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 Abstract—Among various multimodal remote sensing data, 

the pairing of multispectral (MS) and panchromatic (PAN) 

images is widely used in remote sensing applications. This 

article proposes a novel global collaborative fusion network 

(GCFnet) for joint classification of MS and PAN images. In 

particular, a global patch-free classification scheme based on an 

encoder-decoder deep learning (DL) network is developed to 

exploit context dependencies in the image. The proposed 

GCFnet is designed based on a novel collaborative fusion 

architecture, which mainly contains three parts: 1) two 

shallow-to-deep feature fusion branches related to individual 

MS and PAN images; 2) a multiscale cross-modal feature 

fusion branch of the two images, where an adaptive loss 

weighted fusion strategy is designed to calculate the total loss 

of two individual and the cross-modal branches; 3) a 

probability weighted decision fusion strategy for the fusion of 

the classification results of three branches to further improve 

the classification performance. Experimental results obtained 

on three real datasets covering complex urban scenarios 

confirm the effectiveness of the proposed GCFnet in terms of 

higher accuracy and robustness compared to existing methods. 

By utilizing both sampled and non-sampled position data in the 

feature extraction process, the proposed GCFnet can achieve 

excellent performance even in a small sample-size case. The 

codes will be available from the website: 

https://github.com/SicongLiuRS/GCFnet. 

Index Terms—Classification, deep learning, global 

collaborative fusion, feature fusion, remote sensing. 
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I. INTRODUCTION 

owadays, multimodal remote sensing data, such as 

multitemporal images [1-3], hyperspectral and LiDAR 

images [4-6], multispectral (MS) and SAR images [6, 7], MS 

and panchromatic (PAN) images [8-11], have been widely used 

for Earth’s land-use and land-cover classification and change 

detection. The fusion of complementary information in the 

multimodal remote sensing images can enhance the land-object 

identification accuracy, resulting in better performance than 

only using a single data source. Among different pairing 

multimodal remote sensing data, MS and PAN images are the 

most commonly used and easily accessible data as they are 

usually simultaneously acquired by many satellite platforms, 

such as Landsat and SPOT. For some examples of satellites that 

can acquire high and very-high-resolution (VHR) MS and PAN 

images, readers can refer to [11]. Despite the low spatial 

resolution, an MS image usually contains several spectral bands 

and thus is suitable to separate different classes of land objects. 

A PAN image contains only one spectral band covering a wide 

wavelength range, but its high spatial resolution allows an 

accurate description of the boundaries of objects and their 

spatial relationships. Therefore, the joint use of MS and PAN 

images can take full advantage of spectral-spatial information 

of land objects presented in the two data sources. 

In general, there are two categories of fusion methods to 

integrate MS and PAN images in classification or detection 

tasks. This first is pixel-level fusion, also known as 

pan-sharpening (PS) methods, which directly fuses the original 

MS and PAN images. This has been used in various remote 

sensing applications, such as change detection and 

classification [12-14]. However, spectral and spatial distortions 

may occur in a pan-sharpened image [15]. The other category is 

feature-level fusion. These methods extract representative 

features from MS and PAN images and then fuse such features 

for classification or detection. However, the extraction of 

useful features often requires domain knowledge [16-18]. In 

recent years, data-driven deep learning (DL) techniques that 

can automatically learn abstract and robust deep features from 

the original data have shown to be very promising for dealing 

with MS and PAN images fusion. In [19], a superpixel-based 

multiple local regions combined representation network model 

was proposed to classify MS image; then a PAN image with 

detailed spatial information was used to modify the 

classification results. In [8], a stacked autoencoder was used to 

describe the spectral information of a MS image, and a 
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convolutional neural network (CNN) was used to capture 

spatial features from a PAN image; then spectral and spatial 

features were concatenated and fed into three fully connected 

layers to obtain the final classification result. In [20], two CNN 

modules inspired by the VGG model were designed to extract 

and combine features from MS and PAN images at their 

original resolution, and then used in land-cover classification. 

In [21], the FuseNet was proposed to match the resolution of 

MS and PAN bands in a VHR image using convolutional layers 

with down-sampling and up-sampling operations. Then, 

ReuseNet was built on top of the architecture of FuseNet by 

incorporating recurrent connections [9]. In [22], a dual-branch 

attention fusion deep network was designed to extract features 

for multiresolution image classification, which contains a 

spatial attention module for PAN image and a channel attention 

module for MS image. In [23], an adaptive hybrid fusion 

network (AHF-Net) was designed for MS and PAN image 

classification, which includes an adaptive weighted 

intensity-hue-saturation strategy for MS and PAN image fusion, 

and a correlation-based attention feature fusion module. In [11], 

deep cross-resolution hidden layer features were extracted from 

MS and PAN images according to an autoencoder-like deep 

network, then the selected hidden layer features were used for 

joint classification of two images. 

In general, the above feature-level fusion methods were 

shown to be more effective in classification than pixel-level 

fusion methods. However, they were mainly designed based on 

a patch-based classification framework as shown in Fig. 1. For 

a given pixel G, a local square patch with a size of t × t is 

extracted and imported into the deep network for feature 

extraction and classification. For its neighborhood pixel G, the 

same process is conducted. Accordingly, patch-based 

classification methods are often time-consuming due to the fact 

that there are large amounts of overlaps between adjacent 

patches. In addition, a patch may break spatial integrity and 

connectivity of land-objects, which may lead to inaccurate 

classification results. Moreover, an optimal patch size is 

usually defined manually according to either a domain expert 

experience or multiple trials by considering object size and 

image resolution. This affects classification efficiency, 

especially when dealing with VHR MS and PAN images. 

In addition to the patch-based classification methods, there 

are two kinds of patch-free classification methods: local 

patch-free classification (dense sample case) method and global 

patch-free classification (sparse sample case). Local patch-free 

classification (dense sample case) methods are also named as 

semantic segmentation in computer vision. The input has the 

same size of the image rather than that of patches generated for 

each pixel. They have been successfully applied in remote 

sensing image segmentation [24, 25]. As shown in Fig. 2, an 

encoder and decoder DL network is trained on a series of 

fixed-size (e.g., 512 × 512 pixels) local remote sensing images 

and the corresponding dense sample maps. Then, the trained 

network is used for predicting the semantic label of other 

images. However, this segmentation model requires large 

amounts of training data to learn the stable relationship between 

images and class labels, where dense training sample maps are  

 
Fig. 1 Illustration of the patch-based classification scheme. 

 

 
Fig. 2 Illustration of the patch-free classification scheme. 

required [26]. Such requirements are difficult to meet in most of 

practical applications, since samples are usually manually 

selected from the image, the location of the samples is irregular 

and sparse, and the sample size is small. In [10], the global 

patch-free classification (sparse sample case) method was used, 

a group spatial-spectral attention fusion network was proposed 

for MS and PAN feature-level fusion and classification. 

Differently from the previous two classification methods, the 

global image is imported to the deep network to freely utilize 

the rich context information for feature extraction and 

classification in this global patch-free classification method, 

and the train sample can be sparse. 

On the basis of this short analysis we identified some open 

issues that need to be further addressed: 1) Problems related to 

the classification process. The spatial integrity and 

connectivity of image objects may be affected by patch-based 

classification methods, and the overlapped patches between 

adjacent pixels inevitably increase the data processing burden. 

Moreover, an optimal patch size is usually estimated by a trial 

and error procedure to reach a balance between object size and 

image resolution. It is necessary to investigate how to build a 

patch-free network for MS and PAN image classification. 2) 

Problems related to the fusion strategy. Most of existing fusion 

methods only consider the relatively abundant cross-modal 

features. However, the homogeneous spectral information 

contained in MS features that is beneficial for identifying 

different objects may be destroyed by injecting spatial details of 

the PAN image. Also, the detailed spatial information 

contained in PAN features that can be used to describe edges of 

objects may be blurred after being fused with low-resolution 
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MS features. How to design a robust fusion process that 

captures the cross-modal features as well as spectral-spatial 

features from the two sources becomes a critical task. 

To address the above open issues, in this work, a global 

collaborative fusion network (GCFnet) is proposed for MS and 

PAN image classification. Experimental results obtained on 

three real datasets confirm the effectiveness of the proposed 

GCFnet in terms of higher accuracy and robustness compared 

to the state-of-the-art methods. The main contributions of this 

paper are highlighted as follows. 

1) A global patch-free classification scheme is proposed. It is 

designed to avoid the use of patches on all image pixels and 

thus can utilize the rich context information in the whole image 

to better model the spatial integrity and connectivity of image 

objects. Meanwhile, it can reduce the computational burden 

when compared to patch-based methods. 

2) Unlike existing fusion methods that only use fused MS 

and PAN features for classification, a novel collaborative 

fusion architecture is proposed to take into account both 

shallow-to-deep features of MS and PAN images and their 

multiscale cross-modal features. In particular, an adaptively 

weighted loss function is proposed to calculate the total loss of 

individual and cross-modal branches of MS and PAN features, 

and a probability weighted decision-level fusion strategy is 

utilized to further improve the classification performance. 

3) The proposed GCFnet utilizes both sampled and 

non-sampled position data in the training process. This allows 

to model land-objects in the image scene more 

comprehensively, and also meets the requirement of sufficient 

training data for a DL network. This is promising especially 

when dealing with a small sample set. 

The rest of this paper is organized as follows. Related work is 

introduced in Section II. The proposed approach is described in 

detail in Section III. Experimental results and the related 

analysis are presented in Section IV. Finally, Section V draws 

the conclusions. 

II. PROPOSED FEATURE-LEVEL FUSION APPROACH 

Aiming at effectively fusing the individual and cross-modal 

features of MS and PAN images, the proposed GCFnet consists 

in a novel collaborative fusion architecture with a global 

patch-free classification scheme. It mainly includes three fusion 

parts: 1) individual shallow-to-deep fusion, 2) multiscale 

cross-modal fusion, and 3) decision fusion and classification. 

Fig. 3 shows the block diagram of the proposed GCFnet 

approach. It contains encoder and decoder modules, and is 

developed based on the global patch-free classification (sparse 

sample case) method. As an input, pixels of the global MS 

images (XMS) and PAN images (XPAN) are encoded to extract 

features, and then are decoded to revert to the original image 

size. Let 
MSX B H WR    and 1 n

PANX H nWR    be the input image, 

and the spatial resolution ratio between PAN and MS images be 

n. The predicted probability map C H WP R    of each branch can 

be expressed as: 

 ( )MS PANP f X X= ,  (1) 

where f is the mapping model: 1( , )B H W nH nW C H WR R R     →  

contains encoder and decoder, B is the number of input image 

bands, and C is the number of classes. During the training 

process, the global MS and PAN images are imported to the 

deep network for feature extraction and classification, whereas 

only the sparse training sample data is participated in the loss 

calculation (non-sampled position data is ignored). Then, the 

trained model is used for the same global MS and PAN images 

to predict the whole classification map. The global patch-free 

classification scheme does not rely on patches, where the 

training and predicting images are the same, thus features 

extracted during training can be directly used for prediction 

without network migration. 

The encoder module mainly includes the convolutional block, 

the spectral attention block and the down-sampling layer, 

where the convolutional block contains the convolutional layer, 

the normalization and an activation function. The decoder 

module mainly consists of the convolutional layer and the 

upsampling layer. Unlike the existing methods that up-sample 

the MS image before feeding it into the network [8, 10], in our 

architecture, the original low-resolution MS image (H×W) is 

directly fed into the network and its size is changed to nH×nW 

after encoding and decoding to avoid the bias and 

computational burden introduced by the up-sampling process. 

Note that in order to acquire the encoded features at the same 

size of the PAN image, the down-sampling ratio for the MS 

image is defined to be smaller than the PAN image. 

A. Individual Shallow-to-deep Fusion 

Two individual MS and PAN branches that contain encoding 

and decoding operations are defined, which aim to obtain the 

representative shallow-to-deep features from the original MS 

and PAN images. In the encoding stage, features are extracted 

from MS and PAN images. Then, the last MS and PAN 

encoded features with high-level semantic information are 

up-sampled into finer spatial resolution through successive 

up-sampling layers to recover the spatial resolution and achieve 

the pixel-based image classification result in the decoder 

architecture. 

The shallower architecture has more spatial detail features, 

whereas the deeper architecture has more semantic features. In 

order to introduce the spatial details into semantic features for 

classification, the pointwise addition is used to fuse the shallow 

and deep features in each of the MS and the PAN branches. As 

shown in Fig. 3, a 1×1 convolutional layer is used after encoded 

feature to make the number of encoding channels the same as 

the deep decoding channels. 

CNN is shown to be effective for tackling visual tasks and a 

series of convolutional layers in CNN focuses on spatial 

features of natural images [27, 28]. However, in remote sensing 

applications, spatial information, and spectral information 

should be fully exploited. Different channels in the feature 

maps usually represent different image objects [29], so the 

spectral attention mechanism is introduced for the MS image in 

the shallow encoding stage. The squeeze-and-excitation (SE) 

[30] blocks are used to adaptively recalibrate channel-wise  
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Fig. 3 Block diagram of the proposed GCFnet. 

 

feature responses to emphasize important channels while 

suppressing noise. 

As shown in Fig. 3, the global MS and PAN images are used 

as input, thus the batch size is always equal to one. In the case 

of a small batch size, the error of batch normalization (BN)  

increases rapidly due to inaccurate batch statistics estimation. 

In this work, BN is replaced by the group normalization 

(GN),which divides channels into groups and computes within 

each group the mean and variance values for normalization [31]. 

Instead of the commonly used maxpool layer, a convolutional 

layer with a stride of two is used for down-sampling, so that it 

can align the projected spatial location with its receptive field 

center leading to a more robust MS and PAN image 

classification result. 

B. Multiscale Cross-modal Fusion 

The cross-modal fusion branch is contained in the encoder 

module (see in Fig. 3). It includes a convolutional layer and an 

upsampling layer to fuse features of MS and PAN images. 

During the decoding stage feature resolution is gradually 

increased till reaching the same level of the classification map. 

In order to progressively fuse cross-modal features of MS and 

PAN images at different scales, the pointwise addition is used 

at each decoder scale. As shown in Fig. 3, the i-th layer decoded 

features of individual MS, PAN and cross-modal branches are 

denoted as 
i

MSF , 
i

PANF  and 
i

FusionF (i = 1, 2, 3), respectively. The 

multiscale cross-modal feature fusion can be formulated as 

follows: 

 
i i

i

i-1 i i

, 1

, 2,3

MS PAN

Fusion

Fusion MS PAN

F F i
F

F F F i

 + =
= 

+ + =
 (2) 

The last convolutional layer of each branch that has C filters 

is used to perform the pixel-wise classification. The class 

probability 
( , ),u v jP  of a given pixel at location (u, v) in the jth 

category can be calculated by the softmax function: 

 
( , ),

( , ),
( , ),

u v j

u v k

g

u v j gC

k

e
P

e
=


 (3) 

where g denotes the last convolutional layer, g(u, v),j is the 

feature value in (u, v) of the jth channel of the last convolutional 

layer, and 1 ( , ), 1C

j u v jP= = . 

The cross-entropy loss is calculated to penalize the 

differences between the final output layer and the global 

reference map. It is defined as follows: 

 ( , ), ( , ),

u 1 1 1

= - log( )
H W C

u v j u v j

v j

L y P
= = =

  (4) 

where y is the reference map that is encoded in the form of 

one-hot. Let LMS, LPAN and LFusion be loss values of MS, PAN 
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and cross-modal fusion branch, respectively. In order to 

combine the three branches and achieve the optimal result, an 

adaptively weighted loss Ltotal can be formulated as: 

 1 2 3total MS PAN FusionL L L L  = + +   (5) 

where 1 , 2  and 3  represents the weights for LMS, LPAN and 

LFusion, respectively. Here 1 , 2  and 3 are trainable 

parameters. Note that before network training, 1 , 2  and 3  

are all normalized to [0-1] by using the sigmoid function. 

C. Decision Fusion and Classification 

By following the network training and testing, three 

classification maps can be obtained by the three branches. Then 

a probabilistic weighted decision fusion scheme is adopted to 

fuse the three probabilistic maps. Let 
j

MSP , 
j

PANP and 
j

FusionP  

(j=1, 2, …, C) be the predicted probabilistic classification maps 

of MS, PAN and cross-modal fusion branches, respectively. 

The weighted probability decision-level fusion result of the j-th 

channel can be formulated as: 

 1 2 3 , 1, ,j j j j

DF MS PAN FusionP P P P j C  = + + =  (6) 

It is worth noting that 1 , 2 , and 3  are the final weights 

learned in the network according to Equation (5). The final 

probability classification map 
C H W

DFP R    can be acquired 

by stacking weighting probabilistic maps of each class as 

follows: 

 1 2[ , , , ]C

DF DF DF DFP P P P=  (7) 

The final predicted classification map ˆ H Wy R   can be 

obtained by assigning the pixel with the label having the 

maximum class probability, i.e.,  

 ˆ arg max DF
C

y P=  
(8) 

The proposed GCFnet operations are summarized as follows. 

Algorithm: Proposed GCFnet  

Input: 1) the MS image XMS; 2) the PAN image XPAN; 3) the 

ground truth map y. 

1: Input XMS to the individual MS shallow-to-deep branch 

network and generate encoded and decoded features; 

2: Input XPAN to the individual PAN shallow-to-deep branch 

network and generate encoded and decoded features; 

3: Fuse shallow and deep features in each individual MS and 

PAN branch by pointwise addition; 

4: Multiscale cross-modal feature fusion between two data by 

Equation (2) 

5: Produce probability classification maps PMS, PPAN and PFusion 

by Equation (3) 

6: Calculate the adaptive weighting loss totalL  by Equations 

(4) and (5), and update parameters from Steps 1 to 5 until totalL  

meets the requirement; 

7: Calculate the decision fusion classification map by 

Equations (6), (7) and (8) 

Output: Classification map 

  

Table 1 Parameters of the three considered satellite images. 

Satellites 

MS image PAN image 

Resolution 

(m) 

Band range 

(μm) 

Resolution 

(m) 

Band range 

(μm) 

DEIMOS-2 4 

B: 0.42-0.51 

G: 0.51-0.58 

R: 0.60-0.72 

NIR:0.76-0.89 

1 0.45-0.90 

GaoFen-2 4 

B:0.45-0.52 

G: 0.52-0.59 

R: 0.63-0.69 

NIR: 0.77-9.89 

1 0.45-0.90 

QuickBird 2.4 

B: 0.45-0.52 

G: 0.52-0.66 

R: 0.63-0.69 

NIR: 0.76-0.90 

0.6 0.45-0.90 

Notes: B: Blue band; G: Green band; R: Red band; NIR: Near infrared band 

 

  
(a) (b) 

 

 

(c) (d) 

      

Buildings1 Buildings2 Roads Railways Trees Water 

Fig. 4 VC dataset: (a) color composite of the MS image, (b) PAN image, (c) 
ground reference map, and (d) zoom of the portion of the image highlighted in 

the red box in (c). 
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Table 2 Numbers of training and testing samples in the VC dataset. 

Classes Number of samples (pixels) 

No. Name Train Test 

1 Buildings1 200 89867 

2 Buildings2 200 13519 

3 Roads 200 38206 

4 Railways 200 9330 

5 Trees 200 20703 

6 Water 200 347554 

 

  
(a) (b) 

  
(c) (d) 

     

Buildings Roads Water Trees Grasses 

Fig. 5 SH dataset: (a) color composite of the MS image, (b) the PAN image, (c) 

the ground reference map, and (d) zoom of the portion of the image highlighted 
in the yellow box in (c). 

 

Table 3 Numbers of training and testing samples in the SH dataset. 

Classes Number of samples (pixels) 

No. Name Train Test 

1 Buildings 200 195239 

2 Roads 200 84244 

3 Water 200 77843 

4 Trees 200 11181 

5 Grasses 200 24668 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

To evaluate the effectiveness of the proposed GCFnet, three 

multi-resolution VHR remote sensing datasets acquired by 

three satellites (i.e., DEIMOS-2, GaoFen-2 and QuickBird) 

were used in the experiments. Detailed parameter information 

is provided in Table 1. Note that reference maps of the three 

datasets were generated according to a careful image 

interpretation task. The spatial resolution of the reference maps 

is fixed the same as that of the corresponding PAN images. 

  
(a) (b) 

 
 

(c) (d) 

       

Buildings1 Buildings2 Buildings3 Playground Roads Vegetation Water 

Fig. 6 XZ dataset: (a) true-color composite of the MS image, (b) PAN image, (c) 

ground reference map, and (d) zoom of the portion of the image highlighted in 

the yellow box in (c). 

Table 4 Numbers of training and testing samples in the XZ dataset. 

Classes Number of samples (pixels) 

No. Name Train Test 

1 Buildings1 200 209250 

2 Buildings2 200 80919 

3 Buildings3 200 55554 

4 Playground 200 18152 

5 Roads 200 113484 

6 Vegetation 200 41040 

7 Water 200 72620 

A. Datasets Description 

1) Vancouver (VC) dataset: The MS and PAN images were 

acquired on March 31 and May 30, 2015, respectively, by the 

DEIMOS-2 satellite over Vancouver city, Canada. This dataset 

was provided by the 2016 IEEE Geoscience and Remote 

Sensing Society (GRSS) Data Fusion Contest [32]. A subset of 

the whole image scene was cropped for our experiments. 

Spatial resolutions of the MS (with blue, green, red, and 

near-infrared four bands) and the PAN image are 4 m and 1 m, 

respectively. The sizes of the MS and PAN images are 345 × 

219 and 1380 × 876 pixels, respectively. There are six classes  
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Table 5 Detailed parameters of the proposed GCFnet architecture. 

 Individual MS branch Cross-modal fusion branch Individual PAN branch 

 Output size Module Parameters Module Parameters Module Parameters 

Encoder 

2H×2W - - - - 
Conv_block 

Downsampling 

[3×3]:32 

[3×3]:64 

H×W 
Conv_block 

SE block 
[3×3]:64 

r = 16 
- - 

Conv_block 
Downsampling 

[3×3]:64 
[3×3]:128 

H

2
×

W

2
 

Conv_block 

SE block 
Downsampling 

Conv_block 

[3×3]:128 

r = 16 
[3×3]:256 

[3×3]:256 

- - 

Conv_block 

Downsampling 

Conv_block 

[3×3]:128 

[3×3]:256 

[3×3]:256 

Shallow-to-deep fusion 

H×W Conv [1×1]:128 - - Conv [1×1]:128 

2H×2W - - - - Conv [1×1]:128 

4H×4W - - - - Conv [1×1]:128 

Decoder 

H

2
×

W

2
 Conv [3×3]:128 Conv [1×1]:128 Conv [3×3]:128 

H×W 
Upsampling 

Conv 
Interpolation (2) 

[3×3]:128 
Upsampling 

Conv 
Interpolation (2) 

[1×1]:128 
Upsampling 

Conv 
Interpolation (2) 

[3×3]:128 

2H×2W 
Upsampling 

Conv 

Interpolation (2) 

[3×3]:128 

Upsampling 

Conv 

Interpolation (2) 

[1×1]:128 

Upsampling 

Conv 

Interpolation (2) 

[3×3]:128 

4H×4W 
Upsampling 

Conv 

Conv 

Interpolation (2) 
[3×3]:128 

[1×1]:C 

Upsampling 
Conv 

Conv 

Interpolation (2) 
[3×3]:128 

[1×1]:C 

Upsampling 
Conv 

Conv 

Interpolation (2) 
[3×3]:128 

[1×1]:C 

 

in the scene, including buildings1 (with brown roofs), 

buildings2 (with white roofs), roads, railways, trees and water. 

Fig. 4(a) and (b) show the color composite of the MS image and 

its corresponding PAN image. Fig. 4 (c) shows the ground 

reference map, while the unlabeled area is in black. A portion of 

the image (highlighted in the red box in Fig. 4(c)) is zoomed in 

Fig. 4(d) for visual comparison. The numbers of training and 

testing samples are provided in Table 2. Based on the available 

reference map, 200 training samples were selected for each 

class and the remaining ones were used for testing. 
2) Shanghai dataset (SH): This dataset was acquired on 

January 2, 2015, over Shanghai city, China, from Chinese 

GaoFen-2 satellite. The MS image is made up of 300 × 305 

pixels with a spatial resolution of 4 m, while the PAN image 

has a size of 1200 × 1220 pixels with a spatial resolution of 1 m. 

Fig. 5 shows the color composite of the MS and PAN images, 

and the corresponding reference map. There are five land-cover 

classes (i.e., buildings, roads, water, trees and grasses) in the 

reference map. The numbers of training and testing samples 

used in the experiments are listed in Table 3. 

3) Xuzhou dataset (XZ): The MS and PAN images in this 

dataset were acquired by the QuickBird satellite over the urban 

area of Xuzhou city, China. The spatial resolution of the MS 

and the PAN images are 2.4 m and 0.6 m, respectively. The 

sizes of the MS and PAN images are 283 × 379 and 1132 × 

1516 pixels, respectively. Seven land-cover classes are 

presented in this scene, including buildings1 (with red roofs), 

buildings2 (with bluish roofs), buildings3 (with gray roofs), 

playground, roads, vegetation and water. The color composites 

of the two images and the corresponding reference maps are 

provided in Fig. 6. The numbers of training and testing samples 

used in the experiments are provided in Table 4. 

B. Experimental Setup and Parameter Setting 

Detailed parameters of the proposed GCFnet are listed in 

Table 5. Specifically, the kernel size of the convolution is 3×3 

and the number of feature maps is 64. The reduction ratio r of 

the SE block is set as 16. The nearest neighbor interpolation 

with a factor of two is used to increase the size of MS image. 

Based on multiple trials, the Adam optimization was used to 

set the learning rate as 0.0001. The number of training epochs 

was defined as 1000, and the batch size was set as 1. 

Algorithms were implemented by using Python, where the 

DL networks were built by using Pytorch. Experiments were all 

carried out on the Ubuntu 18.04.5, with Intel(R) Xeon(R) Gold 

6130 CPUs at 2.10GHz, 159-GB RAM, and GPU of NVIDIA 

GRID P40-24Q, 22GB. 

C. Experimental Results 

In order to validate the effectiveness of the proposed GCFnet 

in joint classification of MS and PAN images, four reference 

methods were considered for comparisons, including three 

state-of-the-art patch-based methods, i.e., the deep multiple 

instance learning (DMIL) [8], the MultiResolution Land Cover 

Classification (MultiResoLCC) [20], the cross-resolution 

hidden layer features fusion (CRHFF) [11], and the Group 

Attention Fusion network (GAFnet) in a global patch-free 

fusion [10]. It is important to note that final results were 

generated based on the average of ten times running of each 

method in order to test the robustness of the considered 

methods. Abbreviations FMS∗PAN and FEMAP∗PAN represent the 

feature-level fusion based on the original MS and PAN images 

and based on the extended multi-attribute profile (EMAP) 

features and PAN image in the CRHFF approach, respectively. 

To compare and evaluate the obtained results quantitatively, the 

overall accuracy (OA), the average accuracy (AA), the Kappa 

coefficient (Kappa) and the per-class accuracies were 

calculated. The standard deviation (SD) value is also provided 

to further validate the stability of different methods. 

1) Results on the VC dataset: Classification accuracies 

achieved by different methods on the VC dataset are listed in 

Table 6. Considering the two global patch-free methods, the 

proposed GCFnet achieved the highest accuracies (i.e., OA: 

99.04%, AA: 98.59%, Kappa: 98.12%), outperforming the  
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(a) 94.56% (b) 97.68% (c) 98.33% (d) 98.74% (e) 97.64% (f) 99.21% 

Fig. 7 Classification maps obtained by different methods on the VC dataset: (a) DMIL, (b) MultiResoLCC, (c) CRHFF (FMS*PAN), (d) CRHFF (FEMAP*PAN), (e) 

GAFnet, and (f) proposed GCFnet. The first row represents the whole classification maps at global scale, and the second row represents the subsets at local scale. 

Table 6 Comparison of the classification accuracies (%) provided by different methods (VC dataset) 

 Patch-based Global patch-free 

Class DMIL MultiResoLCC 
CRHFF 

GAFnet Proposed GCFnet 
FMS*PAN FEMAP*PAN 

Buildings1 82.271.62 93.081.63 95.460.59 95.790.71 84.744.29 96.260.42 

Buildings2 98.070.46 99.530.22 99.260.23 99.700.16 98.650.28 99.620.14 

Roads 84.652.28 86.062.44 90.210.90 93.990.58 90.783.59 97.420.41 

Railways 92.911.65 95.411.55 94.631.49 99.350.28 97.600.76 99.920.12 

Trees 96.410.39 97.150.42 97.530.48 97.720.31 99.040.17 98.370.27 

Water 97.790.53 99.700.16 99.870.02 99.800.03 99.720.09 99.930.03 

OA 

AA 

Kappa 

94.000.37 

92.026.92 

88.480.67 

97.370.23 

95.165.11 

94.890.44 

98.190.07 

96.163.56 

96.480.14 

98.590.09 

97.722.39 

97.260.18 

96.371.01 

95.091.40 

92.991.95 

99.040.08 

98.590.11 

98.120.15 

 

GAFnet method by increasing the OA, AA and Kappa of 2.67%, 

3.5% and 5.13%, respectively. For most of the classes, the 

proposed GCFnet resulted in higher accuracies than the 

GAFnet. Class accuracies on buildings1 and roads were sharply 

increased by 11.52% and 6.64%, respectively. The SD of OA 

value of the proposed GCFnet (i.e., 0.08) is significantly 

smaller than the one of the GAFnet (i.e., 0.93), which indicates 

more stable classification performance. 

Furthermore, the CRHFF(FEMAP∗PAN) method achieved the 

best performance among all compared patch-based methods. It 

also outperformed the patch-free GAFnet in terms of higher 

accuracy and smaller SD values. The proposed GCFnet is 

superior to all patch-based methods by increasing the OA 

values of 0.45%, 0.85%, 1.67% and 5.04%, with respect to 

CRHFF(FEMAP ∗ PAN), CRHFF(FMS ∗ PAN), MultiResoLCC and 

DMIL methods, respectively. The proposed GCFnet improves 

the OA of 0.45% over the CRHFF(FEMAP ∗ PAN) method. It 

should be noted that the EMAP features were used (and thus 

some additional shallow spectral-spatial information were 

considered) in the CRHFF(FEMAP∗PAN), whereas the proposed 

GCFnet method only uses the two original images. Some 

classes such as buildings1 and roads exhibited low accuracies 

in the reference methods due to their similar spectral 

representations. However, the proposed GCFnet still yielded 

the best performance on the two classes with accuracies equal 

to 96.26% (buildings1) and 97.42% (roads). 

Classification maps are shown in Fig. 7. The global and local 

classification maps are shown in the first and second rows, 

respectively. One can see that most methods obtain good visual 

classification results for trees and water classes. However, false 

alarms are present between buildings1, roads and railways in 

the patch-based DMIL, MultiResoLCC and CRHFF (FMS*PAN) 

methods and patch-free GAFnet. By adding EMAP features, 

the CRHFF(FEMAP∗PAN) approach improved the classification 

results continuity inside those three classes. Furthermore, the 

GCFnet produced a better classification map than the 

CRHFF(FEMAP ∗ PAN) in terms of maintaining the inner- 

homogeneity inside buildings1 and roads. 

2) Results on the SH dataset : Table 7 provides the 

classification accuracies obtained by all compared methods on 

the SH dataset. The proposed GCFnet achieved the best 

performance among all methods. For the two global patch-free  
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(a) 93.74% (b) 95.80% (c) 96.72% (d) 98.24% (e) 95.74% (f) 99.32% 

Fig. 8 Classification maps obtained by different methods on the SH dataset: (a) DMIL, (b) MultiResoLCC, (c) CRHFF (FMS*PAN), (d) CRHFF (FEMAP*PAN), (e) 
GAFnet, and (f) proposed GCFnet. The first row represents the whole classification maps at global scale, and the second row represents the subsets at local scale. 

 

Table 7 Comparison of the classification accuracies (%) provided by different methods (SH dataset) 

 Patch-based Global patch-free 

Class DMIL MultiResoLCC 
CRHFF 

GAFnet Proposed GCFnet 
FMS*PAN FEMAP*PAN 

Buildings 89.591.23 93.960.50 94.990.36 98.000.09 92.212.53 98.820.37 

Roads 89.561.04 93.600.61 95.290.34 95.920.35 91.941.47 98.250.36 

Water 99.830.06 99.990.03 100.000.00 99.940.04 99.930.05 99.730.20 

Trees 98.860.27 99.720.21 99.900.04 99.910.04 99.650.15 99.640.24 

Grasses 97.381.05 99.730.41 99.980.04 99.990.03 99.200.43 99.920.10 

OA 

AA 

Kappa 

92.370.79 

95.045.07 

88.661.15 

95.600.21 

97.403.31 

93.430.31 

96.500.13 

98.032.64 

94.770.19 

98.120.08 

98.751.79 

97.170.13 

94.331.49 

96.590.71 

91.552.18 

98.970.20 

99.270.10 

98.450.29 

 

methods, the average OA, AA and Kappa values of the GCFnet 

are 98.97%, 99.27% and 98.45%, which are 4.64%, 2.68%, and 

6.9% higher than those of the GAFnet. In particular, significant 

improvements were achieved by the GCFnet on buildings and 

roads classes, yielding an increase of the accuracy of 6.61% and 

6.31%, respectively. On the other hand, the proposed GCFnet 

also outperformed all patch-based methods in terms of OA, AA 

and Kappa values. In particular, it yielded higher class 

accuracies than CRHFF(FEMAP∗PAN) on the two easily confused 

classes, i.e., buildings and roads, resulting in improvements of 

0.82% (from 98.00% to 98.82%) and 2.33% (from 95.92% to 

98.25%), respectively. The CRHFF(FEMAP ∗ PAN) method 

outperformed the other patch-based methods and the patch-free 

GCFnet with higher OA but lower SD values. 

From the classification maps shown in Fig. 8, one can see 

that the proposed GCFnet produced the best overall 

classification results at global scale (see Fig. 8). To better 

compare the visual classification results for buildings and roads 

classes, local regions that mainly contain buildings and roads 

are extracted and compared in the second row of Fig. 8. It is 

obvious that the proposed GCFnet produced a better inner- 

homogeneity and finer boundaries for buildings and roads 

classes when compared to the reference methods. 

3) Results on the XZ dataset: Table 8 lists the quantitative 

results for the XZ dataset. The proposed GCFnet achieved the 

highest accuracies (i.e., OA = 98.59%, AA = 98.71%, Kappa = 

98.22%) among all compared methods. The OA value of the 

proposed GCFnet is 4.24% higher than that of the GAFnet, with 

improvements mainly focused on classes of buildings1, 

buildings2, building3 and roads. The CRHFF(FEMAP ∗ PAN) 

yielded the highest accuracies among all patch-based methods. 

It benefited from using the shallow EMAP features. The OA 

value obtained by the CRHFF(FEMAP∗PAN) method is 0.88% 

higher than to the one obtained by the CRHFF(FMS∗PAN) method. 

However, the latter still outperformed DMIL and 

MultiResoLCC methods, with improvements in OA values 

equal to 3.8% and 0.95%, respectively. The SD of OA values in 

the proposed GCFnet method is 0.08, which is the smallest 

among all methods. 

Fig. 9 shows classification maps obtained at global and local 

scales. Compared with other datasets, the XZ dataset contains 

more complex classes (e.g., buildings1, buildings2, buildings3 

and roads). From the local classification map (Fig. 9 row 2), 

one can see that the CRHFF(FEMAP∗PAN) method obtained better 

visual classification result than other reference methods. 

However, it still contain some noise, especially in the interior 

and boundaries of buildings. On the contrary, the proposed 

GCFnet outperforms CRHFF(FEMAP∗PAN) with smoother and 

more complete maps also on such complex classes. 

Fig. 10 shows the SD values of the OA obtained by different 

methods on the three datasets. It is clear that in all three datasets, 
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(a) 94.31% (b) 97.26% (c) 97.60% (d) 98.40% (e) 97.50% (f) 98.71% 

Fig. 9 Classification maps obtained by different methods on the XZ dataset: (a) DMIL, (b) MultiResoLCC, (c) CRHFF (FMS*PAN), (d) CRHFF (FEMAP*PAN), (e) 

GAFnet, and (f) proposed GCFnet. The first row represents the whole classification maps at global scale, and the second row represents the subsets at local scale. 

 

Table 8 Comparison of the classification accuracies (%) provided by different methods (XZ dataset) 

 Patch-based Global patch-free 

Class DMIL MultiResoLCC 
CRHFF 

GAFnet Proposed GCFnet 
FMS*PAN FEMAP*PAN 

Buildings1 95.430.72 98.780.35 98.690.14 98.680.25 94.852.11 98.880.13 

Buildings2 90.981.46 96.694.80 98.790.17 98.500.42 92.375.81 99.500.15 

Buildings3 84.221.31 95.751.83 96.470.78 97.080.82 88.059.34 98.100.59 

Playground 99.890.07 99.970.06 99.980.07 99.910.03 99.760.41 100.000.00 

Roads 90.682.70 89.665.48 92.980.88 96.950.62 92.165.99 96.920.34 

Vegetation 97.710.35 96.800.67 96.730.34 97.880.22 98.360.16 97.740.45 

Water 99.070.26 99.580.30 99.550.04 99.730.14 99.710.17 99.850.06 

OA 

AA 

Kappa 

93.600.81 

94.005.65 

91.931.01 

96.451.68 

96.713.50 

95.522.10 

97.400.16 

97.572.38 

96.720.21 

98.280.14 

98.391.23 

97.830.18 

94.353.34 

95.043.19 

92.884.19 

98.590.08 

98.710.12 

98.220.11 

 

 
Fig. 10 Comparison of the SD of OA values obtained by different methods on 

the three considered datasets. 

the SD of OA values in the proposed GCFnet is close to that of 

CRHFF(FEMAP∗PAN), which is much lower than those of the 

compared state-of-the-art methods. This further demonstrates 

the robustness of the proposed GCFnet. 

4) Comparison of computing time: Table 9 shows the 

training and testing time of different methods. The training time 

is related to the number of training samples (200 samples for 

each class were selected in our case), as well as the architecture 

and the number of parameters. One can be seen that the training 

process was very costly in the CRHFF method, since hidden 

layer features were extracted additionally. For the testing 

process, the two global patch-free methods were much faster 

than the patch-based methods (i.e., DMIL, MultiResoLCC and 

CRHFF), which inevitably increased the computational 

complexity due to processing of overlapped patches. However, 

the global patch-free methods (i.e., GAFnet and the proposed 

GCFnet) performed in a more efficient way. 

5) Comparison of results obtained by different sample sizes:  

Fig. 11 shows the OA values obtained by different methods 

with different number of training samples (i.e., 10, 50, 100, 200 

samples), where each curve represents the average OA value 

and the shaded area represents the SD of OA after running ten 

times. The proposed GCFnet yielded the best performance 

regardless of the sample size, even in the extremely small 

sample-size case when only 10 training samples were used. 

Taking the VC dataset as an example, when 200 samples were 

considered, the proposed GCFnet achieved the highest average 

OA = 99.04%, outperforming the DMIL method by 5.04%.  
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(a) (b) (c) 

Fig. 11 Comparison of the OA values obtained by different methods with different number of training samples on the three considered datasets: (a) VC dataset; (b) 

SH dataset; (c) XZ dataset. 

Table 9 Computing time (h: hours, s: seconds) of the training and the testing 

processes for different methods 

Classification 

Fashion 
Methods Processes 

Datasets 

VC SH  XZ  

Patch-based 

DMIL 
Training(h) 
Testing(s) 

0.24 
216 

0.32 
283 

0.57 
502 

MultiResoLCC 
Training(h) 

Testing(s) 

0.10 

143 

0.10 

109 

0.20 

291 

CRHFF 

(FEMAP*PAN) 

Training(h) 

Testing(s) 

3.44 

121 

4.16 

93 

4.88 

253 

Patch-free 

GAFnet 
Training(h) 

Testing(s) 

0.26 

0.31 

0.32 

0.35 

0.37 

0.49 

Proposed GCFnet 
Training(h) 
Testing(s) 

0.17 
0.31 

0.19 
0.34 

0.24 
0.51 

 
Table 10 Comparison of the classification accuracies (%) provided by the 

cross-modal fusion only and the whole collaborative fusion (VC dataset) 

Class Only cross-modal fusion Collaborative fusion 

Buildings1 94.190.48 96.550.30 

Buildings2 99.490.33 99.780.09 

Roads 97.520.45 97.860.22 

Railways 99.580.25 99.610.51 

Trees 98.370.21 98.740.17 

Water 99.840.08 99.860.12 

OA 

AA 

Kappa 

98.620.10 

98.170.14 

97.320.19 

99.090.09 

98.730.11 

98.230.18 

 
Table 11 Comparison of the classification accuracies (%) provided by the 

individual branches and the one obtained after decision fusion step (VC dataset) 

Class 
MS 

Branch 

PAN 

Branch 

Cross-modal 

Fusion 
Decision Fusion 

Buildings1 94.650.40 90.460.91 96.220.35 96.550.30 

Buildings2 99.440.18 99.800.09 99.760.15 99.780.09 

Roads 96.480.66 96.680.54 97.850.23 97.860.22 

Railways 99.130.73 99.430.47 99.660.53 99.610.51 

Trees 98.280.24 97.410.46 98.690.19 98.740.17 

Water 99.690.18 99.850.05 99.870.13 99.860.12 

OA 

AA 

Kappa 

98.510.18 

97.950.23 

97.120.35 

97.880.13 

97.270.21 

95.900.26 

99.040.10 

98.670.11 

98.130.18 

99.090.09 

98.730.11 

98.230.18 

Furthermore, the proposed GCFnet obtained the highest OA = 

92.57% in the case of only 10 samples, exceeding by 10.58% 

the one in the DMIL method. In the extremely small training set, 

the difference between the proposed GCFnet and DMIL was 

larger than in other cases. Similar results can be also obtained in 

the other two considered datasets as shown in Fig. 11. This 

confirms the advantage and effectiveness of the proposed 

GCFnet method in dealing with the challenging small sample 

size issue. 

Fig. 11 shows the accuracies obtained by all methods 

increased as the sample size increased, and become stable when 

the sample size exceeded 100. It is worth noting that that for 

most methods, the SD values decreased by increasing the 

sample size. The proposed GCFnet and MultiResoLCC 

resulted in more stable performance among all methods, and 

the CRHFF(FEMAP∗PAN) performed better when the sample size 

exceeded 100. 

6) Analysis of Collaborative Fusion: To analyze the 

effectiveness of collaborative fusion in the proposed GCFnet, 

we compared classification results obtained by both the 

cross-modal fusion only and the whole collaborative fusion on 

the VC dataset. As shown in Table 10, the whole collaborative 

fusion is superior to the case using only the cross-modal fusion 

component in terms of higher OA values and lower SD values. 

The final learned weights λ1, λ2 and λ3 of LMS, LPAN and LFusion, 

are 0.0552, 0.0314 and 0.0619, respectively. The LFusion highest 

weight value demonstrates that the cross-modal fusion features 

play a more important role than the two individual features in 

classification. However, the integration of individual MS and 

PAN features can further enhance the feature representation 

thus leading to an improved classification result. 

To evaluate the performance of the decision fusion step in 

the collaborative fusion, classification accuracies obtained by 

the individual MS, PAN and the cross-modal fusion branches 

were compared with the one obtained by the decision fusion 

step (i.e., the final collaborative fusion result) in Table 11. It 

should be noted that the cross-modal fusion in Table 11 is 

calculated based on the proposed collaborative fusion method, 

thus is different from the one in Table 10, where only the 

cross-modal fusion classification map was calculated. From 

Table 11, one can observe that the cross-modal fusion branch 

achieved better accuracy than other two individual MS and 

PAN branches. By taking advantage of the decision fusion step, 

the classification performance is further enhanced in terms of 

higher OA values and lower SD values. 

IV. CONCLUSION 

In this paper, a global collaborative fusion network (GCFnet) 

has been proposed for joint classification of MS and PAN 

images. To avoid the use of overlapped patches and maintain 

the spatial integrity and connectivity, a global patch-free 
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classification scheme based on an encoder-decoder DL network 

was developed to exploit context dependencies in the image 

and improve classification efficiency. A novel collaborative 

fusion architecture was proposed to fuse shallow-to-deep 

features and multiscale cross-modal features extracted from 

MS and PAN images, where an adaptive loss weighted fusion 

strategy was designed to calculate the total loss of branches. In 

addition, a probability weighted decision fusion strategy was 

applied to fuse classification results of the three branches to 

further improve the classification output. Experimental results 

obtained on three real remote sensing datasets acquired by 

DEIMOS-2, GaoFen-2, and QuickBird satellites confirmed the 

effectiveness of the proposed approach. By comparing with the 

state-of-the-art methods, the proposed GCFnet resulted in 

higher classification accuracy, and more stable and efficient 

performances. 
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