent releases 

(e.g. scenario 3 and 4). The intermittent release reduced sediment peak for the duration of clear water 

releases but high suspended concentration was sustained for longer period than the single release. This 

result may contradict with management strategy proposed by Crosa et al. (2010) and Espa et al. (2013). 
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However, to keep sediment concentration lower large inter-flushing clear water must be available which 

would be practically constrained from water conservation point of view. 

 

6.4. CONCLUSIONS 

The model developed in this study is aimed to study the downstream transport dynamics of suspended 

sediments released during sediment flushing operations. The model is simplified to observe large-scale 

sediment and hydrodynamic waves. The model is first tested with laboratory data of fine sediment 

transport in immobile coarse bed for three entrainment relations developed for immobile coarse bed 

conditions and satisfactory agreement was observed at least qualitatively. The erosion rate relation 

developed in this study (Chapter 5) is also tested in the model and showed encouraging results. The 

consideration of variable bed porosity in immobile bed transport condition enabled to quantify the 

deposition thickness (clogged depth) in the immobile bed roughness elements and its effect on sediment 

concentration. It is observed that sediment peak concentration was attenuated and lagged when bed 

porosity is considered due to sediment storage in the immobile bed. We studied how the interaction 

between the waves of suspended sediments and liquid discharge controls the sediment deposition process 

during flushing operations. The effect of the sediment wave celerity on the wave interaction and 

deposition processes has been investigated. It is observed that the wave celerity controls the wave 

interaction to some extent especially when the channel bed materials are fine sediments and thus the 

traditional assumption of representing wave celerity as equal to the average flow velocity may lead to 

under-prediction of sediment deposition. When the channel bed was covered by immobile gravel 

materials, the effect of the celerity factor on sediment deposition was rather less. The study also 

investigated the dependence of the celerity factor on flow depth, discharge, Rouse number and relative 

roughness. There is generally an increasing trend in celerity factor with depth and discharge, while a 

decreasing trend is observed with Rouse number and relative roughness. 

 

The description of variable bed roughness used in the hydrodynamic computation affected the depth and 

speed of the hydrodynamic wave and the location of its front. As a result larger length of sediment deposit 

was noted even though the thickness was not different from constant bed roughness. It could be also 

highlighted that some feedbacks can occur between the propagation of the flood wave and the transport 

and deposition of fine sediments. The most important effect is the reduction of the bed roughness in the 

regions of deposition. Since the deposition typically occurs at the tail of the hydrodynamic wave, the flow 

in this region tends to accelerate. It showed that description of changes in bed roughness as a function of 

deposition thickness in the rough immobile bed has implication both on the flow field (hydrodynamic 
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computation) and sediment deposition and must be taken into account in modelling exercise. The other 

important observation of the study is that there is high dependence of deposition on the ratio of peak-to-

base flow during sediment flushing releases where highest ratios produced the longest and thickest region 

of deposition, while the one with the lowest ratio produced the shortest and thinnest. Thus, a proper 

selection of this ratio might help to plan a flushing operation with minimal deposition and reduce the 

downstream environmental impacts. The evaluation of single and intermittent flushing operations 

followed by inter- and post- flushing clear water releases indicated that a single flushing release followed 

by clear water release could reduce area or length of sediment deposition. The other important 

observation is that an intermittent flushing release followed by inter-flushing and post-flushing clear 

water releases does not necessarily decrease the volume and length of sediment deposition. Single 

flushing releases of large peaks are more likely to reduce length and depth or volume of deposition.  The 

intermittent release reduced sediment peak for the duration of clear water releases but high suspended 

concentration was sustained for longer period than the single release. However, to keep sediment 

concentration lower, large inter-flushing clear water must be available which would be practically 

constrained from water conservation point of view. 

 

Finally, the evaluation of various entrainment relations of sand bed condition implemented in the model 

showed very distinct entrainment rates and hence different amounts of deposition. This suggests that the 

entrainment relations require careful evaluation for their applicability for large scale and high velocity 

transport conditions such as flushing waves, which are observed at large spatial scales and are 

characterized by relatively high velocities. In conclusion, the results presented in this study are based on 

several assumptions. The assumption most important is that there is no sediment supply from the bed 

(fine sediment bed level in immobile coarse bed is negligible in the initial state) and only the sediments 

supplied from the upstream are entrained and transported. The effect of changes of bed slope and channel 

geometry and dimensions (e.g., width) was not taken in to account in this first analysis, although they are 

undoubtedly important and can be among the main drivers of the deposition patterns over large scales. 

Finally, it is important to note that this one-dimensional study did not consider the differential deposition 

that typically occurs on the regions of the cross-section with higher elevation during the falling phase of 

the hydrodynamic wave. The model also assumed the suspended sediments are uniform in grain size. All 

these factors could be introduced in a relatively easy way in the model, but the analysis of the individual 

factors would become quite complex, thus jeopardizing the kind of sensitivity analysis that this study has 

proposed in this work. 
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7. SUMMARY 

The growing demand for energy and water resources has increased the global boom of dam developments 

in many of ecologically important rivers across the globe. The sedimentation problems associated with 

dams have become one of the challenges for policy makers and scientific community and needs urgent 

and sustainable solutions for next generation of dam users. In this regards, sediment flushing has become 

a widely used strategy to overcome sedimentation problems in many reservoirs. On the one hand, the 

downstream environmental impacts associated with flushing releases have become major concern and 

there is insufficient knowledge to predict the impacts. On the other hand, there is a lack of detailed and 

comprehensive studies to understand the mechanism of transport and deposition of the released fine 

sediments in rarely transported coarse channel beds downstream of these dams. Thus, there are necessities 

for scientific studies that address the gaps in knowledge and propose better management strategy. This 

study is one of such attempts which focused on describing downstream impacts of sediment flushing and 

explore processes and dynamics of fine sediment transport in immobile coarse bed such as gravels. 

Fine sediment release by flushing operations triggers a cascade of processes that cause complex responses 

with numerous downstream impacts. This study reports important negative implications of the practice 

and proposes management strategies. First, based on previously published research, a conceptual 

framework (Figure 2-2) of the first order, second order and third order impacts of fine sediment releases is 

developed. The most important first order impacts are extremely high sediment concentration and load, 

high level of sediment bound contaminants and downstream flooding. The high sediment concentration 

and load causes aggradation in channel and banks of downstream river although channel degradation 

could occur during initial stage of the release. The negative biological impacts of sediment releases are 

mainly due to the direct effects of increased flow and suspended sediments, nutrients and contaminants 

during flushing and downstream morphological alterations of river habitats following sedimentation of 

the released sediments. Of all impacts, biological impacts are the most studied impacts with most 

emphasis on fish and macro-invertebrates. The impacts on vegetation dynamics is less documented 

although it is reported that vegetation growth is initiated by nutrient rich fine sediment releases that 

eventually alter downstream channel morphology and flooding pattern. The impacts of contaminants 

released during sediment flushing are not documented in most of the case studies which highlights 

particular attention. The spatial and temporal scales of adverse downstream impacts varied from case to 

case. Generally it is found out that the downstream impacts of sediment flushing were proportional to the 

distance from the dam. The sediment concentration, grain size distribution of deposits, channel and bank 

aggradation, effects on fish and macro-invertebrates, effect on dissolved oxygen concentration decreases 
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with distance away from the dam. The grain size of the released sediments and the timing of subsequent 

flooding control the temporal scale and long-term morphologic impacts of sediment flushing. The 

temporal scale of impacts on macro-invertebrates could span from few weeks or a month to several 

months while the effect on fish could last for a number of years. The impacts on channel vegetation are 

reported as driven by many years of flushing activities. Although the magnitude of adverse impacts of 

sediment flushing and the time required for recovery are generally site specific this study proposed 

general recommendations for best management practices (Section 2.4).  

 

Figure 7-1. The conceptual framework of important processes of flushing releases that were the focus of 

this study where D = deposition; E = erosion; Fd = drag force; τ = total shear stress; τe = effective shear 

stress in interfacial sublayer; Φ = gravel porosity profile.  

As aforementioned, the downstream biological impacts of flushing are mainly related to sediment 

depositions, during and following the release, in channel habitats that comprise gravels and cobbles. Thus, 

this study focused on understanding the overall downstream flow and transport dynamics associated with 

sediment flushing.  A general framework that spans from the release point of fine sediments to their 
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downstream propagation and the interactions with river channel bed composed of coarse immobile gravel 

bed is developed. Figure 7-1 shows the general conceptual framework of the study. 

Better management of sediment flushing activities is aided by best understanding of the underlying 

downstream processes of fine sediment transport. Thus, investigating the mechanism of fine sediment 

deposition, erosion and transport in coarse immobile gravel bed is a step forward. A laboratory 

experiment of fine sediment transport in immobile gravel bed is conducted. First, gravel bed roughness 

characteristics, porosity and roughness density were derived from gravel surface elevation data. These 

variables are essential components that govern the flow hydrodynamics of gravel bed. The elevation 

errors noticed in gravel surface elevation data were characterized and successfully removed by 

developing a spatial filter (nAMDF) which could be used for any other elevation data with similar errors 

such as Terrestrial Laser Scanner (TLS). A theoretical relation of roughness density for coarse gravel bed 

is proposed and its relevance for estimating drag force (Fd) and drag coefficient in rough bed is presented. 

The analysis also identified interfacial sublayer, an interface in between surface and subsurface flow, that 

governs flow structure and bed exchange (erosion and deposition) (Figure 7-1, top). 

This study presents a new technique that enables direct measurement of fine sediment erosion in 

immobile gravel bed in running water. The technique can be very useful to monitor rapid bed evolutions 

such as in dam-break transport at laboratory scale. In connection to this, ten different experiments were 

conducted to characterize fine sediment erosion in gravel bed (d50 = 24.89 mm) and develop a relation to 

predict it. The most important observation from the experiments was the spatial heterogeneity of erosion 

rate where higher erosion rate was observed in stoss side of gravel particles than the lee side. This agreed 

with sweep and ejection patterns in turbulent flow structure of rough bed flow and entrainment rate 

measurements in ripple beds from previous research. Even though turbulent flow structures were not 

measured in this study it was possible to relate the results with measurements conducted in similar bed 

configurations. This is a first work of direct measurement of erosion rate and characterizing its spatial 

heterogeneity in gravel bed that are driven by complex orientation of the roughness elements and 

turbulent flow structures. It is also found out that increase in gravel roughness had led to increased 

erosion rate but no significant change in stream-wise velocity. The vertical profile of erosion rate in the 

roughness elements of gravel showed a linear decrease but the temporal evolution of fine sediment bed 

level in the roughness elements was found to decay exponentially. Moreover, the temporal pattern of the 

total depth of erosion in the roughness elements is predictable with an exponential relation. 

This study investigated drag force (Fd) profile in the interfacial sublayer of clean gravel bed and found out 

that it is scaled well with roughness density for all experimental data under consideration. This allowed 
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describing the effective shear stress distribution (τe) available for fine sediment entrainment with an 

empirical equation. Figure 7-1 (top) shows the conceptual distribution of both effective shear stress and 

drag force within gravel matrix. With this physical background a new relation of non-equilibrium fine 

sediment erosion rate in immobile gravel bed is proposed. The new relation is the non-equilibrium pick-

up rate function of van Rijn (1984b) in which the empirically predicted shear stress in the roughness layer 

is implemented. The most important finding of this study is that if the shear stress distribution in the 

interfacial sublayer is predicted, a relation for sand bed condition can be applied to predict fine sediment 

erosion rate in immobile gravel bed. This approach is conceptually superior to previous approaches where 

erosion rate in sand bed condition is scaled empirically for various fine sediment bed level within the 

interfacial sublayer. 

The interaction between hydrodynamic and sediment wave dynamics generated during flushing 

operations is an important process that control the deposition of fine sediments. In Figure 7-1 the spatial 

lag between hydrodynamic (solid line) and sediment (broken line) wave and potential zone (in box) of 

deposition as the waves tend to separate is depicted in a conceptual model. In previous research a glimpse 

of the role of time lag between liquid and solid discharge on sediment deposition was highlighted. This 

study focused on the effect of the interactions on spatial pattern of sediment deposition which would be of 

practical use.  A 1-D model of suspended sediment transport was developed comprising major processes 

that include sediment wave celerity correction, variable bed roughness, bed exchange in immobile bed, 

hindered settling velocity and rough bed porosity.  The model performance was found to be satisfactory to 

predict fine sediment transport in mobile bed qualitatively. The proposed erosion rate relation showed 

encouraging results when implemented in the 1-D model. The immobile bed porosity allowed to model 

clogged depth of fine sediments and found to affect concentration wave by attenuating its peak and 

enhancing the time lag due to increased sediment storage. The effect of the celerity factor on sediment 

deposition was rather less in immobile coarse bed but its effect could be significant for sand bed 

conditions as reported in Tarekegn et al. (2014). Theoretical investigation of the behaviour of celerity 

factor showed that an increasing trend in celerity factor with depth and discharge, while a decreasing 

trend was observed with Rouse number and relative roughness. The study also showed that changes in 

bed roughness by fine sediment deposition in the rough immobile bed modified both the flow field and 

sediment deposition. This was verified by larger length of sediment deposit noted when variable 

roughness was considered. Model investigations of fine sediment release scenarios showed high 

dependence of deposition on the ratio of peak-to-base flow where highest ratios produced the longest and 

thickest region of deposition while those with the lowest ratio produced the shortest and thinnest. The 

evaluation of single and intermittent flushing operations followed by inter- and post-flushing clear water 
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releases indicated that a single flushing release followed by clear water release could reduce area or 

length of sediment deposition.  The other important observation is that intermittent flushing releases 

followed by inter-flushing and post-flushing clear water releases do not necessarily decrease the volume 

and length of sediment deposition. Single flushing releases of large peaks are more likely to reduce length 

and depth or volume of deposition which conform to management strategies proposed in Chapter 2 (e.g. 

Major et al., 2008; Downs et al., 2009; Wooster et al., 2008).  The duration of high concentration for 

intermittent releases might be higher unless large quantity of inter-flushing clear water releases is made 

available and this could limit the use of management strategy proposed in Chapter 2 (e.g. Espa et al., 

2013; Crosa et al., 2010). 

Finally, sediment flushing activities seem to be a viable technique for managing sedimentation as far as 

dam developments grow at current pace. The impacts will remain challenging and recommending 

management strategies and alternatives for managers and policy makers remains in the hands of scientists.  
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 Figures related to the outputs of  gravel surface data analysis Appendix A

 

 

 

Figure A-1. The distribution of β of surface elevation of sphere bed for AMNF (R = 1.0 -5.0 mm) 

 

Figure A-2. The distribution of β of surface elevation of gravel for nAMDF (R =4mm and ε = 0 - 0.5mm) 
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 Figures related to the outputs of  image analysis Appendix B

 

 

Figure B-3. Reference image to identify regions of sand and gravel along the laser line (Plane 1) 

 

 

Figure B-4. Reference image to identify regions of sand and gravel along the laser line (Plane 2) 

 

Figure B-5. Image positions of all laser lines that are used to estimate erosion rate (Plane 2, full sand 

cover) 
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Figure B-6. Estimation of calibration rode length used to estimate horizontal scale of images 

 

 

Figure B-7. Depth of erosion estimates for partial sand cover condition based on fine sediment bed level 

∆t = 0.24s and ∆t = 4.8s (Plane 1) 



                                             

229                                                                                                                                                APPENDICES 
 

  

 Figures related to analysis  of shear stress distribution in gravels bed flow from Appendix C

experiments reported in literatures 

 

Figure C-8. Velocity profile in the interfacial sublayer of gravel bed estimated from experiments of 

published research 

 

Figure C-9. The relationship between porosity and shear stress in interfacial sublayer estimated from 

experiments of published research 
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Figure C-10. Empirical coefficients (C0 and C1) of erosion rate prediction 
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Figure C-11. Observed dimensionless erosion rates plotted against T estimate from momentum supply 
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 Figures related to temporal dynamics of sediment flushing Appendix D

 

 

 

Figure D-12. The various phases of the temporal wave dynamics with celerity correction α < 1 (solid 

lines) and without (α = 1, broken lines): flow depth (h) (blue line), concentration (C) (dark line), and 

suspended load (qs) (green line) and deposition thickness (η) (red line) 
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Figure D-13. Comparison of volume of sediment in suspension (top) and the proportion of peak of 

concentration in the simulation domain (bottom) for selected flushing followed by clear water releases 

(Cinput peak = peak of upstream boundary condition and Cpeak = peak of concentration in simulation domain 

at a given time step) 
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