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Random Graphical Model of Microbiome
Interactions in Related Environments

Veronica VINCIOTTI®, Ernst C. WIT, and Francisco RICHTER

The microbiome constitutes a complex microbial ecology of interacting components
that regulates important pathways in the host. Most microbial communities at various
body sites tend to share common substructures of interactions, while also showing diver-
sity related to the needs of the local environment. The aim of this paper is to develop
a method for inferring both the common core and the differences in such microbiota
systems. The approach combines two elements: (i) a random graph model generating
networks across environments, and capturing potential relatedness at the structural level,
with (ii) a Gaussian copula graphical model for the inference of environment-specific
networks from multivariate microbial data. We propose a Bayesian approach for the joint
inference of microbiota systems from metagenomic data for a number of body sites. The
analysis of human microbiome data shows how the proposed random graphical model
is able to capture varying levels of structural similarity across the different body sites
and how this is supported by their taxonomical classification. Beyond a stable core, the
inferred microbiome systems show interesting differences between the body sites, as
well as interpretable relationships between various classes of microbes.
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1. INTRODUCTION

The microbiome constitutes a complex microbial ecology of interacting components that
regulates important pathways in the host. Microbiotic systems have been intensively studied
in recent years, and they have been found to shape the health of plants and animals (Kost
et al. 2023). In humans, associations have been found with a number of health conditions,
such as obesity (Le Chatelier et al. 2013), diabetes (Pedersen et al. 2016) and the response to
immunotherapy (Lee et al. 2022). Rich sources of high-throughput data of the microbiome,
such as those generated by the Human Microbiome Project (Consortium 2012) and the
Metagenomics of the Human Intestinal Tract (MetaHIT) project (Qin et al. 2010), or the
CRAMdb database for animal microbiomes (Lei et al. 2022), are key to learning the intricate
network of interactions among microbial communities.
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As the microbiome interacts with the local environment, the microbiome varies in con-
stitution profile at different sites in the host (Sharon et al. 2022). For example, Segata et al.
(2012) find four groups of digestive tract sites in the human body, characterised by distinct
bacterial compositions and metabolic processes. Despite this heterogeneity, it is expected
that the interaction profile is largely shared between different body sites from a structural
perspective. This constitutes a core microbiome network, describing stable components of
the microbiome interactions across time, body sites and populations.

Most studies on animals and humans rely solely on faecal samples to represent the gut
microbiome and on saliva samples to describe the oral microbiome (Kim et al. 2023; Sharon
et al. 2022). Equally, available methods and implementations, such as the commonly used
SparCC (Friedman and Alm 2012) and SPIEC-EASI (Kurtz et al. 2015), infer a single
microbiota system from abundance data obtained from a single body site. As such, they are
suited to learn either environment-specific systems from microbiome data on that environ-
ment, or some consensus microbiome network from pooled data across different body sites.
Instead, we propose a Bayesian approach for the joint inference of microbiota systems from
metagenomic data for a number of body sites that captures both the core metabolic network
as well as individual differences.

Vinciotti et al (2022) developed a Gaussian copula graphical model to infer microbiota
systems from count genomic data. While the parametric form used for the marginals is able
to capture both the heterogeneity of microbial abundances across different body sites and the
typical features of microbial data, such as zero inflation and compositionality, the approach
recovers only a consensus microbiome network. In this paper, we extend the method to infer
structured body site-specific microbiome networks.

In Sect. 2, we describe the random graphical model and the Bayesian inference procedure
in detail, while in Sect. 3, we validate the method on simulated data, before presenting the
results on the Human Microbiome Project study on 87 microbes across 13 body sites. Our
analysis shows that the latent space is able to capture the biological relatedness between
the 13 microbiotic systems. Indeed, the locations of the body sites in the inferred latent
space match closely both with the classification made by Segata et al. (2012) and with
the Uberon anatomy classification of body sites (Mungall et al. 2012). The environment-
specific networks, and in particular their associated estimated edge probabilities, can be
queried further, in order to characterise the individual networks as well as to highlight
commonalities and differences between the 13 environments. Beyond the information that
can be discovered from the data using the proposed model, we find that the new approach
leads to a more stable recovery of the microbiotic systems, compared to individual analyses
conducted for each body site separately. In Sect. 4, we discuss the wider implications of the
method and present a conclusion.

2. METHODS

We propose a model for capturing heterogeneity at the structural level of microbial
interactions, while quantifying the possible relatedness among microbiota systems from
different environments. To this end, we augment the model of Vinciotti et al (2022) with a
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random graph model on the conditional independence graphs that describe the joint microbial
count distributions at each body site. We define a novel random graphical model as the
combination of a graphical model with an associated random independence graph model.

The random conditional independence graph model can depend on external covariates
(Ni et al. 2022) or be defined endogenously. Borrowing from the network science literature
(Hoff et al. 2002), we formalise the random graph model as a latent probit network model,
where the probability of an edge in a particular microbiota system depends on a latent space
of potentially related environments, i.e. it will increase if the body site is close in this latent
space to another environment where that particular edge is present. In addition, the edge
probability depends on individual network sparsity levels for each body site and on external
covariates at the network level. For the latter, we consider the effect of taxonomy sharing
on the propensity of microbes to interact, but, in principle, any other covariate or external
knowledge can be included at this stage.

2.1. RANDOM GRAPHICAL MODEL

In this section, we define the random graphical model for network inference from hetero-

geneous microbiome data from a number of environments. For environmentk =1, ..., B,
let Y®O = Y fk), .Y l(,k)) be the random p-dimensional vector of interest, consisting of

the abundances of p Operational Taxonomic Units (OTUs). In our study, the number of envi-
ronments corresponds with the B = 13 different body sites, in which we measure p = 87
microbes. We assume Y*) constitutes a graphical model (GM),

YOIGH ~ L0 @0,

relative to some conditional independence graph G with some associated parameters Qb
Furthermore, we assume that the graphs G = {G(k) } . are themselves distributed according
to a joint random graph model,

G® ~p@®), k=1,...,B

for some vector of parameters ©.

The type of graphical model and the type of random graph model can depend on the
situation under consideration. As for the graphical model, we consider the Gaussian copula
graphical model, due to its easy mathematical formulation and its flexibility in modelling
multivariate non-Gaussian data, such as the count microbiome data under consideration.
Thus, similarly to Cougoul et al. (2019) and Vinciotti et al (2022), we assume:

PP <y ... ¥® <y, 16D, 00) = 0gu (07 (Fi()), ... 27 (Fp(yp)).

where @ g is the cumulative distribution function of a p-dimensional multivariate normal
with a zero mean vector and precision matrix Sl(k), ® is the standard univariate normal
distribution function, and F; is the marginal distribution of OTU j. The dependency structure
induced by this model in condition k is represented by the conditional independence graph
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G®. Following from the theory of Gaussian graphical models (Lauritzen 1996), this is
given by the zero-patterns of the precision matrix %),

In order to adapt to the richness and heterogeneity of microbiome data, the marginal
distribution F; of OTU j should be linked to external covariates, such as body site and
sequencing depth. We formalise this with the use of a parametric marginal model. In par-
ticular, as in Vinciotti et al (2022), we consider discrete Weibull regression marginals, i.e.
foreach j =1,..., p,

. bi(x)
Fi(yjlx) =1—q;@x)ith”

4™ N .
log<1—f11(x)>_”f’ log (bj(0)) = xy (1)

with node covariates x = (1, xq, ..., xm)T and regression coefficients g j and y j associated
with the two parameters defining the discrete Weibull distribution, respectively. These two
parameters allow to capture both the case of over and under dispersion relative to Poisson
(Peluso et al. 2019). As such, this distribution is particularly suited to our case. On the one
hand, the presence of external covariates may generate broad dispersion levels across the
covariate levels and the different OTUs. On the other hand, fine tuning of each marginal
model across a selection of candidate distributions is time-consuming for a large number of
OTUs and/or covariates.

Due to the discreteness of the data, the mapping from the discrete to the latent Gaussian
space z; = o I(F ;(y;)) of the copula is not unique. Indeed, each observation (y;, x) is
associated with an interval in the latent space, given by

Tr; (yjlx) = (@7 (Fj(yj — 11x)), @~ (F; (y;1x))]. )

As for the joint random graph model, we are particularly interested in modelling the
relatedness of the different environments as well as a possible link with external covari-
ates/existing knowledge at the microbial interaction level. To this end, we formalise the
model with the following latent probit network model (Hoff et al. 2002)

—k
PG " =116 0 w) = CD(“" IV LY ck’l{Gj..jz(”)zl})’ )
k' £k

where Gjl,jz(k) = 1, with ji, jo € {1, ..., p}, j1 # Jjo,defines an edge between the random
variables Y;, and Y}, in condition k, w € R? is the vector of edge-specific covariates,
i, ..., cp € R? are the latent space variables for each condition, oy is the intercept of the
model and relates to the overall sparsity level of graph G*). We denote with ® = (a, B, ¢)
the vector of parameters associated to the joint random graph model.

In the next section, we discuss inference of the full set of model parameters from
microbiome data, namely 3, .. ., NpVis--- ¥ pat the marginal level and GO, ... GPB,
Sl(l), e, 52(3), © at the structural level.



RANDOM GRAPHICAL MODEL

O = (a,8,¢c), w latent network probit model

G® ~ Bernoulli(P(G® =1 | G, 0, w))

Gaussian copula GM

A -1
z;®) ~ N, (0, Q) )

L 4

z1<’€),...,zn<k> 77]'-,’Vj~,j =1...,p
k=1,....B (FW, .. F®)
YI(k)a e 7yn(k)
k=1,...,B

Figure 1. Hierarchical representation of the random graphical model responsible for generating the microbiome
data across different related environments. The model combines a latent network probit model with a Gaussian
copula graphical model.

2.2. BAYESIAN INFERENCE

Figure 1 describes the proposed random graphical model and how it generates micro-
biome data from different, possibly related, environments. In particular, given the param-
eters ® = (a, B, ¢) that define the latent network model, edges in G® are independent,
conditional on the remaining graphs, and are, therefore, the result of Bernoulli draws. Given
graphs G® for each conditionk = 1, ..., B, the data are then generated via a Gaussian cop-
ula graphical model (Vinciotti et al 2022), i.e. positive-definite precision matrices are drawn
via G-Wishart distributions, and the resulting multivariate normal draws are combined with
the parametric marginals to generate count microbiome data.

In order to quantify the full uncertainty in the estimation of the parameters, we opt for a
Bayesian inferential procedure. To this end, we consider the following prior distributions:
non-informative N (0, 10) priors on each parameter in ®, weakly informative N (0, 1) priors
on each regression coefficient in (5 I j), j=1,..., p, non-informative G-Wishart priors
for the precision matrix Q® ~ W (3, 1,) conditional on the graph G® (Mohammadi and
Wit 2015). We use Markov Chain Monte Carlo (MCMC) sampling scheme for generating
samples from the posterior distribution of the parameters, described in Table 1.

Upon convergence, posterior distributions of all parameters are returned. We focus par-
ticularly on the parameters ®, which provide information on the latent process generating
the graphs and how related the different environments are at the structural level, and on the
graphs G®), which are associated with posterior edge inclusion probabilities

SN WG, ) € GOYWR,P, ©)
Zivzl w(Q,®, @)

PGjp"0 =1y, x,w) = : 4)
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Table I. MCMC scheme of random graphical model inference

1. Metropolis-hastings sampling of the marginal regression parameters 1 ;, y ; (Haselimashhadi et al. 2018)
2. Gibbs sampling of the parameters @ from their posterior distribution via a

sequence of probit regressions (with offset):

ealf.c, (GO, w

e Bla,c, (GO, w

o cler. e (GO) w

3. Gibbs sampling of z;; (OITIOR Zi,—j ®), yi (®) via a truncated normal on Iﬁj (vijlx;) (Vinciotti et al 2022)

4. Gibbs sampling of Q® |G(k), z%) via a G-Wishart posterior distribution (Mohammadi and Wit 2015)
5. Continuous time birth-death MCMC sampling of the graph

G0 eh b Gk @ w

generating a new graph from the current graph G with an edge e added, removed

or kept (Mohammadi and Wit 2015). The move to a larger dimension (birth) or

a smaller one (death) is regulated by an exponential waiting time between two

successive events and it is always accepted, making these approaches particularly

efficient for high dimensional search spaces, as in this case

where N is the number of MCMC iterations and W (2;*), ©) is the waiting time for graph
Gl(k) with precision matrix Slt(k), that is, the average time that the MCMC sampling has
spent visiting the graph G, ® before jumping to other configurations (Mohammadi and Wit
2015). Posterior distributions on the precision matrices 2* are also available and can be
converted to partial correlations for each edge, via

W
JjLi2
Tz = T o ©)
VO j1®jaj
with wj, j, denoting the (ji, j2) entry of a precision matrix £2. These values give information
also about the sign of the dependencies in each environment. In a similar vein, posterior

distributions of any network statistic of interest can be derived from the MCMC chain of
graphs that is returned.

3. RESULTS

In this section, we present a simulation study to show the performance of the random
graphical model, as well as an implementation on data from the Human Microbiome Project.

3.1. SIMULATION STUDY

In order to clarify the data generating process behind the proposed random graphical
model described in Fig. 1, and to assess its performance in inferring parameters from data,
we simulate n = 346 observations on p = 87 variables for B = 13 environments, with
the sample size and dimensions matching those of the real data. For the simulation, we
construct a latent space ® with the following components: « parameters drawn from a
N(—2, 1) distribution, i.e. a low edge probability in Eq. (3), leading to a high level of
network sparsity; one edge covariate W from a U (—0.5, 0.5) distribution with an associated
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Figure 2. Results from the simulation study, evaluated on the last 2500 MCMC iterations. Left: True probit
probabilities from Eq. (3) versus those calculated using the mean posterior estimates of the .,  and ¢ parameters.
Right: Receiver operating characteristic curves of the recovered graphs against the true ones for each environment,
across a sequence of thresholds on the posterior edge probabilities from Eq. (4). The 13 colours distinguish the 13
environments, respectively.

parameter 8 = 2.5; latent vectors ¢ € R2 with each component drawn from a N (0, 0.3)
distribution. Given ®, we first generate k = 1, ..., 13 graphs via Bernoulli draws for each
edge conditional on the others. We iterate the sampling in order to obtain the joint distribution
of the graphs and check that the sampling successfully converged to this joint distribution
by monitoring the density of the graphs being sampled. Given the sampled graphs {G®)} at
the final iteration, we sample their associated precision matrices (0} from a W5 (3, 1 »)
distribution. We finally obtain the observed data for each environment £ from a multivariate
Gaussian draw N (0, 2®). We omit here the case of discrete marginals and concentrate
on the inference of the latent space and recovery of the networks. The data constructed as
described above can be retrieved by running the function sim.rgm of the rgm package
accompanying this paper, using the default values for the inputs.

Figure 2 reports the results after 10,000 MCMC iterations, obtained by running the func-
tion rgm with prior distributions as described in Sect. 2.2. We retain the last 25% of the
iterations for the calculation of posterior edge distributions from Eq. (4) and posterior distri-
butions of the parameters © of the random graph model. The first plot shows a good recovery
of the latent network space @, by comparing the true probit probabilities from Eq. (3) with
those obtained using the mean posterior estimates of the &, 8 and ¢ parameters. The second
plot shows an accurate reconstruction of the networks G, by comparing the recovered
graphs with the true graphs, for each environment and across a sequence of thresholds on
the posterior edge probabilities. The average area under the receiver operating characteristic
curves is 0.95, across the 13 environments.

Beyond the specific example used in the simulation, and following related studies in the
literature (Mohammadi et al. 2017; Vinciotti et al 2022), we expect the performance of the
method to improve, in terms of parameter estimation and graph recovery, the lower p is
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and the sparser and more structured the graphs are. Moreover, as we will show in the real-
data application, we expect the joint model across conditions to lead to better performance
compared to individual analyses per condition in the presence of similarities between graphs,
as these induce a sharing of information across environments that is exploited only by the
joint analysis.

3.2. JOINT INFERENCE OF MICROBIOTA SYSTEMS ACROSS BODY SITES

Microbiome data We use the microbiome data from a study conducted as part of
the Human Microbiome Project (Consortium 2012), collecting microbial abundances
at the level of Operational Taxonomic Units (OTUs) from 16S variable region V3-
5 data of healthy individuals. The data are available in the rMAGMA package in
R (Cougoul et al. 2019). After filtering out samples with less than 500 reads, we
focus on the 13 body sites with the largest sample size, namely “Anterior_nares”
(later referred to as nose), “Attached_Keratinized_gingiva” (ker-gingiva), “Buc-
cal_mucosa” (cheek), “Hard_palate” (palate), “L_Retroauricular_crease” (L-ear),
“Palatine_Tonsils” (tonsils), “R_Retroauricular_crease” (R-ear), “Saliva” (saliva),
“Stool” (stool), “Subgingival_plaque” (sub-gingiva), “Tongue_dorsum” (tongue),
“Throat” (throat), and “Supragingival_plaque” (sup-gingiva). On average, there are
346 samples for each body site. We finally restrict our attention to the 87 OTUs which
have more than two distinct observed values in each of these environments. The microbal
communities are the interacting units, and, therefore, constitute the nodes of the network.
Marginal models A number of covariates are considered at the marginal level of each OTU.
It is well-known that the library size affects the reads of a particular OTU. The larger the
library size, the larger the number of reads. The library size is estimated by the geometric
mean of pairwise ratios of OTU abundances of that sample with respect to all other samples
(function GMPR in rMAGMA). Furthermore, the abundance of each OTU varies at the different
body sites. Therefore, we include the library size, dummy variables for each body site,
and interactions between body sites and library size for each sample as covariates for the
discrete Weibull marginal distribution for each OTU [Eq. (1)]. This results in 26 parameters
per OTU. We also consider a more complex model with the inclusion of an additional zero-
inflated parameter for each OTU and each environment, on which we place a Beta(1,1) prior
distribution.

We fit discrete Weibull parametric marginals for each OTU via 50,000 MCMC iterations
(function bdw. reg in the BDgraph package (Mohammadi and Wit 2019)). We select
between a discrete Weibull and a zero-inflated discrete Weibull model for each marginal via
a BIC criterion. As in Vinciotti et al (2022), we find that only a small percentage of OTUs
(12.5%) necessitates the more complex zero-inflated model. In principle, further tuning of
the marginal models could be conducted by considering also other distributions, such as the
negative Binomial or hurdle distributions. To this end, Fig. 3 shows how the performance
is similar between a discrete Weibull and a negative Binomial distribution, with a small
number of OTUs being significantly better fitted by discrete Weibull. Although selecting
the best distribution for each OTU is possible, and other models for count data are also
available, this is time-consuming for a large number of variables and may not have a big
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Figure 3. Difference of Bayesian Information Criterion (BIC) between the discrete Weibull and the negative
Binomial model for each OTU and condition. In each case, the zero-inflated model is considered if it leads to a
lower BIC.

impact on the structural learning procedure. Indeed, related studies have shown that the
recovery of the network dependences is rather robust to miss-specifications of the marginal
distributions (Cougoul et al. 2019; Vinciotti et al 2022).

Random graph model Covariates are considered also at the random graph level. In particular,
the random graph model in Eq. (3) is defined by a sparsity parameter o and a latent location
cr € R2, for each body site k, as well as a vector 8 of regression coefficients associated with
six binary variables (w) that encode whether a pair of OTUs belong to the same taxonomy
level. In particular, we consider the six taxonomy levels given by the bacterial phylum,
class, order, family, genus and species.

Structural learning As typical of inferential approaches for Gaussian copula graphical mod-
els, the fitting of marginals is performed first, followed by a calculation of the intervals from
Eq. (2) using posterior mean estimates of the parameters (evaluated on the last 25% of
the iterations). These intervals are then used for the subsequent learning of the structural
dependencies, by iterating steps 25 of the procedure described in Sect. 2.2 (function rgm
in the rgm package that accompanies this paper). Given the huge space of graphs, we let the
Bayesian structural learning procedure run for 3 million MCMC iterations. All subsequent
results are evaluated on the last 7500 iterations.

Interpretation of results The most immediate output of the analysis are the 13 networks that
are inferred for each environment. Figure 4 summarises these networks by the posterior edge
probabilities, calculated from Eq. (4). It is clear that the networks tend to be sparse, and
vary, to some extent, between the conditions. The reasons for this environmental network
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Figure 4. Random graphical model inferred from microbiome data: Posterior edge probabilities for each edge
and each environment, rearranged via row and column clustering.

variation can be found from the random graph generative process, described by Eq. (3).
Figure 4 shows a high level of sparsity across all networks (mean posterior edge probabilities
equal to 6.8%, on average across the 13 environments). This is captured by low intercept
values « of the fitted random graph model (mean posterior estimate —2.7, on average across
the 13 environments).

Figure 4 shows high structural similarity between some environments, with significant
sharing of edges and non-edges with high probability among similar environments. This is
explained by the latent locations of the body sites in the random graph model, shown in Fig. 5.
For example, sup-gingiva and sub-gingiva are highly related environments, and
similarly throat and tonsils. Indeed, in both cases, the two associated latent location
vectors ¢ have a large inner product, as they are close to each other in the space and far from
zero. The indicator function in Eq. (3) further encourages sharing of edges between these
networks. Indeed, 93% of the edges with posterior edge probability greater than 0.5 are in
common between the sup-gingiva and sub-gingiva networks, and 95% between
the throat and tonsils networks. Looking at the posterior mean of partial correlations,
calculated from the precision matrices via Eq. (5), we find an agreement also on the sign of
the dependency, with a correlation of 0.90 between sup-gingiva and sub-gingiva
partial correlation values for each edge, and 0.93 between throat and tonsils. Finally,
as the two pairs of networks are almost orthogonal to each other in the latent space, we expect
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Figure 5. Random graphical model inferred from microbiome data: mean posterior locations of the body sites
(c) in a 2D latent space. Colours refer to the Uberon anatomy classification of the body sites.

little structural sharing between the sup-gingiva/sub-gingiva networks and the
throat/tonsils networks. Indeed, they have the lowest agreement of high-probability
edges across all pairs, with an average sharing of only 21.3%.

The similarities between the environments detected by the proposed method are partly
supported by the Uberon anatomy classification of body sites, particularly when it comes to
the three skin-related body sites. These are located close to each other in the latent space of
Fig. 5 and have on average 63% of high-probability edges in common (Fig. 4). On the other
hand, the oral cavity-related body sites appear to be further split into two groups. This is in
line with the analysis of Segata et al. (2012) that found four groups of body sites based on
similar community compositions, namely: cheek, ker-gingiva, palate; saliva,
tongue, tonsils, throat; sub-gingiva and sup-gingiva; and stool. These
groups are also clearly evident in Fig. 5.

Finally, the results show how the taxonomical relatedness of the microbes encourages
the presence of a link between them. Indeed, Fig. 6 shows how the probability of two OTUs
connecting, in any environment, is positively associated with their belonging to some of the
taxonomy levels considered, in particular to the species, genus and class taxonomies.
Comparison with other methods Figure 7 shows that the random graphical model leads also
to a more stable recovery of the individual networks, compared to estimating individual
networks. Indeed, the figure shows that the variances of the posterior edge probabilities are
smaller for the proposed rgm approach than when fitting individual Gaussian copula graph-
ical models for each environment separately. For the latter, we used the approach of Vinciotti
et al (2022). Implemented in the function bdgraph . dw in the BDgraph R package, we
considered the same parametric marginals as those considered in this paper but a more tra-
ditional Erdos-Rényi random graph prior for each environment. To facilitate comparison,
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Figure 6. Random graphical model inferred from microbiome data: estimation of B parameters associated with
six dummy variables indicating if a pair of nodes forming an edge belongs to the same taxonomy level .

the prior edge probability of the Erdos-Rényi prior is set to match the sparsity level of the
networks recovered by the rgm analysis. Figure7 shows how the posterior probabilities
detected by rgm are more concentrated on either O or 1 than with the alternative approach.
This means that the joint analysis proposed in this study leads to a more confident detec-
tion of structural dependencies, as it induces a sharing of information across environments,
compared to separate analyses for each environment.

4. DISCUSSION AND CONCLUSION

In this paper, we have proposed a novel approach for the inference of microbiotic systems
from multivariate measurements of microbial abundances across different, but related, envi-
ronments. We have shown how the combination of graphical models for each environment
with a joint random graph model describing the distribution of graphs across environments
allows to learn about the individual microbiota systems as well as their structural similarities.
In order to further adapt to the richness and complexity of microbiome data, the proposed
approach allows for the inclusion of external covariates that may have an association with
marginal microbial abundances or their interactions.

We have applied the methodology to the study of the human microbiome and have
shown how the method is able to recover the microbiotic system between 87 microbes that
are specific to each of the 13 body sites considered, as well as to capture the biological
relatedness between the 13 microbiotic systems. Although, for this application, the number
of samples for each body site was larger than the number of microbes (p = 87 and n = 346
on average across body sites), the Bayesian structural learning approach that is considered
(Mohammadi and Wit 2015) can be used also when the number of observations per condition
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Figure 7. Comparison between the joint rgm and individual Gaussian copula graphical models for each environ-
ment (Vinciotti et al 2022). For each method and each environment, the plot shows the boxplot of the variance of
the posterior edge probabilities .

is smaller than p, which is common for genomic data. In fact, as we show also in this paper,
the joint modelling of the graphs across environments induces a sharing of information
across environments which may be particularly beneficial in these cases.

Beyond the analysis presented in this paper, the method can be used more broadly on
microbiome data measured across different conditions, where there is interest in learn-
ing structural dependencies within each environment and their similarities between envi-
ronments. At this more general level, the proposed methodology share some similarities
with graphical modelling approaches from data across multiple conditions, such as those
described by Ni et al. (2022). More dedicated random graph models may be needed depend-
ing on the context, e.g. for the case of microbiome data measured over time with dependen-
cies that change over time.
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