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Abstract

We propose a way to abstract from various specifications of authen-
tication and to obtain idealized protocols “secure by construction”. This
feature enables us to prove that a cryptographic protocol is the correct
implementation of the corresponding abstract protocol. Our proposal re-
lies on the combination of two authentication primitives, proposed by the
authors in [20, 18] to a simplified version of the spi calculus.

Introduction Authentication is one of the main issues in security and it can
have different purposes depending on the specific application considered. For
example, entity authentication is related to the verification of an entity’s claimed
identity [1], while message authentication should make it possible for the receiver
of a message to ascertain its origin [2]. In recent years there have been some
formalizations of these different aspects of authentication (see, e.g., [3, 4, 5,
6, 7, 8, 9, 16]). These formalizations are crucial for proofs of authentication
properties, that sometimes have been automatized (see, e.g. [10, 11, 12, 13, 14]).

*This work has been partially supported by MURST Progetto TOSCA, Progetto Al, TS
& CFA and Progetto “Metodi formali per la Sicurezza”.



We here slightly extend the spi calculus [3, 15], a concurrent language with
cryptographic primitives, based on the m-calculus [17]. We give this calculus cer-
tain kinds of semantics, exploiting the built-in mechanisms for authentication,
introduced in [18] Our mechanisms enable us to abstract from the various im-
plementations/specifications of authentication, and to obtain idealized protocols
which are “secure by construction”. Our protocols, or rather their specifications
can then be seen as a reference for proving the correctness of “real protocols”.

In particular, our first mechanism, called partner authentication [18], guar-
antees each principal A to engage an entire run session with the same partner
B. Essentially, the semantics provides a way of “localizing” a channel, say ¢, to
A and B, so that the partners accept sensitive communications on the localized
¢, only.

Our localization relies on the so-called relative address of A with respect to B
[19]. Intuitively, this represents the path between A and B in (an abstract view
of) the network (as defined by the syntax of the calculus). Relative addresses are
not available to the users of the calculus: they are used by the abstract machine
of the calculus only, defined by its semantics. Therefore, relative addresses
cannot be forged by intruders.

Also our second mechanism, called message authentication [20, 18], exploits
relative addresses: a datum belonging to a principal A is seen by B as “localized’
in the memory space of A own. So, our primitive enables the receiver of a
message to ascertain its origin, i.e. the process that created it.

A typical approach for proving authentication properties presented in the lit-
erature is the following. First, a protocol is specified in a certain formal model.
The specification is then shown to enjoy the desired properties, regardless of its
operating environment, that can be unreliable, and can even harbour a hostile
intruder. We propose to proceed as follows. An abstract version of a protocol
is written using the above sketched primitives, and therefore it has the desired
authentication properties “by construction”. Then, we compare the behaviour
of a different, more concrete version of the protocol — possibly involving en-
cryptions, nonces, signatures and the like — with the behaviour of the abstract
protocol. This is done using testing equivalence, a well-known technique on
process algebras.

Our notion directly derives from the Non-Interference notion called NDC
that has been applied to protocol analysis in [7, 6]. Note also that the idea
of comparing cryptographic protocol with secure-by-construction specifications
is also similar to the one proposed in [3] where a protocol is compared with
“its own” secure specification. We are indeed refining Abadi’s and Gordon’s
approach [3]: the secure abstract protocol here is unique (as we will show in the
following) and based on abstract authentication primitives. On the contrary, in
[3] for each protocol one needs to derive a secure specification (still based on
cryptography) and to use it as a reference for proving authentication.

In the following, we intuitively survey the spi calculus, a basic calculus for
modelling concurrent and mobile agents. Then, we shall introduce the exten-
sions necessary for dealing with our authentication primitives.



The Spi Calculus In this section we intuitively recall a simplified! version of
the spi calculus [3, 15]. This calculus extends the m-calculus [17], with crypto-
graphic primitives. Here, terms can be names or variables and can also be struc-
tured as encryptions { M1, ..., Mi}n. An encryption { M, ..., My} N represents
the ciphertext obtained by encrypting Mi, ..., My under the key N, using a
shared-key cryptosystem such as DES [21]. Most of the processes constructs
should be familiar from earlier calculi: I/O constructs, parallel composition, re-
striction, matching, replication. We give below the syntax and, afterwards, we
intuitively present the dynamics of processes. Terms and processes are defined
according to the following BNF-like grammars.

L,M,N ::= terms
a,b,c,k,m,n names
T, Y, Z, W variables
{My,...,My}n shared encryption

P Q,R:= processes
0 nal
M(N).P output
M(x).P input
(vm)P restriction
P|P parallel composition
[M = N|P matching
P replication

case L of {x1,...,xi}r in P shared—key decryption

e The null process 0 does nothing.

e The process M(N).P sends the term N on M, provided that there is
another process waiting to receive on the same channel. Then behaves
like P. Here and below M should be a name or a variable: no process can
use an encryption as a channel.

e The process M (z).P is ready to receive an input N on channel m and to
behave like P{N/xz}, where the term N is bound to the variable x.

e The operator (vm)P acts as a static declaration (i.e. a binder for) the
name m in the process P that it prefixes. The agent (vm)P behaves as P
except that actions on m are prohibited.

e The operator | describes parallel composition of processes. The compo-
nents of P|Q may act independently; also, an output action of P (resp. Q)
at any output port M may synchronize with an input action of @ (resp.
P) at M. In this case, a silent action 7 results.

e Matching [M = N]P is an if-then operator: process P is activated only
if M = N.

1In the full calculus, terms can also be pairs, zero and successors of terms. Extending our
proposal to the full calculus is easy.




e The process | P behaves as infinitely many copies of P running in parallel.

e The process case L of {x1,...,zx}n in P attempts to decrypt L with
the key N. If L has the form {M;,..., My} n, then the process behaves
as P{Mi/x1,..., My/x}. Otherwise the process is stuck.

To give the flavour of the semantics, we illustrate the dynamic evolution of
a simple process S.

Example 1

SaY
a({M}r).0

a(z).case z of {y}x in Q'
(wh)(0({y}n).0 | R)

P represents a source of outputs on a of the message M encrypted under k, as
many as needed. The first action of Q is reading a message on channel a. So,
we have the following transition S — 0 | IP | case {M}r of {y}1 in Q', where
P replicated itself in (@{({M}).0 | \P) and {M}y replaced z in (the residual
of) Q. Now {M}y, can be decrypted, as (the residual of) Q attempts to decrypt
with the key k. The system then reads as: 0 | \P | (vh)(b({M},).0 | R). The
message M is then encrypted with the key h, private to Q' and it is possibly
forwarded to R.

Qo vwuwm
I

Relative Addresses To present our authentication mechanisms [18], it is
convenient to briefly recall the central notion of relative address of a process P
with respect to another process ) within a network of processes, described in
our calculus. A relative address represents the path between P and @ in (an
abstract view of) the network (as defined by the syntax of the calculus). More
precisely, consider the abstract syntax trees of processes, built using the binary
parallel composition as the main operator. Given a process R, the nodes of its
tree (see e.g. Fig. 1) correspond to the occurrences of the parallel operator in
R, and its leaves are the sequential components of R (roughly, those processes
whose top-level operator is a prefix or a summation or a replication). Assuming
that the left (resp. right) branches of a tree of sequential processes denote the
left (resp. right) component of parallel compositions, then label their arcs with
tag [lo (resp. [|1).

For instance, in Fig. 1, the address of Ps relative to Py is I = ||o||1e|]1]|1]|0
(read the path upwards from P; to the minimal common predecessor and reverse,
then downwards to Ps). So to speak, the relative address points back from P; to
P;. Note that the relative address of P3 with respect to P; is ||1]|1]]oe||o]]1 that
we write also as [ 1. Relative addresses are then strings written 9.9/, made of
||0’S and ||1’S.

We are now ready to introduce our primitives that induce a few modifications
to the calculus surveyed above. Note that we separately present below the two
primitives, but they can be easily combined, in order to enforce both kinds of
authentication.



Figure 1: The tree of (sequential) processes of (Po|P1)|(Pz|(Ps|Py)).

Partner authentication We can now intuitively present our first semantic
mechanism reminiscent of [18]. Essentially, we bind sensitive inputs and outputs
to a relative address, i.e. a process P can accept communications on a certain
channel, say ¢, only if the relative address of its partner is equal to an a-priori
fixed address [. More precisely, channels may have a relative address as index,
and assume the form ¢;. Now, our semantics will ensure that P communicates
with @ on ¢; if and only if the relative address of P with respect to @ is indeed [
(and that of @ with respect to P is [~1). Notably, even if another process R # Q
possesses the channel ¢;, R cannot use it to communicate with P, because it will
not be placed at the same “location” as Q. Consequently, the hostile process
R can never interfere with P and ) while they communicate, as the relative
address of R with respect to @ (and to P) is not [ (or [71).

Not always processes know which are the partners’ relative addresses. So,
we shall also index a channel with a variable A, to be instantiated by a relative
address, only. Whenever a process P, playing for instance the role of sender or
initiator, has to communicate for the first time with another process S in the
role, e.g. of server, it uses a channel c¢). Our semantic rules will take care of
instantiating A with the address of P relative to S during the communication.
From that point on, P and S will keep communicating for the entire session,
using their relative addresses.

Suppose, for instance, that in Fig. 1 the process Ps is a;(b).P; and Py is
ax(x).P/, and recall that the relative address of Ps with respect to Py is [ =
[l1]|1]loe|lo]|1. Here Ps knows the partner address, while P; does not. More
precisely, for P3 the output can only match an input executed by the process
reachable from P3 through the relative address [, while the variable A will be
instantiated, during the communication, to the address [~! of the sender Pi,
with respect to the receiver P;. From this point on and for the rest of the
protocol, P; can use the channel aj|,|,.|,|,||, (and those with X instantiated in
the same way) to communicate with Ps, only.

Message Authentication Our second mechanism, called message authenti-
cation [20, 18], enables the receiver of a message to ascertain its origin, i.e. the



process that created it. Again it is based on relative addresses.

We illustrate this further extension originally modelled in [20] through a
simple example. Suppose that P3 in Fig. 1 is now (vn)a(n).Pj. It sends its
private name n to P; = a(z).P]. The process P; receives it as |[1][os||1]|1]Jon =
[7'n. In fact, the name n is enriched with the relative address of Ps, its sender
and creator, with respect to its receiver P; and the address [ ™! acts as a reference
to P3. Now suppose that P forwards to P, the name just received, i.e. [~1n.
We wish to maintain the identity of names, i.e., in this case, the reference to
P;. So, the address [~! will be substituted by a new relative address, that of P;
with respect to Pa, i.e. ||1]|os||lo- Thus, the name n of Ps is correctly referred
to as |[1]|os|lon in P,. This updating of relative addresses is done through a
suitable address composition operation.

We can now briefly recall our second authentication primitive, [[M 2N 1,
akin to the matching operator. This “address matching” is passed only if the
relative addresses of the two localized terms under check coincide, i.e. [ =
I'. For instance, if P3 = (vd)a(d).Py, Py = (vb)a(b) and P, = a(z).[zr =
[loll1ell1ll1llod])P], then P{ will be executed only if z will be replaced with a
name coming from Ps, such as ||||1s||1]|1|]on. In fact, if P, communicates with
Py, then it will receive b, with the address ||o||os|]1|]1]]o and the matching cannot
be passed.

Implementing Authentication Below, we refer to a notion of protocol im-
plementation, technically based on testing equivalence, which provides a formal
way of proving that a certain protocol P implements an abstract protocol P’
regardless of the particular message exchange. An abstract version of a protocol
is written using the above sketched primitives, and therefore it has the desired
authentication properties “by construction”. Then, we check the abstract pro-
tocol against a different, more concrete version, possibly involving standard
cryptographic operations (e.g. encryptions, nonces).

As authentication primitives provide secure-by-construction (abstract) pro-
tocols, the idea is to try to implement them by using, e.g., cryptography. In do-
ing that we have to face the problem of comparing protocols which may heavily
differ in the messages exchanged. Indeed, the comparison focuses on the effects
of the protocol execution on the continuation, i.e., on what happens after the
protocol has been executed. Moreover, since authentication violations are easily
revealed by observing the address of the received message, we can exploit our
operator of address matching to this aim. In particular, we define a notion of
testing equivalence where testers have the ability of directly comparing message
addresses (through address matching), thus detecting the origin of messages.

As a matter of fact, here we push a bit further Abadi and Gordon’s [3] idea
of considering correct a protocol if the environment cannot have any influence
on its continuation. More precisely, let Ps = A4|Bs be an abstract secure-by-
construction protocol and P = A|B be a (bit more) concrete (cryptographic)
protocol. Suppose also that both B and By, after the execution of the protocol,
continue with some activity, say B’. Then we require that an external observer



should not detect any difference on the behaviour of B’ if an intruder E attacks
the protocols. In other words, for all intruders E, we require that A|B|E is
equivalent to Ag|Bs|E. When this holds we say that P securely implements Ps.
In doing this, we propose to clearly separate the observer, or tester T', from the
intruder F. In particular, we let the tester T" interact only with the continuation
B’. Conversely, we assume that the intruder attacks the protocol, only, and has
no interest for what happens later on. This allows to completely abstract from
the specific message exchange (i.e., from the communication) and focus only on
the “effects” of the protocol execution. In this way we can compare protocols
based on cryptography (e.g., P) with secure-by-construction specifications based
on abstract primitives (e.g., Ps).

Our notion is such that if P’ is a correct-by-construction protocol, specified
through our authentication primitives, and P securely implements P’, then also
the behaviour of P in every hostile environment will be correct.

An Example We show how our approach can be applied on one example, ad-
mittedly very simple. However, we feel that the ideas and techniques presented
could easily scale up also to more complicate protocols.

Consider a simple protocol where A sends a freshly generated message M to
B and suppose that B requires authentication of the message, i.e., that M is
indeed sent by A. We abstractly denote this as follows:

auth
—

Message 1 A B M
Note that, if B wants to be guaranteed that he is communicating with A, he
needs some trusted information regarding A to be used as a reference. In real
protocols this is achieved, e.g., through a password or key known by A only.
We use instead the location of the entity that we want to authenticate. We are
interested in a multi-session version of the protocol, in which m copies of the
sender A want to communicate with m copies of the receiver B.

To specify this abstract protocol by exploiting our partner authentication
primitive, we define a startup primitive that, exchanges the processes locations
in a trusted way. Such a primitive is indeed just a macro, defined as follows:

m_startup(tp, P.ig.Q) = (vs)( 150 (x).P | 131y (2).Q )

where the two processes that initiate the startup by a communication over s
are replicated through the “!”operator. Note that here we have many instances
of the two location variables Ap and Ag. We can prove that, given a process
m_startup(Ap, P, A\g, Q) | E, in any possible execution the two location variables
Ap and Mg can only be assigned to the relative address of one instance of @
with respect to one instance of P and of one instance of P with respect to one
instance of @, respectively. Moreover, two location variables, arising from two
different sessions, never point to the same process. We now define the multi-
session specification as follows:



P™ = m_startup(eee, A, Aa, B)
A (vM)e(M)
B exa(2).B'(2)

After the startup phase, each copy of B waits a message z exactly from the
location of one copy of A, thus this protocol is secure-by-construction. Note
that A is not locating the output of the message, as our aim here is to model
authentication. Locating the output as well would give a secrecy guarantee on
the communication of M. As a matter of fact, a located output would assure
that the receiver is exactly the intended one, i.e., no malicious intruder could
intercept any message M sent on the located channel.

It is possible to prove that P™ enjoys the following two properties.
Authentication Each copy of B receives a message enriched with the relative
address of one of the copies of A.

Freshness For every pair of copies of B, the two messages received have been
originated by two different copies of the process A.

Consider now a specification that uses cryptography to provide authentica-

tion of the message, like in:

Message 1l A — B : {M}k,,

where K 4p is an encryption key shared between A and B. We specify this
protocol as follows:

Pén (VKAB)(!AQ | 'BQ)
Az (VM)E<{M}KAB>
By = c(2).case z of {w}k,, in B'(w)

Here, each copy of A encrypts M in order to guarantee that no one else is able
to substitute it with a different message. Nevertheless, we can prove that P
does not implement P™. The process P3" is indeed prone to replay attacks, as
it can easily be observed. More in detail, consider an intruder that intercepts
one encrypted message and replays it later: E = ¢(2).¢(z).¢(z). It is easy to
see that PJ" | E may evolve to (vKap)(0 | !4 | B'(M) | B'(M) | |Bs), where
two copies of By has accepted the same message. As M is the same for both
the copies, we have that the Freshness property above does not hold (which is
instead satisfied by P™) and this process does not securely implements P™.

We end this section by giving a correct implementation of the multi-session
authentication protocol P™, which exploits a typical challenge-response mech-
anism to guarantee authentication:

Messagel B — A : N
Message2 A — B : {A/M,N}k,,



where N is a freshly generated nonce that constitutes the challenge. It can be
formally specified as follows:

P3 = (I/KAB)(Ag | B3)
As = WM)e(ns).c({A, M, ns}t i, 5)
By = (vN)e(N).c(z).case x of {id,z,w}k,, in [id= AJlw = N|B'(z)

Note that now no replay attack is possible as the fresh nonce is always checked
by B against the second parameter of the encrypted message received. 2 This
repairs the problem of protocol P3* and should make P; a secure implementation
of P™.
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