Dynamic-Epistemic reasoning on distributed systems

Radu Mardare
The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Trento, Italy
mardare@cosbi.eu

This is the preliminary version of a paper that will appear in
In Proceedings of the second Conference on Algebra and Coalgebra in Computer Science (CALCO2007), LNCS 4624, Springer, 2007.

Dynamic-Epistemic reasoning on distributed systems

Radu Mardare
The Microsoft Research-University of Trento, Italy

September 30, 2009

Abstract

We propose a new logic designed for modelling and reasoning about information flow and information exchange between spatially located (but potentially mobile), interconnected agents witnessing a distributed computation. This is a major problem in the field of distributed systems, covering many different issues, with potential applications from Computer Science and Economy to Chemistry and Systems Biology.

Underpinning on the dual algebraical-coalgebraical characteristics of process calculi, we design a decidable and completely axiomatizad logic that combines the process-algebraical/equational and the modal/coequational features and is developed for process-algebraical semantics. The construction is done by mixing operators from dynamic and epistemic logics with operators from spatial logics for distributed and mobile systems.

1 Introduction

Observation is fast becoming an important topic in computer science. In which manner can observation (in the broad sense of the word) influence the way of computing? In which way can the partial information available to an external observer of a computational system be used in deriving knowledge about the overall complete system? We will approach these problems by developing a logic designed to handle (partial) information flow and information exchange between external observers (agents) of a distributed system.

In the context of distributed computation, a concurrent computational system can be thought of as being composed of a number of modules, i.e. spatially localized and independently observable units of behavior and computation (e.g. programs or processors running in parallel), organized in networks of subsystems and being able to interact, collaborate, communicate and interrupt each other. Moreover, with the development of mobile computation, modules (subsystems) are able to move across networks. We shall consider agents - external observers of the modules. As an external observer, an agent witnesses the global computation and interacts with the whole system only by means of its module. Thus it derives its knowledge about the overall system from the observed behavior of its subsystem and from epistemic reasoning on the knowledge (and reactions) of other agents witnessing the same computational process (possibly from a different perspective). The mobility of modules allows agents to even "penetrate"
inside other modules, either "legally" (i.e. with the proper authorizations) or "illegally" (by taking advantage of some security failures).

In this context, one has to face issues concerning control over information and its flow (specifications of when agents can acquire, communicate and protect truthful, relevant, preferably exclusive information), and hence issues of privacy, secrecy, belief, trust, authentication etc; all these in the context of concurrent computation. The general problem approached in this paper has thus to do with modelling and reasoning about information flow and information exchange between spatially located (but potentially mobile), interconnected agents. This is a major problem in the field of distributed systems, covering many different issues, with potential applications: in Secure Communication (checking secrecy and authentication for given communication protocols), in Debugging and Performance analysis (checking for the cause of errors or of high computational costs in a system where we can control only some modules), in Artificial Intelligence (endowing artificial agents with good and flexible tools to reason about their changing environment and about each other), in designing and improving strategies for knowledge acquisition over complex networks (such as the Internet), etc.

Lately, in experimental sciences, such as Systems Biology or Bio-Chemistry, the possibility has been considered to construct tools for analysing and simulating bio-systems in silico. The approach is based on the partial information we have about the live systems (obtained from in vivo experiments). We are just external observers of a bio-system and we observe only a subpart of it (which we consider essential with respect to the problem we want to approach). It is not realistic to suppose that we will ever have complete information about a live system [?]. From this partial information we want to understand the behavior of the system and to design a method to control it. Hence, the success of our approach depends on our ability to manipulate partial information and to extract knowledge from it.

In approaching this problem we have chosen the process-algebraical representation of (mobile) distributed system and we developed a logic of information flow for process-algebraical semantics. Taking process calculi as semantics is theoretically challenging due to their dual algebraical/coalgebraical nature. While the algebraical features of processes are naturally approached in equational fashion (that reflects, on logical level, the program constructors), the coalgebraical features (intrinsically related to transition systems via the denotational and the operational semantics of process calculi) ask for a modal/coequational treatment. The modal approach is also needed for developing the epistemic reasoning.

Consequently, our paper combines two logical paradigms to information flow in distributed systems: dynamic-epistemic (and doxastic) logics [20, 15, 18], semantically based on epistemicdoxastic Kripke models; and the spatial logics for concurrency [8, 9, 10], for which the semantics is usually given in terms of process algebra. The intention is to develop and study a decidable and completely axiomatized process-based multimodal logic able to capture the complexity of the process-algebraical semantics.

Finally, we are interested in using this tool for the general task of modelling and classifying various types of information exchanges in distributed settings, and more specifically for the concrete task of reasoning about, verifying and designing communication protocols in an open, mobile environment.

2 Using partial information

In this section we will show how, playing with partial information about a system, we can derive properties of the whole system. For this we reconsider a variant of the muddy children puzzle [15] adapted for our paradigm.

Figure 1: The system S

Figure 2: The perspective of O_{1}

Consider a computational system S composed by four disjoint modules S_{1}, S_{2}, S_{3} and S_{4} running in parallel (Figure 1). Syntactically, we describe this situation using the parallel operator $S=S_{1}\left|S_{2}\right| S_{3} \mid S_{4}$. Each module is characterized by the presence/absence of a "bug" that might generate undesirable behavior. Suppose, in addition, that the system is analyzed by four observers, each observer having access to a subpart of S. Thus, observer O_{1} can see the subsystem $S_{2}\left|S_{3}\right| S_{4}, O_{2}$ the subsystem $S_{3}\left|S_{4}\right| S_{1}, O_{3}$ can see the subsystem $S_{4}\left|S_{1}\right| S_{2}$ and observer O_{4} sees $S_{1}\left|S_{2}\right| S_{3}$. Each observer has a display used for making public announcements.

The observers know that each module of the system S might contain a bug and that the system contains at least one bug. Each observer tries to compute the exact number of them and their positions in the system. In doing this the observers do not communicate but they make public announcements concerning their knowledge about the system. Thus, each observer displays 0 until it knows the exact number and positions of the bugs in the system, at which point it switches to 1 . In addition, the observers are synchronized by a clock that counts each step of computation. After each "tic" the observer has to evaluate its knowledge and to decide if its display remains on 0 or switches to 1 . Thus, each observer computes information about the whole system by using the partial information it possesses and by evaluating the knowledge of the other observers (by reading their displays). If an observer is able to decide the correct number of bugs and their exact positions in the system, then it succeeded to do this with a lower cost than the cost of fully investigating the system. Hereafter we show that such a deduction is possible.

Consider that the real state of the system is the one in Figure 1. And suppose that we can control only the observer O_{1}. As O_{1} sees the subsystem $S_{2}\left|S_{3}\right| S_{4}$, it sees a bug in subsystem S_{2} and no bugs in S_{3} and S_{4} (Figure ?? represents the perspective of O_{1}). But it does not know if the system S_{1} contains a bug or not. For O_{1} both situations are equally possible. Hence, after the first round of computation the display of O_{1} remains 0 . Concerning observer O_{2}, it sees a
bug in S_{1}, but it does not know if there is one also in S_{2}, thus, after the first round, it will show 0 too.

Figure 3: A hypothetical perspective of O_{2}
Figure 4: The real perspective of O_{2}

The second round of computation starts. O_{1} has seen that, after the first round, the observer O_{2} has not succeeded in understanding the situation (as O_{2} shows 0 on its display). If the system S_{1} does not contain a bug then, in the first round, O_{2} would have seen no bugs (Figure ??). O_{2} also knows that there is at least one bug in the system. Hence, if this was the case, O_{2} had enough information to decide, in the first round, that the only bug of the system is in S_{2}. Consequently, 1 had to appear on its display. But this was not the case. This means that what O_{2} observed was the situation presented in Figure ??. Therefore, O_{1} is able to decide that the real situation of the system is the one with a bug in S_{1} and it will display 1 . The example works similarly in more complex situations.

Observe the advantages of this analysis: using only the partial information available to O_{1} and judging the behavior of the other observers, we were able to compute the real configuration of the system. The observers do not exchange information about S, but only about their level of understanding S. The rest can be computed. If each subsystem is very complex then the complete information about the system can be larger than an observer can store or manipulate. Note also that the observers do not need a central unit for organizing their information. Each observer organizes its own information and makes public announcements about its level of knowledge. They work simultaneously in a distributed network and, only playing with their partial information about S and with the information about the state of the network, they are able to derive overall properties of the system.

3 The main problem and alternative approaches

We can consider even more complex examples where the system itself evolves while it is observed and where the agents can also interact with the system as a response to their level of knowledge about it. In such a case we can identify two parallel levels of the model. On one level we have the evolution of the system and, in each state of the system, there is a second
level - the evolution of the knowledge of the agents with respect to the system. As underlined in [2] it is difficult to collapse the two in one Kripke-style semantics.

There are three kinds of modal logics of relevance to our subject: epistemic/doxastic logics $[20,15]$, dynamic logics [18] and spatial logics [9, 8]. The usual semantics for the first two is in terms of Kripke models, while the third was developed as a logic for concurrent processes, with semantics given in terms of process calculi.

3.1 Kripke-model based logics

Epistemic/doxastic logics [15] formalize in a direct manner notions of knowledge, or belief, possessed by an agent, or a group of agents, using modalities like $K_{A} \phi$ (A knows that ϕ) or $\square_{A} \phi$ (A justifiably believes that ϕ). In the models of these logics each basic modality is associated to a binary "accessibility" relation interpreted as an "indistinguishability" relation A to for each agent A. It expresses the agent's uncertainty about the current state. The states s^{\prime} such that $s t \begin{gathered}A \\ \text { to } \\ s^{\prime}\end{gathered}$ are the epistemic alternatives of s to agent A : if the current state is s, A thinks that any of the alternatives s^{\prime} may be the current state. These logics have been extensively studied and applied to multiagent systems.

Dynamic logics [18] are closer to process calculi, in that they have names for "programs", or "actions", and ways to combine them. Accessibility relations are interpreted as transitions induced by programs, and a dynamic modality $[\pi] \phi$ captures the weakest precondition of such a program w.r.t. a given post-specification ϕ. Modalities in a dynamic logic form an algebraic structure: programs are built using basic program constructors such as $\pi . \pi^{\prime}$ (sequential composition) or π^{*} (iteration), etc.

Dynamic Epistemic Logics. By combining the dynamic and epistemic formalisms a class of logics have been developed [$2,3,17,4,14$] for specifying properties of evolving knowledge and beliefs in dynamic systems. The high level of expressivity reaches here a low complexity (decidability and complete axiomatizations). Further, all these approaches have been generalized by the so called Logics of Epistemic Programs [2, 3]. These are based on the concept of "epistemic programs" - models for informational changes, providing a representation of the inherent epistemic features of a program (what is happening, what does each agent "think" is happening, what does it think the others think etc). In this approach the uncertainties about the current action of the system are also modelled as Kripke models. So, an epistemic program is essentially just an epistemic Kripke model, but whose elements are now interpreted as "actions". Each action σ has attached a precondition σ_{0}, telling us when σ can be executed. To see how an epistemic program changes an epistemic situation, [1] proposes a binary operation, taking "static" models (i.e. epistemic Kripke models of possible input states) and "dynamic" models (i.e. epistemic programs) and returning other static models (of possible output states). The operation associates to each pair (s, σ) of a state and an action an input state s^{\prime}, provided the action's precondition σ_{0} is satisfied by the state s.

3.2 Process logics

In modeling parallel distributed (and mobile) systems process algebra imposes itself as a malleable tool useful in many applications. In this paradigm, typically, one considers various operations with processes, corresponding to known program constructors: sequential composition $\alpha . P$, various notions of parallel composition $P \mid P^{\prime}$ (some of which involve communication), replication $!P$ etc. These calculi are also adapted to deal with mobility, i.e. changes affecting the communication network (redirecting communication channels, creating new ones, sending not just information, but the processes themselves, over channels). Further, for specifying properties of distributed systems different types of logics have been developed for semantics based on process calculi.

Process Logics. Process semantics for modal logics can be considered as a special case of Kripke semantics, since it involves structuring a class of processes as a Kripke model, by endowing it with accessibility relations, and then using the standard clauses of Kripke semantics. The most obvious accessibility relations on processes are the ones induced by action transitions $\alpha . P$, and thus the corresponding (Hennessy- Milner) logic [19] was the first process-based modal logic that was developed. Later, temporal, mobile and concurrent features have been added [32, 13, 29].

Spatial logics. A relatively new type of process logics are spatial logics [8, 9, 10], which are particularly tailored for reasoning about mobility and security, since they capture spatial properties of processes, i.e. properties which depend on location. Informally, these are properties such as "the agent has gone away", "eventually the agent crosses the firewall", "somewhere there is a virus" etc. Among the various spatial operators we mention: the parallel operator $\phi \mid \psi$ and its adjoint - the guarantee operator $\phi \triangleright \psi$; operators designed for expressing the "new name features" that are central in security - revelation and hiding operators, inspired by the Gabbay-Pitts quantifier [16]. In addition, most of these logics include temporal modalities and quantifiers. Though expressive and useful, most spatial logics proved to be undecidable, even in the absence of quantifiers.

4 A unified paradigm

In this paper we will collapse the two paradigms and propose a unified one. We give a spatial interpretation of epistemic modalities in CCS: if we associate to each "agent" A the process P describing the behavior of the module observed by A, then the agent observing a process (possibly running in parallel with many other processes) "knows" only the activity and actions of its own process. "Knowledge" is thus identified with "information (about the overall, global process) that is locally available (to an agent observing a subprocess)". In effect, this organizes any class \mathcal{M} of processes (thought of as "states") as an epistemic Kripke model, with indistinguishability relations to $\stackrel{A}{\text { for each agent } A} A$ observing the subprocess P, given by: $P \mid P^{\prime}$ to $P \mid P^{\prime \prime}$ for any $P^{\prime}, P^{\prime \prime}$. Since these are equivalence relations, we obtain a notion of "(truthful) knowledge". The resulting Kripke modality, $K_{A} \phi$, read the agent A knows ϕ, holds at a given state (process) R iff the process P is active (as a subprocess) at R and property ϕ holds in any context in which P is active.

We capture a very simplified analogue of the above notion of "appearance of an action to an agent" by stating that an agent A can "see" only the actions of the process P it observes. To make this precise, we need to keep track of which actions are executed by which module, by defining "signed" transitions of the form Q to R whenever $Q \equiv P\left|S, R \equiv P^{\prime}\right| S$ and $P \stackrel{\alpha}{\mathbf{t}} P^{\prime}$. The corresponding dynamic modalities are of the form $[A: \alpha] \phi$, exhibiting the agent A doing/witnessing the action α.

The resulting logic is completely axiomatizable and decidable. The Hilbert-style axiomatics we propose for it presents our logic as an authentic dynamic-epistemic logic. The classical axioms of knowledge will be present in our system.

Unlike in standard dynamic-epistemic logic, our agents are now structured: the process algebraical structure defined on the modules of the system can be projected on the ontology of agents. Thus we can have the agent $A_{1} \mid A_{2}$ which is the agent seeing the process $P_{1} \mid P_{2}$, where the agent A_{1} sees P_{1} and the agent A_{2} sees P_{2}. In this way the knowledge of the agent $A_{1} \mid A_{2}$ contains the common knowledge of A_{1} and of A_{2} together with all the properties that derive from the fact that P_{1} and P_{2} runs in parallel. Similarly we might speak of the agent $\alpha . A$ as the agent seeing the process $\alpha . P$ when A is an agent seeing P. This algebraical structure on the level of ontology of agents is relevant in many applications and there is no trivial way to mimic it using classical epistemic logics.

5 On processes

In this section we introduce a fragment of CCS [27] calculus that is representative for process algebra being "the core" of most of the process calculi. This fragment will be used further as semantics for our logic. For the proofs of the results presented in this section and for additional results on the subject, the reader is referred to [25, 23, 24].

5.1 CCS processes

Definition 5.1 (Processes) Let \mathbb{A} be a denumerable signature. The syntax of the calculus is given by a grammar with one non-terminal symbol P and the productions

$$
P:=0|\alpha . P| P \mid P
$$

where $\alpha \in \mathbb{A}$. We denote by \mathbb{P} the language generated by this grammar. We call the elements of \mathbb{A} (basic) actions and the objects in \mathbb{P} processes.

Definition 5.2 (Structural congruence) Let $\equiv \subseteq \mathfrak{P} \times \mathfrak{P}$ be the smallest equivalence relation defined on \mathbb{P} such that

1. $(\mathbb{P}, \mid, 0)$ is a commutative monoid with respect to \equiv;
2. \equiv is a congruence on the syntax of \mathbb{P}, i.e. if $P^{\prime}, P^{\prime \prime} \in \mathbb{P}$ such that $P^{\prime} \equiv P^{\prime \prime}$ then $\alpha \cdot P^{\prime} \equiv \alpha \cdot P^{\prime \prime}$ and $P^{\prime}\left|P \equiv P^{\prime \prime}\right| P$ for any $P \in \mathbb{P}$ and $\alpha \in \mathbb{A}$.

Definition 5.3 We call a process P guarded iff $P \equiv \alpha . Q$ for $\alpha \in \mathbb{A}$. We denote $P^{0} \stackrel{\text { def }}{=} 0$ and $P^{k} \stackrel{\text { def }}{=} \underbrace{P|\ldots| P}_{k}$.

Definition 5.4 (Labelled transition system) We consider on \mathfrak{P} the labelled transition system ${ }^{1} \mathfrak{P}$ to $\mathbb{A} \times \mathfrak{P}$ defined by the next rules.

$$
\begin{array}{lc}
\alpha . P \boldsymbol{t o n}^{\alpha} P & P \equiv Q \\
\text { Pto }^{\alpha} P^{\prime} Q \boldsymbol{Q t o} P^{\prime} & \operatorname{Pto}_{\alpha}^{\alpha} P\left|Q \boldsymbol{t o} P^{\prime}\right| Q
\end{array}
$$

Definition 5.5 (Extended transition system) We write $P \xrightarrow{Q: \alpha} P^{\prime}$ whenever $P \equiv Q \mid R, P^{\prime} \equiv$ $Q^{\prime} \mid R$ and $Q \xrightarrow{\alpha} Q^{\prime}$. We call this composed transition and its label $(Q: \alpha)$ composed action. We consider the set \mathbb{A}^{*} of all basic and complex actions. Hereafter we use a to range over \mathbb{A}^{*}, while α will be used to refer to arbitrary objects of \mathbb{A}.
We extend the transition system previously defined to \mathfrak{P} to $\mathbb{A}^{*} \times \mathfrak{P}$ that includes the composed transitions.

Definition 5.6 We call a process P guarded iff $P \equiv \alpha . Q$ for $\alpha \in \mathbb{A}$. We introduce the notation $P^{k} \stackrel{\text { def }}{=} \underbrace{P|\ldots| P}_{k}$, and convey to denote $P^{0} \equiv 0$.
[Representativeness modulo structural congruence] By definition, \equiv is a congruence (thence an equivalence relation) over \mathfrak{P}. Consequently, we convey to identify processes up to structural congruence, because the structural congruence is the ultimate level of expressivity we want for our logic. Hereafter in the paper, if it is not explicitly otherwise stated, we will speak about processes up to structural congruence.

5.2 Size of a process

Definition 5.7 We define, inductively, the size $P=(h, w)$ (height and width) of a process P :

1. $0 \stackrel{\text { def }}{=}(0,0)$
2. $P \stackrel{\text { def }}{=}(h, w)$ iff $P=\left(\alpha_{1} \cdot Q_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{j} \cdot Q_{j}\right)^{k_{j}}$,
for $Q_{i}=\left(h_{i}, w_{i}\right)$ and $h=1+\max \left(h_{1}, . ., h_{k}\right), w=\max \left(k_{1}, . ., k_{j}, w_{1}, . ., w_{j}\right)$.
We convey to write $\left(h_{1}, w_{1}\right) \leq\left(h_{2}, w_{2}\right)$ for $h_{1} \leq h_{2}$ and $w_{1} \leq w_{2}$ and $\left(h_{1}, w_{1}\right)<\left(h_{2}, w_{2}\right)$ for $h_{1}<h_{2}$ and $w_{1}<w_{2}$.

The intuition is that the size of a process is given by the depth of its syntactic tree and by the maximum number of bisimilar processes that can be found in a node of the syntactic tree. Observe that, by construction, the size of a process is unique up to structural congruence.

[^0]Example 5.1 The size for some processes:

1. $0=(0,0) \quad$ 4. $\alpha \cdot 0 \mid \alpha \cdot 0=(1,2)$
2. $\alpha \cdot 0=(1,1) \quad$ 5. $\alpha \cdot \alpha \cdot 0=\alpha \cdot \beta \cdot 0=(2,1)$
3. $\alpha \cdot 0 \mid \beta \cdot 0=(1,1) \quad$ 6. $\alpha \cdot(\beta \cdot 0 \mid \beta \cdot 0)=(2,2)$

Definition 5.8 For a set $M \subset \mathbb{P}$ we define $e^{2} M \stackrel{\text { def }}{=} \max \{P \mid P \in M\}$.

5.3 Structural bisimulation

Hereafter we introduce the structural bisimulation, a relation on processes that is an approximation of the structural congruence defined on size. It analyzes the behavior of a process focusing on a boundary of its syntactic tree. This relation is similar with the pruning relation proposed in [6] for the syntactic trees of ambient calculus.

Definition 5.9 (Structural bisimulation) Let $P, Q \in \mathbb{P}$. We define $P \approx_{h}^{w} Q$ by:
$P \approx_{0}^{w} Q$ always
$P \approx_{h+1}^{w} Q$ iff $\forall i \in 1 . . w$ and $\forall \alpha \in \mathbb{A}$ we have
\bullet if $P \equiv \alpha . P_{1}|\ldots| \alpha . P_{i} \mid P^{\prime}$ then $Q \equiv \alpha . Q_{1}|\ldots| \alpha . Q_{i} \mid Q^{\prime}$ with $P_{j} \approx_{h}^{w} Q_{j}$, for $j=1 . . i$
\bullet if $Q \equiv \alpha \cdot Q_{1}|\ldots| \alpha . Q_{i} \mid Q^{\prime}$ then $P \equiv \alpha . P_{1}|\ldots| \alpha . P_{i} \mid P^{\prime}$ with $Q_{j} \approx_{h}^{w} P_{j}$, for $j=1 . . i$
Example 5.2 Consider the processes

$$
R \equiv \alpha .(\beta .0|\beta .0| \beta .0) \mid \alpha . \beta .0 \text { and } S \equiv \alpha .(\beta .0 \mid \beta .0) \mid \alpha . \beta . \alpha .0
$$

We can verify the requirements of the definition 5.9 and decide that $R \approx_{2}^{2} S$. But $R \not \psi_{3}^{2} S$ because on the depth $2 R$ has an action α (in figure 1 marked with a dashed arrow) while S does not have it (because the height of S is only 2). Also $R \not \nsim 2_{3}^{3} S$ because R contains only 2 (bisimilar) copies of $\beta .0$ while S contains 3 (the extra one is marked with a dashed arrow). Hence, for any weight bigger than 2 this feature will show the two processes as different. But if we remain on depth 1 we have $R \approx_{1}^{3} S$, as on this deep the two processes have the same number of bisimilar subprocesses, i.e. any of them can perform α in two ways giving, further, processes in the relation \approx_{0}^{3}. Indeed

$$
\begin{gathered}
R \equiv \alpha R^{\prime} \mid \alpha R^{\prime \prime} \text {, where } R^{\prime} \equiv \beta .0|\beta .0| \beta .0 \text { and } R^{\prime \prime} \equiv \beta .0 \\
S \equiv \alpha \cdot S^{\prime} \mid \alpha \cdot S^{\prime \prime}, \text { where } S^{\prime} \equiv \beta .0 \mid \beta .0 \text { and } S^{\prime \prime} \equiv \beta . \alpha .0
\end{gathered}
$$

By definition, $R^{\prime} \approx_{0}^{3} S^{\prime}$ and $R^{\prime \prime} \approx_{0}^{3} S^{\prime \prime}$
We focus further on the properties of the relation \approx_{h}^{w}. We start by proving that structural bisimulation is a congruence relation.

Theorem 5.1 (Equivalence Relation) The relation \approx_{h}^{w} on processes is an equivalence relation.

[^1]

Figure 1: Syntactic trees

Proof We verify the reflexivity, symmetry and transitivity directly.
Reflexivity: $P \approx_{h}^{w} P$ - we prove it by induction on h
the case $h=0$: we have $P \approx_{0}^{w} P$ from the definition 5.9.
the case $h+1$: suppose that $P \equiv \alpha . P_{1}|\ldots| \alpha . P_{i} \mid P^{\prime}$ for $i \in 1 . . w$ and some $\alpha \in \mathbb{A}$. The inductive hypotheses gives $P_{j} \approx_{h}^{w} P_{j}$ for each $j=1 . . i$. Further we obtain, by the definition 5.9, that $P \approx_{h}^{w} P$.

Symmetry: if $P \approx_{h}^{w} Q$ then $Q \approx_{h}^{w} P$
Suppose that $P \equiv \alpha . P_{1}|\ldots| \alpha . P_{i} \mid P^{\prime}$ for some $i \in 1 . . w$ and $\alpha \in \mathbb{A}$ then, by the definition 5.9, exists $Q \equiv \alpha \cdot Q_{1}|\ldots| \alpha \cdot Q_{i} \mid Q^{\prime}$ with $P_{j} \approx_{h-1}^{w} Q_{j}$ for $j=1 . . i$ and vice versa. Similarly, if we start from $Q \equiv \beta . R_{1}|\ldots| \beta . R_{k} \mid R^{\prime}$ for $k \in 1 . . w$ and $\beta \in \mathbb{A}$ we obtain $P \equiv \beta . S_{1}|\ldots| \beta . S_{k} \mid S^{\prime}$ for some S_{j}, with $R_{j} \approx_{h-1}^{w} S_{j}$ for $j=1$.. k and vice versa. Hence $Q \approx_{h}^{w} P$.

Transitivity: if $P \approx_{h}^{w} Q$ and $Q \approx_{h}^{w} R$ then $P \approx_{h}^{w} R$ - we prove it by induction on h.
the case $h=0$ is trivial, because by the definition 5.9, for any two processes P, R we have $P \approx_{0}^{w} R$
the case $h+1$: suppose that $P \equiv \alpha . P_{1}|\ldots| \alpha . P_{i} \mid P^{\prime}$ for some $i \in 1 . . w$ and $\alpha \in \mathbb{A}$. Then from $P \approx_{h}^{w} Q$ we obtain, by the definition 5.9, that $Q \equiv \alpha \cdot Q_{1}|\ldots| \alpha \cdot Q_{i} \mid Q^{\prime}$ with $P_{j} \approx_{h-1}^{w} Q_{j}$ for $j=1 . . i$ and vice versa. Further, because $Q \approx_{h}^{w} R$, we obtain that $R \equiv \alpha . R_{1}|\ldots| \alpha . R_{i} \mid R^{\prime}$ with $Q_{j} \approx_{h-1}^{w} R_{j}$ for $j=1 . . i$ and vice versa.

As $P_{j} \approx_{h-1}^{w} Q_{j}$ and $Q_{j} \approx_{h-1}^{w} R_{j}$ for $j=1 . . i$, we obtain, using the inductive hypothesis that $P_{j} \approx_{h-1}^{w} R_{j}$ for $j=1 . . i$.

Hence, for $P \equiv \alpha . P_{1}|\ldots| \alpha . P_{i} \mid P^{\prime}$, some $i \in 1 . . w$ and $\alpha \in \mathbb{A}$ we have that $R \equiv \alpha . R_{1}|\ldots| \alpha . R_{i} \mid R^{\prime}$ with $Q_{j} \approx_{h-1}^{w} R_{j}$ for $j=1 . . i$ and vice versa. This entails $P \approx_{h}^{w} R$.

Theorem 5.2 If $P \approx_{h}^{w} Q$ and $Q \equiv R$ then $P \approx_{h}^{w} R$.
Proof Suppose that $P \equiv \alpha . P_{1}|\ldots| \alpha . P_{i} \mid P^{\prime}$ for some $i \in 1 . . w$ and $\alpha \in \mathbb{A}$. As $P \approx_{h}^{w} Q$, we obtain $Q \equiv \alpha \cdot Q_{1}|\ldots| \alpha . Q_{i} \mid Q^{\prime}$ with $P_{j} \approx_{h-1}^{w} Q_{j}$ for $j=1 . . i$ and vice versa. But $Q \equiv R$, so $R \equiv \alpha \cdot Q_{1}|\ldots| \alpha . Q_{i} \mid Q^{\prime}$ with $P_{j} \approx_{h-1}^{w} Q_{j}$ for $j=1 . . i$ and vice versa. Hence $P \approx_{h}^{w} R$.

Theorem 5.3 (Antimonotonicity) If $P \approx_{h}^{w} Q$ and $\left(h^{\prime}, w^{\prime}\right) \leq(h, w)$ then $P \approx_{h^{\prime}}^{w^{\prime}} Q$.
Proof We prove it by induction on h.
The case $h=0$ is trivial, as $\left(h^{\prime}, w^{\prime}\right) \leq(0, w)$ gives $h^{\prime}=0$ and for any processes P, Q we have $P \approx_{0}^{w} Q$.

The case $h+1$ in the context of the inductive hypothesis:
Suppose that $P \approx_{h+1}^{w} Q$ and $\left(h^{\prime}, w^{\prime}\right) \leq(h+1, w)$.
If $h^{\prime}=0$ we are, again, in a trivial case as for any two processes P, Q we have $P \approx_{0}^{w} Q$.
If $h^{\prime}=h^{\prime \prime}+1$ then consider any $i \in 1 . . w^{\prime}$, and any $\alpha \in \mathbb{A}$ such that $P \equiv \alpha . P_{1}|\ldots| \alpha . P_{i} \mid P^{\prime}$. Because $i \leq w^{\prime} \leq w$, and as $P \approx_{h+1}^{w} Q$, we have $Q \equiv \alpha \cdot Q_{1}|\ldots| \alpha_{i} \cdot Q_{i} \mid Q^{\prime}$ with $P_{j} \approx_{h}^{w} Q_{j}$, for $j=1$..i. A similar argument can de developed if we start the analysis from Q.
But $\left(h^{\prime \prime}, w^{\prime}\right) \leq(h, w)$, so we can use the inductive hypothesis that gives $P_{j} \approx_{h^{\prime \prime}, w^{\prime}} Q_{j}$ for $j=1 . . i$. Hence $P \approx_{h^{\prime \prime}+1}^{w^{\prime}} Q$, that is, $P \approx_{h^{\prime}}^{w^{\prime}} Q$ q.e.d.

Theorem 5.4 (Congruence) \approx_{h}^{w} is an equivalence relation on processes having the properties:

1. if $P \approx_{h}^{w} Q$ then $\alpha . P \approx_{h+1}^{w} \alpha \cdot Q$
2. if $P \approx_{h}^{w} P^{\prime}$ and $Q \approx_{h}^{w} Q^{\prime}$ then $P\left|Q \approx_{h}^{w} P^{\prime}\right| Q^{\prime}$

Proof 1.: Suppose that $P \approx_{h}^{w} Q$. Because $\alpha . P$ is guarded, it cannot be represented as $P \equiv \alpha \cdot P^{\prime} \mid P^{\prime \prime}$ for $P^{\prime \prime} \not \equiv 0$. The same about $\alpha \cdot Q$. But this observation, together with $P \approx_{h}^{w} Q$ gives, in the light of definition 5.9, $\alpha . P \approx_{h+1}^{w} \alpha . Q$.
2.: We prove it by induction on h.

If $h=0$ then the conclusion is immediate.
For $h+1$, suppose that $P \approx_{h+1}^{w} P^{\prime}$ and $Q \approx_{h+1}^{w} Q^{\prime}$; then consider any $i=1 . . w, \alpha$ and R_{j} for $j=1$.. i such that

$$
P\left|Q \equiv \alpha \cdot R_{1}\right| \ldots\left|\alpha . R_{i}\right| R_{i+1}
$$

Suppose, without loss of generality, that R_{j} are ordered in such a way that there exist $k \in 1 . . i$, $P^{\prime \prime}, Q^{\prime \prime}$ such that

$$
\begin{gathered}
P \equiv \alpha \cdot R_{1}|\ldots| \alpha \cdot R_{k} \mid P^{\prime \prime} \\
Q \equiv \alpha \cdot R_{k+1}|\ldots| \alpha \cdot R_{i} \mid Q^{\prime \prime} \\
R_{i+1} \equiv P^{\prime \prime} \mid Q^{\prime \prime}
\end{gathered}
$$

Because $k \in 1 . . w$, from $P \approx_{h+1}^{w} P^{\prime}$ we have $P^{\prime} \equiv \alpha . P_{1}^{\prime}|\ldots| \alpha . P_{k}^{\prime} \mid P_{0}$ such that $R_{j} \approx_{h}^{w} P_{j}^{\prime}$ for $j=1 . . k$.
Similarly, from $Q \approx_{h+1}^{w} Q^{\prime}$ we have $Q^{\prime} \equiv \alpha \cdot Q_{k+1}^{\prime}|\ldots| \alpha \cdot Q_{i}^{\prime} \mid Q_{0}$ such that $R j \approx_{h}^{w} Q_{j}^{\prime}$ for $j=$ $(k+1) . . i$. Hence, we have

$$
P^{\prime}\left|Q^{\prime} \equiv \alpha \cdot P_{1}^{\prime}\right| \ldots\left|\alpha \cdot P_{k}^{\prime}\right| \alpha \cdot Q_{k+1}^{\prime}|\ldots| \alpha \cdot Q_{i}^{\prime}\left|P_{0}\right| Q_{0}
$$

As $R_{j} \approx_{h}^{w} P_{j}^{\prime}$ for $j=1 . . k$ and $R_{j} \approx_{h}^{w} Q_{j}^{\prime}$ for $j=(k+1) . . i$, and because a similar argument starting from $P^{\prime} \mid Q^{\prime}$ is possible, we proved that $P\left|Q \approx_{h+1}^{w} P^{\prime}\right| Q^{\prime}$.

Theorem 5.5 (Inversion) If $P^{\prime} \mid P^{\prime \prime} \approx_{h}^{w_{1}+w_{2}} Q$ then exists $Q^{\prime}, Q^{\prime \prime}$ such that $Q \equiv Q^{\prime} \mid Q^{\prime \prime}$ and $P^{\prime} \approx_{h}^{w_{1}} Q^{\prime}, P^{\prime \prime} \approx_{h}^{w_{2}} Q^{\prime \prime}$.

Proof Let $w=w_{1}+w_{2}$. We prove the theorem by induction on h :
The case $h=0$: is trivial.
The case $h+1$: Suppose that $P^{\prime} \mid P^{\prime \prime} \approx_{h+1}^{w} Q$.
Consider the following definition: a process P is in (h, w)-normal form if whenever $P \equiv$ $\alpha_{1} \cdot P_{1}\left|\alpha_{2} \cdot P_{2}\right| P_{3}$ and $P_{1} \approx_{h}^{w} P_{2}$ then $P_{1} \equiv P_{2}$. Note that $P \approx_{h+1}^{w} \alpha_{1} \cdot P_{1}\left|\alpha_{2} \cdot P_{1}\right| P_{3}$. This shows that for any P and any (h, w) we can find a P_{0} such that P_{0} is in (h, w)-normal form and $P \approx_{h+1}^{w} P_{0}$.

Now, we can suppose, without loosing generality, that ${ }^{3}$:

$$
\begin{aligned}
P^{\prime} & \equiv\left(\alpha_{1} \cdot P_{1}\right)^{k_{1}^{\prime}}|\ldots|\left(\alpha_{n} \cdot P_{n}\right)^{k_{n}^{\prime}} \\
P^{\prime \prime} & \equiv\left(\alpha_{1} \cdot P_{1}\right)^{k_{1}^{\prime \prime}}|\ldots|\left(\alpha_{n} \cdot P_{n}\right)_{n}^{k_{n}^{\prime \prime}} \\
Q & \equiv\left(\alpha_{1} \cdot P_{1}\right)^{l_{1}}|\ldots|\left(\alpha_{n} \cdot P_{n}\right)^{l_{n}}
\end{aligned}
$$

For each $i \in 1$..n we split $l_{i}=l_{i}^{\prime}+l_{i}^{\prime \prime}$ in order to obtain a splitting of Q. We define the splitting of l_{i} such that $\left(\alpha_{i} \cdot P_{i}\right)^{k_{i}^{\prime}} \approx_{h+1, w_{1}}\left(\alpha_{i} . P_{i}\right)^{l_{i}^{\prime}}$ and $\left(\alpha_{i} \cdot P_{i}\right)^{k_{i}^{\prime \prime}} \approx_{h+1, w_{2}}\left(\alpha_{i} \cdot P_{i}\right)^{l_{i}^{\prime \prime}}$. We do this as follows:

- if $k_{i}^{\prime}+k_{i}^{\prime \prime}<w_{1}+w_{2}$ then $P^{\prime} \mid P^{\prime \prime} \approx_{h+1}^{w} Q$ implies $l_{i}=k_{i}^{\prime}+k_{i}^{\prime \prime}$, so we can choose $l_{i}^{\prime}=k_{i}^{\prime}$ and $l_{i}^{\prime \prime}=k_{i}^{\prime \prime}$.
- if $k_{i}^{\prime}+k_{i}^{\prime \prime} \geq w_{1}+w_{2}$ then $P^{\prime} \mid P^{\prime \prime} \approx_{h+1}^{w} Q$ implies $l_{i} \geq w_{1}+w_{2}$. We meet the following subcases:
- $k_{i}^{\prime} \geq w_{1}$ and $k_{i}^{\prime \prime} \geq w_{2}$. We choose $l_{i}^{\prime}=w_{1}$ and $l_{i}^{\prime \prime}=l_{i}-w_{1}$ (note that as $l_{i} \geq w_{1}+w_{2}$, we have $l_{i}^{\prime \prime} \geq w_{2}$).
- $k_{i}^{\prime}<w_{1}$, then we must have $k_{i}^{\prime \prime} \geq w_{2}$. We choose $l_{i}^{\prime}=k_{i}^{\prime}$ and $l_{i}^{\prime \prime}=l_{i}-k_{i}^{\prime}$. So $l_{i}^{\prime \prime} \geq w_{2}$ as $l_{i} \geq w_{1}+w_{2}$ and $l_{i}^{\prime}<w_{1}$.
- $k_{i}^{\prime \prime}<w_{2}$ is similar with the previous one. We choose $l_{i}^{\prime \prime}=k_{i}^{\prime \prime}$ and $l_{i}^{\prime}=l_{i}-k_{i}^{\prime \prime}$.

Now for $Q^{\prime} \equiv\left(\alpha_{1} \cdot P_{1}\right)^{l_{1}^{\prime}}|\ldots|\left(\alpha_{n} \cdot P_{n}\right)^{l_{n}^{\prime}}$ and $Q^{\prime \prime} \equiv\left(\alpha_{1} \cdot P_{1}\right)^{l_{1}^{\prime \prime}}|\ldots|\left(\alpha_{n} \cdot P_{n}\right)^{l_{n}^{\prime \prime}}$ the theorem is verified by repeatedly using theorem 5.4.

The next theorems point out the relation between the structural bisimulation and the structural congruence. We will prove that for a well-chosen boundary, which depends on the processes involved, the structural bisimulation guarantees the structural congruence. $P \approx_{h}^{w} Q$ entails that if we choose any subprocess of P having the size smaller than (h, w), we will find a subprocess of Q structurally congruent with it, and vice versa. Now, if the size indexing the structural bisimulation is bigger than the size of the processes, then our relation will describe structurally congruent processes.

Theorem 5.6 If $P \leq(h, w)$ and $P^{\prime} \leq(h, w)$ then $P \approx_{h}^{w} P^{\prime}$ iff $P \equiv P^{\prime}$.

[^2]Theorem 5.7 If $P \approx_{h}^{w} Q$ and $P<(h, w)$ then $P \equiv Q$.
The next theorems point out the relation between the structural bisimulation and the structural congruence. We will prove that for a well-chosen boundary, which depends on the processes involved, the structural bisimulation guarantees the structural congruence. $P \approx_{h}^{w} Q$ entails that if we choose any subprocess of P having the size smaller than (h, w), we will find a subprocess of Q structurally congruent with it, and vice versa. Now, if the size indexing the structural bisimulation is bigger than the size of the processes, then our relation will describe structurally congruent processes. We also prove that the structural bisimulation is preserved by transitions with the price of decreasing the size.

Theorem 5.8 If $P \leq(h, w)$ and $P^{\prime} \leq(h, w)$ then $P \approx_{h}^{w} P^{\prime}$ iff $P \equiv P^{\prime}$.
Proof $P \equiv P^{\prime}$ implies $P \approx_{h}^{w} P^{\prime}$, because by reflexivity $P \approx_{h}^{w} P$ and then we can apply theorem 5.2.
We prove further that $P \approx_{h}^{w} P^{\prime}$ implies $P \equiv P^{\prime}$. We'll do it by induction on h.
The case $h=0: P \leq(0, w)$ and $P^{\prime} \leq(0, w)$ means $P \equiv 0$ and $P^{\prime} \equiv 0$, hence $P \equiv P^{\prime}$.
The case $h+1$: suppose that $P \leq(h+1, w), P^{\prime} \leq(h+1, w)$ and $P \approx_{h+1}^{w} P^{\prime}$. We can suppose, without loosing generality, that

$$
\begin{aligned}
& P \equiv\left(\alpha_{1} \cdot Q_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{n} \cdot Q_{n}\right)^{k_{n}} \\
& P^{\prime} \equiv\left(\alpha_{1} \cdot Q_{1}\right)^{l_{1}}|\ldots|\left(\alpha_{n} \cdot Q_{n}\right)^{l_{n}}
\end{aligned}
$$

where for $i \neq j, \alpha_{i} \cdot Q_{i} \not \equiv \alpha_{j} \cdot Q_{j}$. Obviously, as $P \leq(h+1, w)$ and $P^{\prime} \leq(h+1, w)$ we have $k_{i} \leq w$ and $l_{i} \leq w$.

We show that $k_{i} \leq l_{i}$. If $k_{i}=0$ then, obviously, $k_{i} \leq l_{i}$. If $k_{i} \neq 0$ then $P \equiv\left(\alpha_{i} \cdot Q_{i}\right)^{k_{i}} \mid P_{i}$ and $P \approx_{h+1}^{w} P^{\prime}$ provides that $P^{\prime} \equiv \alpha_{i} \cdot Q_{1}^{\prime \prime}\left|\ldots \alpha_{i} \cdot Q_{k_{i}}^{\prime \prime}\right| R$ with $Q_{i} \approx_{h}^{w} Q_{j}^{\prime \prime}$ for $j=1 . . k_{i}$. By construction, $Q_{i} \leq((h+1)-1, w)=(h, w)$ and $Q_{j}^{\prime \prime} \leq((h+1)-1, w)=(h, w)$. So, we can apply the inductive hypothesis that provides $Q_{i} \equiv Q_{j}^{\prime \prime}$ for $j=1 . . i$. Hence $P^{\prime} \equiv\left(\alpha_{i} \cdot Q_{i}\right)^{k_{i}} \mid R$ that gives $k_{i} \leq l_{i}$.

With a symmetrical argument we can prove that $l_{i} \leq k_{i}$ that gives $k_{i}=l_{i}$ and, finally, $P \equiv P^{\prime}$.

Theorem 5.9 If $P \approx_{h}^{w} Q$ and $P<(h, w)$ then $P \equiv Q$.
Proof Suppose that $P=\left(h^{\prime}, w^{\prime}\right)$ and $P \equiv\left(\alpha_{1} \cdot P_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{n} . P_{n}\right)^{k_{n}}$ with $\alpha_{i} . P_{i} \not \equiv \alpha_{j} . P_{j}$ for $i \neq j$. Obviously we have $k_{i} \leq w^{\prime}<w$.

We prove the theorem by induction on h. The first case is $h=1$ (because $h>h^{\prime}$).
The case $h=1$: we have $h^{\prime}=0$ that gives $P \equiv 0$. Further $0 \approx_{1}^{w} Q$ gives $Q \equiv 0$, because else $Q \equiv \alpha \cdot Q^{\prime} \mid Q^{\prime \prime}$ asks for $0 \equiv \alpha \cdot P^{\prime} \mid P^{\prime \prime}$ - impossible. Hence $P \equiv Q \equiv 0$.
The case $h+1$: as $P \equiv\left(\alpha_{i} . P_{i}\right)^{k_{i}} \mid P^{+}, P \approx_{h}^{w} Q$ and $k_{i}<w$, we obtain that $Q \equiv \alpha_{i} . R_{1}|\ldots| \alpha_{i} . R_{k_{i}} \mid R^{+}$ with $P_{i} \approx_{h-1}^{w} R_{j}$ for any $j=1 . . k_{i}$.
But $P_{i} \approx_{h-1}^{w} R_{j}$ allows us to use the inductive hypothesis, because $P_{i} \leq\left(h^{\prime}-1, w^{\prime}\right)<$ $(h-1, w)$, that gives $P_{i} \equiv R_{j}$ for any $j=1 . . k_{i}$. Hence $Q \equiv\left(\alpha_{i} . P_{i}\right)^{k_{i}} \mid R^{+}$and this is sustained for each $i=1 . . n$. As $\alpha_{i} . P_{i} \not \equiv \alpha_{j} . P_{j}$ for $i \neq j$, we derive $Q \equiv\left(\alpha_{1} \cdot P_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{n} . P_{n}\right)^{k_{n}} \mid R$.

We prove now that $R \equiv 0$. Suppose that $R \equiv\left(\alpha \cdot R^{\prime}\right) \mid R^{\prime \prime}$. Then $Q \equiv \alpha \cdot R^{\prime} \mid R^{-}$, and as $P \approx_{h}^{w} Q$, we obtain that there is an $i=1 . . n$ such that $\alpha=\alpha_{i}$ and $R^{\prime} \approx_{h-1, w} P_{i}$.
Because $P_{i} \leq\left(h^{\prime}-1, w^{\prime}\right)<(h-1, w)$, we can use the inductive hypothesis and obtain $R^{\prime} \equiv P_{i}$. Therefore $R \equiv \alpha_{i} \cdot P_{i} \mid R^{\prime \prime}$, that gives further

$$
Q \equiv\left(\alpha_{1} \cdot P_{1}\right)^{k_{1}}\left|\ldots\left(\alpha_{i-1} \cdot P_{i-1}\right)^{k_{(i-1)}}\right|\left(\alpha_{i} \cdot P_{i}\right)^{k_{i}+1}\left|\left(\alpha_{i+1} \cdot P_{i+1}\right)^{k_{(i+1)}}\right| \ldots\left|\left(\alpha_{n} \cdot P_{n}\right)^{k_{n}}\right| R
$$

So, we can consider $Q \equiv\left(\alpha_{i} \cdot P_{i}\right)^{k_{i}+1} \mid Q^{+}$. Because $P \approx_{h}^{w} Q$ and $k_{i}+1 \leq w^{\prime}+1 \leq w$, we obtain that $P \equiv \alpha_{i} . P_{1}^{\prime}|\ldots| \alpha_{i} . P_{k_{i}+1}^{\prime} \mid P^{\prime}$ with $P_{j}^{\prime} \approx_{h-1}^{w} P_{i}$ for any $j=1 . . k_{i}+1$.
But $P_{i} \leq\left(h^{\prime}-1, w^{\prime}\right)<(h-1, w)$, consequently we can use the inductive hypothesis and obtain $P_{j}^{\prime} \equiv P_{i}$ for any $j=1 . . k_{i}+1$.
Hence $P \equiv\left(\alpha_{i} \cdot P_{i}\right)^{k_{i}+1} \mid P^{\prime \prime}$ which is impossible because we supposed that $P \equiv\left(\alpha_{1} \cdot P_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{n} \cdot P_{n}\right)^{k_{n}}$ with $\alpha_{i} . P_{i} \not \equiv \alpha_{j} . P_{j}$ for $i \neq j$.

Concluding, $R \equiv 0$ and $Q \equiv\left(\alpha_{1} \cdot P_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{n} \cdot P_{n}\right)^{k_{n}}$, i.e. $Q \equiv P$.

Theorem 5.10 If $P \equiv R \mid P^{\prime}, P \approx_{h}^{w} Q$ and $R<(h, w)$ then $Q \equiv R \mid Q^{\prime}$.

Proof Suppose that $R=\left(h^{\prime}, w^{\prime}\right)<(h, w)$. Because $P \equiv R \mid P^{\prime}$ and $P \approx_{h}^{w} Q$, using theorem 5.5, we obtain that exists Q_{1}, Q_{2} such that $Q \equiv Q_{1} \mid Q_{2}$ and $R \approx_{h}^{w^{\prime}+1} Q_{1}$ and $P^{\prime} \approx_{h}^{w-\left(w^{\prime}+1\right)} Q_{2}$. Further, as $R \approx_{h}^{w^{\prime}+1} Q_{1}$ and $R=\left(h^{\prime}, w^{\prime}\right)<\left(h, w^{\prime}+1\right)$ we obtain, by using theorem 5.9, that $Q_{1} \equiv R$, hence $Q \equiv R \mid Q_{2}$.

Theorem 5.11 Let $P \approx_{h}^{w} Q$. If $P \equiv \alpha \cdot P^{\prime} \mid P^{\prime \prime}$ then $Q \equiv \alpha \cdot Q^{\prime} \mid Q^{\prime \prime}$ and $P^{\prime}\left|P^{\prime \prime} \approx_{h-1}^{w-1} Q^{\prime}\right| Q^{\prime \prime}$
Proof As $P \approx_{h}^{w} Q$ and $P \equiv \alpha \cdot P^{\prime} \mid P^{\prime \prime}$, we obtain that, indeed, $Q \equiv \alpha \cdot Q^{\prime} \mid Q^{\prime \prime}$ with $P^{\prime} \approx_{h-1}^{w}$ Q^{\prime}. We will prove that $P^{\prime}\left|P^{\prime \prime} \approx_{h-1}^{w-1} Q^{\prime}\right| Q^{\prime \prime}$. Consider any $i=1 . . w-1$ and $\beta \in \mathbb{A}$ such that:

$$
\begin{equation*}
P^{\prime}\left|P^{\prime \prime} \equiv \beta \cdot P_{1}\right| \ldots\left|\beta \cdot P_{i}\right| P^{\star} \tag{1}
\end{equation*}
$$

We can suppose, without loos of generality that for some $k \leq i$ we have

$$
\begin{gathered}
P^{\prime} \equiv \beta \cdot P_{1}|\ldots| \beta \cdot P_{k} \mid P^{+} \\
P^{\prime \prime} \equiv \beta \cdot P_{k+1}|\ldots| \beta \cdot P_{i} \mid P^{-} \\
P^{\star} \equiv P^{+} \mid P^{-}
\end{gathered}
$$

Because $P^{\prime} \approx_{h-1}^{w} Q^{\prime}$ and $k \leq i \leq w-1$, we obtain that $Q^{\prime} \equiv \beta \cdot Q_{1}|\ldots| \beta \cdot Q_{k} \mid Q^{+}$with $P_{j} \approx_{h-2}^{w} Q_{j}$ for $j=1$.. k. Further we distinguish two cases:

- if $\alpha \neq \beta$ then we have

$$
P \equiv \beta \cdot P_{k+1}|\ldots| \beta \cdot P_{i} \mid\left(P^{-} \mid \alpha \cdot P^{\prime}\right)
$$

and because $P \approx_{h}^{w} Q$, we obtain

$$
Q \equiv \beta . R_{k+1}|\ldots| \beta . R_{i} \mid R^{\star} \text { with } R_{j} \approx_{h-1}^{w} P_{j} \text { for } j=k+1 . . i
$$

But $Q \equiv \alpha \cdot Q^{\prime} \mid Q^{\prime \prime}$ and because $\alpha \neq \beta$, we obtain $Q^{\prime \prime} \equiv \beta \cdot R_{k+1}|\ldots| \beta \cdot R_{i} \mid R^{+}$that gives us in the end

$$
Q^{\prime}\left|Q^{\prime \prime} \equiv \beta \cdot Q_{1}\right| \ldots\left|\beta \cdot Q_{k}\right| \beta \cdot R_{k+1}|\ldots| \beta \cdot R_{i} \mid\left(R^{+} \mid Q^{+}\right)
$$

with $P_{j} \approx_{h-2}^{w} Q_{j}$ for $j=1 . . k$ (hence $P_{j} \approx_{h-2}^{w-1} Q_{j}$) and $P_{j} \approx_{h-1}^{w} R_{j}$ for $j=k+1 . . i$ (hence $P_{j} \approx_{h-2}^{w-1} R_{j}$).

- if $\alpha=\beta$ then we have

$$
P \equiv \alpha \cdot P_{k+1}|\ldots| \alpha \cdot P_{i}\left|\alpha \cdot P^{\prime}\right| P^{-}
$$

and as $P \approx_{h}^{w} Q$ and $i \leq w-1$, we obtain

$$
Q \equiv \alpha \cdot R_{k+1}|\ldots| \alpha \cdot R_{i}\left|\alpha \cdot R^{\prime}\right| R^{\star}
$$

with $R_{j} \approx_{h-1}^{w} P_{j}$ for $j=k+1 . . i$ and $R^{\prime} \approx_{h-1}^{w} P^{\prime}$. Because $P^{\prime} \approx_{h-1}^{w} Q^{\prime}$ and \approx_{h}^{w} is an equivalence relation, we can suppose that $R^{\prime} \equiv Q^{\prime}$ (Indeed, if $\alpha . Q^{\prime}$ is a subprocess of R^{\star} then we can just substitute R^{\prime} with Q^{\prime}; if $\alpha \cdot Q^{\prime} \equiv \alpha . R_{s}$, then $Q^{\prime} \approx_{h-1}^{w} P_{s}$ and as $Q^{\prime} \approx_{h-1}^{w} P^{\prime}$ and $P^{\prime} \approx_{h-1}^{w} R^{\prime}$ we derive $R^{\prime} \approx_{h-1}^{w} P_{s}$ and $Q^{\prime} \approx_{h-1}^{w} P^{\prime}$, so we can consider this correspondence). So

$$
Q \equiv \alpha \cdot R_{k+1}|\ldots| \alpha \cdot R_{i}\left|\alpha \cdot Q^{\prime}\right| R^{\star}
$$

that gives

$$
Q^{\prime \prime} \equiv \alpha \cdot R_{k+1}|\ldots| \alpha \cdot R_{i} \mid R^{\star}
$$

which entails further

$$
Q^{\prime}\left|Q^{\prime \prime} \equiv \alpha \cdot Q_{1}\right| \ldots\left|\alpha \cdot Q_{k}\right| \alpha \cdot R_{k+1}|\ldots| \alpha \cdot R_{i} \mid\left(R_{\star}^{\star} \mid Q^{+}\right)
$$

with $P_{j} \approx_{h-2}^{w} Q_{j}$ for $j=1 . . k$ (hence $P_{j} \approx_{h-2}^{w-1} Q_{j}$) and $P_{j} \approx_{h-1}^{w} R_{j}$ for $j=k+1 . . i$ (hence $P_{j} \approx_{h-2}^{w-1} R_{j}$).
All these prove that $P^{\prime}\left|P^{\prime \prime} \approx_{h-1}^{w-1} Q^{\prime}\right| Q^{\prime \prime}$ (as we can develop a symmetric argument starting in (1) with $Q \mid Q^{\prime}$).

The next theorem proves that the structural bisimulation is preserved by transitions with the price of decreasing the size.

Theorem 5.12 (Behavioral simulation) Let $P \approx_{h}^{w} Q$.

1. If $P \xrightarrow{\alpha} P^{\prime}$ then it exists a transition $Q \xrightarrow{\alpha} Q^{\prime}$ such that $P^{\prime} \approx_{h-1}^{w-1} Q^{\prime}$.
2. If $R<(h, w)$ and $P \xrightarrow{R: \alpha} P^{\prime}$ then it exists a transition $Q \xrightarrow{R: \alpha} Q^{\prime}$ such that $P^{\prime} \approx_{h-1}^{w-1} Q^{\prime}$.

Proof If $P \xrightarrow{\alpha} P^{\prime}$ then $P \equiv \alpha \cdot R^{\prime} \mid R^{\prime \prime}$ and $P^{\prime} \equiv R^{\prime} \mid R^{\prime \prime}$. But $P \approx_{h}^{w} Q$ gives, using theorem 5.11 that $Q \equiv \alpha \cdot S^{\prime} \mid S^{\prime \prime}$ and $R^{\prime}\left|R^{\prime \prime} \approx_{h-1}^{w-1} S^{\prime}\right| S^{\prime \prime}$. And because $Q \xrightarrow{\alpha} S^{\prime} \mid S^{\prime \prime}$, we can take $Q^{\prime} \equiv S^{\prime} \mid S^{\prime \prime}$ 。

5.4 Bound pruning processes

In this subsection we prove the bound pruning theorem, stating that for a given process P and a given size (h, w), we can always find a process Q having the size at most equal with (h, w) such that $P \approx_{h}^{w} Q$. Moreover, in the proof of the theorem we will present a method for constructing such a process from P, by pruning its syntactic tree to the given size.

Theorem 5.13 (Bound pruning theorem) For any process $P \in \mathbb{P}$ and any (h, w) exists a process $Q \in \mathbb{P}$ with $P \approx_{h}^{w} Q$ and $Q \leq(h, w)$.

Proof We construct ${ }^{4} Q$ inductivelly on h.
Case $h=0$: we take $Q \equiv 0$, as $P \approx_{0}^{w} Q$ and $0=(0,0)$.
Case $h+1$: suppose $P \equiv \alpha_{1} \cdot P_{1}|\ldots| \alpha_{n} \cdot P_{n}$.
Let P_{i}^{\prime} be the result of pruning P_{i} by (h, w) (the inductive step of construction) and $P^{\prime} \equiv$ $\alpha_{1} \cdot P_{1}^{\prime}|\ldots| \alpha_{n} \cdot P_{n}^{\prime}$. As for any $i=1 . . n$ we have $P_{i} \approx_{h}^{w} P_{i}^{\prime}$ (by the inductive hypothesis), we obtain, using Theorem 5.4, that $\alpha_{i} \cdot P_{i} \approx_{h+1}^{w} \alpha_{i} . P_{i}^{\prime}$, hence $P \approx_{h+1}^{w} P^{\prime}$. Consider now $P^{\prime} \equiv\left(\beta_{1} \cdot Q_{1}\right)^{k_{1}}|\ldots|\left(\beta_{m} \cdot Q_{m}\right)^{k_{m}}$. Let $l_{i}=\min \left(k_{i}, w\right)$ for $i=1 . . m$. Further we define $Q \equiv\left(\beta_{1} \cdot Q_{1}\right)^{l_{1}}|\ldots|\left(\beta_{m} \cdot Q_{m}\right)^{l_{m}}$. Obviously $Q \approx_{h+1}^{w} P^{\prime}$ and as $P \approx_{h+1}^{w} P^{\prime}$, we obtain $P \approx_{h+1}^{w} Q$. By construction, $Q \leq(h+1, w)$.

Definition 5.10 For a process P and a tuple (h, w) we denote by $P_{(h, w)}$ the process obtained by pruning P to the size (h, w) by the method described in the proof of theorem 5.13.
Theorem 5.14 If $P \equiv Q$ then $P_{(h, w)} \equiv Q_{(h, w)}$.
Proof Because a process is unique up to structural congruence, the result can be derived trivially, following the construction in the proof of theorem 5.13.

Theorem 5.15 $P \leq(h, w)$ iff $P_{(h, w)} \equiv P$.
Proof (\Rightarrow) If $P \leq(h, w)$, then, by construction, $P_{(h, w)} \leq(h, w)$ and $P \approx_{h}^{w} P_{(h, w)}$, we can use theorem 5.8 and obtain $P_{(h, w)} \equiv P$.
(\Leftarrow) Suppose that $P_{(h, w)} \equiv P$. Suppose, in addition that $P>(h, w)$. By construction, $P_{(h, w)} \leq(h, w)$, hence $P_{(h, w)} \leq(h, w)<P$, i.e. $P_{(h, w)} \neq P$. But this is impossible, because the size of a process is unique up to structural congruence, see remark ??.

Example 5.3 Consider the process $P \equiv \alpha .(\beta .(\gamma .0|\gamma .0| \gamma .0) \mid \beta . \gamma .0) \mid \alpha . \beta . \gamma .0$.
Observe that $P=(3,3)$, hence $P_{(3,3)} \equiv P$. For constructing $P_{(3,2)}$ we have to prune the syntactic tree of P such that to not exist, in any node, more than two bisimilar branches. Hence $P_{(3,2)}=\alpha .(\beta .(\gamma .0 \mid \gamma .0) \mid \beta . \gamma .0) \mid \alpha . \beta . \gamma .0$
If we want to prune P on the size $(3,1)$, we have to prune its syntactic tree such that, in any node, there are no bisimilar branches. The result is $P_{(3,1)}=\alpha . \beta . \gamma .0$.
For pruning P on the size (2,2), we have to prune all the nodes on depth 2 and in the new tree we have to let, in any node, a maximum of two bisimilar branches. As a result of these modifications, we obtain $P_{(2,2)}=\alpha .(\beta .0 \mid \beta .0) \mid \alpha . \beta .0$. Going further we obtain the smaller processes $P_{(0,0)}=0, P_{(1,1)}=\alpha .0, P_{(1,2)}=\alpha .0 \mid \alpha .0, P_{(2,1)}=\alpha . \beta .0$.

[^3]
5.5 Substitutions

For the future constructs is also useful to introduce the substitutions of actions in a process.
Definition 5.11 (The set of actions of a process) We define inductively, for any process P, its set of actions $\operatorname{Act}(P) \subset \mathbb{A}$:

1. $\operatorname{Act}(0) \stackrel{\text { def }}{=} \emptyset 2 . \operatorname{Act}(\alpha . P) \stackrel{\text { def }}{=}\{\alpha\} \cup \operatorname{Act}(P) 3 . \operatorname{Act}(P \mid Q) \stackrel{\text { def }}{=} \operatorname{Act}(P) \cup \operatorname{Act}(Q)$

For $M \subset \mathbb{P}$ we define $\operatorname{Act}(M) \stackrel{\text { def }}{=} \bigcup_{P \in M} \operatorname{Act}(P)$.
Definition 5.12 Let $A \subset \mathbb{A}$. We define

$$
\mathfrak{P}_{(h, w)}^{A} \stackrel{\text { def }}{=}\{P \in \mathfrak{P} \mid \operatorname{Act}(P) \subset A, P \leq(h, w)\}
$$

Theorem 5.16 If $A \subset \mathbb{A}$ is finite, then $\mathfrak{P}_{(h, w)}^{A}$ is finite ${ }^{5}$.
Proof We will prove more, that if we denote by $n=(w+1)^{\operatorname{card}(A)}$, then

$$
\operatorname{card}\left(\mathfrak{P}_{(h, w)}^{A}\right)= \begin{cases}1 & \text { if } h=0 \\ \underbrace{n^{n^{n} \cdots^{n}}}_{h} & \text { if } h \neq 0\end{cases}
$$

We prove this by induction on h.
The case $h=0$: we have $Q=(0, w)$ iff $Q \equiv 0$, so $\mathfrak{P}_{(0, w)}^{A}=\{0\}$ and $\operatorname{card}\left(\mathfrak{P}_{(0, w)}^{A}\right)=1$.
The case $h=1$: let $Q \in \mathfrak{P}_{(1, w)}$. Then

$$
Q \equiv\left(\alpha_{1} \cdot Q_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{s} \cdot Q_{s}\right)^{k_{s}} \text { with } Q_{i} \in \mathfrak{P}_{(0, w)}^{A} \text { and } \alpha_{i} \cdot Q_{i} \not \equiv \alpha_{j} \cdot Q_{j} \text { for } i \neq j .
$$

But $Q_{i} \in \mathfrak{P}_{(0, w)}^{A}$ means $Q_{i} \equiv 0$, hence

$$
Q \equiv\left(\alpha_{1} .0\right)^{k_{1}}|\ldots|\left(\alpha_{s} .0\right)^{k_{s}}
$$

Since $Q \leq(1, w)$ we obtain that $k_{i} \leq w$. The number of guarded processes $\alpha .0$ with $\alpha \in A$ is $\operatorname{card}(A)$ and since $k_{i} \in 0 . . w$, the number of processes in $\mathfrak{P}_{(1, w)}^{A}$ is $(w+1)^{\operatorname{card}(A)}=n^{1}$.

The case $h+1$: let $Q \in \mathfrak{P}_{(h+1, w)}^{A}$. Then

$$
Q \equiv\left(\alpha_{1} \cdot Q_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{s} \cdot Q_{s}\right)^{k_{s}} \text { with } Q_{i} \in \mathfrak{P}_{(h, w)}^{A} \text { and } \alpha_{i} \cdot Q_{i} \not \equiv \alpha_{j} \cdot Q_{j} \text { for } i \neq j
$$

Since $Q \leq(h+1, w)$ we obtain that $k_{i} \leq w$. The number of guarded processes $\alpha . R$ with $\alpha \in A$ and $R \in \mathfrak{P}_{(h, w)}^{A}$ is $\operatorname{card}(A) \times \operatorname{card}\left(\mathfrak{P}_{(h, w)}^{A}\right)$ and since $k_{i} \in 0 . . w$, the number of processes in $\mathfrak{P}_{(h+1, w)}^{A}$ is $(w+1)^{\operatorname{card}(A) \times \operatorname{card}\left(\mathfrak{P}_{(h, w)}^{A}\right)}=\left((w+1)^{\operatorname{card}(A)}\right)^{\operatorname{card}\left(\mathfrak{P}_{(h, w)}^{A}\right)}=n^{\operatorname{card}\left(\mathfrak{P}_{(h, w)}^{A}\right)}$. But the inductive hypothesis gives $\operatorname{card}\left(\mathfrak{P}_{(h, w)}^{A}\right)=\underbrace{n^{n^{n^{\cdots}}}}_{h}$, so $\operatorname{card}\left(\mathfrak{P}_{(h+1, w)}^{A}\right)=\underbrace{n^{n^{n^{n}}}}_{h+1}$.

Definition 5.13 (Action substitution) We call action substitution any mapping $\sigma: \mathbb{A} \boldsymbol{t o} \mathbb{A}$. We extend it, syntactically, to processes, $\sigma: \mathbb{P} t o \mathbb{P}$, by

1. $\sigma(0) \stackrel{\text { def }}{=} 0$
2. $\sigma(P \mid Q) \stackrel{\text { def }}{=} \sigma(P) \mid \sigma(Q)$
3. $\sigma(\alpha . P) \stackrel{\text { def }}{=} \sigma(\alpha) . \sigma(P)$

For $M \subset \mathbb{P}$ let $\sigma(M) \stackrel{\text { def }}{=}\{\sigma(P) \mid P \in M\}$. We also use M^{σ}, P^{σ} for denoting $\sigma(M)$ and $\sigma(P)$. The set of actions of σ, $\operatorname{act}(\sigma)$, is defined as $\operatorname{act}(\sigma) \stackrel{\text { def }}{=}\{\alpha, \beta \in \mathbb{A} \mid \alpha \neq \beta, \sigma(\alpha)=\beta\}$.

[^4]
6 Maximal consistency

Anticipating the logic, in this section we define some special sets of processes that will play an essential role in proving the finite model property. Due to their logical properties that will be reveal later, we call these sets maximal consistent sets of processes. Intuitively, a maximal consistent set of processes is a set that whenever contains a process contains also any future state of the process (i.e. all the unfolding) and the "point of view" of any observer of this process (we recall that an observer can see a subprocess). Syntactically this means that whenever we have a process in a maximal consistent set, we will also have all the processes that can be obtained by arbitrarily pruning the syntactic tree of our process.

Definition 6.1 For $M, N \subset \mathbb{P}$ and $\alpha \in \mathbb{A}$ we define:

$$
\alpha . M \stackrel{\text { def }}{=}\{\alpha . P \mid P \in M\} \quad M \mid N \stackrel{\text { def }}{=}\{P|Q| P \in M, Q \in N\} .
$$

We associate to each process P the set $\pi(P)$ of all processes obtained by arbitrarily pruning the syntactic tree of P.

Definition 6.2 For $P \in \mathbb{P}$ we define $\pi(P) \subset \mathbb{P}$ inductively by:

$$
\begin{array}{lll}
\text { 1. } \pi(0) \stackrel{\text { def }}{=}\{0\} & \text { 2. } \pi(\alpha . P) \stackrel{\text { def }}{=}\{0\} \cup \alpha . \pi(P) & \text { 3. } \pi(P \mid Q) \stackrel{\text { def }}{=} \pi(P) \mid \pi(Q)
\end{array}
$$

We extend the definition of π to sets of processes $M \subset \mathbb{P}$ by

$$
\pi(M) \stackrel{\text { def }}{=} \bigcup_{P \in M} \pi(P)
$$

Theorem 6.1 The next assertions hold:

1. $P \in \pi(P)$
2. $0 \in \pi(P)$
3. $P \in \pi(P \mid Q)$
4. $P_{(h, w)} \in \pi(P)$

Proof 1. We prove it by induction on P

- if $P \equiv 0$ then $\pi(P)=\{0\} \ni 0 \equiv P$
- if $P \equiv \alpha . Q$ then $\pi(P)=\{0\} \cup \alpha \cdot \pi(Q)$. But the inductive hypothesis gives $Q \in \pi(Q)$, hence $\alpha . Q \in \alpha . \pi(Q) \subset \pi(P)$.
- if $P \equiv Q \mid R$ then $\pi(P)=\pi(Q) \mid \pi(R)$. The inductive hypothesis provide $Q \in \pi(Q)$ and $R \in \pi(R)$, hence $P \equiv Q|R \in \pi(Q)| \pi(R)=\pi(P)$.

2. We prove it by induction on P.

- if $P \equiv 0$ we have, by definition, $\pi(P)=\{0\} \ni 0$
- if $P \equiv \alpha \cdot Q$ then $\pi(P)=\{0\} \cup \alpha \cdot \pi(Q) \ni 0$.
- if $P \equiv Q \mid R$ then $\pi(P)=\pi(Q) \mid \pi(R)$. The inductive hypothesis provide $0 \in \pi(Q)$ and $0 \in \pi(R)$, hence $0 \equiv 0|0 \in \pi(Q)| \pi(R)=\pi(P)$.

3. We have $\pi(P \mid Q)=\pi(P) \mid \pi(Q)$. But $P \in \pi(P)$ and $0 \in \pi(Q)$, hence $P \equiv P \mid 0 \in$ $\pi(P) \mid \pi(Q)=\pi(P \mid Q)$.
4. We prove the theorem by induction on the structure of P.

- if $P \equiv 0$: we have $P_{(h, w)} \equiv 0 \in\{0\}=\pi(P)$ for any (h, w).
- if $P \equiv \alpha$. Q : we distinguish two more cases:
if $w=0$ then $P_{(h, 0)} \equiv 0 \in \pi(P)$
if $w \neq 0$ then $(\alpha \cdot Q)_{(h, w)} \equiv \alpha \cdot Q_{(h-1, w)}$ by the construction of the adjusted processes. If we apply the inductive hypothesis we obtain that $Q_{(h-1, w)} \in \pi(Q)$, hence $(\alpha . Q)_{(h, w)} \in$ $\alpha . \pi(Q) \subset \pi(P)$.
- if $P \equiv(\alpha \cdot Q)^{k}$: we have $P_{(h, w)} \equiv\left(\alpha \cdot Q_{(h-1, w)}\right)^{l}$ where $l=\min (k, w)$, by the construction of the adjusted processes. The inductive hypothesis gives $Q_{(h-1, w)} \in \pi(Q)$, hence $\alpha . Q_{(h-1, w)} \in \alpha . \pi(Q) \subset \pi(\alpha . Q)$. But because $0 \in \pi(\alpha . Q)$ and

$$
P_{(h, w)} \equiv \underbrace{\alpha \cdot Q_{(h-1, w)}|\ldots| \alpha \cdot Q_{(h-1, w)}}_{l} \mid \underbrace{0|\ldots| 0}_{k-l}
$$

we obtain

$$
P_{(h, w)} \in \underbrace{\pi(\alpha \cdot Q)|\ldots| \pi(\alpha \cdot Q)}_{k}=\pi(P)
$$

- if $P \equiv\left(\alpha_{1} \cdot P_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{n} . P_{n}\right)^{k_{n}}$ with $n \geq 2$: we split it in two subprocesses $Q \equiv$ $\left(\alpha_{1} \cdot P_{1}\right)^{k_{1}}|\ldots|\left(\alpha_{i} . P_{i}\right)^{k_{i}}$ and $R \equiv\left(\alpha_{i+1} \cdot P_{i+1}\right)^{k_{i+1}}|\ldots|\left(\alpha_{n} \cdot P_{n}\right)^{k_{n}}$. By the way we split the process P we will have $P_{(h, w)} \equiv Q_{(h, w)} \mid R_{(h, w)}$ and using the inductive hypothesis on Q and R we derive $P_{(h, w)} \equiv Q_{(h, w)}\left|R_{(h, w)} \in \pi(Q)\right| \pi(R)=\pi(P)$.

Theorem 6.2 1. $\operatorname{Act}(\pi(P)) \subseteq \operatorname{Act}(P)$ 2. If Pto Q then $\operatorname{Act}(Q) \subseteq \operatorname{Act}(P)$.
Proof 1. We prove it by induction on P.
if $P \equiv 0$ then $\operatorname{Act}(\pi(P))=\operatorname{Act}(\emptyset)=\emptyset \subseteq \operatorname{Act}(P)$.
if $P \equiv \alpha \cdot Q$ then $\operatorname{Act}(\pi(P))=\operatorname{Act}(\{0\} \cup \alpha \cdot \pi(Q))=\operatorname{Act}(\alpha \cdot \pi(Q))=\{\alpha\} \cup \operatorname{Act}(\pi(Q))$. By inductive hypothesis, $\operatorname{Act}(\pi(Q)) \subseteq \operatorname{Act}(Q)$, hence $\operatorname{Act}(\pi(P)) \subseteq\{\alpha\} \cup \operatorname{Act}(Q)=\operatorname{Act}(P)$.
if $P \equiv Q \mid R$ then $\operatorname{Act}(\pi(P))=\operatorname{Act}(\pi(Q) \mid \pi(R))=\operatorname{Act}(\pi(Q)) \cup \operatorname{Act}(\pi(R))$. Using the inductive hypothesis, $\operatorname{Act}(\pi(Q)) \subseteq \operatorname{Act}(Q)$ and $\operatorname{Act}(\pi(R)) \subseteq \operatorname{Act}(R)$, hence $\operatorname{Act}(\pi(P)) \subseteq$ $\operatorname{Act}(Q) \cup \operatorname{Act}(R)=\operatorname{Act}(Q \mid R)=\operatorname{Act}(P)$.
2. If P to Q then $P \equiv \alpha \cdot Q_{1} \mid Q_{2}$ and $Q \equiv Q_{1} \mid Q_{2}$. Then $\operatorname{Act}(Q)=\operatorname{Act}\left(Q_{1}\right) \cup \operatorname{Act}\left(Q_{2}\right) \subseteq$ $\{\alpha\} \cup \operatorname{Act}\left(Q_{1}\right) \cup \operatorname{Act}\left(Q_{2}\right)=\operatorname{Act}(P)$.

Theorem 6.3 $\pi(\pi(P))=\pi(P)$.

Proof We prove it by induction on P.
The case $P \equiv 0: \pi(\pi(0))=\pi(\{0\})=\pi(0)$
The case $P \equiv \alpha \cdot Q: \pi(\pi(\alpha \cdot Q))=\pi(\{0\} \cup \alpha \cdot \pi(Q))=\pi(0) \cup \pi(\alpha \cdot \pi(Q))=\{0\} \cup \alpha \cdot \pi(\pi(Q))$. Now we can use the inductive hypothesis and we obtain $\pi(\pi(Q))=\pi(Q)$. Hence $\pi(\pi(\alpha . Q))=$ $\{0\} \cup \alpha . \pi(Q)=\pi(\alpha . Q)=\pi(P)$.
The case $P \equiv Q|R: \pi(\pi(P))=\pi(\pi(Q \mid R))=\pi(\pi(Q) \mid \pi(R))=\pi(\pi(Q))| \pi(\pi(R))$. Now we ca apply the inductive hypothesis on Q and R and obtain $\pi(\pi(P))=\pi(Q) \mid \pi(R)=\pi(Q \mid R)=$ $\pi(P)$.

Theorem 6.4 If $Q \in \pi(P)$ then $\pi(Q) \subset \pi(P)$.
Proof $Q \in \pi(P)$ implies $\pi(Q) \subset \pi(\pi(P))$, and applying the theorem 6.3, we obtain $\pi(Q) \subset \pi(P)$.

Theorem 6.5 If σ is a substitution, then $\pi(\sigma(P))=\sigma(\pi(P))$.
Proof We prove it by induction on P.
The case $P \equiv 0: \pi(\sigma(P))=\pi(0)=\{0\}=\sigma(\{0\})=\sigma(\pi(P))$.
The case $P \equiv \alpha \cdot Q: \pi(\sigma(P))=\pi(\sigma(\alpha) \cdot \sigma(Q))=\{0\} \cup \sigma(\alpha) \cdot \pi(\sigma(Q))$. But the inductive hypothesis gives $\pi(\sigma(Q))=\sigma(\pi(Q))$, hence

$$
\pi(\sigma(P))=\{0\} \cup \sigma(\alpha) \cdot \sigma(\pi(Q))
$$

from the other side, $\sigma(\pi(P))=\sigma(\{0\} \cup \alpha . \pi(Q))=\{0\} \cup \sigma(\alpha) \cdot \sigma(\pi(Q))$.
The case $P \equiv Q|R: \pi(\sigma(Q \mid R))=\pi(\sigma(Q) \mid \sigma(R))=\pi(\operatorname{sigma}(Q))| \pi(\sigma(R))$. But the inductive hypothesis gives $\pi(\sigma(Q))=\sigma(\pi(Q))$ and $\pi(\sigma(R))=\sigma(\pi(R))$. Hence $\pi(\sigma(P))=$ $\sigma(\pi(Q)) \mid \sigma(\pi(R))=\sigma(\pi(Q) \mid \pi(R))=\sigma(\pi(P))$.

Definition 6.3 A set of processes $\mathcal{M} \subseteq \mathbb{P}$ is maximal consistent if it satisfies the conditions 1. if $P \in \mathcal{M}$ and $P \longrightarrow P^{\prime}$ then $P^{\prime} \in \mathcal{M} \quad$ 2. if $P \in \mathcal{M}$ then $\pi(P) \subset \mathcal{M}$.

Theorem 6.6 If \mathcal{M} is a maximal consistent set of processes and σ is a substitution, then \mathcal{M}^{σ} is maximal consistent.

Proof Let $P \in \mathcal{M}^{\sigma}$. Then it exists a process $Q \in \mathcal{M}$ such that $\sigma(Q) \equiv P$. Then $\pi(P)=\pi(\sigma(Q))$, and using theorem 6.5 we derive $\pi(P)=\sigma(\pi(Q))$. But $Q \in \mathcal{M}$ implies $\pi(Q) \subset \mathcal{M}$, thus $\sigma(\pi(Q)) \subset \mathcal{M}^{\sigma}$. Then $\pi(P) \subset \mathcal{M}^{\sigma}$.
Let $P \in \mathcal{M}^{\sigma}$ and $P \mathbf{t o} P^{\prime}$. Then it exists $Q \in \mathcal{M}$ such that $\sigma(Q) \equiv P$. Suppose that

$$
Q \equiv \alpha_{1} \cdot Q_{1}|\ldots| \alpha_{k} \cdot Q_{k}
$$

then

$$
P \equiv \sigma(Q) \equiv \sigma\left(\alpha_{1}\right) \cdot \sigma\left(Q_{1}\right)|\ldots| \sigma\left(\alpha_{k}\right) \cdot \sigma\left(Q_{k}\right)
$$

But then P to P^{\prime} gives that it exists $i=1 . . k$ such that

$$
P^{\prime} \equiv \sigma\left(\alpha_{1}\right) \cdot \sigma\left(Q_{1}\right)|\ldots| \sigma\left(\alpha_{i-1}\right) \cdot \sigma\left(Q_{i-1}\right)\left|\sigma\left(Q_{i}\right)\right| \sigma\left(\alpha_{i+1}\right) \cdot \sigma\left(Q_{i+1}\right)|\ldots| \sigma\left(\alpha_{k}\right) \cdot \sigma\left(Q_{k}\right)
$$

and if we define

$$
Q^{\prime} \equiv \alpha_{1} \cdot Q_{1}|\ldots| \alpha_{i-1} \cdot Q_{i-1}\left|Q_{i}\right| \alpha_{i+1} \cdot Q_{i+1}|\ldots| \alpha_{k} \cdot Q_{k}
$$

we obtain Q tot Q^{\prime} (i.e. $Q^{\prime} \in \mathcal{M}$) and $\sigma\left(Q^{\prime}\right) \equiv P^{\prime}$. Hence $P^{\prime} \in \mathcal{M}^{\sigma}$.
Now we introduce a structural bisimulation-like relation on maximal consistent sets of processes.

Definition 6.4 Let $\mathcal{M}, \mathcal{N} \subset \mathbb{P}$ be maximal consistent sets of processes. We write $\mathcal{M} \approx_{h}^{w} \mathcal{N}$ iff

1. for any $P \in \mathcal{M}$ there exists $Q \in \mathcal{N}$ with $P \approx_{h}^{w} Q$
2. for any $Q \in \mathcal{N}$ there exists $P \in \mathcal{M}$ with $P \approx_{h}^{w} Q$

We write $(\mathcal{M}, P) \approx_{h}^{w}(\mathcal{N}, Q)$ for the case when $P \in \mathcal{M}, Q \in \mathcal{N}, P \approx_{h}^{w} Q$ and $\mathcal{M} \approx_{h}^{w} \mathcal{N}$.
Theorem 6.7 (Antimonotonicity over contexts) If $\mathcal{M} \approx_{h}^{w} \mathcal{N}$ and $\left(h^{\prime}, w^{\prime}\right) \leq(h, w)$ then $\mathcal{M} \approx_{h^{\prime}}^{w^{\prime}} \mathcal{N}$.

Proof For any process $P \in \mathcal{M}$ there exists a process $Q \in \mathcal{N}$ such that $P \approx_{h}^{w} Q$ and using theorem 5.3 we obtain $P \approx_{h^{\prime}}^{w^{\prime}} Q$. And the same if we start from a process $Q \in N$. These proves that $\mathcal{M} \approx \approx_{h^{\prime}}^{w^{\prime}} \mathcal{N}$.

Definition 6.5 (System of generators) We say that $M \subset \mathbb{P}$ is a system of generators for \mathcal{M} if \mathcal{M} is the smallest maximal consistent set of processes that contains M. We denote this by $\bar{M}=\mathcal{M}$.

Definition 6.6 For any maximal consistent set of processes \mathcal{M} and any (h, w) we define

$$
\mathcal{M}_{(h, w)} \stackrel{\operatorname{def}}{=} \overline{\left\{P_{(h, w)} \mid P \in \mathcal{M}\right\}} .
$$

Theorem 6.8 For any context \mathcal{M}, and any size (h, w) we have $\mathcal{M}_{(h, w)} \approx_{w}^{h} \mathcal{M}$.
Definition 6.7 Let $A \subset \mathbb{A}$. We denote by $\mathfrak{M}_{(h, w)}^{A}$ the set of all maximal consistent sets generated by the systems of generators with the size at most (h, w) and with the actions in A :

$$
\mathfrak{M}_{(h, w)}^{A} \stackrel{\text { def }}{=}\{\bar{M} \subset \mathbb{P} \mid \operatorname{Act}(M) \subseteq A, M \leq(h, w)\} .
$$

Theorem 6.9 If $A \subset \mathbb{A}$ is a finite set of actions, then the following hold:

1. If $\mathcal{M} \in \mathfrak{M}_{(h, w)}^{A}$ then \mathcal{M} is a finite maximal consistent set of processes.
2. $\mathfrak{M}_{(h, w)}^{A}$ is finite.

Proof 1.: If $\mathcal{M} \in \mathfrak{M}_{(h, w)}^{A}$ then $\mathcal{M}=\bar{M}, M \leq(h, w)$ and $\operatorname{Act}(M) \subset A$. Thus $M \subset$ $\mathfrak{P}_{(h, w)}^{A}$. But $\mathfrak{P}_{(h, w)}^{A}$ is finite, by theorem 5.16. Thus $\bar{M}=\mathcal{M}$ is a finite maximal consistent set.
2.: As $\mathfrak{P}_{(h, w)}^{A}$ is finite by theorem 5.16, the set of its subsets is finite, and as all the elements of $\mathfrak{M}_{(h, w)}^{A}$ are generated by subsets of $\mathfrak{P}_{(h, w)}^{A}$, we obtain that $\mathfrak{M}_{(h, w)}^{A}$ is finite.

The previous theorem shows that for a given finite signature A and for a given dimension (h, w) there exists only a finite set of maximal consistent sets of processes. Further we will prove even more: that having a maximal consistent set \mathcal{M} with actions from A and a dimension (h, w) we can always find, in the finite set $\mathfrak{M}_{(h, w)}^{A}$, a maximal consistent set \mathcal{N} structural bisimilar with \mathcal{M} at the dimension (h, w). This result will be further used for proving the finite model property for our logic.

Theorem 6.10 For any maximal consistent set \mathcal{M}, and any size (h, w) we have $\mathcal{M}_{(h, w)} \approx_{w}^{h}$ \mathcal{M}.

Proof Denote by

$$
M=\left\{P_{(h, w)} \mid P \in \mathcal{M}\right\}
$$

Let $P \in \mathcal{M}$. Then it exists a process $Q \in \mathcal{M}_{(h, w)}$, more exactly $Q \equiv P_{(h, w)}$ such that $P \approx_{w}^{h} Q$. Let $Q \in \mathcal{M}_{(h, w)}$. Since \bar{M} is the smallest maximal consistent set containing M, and because, by construction, $M \subseteq \mathcal{M}$ we derive that $\bar{M} \subseteq \mathcal{M}$. Hence, for any process $Q \in \bar{M}$ there is a process $P \in \mathcal{M}$, more exactly $P \equiv Q$ such that $P \approx_{w}^{h} Q$ (since $P \equiv Q$ implies $P \approx_{w}^{h} Q$).

Theorem 6.11 For any maximal consistent set \mathcal{M} and any size (h, w) we have $\operatorname{Act}\left(\mathcal{M}_{(h, w)}\right) \subseteq$ $\operatorname{Act}(\mathcal{M})$.

Proof As $P_{(h, w)} \in \pi(P)$ for any process $P \in \mathcal{M}$ and any (h, w), by theorem 6.1, we obtain, by applying theorem 6.2, $\operatorname{Act}\left(P_{(h, w)}\right) \subseteq \operatorname{Act}(\mathcal{M})$, hence $\operatorname{Act}\left(\left\{P_{(h, w)} \mid P \in \mathcal{M}\right\}\right) \subseteq \operatorname{Act}(\mathcal{M})$. Further applying again theorem 6.2, we trivially derive the desired result.

Theorem 6.12 (Bound pruning theorem) Let \mathcal{M} be a maximal consistent set of processes. Then for any (h, w) there is a maximal consistent set $\mathcal{N} \in \mathfrak{M}_{(h, w)}^{\text {Act }(\mathcal{M})}$ such that $\mathcal{M} \approx_{h}^{w} \mathcal{N}$.

Proof The maximal consistent set $\mathcal{N}=\mathcal{M}_{(h, w)}$ fulfills the requirements of the theorem, by construction. Indeed, it is maximal consistent, and it is generated by the set $N=\left\{P_{(h, w)} \mid P \in\right.$ $\mathcal{M}\}$. Moreover $N \leq(h, w)$ and, by theorem 6.11, $\operatorname{Act}\left(\mathcal{M}_{(h, w)}\right) \subseteq \operatorname{Act}(\mathcal{M})$. Hence $\mathcal{N} \in$ $\mathfrak{M}_{(h, w)}^{A c t(\mathcal{M})}$.

7 The Logic $\mathcal{L}_{\mathbb{A}}^{\mathfrak{N}}$

In this section we introduce the logic multimodal $\operatorname{logic} \mathcal{L}_{\mathbb{A}}^{\mathfrak{R}}$ with modal operators indexed by an "epistemic" signature \mathfrak{A} and a "dynamic" signature \mathbb{A}. On \mathfrak{A} we will have defined an algebraical structure homomorphic with CCS.

7.1 Epistemic Agents

Definition 7.1 Consider a set \mathcal{A} and its extension \mathcal{A}^{+}generated by the next grammar for $\alpha \in \mathbb{A}$

$$
A:=a \in \mathcal{A}|\alpha . A| A \mid A
$$

Suppose, in addition, that on \mathcal{A}^{+}it is defined the smallest congruence relation \equiv for which \mid is commutative and associative. We call the \equiv-equivalence classes of \mathcal{A}^{+}epistemic agents and we call atomic agents the classes corresponding to elements of \mathcal{A}. Hereafter we will use $A, A^{\prime}, A_{1}, \ldots$ to denote arbitrary epistemic agents.

Definition 7.2 We call society of epistemic agents any set $\mathfrak{A} \subseteq \mathcal{A}^{+}$, closed to \equiv, satisfying the conditions

1. if $A_{1} \mid A_{2} \in \mathfrak{A}$ then $A_{1}, A_{2} \in \mathfrak{A}$
2. if $\alpha . A \in \mathfrak{A}$ then $A \in \mathfrak{A}$

7.2 Syntax of $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$

Definition 7.3 Let \mathfrak{A} be a society of epistemic agents defined for the set \mathbb{A} of actions. We define the language $\mathcal{F}_{\mathbb{A}}^{\mathfrak{A}}$ of $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$, for $A \in \mathfrak{A}$ and $\alpha \in \mathbb{A}$, by:

$$
\phi:=0|\top| \neg \phi|\phi \wedge \phi| \phi|\phi|\langle\alpha\rangle \phi|\langle A: \alpha\rangle \phi| K_{A} \phi .
$$

Definition 7.4 (Derived operators) In addition to the classical boolean operators, we introduce some derived operators ${ }^{6}$:

$$
\begin{aligned}
& 1 \stackrel{\text { def }}{=} \neg((\neg 0) \mid(\neg 0)) \\
& \langle!\alpha\rangle \psi \stackrel{\text { def }}{=}(\langle\alpha\rangle \psi) \wedge 1 \\
& {[a] \phi \stackrel{\text { def }}{=} \neg(\langle a\rangle(\neg \phi))} \\
& \widetilde{K}_{A} \phi \stackrel{\text { def }}{=} \neg K_{A} \neg \phi .
\end{aligned}
$$

We convey that the precedence order of the operators in the syntax of $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$ is $\neg, K_{A},\langle a\rangle, \mid, \wedge, \vee, \rightarrow$ where \neg has precedence over all the other operators.

7.3 Process semantics

A formula of $\mathcal{F}_{\mathbb{A}}^{\mathfrak{A}}$ will be evaluated to processes in a given maximal consistent set of processes, by mean of a satisfaction relation $\mathcal{M}, P \models \phi$.

Definition 7.5 (Models and satisfaction) A model of $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$ is a couple (\mathcal{M}, I) where \mathcal{M} is a maximal consistent set of processes and $I:(\mathfrak{A}, \mid, \alpha.) \boldsymbol{t o}(\mathcal{M}, \mid, \alpha$.$) a homomorphism { }^{7}$ of structures such that $I(A)=0$ iff $A \in \mathcal{A}$.
We convey to denote $P^{I(A): \alpha}$ to Q by P to to Q.
We define the satisfaction relation, for $P \in \mathcal{M}$, by:
$\mathcal{M}, P \models$ T always

[^5]$\mathcal{M}, P \models 0$ iff $P \equiv 0$
$\mathcal{M}, P \models \neg \phi$ iff $\mathcal{M}, P \not \models \phi$
$\mathcal{M}, P \models \phi \wedge \psi$ iff $\mathcal{M}, P \models \phi$ and $\mathcal{M}, P \models \psi$
$\mathcal{M}, P \models \phi \mid \psi$ iff $P \equiv Q \mid R$ and $\mathcal{M}, Q \models \phi, \mathcal{M}, R \models \psi$
$\mathcal{M}, P \models\langle\alpha\rangle \phi$ iff there exists a transition $P \xrightarrow{\alpha} P^{\prime}$ such that $\mathcal{M}, P^{\prime} \models \phi$
$\mathcal{M}, P \models\langle A: \alpha\rangle \phi$ iff there exists a transition $P \xrightarrow{A: \alpha} P^{\prime}$ such that $\mathcal{M}, P^{\prime} \models \phi$
$\mathcal{M}, P \models K_{A} \phi$ iff $P \equiv I(A) \mid R$ and for all $I(A) \mid R^{\prime} \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid R^{\prime} \models \phi$
The semantics of the derived operators will be:
$\mathcal{M}, P \models[a] \phi$ iff for any transition $P \xrightarrow{a} P^{\prime}$ (if any) we have $\mathcal{M}, P^{\prime} \models \phi$
$\mathcal{M}, P \models 1$ iff $P \equiv 0$ or $P \equiv \alpha . Q$
$\mathcal{M}, P \models\langle!\alpha\rangle \phi$ iff $P \equiv \alpha . Q$ and $\mathcal{M}, Q \models \phi$
$\mathcal{M}, P \models K_{A} \phi$ iff either $P \not \equiv I(A) \mid R$ for any R, or $\exists I(A) \mid S \in \mathcal{M}$ such that $\mathcal{M}, I(A) \mid S \models$ ϕ

Remark the interesting semantics of the operators K_{A} and \tilde{K}_{A} for $A \in I^{-1}(0)$:
$\mathcal{M}, P \models K_{A} \phi$ iff $\forall Q \in \mathcal{M}$ we have $\mathcal{M}, Q \models \phi$
$\mathcal{M}, P \models \widetilde{K}_{A} \phi$ iff $\exists Q \in \mathcal{M}$ such that $\mathcal{M}, Q \models \phi$
Hence $K_{A} \phi$ and $\tilde{K}_{A} \phi$ for an atomic agent A encode, in syntax, the validity and the satisfiability with respect to a given model.

7.4 Bounded finite model property

Definition 7.6 (Size of a formula) We define the sizes of a formula, ϕ (height and width), w.r.t. the homomorphism I, inductively on the structure of formula. Suppose that $\phi=(h, w)$, $\psi=\left(h^{\prime}, w^{\prime}\right)$ and $I(A)=\left(h_{A}, w_{A}\right)$.

1. $0=\mathrm{T} \stackrel{\text { def }}{=}(0,0)$
2. $\neg \phi \stackrel{\text { def }}{=} \phi$
3. $\phi \wedge \psi \stackrel{\text { def }}{=}\left(\max \left(h, h^{\prime}\right), \max \left(w, w^{\prime}\right)\right)$
4. $\phi \mid \psi \stackrel{\text { def }}{=}\left(\max \left(h, h^{\prime}\right), w+w^{\prime}\right)$
5. $\langle\alpha\rangle \phi \stackrel{\text { def }}{=}(1+h, 1+w)$
6. $\langle A: \alpha\rangle \phi=\left(1+\max \left(h, h_{A}\right), 1+\max \left(w, w_{A}\right)\right)$
7. $K_{A} \phi \stackrel{\text { def }}{=}\left(1+\max \left(h, h_{A}\right), 1+\max \left(w, w_{A}\right)\right)$

The next theorem states that ϕ is "sensitive" via satisfaction only up to size ϕ. In other words, the relation $\mathcal{M}, P \models \phi$ is conserved by substituting the couple (M, P) with any other couple (N, P) structurally bisimilar to it at the size ϕ.

Theorem 7.1 If $\phi=(h, w), \mathcal{M}, P \models \phi$ and $(\mathcal{M}, P) \approx_{h}^{w}(\mathcal{N}, Q)$ then $\mathcal{N}, Q \models \phi$.
Proof We prove it by induction on the syntactical structure of ϕ.

- The case $\phi=0: \phi=(1,1)$.
$\mathcal{M}, P \models 0$ implies $P \equiv 0$.
As $P \approx_{1}^{1} Q$ we should have $Q \equiv 0$ as well, because else $Q \equiv \alpha \cdot Q^{\prime} \mid Q^{\prime \prime}$ asks for $P \equiv$ $\alpha \cdot P^{\prime} \mid P^{\prime \prime}$ for some $P^{\prime}, P^{\prime \prime}$, but this is impossible because $P \equiv 0$.
So $Q \equiv 0 \in \mathcal{N}$ and we have $\mathcal{N}, Q \models 0$, q.e.d.
- The case $\phi=\top$: is a trivial case as $\mathcal{N}, Q \models \top$ always.
- The case $\phi=\phi_{1} \wedge \phi_{2}$: denote by $\left(h_{i}, w_{i}\right)=\phi_{i}$ for $i=1,2$. Then we have $\phi=$ $\left(\max \left(h_{1}, h_{2}\right), \max \left(w_{1}, w_{2}\right)\right)$.
$\mathcal{M}, P \models \phi$ is equivalent with $\mathcal{M}, P \models \phi_{1}$ and $\mathcal{M}, P \models \phi_{2}$.
Because $(\mathcal{M}, P) \approx_{\max \left(h_{1}, h_{2}\right)}^{\max \left(w_{1}, \mathcal{L}_{2}\right)}(\mathcal{N}, Q)$ we obtain, by using theorem 6.7, that $(\mathcal{M}, P) \approx_{h_{1}}^{w_{1}}$ (\mathcal{N}, Q) and $(\mathcal{M}, P) \approx_{h_{2}}^{w_{2}}(\mathcal{N}, Q)$.
Now $(\mathcal{M}, P) \approx_{h_{1}}^{w_{1}}(\mathcal{N}, Q)$ and $\mathcal{M}, P \models \phi_{1}$ give, by inductive hypothesis, $\mathcal{N}, Q \models \phi_{1}$, while $(\mathcal{M}, P) \approx_{h_{2}}^{w_{2}}(\mathcal{N}, Q)$ and $\mathcal{M}, P \models \phi_{2}$ give, by inductive hypothesis $\mathcal{N}, Q \models \phi_{2}$. Hence $\mathcal{N}, Q \models \phi_{1} \wedge \phi_{2}$, q.e.d.
- The case $\phi=\neg \phi^{\prime}: \phi=\phi^{\prime}=(h, w)$.

We have $\mathcal{M}, P \models \neg \phi^{\prime}$ and $(\mathcal{M}, P) \approx_{h}^{w}(\mathcal{N}, Q)$.
If $\mathcal{N}, Q \not \vDash \neg \phi^{\prime}$, then $\mathcal{N}, Q \models \neg \neg \phi^{\prime}$, i.e. $\mathcal{N}, Q \models \phi^{\prime}$.
Because $(\mathcal{M}, P) \approx_{h}^{w}(\mathcal{N}, Q)$ and $\mathcal{N}, Q \models \phi^{\prime}$, the inductive hypothesis gives that $\mathcal{M}, P \models$ ϕ^{\prime}, which combined with $\mathcal{M}, P \models \neg \phi^{\prime}$ gives $\mathcal{M}, P \models \perp$ - impossible. Hence $\mathcal{N}, Q \models$ $\neg \phi^{\prime}$.

- The case $\phi=\phi_{1} \mid \phi_{2}$: suppose that $\phi_{i}=\left(h_{i}, w_{i}\right)$ for $i=1,2$. Then $\phi=\left(\max \left(h_{1}, h_{2}\right), w_{1}+\right.$ w_{2}).
Further, $\mathcal{M}, P \models \phi_{1} \mid \phi_{2}$ requires $P \equiv P_{1} \mid P_{2}$, with $\mathcal{M}, P_{1} \models \phi_{1}$ and $\mathcal{M}, P_{2} \models \phi_{2}$.
As $(\mathcal{M}, P) \approx_{\max \left(h_{1}, h_{2}\right)}^{w_{1}+w_{2}}(\mathcal{N}, Q)$ we obtain $P \approx_{\max \left(h_{1}, h_{2}\right)}^{w_{1}+w_{2}} Q$. Than, from $P \equiv P_{1} \mid P_{2}$, using theorem 5.5, we obtain $Q \equiv Q_{1} \mid Q_{2}$ and $P_{i} \approx_{\max \left(h_{1}, h_{2}\right)}^{w_{i}} Q_{i}$ for $i=1,2$. Hence, using theorem 6.7,
$\left(\mathcal{M}, P_{i}\right) \approx_{\max \left(h_{1}, h_{2}\right)}^{w_{i}}\left(\mathcal{N}, Q_{i}\right)$. Further, using again theorem 6.7, we obtain $\left(\mathcal{M}, P_{i}\right) \approx_{h_{i}}^{w_{i}}$ $\left(\mathcal{N}, Q_{i}\right)$, and using the inductive hypothesis, $\mathcal{N}, Q_{1} \models \phi_{1}$ and $\mathcal{N}, Q_{2} \models \phi_{2}$. Hence $\mathcal{N}, Q \models \phi$.
- The case $\phi=\langle\alpha\rangle \phi^{\prime}$: suppose that $\phi^{\prime}=\left(h^{\prime}, w^{\prime}\right)$. We have $\langle\alpha\rangle \phi^{\prime}=\left(1+h^{\prime}, 1+w^{\prime}\right)$.
$\mathcal{M}, P \models\langle\alpha\rangle \phi^{\prime}$ means that $P \xrightarrow{\alpha} P^{\prime}$ and $\mathcal{M}, P^{\prime} \models \phi^{\prime}$.
Now $(\mathcal{M}, P) \approx_{1+h^{\prime}}^{1+w^{\prime}}(\mathcal{N}, Q)$ gives $P \approx_{1+h^{\prime}}^{1+w^{\prime}} Q$, and using theorem 5.12, we obtain that $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \approx_{h^{\prime}}^{w^{\prime}} Q^{\prime}$.
But $(\mathcal{M}, P) \approx_{1+h^{\prime}}^{1+w^{\prime}}(\mathcal{N}, Q)$ gives also $\mathcal{M} \approx_{h^{\prime}+1}^{w^{\prime}+1} \mathcal{N}$, so using theorem 6.7, $\mathcal{M} \approx_{h^{\prime}}^{w^{\prime}} \mathcal{N}$. Hence $\left(\mathcal{M}, P^{\prime}\right) \approx_{h^{\prime}}^{w^{\prime}}\left(\mathcal{N}, Q^{\prime}\right)$.
Now from $\mathcal{M}, P^{\prime} \models \phi^{\prime}$ and $\left(\mathcal{M}, P^{\prime}\right) \approx_{h^{\prime}}^{w^{\prime}}\left(\mathcal{N}, Q^{\prime}\right)$, we obtain, by using the inductive hypothesis, that $\mathcal{N}, Q^{\prime} \models \phi^{\prime}$, and as $Q \xrightarrow{\alpha} Q^{\prime}$, we obtain further that $\mathcal{N}, Q \models \phi$.
- The case $\phi=K_{R} \phi^{\prime}$ with $R \in \mathfrak{S}$: suppose that $\phi^{\prime}=\left(h^{\prime}, w^{\prime}\right)$ and $R=\left(h_{R}, w_{R}\right)$.

Then $K_{R} \phi^{\prime}=\left(1+\max \left(h^{\prime}, h_{R}\right), 1+\max \left(w^{\prime}, w_{R}\right)\right)$.
Now $\mathcal{M}, P \models K_{R} \phi^{\prime}$ gives $P \equiv R \mid P^{\prime}$ and for any $R \mid S \in \mathcal{M}$ we have $\mathcal{M}, R \mid S \models \phi^{\prime}$.

As $(\mathcal{M}, P) \approx_{1+\max \left(h^{\prime}, h_{R}\right)}^{1+\max \left(w_{R}^{\prime}\right)}(\mathcal{N}, Q)$ then $P \approx_{1+\max \left(h^{\prime}, h_{R}\right)}^{1+\max \left(w^{\prime}\right)} Q$ and because $P \equiv R \mid P^{\prime}$ and $R=\left(h_{R}, w_{R}\right)<\left(1+\max \left(h^{\prime}, h_{R}\right), 1+\max \left(w^{\prime}, w_{R}\right)\right)$, we obtain, using theorem 5.9, that $Q \equiv R \mid Q^{\prime}$.
Let $R \mid S^{\prime} \in \mathcal{N}$ be an arbitrary process. Because $\mathcal{M} \approx_{1+\max \left(h^{\prime}, h_{R}\right)}^{1+\max \left(w_{R}\right)} \mathcal{N}$ we obtain that exists a process $P^{\prime \prime} \in \mathcal{M}$ such that $P^{\prime \prime} \approx_{1+\max \left(h^{\prime}, h_{R}\right)}^{1+\max \left(h^{\prime}\right)} R \mid S^{\prime}$. But $R<\left(1+\max \left(h^{\prime}, h_{R}\right), 1+\right.$ $\max \left(w^{\prime}, w_{R}\right)$), so, using theorem 5.9, $P^{\prime \prime} \equiv R \mid S^{\prime \prime}$.
Then $\mathcal{M}, R \mid S^{\prime \prime} \models \phi^{\prime}$, as $\mathcal{M}, R \mid S \models \phi^{\prime}$ for any $R \mid S \in \mathcal{M}$.
From the other side, $(\mathcal{M}, P) \approx_{1+\max \left(w^{\prime}, h_{R}\right)}^{1+\max)}(\mathcal{N}, Q)$ gives, using theorem 6.7, $(\mathcal{M}, P) \approx_{h^{\prime}}^{w^{\prime}}$ (\mathcal{N}, Q) where from we obtain $\mathcal{M} \approx_{h^{\prime}}^{w^{\prime}} \mathcal{N}$.
Also $R\left|S^{\prime \prime} \approx_{1+\max \left(h^{\prime}, h_{R}\right)}^{1+\max \left(w^{\prime}\right)} R\right| S^{\prime}$ gives $R\left|S^{\prime \prime} \approx_{h^{\prime}}^{w^{\prime}} R\right| S^{\prime}$, i.e. $\left(\mathcal{M}, R \mid S^{\prime \prime}\right) \approx_{h^{\prime}}^{w^{\prime}}\left(\mathcal{N}, R \mid S^{\prime}\right)$.
Now $\mathcal{M}, R \mid S^{\prime \prime} \models \phi^{\prime}$ and $\left(\mathcal{M}, R \mid S^{\prime \prime}\right) \approx_{h^{\prime}}^{w^{\prime}}\left(\mathcal{N}, R \mid S^{\prime}\right)$ give, using the inductive hypothesis, that $\mathcal{N}, R \mid S^{\prime} \models \phi^{\prime}$.
Concluding, we obtained that $Q \equiv R \mid Q^{\prime}$ and for any $R \mid S^{\prime} \in \mathcal{N}$ we have $\mathcal{N}, R \mid S^{\prime} \models \phi^{\prime}$. These two give $\mathcal{N}, Q=K_{R} \phi^{\prime}$ q.e.d.

Using this theorem, we conclude that if a process satisfies ϕ w.r.t. a given maximal consistent set of processes, then by pruning the process and the maximal consistent set on the size ϕ, we preserve the satisfiability for ϕ. Indeed the theorems 5.13 and 6.10 prove that if $\phi=(h, w)$ then $(\mathcal{M}, P) \approx_{w}^{h}\left(\mathcal{M}_{\phi}, P_{\phi}\right)$. Hence $\mathcal{M}, P \models \phi$ implies $\mathcal{M}_{\phi}, P_{\phi} \models \phi$.

Theorem 7.2 If $\mathcal{M}, P \models \phi$ then $\mathcal{M}_{\phi}, P_{\phi} \models \phi$.
Proof Let $\phi=(h, w)$. By theorem 6.12, we have $\mathcal{M} \approx_{w}^{h} \mathcal{M}_{(h, w)}$. By process pruning theorem 5.13, we have $P \approx_{w}^{h} P_{(h, w)}$ and $P_{(h, w)} \in \mathcal{M}_{(h, w)}$. Hence $(\mathcal{M}, P) \approx_{w}^{h}\left(\mathcal{M}_{(h, w)}, P_{(h, w)}\right)$. Further lemma 7.1 establishes $\mathcal{M}_{(h, w)}, P_{(h, w)} \models \phi$ q.e.d.

Definition 7.7 We define the set of actions of a formula ϕ, act $(\phi) \subset \mathbb{A}$, inductively by:

1. $\operatorname{act}(0)=\operatorname{act}(T) \stackrel{\text { def }}{=} \emptyset$
2. $\operatorname{act}(\langle\alpha\rangle \phi) \stackrel{\text { def }}{=}\{\alpha\} \cup \operatorname{act}(\phi)$
3. $\operatorname{act}(\neg \phi)=\operatorname{act}(\phi)$
4. $\operatorname{act}(\phi \wedge \psi)=\operatorname{act}(\phi \mid \psi) \stackrel{\operatorname{def}}{=} \operatorname{act}(\phi) \cup \operatorname{act}(\psi)$
5. $\operatorname{act}(\langle A: \alpha\rangle \phi)=\operatorname{act}\left(K_{A} \phi\right) \stackrel{\operatorname{def}}{=} \operatorname{Act}(I(A)) \cup \operatorname{act}(\phi)$

The next result states that a formula ϕ does not reflect properties that involves more then the actions in its syntax. Thus if $\mathcal{M}, P \models \phi$ then any substitution σ having the elements of $\operatorname{act}(\phi)$ as fix points preserves the satisfaction relation, i.e. $\mathcal{M}^{\sigma}, P^{\sigma} \models \phi$.

Theorem 7.3 If $\mathcal{M}, P \models \phi$ and σ is a substitution with $\operatorname{act}(\sigma) \bigcap \operatorname{act}(\phi)=\emptyset$ then $\mathcal{M}^{\sigma}, P^{\sigma} \models$ ϕ.

Proof We prove, simultaneously, by induction on ϕ, that

1. if $\mathcal{M}, P \models \phi$ then $\sigma(\mathcal{M}), \sigma(P) \models \phi$
2. if $\mathcal{M}, P \not \vDash \phi$ then $\sigma(\mathcal{M}), \sigma(P) \not \vDash \phi$

The case $\phi=0$:

1. $\mathcal{M}, P \models 0$ iff $P \equiv 0$. Then $\sigma(P) \equiv 0$ and $\sigma(\mathcal{M}), \sigma(0) \models 0$ q.e.d.
2. $\mathcal{M}, P \not \models 0$ iff $P \not \equiv 0$, iff $\sigma(P) \not \equiv 0$. Hence $\sigma(\mathcal{M}), \sigma(P) \not \models 0$.

The case $\phi=\mathrm{T}$:

1. $\mathcal{M}, P \models \top$ implies $\sigma(\mathcal{M}), \sigma(P) \models \top$, because this is happening for any context and process.
2. $\mathcal{M}, P \not \vDash \top$ is an impossible case.

The case $\phi=\psi_{1} \wedge \psi_{2}$:

1. $\mathcal{M}, P \models \psi_{1} \wedge \psi_{2}$ implies that $\mathcal{M}, P \models \psi_{1}$ and $\mathcal{M}, P \models \psi_{2}$. Because $\operatorname{act}(\sigma) \cap \operatorname{act}(\phi)=\emptyset$ we derive that $\operatorname{act}(\sigma) \cap \operatorname{act}\left(\psi_{1}\right)=\emptyset$ and $\operatorname{act}(\sigma) \cap \operatorname{act}\left(\psi_{2}\right)=\emptyset$. Further, applying the inductive hypothesis, we obtain $\mathcal{M}^{\sigma}, P^{\sigma} \models \psi_{1}$ and $\mathcal{M}^{\sigma}, P^{\sigma} \models \psi_{2}$ that implies $\mathcal{M}^{\sigma}, P^{\sigma} \models \psi_{1} \wedge \psi_{2}$.
2. $\mathcal{M}, P \not \vDash \psi_{1} \wedge \psi_{2}$ implies that $\mathcal{M}, P \not \vDash \psi_{1}$ or $\mathcal{M}, P \not \vDash \psi_{2}$. But, as argued before, $\operatorname{act}(\sigma) \cap \operatorname{act}\left(\psi_{1}\right)=\emptyset$ and $\operatorname{act}(\sigma) \cap \operatorname{act}\left(\psi_{2}\right)=\emptyset$, hence we can apply the inductive hypothesis that entails $\mathcal{M}^{\sigma}, P^{\sigma} \not \models \psi_{1}$ or $\mathcal{M}^{\sigma}, P^{\sigma} \not \vDash \psi_{2}$. Thus $\mathcal{M}^{\sigma}, P^{\sigma} \not \vDash \psi_{1} \wedge \psi_{2}$.

The case $\phi=\neg \psi$:

1. $\mathcal{M}, P \models \neg \psi$ is equivalent with $\mathcal{M}, P \not \models \psi$ and because $\operatorname{act}(\sigma) \cap \operatorname{act}(\phi)=\emptyset$ guarantees that $\operatorname{act}(\sigma) \cap \operatorname{act}(\psi)=\emptyset$, we ca apply the inductive hypothesis and we obtain $\sigma(\mathcal{M}), \sigma(P) \not \models \psi$ which is equivalent with $\sigma(\mathcal{M}), \sigma(P) \models \neg \psi$.
2. $\mathcal{M}, P \not \vDash \neg \psi$ is equivalent with $\mathcal{M}, P \models \psi$ and applying the inductive hypothesis, $\sigma(\mathcal{M}), \sigma(P) \models \psi$, i.e. $\sigma(\mathcal{M}), \sigma(P) \not \models \neg \psi$.
The case $\phi=\psi_{1} \mid \psi_{2}$:
3. $\mathcal{M}, P \models \psi_{1} \mid \psi_{2}$ implies that $P \equiv Q \mid R, \mathcal{M}, Q \models \psi_{1}$ and $\mathcal{M}, R \models \psi_{2}$. As $\operatorname{act}(\sigma) \cap$ $\operatorname{act}(\phi)=\emptyset$ we have $\operatorname{act}(\sigma) \cap \operatorname{act}\left(\psi_{1}\right)=\emptyset$ and $\operatorname{act}(\sigma) \cap \operatorname{act}\left(\psi_{2}\right)=\emptyset$. Then we can apply the inductive hypothesis and obtain $\sigma(\mathcal{M}), \sigma(Q) \models \psi_{1}$ and $\sigma(\mathcal{M}), \sigma(R) \models \psi_{2}$. But $\sigma(P) \equiv \sigma(Q) \mid \sigma(R)$, hence $\sigma(\mathcal{M}), \sigma(P) \models \phi$.
4. $\mathcal{M}, P \not \models \psi_{1} \mid \psi_{2}$ implies that for any decomposition $P \equiv Q \mid R$ we have either $\mathcal{M}, Q \not \vDash \psi_{1}$ or $\mathcal{M}, R \not \vDash \psi_{2}$. But, as before, from $\operatorname{act}(\sigma) \cap \operatorname{act}(\phi)=\emptyset$ guarantees that $\operatorname{act}(\sigma) \cap$ $\operatorname{act}\left(\psi_{1}\right)=\emptyset$ and $\operatorname{act}(\sigma) \cap \operatorname{act}\left(\psi_{2}\right)=\emptyset$. Hence, we can apply the inductive hypothesis and consequently, for any decomposition $P \equiv Q \mid R$ we have either $\sigma(\mathcal{M}), \sigma(Q) \not \vDash \psi_{1}$ or $\sigma(\mathcal{M}), \sigma(R) \not \models \psi_{2}$.
Consider any arbitrary decomposition $\sigma(P) \equiv P^{\prime} \mid P^{\prime \prime}$. By theorem ??, there exists $P \equiv$ $Q \mid R$ such that $\sigma(Q) \equiv P^{\prime}$ and $\sigma(R) \equiv P^{\prime \prime}$. Thus either $\sigma(\mathcal{M}), P^{\prime} \not \models \psi_{1}$ or $\sigma(\mathcal{M}), P^{\prime \prime} \not \vDash$ ψ_{2}. Hence $\sigma(\mathcal{M}), \sigma(P) \not \vDash \psi_{1} \mid \psi_{2}$.

The case $\phi=\langle\gamma\rangle \psi$:

1. $\mathcal{M}, P \models\langle\gamma\rangle \psi$ means that there is a transition ${ }^{P}{ }^{\gamma} \mathbf{t o} Q$ and $\mathcal{M}, Q \models \psi$. Because $\operatorname{act}(\sigma) \cap$ $\operatorname{act}(\langle\gamma\rangle \psi)=\emptyset$ implies $\operatorname{act}(\sigma) \cap \operatorname{act}(\psi)=\emptyset$. We can apply the inductive hypothesis and derive $\sigma(\mathcal{M}), \sigma(Q) \models \psi$. As $P{ }^{\gamma}$ to Q we have $P \equiv \gamma \cdot P^{\prime} \mid P^{\prime \prime}$ and $Q \equiv P^{\prime} \mid P^{\prime \prime}$. This mean that $\sigma(P) \equiv \sigma(\gamma) \cdot \sigma\left(P^{\prime}\right) \mid \sigma\left(P^{\prime \prime}\right)$. Now $\operatorname{act}(\sigma) \cap \operatorname{act}(\langle\gamma\rangle \psi)=\emptyset$ ensures that $\sigma(\gamma)=\gamma$. So $\sigma(P) \equiv \gamma \cdot \sigma\left(P^{\prime}\right) \mid \sigma\left(P^{\prime \prime}\right)$ and $\sigma(Q) \equiv \sigma\left(P^{\prime}\right) \mid \sigma\left(P^{\prime \prime}\right)$. Hence $\sigma(P) \mathbf{t o} \sigma(Q)$. Now because $\sigma(\mathcal{M}), \sigma(Q) \models \psi$, we derive $\sigma(\mathcal{M}), \sigma(P) \models\langle\gamma\rangle \psi$.
2. $\mathcal{M}, P \not \vDash\langle\gamma\rangle \psi$ implies one of two cases: either there is no transition of P by γ, or there is such a transition and for any transition $P \mathbf{t o}^{\gamma} Q$ we have $\mathcal{M}, Q \not \vDash \psi$.
If there is no transition of P by γ then $P \equiv \alpha_{1} \cdot P_{1}|\ldots| \alpha_{k} \cdot P_{k}$ with $\alpha_{i} \neq \gamma$ for each $i \neq 1 . . k$. Because $\sigma(P) \equiv \sigma\left(\alpha_{1}\right) \cdot \sigma\left(P_{1}\right)|\ldots| \sigma\left(\alpha_{k}\right) \cdot \sigma\left(P_{k}\right)$, and because $\gamma \neq \alpha_{i}$, and $\gamma \notin \operatorname{act}(\sigma)$, we can state that $\gamma \neq \sigma\left(\alpha_{i}\right)$, hence $\sigma(P)$ cannot perform a transition by γ. Thus $\sigma(\mathcal{M}), \sigma(P) \not \models\langle\gamma\rangle \psi$.
If there are transitions of P by γ, and for any such a transition $P \mathbf{t o}^{\gamma} Q$ we have $\mathcal{M}, Q \not \vDash \psi$: then, because from $\operatorname{act}(\sigma) \cap \operatorname{act}(\langle\gamma\rangle \psi)=\emptyset$ we can derive $\operatorname{act}(\sigma) \cap \operatorname{act}(\psi)=\emptyset$, the inductive hypothesis can be applied and we obtain $\sigma(\mathcal{M}), \sigma(Q) \not \vDash \psi$. But because $\gamma \notin \operatorname{act}(\sigma)$ we obtain $\sigma(\gamma)=\gamma$ and $\sigma(P) \stackrel{\gamma}{\mathbf{t}} \sigma(Q)$. Hence $\sigma(\mathcal{M}), \sigma(P) \not \vDash\langle\gamma\rangle \psi$.

The case $\phi=K_{R} \psi$:

1. $\mathcal{M}, P \models K_{R} \psi$ implies $P \equiv R \mid S$ and for any $R \mid S^{\prime} \in \mathcal{M}$ we have $\mathcal{M}, R \mid S^{\prime} \models \psi$. From $\operatorname{act}(\sigma) \cap \operatorname{act}(\phi)=\emptyset$ we derive $\operatorname{act}(\sigma) \cap \operatorname{act}(\psi)=\emptyset$ and $\operatorname{act}(\sigma) \cap \operatorname{Act}(R)=\emptyset$. So, we can apply the inductive hypothesis that gives $\mathcal{M}^{\sigma}, \sigma\left(R \mid S^{\prime}\right) \models \psi$ and, because $\sigma(R) \equiv R$, $M^{\sigma}, R \mid \sigma\left(S^{\prime}\right) \models \psi$.
Consider an arbitrary process $R \mid S^{\prime \prime} \in \mathcal{M}^{\sigma}$. There exists a process $Q \in \mathcal{M}$ such that $\sigma(Q) \equiv R \mid S^{\prime \prime}$. Thus, by theorem ??, $Q \equiv R^{\prime} \mid S^{\prime \prime \prime}$ with $\sigma\left(R^{\prime}\right)=R$ and $\sigma\left(S^{\prime \prime \prime}\right)=S^{\prime \prime}$. But $\operatorname{Act}(R) \cap \operatorname{act}(\sigma)=\emptyset$ implies $\operatorname{Act}(R) \cap o b j(\sigma)=\emptyset$, so applying the theorem ??, we derive $R \equiv R^{\prime}$. Thus $Q \equiv R \mid S^{\prime \prime \prime}$ and because $\mathcal{M}^{\sigma}, R \mid \sigma\left(S^{\prime}\right) \models \psi$ for any S^{\prime}, we derive $\mathcal{M}^{\sigma}, R \mid S^{\prime \prime} \models \psi$.
Because $R \mid S^{\prime \prime} \in \mathcal{M}^{\sigma}$ was arbitrarily chosen, and because $\sigma(P)=\sigma(R \mid S)=R \mid \sigma(S)$, we obtain $\mathcal{M}^{\sigma}, P^{\sigma} \models K_{R} \psi$.
2. $\mathcal{M}, P \not \vDash K_{R} \psi$ implies that either $P \not \equiv R \mid S$ for any S, or $P \equiv R \mid S$ for some S and there exists a process $R \mid S^{\prime} \in \mathcal{M}$ such that $\mathcal{M}, R\left|S^{\prime}\right| \neq \psi$.
If $P \not \equiv R \mid P^{\prime}$, because $\operatorname{act}(\sigma) \cap \operatorname{Act}(R)=\emptyset$ implies $o b j(\sigma) \cap \operatorname{Act}(R)=\emptyset$ we derive, by theorem ??, that $\sigma(P) \not \equiv R \mid S$ for any S. Hence, we can state that $\mathcal{M}^{\sigma}, P^{\sigma} \notin K_{R} \psi$.
If $P \equiv R \mid S$ for some S and there exists a process $R \mid S^{\prime} \in \mathcal{M}$ such that $\mathcal{M}, R\left|S^{\prime}\right| \vDash \psi$, then the inductive hypothesis gives $\mathcal{M}^{\sigma}, \sigma(R) \mid \sigma\left(S^{\prime}\right) \not \vDash \psi$. But $\sigma(R)\left|\sigma\left(S^{\prime}\right) \equiv R\right| \sigma\left(S^{\prime}\right)$, and $\sigma(P) \equiv R \mid \sigma(S)$ thus $\sigma(\mathcal{M}), R \mid \sigma\left(S^{\prime}\right) \not \vDash \psi$ implies $\sigma(\mathcal{M}), \sigma(P) \not \vDash K_{R} \psi$.

We suppose to have defined on \mathbb{A} a lexicographical order \ll. So, for a finite set $A \subset \mathbb{A}$ we can identify a maximal element that is unique. Hence the successor of this element is unique as well. We convey to denote by A_{+}the set obtained by adding to A the successor of its maximal element.

Theorem 7.4 (Finite model property) If $\mathcal{M}, P \models \phi$ then $\exists \mathcal{N} \in \mathfrak{M}_{\phi}^{\text {act }(\phi)_{+}}$and $Q \in \mathcal{N}$ such that $\mathcal{N}, Q \models \phi$.

Proof Consider the substitution σ that maps all the actions $\alpha \in \mathbb{A} \backslash \operatorname{act}(\phi)$ in the successor of the maximum element of $\operatorname{act}(\phi)$ (it exists as $\operatorname{act}(\phi)$ is finite). Obviously $\operatorname{act}(\sigma) \cap \operatorname{act}(\phi)=\emptyset$, hence, using theorem 7.3 we obtain $\mathcal{M}^{\sigma}, P^{\sigma} \models \phi$. Further we take $\mathcal{N}=\mathcal{M}_{(h, w)}^{\sigma} \in \mathfrak{M}_{(h, w)}^{a c t(\phi)+}$ and $Q=P_{(h, w)}^{\sigma} \in \mathcal{M}_{(h, w)^{+}}^{a c t(\phi}$, and theorem 7.1 proves the finite model property.

Because $\operatorname{act}(\phi)$ is finite, implying $\operatorname{act}(\phi)_{+}$finite, Theorem 6.9 proves that $\mathfrak{M}_{\phi}^{a c t(\phi)+}$ is finite and any maximal consistent set $\mathcal{M} \in \mathfrak{M}_{\phi}^{\text {act }(\phi)_{+}}$is finite as well. Thus we obtain the finite model property for our logic. A consequence of theorem 7.4 is the decidability for satisfiability, validity and model checking against the process semantics.

Theorem 7.5 (Decidability) For $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$ validity, satisfiability and model checking are decidable against the process semantics.

7.5 Characteristic formulas

In this subsection we use the peculiarities of the dynamic and epistemic operators to define characteristic formulas for processes and finite maximal consistent sets of processes. Such formulas will be useful in providing an appropriate axiomatic system for our logic and, eventually, for proving its completeness.

Definition 7.8 (Characteristic formulas for processes) We define a class of logical formulas $\left(f_{P}\right)_{P \in \mathbb{P}}$, indexed by (\equiv-equivalence classes of) processes, inductively by:

1. $f_{0} \stackrel{\text { def }}{=} 0$
2. $f_{P \mid Q} \stackrel{\text { def }}{=} f_{P} \mid f_{Q}$
3. $f_{\alpha . P} \stackrel{\text { def }}{=}\langle!\alpha\rangle f_{P}$

We denote by $\mathcal{F}_{\mathbb{P}}$ this class. Obviously $\mathcal{F}_{\mathbb{P}} \subset \mathcal{F}_{\mathbb{A}}^{\mathfrak{A}}$.
We will prove latter that f_{P} is a characteristic formula for P. Similarly, we can characterize the agents by the process they can see.

Definition 7.9 (Characteristic formulas for agents) Similarly we introduce a class of logical formulas $\left(f_{A}\right)_{A \in \mathfrak{A}}$, on epistemic agents

1. $f_{A} \stackrel{\text { def }}{=} 0$ for atomic agents $A \in \mathcal{A}$
2. $f_{A_{1} \mid A_{2}} \stackrel{\text { def }}{=} f_{A_{1}} \mid f_{A_{2}}$
3. $f_{\alpha . A} \stackrel{\text { def }}{=}\langle!\alpha\rangle f_{A}$

We denote by $\mathcal{F}_{\mathfrak{A}}$ this class. Obviously $\mathcal{F}_{\mathfrak{A}} \subset \mathcal{F}_{\mathbb{A}}^{\mathfrak{A}}$.
Definition 7.10 (Characteristic formulas for finite sets of processes) Let $\Phi \subset \mathcal{F}^{\mathfrak{A}}$ be a finite set of formulas and $A \in \mathfrak{A}$ an atomic agent. We define the derived operator

$$
\Delta \Phi \stackrel{\text { def }}{=} K_{A}\left(\bigvee_{\phi \in \Phi} \phi\right) \wedge\left(\bigwedge_{\phi \in \Phi} \tilde{K}_{A} \phi\right)
$$

Observe that $\mathcal{M}, P \models \Delta \Phi$ iff for any $Q \in \mathcal{M}$ there exists $\phi \in \Phi$ such that $\mathcal{M}, Q \models \phi$ and for any $\phi \in \Phi$ there exists $Q \in \mathcal{M}$ such that $\mathcal{M}, Q \models \phi$. Observe also that it is irrelevant which atomic agent A we choose to define Δ, as the epistemic operators of any atomic agent can encode validity and satisfiability.

Further we exploit the semantics of this operator for defining characteristic formulas for finite maximal consistent sets of processes.

Definition 7.11 (Characteristic formulas for finite maximal consistent sets) If \mathcal{M} is a finite maximal consistent set of processes, we define $f_{\mathcal{M}} \stackrel{\text { def }}{=} \Delta\left\{f_{P} \mid P \in \mathcal{M}\right\}$.

8 Axiomatic system

Consider the subset of logical formulas introduced by the next syntax and defined for $\alpha \in \mathbb{A}$

$$
f:=\langle!\alpha\rangle 0|\langle!\alpha\rangle f| f \mid f
$$

We denote the class of these formulas by \mathcal{F}. By construction, $\mathcal{F} \subset \mathcal{F}_{\mathfrak{A}}^{\mathfrak{A}}$. Hereafter we use f, g, h for denoting arbitrary formulas from \mathcal{F}, while ϕ, ψ, ρ will be used for formulas in $\mathcal{F}_{\mathbb{A}}^{\mathfrak{A}}$.

Theorem 8.1 $\mathcal{F} \cup\{0\}=\mathcal{F}_{\mathbb{P}}$.
Hereafter is proposed a Hilbert-style axiomatic system for $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$. We assume the axioms and the rules of propositional logic. In addition we will have a set of spatial axioms and rules, of dynamic axioms and rules and of epistemic axioms and rules. We will also have a class of mixed axioms and rules that combine different operators.

Spatial axioms

$$
\begin{aligned}
\vdash & \top \mid \perp \rightarrow \perp \\
& \vdash \phi \mid 0 \leftrightarrow \phi \\
& \vdash \phi|\psi \rightarrow \psi| \phi \\
& \vdash(\phi \mid \psi)|\rho \rightarrow \phi|(\psi \mid \rho) \\
& \vdash \phi \mid(\psi \vee \rho) \rightarrow(\phi \mid \psi) \vee(\phi \mid \rho) \\
& \vdash(f \wedge \phi \mid \psi) \rightarrow \bigvee_{f \leftrightarrow g \mid h}(g \wedge \phi) \mid(h \wedge \psi)
\end{aligned}
$$

Spatial rules

If $\vdash \phi \rightarrow \psi$ then $\vdash \phi|\rho \rightarrow \psi| \rho$
Axiom E8 states the propagation of the inconsistency from a subsystem to the upper system.
Axioms E8, E8 and E8 depict the structure of abelian monoid projected by the parallel operator on the class of processes.

Concerning axiom E8, observe that the disjunction involved has a finite number of terms, as we considered the processes up to structural congruence level. The theorem states that if system has a property expressed by parallel composition of specifications, then it must have two parallel complementary subsystems, each of them satisfying one of the specifications.

Rule $\mathrm{E}_{R} 8$ states a monotony property for the parallel operator.

Dynamic axioms

$$
\begin{aligned}
\vdash & \langle\alpha\rangle \phi \mid \psi \rightarrow\langle\alpha\rangle(\phi \mid \psi) \\
& \vdash[\alpha](\phi \rightarrow \psi) \rightarrow([\alpha] \phi \rightarrow[a] \psi) \\
& \vdash 0 \vee\langle!\alpha\rangle \top \rightarrow[\beta] \perp, \text { for } \alpha \neq \beta \\
& \vdash\langle!\alpha\rangle \phi \rightarrow[\alpha] \phi
\end{aligned}
$$

Dynamic rules

If $\vdash \phi$ then $\vdash[\alpha] \phi$
If $\vdash \phi \rightarrow[\alpha] \phi^{\prime}$ and $\vdash \psi \rightarrow[\alpha] \psi^{\prime}$ then $\vdash \phi \mid \psi \rightarrow[\alpha]\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$.
The first dynamic axiom, axiom E8, presents a domain extrusion property for the dynamic operator. It expresses the fact that if an active subsystem of a bigger system performs the action a, then the bigger system performs it as a whole.

Axiom E8 is just the (K)-axiom for the dynamic operator.
Axiom E8 states that an inactive system cannot perform any action.
Given a complex process that can be exhaustively decomposed in n parallel subprocesses, each of them being able to perform one action only, α_{i}, for $i=1 . . n$, axiom E8.2 ensures us that the entire system, as a whole, cannot perform another action $\beta \neq \alpha_{i}$ for $i=1$..n.

Recalling that the operator $\langle!\alpha\rangle$ describes processes guarded by α, axiom E8 states that a system described by a guarded process can perform one and only one action, the guarding one.

Rule $\mathrm{E}_{R} 8$ is the classic necessity rule used for the dynamic operator.
Rule $\mathrm{E}_{R} 8$ is, in a sense, a counterpart of axiom E8 establishing the action of the operator $[a]$ in relation to the parallel operator.

Epistemic axioms

$$
\begin{aligned}
\vdash & K_{A} \top \leftrightarrow f_{A} \mid \top \\
& \vdash K_{A} \phi \wedge K_{A}(\phi \rightarrow \psi) \rightarrow K_{A} \psi \\
& \vdash K_{A} \phi \rightarrow \phi \\
& \vdash K_{A} \phi \rightarrow K_{A} K_{A} \phi . \\
& \vdash K_{A} \top \rightarrow\left(\neg K_{A} \phi \rightarrow K_{A} \neg K_{A} \phi\right)
\end{aligned}
$$

Axioms involving atomic agents

If A^{\prime} is an atomic agent and A is any agent then
$\vdash K_{A} \phi \leftrightarrow\left(K_{A} \top \wedge K_{A^{\prime}}\left(K_{A} \top \rightarrow \phi\right)\right)$
$\vdash K_{A^{\prime}} \phi \wedge \psi\left|\rho \rightarrow\left(K_{A^{\prime}} \phi \wedge \psi\right)\right|\left(K_{A^{\prime}} \phi \wedge \rho\right)$
$\vdash K_{A^{\prime}} \phi \rightarrow[a] K_{A^{\prime}} \phi$
$\vdash K_{A^{\prime}} \phi \rightarrow\left(K_{A} \top \rightarrow K_{A} K_{A^{\prime}} \phi\right)$

Epistemic rules

If $\vdash \phi$ then $\vdash K_{A} \top \rightarrow K_{A} \phi$.

Axiom E8 is the classical (K)-axiom stating that our epistemic operator is a normal one. This is an expected axiom as all the epistemic logics have it.

The same remark on axiom E8 which is just the axiom (T) - necessity axiom, for the epistemic operator.

Also axiom E8 is well known in epistemic logics. It states that our epistemic agents satisfy the positive introspection property, i.e. if A knows something then it knows that it knows that thing.

Axiom E8 states a variant of the negative introspection, saying that if an agent A is active and if it doesn't know ϕ, then it knows that it doesn't know ϕ. The novelty in our axiom is the precondition $K_{A} \top$ of the negative introspection. This precondition guarantees that the agent really exists, i.e. it is active. Such a precondition does not appear in the other epistemic logics for the reason that, in those cases, the agents exists always and they knows, always, at least the tautologies.

Axiom E8 provides a full description of the knowledge of any agent A based on the knowledge of any atomic agent.

Axioms E8, E8 and E8 present $K_{A^{\prime}} \phi$ as a syntactic encryption of validity.
Rule $\mathrm{E}_{R} 8$ states that any active agent knows all the tautologies. As in the case of the negative introspection, we deal with a well known epistemic rule, widely spread in epistemic logics, but our rules work under the assumption that the agent is active.

Mixed axioms

```
\vdash\langleA:\alpha\rangle\top}->\mp@subsup{K}{A}{}\top
    \vdashf
    \vdash \langleA:\alpha\rangle\phi^\langleA|A'和汿->\langleA| A':\alpha\rangle\phi
```


Mixed rules

If $\vdash \bigvee_{\mathcal{M} \in \mathfrak{M}_{\phi}^{\text {act }(\phi)+}} f_{\mathcal{M}} \rightarrow \phi$ then $\vdash \phi$.
Rule $\mathrm{E}_{R} 8$ comes as a consequence of the finite model property and provides a rule that characterizes, in a finite manner, the validity of a formula. Observe that the disjunction in the first part of the rule has a finite number of terms.

Theorem 8.2 If $\beta \neq \alpha_{i}$ for $i=1$..n then $\vdash\left\langle!\alpha_{1}\right\rangle \top|\ldots|\left\langle!\alpha_{n}\right\rangle \top \rightarrow[\beta] \perp$
Theorem 8.3 If $\mathcal{M} \ni P$ is a finite context and $\vdash c_{\mathcal{M}} \wedge c_{P} \rightarrow K_{0} \phi$ then $\vdash c_{\mathcal{M}} \rightarrow \phi$.
sectionSoundness of the system $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$
In this section we will motivate the choice of the axioms by proving the soundness of our system with respect to process semantics. In this way we will prove that everything expressed by our axioms and rules about the process semantics is correct and, in conclusion, using our system, we can derive only theorems that can be meaningfully interpreted.

Theorem 8.4 (Soundness) The system $\mathcal{L}_{\mathbb{A}}^{\mathfrak{R}}$ is sound w.r.t. process semantics.

Proof The soundness of $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$ will be sustained by the soundness of all spatial, dynamic and epistemic axioms and rules.

Soundness of the spatial axioms and rules

We start with proving the soundness of the spatial axioms and rules.
[Soundness of axiom E8] $\models T \mid \perp \rightarrow \perp$
Proof Suppose that it exists a maximal consistent set \mathcal{M} and a process $P \in \mathcal{M}$ such that $\mathcal{M}, P \models \top \mid \perp$. Then $P \equiv Q \mid R$ with $\mathcal{M}, Q \models \top$ and $\mathcal{M}, R \models \perp$; i.e. $\mathcal{M}, R \not \vDash \top$. But this is not possible. Hence, there is no maximal consistent set \mathcal{M} and process $P \in \mathcal{M}$ such that $\mathcal{M}, P \models \top \mid \perp$, i.e. for any maximal consistent set \mathcal{M} and any process $P \in \mathcal{M}$ we have $\mathcal{M}, P \models \neg(T \mid \perp)$, i.e. $\mathcal{M}, P \models T \mid \perp \rightarrow \perp$.
[Soundness of axiom E8] $\models \phi \mid 0 \leftrightarrow \phi$.
Proof $\mathcal{M}, P \models \phi \mid 0$ iff $P \equiv Q \mid R, \mathcal{M}, Q \models \phi$ and $\mathcal{M}, R \models 0$. Then $R \equiv 0$, so $P \equiv Q$, hence $\mathcal{M}, P \models \phi$.
If $\mathcal{M}, P \models \phi$, because $\mathcal{M}, 0 \models 0$ and $P \equiv P \mid 0 \in \mathcal{M}$ we obtain that $\mathcal{M}, P \models \phi \mid 0$.
[Soundness of axiom E8] $\models \phi|\psi \rightarrow \psi| \phi$.
Proof $\mathcal{M}, P \models \phi \mid \psi$ means that $P \equiv Q \mid R, \mathcal{M}, Q \models \phi$ and $\mathcal{M}, R \models \psi$. But $P \equiv R \mid Q \in$ \mathcal{M}, hence $\mathcal{M}, P \models \psi \mid \phi$.
[Soundness of axiom E8] $\models(\phi \mid \psi)|\rho \rightarrow \phi|(\psi \mid \rho)$.
Proof $\mathcal{M}, P \models(\phi \mid \psi) \mid \rho$ implies that $P \equiv Q|R, \mathcal{M}, Q \models \phi| \psi$ and $\mathcal{M}, R \models \rho$. Then $Q \equiv S \mid V$ with $\mathcal{M}, S \models \phi$ and $\mathcal{M}, V \models \psi$. But $P \equiv(S \mid V)|R \equiv S|(V \mid R)$, where $\mathcal{M}, S \models \phi$ and $\mathcal{M}, V|R \models \psi| \rho$. Hence $\mathcal{M}, P \models \phi \mid(\psi \mid \rho)$.
[Soundness of axiom E8] $\models \phi \mid(\psi \vee \rho) \rightarrow(\phi \mid \psi) \vee(\phi \mid \rho)$
Proof $\mathcal{M}, P \models \phi \mid(\psi \vee \rho)$ means that $P \equiv Q \mid R, \mathcal{M}, P \models \phi$ and $\mathcal{M}, R \models \psi \vee \rho$, i.e. $\mathcal{M}, R \models \psi$ or $\mathcal{M}, R \models \rho$. Hence $\mathcal{M}, P \models \phi \mid \psi$ or $\mathcal{M}, P \models \phi \mid \rho$. So $\mathcal{M}, P \models(\phi \mid \psi) \vee(\phi \mid \rho)$.

Now we prove that the formulas f_{P} defined before are characteristic formulas.
Theorem 8.5 If $P \in \mathcal{M}$, then $\mathcal{M}, P \models f_{P}$.
Proof We prove it by induction on the structure of the process P.
The case $P \equiv 0: \mathcal{M}, 0 \models f_{0}$, because $0 \in \mathcal{M}, f_{0}=0$ and $\mathcal{M}, 0 \models 0$.
The case $P \equiv Q \mid R$: we have $Q, R \in \mathcal{M}$ and $f_{P}=f_{Q} \mid f_{R}$. By the inductive hypothesis $\mathcal{M}, Q \models f_{Q}$ and $\mathcal{M}, R \models f_{R}$, so $\mathcal{M}, Q\left|R \models f_{Q}\right| f_{R}$. Hence $\mathcal{M}, P \models f_{P}$.
The case $P \equiv \alpha . Q$: we have $P \xrightarrow{\alpha} Q$, hence $Q \in \mathcal{M}$. Moreover, $f_{P}=\langle\alpha\rangle f_{Q} \wedge 1$. By the inductive hypothesis $\mathcal{M}, Q \models f_{Q}$. Because $P \xrightarrow{\alpha} Q$, we obtain $\mathcal{M}, P \models\langle\alpha\rangle f_{Q}$, and because $P \equiv \alpha . Q$ is a guarded process, we have also $\mathcal{M}, P \models 1$. Hence $\mathcal{M}, P \models f_{P}$.

Theorem 8.6 $\mathcal{M}, P \models f_{Q}$ iff $P \equiv Q$.
Proof (\Leftarrow) We prove it by verifying that $\mathcal{M}, P \models f_{Q}$ for any P, Q involved in the equivalence rules.

- if $P=R \mid S$ and $Q=S \mid R$, we have $\mathcal{M}, R\left|S \models f_{R}\right| f_{S}$ and using the soundness of axiom E8, we obtain $\mathcal{M}, R\left|S \models f_{S}\right| f_{R}$, i.e. $\mathcal{M}, P \models f_{Q}$
- if $P=(R \mid S) \mid U$ and $Q=R \mid(S \mid U)$ we have $\mathcal{M}, P \models\left(f_{R} \mid f_{S}\right) \mid f_{U}$. Using the soundness of axiom E8, we obtain $\mathcal{M}, P \models f_{Q}$. Similarly $\mathcal{M}, Q \models f_{P}$, using the soundness of axioms E8 and E8.
- if $P=Q \mid 0$ then $\mathcal{M}, P \models f_{Q} \mid 0$, i.e., by using the soundness of axiom E8, $\mathcal{M}, P \models f_{Q}$. Similarly reverse, form $\mathcal{M}, Q \models f_{Q}$ we derive, by using the soundness of axiom E8, $\mathcal{M}, Q \models f_{Q} \mid 0$, i.e. $\mathcal{M}, Q \models f_{P}$.
- if $P=P^{\prime} \mid R$ and $Q=Q^{\prime} \mid R$ with $P^{\prime} \equiv Q^{\prime}$ and $\mathcal{M}, P^{\prime} \models f_{Q^{\prime}}$, because $\mathcal{M}, R \models f_{R}$, we obtain that $\mathcal{M}, P \models f_{Q^{\prime}} \mid f_{R}$, i.e. $\mathcal{M}, P \models f_{Q}$.
- if $P=\alpha . P^{\prime}$ and $Q=\alpha . Q^{\prime}$ with $P^{\prime} \equiv Q^{\prime}$ and $\mathcal{M}, P^{\prime} \models f_{Q^{\prime}}$, as $P \xrightarrow{\alpha} P^{\prime}$, then $\mathcal{M}, P \models$ $\langle\alpha\rangle f_{Q^{\prime}}$. But $\mathcal{M}, P \models 1$, because P is a guarded process, hence $\mathcal{M}, P \models\langle\alpha\rangle f_{Q^{\prime}} \wedge 1$, i.e. $\mathcal{M}, P \models f_{Q}$.
(\Rightarrow) We prove the implication in this sense by induction on the structure of Q.
- if $Q \equiv 0$, then $\mathcal{M}, P \models f_{0}$, means $\mathcal{M}, P \models 0$. Hence $P \equiv 0$.
- if $Q \equiv R \mid S$ then $\mathcal{M}, P \models f_{Q}$ is equivalent with $\mathcal{M}, P \models f_{R} \mid f_{S}$. So $P \equiv U \mid V$, $\mathcal{M}, U \models f_{R}$ and $\mathcal{M}, V \models f_{S}$. By the inductive hypothesis we obtain that $U \equiv R$ and $V \equiv S$. Hence $P \equiv Q$.
- if $Q \equiv \alpha . R$, then $\mathcal{M}, P \models f_{Q}$ is equivalent with $\mathcal{M}, P \models\langle\alpha\rangle f_{R} \wedge 1$. So $P \xrightarrow{\alpha} P^{\prime}$ with $\mathcal{M}, P^{\prime} \models f_{R}$. By the inductive hypothesis, $P^{\prime} \equiv R$. And because $\mathcal{M}, P \models 1$ we obtain that $P \equiv \alpha$.R, i.e. $P \equiv Q$.
[Soundness of axiom E8] $\models(f \wedge \phi \mid \psi) \rightarrow \bigvee_{f \leftrightarrow g \mid h}(g \wedge \phi) \mid(h \wedge \psi)$
Proof Suppose that $\mathcal{M}, S \models f \wedge \phi \mid \psi$. Then there exists a process P such that $f=f_{P}$. Hence $S \equiv P$ (by theorem 8.6) and $S \equiv S_{1} \mid S_{2}$ with $\mathcal{M}, S_{1} \models \phi$ and $\mathcal{M}, S_{2} \models \psi$.
But $\mathcal{M}, S_{1} \models f_{S_{1}}$ and $\mathcal{M}, S_{2} \models f_{S_{2}}$, by theorem 8.5.
Hence $\mathcal{M}, S_{1} \models \phi \wedge f_{S_{1}}$ and $\mathcal{M}, S_{2} \models \psi \wedge f_{S_{2}}$.
And because $P \equiv S \equiv S_{1} \mid S_{2}$, we obtain $\mathcal{M}, P \vDash\left(\phi \wedge f_{S_{1}}\right) \mid\left(\psi \wedge f_{S_{2}}\right)$, hence $\mathcal{M}, P \models$ $(f \wedge \phi \mid \psi) \rightarrow \bigvee_{f \leftrightarrow g \mid h}(g \wedge \phi) \mid(h \wedge \psi)$, q.e.d.
[Soundness of rule $\mathrm{E}_{R} 8$] If $\models \phi \rightarrow \psi$ then $\models \phi|\rho \rightarrow \psi| \rho$
Proof If $\mathcal{M}, P \models \phi \mid \rho$ then $P \equiv Q \mid R, \mathcal{M}, Q \models \phi$ and $\mathcal{M}, R \models \rho$. But from the hypothesis, $\mathcal{M}, Q \models \phi \rightarrow \psi$, hence $\mathcal{M}, Q \models \psi$. Then $\mathcal{M}, P \models \psi \mid \rho$, so $\models \phi|\rho \rightarrow \psi| \rho$.

Soundness of the dynamic axioms and rules

We prove now the soundness for the class of dynamic axioms and rules.
[Soundness of axiom E8] $\models\langle a\rangle \phi \mid \psi \rightarrow\langle a\rangle(\phi \mid \psi)$.
Proof If $\mathcal{M}, P \models\langle a\rangle \phi \mid \psi$, then $P \equiv R \mid S, \mathcal{M}, R \models\langle a\rangle \phi$ and $\mathcal{M}, S \models \psi$. So $\exists R \xrightarrow{a} R^{\prime}$ and $\mathcal{M}, R^{\prime} \models \phi$. So $\exists P \equiv R\left|S \xrightarrow{a} P^{\prime} \equiv R^{\prime}\right| S$ and $\mathcal{M}, P^{\prime} \models \phi \mid \psi$. Hence $\mathcal{M}, P \models\langle a\rangle(\phi \mid \psi)$.
[Soundness of axiom E8] $\models[a](\phi \rightarrow \psi) \rightarrow([a] \phi \rightarrow[a] \psi)$
Proof Let $\mathcal{M}, P \models[a](\phi \rightarrow \psi)$ and $\mathcal{M}, P \models[a] \phi$. If there is no P^{\prime} such that $P \xrightarrow{a} P^{\prime}$, then $\mathcal{M}, P \models[a] \psi$. Suppose that exists such P^{\prime}. Then for any such P^{\prime} we have $\mathcal{M}, P^{\prime} \models \phi \rightarrow$ ψ and $\mathcal{M}, P^{\prime} \models \phi$. Hence $\mathcal{M}, P^{\prime} \models \psi$, i.e. $\mathcal{M}, P \models[a] \psi$.
[Soundness of axiom E8] For $\alpha \neq \beta$ we have

$$
\models 0 \vee\langle!\alpha\rangle \top \rightarrow[\beta] \perp .
$$

Proof If $\mathcal{M}, P \models 0$ then $P \equiv 0$ and there is no transition $0 \xrightarrow{\beta} P^{\prime}$, hence $\mathcal{M}, P \not \vDash\langle\beta\rangle \top$, i.e. $\mathcal{M}, P \models[\beta] \perp$.

Suppose that $\mathcal{M}, P \models\langle!\alpha\rangle \top$. Then necessarily $P \equiv \alpha . P_{1}$. But if $\alpha \neq \beta$, there is no transition

$$
\alpha \cdot P_{1} \xrightarrow{\beta} P^{\prime} .
$$

Hence $\mathcal{M}, P \not \models\langle\beta\rangle \top$, i.e. $\mathcal{M}, P \models[\beta] \perp$.
[Soundness of axiom E8] $\models\langle!\alpha\rangle \phi \rightarrow[\alpha] \phi$
Proof Suppose that $\mathcal{M}, P \models\langle!\alpha\rangle \phi$, then $\mathcal{M}, P \models 1$ and $\mathcal{M}, P \models\langle\alpha\rangle \phi$. Then necessarily $P \equiv \alpha . P^{\prime}$ and $\mathcal{M}, P^{\prime} \models \phi$. But there is only one reduction that P can do, $P \xrightarrow{\alpha} P^{\prime}$. So, for any reduction $P \xrightarrow{\alpha} P^{\prime \prime}$ (because there is only one), we have $\mathcal{M}, P^{\prime \prime} \models \phi$, i.e. $\mathcal{M}, P \vDash[\alpha] \phi$
[Soundness of rule $\left.\mathrm{E}_{R} 8\right]$ If $\models \phi$ then $\models[a] \phi$.
Proof Let \mathcal{M} be a maximal consistent set and $P \in \mathcal{M}$ a process. If there is no P^{\prime} such that $P \xrightarrow{a} P^{\prime}$, then $\mathcal{M}, P \models[a] \phi$. Suppose that exists such P^{\prime} (obviously $P^{\prime} \in \mathcal{M}$). Then for any such P^{\prime} we have $\mathcal{M}, P^{\prime} \models \phi$, due to the hypothesis $\models \phi$. Hence $\mathcal{M}, P \models[a] \phi$.
[Soundness of rule $\mathrm{E}_{R} 8$]

$$
\text { If } \models \phi \rightarrow[a] \phi^{\prime} \text { and } \models \psi \rightarrow[a] \psi^{\prime} \text { then } \models \phi \mid \psi \rightarrow[a]\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)
$$

Proof Suppose that $\mathcal{M}, P \models \phi \mid \psi$, then $P \equiv Q \mid R, \mathcal{M}, Q \models \phi$ and $\mathcal{M}, R \models \psi$. Because $\models \phi \rightarrow[a] \phi^{\prime}$ and $\models \psi \rightarrow[a] \psi^{\prime}$, we derive $\mathcal{M}, Q \models[a] \phi^{\prime}$ and $\mathcal{M}, R \models[a] \psi^{\prime}$. We analyze some cases:

- if P cannot perform a transition by a, then $\mathcal{M}, P \models[a] \perp$, and using the soundness of axiom E 8 and rule $\mathrm{E}_{R} 8$ we derive

$$
\vDash[a] \perp \rightarrow[a]\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)
$$

hence, we obtain in the end $\mathcal{M}, P \models[a]\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$.

- if $Q \mathbf{t} \mathbf{t} Q^{\prime}$ and R cannot perform a transition by a, then $Q\left|R \mathbf{t o} Q^{\prime}\right| R$ and the transitions of $P \equiv Q \mid R$ by a have always this form.
But $\mathcal{M}, Q \models[a] \phi^{\prime}$, so for any such Q^{\prime} we have $\mathcal{M}, Q^{\prime} \models \phi^{\prime}$, thus $\mathcal{M}, Q^{\prime}\left|R \models \phi^{\prime}\right| \psi$, i.e. $\mathcal{M}, Q^{\prime} \mid R \equiv\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$.
Hence for any transition $P \mathbf{t o} P^{\prime}$ we have $\mathcal{M}, P^{\prime} \models\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$. In conclusion, $\mathcal{M}, P \models$ $[a]\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$.
- if Q cannot perform a transition by a and $R \stackrel{a}{\mathbf{t}} R^{\prime}$, similarly as in the previous case, we can derive $\mathcal{M}, P \models[a]\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$.
- if $Q \mathbf{t o} Q^{\prime}$ and $R \mathbf{t \mathbf { t }} R^{\prime}$ then $P \mathbf{t o} P^{\prime}$ has either the form $Q\left|R \mathbf{t o} Q^{\prime}\right| R$ or $Q|R \mathbf{t o} Q| R^{\prime}$. But $\mathcal{M}, Q^{\prime}\left|R \models \phi^{\prime}\right| \psi$, hence $\mathcal{M}, Q^{\prime} \mid R \models\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$ and $\mathcal{M}, Q\left|R^{\prime} \models \phi\right| \psi^{\prime}$, hence $\mathcal{M}, Q \mid R^{\prime} \models\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$. Thus, for any transition $P \mathbf{t o} P^{\prime}$ we have $\mathcal{M}, P^{\prime} \models\left(\phi^{\prime} \mid \psi \vee\right.$ $\left.\phi \mid \psi^{\prime}\right)$, i.e. $\mathcal{M}, P \models[a]\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$.

So, in any case $\mathcal{M}, P \models[a]\left(\phi^{\prime}|\psi \vee \phi| \psi^{\prime}\right)$, that concludes the proof.

Soundness of the epistemic axioms and rules

Hereafter we prove the soundness for the epistemic axioms and rules.
[Soundness of axiom E8] $\models f_{A} \mid \top \leftrightarrow K_{A} \top$
Proof If $\mathcal{M}, P \models f_{A} \mid \top$ then $P \equiv R \mid S$, with $\mathcal{M}, S \models f_{A}$. Then $P \equiv I(A) \mid R$. And because for any $I(A) \mid R^{\prime} \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid R^{\prime} \models \mathrm{T}$, we derive $\mathcal{M}, P \models K_{A} \top$.
Suppose now the reverse, i.e. that $\mathcal{M}, P \models K_{A} \top$. Then $P \equiv I(A) \mid R$. But $\mathcal{M}, P \models f_{P}$, hence $\mathcal{M}, P \models f_{A} \mid f_{R}$.
Because $\models f_{A} \rightarrow \top$, using the soundness of rule $\mathrm{E}_{R} 8$, we derive $\models f_{A}\left|f_{R} \rightarrow f_{A}\right| \top$ from where we conclude that $\mathcal{M}, P \models f_{A} \mid \top$.
[Soundness of axiom E8] $\models K_{A} \phi \wedge K_{A}(\phi \rightarrow \psi) \rightarrow K_{A} \psi$
Proof Suppose that $\mathcal{M}, P \models K_{A} \phi$ and that $\mathcal{M}, P \models K_{A}(\phi \rightarrow \psi)$. Then $P \equiv I(A) \mid R$ and for any S such that $S \mid I(A) \in \mathcal{M}$ we have $\mathcal{M}, S \mid I(A) \models \phi$ and $\mathcal{M}, I(A) \mid S \models \phi \rightarrow \psi$. Hence for any such $I(A) \mid S$ we have $\mathcal{M}, I(A) \mid S \models \psi$ and because $P \equiv I(A) \mid R$ we obtain that $\mathcal{M}, P \models K_{A} \psi$.
[Soundness of axiom E8] $\models K_{A} \phi \rightarrow \phi$.
Proof If $\mathcal{M}, P \models K_{A} \phi$ then $P \equiv I(A) \mid R$ and for any $I(A) \mid S \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid S \models$ ϕ, i.e. $\mathcal{M}, I(A) \mid R \models \phi$, so $\mathcal{M}, P \models \phi$.
[Soundness of axiom E8] $\models K_{A} \phi \rightarrow K_{A} K_{A} \phi$.
Proof Suppose that $\mathcal{M}, P \models K_{A} \phi$, then $P \equiv I(A) \mid R$ and for any $I(A) \mid S \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid S \models \phi$. Let $I(A) \mid S^{\prime} \in \mathcal{M}$ be arbitrarily chosen. As for any $I(A) \mid S \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid S \models \phi$, we derive that $\mathcal{M}, I(A) \mid S^{\prime} \models K_{A} \phi$. But $I(A) \mid S^{\prime}$ has been arbitrarily chosen, so for any $I(A) \mid S \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid S \models K_{A} \phi$, and because $P \equiv I(A) \mid R$ we obtain $\mathcal{M}, P \models K_{A} K_{A} \phi$.
[Soundness of axiom E8] $\models K_{A} \top \rightarrow\left(\neg K_{A} \phi \rightarrow K_{A} \neg K_{A} \phi\right)$
Proof Suppose that $\mathcal{M}, P \models K_{A} \top$ and $\mathcal{M}, P \models \neg K_{A} \phi$. Then $P \equiv I(A) \mid R$ and $\exists S$ such that $\mathcal{M}, S \mid I(A) \models \neg \phi$. But then for any U such that $U \mid I(A) \in \mathcal{M}$ we have $\mathcal{M}, U \mid I(A) \models$ $\neg K_{A} \phi$. Hence $\mathcal{M}, P \models K_{A} \neg K_{A} \phi$.

In the next lemmas of this subsection we will denote by A^{\prime} an atomic agent.
[Soundness of axiom E8]

$$
\vDash K_{A} \phi \leftrightarrow\left(K_{A} \top \wedge K_{A^{\prime}}\left(K_{A} \top \rightarrow \phi\right)\right) .
$$

Proof Suppose that $\mathcal{M}, P \models K_{A} \phi$. Then $P \equiv I(A) \mid R$ and for any $I(A) \mid S \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid S \models \phi$. From $P \equiv I(A) \mid R$, because for any $I(A) \mid S \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid S \models \top$, we derive $\mathcal{M}, P \models K_{A} \top$. Consider now an arbitrary process $S \in \mathcal{M}$. If $\mathcal{M}, S \not \vDash K_{A} \top$, then $\mathcal{M}, S \models K_{A} \top \rightarrow \phi$.
If $\mathcal{M}, S \models K_{A}$ 丁 we derive that $S \equiv I(A) \mid S^{\prime}$, hence $\mathcal{M}, S \models \phi$.
So, for an arbitrarily chosen $S \in \mathcal{M}$ we have $\mathcal{M}, S \models K_{A} \top \rightarrow \phi$.
Because $P \equiv P \mid 0$ and for any process $S \equiv S \mid 0 \in \mathcal{M}$ we have
$\mathcal{M}, S \models K_{A} \top \rightarrow \phi$, we derive that $\mathcal{M}, P \models K_{A^{\prime}}\left(K_{A} \top \rightarrow \phi\right)$. Hence $\models K_{A} \phi \rightarrow\left(K_{A} \top \wedge\right.$ $\left.K_{A^{\prime}}\left(K_{A} \top \rightarrow \phi\right)\right)$.

Suppose now that $\mathcal{M}, P \models K_{A} \top \wedge K_{A^{\prime}}\left(K_{A} \top \rightarrow \phi\right)$. From $\mathcal{M}, P \models K_{A} \top$ we derive $P \equiv I(A) \mid R$.
Because $\mathcal{M}, P \models K_{A^{\prime}}\left(K_{A} \top \rightarrow \phi\right)$, we obtain that for any process $S \in \mathcal{M}$ we have $\mathcal{M}, S \models$ $K_{A} \top \rightarrow \phi$. Hence, for any process $S \mid I(A) \in \mathcal{M}$ we have $\mathcal{M}, S \mid I(A) \models \phi$ (because $\mathcal{M}, S \mid I(A) \models K_{A} \top$). And because $P \equiv I(A) \mid R$, we derive $\mathcal{M}, P \models K_{A} \phi$.
[Soundness of axiom E8]

$$
\vDash K_{A^{\prime}} \phi \wedge \psi\left|\rho \rightarrow\left(K_{A^{\prime}} \phi \wedge \psi\right)\right|\left(K_{A^{\prime}} \phi \wedge \rho\right) .
$$

Proof Suppose that $\mathcal{M}, P \models K_{A^{\prime}} \phi \wedge \psi \mid \rho$ then $\mathcal{M}, P \models K_{A^{\prime}} \phi$ and $\mathcal{M}, P \models \psi \mid \rho$. $\mathcal{M}, P \models K_{A^{\prime}} \phi$ gives that for any $R \in \mathcal{M}$ we have $\mathcal{M}, R \models \phi$.
$\mathcal{M}, P \models \psi \mid \rho$ gives that $P \equiv P^{\prime} \mid P^{\prime \prime}$ and $\mathcal{M}, P^{\prime} \models \psi, \mathcal{M}, P^{\prime \prime} \models \rho$. Because $P^{\prime}, P^{\prime \prime} \in \mathcal{M}$ and because for any $R \in \mathcal{M}, \mathcal{M}, R \models \phi$ we derive that $\mathcal{M}, P^{\prime} \models K_{A^{\prime}} \phi$ and $\mathcal{M}, P^{\prime \prime} \models K_{A^{\prime}} \phi$.
Hence $\mathcal{M}, P^{\prime} \models \psi \wedge K_{A^{\prime}} \phi$ and $\mathcal{M}, P^{\prime \prime} \vDash \rho \wedge K_{A^{\prime}} \phi$. As $P \equiv P^{\prime} \mid P^{\prime \prime}$, we obtain further $\mathcal{M}, P \models\left(K_{A^{\prime}} \phi \wedge \psi\right) \mid\left(K_{A^{\prime}} \phi \wedge \rho\right)$.
[Soundness of axiom E8] $\models K_{A^{\prime}} \phi \rightarrow[a] K_{A^{\prime}} \phi$

Proof Suppose that $\mathcal{M}, P \models K_{A^{\prime}} \phi$, then for any $R \in \mathcal{M}$ we have $\mathcal{M}, R \models \phi$. If P cannot perform a transition by a, we have $\mathcal{M}, P \models[a] K_{A^{\prime}} \phi$. If P can perform such transitions, then for any $P \operatorname{ton}^{a} P^{\prime}$ we have $\mathcal{M}, P^{\prime} \models K_{A^{\prime}} \phi$ (as for any $R \in \mathcal{M}$ we have $\mathcal{M}, R \models \phi$). This means $\mathcal{M}, P \models[a] K_{A^{\prime}} \phi$.
[Soundness of axiom E8] $\models K_{A^{\prime}} \phi \rightarrow\left(K_{A} \top \rightarrow K_{A} K_{A^{\prime}} \phi\right)$
Proof Suppose that $\mathcal{M}, P \models K_{A^{\prime}} \phi$ and $\mathcal{M}, P \models K_{A} \top$.
$\mathcal{M}, P \models K_{A^{\prime}} \phi$ gives that for any $R \in \mathcal{M}$ we have $\mathcal{M}, R \models \phi$.
$\mathcal{M}, P \models K_{A} \top$ means that $P \equiv I(A) \mid S$. Because for any $R \in \mathcal{M}$ we have $\mathcal{M}, R \models \phi$, we obtain that for any $I(A) \mid S^{\prime} \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid S^{\prime} \models K_{A^{\prime}} \phi$, and because $P \equiv I(A) \mid S$ we obtain $\mathcal{M}, P \models K_{A} K_{A^{\prime}} \phi$.
[Soundness of rule $\mathrm{E}_{R} 8$] If $\models \phi$ then $\models K_{A} \top \rightarrow K_{A} \phi$
Proof If $\models \phi$ then for any maximal consistent set \mathcal{M} and any process $P \in \mathcal{M}$ we have $\mathcal{M}, P \models \phi$. Suppose now that $\mathcal{M}, P \models K_{A} \top$. Then $P \equiv I(A) \mid R$. Because $\mathcal{M}, S \models \phi$ for each $S \in \mathcal{M}$, we derive that for any $S \mid I(A) \in \mathcal{M}$ we have $\mathcal{M}, S \mid I(A) \models \phi$. Hence $\mathcal{M}, P \models K_{A} \phi$.

Soundness of the mixed axioms and rules

[Soundness of axiom E^{+}8]

$$
\models\langle A: \alpha\rangle \top \rightarrow K_{A} \top
$$

Proof Suppose that $\mathcal{M}, P \models\langle A: \alpha\rangle \top$ then there exists a reduction
$P_{\text {to }}^{A: \alpha} P^{\prime}$, hence $P \equiv I(A) \mid R$. Now, because for any $I(A) \mid S \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid S \models \top$ we derive that $\mathcal{M}, P \models K_{A} \top$.
[Soundness of axiom E^{+}8]

$$
\models f_{A} \rightarrow(\langle\alpha\rangle \phi \leftrightarrow\langle A: \alpha\rangle \phi)
$$

Proof If $\mathcal{M}, P \models f_{A} \wedge\langle\alpha\rangle \phi$ then $P \equiv I(A)$ and $\mathcal{M}, I(A) \models\langle\alpha\rangle \phi$. So, there is a transition $I(A) \stackrel{\alpha}{\boldsymbol{t} \boldsymbol{\sigma}} R$ with $\mathcal{M}, R \models \phi$. But $I(A) \stackrel{\alpha}{\mathbf{t} \boldsymbol{o}} R$ is equivalent with $I(A) \stackrel{A: \alpha}{\mathbf{t} \boldsymbol{\alpha}} R$. Hence $\mathcal{M}, P \models\langle A$: $\alpha\rangle \phi$.
Reverse, if $\mathcal{M}, P \models f_{A} \wedge\langle A: \alpha\rangle \phi$ then $P \equiv I(A)$ and $\mathcal{M}, I(A) \models\langle A: \alpha\rangle \phi$. So, there is a transition $I(A)$ to R with $\mathcal{M}, R \models \phi$. But $I(A){ }^{A: \alpha}$ to R is equivalent with $I(A) \stackrel{\alpha}{\alpha} R$. Hence $\mathcal{M}, P \models\langle\alpha\rangle \phi$.
[Soundness of axiom E^{+}8]

$$
\vDash\left\langle A_{1}: \alpha\right\rangle \phi \wedge\left\langle A_{1} \mid A_{2}: \alpha\right\rangle \top \rightarrow\left\langle A_{1} \mid A_{2}: \alpha\right\rangle \phi
$$

Proof Suppose that $\mathcal{M}, R \models\left\langle A_{1}: \alpha\right\rangle \phi \wedge\left\langle A_{1} \mid A_{2}: \alpha\right\rangle \top$.
Then $\mathcal{M}, R \models\left\langle A_{1}: \alpha\right\rangle \phi$ and $\mathcal{M}, R \models\left\langle A_{1} \mid A_{2}: \alpha\right\rangle$ T.
But $\mathcal{M}, R \models\left\langle A_{1}: \alpha\right\rangle \phi$ means that it exists the reduction $R^{A_{1}: \alpha}$ to R^{\prime} and $\mathcal{M}, R^{\prime} \models \phi$, i.e. $R \equiv I\left(A_{1}\right) \mid S, I\left(A_{1}\right) \mathbf{t o} P$ and $R^{\prime} \equiv P \mid S$.
$\mathcal{M}, R \equiv\left\langle A_{1} \mid A_{2}: \alpha\right\rangle \top$ means that $R \equiv I\left(A_{1}\right)\left|I\left(A_{2}\right)\right| V$, i.e. $S \equiv I\left(A_{2}\right) \mid V$.
But $I\left(A_{1}\right)^{A_{1}: \alpha}$ to P gives $I\left(A_{1}\right) \mid I\left(A_{2}\right)^{A_{1} \mid A_{2}: \alpha}$ to $P \mid I\left(A_{2}\right)$, hence R to ${ }^{A_{1} \mid A_{2}: \alpha} R^{\prime}$ and $\mathcal{M}, R^{\prime} \models \phi$, that means $\mathcal{M}, R \models\left\langle A_{1} \mid A_{2}: \alpha\right\rangle \phi$.
[Soundness of rule $\mathrm{E}_{R} 8$] If $\models \bigvee_{\mathcal{M} \in \mathfrak{M}_{\phi}^{\text {act }(\phi)+}+} f_{\mathcal{M}} \rightarrow \phi$ then $\models \phi$.
Proof Suppose that $\models \bigvee_{\mathcal{M} \in \mathfrak{M}_{\phi}^{\text {act }(\phi)+}+} f_{\mathcal{M}} \rightarrow \phi$ but it exists a model \mathcal{N} and a process $Q \in \mathcal{N}$ with $\mathcal{N}, Q \not \vDash \phi$. Then $\mathcal{N}, Q \models \neg \phi$.
Further, using the finite model property, theorem 7.4, we obtain that it exists a maximal consistent set $\mathcal{N}^{\prime} \in \mathfrak{M}_{\phi}^{a c t(\phi)_{+}}$and a process $R \in \mathcal{N}^{\prime}$ with $\mathcal{N}^{\prime}, R \models \neg \phi$.
But $\phi=\neg \phi$, and $\operatorname{act}(\phi)=\operatorname{act}(\neg \phi)$ so it exists a maximal consistent set $\mathcal{N}^{\prime} \in \mathfrak{M}_{\phi}^{a c t(\phi)_{+}}$ and a process $R \in \mathcal{N}^{\prime}$ with $\mathcal{N}^{\prime}, R \models \neg \phi$. Because $\mathcal{N}^{\prime}, R \models f_{\mathcal{N}^{\prime}}$, we derive $\mathcal{N}^{\prime}, R \models$ $\bigvee_{\mathcal{M} \in \mathfrak{M}_{\phi}^{a c t(\phi)}+} f_{\mathcal{M}}$.
But $\models \bigvee_{\mathcal{M} \in \mathfrak{M}_{\phi}^{\text {act }(\phi)_{+}}} f_{\mathcal{M}} \rightarrow \phi$ implies $\mathcal{N}^{\prime}, R \models \bigvee_{\mathcal{M} \in \mathfrak{M}_{\phi}^{a c t(\phi)+}} f_{\mathcal{M}} \rightarrow \phi$, hence $\mathcal{N}^{\prime}, R \models \phi$.
As we also have $\mathcal{N}^{\prime}, R \models \neg \phi$, we obtain $\mathcal{N}^{\prime}, R \models \perp$ - impossible!
Then, for any model \mathcal{N} and any process $P \in \mathcal{N}$ we have $\mathcal{N}, P \models \phi$, i.e. $\models \phi$.

9 Some theorems

Theorem 9.1 If $P \not \equiv Q$ then $\vdash f_{P} \rightarrow \neg f_{Q}$.
Proof We prove it by induction on P.

- the case $P \equiv 0$: as $P \not \equiv Q$ we obtain that $Q \equiv \alpha . R \mid S$. So $f_{Q}=\langle\alpha\rangle f_{R} \wedge 1 \mid f_{S}$ that implies, using theorem 9.10, $\vdash f_{Q} \rightarrow\langle\alpha\rangle f_{R} \mid f_{S}$, and applying axiom E8, $\vdash f_{Q} \rightarrow$ $\langle\alpha\rangle\left(f_{R} \mid f_{S}\right)$.
But $\vdash f_{R} \mid f_{S} \rightarrow \mathrm{~T}$ and applying theorem 9.13 , we obtain
$\vdash\langle\alpha\rangle\left(f_{R} \mid f_{S}\right) \rightarrow\langle\alpha\rangle$ T.
Hence, $\vdash f_{Q} \rightarrow\langle\alpha\rangle \top$. Then $\vdash \neg\langle\alpha\rangle \top \rightarrow \neg f_{Q}$.
Axiom E8 gives $\vdash 0 \rightarrow \neg\langle\alpha\rangle \top$ hence, in the end, $\vdash 0 \rightarrow \neg f_{Q}$, i.e. $\vdash f_{P} \rightarrow \neg f_{Q}$.
- the case $P \equiv P^{\prime} \mid P^{\prime \prime}$: we have $f_{P}=f_{P^{\prime}} \mid f_{P^{\prime \prime}}$. Because $P \not \equiv Q$, we obtain that for any decomposition $Q \equiv Q^{\prime} \mid Q^{\prime \prime}$ we have either $P^{\prime} \not \equiv Q^{\prime}$ or $P^{\prime \prime} \not \equiv Q^{\prime \prime}$. Using the inductive hypothesis, we derive that either $\vdash f_{Q^{\prime}} \rightarrow \neg f_{P^{\prime}}$ or $\vdash f_{Q^{\prime \prime}} \rightarrow \neg f_{P^{\prime \prime}}$. Because this is happening for any decomposition of Q, we can apply theorem 9.12 and we obtain $\vdash f_{Q} \rightarrow \neg\left(f_{P^{\prime}} \mid f_{P^{\prime \prime}}\right)$, i.e. $\vdash f_{Q} \rightarrow \neg f_{P}$. Hence $\vdash f_{P} \rightarrow \neg f_{Q}$.
- the case $P \equiv \alpha . P^{\prime}: f_{P}=1 \wedge\langle\alpha\rangle f_{P^{\prime}}$, so $\vdash f_{P} \rightarrow 1 \wedge\langle\alpha\rangle \top$.

But axiom E8.2 gives $\vdash\langle\alpha\rangle \top \wedge 1 \rightarrow \neg\langle\beta\rangle \top$ for any $\beta \neq \alpha$.
Hence, for any $\beta \neq \alpha$ we have $\vdash f_{P} \rightarrow \neg\langle\beta\rangle \top$.

- if $Q \equiv 0$ we already proved that $\vdash f_{Q} \rightarrow \neg f_{P}$ (because $P \not \equiv 0$), so $\vdash f_{P} \rightarrow \neg f_{Q}$
- if $Q \equiv \beta . Q^{\prime} \mid Q^{\prime \prime}$ for some $\beta \neq \alpha$, then $\vdash f_{Q} \rightarrow\langle\beta\rangle \top$, hence $\vdash \neg\langle\beta\rangle \top \rightarrow \neg f_{Q}$. But we proved that $\vdash f_{P} \rightarrow \neg\langle\beta\rangle \top$. Hence $\vdash f_{P} \rightarrow \neg f_{Q}$.
- if $Q \equiv \alpha \cdot Q_{1}|\ldots| \alpha \cdot Q_{k}$ for $k>1$, then $\vdash f_{Q} \rightarrow \neg 0 \mid \neg 0\left(\right.$ as $\vdash 0 \rightarrow \neg f_{\alpha \cdot Q_{1}}$ and $\vdash 0 \rightarrow \neg f_{\alpha \cdot Q_{2}|\ldots| \alpha \cdot Q_{k}}$). Then $\vdash f_{Q} \rightarrow \neg 1$, i.e.
$\vdash 1 \rightarrow \neg f_{Q}$. But $\vdash f_{P} \rightarrow 1$. Hence $\vdash f_{P} \rightarrow \neg f_{Q}$.
- if $Q \equiv \alpha Q^{\prime}$: then $P \not \equiv Q$ gives $P^{\prime} \not \equiv Q^{\prime}$. For this case we can use the inductive hypothesis and we obtain $\vdash f_{Q^{\prime}} \rightarrow \neg f_{P^{\prime}}$. Further, applying theorem 9.14, we obtain $\vdash[\alpha] f_{P^{\prime}} \rightarrow[\alpha] \neg f_{Q}^{\prime}$, i.e.
$\vdash[\alpha] f_{P^{\prime}} \rightarrow \neg\langle\alpha\rangle f_{Q^{\prime}}$ that gives, because $f_{Q}=1 \wedge\langle\alpha\rangle f_{Q^{\prime}}$,
$\vdash[\alpha] f_{P^{\prime}} \rightarrow \neg f_{Q}$.
Now, using axiom E8, $\vdash 1 \wedge\langle\alpha\rangle f_{P^{\prime}} \rightarrow[\alpha] f_{P^{\prime}}$, so $\vdash f_{P} \rightarrow[\alpha] f_{P^{\prime}}$, and, combining it with the previous result, we derive $\vdash f_{P} \rightarrow \neg f_{Q}$.

Theorem 9.2 If $P \equiv Q$ then $\vdash f_{P} \leftrightarrow f_{Q}$.
Proof We prove it verifying the congruence rules:

- if $P=R \mid S$ and $Q=S \mid R$ then $\vdash f_{R}\left|f_{S} \leftrightarrow f_{S}\right| f_{R}$ from theorem 9.7, i.e. $\vdash f_{P} \leftrightarrow f_{Q}$
- if $P=(R \mid S) \mid U$ and $Q=R \mid(S \mid U)$ then theorem 9.8 we have $\vdash\left(f_{R} \mid f_{S}\right)\left|f_{U} \leftrightarrow f_{R}\right|\left(f_{S} \mid f_{U}\right)$, i.e. $\vdash f_{P} \leftrightarrow f_{Q}$
- if $P=Q \mid 0$ then axiom E8 gives $\vdash f_{Q} \mid 0 \leftrightarrow f_{Q}$, i.e. $\vdash f_{P} \leftrightarrow f_{Q}$.
- if $P=P^{\prime} \mid R$ and $Q=Q^{\prime} \mid R$ with $P^{\prime} \equiv Q^{\prime}$ and $\vdash f_{P^{\prime}} \leftrightarrow f_{Q^{\prime}}$ then rule $\mathrm{E}_{R} 8$ gives $\vdash f_{P^{\prime}}\left|f_{R} \leftrightarrow f_{Q^{\prime}}\right| f_{R}$. Hence $\vdash f_{P} \leftrightarrow f_{Q}$.
- if $P=\alpha . P^{\prime}$ and $Q=\alpha . Q^{\prime}$ with $P^{\prime} \equiv Q^{\prime}$ and $\vdash f_{P^{\prime}} \leftrightarrow f_{Q^{\prime}}$ then theorem 9.13 gives $\vdash\langle\alpha\rangle f_{P^{\prime}} \leftrightarrow\langle\alpha\rangle f_{Q^{\prime}}$, so $\vdash\left(\langle\alpha\rangle f_{P^{\prime}} \wedge 1\right) \leftrightarrow\left(\langle\alpha\rangle f_{Q^{\prime}} \wedge 1\right)$. Hence $\vdash f_{P} \leftrightarrow f_{Q}$.

We prove now that the intuition behind the definition of characteristic formulas for finite maximal consistent sets is correct and, indeed, $f_{\mathcal{M}}$ can be used to characterize \mathcal{M}.

Theorem 9.3 If \mathcal{M} is a finite maximal consistent set and $P \in \mathcal{M}$ then $\mathcal{M}, P \models f_{\mathcal{M}}$.

Proof Obviously $\mathcal{M}, P \models f_{P}$, hence $\mathcal{M}, P \models \bigvee_{Q \in \mathcal{M}} f_{Q}$.
Similarly, for any $R \in \mathcal{M}$ we have $\mathcal{M}, R \models \bigvee_{Q \in \mathcal{M}} f_{Q}$, and because $R \equiv R \mid 0$ and $P \equiv P \mid 0$, we derive $\mathcal{M}, P \models K_{0}\left(\bigvee_{Q \in \mathcal{M}} f_{Q}\right)$.
As for any $R \in \mathcal{M}$ there exists a process $U \in \mathcal{M}$ (more exactly $U=R$) such that $\mathcal{M}, U \models f_{R}$, we obtain that for each $R \in \mathcal{M}$ we have $\mathcal{M}, P \models \widetilde{K}_{0} f_{R}$, hence $\mathcal{M}, P \models \bigwedge_{Q \in \mathcal{M}} \widetilde{K}_{0} f_{Q}$.

If \mathcal{M} is a finite maximal consistent set and $P \in \mathcal{M}$ then

$$
\mathcal{M}, P \models f_{\mathcal{M}} \wedge f_{P}
$$

Theorem 9.4 If $\mathcal{M}, P \models f_{\mathcal{N}}$ then $\mathcal{N}=\mathcal{M}$.
Proof Suppose that $\mathcal{M}, P \models f_{\mathcal{N}}$, then $\mathcal{M}, P \models K_{0}\left(\bigvee_{Q \in \mathcal{N}} f_{Q}\right)$, i.e. for any $R \in \mathcal{M}$ we have $\mathcal{M}, R \models \bigvee_{Q \in \mathcal{N}} f_{Q}$. Hence, for any $R \in \mathcal{M}$ there exists a process $Q \in \mathcal{N}$ with $\mathcal{M}, R \models f_{Q}$, or equivalently, $R \equiv Q$.
Now $\mathcal{M}, P \models \bigwedge_{Q \in \mathcal{N}} \widetilde{K}_{0} f_{Q}$ gives that for any $Q \in \mathcal{N}$ we have
$\mathcal{M}, P \models \widetilde{K}_{0} f_{Q}$, i.e. there exists a process $R \in \mathcal{M}$ such that $\mathcal{M}, R \models f_{Q}$, or equivalently, $R \equiv Q$.
Hence, we proved that for any $R \in \mathcal{M}$ there exists $Q \in \mathcal{N}$ such that $R \equiv Q$, and for any $Q \in \mathcal{N}$ there exists $R \in \mathcal{M}$ such that $R \equiv Q$. Because we identify processes up to structural congruence, we decide that $M=N$.

Spatial results

We start with the results that can be proved on the basis of the spatial theorems and rules only. They reflect the behavior of the parallel operator in relation to the operators of the classical logic.

Theorem $9.5 \vdash \mathrm{~T} \mid \top \leftrightarrow T$

Proof Obviously $\vdash \mathrm{T} \mid \mathrm{T} \rightarrow \mathrm{T}$. As $\vdash 0 \rightarrow \mathrm{~T}$, using rule $\mathrm{E}_{R} 8$, we obtain $\vdash \mathrm{T}|0 \rightarrow \mathrm{~T}| \mathrm{T}$. Further axiom E8 gives us $\vdash \mathrm{T} \rightarrow \mathrm{T} \mid \mathrm{T}$.

Theorem 9.6 If $\vdash \phi$ then $\vdash \theta|\rho \rightarrow \phi| \rho$
Proof Because $\vdash \phi$ implies $\vdash \theta \rightarrow \phi$, using rule $\mathrm{E}_{R} 8$ we obtain the result.

Theorem $9.7 \vdash \phi|\psi \leftrightarrow \psi| \phi$
Proof We use axiom E8 in both directions.

Theorem 9.8 $\vdash(\phi \mid \psi)|\rho \leftrightarrow \phi|(\psi \mid \rho)$
Proof We use axiom E8 and theorem 9.7.

Theorem 9.9 $\vdash \phi \mid(\psi \vee \rho) \leftrightarrow(\phi \mid \psi) \vee(\phi \mid \rho)$
Proof $\vdash \psi \rightarrow \psi \vee \rho$ so, using rule $\mathrm{E}_{R} 8, \vdash \phi|\psi \rightarrow \phi|(\psi \vee \rho)$. Similarly, $\vdash \phi|\rho \rightarrow \phi|(\psi \vee \rho)$. Hence $\vdash(\phi \mid \psi) \vee(\phi \mid \rho) \rightarrow \phi \mid(\psi \vee \rho)$. The other direction is stated by axiom E8.

Theorem $9.10 \vdash \phi \mid(\psi \wedge \rho) \rightarrow(\phi \mid \psi) \wedge(\phi \mid \rho)$
Proof Because $\vdash \psi \wedge \rho \rightarrow \psi$, by applying rule $\mathrm{E}_{R} 8$, we have $\vdash \phi|(\psi \wedge \rho) \rightarrow \phi| \psi$. Similarly $\vdash \phi|(\psi \wedge \rho) \rightarrow \phi| \rho$.

The next result proves a strong version of monotonicity of the parallel composition.

Theorem 9.11 If $\vdash \phi \rightarrow \rho$ and $\vdash \psi \rightarrow \theta$ then $\vdash \phi|\psi \rightarrow \rho| \theta$.
Proof If $\vdash \phi \rightarrow \rho$ then rule $\mathrm{E}_{R} 8$ gives us $\vdash \phi|\psi \rightarrow \rho| \psi$. If $\vdash \psi \rightarrow \theta$, then the same rule gives $\vdash \rho|\psi \rightarrow \rho| \theta$. Hence $\vdash \phi|\psi \rightarrow \rho| \theta$.

The next result speaks about the negative parallel decomposition of a specification. It states that, given two specifications, ϕ and ψ, if considering any parallel decomposition of our system (process) $P \equiv Q \mid R$, we obtain that either Q doesn't satisfy ϕ or R doesn't satisfy ψ, then our system P does not satisfy the parallel composition of the two specifications, $\phi \mid \psi$.

Theorem 9.12 If for any decomposition $P \equiv Q \mid R$ we have $\vdash f_{Q} \rightarrow \neg \phi$ or $\vdash f_{R} \rightarrow \neg \psi$ then $\vdash f_{P} \rightarrow \neg(\phi \mid \psi)$.

Proof $\vdash f_{Q} \rightarrow \neg \phi$ is equivalent with $\vdash f_{Q} \wedge \phi \rightarrow \perp$ and because $\vdash f_{R} \wedge \psi \rightarrow \top$, we obtain, by theorem $9.11 \vdash\left(f_{Q} \wedge \phi\right)\left|\left(f_{R} \wedge \psi\right) \rightarrow \perp\right| \top$. And using axiom E8, we derive

$$
\vdash\left(f_{Q} \wedge \phi\right) \mid\left(f_{R} \wedge \psi\right) \rightarrow \perp
$$

Similarly, from $\vdash f_{R} \rightarrow \neg \psi$ we can derive

$$
\vdash\left(f_{Q} \wedge \phi\right) \mid\left(f_{R} \wedge \psi\right) \rightarrow \perp
$$

Hence, the hypothesis of the theorem says that for any decomposition $P \equiv Q \mid R$ we have $\vdash\left(f_{Q} \wedge \phi\right) \mid\left(f_{R} \wedge \psi\right) \rightarrow \perp$, i.e.

$$
\vdash \bigvee_{P \equiv Q \mid R}\left(f_{Q} \wedge \phi\right) \mid\left(f_{R} \wedge \psi\right) \rightarrow \perp
$$

But axiom E8 gives

$$
\vdash\left(f_{P} \wedge \phi \mid \psi\right) \rightarrow \bigvee_{P \equiv Q \mid R}\left(f_{Q} \wedge \phi\right) \mid\left(f_{R} \wedge \psi\right)
$$

hence

$$
\vdash\left(f_{P} \wedge \phi \mid \psi\right) \rightarrow \perp \text {, i.e. } \vdash f_{P} \rightarrow \neg(\phi \mid \psi) .
$$

Related to the same topic of the relation between negation and the parallel operator, observe that the negation is not distributive with respect to parallel. This is the reason why, in the previous theorem, we had to ask in the premises that the condition $\vdash f_{Q} \rightarrow \neg \phi$ or $\vdash f_{R} \rightarrow \neg \psi$ be fulfilled by all the possible decompositions of P. If only a decomposition $P \equiv Q \mid R$ exists such that $\vdash f_{Q} \rightarrow \neg \phi$ or $\vdash f_{R} \rightarrow \neg \psi$, this is not enough to derive $\mathcal{M}, P \models \neg(\phi \mid \psi)$. Indeed suppose that $\mathcal{M}, Q \vDash \phi$ but $\mathcal{M}, Q \not \vDash \psi$ and $\mathcal{M}, R \models \psi$ but $\mathcal{M}, R \not \models \phi$. Then from $\mathcal{M}, Q \models \phi$ and $\mathcal{M}, R \models \psi$ we derive $\mathcal{M}, P \models \phi \mid \psi$. It is not the case that, from the additional information $\mathcal{M}, Q \not \models \psi$ and $\mathcal{M}, R \not \models \phi, \mathcal{M}, P \models \neg(\phi \mid \psi)$ to be derived. All we can derive from the unused information is that $\mathcal{M}, P \models \neg \phi \mid \neg \psi$, which does not contradict $\mathcal{M}, P \models \phi \mid \psi$.

9.1 Dynamic results

Now we focus of the theorems that derive from the class of dynamic axioms and rules. Remark the modal behaviors of the dynamic operators.

The next result states the monotonicity of the diamond operator.
Theorem 9.13 (Monotonicity) If $\vdash \phi \rightarrow \psi$ then $\vdash\langle a\rangle \phi \rightarrow\langle a\rangle \psi$.
Proof $\vdash \phi \rightarrow \psi$ implies $\vdash \neg \psi \rightarrow \neg \phi$. Using rule $\mathrm{E}_{R} 8$ we obtain
$\vdash[a](\neg \psi \rightarrow \neg \phi)$ and axiom E8 gives $\vdash[a] \neg \psi \rightarrow[a] \neg \phi$. This is equivalent with $\vdash \neg\langle a\rangle \psi \rightarrow$ $\neg\langle a\rangle \phi$, i.e. $\vdash\langle a\rangle \phi \rightarrow\langle a\rangle \psi$.

Theorem 9.14 If $\vdash \phi \rightarrow \psi$ then $\vdash[a] \neg \psi \rightarrow[a] \neg \phi$.
Proof If $\vdash \phi \rightarrow \psi$ then, by theorem 9.13, $\vdash\langle a\rangle \phi \rightarrow\langle a\rangle \psi$, hence $\vdash \neg\langle a\rangle \psi \rightarrow \neg\langle a\rangle \phi$, that gives $\vdash[a] \neg \psi \rightarrow[a] \neg \phi$.

The next theorems confirm the intuition that the formulas f_{P}, in their interrelations, mimic the transitions of the processes (the dynamic operators mimic the transition labeled by the action it has as index).

Theorem 9.15 If P cannot do any transition by α then $\vdash f_{P} \rightarrow[\alpha] \perp$.

Proof We prove it by induction on the structure of P.
The case $P \equiv 0$: axiom E8 implies $\vdash 0 \rightarrow[\alpha] \perp$ which proves this case, because $f_{0}=0$.
The case $P \equiv \alpha_{1} \cdot P_{1}|\ldots| \alpha_{n} . P_{n}$: as P cannot perform α we have $\alpha \neq \alpha_{i}$ for $i=1$..n. We have $f_{P}=\left(\left\langle\alpha_{1}\right\rangle f_{P_{1}} \wedge 1\right)|\ldots|\left(\left\langle\alpha_{n}\right\rangle f_{P_{n}} \wedge 1\right)$. From $\vdash f_{P_{i}} \rightarrow T$ we derive, using theorem 9.13, $\vdash\left(\left\langle\alpha_{i}\right\rangle f_{P_{i}} \wedge 1\right) \rightarrow\left(\left\langle\alpha_{i}\right\rangle \top \wedge 1\right)$. Further, we apply theorem 9.11 and obtain $\vdash f_{P} \rightarrow\left(\left\langle\alpha_{1}\right\rangle \top \wedge\right.$ $1)|\ldots|\left(\left\langle\alpha_{n}\right\rangle \top \wedge 1\right)$. Axiom E8.2 gives that for $\alpha \neq \alpha_{i}, \vdash\left(\left\langle\alpha_{1}\right\rangle \top \wedge 1\right)|\ldots|\left(\left\langle\alpha_{n}\right\rangle \top \wedge 1\right) \rightarrow[\alpha] \perp$. Hence $\vdash f_{P} \rightarrow[\alpha] \perp$.

Theorem $9.16 \vdash f_{P} \rightarrow[\alpha] \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\}$

Proof We prove it by induction on P.
The case $P \not \equiv \alpha . P^{\prime} \mid P^{\prime \prime}$ for some $P^{\prime}, P^{\prime \prime}$: then P cannot preform a transition by α, hence, by theorem $9.15, \vdash f_{P} \rightarrow[\alpha] \perp$. But $\vdash \neg \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\} \rightarrow \mathrm{T}$, and using theorem 9.14, we derive

$$
\vdash[\alpha] \perp \rightarrow[\alpha] \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\}
$$

Combining this with $\vdash f_{P} \rightarrow[\alpha] \perp$, we derive

$$
\vdash f_{P} \rightarrow[\alpha] \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\}
$$

The case $P \equiv \alpha \cdot P^{\prime}$: then $\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\}=\left\{f_{P^{\prime}}\right\}$ and $f_{P}=\langle\alpha\rangle f_{P^{\prime}} \wedge 1$. Applying axiom E8 we obtain $\vdash f_{P} \rightarrow[\alpha] f_{P^{\prime}}$. Hence

$$
\vdash f_{P} \rightarrow[\alpha] \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\}
$$

The case $P \equiv \alpha \cdot P^{\prime} \mid P^{\prime \prime}$ with $P^{\prime \prime} \not \equiv 0$: we apply the inductive hypothesis to $\alpha \cdot P^{\prime}$ and $P^{\prime \prime}$ respectively, and we obtain

$$
\vdash f_{\alpha . P^{\prime}} \rightarrow[\alpha] \bigvee\left\{f_{Q^{\prime}} \mid \alpha \cdot P^{\prime} \xrightarrow{\alpha} Q^{\prime}\right\}
$$

and

$$
\vdash f_{P^{\prime \prime}} \rightarrow[\alpha] \bigvee\left\{f_{Q^{\prime \prime}} \mid P^{\prime \prime} \xrightarrow{\alpha} Q^{\prime \prime}\right\}
$$

We apply rule $\mathrm{E}_{R} 8$ and obtain

$$
\vdash f_{P} \rightarrow[\alpha]\left(f_{\alpha . P^{\prime}}\left|\bigvee\left\{f_{Q^{\prime \prime}} \mid P^{\prime \prime} \xrightarrow{\alpha} Q^{\prime \prime}\right\} \vee \bigvee\left\{f_{Q^{\prime}} \mid \alpha . P^{\prime} \xrightarrow{\alpha} Q^{\prime}\right\}\right| f_{P^{\prime \prime}}\right)
$$

Using theorem 9.9, we obtain this result equivalent with

$$
\vdash f_{P} \rightarrow[\alpha] \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\}
$$

Theorem 9.17 If $\vdash \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\} \rightarrow \phi$ then $\vdash f_{P} \rightarrow[\alpha] \phi$

Proof If $\vdash \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\} \rightarrow \phi$ then rule $\mathrm{E}_{R} 8$ gives

$$
\vdash[\alpha]\left(\bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\} \rightarrow \phi\right)
$$

and further axiom E8 gives $\vdash[\alpha] \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\} \rightarrow[\alpha] \phi$. But theorem 9.16 gives $\vdash f_{P} \rightarrow$ $[\alpha] \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\}$, hence $\vdash f_{P} \rightarrow[\alpha] \phi$.

Theorem $9.18 \vdash\langle A: \alpha\rangle \top \leftrightarrow f_{A} \mid \top$.

Epistemic results

We begin by stating that an atomic agent is always active: it always performs its "inactivity" expressed by 0 . Hereafter, in this section, we use A^{\prime} to denote an arbitrary atomic agent, even if this it will not be specified.

Theorem $9.19 \vdash K_{A^{\prime}} \top$.
Proof Trivial consequence of axiom E8 and axiom E8.
The next result states that an agent knows something only if it is active.
Theorem 9.20 $\vdash K_{A} \phi \rightarrow K_{A} \top$.
Proof Trivial consequence of axiom E8.
Further we prove another obvious property of knowledge: if A knows ϕ and A knows ψ, this is equivalent with A knows $\phi \wedge \psi$.

Theorem $9.21 \vdash K_{A} \phi \wedge K_{A} \psi \leftrightarrow K_{A}(\phi \wedge \psi)$
Proof $\vdash \phi \rightarrow(\psi \rightarrow(\phi \wedge \psi))$. Using rule $\mathrm{E}_{R} 8$, we obtain

$$
\vdash K_{A} \top \rightarrow K_{A}[\phi \rightarrow(\psi \rightarrow(\phi \wedge \psi))]
$$

We apply axiom E8 twice, and obtain

$$
\vdash K_{A} \top \rightarrow\left[K_{A} \phi \rightarrow\left(K_{A} \psi \rightarrow K_{A}(\phi \wedge \psi)\right)\right]
$$

i.e.

$$
\left.\vdash K_{A}\right\rceil \wedge K_{A} \phi \rightarrow\left[K_{A} \psi \rightarrow K_{A}(\phi \wedge \psi)\right]
$$

But $\vdash K_{A} \phi \rightarrow K_{A} \top$, hence $\vdash K_{A} \phi \rightarrow\left[K_{A} \psi \rightarrow K_{A}(\phi \wedge \psi)\right]$, i.e.

$$
\vdash K_{A} \phi \wedge K_{A} \psi \rightarrow K_{A}(\phi \wedge \psi)
$$

Reverse, we apply rule $\mathrm{E}_{R} 8$ to $\vdash \phi \wedge \psi \rightarrow \psi$ and then axiom E8, and obtain $\vdash K_{A} \top \rightarrow$ $\left(K_{A}(\phi \wedge \psi) \rightarrow K_{A} \phi\right)$. But $\vdash K_{A}(\phi \wedge \psi) \rightarrow K_{A} \top$, hence $\vdash K_{A}(\phi \wedge \psi) \rightarrow K_{A} \phi$.
Similarly $\vdash K_{A}(\phi \wedge \psi) \rightarrow K_{A} \psi$.
The knowledge is redundant and introspective: if Q knows ϕ this is equivalent with the fact that Q knows that Q knows ϕ.

Theorem $9.22 \vdash K_{A} K_{A} \phi \leftrightarrow K_{A} \phi$.
Proof Axiom E8 gives $\vdash K_{A} \phi \rightarrow K_{A} K_{A} \phi$, and axiom E8 gives $\vdash K_{A} K_{A} \phi \rightarrow K_{A} \phi$.

Theorem 9.23 (Monotonicity of knowledge)

$$
\text { If } \vdash \phi \rightarrow \psi \text { then } \vdash K_{A} \phi \rightarrow K_{A} \psi
$$

Proof Because $\vdash \phi \rightarrow \psi$, we can use rule $\mathrm{E}_{R} 8$ and obtain
$\vdash K_{A} \top \rightarrow K_{A}(\phi \rightarrow \psi)$. But theorem 9.20 gives $\vdash K_{A} \phi \rightarrow K_{A} \top$, hence $\vdash K_{A} \phi \rightarrow K_{A}(\phi \rightarrow$ ψ) where from we derive

$$
\vdash K_{A} \phi \rightarrow\left(K_{A} \phi \wedge K_{A}(\phi \rightarrow \psi)\right)
$$

This entails, using axiom E8, $\vdash K_{A} \phi \rightarrow K_{A} \psi$.
The existence of an agent entails the existence of its active sub-agents, as proved further. This is a knowledge-like description of the ontological topology of agents. It relies on to be is to know.

Theorem $9.24 \vdash K_{A_{1} \mid A_{2}} \top \rightarrow K_{A_{1}} \top$.
Proof Axiom E8 gives $\vdash K_{A_{1} \mid A_{2}} \top \leftrightarrow f_{A_{1}}\left|f_{A_{2}}\right| \top$ and $\vdash K_{A_{1}} \top \leftrightarrow f_{A_{1}} \mid \top$. But $\vdash f_{A_{2}} \rightarrow \top$ and applying rule $\mathrm{E}_{R} 8$, we obtain $\vdash f_{A_{1}}\left|f_{A_{2}}\right| \top \rightarrow f_{A_{1}} \mid \top$. Hence $\vdash K_{A_{1} \mid A_{2}} \top \rightarrow K_{A_{1}} \top$.

The knowledge of an agent is consistent: if it knows $\neg \phi$ (it knows that ϕ is false) then it cannot know ϕ as well. This is proved in the next two theorems.

Theorem $9.25 \vdash K_{A} \neg \phi \rightarrow \neg K_{A} \phi$.
Proof Axiom E8 gives $\vdash K_{A} \neg \phi \rightarrow \neg \phi$ and $\vdash K_{A} \phi \rightarrow \phi$. The last is equivalent with $\vdash \neg \phi \rightarrow \neg K_{A} \phi$, and combined with the first entails $\vdash K_{A} \neg \phi \rightarrow \neg K_{A} \phi$.

Theorem 9.26 (Consistency theorem) $\vdash K_{A} \phi \rightarrow \neg K_{A} \neg \phi$.
Proof By using the negative form of theorem 9.25

Theorem $9.27 \vdash K_{A^{\prime}} \phi \rightarrow\left(K_{A} \top \rightarrow K_{A} \phi\right)$
Proof Axioms E8 gives $\vdash K_{A^{\prime}} \phi \rightarrow \phi$ and applying the monotonicity of knowledge, \vdash $K_{A} K_{A^{\prime}} \phi \rightarrow K_{A} \phi$.
Now axiom E8 provides $\vdash K_{A^{\prime}} \phi \wedge K_{A} \top \rightarrow K_{A} K_{A^{\prime}} \phi$. Thus $\vdash K_{A^{\prime}} \phi \wedge K_{A} \top \rightarrow K_{A} \phi$, that is equivalent with $\vdash K_{A^{\prime}} \phi \rightarrow\left(K_{A} \top \rightarrow K_{A} \phi\right)$.

Theorem 9.28 $\vdash \widetilde{K}_{A^{\prime}} \phi \leftrightarrow K_{A^{\prime}} \tilde{K}_{A^{\prime}} \phi$

Proof By definition, we have $\vdash \widetilde{K}_{A^{\prime}} \phi \leftrightarrow \neg K_{A^{\prime}} \neg \phi$, and because $\vdash K_{A^{\prime}} \top$, we derive $\vdash \tilde{K}_{A^{\prime}} \phi \rightarrow\left(\neg K_{A^{\prime}} \neg \phi \wedge K_{A^{\prime}} \top\right)$.
But axiom E8 entails $\vdash\left(\neg K_{A^{\prime}} \neg \phi \wedge K_{A^{\prime}} \top\right) \rightarrow K_{A^{\prime}} \neg K_{A^{\prime}} \neg \phi$, i.e.

$$
\vdash\left(\neg K_{A^{\prime}} \neg \phi \wedge K_{A^{\prime}} \top\right) \rightarrow K_{A^{\prime}} \tilde{K}_{A^{\prime}} \phi
$$

Hence $\vdash \widetilde{K}_{A^{\prime}} \phi \rightarrow K_{\mathcal{A}^{\prime}} \tilde{K}_{A^{\prime}} \phi$.
We have also $\vdash K_{A^{\prime}} \widetilde{K}_{A^{\prime}} \phi \rightarrow \widetilde{K}_{A^{\prime}} \phi$, by applying axiom E8.

Theorem 9.29 $\vdash \widetilde{K}_{A^{\prime}} \phi \wedge \psi\left|\rho \rightarrow\left(\tilde{K}_{A^{\prime}} \phi \wedge \psi\right)\right|\left(\tilde{K}_{A^{\prime}} \phi \wedge \rho\right)$
Proof Axiom E8 instantiated with $\phi=\widetilde{K}_{A^{\prime}} \phi$ gives

$$
\vdash K_{A^{\prime}} \tilde{K}_{A^{\prime}} \phi \wedge \psi\left|\rho \rightarrow\left(K_{A^{\prime}} \tilde{K}_{A^{\prime}} \phi \wedge \psi\right)\right|\left(K_{A^{\prime}} \tilde{K}_{A^{\prime}} \phi \wedge \rho\right)
$$

Further, using theorem 9.28, we obtain the wanted result.

Theorem $9.30 \vdash \widetilde{K}_{A^{\prime}} \phi \rightarrow[\alpha] \widetilde{K}_{A^{\prime}} \phi$
Proof Axiom E8 instantiated with $\phi=\tilde{K}_{A^{\prime}} \phi$ gives

$$
\vdash K_{A^{\prime}} \widetilde{K}_{A^{\prime}} \phi \rightarrow[\alpha] K_{A^{\prime}} \widetilde{K}_{A^{\prime}} \phi
$$

Further, using theorem 9.28, we obtain the wanted result.

Theorem $9.31 \vdash \tilde{K}_{A^{\prime}} \phi \rightarrow\left(K_{A} \top \rightarrow K_{A} \tilde{K}_{A^{\prime}} \phi\right)$
Proof Axiom E8 instantiated with $\phi=\widetilde{K}_{A^{\prime}} \phi$ gives

$$
\vdash K_{A^{\prime}} \tilde{K}_{A^{\prime}} \phi \rightarrow\left(K_{A} \top \rightarrow K_{A} K_{A^{\prime}} \tilde{K}_{A^{\prime}} \phi\right)
$$

Further, using theorem 9.28, we obtain the wanted result.

Theorems referring to maximal consistent sets

In this section we focus on results that involve the characteristic formulas of finite maximal consistent sets. We try to show, in this way, how sensitive our system is with respect to maximal consistent sets. Further, these results will be used in proving the completeness.

Theorem 9.32 If \mathcal{M} is a finite maximal consistent set and $R \notin \mathcal{M}$ then $\vdash f_{\mathcal{M}} \rightarrow \neg f_{R}$.
Proof Because $f_{\mathcal{M}}=K_{A^{\prime}}\left(\bigvee_{P \in \mathcal{M}} f_{P}\right) \wedge\left(\bigwedge_{P \in \mathcal{M}} \tilde{K}_{A^{\prime}} f_{P}\right)$ we derive that

$$
\vdash f_{\mathcal{M}} \rightarrow K_{A^{\prime}}\left(\bigvee_{P \in \mathcal{M}} f_{P}\right)
$$

But from axiom E8 $\vdash K_{A^{\prime}}\left(\bigvee_{P \in \mathcal{M}} f_{P}\right) \rightarrow \bigvee_{P \in \mathcal{M}} f_{P}$, so $\vdash f_{\mathcal{M}} \rightarrow \bigvee_{P \in \mathcal{M}} f_{P}$. Further theorem 9.1 gives $\vdash f_{P} \rightarrow \neg f_{R}$ (as $R \notin \mathcal{M}$ and $P \in \mathcal{M}$ implies $R \not \equiv P$) which implies $\vdash \bigvee_{P \in \mathcal{M}} f_{P} \rightarrow$ $\neg f_{R}$. But we proved that $\vdash f_{\mathcal{M}} \rightarrow \bigvee_{P \in \mathcal{M}} f_{P}$. Hence $\vdash f_{\mathcal{M}} \rightarrow \neg f_{R}$.

Theorem 9.33 If \mathcal{M} is a finite maximal consistent set then

$$
\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \psi\right) \rightarrow\left(f_{\mathcal{M}} \wedge \phi\right) \mid\left(f_{\mathcal{M}} \wedge \psi\right)
$$

Proof Observe that, by applying axiom E8, we obtain

$$
\begin{equation*}
\vdash\left(K_{A^{\prime}} \theta_{1} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge \widetilde{K}_{A^{\prime}} \theta_{3}\right) \wedge \phi\left|\psi \rightarrow\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3}\right) \wedge\left(K_{A^{\prime}} \theta_{1} \wedge \phi\right)\right|\left(K_{A^{\prime}} \theta_{1} \wedge \psi\right) \tag{2}
\end{equation*}
$$

If, further, we apply theorem 9.29 once, we obtain

$$
\begin{aligned}
& \vdash\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2}\right) \wedge\left(K_{A^{\prime}} \theta_{1} \wedge \phi\right) \mid\left(K_{A^{\prime}} \theta_{1} \wedge \psi\right) \rightarrow \\
& \tilde{K}_{A^{\prime}} \theta_{3} \wedge\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \phi\right) \mid\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \psi\right)
\end{aligned}
$$

Hence
$\vdash\left(K_{A^{\prime}} \theta_{1} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3}\right) \wedge \phi\left|\psi \rightarrow \tilde{K}_{A^{\prime}} \theta_{3} \wedge\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \phi\right)\right|\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \psi\right)$
If we apply again theorem 9.29 we obtain

$$
\begin{aligned}
& \vdash \tilde{K}_{A^{\prime}} \theta_{3} \wedge\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \phi\right) \mid\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \psi\right) \rightarrow \\
& \left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \phi\right) \mid\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \widetilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \psi\right)
\end{aligned}
$$

hence

$$
\begin{gathered}
\vdash\left(K_{A^{\prime}} \theta_{1} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3}\right) \wedge \phi \mid \psi \rightarrow \\
\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \phi\right) \mid\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1} \wedge \psi\right)
\end{gathered}
$$

Because $f_{\mathcal{M}}=K_{A^{\prime}}\left(\bigvee_{Q \in \mathcal{M}} f_{Q}\right) \wedge\left(\bigwedge_{Q \in \mathcal{M}} \tilde{K}_{A^{\prime}} f_{Q}\right)$, we can use the same idea, applying theorem 9.29 once for each process in \mathcal{M} (being finite) and we obtain

$$
\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \psi\right) \rightarrow\left(f_{\mathcal{M}} \wedge \phi\right) \mid\left(f_{\mathcal{M}} \wedge \psi\right)
$$

Theorem 9.34 If \mathcal{M} is a finite maximal consistent set then $\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \psi\right) \rightarrow\left(f_{\mathcal{M}} \wedge \phi\right) \mid \psi$
Proof From the previous theorem, 9.33, we have

$$
\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \psi\right) \rightarrow\left(f_{\mathcal{M}} \wedge \phi\right) \mid\left(f_{\mathcal{M}} \wedge \psi\right)
$$

Theorem 9.10 gives

$$
\left.\left(f_{\mathcal{M}} \wedge \phi\right) \mid\left(f_{\mathcal{M}} \wedge \psi\right) \rightarrow\left(\left(f_{\mathcal{M}} \wedge \phi\right) \mid f_{\mathcal{M}}\right) \wedge\left(\left(f_{\mathcal{M}} \wedge \phi\right) \mid \psi\right)\right)
$$

Hence $\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \psi\right) \rightarrow\left(f_{\mathcal{M}} \wedge \phi\right) \mid \psi$.

Theorem 9.35 If \mathcal{M} is a finite maximal consistent set then $\vdash f_{\mathcal{M}} \rightarrow[\alpha] f_{\mathcal{M}}$
Proof Observe that, by applying axiom E8, we obtain

$$
\vdash K_{A^{\prime}} \theta_{1} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3} \rightarrow\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3}\right) \wedge[\alpha] K_{A^{\prime}} \theta_{1}
$$

If, further, we apply theorem 9.30 once, we obtain

$$
\begin{aligned}
\vdash & \left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2}\right) \wedge[\alpha] K_{A^{\prime}} \theta_{1} \rightarrow \tilde{K}_{A^{\prime}} \theta_{3} \wedge[\alpha] \tilde{K}_{A^{\prime}} \theta_{2} \wedge[\alpha] K_{A^{\prime}} \theta_{1}, \text { i.e. } \\
& \vdash\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2}\right) \wedge[\alpha] K_{A^{\prime}} \theta_{1} \rightarrow \tilde{K}_{A^{\prime}} \theta_{3} \wedge[\alpha]\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right)
\end{aligned}
$$

Hence

$$
\vdash\left(K_{A^{\prime}} \theta_{1} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3}\right) \rightarrow \tilde{K}_{A^{\prime}} \theta_{3} \wedge[\alpha]\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right)
$$

If we apply again theorem 9.30 we obtain

$$
\vdash \tilde{K}_{A^{\prime}} \theta_{3} \wedge[a]\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right) \rightarrow[\alpha]\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right)
$$

hence

$$
\vdash\left(K_{A^{\prime}} \theta_{1} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3}\right) \rightarrow[\alpha]\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right)
$$

As $f_{\mathcal{M}}=K_{A^{\prime}}\left(\bigvee_{Q \in \mathcal{M}} f_{Q}\right) \wedge\left(\bigwedge_{Q \in \mathcal{M}} \tilde{K}_{A^{\prime}} f_{Q}\right)$, we can use the same idea, applying theorem 9.30 once for each process in \mathcal{M} (being finite) and we obtain

$$
\vdash f_{\mathcal{M}} \rightarrow[\alpha] f_{\mathcal{M}}
$$

Theorem 9.36 If \mathcal{M} is a finite maximal consistent set then $\vdash f_{\mathcal{M}} \rightarrow\left(K_{A} \top \rightarrow K_{A} f_{\mathcal{M}}\right)$
Proof Observe that, by applying axiom E8, we obtain

$$
\vdash K_{A^{\prime}} \theta_{1} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3} \rightarrow\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge \widetilde{K}_{A^{\prime}} \theta_{3}\right) \wedge\left(K_{A} \top \rightarrow K_{A} K_{A^{\prime}} \theta_{1}\right)
$$

If, further, we apply theorem 9.31 once, we obtain

$$
\begin{aligned}
& \qquad\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2}\right) \wedge\left(K_{A} \top \rightarrow K_{A} K_{A^{\prime}} \theta_{1}\right) \rightarrow \\
& \tilde{K}_{A^{\prime}} \theta_{3} \wedge\left(K_{A} \top \rightarrow K_{A} \tilde{K}_{A^{\prime}} \theta_{2}\right) \wedge\left(K_{A} \top \rightarrow K_{A} K_{A^{\prime}} \theta_{1}\right) \text {, i.e. } \\
& \vdash\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \widetilde{K}_{A^{\prime}} \theta_{2}\right) \wedge\left(K_{A} \top \rightarrow K_{A} K_{A^{\prime}} \theta_{1}\right) \rightarrow \widetilde{K}_{A^{\prime}} \theta_{3} \wedge\left(K_{A} \top \rightarrow\left(K_{A} \widetilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A} K_{A^{\prime}} \theta_{1}\right)\right) \\
& \text { i.e., using 9.21, }
\end{aligned}
$$

$$
\vdash\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2}\right) \wedge\left(K_{A} \top \rightarrow K_{A} K_{A^{\prime}} \theta_{1}\right) \rightarrow \tilde{K}_{A^{\prime}} \theta_{3} \wedge\left(K_{A} \top \rightarrow K_{A}\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right)\right)
$$

Hence

$$
\vdash\left(K_{A^{\prime}} \theta_{1} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3}\right) \rightarrow \tilde{K}_{A^{\prime}} \theta_{3} \wedge\left(K_{A} \top \rightarrow K_{A}\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right)\right)
$$

If we apply again the theorems 9.31 and 9.21 we obtain

$$
\vdash\left[\tilde{K}_{A^{\prime}} \theta_{3} \wedge\left(K_{A} \top \rightarrow K_{A}\left(\tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right)\right)\right] \rightarrow\left[K_{A} \top \rightarrow K_{A}\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right)\right]
$$

hence

$$
\vdash\left(K_{A^{\prime}} \theta_{1} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge \tilde{K}_{A^{\prime}} \theta_{3}\right) \rightarrow\left[K_{A} \top \rightarrow K_{A}\left(\tilde{K}_{A^{\prime}} \theta_{3} \wedge \tilde{K}_{A^{\prime}} \theta_{2} \wedge K_{A^{\prime}} \theta_{1}\right)\right]
$$

Because $f_{\mathcal{M}}=K_{A^{\prime}}\left(\bigvee_{Q \in \mathcal{M}} f_{Q}\right) \wedge\left(\bigwedge_{Q \in \mathcal{M}} \tilde{K}_{A^{\prime}} f_{Q}\right)$, we can use the same idea, applying theorem 9.31 once for each process in \mathcal{M} (being finite) and we obtain

$$
\vdash f_{\mathcal{M}} \rightarrow\left(K_{A} \top \rightarrow K_{A} f_{\mathcal{M}}\right)
$$

Theorem 9.37 If \mathcal{M} is a finite maximal consistent set and $\vdash f_{\mathcal{M}} \rightarrow(\phi \rightarrow \psi)$ then $\vdash f_{\mathcal{M}} \rightarrow$ ($\phi|\rho \rightarrow \psi| \rho$).

Proof $\vdash f_{\mathcal{M}} \rightarrow(\phi \rightarrow \psi)$ implies $\vdash\left(f_{\mathcal{M}} \wedge \phi\right) \rightarrow \psi$ where we apply rule $\mathrm{E}_{R} 8$ and obtain $\vdash\left(f_{\mathcal{M}} \wedge \phi\right)|\rho \rightarrow \psi| \rho$. But theorem 9.34 gives $\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \rho\right) \rightarrow\left(f_{\mathcal{M}} \wedge \phi\right) \mid \rho$. Combining these two results we obtain $\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \rho\right) \rightarrow \psi \mid \rho$, i.e. $\vdash f_{\mathcal{M}} \rightarrow(\phi|\rho \rightarrow \psi| \rho)$.

Theorem 9.38 If for a finite maximal consistent set $\mathcal{M} \ni P$ and any decomposition $P \equiv Q \mid R$ we have

$$
\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \rightarrow \neg \phi\right) \text { or } \vdash f_{\mathcal{M}} \rightarrow\left(f_{R} \rightarrow \neg \psi\right) \text { then } \vdash f_{\mathcal{M}} \rightarrow\left(f_{P} \rightarrow \neg(\phi \mid \psi)\right) .
$$

Proof If $\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \rightarrow \neg \phi\right)$ then we have, equivalently, $\vdash f_{\mathcal{M}} \wedge f_{Q} \rightarrow \neg \phi$, i.e. $\vdash f_{Q} \rightarrow\left(f_{\mathcal{M}} \rightarrow \neg \phi\right)$, hence $\vdash f_{Q} \rightarrow \neg\left(f_{\mathcal{M}} \wedge \phi\right)$. Similarly $\vdash f_{\mathcal{M}} \rightarrow\left(f_{R} \rightarrow \neg \psi\right)$ gives $\vdash f_{R} \rightarrow \neg\left(f_{\mathcal{M}} \wedge \psi\right)$.

Hence the hypothesis of the theorem can be rewritten as: for any decomposition $P \equiv Q \mid R$ we have

$$
\vdash f_{Q} \rightarrow \neg\left(f_{\mathcal{M}} \wedge \phi\right) \text { or } \vdash f_{R} \rightarrow \neg\left(f_{\mathcal{M}} \wedge \psi\right) .
$$

Then we can apply theorem 9.12 and we obtain

$$
\begin{equation*}
\vdash f_{P} \rightarrow \neg\left(\left(f_{\mathcal{M}} \wedge \phi\right) \mid\left(f_{\mathcal{M}} \wedge \psi\right)\right) \tag{3}
\end{equation*}
$$

But theorem 9.33 entails $\vdash f_{\mathcal{M}} \wedge \phi\left|\psi \rightarrow\left(f_{\mathcal{M}} \wedge \phi\right)\right|\left(f_{\mathcal{M}} \wedge \psi\right)$, hence $\vdash \neg\left(\left(f_{\mathcal{M}} \wedge \phi\right) \mid\left(f_{\mathcal{M}} \wedge \psi\right)\right) \rightarrow$ $\neg\left(f_{\mathcal{M}} \wedge \phi \mid \psi\right)$, and applying this result to (3), we obtain

$$
\vdash f_{P} \rightarrow \neg\left(f_{\mathcal{M}} \wedge \phi \mid \psi\right) \text { that is equivalent with } \vdash f_{\mathcal{M}} \rightarrow\left(f_{P} \rightarrow \neg(\phi \mid \psi)\right)
$$

Further we prove a maximal consistent set-sensitive version of rule $\mathrm{E}_{R} 8$.

Theorem 9.39 If $\vdash f_{\mathcal{M}} \rightarrow \phi$ then $\vdash f_{\mathcal{M}} \rightarrow[\alpha] \phi$.
Proof If we apply rule $\mathrm{E}_{R} 8$ to $\vdash f_{\mathcal{M}} \rightarrow \phi$ we obtain $\vdash[\alpha]\left(f_{\mathcal{M}} \rightarrow \phi\right)$. But axiom E8 gives $\vdash[\alpha]\left(f_{\mathcal{M}} \rightarrow \phi\right) \rightarrow\left([\alpha] f_{\mathcal{M}} \rightarrow[\alpha] \phi\right)$, hence $\vdash[\alpha] f_{\mathcal{M}} \rightarrow[\alpha] \phi$. Theorem 9.35 proves that $\vdash f_{\mathcal{M}} \rightarrow[\alpha] f_{\mathcal{M}}$ which gives further $\vdash f_{\mathcal{M}} \rightarrow[\alpha] \phi$.

The next result is a maximal consistent set-sensitive variant of rule $\mathrm{E}_{R} 8$.

Theorem 9.40 If $\vdash f_{\mathcal{M}} \rightarrow \phi$ then $\vdash f_{\mathcal{M}} \rightarrow\left(K_{A} \top \rightarrow K_{A} \phi\right)$.
Proof If we apply rule $\mathrm{E}_{R} 8$ to $\vdash f_{\mathcal{M}} \rightarrow \phi$, we obtain

$$
\vdash K_{Q} \top \rightarrow K_{Q}\left(f_{\mathcal{M}} \rightarrow \phi\right)
$$

But axiom E8 gives further $\vdash K_{Q}\left(f_{\mathcal{M}} \rightarrow \phi\right) \rightarrow\left(K_{Q} f_{\mathcal{M}} \rightarrow K_{Q} \phi\right)$. Hence $\vdash K_{Q} \top \wedge K_{Q} f_{\mathcal{M}} \rightarrow$ $K_{Q} \phi$ that is equivalent with

$$
\vdash K_{Q} f_{\mathcal{M}} \rightarrow\left(K_{Q} \top \rightarrow K_{Q} \phi\right)
$$

Now, theorem 9.36 ensures that $\vdash f_{\mathcal{M}} \rightarrow\left(K_{A} \top \rightarrow K_{Q} f_{\mathcal{M}}\right)$.
Hence $\vdash f_{\mathcal{M}} \rightarrow\left(K_{A} \top \rightarrow K_{A} \phi\right)$.

Theorem 9.41 If $\vdash f_{\mathcal{M}} \rightarrow\left(K_{Q} \psi \rightarrow \phi\right)$ then $\vdash f_{\mathcal{M}} \rightarrow\left(K_{Q} \psi \rightarrow K_{Q} \phi\right)$.
Proof We apply theorem 9.40 to $\vdash f_{\mathcal{M}} \rightarrow\left(K_{Q} \psi \rightarrow \phi\right)$ and we obtain $\vdash f_{\mathcal{M}} \rightarrow\left(K_{Q} \top \rightarrow K_{Q}\left(K_{Q} \psi \rightarrow \phi\right)\right)$, i.e. $\vdash\left(f_{\mathcal{M}} \wedge K_{Q} \top\right) \rightarrow K_{Q}\left(K_{Q} \psi \rightarrow \phi\right)$.
But axiom E8 gives $\vdash K_{Q}\left(K_{Q} \psi \rightarrow \phi\right) \rightarrow\left(K_{Q} K_{Q} \psi \rightarrow K_{Q} \phi\right)$. Now if we use theorem 9.22 we obtain further

$$
\vdash K_{Q}\left(K_{Q} \psi \rightarrow \phi\right) \rightarrow\left(K_{Q} \psi \rightarrow K_{Q} \phi\right)
$$

All these proved that $\vdash\left(f_{\mathcal{M}} \wedge K_{Q} \top\right) \rightarrow\left(K_{Q} \psi \rightarrow K_{Q} \phi\right)$, i.e.

$$
\vdash f_{\mathcal{M}} \rightarrow\left(K_{Q} \top \rightarrow\left(K_{Q} \psi \rightarrow K_{Q} \phi\right)\right)
$$

which is equivalent with $\vdash f_{\mathcal{M}} \rightarrow\left(K_{Q} \top \wedge K_{Q} \psi \rightarrow K_{Q} \phi\right)$.
Theorem 9.20 proved that $\vdash K_{Q} \psi \rightarrow K_{Q} \top$, result which, combined with the previous one, gives further $\vdash f_{\mathcal{M}} \rightarrow\left(K_{Q} \psi \rightarrow K_{Q} \phi\right)$.

Theorem 9.42 If $Q \mid R \in \mathcal{M}$ then $\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \mid f_{R} \rightarrow \neg \phi\right)$ implies $\vdash f_{\mathcal{M}} \rightarrow \neg K_{Q} \phi$.
Proof Because $\vdash f_{R} \rightarrow \top$, rule $\mathrm{E}_{R} 8$ gives $\vdash f_{Q}\left|f_{R} \rightarrow f_{Q}\right| \top$ that gives further $\vdash f_{\mathcal{M}} \rightarrow$ $\left(f_{Q}\left|f_{R} \rightarrow f_{Q}\right| \top\right)$. Combining this result with the hypothesis of the theorem, $\vdash f_{\mathcal{M}} \rightarrow$ ($f_{Q} \mid f_{R} \rightarrow \neg \phi$), we obtain

$$
\vdash\left(f_{\mathcal{M}} \wedge f_{Q} \mid f_{R}\right) \rightarrow\left(f_{Q} \mid \top \wedge \neg \phi\right) \text {, i.e. } \vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \mid f_{R} \rightarrow\left(f_{Q} \mid \top \wedge \neg \phi\right)\right)
$$

But $\vdash\left(f_{Q} \mid \top \wedge \neg \phi\right) \leftrightarrow \neg\left(f_{Q} \mid \top \rightarrow \phi\right)$, hence

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \mid f_{R} \rightarrow \neg\left(f_{Q} \mid \top \rightarrow \phi\right)\right) \tag{4}
\end{equation*}
$$

Axiom E8 ensure that $\vdash K_{0}\left(f_{Q} \mid \top \rightarrow \phi\right) \rightarrow\left(f_{Q} \mid \top \rightarrow \phi\right)$ or, equivalently, $\vdash \neg\left(f_{Q} \mid \top \rightarrow \phi\right) \rightarrow$ $\neg K_{0}\left(f_{Q} \mid \top \rightarrow \phi\right)$, that, used in (4) gives

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \mid f_{R} \rightarrow \neg K_{0}\left(f_{Q} \mid \top \rightarrow \phi\right)\right) \tag{5}
\end{equation*}
$$

But theorem 9.19 gives $\vdash K_{0} \top$, that can be used in (5) providing

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \mid f_{R} \rightarrow\left(K_{0} \top \wedge \neg K_{0}\left(f_{Q} \mid \top \rightarrow \phi\right)\right)\right) \tag{6}
\end{equation*}
$$

The negative introspection, axiom E8, infers

$$
\begin{equation*}
\vdash\left(K_{0} \top \wedge \neg K_{0}\left(f_{Q} \mid \top \rightarrow \phi\right)\right) \rightarrow K_{0} \neg K_{0}\left(f_{Q} \mid \top \rightarrow \phi\right) \tag{7}
\end{equation*}
$$

Combining (6) and (7) we obtain

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \mid f_{R} \rightarrow K_{0} \neg K_{0}\left(f_{Q} \mid \top \rightarrow \phi\right)\right) \tag{8}
\end{equation*}
$$

But (8) is equivalent with $\vdash\left(f_{\mathcal{M}} \wedge f_{Q} \mid f_{R}\right) \rightarrow K_{0} \neg K_{0}\left(f_{Q} \mid \top \rightarrow \phi\right)$, and because $Q \mid R \in \mathcal{M}$, we can apply rule $\mathrm{E}_{R} 8.3$ and obtain

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \rightarrow \neg K_{0}\left(K_{Q} \top \rightarrow \phi\right) \tag{9}
\end{equation*}
$$

But from axiom E8 we derive $\vdash K_{Q} \phi \rightarrow K_{0}\left(K_{Q} \top \rightarrow \phi\right)$, hence

$$
\begin{equation*}
\vdash \neg K_{0}\left(K_{Q} \top \rightarrow \phi\right) \rightarrow \neg K_{Q} \phi \tag{10}
\end{equation*}
$$

Combining (9) with (10) we obtain $\vdash f_{\mathcal{M}} \rightarrow \neg K_{Q} \phi$, q.e.d.
The next result is a maximal consistent set-sensitive version of theorem 9.11.
Theorem 9.43 If $\vdash f_{\mathcal{M}} \rightarrow(\phi \rightarrow \psi)$ and $\vdash f_{\mathcal{M}} \rightarrow(\rho \rightarrow \theta)$ then $\vdash f_{\mathcal{M}} \rightarrow(\phi|\rho \rightarrow \psi| \theta)$.
Proof $\mathrm{To} \vdash f_{\mathcal{M}} \rightarrow(\phi \rightarrow \psi)$ we can apply theorem 9.37 and we obtain $\vdash f_{\mathcal{M}} \rightarrow(\phi \mid \rho \rightarrow$ $\psi \mid \rho)$, i.e. $\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \rho\right) \rightarrow \psi \mid \rho$ which implies

$$
\begin{equation*}
\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \rho\right) \rightarrow\left(f_{\mathcal{M}} \wedge \psi \mid \rho\right) \tag{11}
\end{equation*}
$$

The same theorem 9.37 can be applied to $\vdash f_{\mathcal{M}} \rightarrow(\rho \rightarrow \theta)$ giving $\vdash f_{\mathcal{M}} \rightarrow(\psi|\rho \rightarrow \psi| \theta)$, i.e.

$$
\begin{equation*}
\vdash\left(f_{\mathcal{M}} \wedge \psi \mid \rho\right) \rightarrow \psi \mid \theta \tag{12}
\end{equation*}
$$

Further, combining (11) and (12) we derive $\vdash\left(f_{\mathcal{M}} \wedge \phi \mid \psi\right) \rightarrow \psi \mid \theta$, hence $\vdash f_{\mathcal{M}} \rightarrow(\phi \mid \psi \rightarrow$ $\psi \mid \theta)$.

Theorem 9.44 If $\vdash f_{\mathcal{M}} \rightarrow(\phi \rightarrow \psi)$ then $\vdash f_{\mathcal{M}} \rightarrow(\langle\alpha\rangle \phi \rightarrow\langle\alpha\rangle \psi)$.
Proof $\vdash f_{\mathcal{M}} \rightarrow(\phi \rightarrow \psi)$ implies $\vdash f_{\mathcal{M}} \rightarrow(\neg \psi \rightarrow \neg \phi)$ where, applying theorem 9.39, we obtain $\vdash f_{\mathcal{M}} \rightarrow[\alpha](\neg \psi \rightarrow \neg \phi)$. But axiom E8 gives $\vdash[\alpha](\neg \psi \rightarrow \neg \phi) \rightarrow([\alpha] \neg \psi \rightarrow[\alpha] \neg \phi)$. Hence $\vdash f_{\mathcal{M}} \rightarrow([\alpha] \neg \psi \rightarrow[\alpha] \neg \phi)$, i.e. $\vdash f_{\mathcal{M}} \rightarrow(\neg\langle\alpha\rangle \psi \rightarrow \neg\langle\alpha\rangle \phi)$. Concluding, $\vdash f_{\mathcal{M}} \rightarrow$ $(\langle\alpha\rangle \phi \rightarrow\langle\alpha\rangle \psi)$.

The next result is a variant of theorem 9.17, but sensitive to the maximal consistent set.

Theorem 9.45

$$
\text { If } \vdash f_{\mathcal{M}} \rightarrow\left(\bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\} \rightarrow \phi\right) \text { then } \vdash f_{\mathcal{M}} \rightarrow\left(f_{P} \rightarrow[\alpha] \phi\right)
$$

Proof If $\vdash f_{\mathcal{M}} \rightarrow\left(\bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\} \rightarrow \phi\right)$ then theorem 9.39 gives $\vdash f_{\mathcal{M}} \rightarrow$ $[\alpha]\left(\bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\} \rightarrow \phi\right)$ and further axiom E8 gives

$$
\vdash f_{\mathcal{M}} \rightarrow\left([\alpha] \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\} \rightarrow[\alpha] \phi\right)
$$

But theorem 9.16 gives

$$
\vdash f_{P} \rightarrow[\alpha] \bigvee\left\{f_{Q} \mid P \xrightarrow{\alpha} Q\right\}
$$

hence $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow[\alpha] \phi$, i.e. $\vdash f_{\mathcal{M}} \rightarrow\left(f_{P} \rightarrow[\alpha] \phi\right)$.

10 Completeness of $\mathcal{L}_{\mathbb{A}}^{\mathcal{A}}$ against process semantics

Further we state the completeness of $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$ with respect to process semantics. The intuition is that, because f_{P} and $f_{\mathcal{M}}$ are characteristic formulas, we should have an equivalence between $\mathcal{M}, P \models \phi$ and $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi$ (of course for finite maximal consistent sets) as both can be read as the process $P \in \mathcal{M}$ has the property ϕ.

The completeness ensures that everything that can be derived in the semantics can be proved in the syntax. In this way we have the possibility to syntactically verify (prove) properties of processes.

If \mathcal{M} is a finite maximal consistent set then $\mathcal{M}, P \models \phi$ iff $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi$.
Proof (\Longrightarrow) We prove it by induction on the syntactical structure of ϕ.

- The case $\phi=0: \mathcal{M}, P \models 0$ implies $P \equiv 0$. But $f_{A^{\prime}}=0$ and $\vdash 0 \rightarrow 0$, hence $\vdash 0 \wedge f_{\mathcal{M}} \rightarrow 0$. This gives $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi$.
- The case $\phi=\top$: we have always $\mathcal{M}, P \models \top$ and $\vdash f_{P} \wedge f_{\mathcal{M}} \rightarrow \top$, hence $\vdash f_{P} \wedge f_{\mathcal{M}} \rightarrow$ ϕ.
- The case $\phi=\phi_{1} \wedge \phi_{2}$: $\mathcal{M}, P \models \phi$ iff $\mathcal{M}, P \models \phi_{1}$ and $\mathcal{M}, P \models \phi_{2}$.

Further, using the inductive hypothesis, we obtain $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi_{1}$ and $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi_{2}$. Hence $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow\left(\phi_{1} \wedge \phi_{2}\right)$, i.e. $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi$.

- The case $\phi=\phi_{1} \mid \phi_{2}: \mathcal{M}, P \models \phi$ iff $P \equiv Q \mid R, \mathcal{M}, Q \models \phi_{1}$ and $\mathcal{M}, R \models \phi_{2}$.

Using the inductive hypothesis,
$\vdash f_{\mathcal{M}} \wedge f_{Q} \rightarrow \phi_{1}$ and $\vdash f_{\mathcal{M}} \wedge f_{R} \rightarrow \phi_{2}$, i.e.
$\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \rightarrow \phi_{1}\right)$ and $\vdash f_{\mathcal{M}} \rightarrow\left(f_{R} \rightarrow \phi_{2}\right)$.
Hence, using theorem 9.43 we obtain $\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q}\left|f_{R} \rightarrow \phi_{1}\right| \phi_{2}\right)$, i.e. $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi$.

- The case $\phi=K_{A} \top: \mathcal{M}, P \models K_{A} \top$ iff $P \equiv I(A) \mid R$, iff $f_{P}=f_{A} \mid f_{R}$.

Using rule $\mathrm{E}_{R} 8$ we obtain $\vdash f_{A}\left|f_{R} \rightarrow f_{A}\right| \top$, further using axiom $\mathrm{E} 8 \vdash f_{A} \mid f_{R} \rightarrow K_{A} \top$, i.e. $\vdash f_{P} \rightarrow K_{A} \top$. Hence $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi$.

- The case $\phi=K_{A} \psi: \mathcal{M}, P \models K_{A} \psi$, and because $\vdash K_{A} \psi \rightarrow K_{A} \top$ (by theorem 9.20), using the soundness, we obtain that $\mathcal{M}, P \models K_{A} \top$. Now, we apply the previous case that gives

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow K_{A} \top \tag{13}
\end{equation*}
$$

$\mathcal{M}, P \models K_{A} \psi$ is equivalent with $P \equiv I(A) \mid R$ and for any $I(A) \mid S \in \mathcal{M}$ we have $\mathcal{M}, I(A) \mid S \models \psi$. Then the inductive hypothesis gives

$$
\begin{equation*}
\text { for any } I(A) \mid S \in \mathcal{M} \text { we have } \vdash\left(f_{\mathcal{M}} \wedge f_{A} \mid f_{S}\right) \rightarrow \psi \tag{14}
\end{equation*}
$$

Consider now a process $I(A) \mid S \notin \mathcal{M}$. Because \mathcal{M} is finite, we apply theorem 9.32 and obtain $\vdash f_{\mathcal{M}} \rightarrow \neg\left(f_{A} \mid f_{S}\right)$ or equivalent, $\vdash f_{\mathcal{M}} \wedge\left(f_{A} \mid f_{S}\right) \rightarrow \perp$. But $\vdash \perp \rightarrow \psi$, hence

$$
\begin{equation*}
\text { for any } I(A) \mid S \notin \mathcal{M} \text { we have } \vdash\left(f_{\mathcal{M}} \wedge f_{A} \mid f_{S}\right) \rightarrow \psi \tag{15}
\end{equation*}
$$

Now (14) and (15) together give

$$
\begin{equation*}
\text { for any } S \in \mathcal{M} \text { we have } \vdash\left(f_{\mathcal{M}} \wedge f_{A} \mid f_{S}\right) \rightarrow \psi \tag{16}
\end{equation*}
$$

i.e., using theorem 9.9,

$$
\begin{equation*}
\vdash\left(f_{\mathcal{M}} \wedge f_{A} \mid \bigvee_{S \in \mathcal{M}} f_{S}\right) \rightarrow \psi \tag{17}
\end{equation*}
$$

But

$$
\vdash K_{A^{\prime}}\left(\bigvee_{S \in \mathcal{M}} f_{S}\right) \rightarrow \bigvee_{S \in \mathcal{M}} f_{S} \text {, hence } \vdash f_{\mathcal{M}} \rightarrow \bigvee_{S \in \mathcal{M}} f_{S}
$$

Now, we can apply rule $\mathrm{E}_{R} 8$ and obtain

$$
\vdash f_{A}\left|f_{\mathcal{M}} \rightarrow f_{A}\right| \bigvee_{S \in \mathcal{M}} f_{S}, \text { hence } \vdash\left(f_{A} \mid f_{\mathcal{M}} \wedge f_{\mathcal{M}}\right) \rightarrow\left(f_{A} \mid \bigvee_{S \in \mathcal{M}} f_{S} \wedge f_{\mathcal{M}}\right)
$$

In this point, using (17) we obtain

$$
\begin{equation*}
\vdash\left(f_{A} \mid f_{\mathcal{M}} \wedge f_{\mathcal{M}}\right) \rightarrow \psi \tag{18}
\end{equation*}
$$

We have $\vdash f_{\mathcal{M}} \rightarrow\left(\top \rightarrow f_{\mathcal{M}}\right)$ and $\vdash f_{\mathcal{M}} \rightarrow\left(f_{A} \rightarrow f_{A}\right)$ where from, applying theorem 9.37, we can derive $\vdash f_{\mathcal{M}} \rightarrow\left(f_{A}\left|\top \rightarrow f_{A}\right| f_{\mathcal{M}}\right)$, i.e. $\vdash f_{M} \wedge f_{A}\left|\top \rightarrow f_{A}\right| f_{\mathcal{M}}$ and further

$$
\vdash\left(f_{M} \wedge f_{A} \mid \top\right) \rightarrow\left(f_{\mathcal{M}} \wedge f_{A} \mid f_{\mathcal{M}}\right)
$$

Using this result together with (18), we obtain further

$$
\vdash\left(f_{M} \wedge f_{A} \mid \top\right) \rightarrow \psi \text {, i.e. } \vdash f_{M} \rightarrow\left(f_{A} \mid \top \rightarrow \psi\right)
$$

where we can apply axiom E8 that gives

$$
\vdash f_{\mathcal{M}} \rightarrow\left(K_{A} \top \rightarrow \psi\right)
$$

applying theorem 9.41, we obtain

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \rightarrow\left(K_{A} \top \rightarrow K_{A} \psi\right) \text {, i.e. } \vdash\left(f_{\mathcal{M}} \wedge K_{A} \top\right) \rightarrow K_{A} \psi \tag{19}
\end{equation*}
$$

But (13) gives

$$
\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow K_{A} \top \text { where from } \vdash\left(f_{\mathcal{M}} \wedge f_{P}\right) \rightarrow\left(f_{\mathcal{M}} \wedge K_{A} \top\right)
$$

and using this in (19),

$$
\vdash\left(f_{\mathcal{M}} \wedge f_{P}\right) \rightarrow K_{A} \psi \text { i.e. } \vdash\left(f_{\mathcal{M}} \wedge f_{P}\right) \rightarrow \phi
$$

- The case $\phi=\langle\alpha\rangle \psi: \mathcal{M}, P \models\langle\alpha\rangle \psi$ means that exists $P^{\prime} \in \mathcal{M}$ such that $P \xrightarrow{\alpha} P^{\prime}$ and $\mathcal{M}, P^{\prime} \models \psi$. Then the inductive hypothesis gives

$$
\vdash f_{\mathcal{M}} \wedge f_{P^{\prime}} \rightarrow \psi
$$

$P \xrightarrow{\alpha} P^{\prime}$ means that $P \equiv \alpha . R \mid S$ and $P^{\prime} \equiv R \mid S$, so $f_{P}=\left(\langle\alpha\rangle f_{R} \wedge 1\right) \mid f_{S}$ and $f_{P^{\prime}}=$ $f_{R} \mid f_{S}$. So $\vdash f_{\mathcal{M}} \wedge f_{R} \mid f_{S} \rightarrow \psi$, i.e. $\vdash f_{\mathcal{M}} \rightarrow\left(f_{R} \mid f_{S} \rightarrow \psi\right)$ and using theorem 9.44

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \rightarrow\left(\langle\alpha\rangle\left(f_{R} \mid f_{S}\right) \rightarrow\langle\alpha\rangle \psi\right) \tag{20}
\end{equation*}
$$

theorem 9.10 gives $\vdash f_{P} \rightarrow\langle\alpha\rangle f_{R}\left|f_{S} \wedge 1\right| f_{S}$, hence

$$
\begin{equation*}
\vdash f_{P} \rightarrow\langle\alpha\rangle f_{R} \mid f_{S} \tag{21}
\end{equation*}
$$

Axiom E8 gives

$$
\begin{equation*}
\vdash\langle\alpha\rangle f_{R} \mid f_{S} \rightarrow\langle\alpha\rangle\left(f_{R} \mid f_{S}\right) \tag{22}
\end{equation*}
$$

Hence, from (20), (21) and (22) we derive

$$
\vdash f_{\mathcal{M}} \rightarrow\left(f_{P} \rightarrow\langle\alpha\rangle \psi\right) \text {, i.e. } \vdash\left(f_{\mathcal{M}} \wedge f_{P}\right) \rightarrow\langle\alpha\rangle \psi
$$

- The case $\phi=\langle A: \alpha\rangle \psi: \mathcal{M}, P \models\langle A: \alpha\rangle \psi$ ensures us that α is active.
- the subcase $\psi=\top: \mathcal{M}, P \models\langle A: \alpha\rangle \top$ gives $P \equiv I(A) \mid R$, hence $f_{P}=f_{A} \mid f_{R}$. But $\vdash f_{R} \rightarrow \top$ and, using rule $\mathrm{E}_{R}^{+} 8, \vdash f_{A}\left|f_{R} \rightarrow f_{A}\right| \top$. Now using theorem 9.18 we obtain

$$
\vdash f_{P} \rightarrow\langle A: \alpha\rangle \top \text {, hence } \vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow\langle A: \alpha\rangle \top
$$

- the subcase $\psi \neq \mathrm{T}: \mathcal{M}, P \models\langle A: \alpha\rangle \psi$ implies $P \equiv I(A) \mid R$, exists $Q \in \mathcal{M}$ such that $I(A) \xrightarrow{\alpha} Q$ and $\mathcal{M}, Q \mid R \models \psi$. Using the inductive hypothesis we obtain

$$
\vdash f_{\mathcal{M}} \wedge f_{Q \mid R} \rightarrow \psi
$$

But $I(A) \xrightarrow{\alpha} Q$ means that $I(A) \equiv \alpha \cdot Q^{\prime} \mid S$ and $Q \equiv Q^{\prime} \mid S$. Then $\vdash f_{\mathcal{M}} \wedge f_{Q \mid R} \rightarrow \psi$ means $\vdash f_{\mathcal{M}} \wedge f_{Q^{\prime}}\left|f_{S}\right| f_{R} \rightarrow \psi$, i.e.

$$
\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q^{\prime}}\left|f_{S}\right| f_{R} \rightarrow \psi\right)
$$

Further we obtain

$$
\vdash f_{\mathcal{M}} \rightarrow\left(\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle\left(f_{Q^{\prime}}\left|f_{S}\right| f_{R}\right) \rightarrow\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle \psi\right)
$$

while axiom $\mathrm{E}^{+} 8$ gives

$$
\vdash\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle f_{Q^{\prime}}\left|f_{S}\right| f_{R} \rightarrow\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle\left(f_{Q^{\prime}}\left|f_{S}\right| f_{R}\right),
$$

hence

$$
\vdash f_{\mathcal{M}} \rightarrow\left(\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle f_{Q^{\prime}}\left|f_{S}\right| f_{R} \rightarrow\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle \psi\right)
$$

and because $\vdash f_{P} \rightarrow\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle f_{Q^{\prime}}\left|f_{S}\right| f_{R}$, due to axiom $\mathrm{E}^{+} 8$, we derive further

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \rightarrow\left(f_{P} \rightarrow\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle \psi\right) \tag{23}
\end{equation*}
$$

But $\mathcal{M}, P \models\langle A: \alpha\rangle \psi$ gives $\mathcal{M}, P \models\langle A: \alpha\rangle \top$ (because from $\vdash \psi \rightarrow \top$ we derive $\vdash\langle A: \alpha\rangle \psi \rightarrow\langle A: \alpha\rangle \top$). But, from the previous case, $\mathcal{M}, P \models\langle A: \alpha\rangle \top$ is equivalent with $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow\langle A: \alpha\rangle \top$. Hence

$$
\begin{equation*}
\vdash f_{\mathcal{M}} \rightarrow\left(f_{P} \rightarrow\left\langle\alpha \cdot Q^{\prime} \mid S: \alpha\right\rangle \top\right) \tag{24}
\end{equation*}
$$

Axiom $\mathrm{E}^{+} 8$ gives

$$
\vdash\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle \psi \wedge\left\langle\alpha \cdot Q^{\prime} \mid S: \alpha\right\rangle \top \rightarrow\left\langle\alpha \cdot Q^{\prime} \mid S: \alpha\right\rangle \psi
$$

and as (23) and (24) give

$$
\vdash f_{\mathcal{M}} \rightarrow\left(f_{P} \rightarrow\left\langle\alpha \cdot Q^{\prime}: \alpha\right\rangle \psi \wedge\left\langle\alpha \cdot Q^{\prime} \mid S: \alpha\right\rangle \top\right)
$$

we obtain further

$$
\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow\langle A: \alpha\rangle \psi
$$

- The case $\phi=\neg \psi$: we argue by induction on the syntactical structure of ψ.
- the subcase $\psi=0: \mathcal{M}, P \models \neg 0$ means that $P \not \equiv 0$. Then we can apply theorem 9.1 and obtain $\vdash f_{P} \rightarrow \neg 0$.

So $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg 0$.

- the subcase $\psi=\mathrm{T}$: is an impossible one as we cannot have $\mathcal{M}, P \models \perp$.
- the subcase $\psi=\psi_{1} \wedge \psi_{2}: \mathcal{M}, P \models \neg\left(\psi_{1} \wedge \psi_{2}\right)$ is equivalent with $\mathcal{M}, P \models$ $\neg \psi_{1} \vee \neg \psi_{2}$, i.e. $\mathcal{M}, P \models \neg \psi_{1}$ or $\mathcal{M}, P \models \neg \psi_{2}$. By the inductive hypothesis, $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg \psi_{1}$ or $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg \psi_{2}$, where from we obtain $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \psi$
- the subcase $\psi=\neg \psi_{1}: \mathcal{M}, P \vDash \neg \psi$ is equivalent with $\mathcal{M}, P \vDash \neg \neg \psi_{1}$, i.e. $\mathcal{M}, P \models \psi_{1}$ where we can use the inductive hypothesis $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \psi_{1}$ which is equivalent with $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi$.
- the subcase $\psi=\psi_{1} \mid \psi_{2}: \mathcal{M}, P \models \neg\left(\psi_{1} \mid \psi_{2}\right)$ means that for any parallel decomposition of $P \equiv Q \mid R, \mathcal{M}, Q \models \neg \psi_{1}$ or $\mathcal{M}, R \models \neg \psi_{2}$. These imply, using the inductive hypothesis, that for any decomposition $P \equiv Q \mid R$ we have

$$
\vdash f_{\mathcal{M}} \rightarrow\left(f_{Q} \rightarrow \neg \psi_{1}\right) \text { or } \vdash f_{\mathcal{M}} \rightarrow\left(f_{R} \rightarrow \neg \psi_{2}\right)
$$

then we can apply theorem 9.38 that gives

$$
\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg \psi .
$$

- the subcase $\psi=K_{A^{\prime}} \psi_{1}, A^{\prime}$ is atomic agent: $\mathcal{M}, P \models \neg K_{A^{\prime}} \psi_{1}$ means $\exists R \in \mathcal{M}$ such that $\mathcal{M}, R \models \neg \psi_{1}$. Using the inductive hypothesis,
$\vdash f_{\mathcal{M}} \wedge f_{R} \rightarrow \neg \psi_{1}$, i.e. $\vdash f_{\mathcal{M}} \rightarrow\left(f_{R} \mid f_{0} \rightarrow \neg \psi_{1}\right)$. Now theorem 9.42 gives $\vdash f_{\mathcal{M}} \rightarrow \neg K_{A^{\prime}} \psi_{1}$, hence $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg K_{A^{\prime}} \psi_{1}$.
- the subcase $\psi=K_{A} \psi_{1}, A$ is not atomic agent: we distinguish two cases
* the sub-subcase $\psi_{1}=\top: \mathcal{M}, P \models \neg K_{A} \top$ implies that $I(A)$ is not a subprocess of P. Then for any $R \in \mathcal{M}$ we have $P \not \equiv I(A) \mid R$. Then theorem 9.1 gives us $\vdash f_{A} \mid f_{R} \rightarrow \neg f_{P}$. From here we can infer

$$
\begin{equation*}
\vdash f_{A} \mid \bigvee_{S \in \mathcal{M}} f_{S} \rightarrow \neg f_{P} \tag{25}
\end{equation*}
$$

But

$$
\vdash K_{A^{\prime}}\left(\bigvee_{S \in \mathcal{M}} f_{S}\right) \rightarrow \bigvee_{S \in \mathcal{M}} f_{S} \text {, hence } \vdash f_{\mathcal{M}} \rightarrow \bigvee_{S \in \mathcal{M}} f_{S}
$$

Now, we can apply rule $\mathrm{E}_{R} 8$ and obtain

$$
\vdash f_{A}\left|f_{\mathcal{M}} \rightarrow f_{A}\right| \bigvee_{S \in \mathcal{M}} f_{S}
$$

In this point, using (25) we obtain

$$
\begin{equation*}
\vdash f_{A} \mid f_{\mathcal{M}} \rightarrow \neg f_{P} \tag{26}
\end{equation*}
$$

We have $\vdash f_{\mathcal{M}} \rightarrow\left(\top \rightarrow f_{\mathcal{M}}\right)$ and $\vdash f_{\mathcal{M}} \rightarrow\left(f_{A} \rightarrow f_{A}\right)$ where from, applying theorem 9.37, we can derive $\vdash f_{\mathcal{M}} \rightarrow\left(f_{A}\left|\top \rightarrow f_{A}\right| f_{\mathcal{M}}\right)$, i.e. $\vdash f_{M} \wedge f_{A} \mid \top \rightarrow$ $f_{A} \mid f_{\mathcal{M}}$ Using this result together with (26), we obtain further

$$
\vdash\left(f_{M} \wedge f_{A} \mid \top\right) \rightarrow \neg f_{P}, \text { i.e. } \vdash f_{M} \wedge f_{P} \rightarrow \neg\left(f_{A} \mid \top\right)
$$

and axiom E8 gives

$$
\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg K_{A} \top
$$

* the sub-subcase $\psi_{1} \neq \mathrm{T}$: we distinguish two more cases $\mathcal{M}, P \models \neg K_{A} \top$ and $\mathcal{M}, P \models K_{A} \top$.
- if $\mathcal{M}, P \models \neg K_{A} \psi_{1}$ and $\mathcal{M}, P \models \neg K_{A} \top$, we have
$\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg K_{A} \top$ (proved before). Moreover, because $\vdash K_{A} \psi_{1} \rightarrow$ $K_{A} \top$ (theorem 9.20) we have $\vdash \neg K_{A} \top \rightarrow \neg K_{A} \psi_{1}$ which gives $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg K_{A} \psi_{1}$.
- if $\mathcal{M}, P \models \neg K_{A} \psi_{1}$ and $\mathcal{M}, P \models K_{A} \top, \exists I(A) \mid S \in \mathcal{M}$ with $\mathcal{M}, I(A) \mid Q \models$ $\neg \psi_{1}$. Using the inductive hypothesis we obtain $\vdash f_{\mathcal{M}} \rightarrow\left(f_{S} \mid f_{A} \rightarrow \neg \psi_{1}\right)$ and from theorem 9.42 that $\vdash f_{\mathcal{M}} \rightarrow \neg K_{A} \psi_{1}$. Hence $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow$ $\neg K_{A} \psi_{1}$.
- the subcase $\psi=\langle a\rangle \psi_{1}: \mathcal{M}, P \models \neg\langle a\rangle \psi_{1}$ is equivalent with $\mathcal{M}, P \models[a] \neg \psi_{1}$. If there is a process $Q \in \mathcal{M}$ such that $P \xrightarrow{a} Q$, then for any $Q \in \mathcal{M}$ such that $P \xrightarrow{a} Q$ we have $\mathcal{M}, Q \neq a \psi_{1}$. Using the inductive hypothesis we obtain that for any $Q \in \mathcal{M}$ such that $P \xrightarrow{a} Q$ we have $\vdash f_{\mathcal{M}} \wedge f_{Q} \rightarrow \neg \psi_{1}$, i.e.

$$
\vdash f_{\mathcal{M}} \wedge \bigvee\left\{f_{Q} \mid P \xrightarrow{a} Q\right\} \rightarrow \neg \psi_{1}
$$

or equivalently

$$
\vdash f_{\mathcal{M}} \rightarrow\left(\bigvee\left\{f_{Q} \mid P \xrightarrow{a} Q\right\} \rightarrow \neg \psi_{1}\right)
$$

Using theorem 9.45, we obtain $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow[a] \neg \psi_{1}$.
If there is no process $Q \in \mathcal{M}$ such that $P \mathbf{t o} Q$ then theorem 9.15 gives $\vdash f_{P} \rightarrow$ $[a] \perp$. But $\vdash \psi_{1} \rightarrow \top$, hence $\vdash[a] \perp \rightarrow[a] \neg \psi_{1}$. So, also in this case we have $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow[a] \neg \psi_{1}$.
(\Longleftarrow) Let $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \phi$. Suppose that $\mathcal{M}, P \not \models \phi$. Then $\mathcal{M}, P \models \neg \phi$. Using the reversed implication we obtain $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg \phi$, thus
$\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \perp$. But from corollary 9 we have $\mathcal{M}, P \models f_{\mathcal{M}} \wedge f_{P}$ which, using the soundness, gives $\mathcal{M}, P \models \perp$ impossible!
Hence $\mathcal{M}, P \models \phi$.
We recall the definitions of provability, consistency, satisfiability and validity.
Definition 10.1 (Provability and consistency) We say that a formula $\phi \in \mathcal{F}_{\mathbb{A}}^{\mathfrak{A}}$ is provable in $\mathcal{L}_{\mathbb{A}}^{\mathfrak{R}}$ (or $\mathcal{L}_{\mathbb{A}}^{\mathcal{2}}$-provable for short), if ϕ can be derived, as a theorem, using the axioms and the rules of $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$. We denote this by $\vdash \phi$.
We say that a formula $\phi \in \mathcal{F}_{\mathbb{A}}^{\mathfrak{A}}$ is consistent in $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$ (or $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$-consistent for short) if $\neg \phi$ is not $\mathcal{L}_{\mathbb{A}}^{2}$-provable.

Definition 10.2 (Satisfiability and validity) We call a formula $\phi \in \mathcal{F}_{\mathbb{A}}^{\mathfrak{A}}$ satisfiable if there exists a maximal consistent set \mathcal{M} and a process $P \in \mathcal{M}$ such that $\mathcal{M}, P \models \phi$.
We call a formula $\phi \in \mathcal{F}_{\mathbb{A}}^{\mathfrak{A}}$ validity if for any maximal consistent set \mathcal{M} and any process $P \in \mathcal{M}$ we have $\mathcal{M}, P \models \phi$. In such a situation we write $\models \phi$.
Given a maximal consistent set \mathcal{M}, we denote by $\mathcal{M} \vDash \phi$ the situation when for any $P \in \mathcal{M}$ we have $\mathcal{M}, P \models \phi$.
ϕ is satisfiable iff $\neg \phi$ is not a validity, and vice versa, ϕ is a validity iff $\neg \phi$ is not satisfiable.
If ϕ is $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$-consistent then exists a maximal consistent set \mathcal{M} and a process $P \in \mathcal{M}$ such that $\mathcal{M}, P \models \phi$.

Proof Suppose that for any maximal consistent set \mathcal{M} and any process $P \in \mathcal{M}$ we do not have $\mathcal{M}, P \models \phi$, i.e. we have $\mathcal{M}, P \models \neg \phi$. Hence, for any finite maximal consistent set \mathcal{M} and any process $P \in \mathcal{M}$ we have $\mathcal{M}, P \models \neg \phi$. Using lemma 10 , we obtain $\vdash f_{\mathcal{M}} \wedge f_{P} \rightarrow \neg \phi$. Hence $\vdash f_{\mathcal{M}} \wedge \bigvee_{P \in \mathcal{M}} f_{P} \rightarrow \neg \phi$. But $\vdash f_{\mathcal{M}} \rightarrow \bigvee_{P \in \mathcal{M}} f_{P}$ which, combined with the previous result, implies $\vdash f_{\mathcal{M}} \rightarrow \neg \phi$.
Thus for each finite maximal consistent set \mathcal{M} we have $\vdash f_{\mathcal{M}} \rightarrow \neg \phi$. But then for each maximal consistent set $\mathcal{M} \in \mathfrak{M}_{\neg \phi}^{\text {act }(\neg \phi)_{+}}$we have $\vdash f_{\mathcal{M}} \rightarrow \neg \phi$. As $\mathfrak{M}_{\neg \phi}^{\text {act }(\neg \phi)_{+}}$is finite, we can infer further $\vdash \bigvee_{\mathcal{M} \in \mathfrak{M}_{-\phi}^{a c t(\neg \phi)+}} f_{\mathcal{M}} \rightarrow \neg \phi$. Now, applying rule $\mathrm{E}_{R} 8$, we obtain $\vdash \neg \phi$. This contradicts with the hypothesis of consistency of ϕ. Hence, it exists a maximal consistent set \mathcal{M} and a process $P \in \mathcal{M}$ such that $\mathcal{M}, P \models \phi$.

Theorem 10.1 (Completeness) The $\mathcal{L}_{\mathbb{A}}^{\mathfrak{R}}$ system is complete with respect to process semantics.

Proof Suppose that ϕ is a valid formula with respect to our semantics, but ϕ is not provable in the system $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$. Then neither is $\neg \neg \phi$, so, by definition, $\neg \phi$ is $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$-consistent. It follows, from lemma 10 , that $\neg \phi$ is satisfiable with respect to process semantics, contradicting the validity of ϕ.

11 Concluding remarks

In this paper we developed a special type of dynamic-epistemic logic, $\mathcal{L}_{\mathbb{A}}^{\mathfrak{A}}$, designed for semantics built on process calculi. This logic is meant to be used for expressing properties of multiagent distributed systems. In this respect the society of agents \mathfrak{A} came with an algebraical structure that depicts the distribution of the modules of a system which are observed by the epistemic agents. In expressing this we used operators from spatial logics together with operators characteristic for dynamic-epistemic logics.

Our logic is expressive enough for describing the two levels of evolution of the multiagent systems, i.e. it can express the evolution of the system as well as the evolution of the epistemic status of the agents. Validity and satisfiability in a model can be expressed in our syntax, and this feature, combined with the possibility to characterize processes and finite maximal consistent sets argue on utility of our logic.

In the context of decidability, our sound and complete axiomatic system provides a powerful tool for making predictions on the evolution of the concurrent distributed systems.

With respect to dynamic-epistemic logics, our logic came with the expressivity given by the algebraical semantics. Also the ontology of the agents is more complex than in the classical approaches. We can speak about the knowledge of agents $A^{\prime}, A^{\prime \prime}$ but also about the knowledge of the agent $A^{\prime} \mid A^{\prime \prime}$ which subsumes the knowledge of A^{\prime}, of $A^{\prime \prime}$, and the knowledge derived from the fact that what A^{\prime} and $A^{\prime \prime}$ see are modules running in parallel as parts of the same system. Similarly the knowledge of $\alpha . A$ is the knowledge of an agent that, in a future moment, might became the agent A. All these aspects are new for epistemic logics and important in applications.

With respect to the logics of processes, our logic can be seen as an extension of HennessyMilner logic with the parallel operator and with epistemic operators. The lasts can be also used to express global properties over unknown contexts. In this respect the epistemic operators can be considered as alternative to the guarantee operator of the classical spatial logics that eventually produces a logic adequately expressive and decidable. In spatial logic the guarantee operator is introduced, as the adjoint of parallel operator, by the following semantics
$\mathcal{M}, P \models \phi \triangleright \psi$ iff for any $P^{\prime} \in \mathcal{M}$ such that $\mathcal{M}, P^{\prime} \models \phi$ and $P \mid P^{\prime} \in \mathcal{M}$ we have $\mathcal{M}, P \mid P^{\prime} \models \psi$.
Our logic is more expressive than guarantee-free dynamic spatial logic, as the first can express global properties, but less expressive than the classic spatial logic. Indeed, using the guarantee operator and the characteristic formulas, we can express our epistemic operators in classic spatial logic, while guarantee operator cannot be expressed by using our logic:

$$
K_{A} \phi \stackrel{\text { def }}{=} f_{A} \mid \top \wedge\left(\neg\left(f_{A} \mid \top \rightarrow \phi\right) \triangleright \perp\right) .
$$

Our approach has also a theoretical relevance on the direction of introduction a class of equational-coequational logics for process algebraical semantics. As underlined before, such logics would be able to encode properties involving the program constructors as well as properties concerning the transition systems or observational equivalences. All these are directly related with important applications of distributed systems.

References

[1] A. Baltag, A Logic for Suspicious Players: Epistemic Actions and Belief Updates in Games. Bulletin Of Economic Research vol. 54(1), 2002
[2] A. Baltag and L.S. Moss. Logics for Epistemic Programs, Synthese vol. 139(2) (Special Section: Knowledge, Rationality and Action). Ed. J. Symons, J. Hintikka, Springer Science-Business Media B.V. ISSN: 0039-7857, 2004
[3] A. Baltag and L.S. Moss and S. Solecki. The Logic of Public Announcements. Common Knowledge and Private Suspicions, CWI Technical Report SEN-R9922, 1999
[4] J. F. A. K. van Benthem. Logic for information update, In Proc. of TARK01, 2001
[5] S. D. Brookes and C. A. R. Hoare and A. W. Roscoe, A Theory of Communicating Sequential Processes, Journal of ACM vol.31(3), 1984
[6] C. Calcagno, L. Cardelli and A. D. Gordon, Deciding validity in a spatial logic for trees, In Proc. of ACM Workshop on Types in Language Design and Implementation, 2003
[7] L. Caires and E. Lozes, Elimination of Quantifiers and Decidability in Spatial Logics for Concurrency, In Proc. of CONCUR'2004, LNCS vol.3170, 2004
[8] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II), In Proc. of CONCUR'2002, LNCS vol.2421, 2002
[9] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I), Information and Computation vol. 186/2, 2003
[10] L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mobile Ambients, In Proc. 27th ACM Symposium on Principles of Programming Languages, 2000
[11] L. Cardelli and A. D. Gordon, Mobile Ambients, In Proc. of FOSSACS '98, 1998
[12] M. Dam, Relevance Logic and Concurrent Composition, In Proc. of Third Annual Symposium on Logic in Computer Science, IEEE Computer Society, 1988
[13] M. Dam, Model checking mobile processes, Information and Computation vol.129(1), 1996
[14] H. van Ditmarsch, Knowledge games, Bulletin of Economic Research vol.53(4), 2001
[15] R. Fagin et al. Reasoning about Knowledge, MIT Press, 1995
[16] M. Gabbay and A. Pitts, A New Approach to Abstract Syntax Involving Binders, Formal Aspects of Computing, to appear
[17] J. Gerbrandy and W. Groeneveld, Reasoning about information change, Journal of Logic, Language and Information vol.6, 1997
[18] D. Harel et al. Dynamic Logic, MIT Press, 2000
[19] M. Hennessy and R. Milner, Algebraic laws for Nondeterminism and Concurrency, Journal of JACM vol. 32(1), 1985
[20] J. Hintikka: Knowledge and Belief, Ithaca, N.Y.: Cornell University Press, 1962
[21] A. Kurz and D. Pattinson, Coalgebras and Modal Logic for Parameterised Endofunctors, CWI Technical Report, SEN-R0040, 2002
[22] A. Kurz and J. Rosicky, Modal Predicates and Coequations, In Proc. of CMCS’02, ENTCS vol.65.1, 2002
[23] R. Mardare. Logical analysis of Complex Systems. Dynamic Epistemic Spatial Logics, Ph.D. thesis, DIT, University of Trento, 2006
[24] R. Mardare and C. Priami. Decidable extensions of Hennessy-Milner Logic, In Proc. FORTE'06, LNCS vol.4229, 2006
[25] R. Mardare and C. Priami. Dynamic Epistemic Spatial Logics, Technical Report, 03/2006, Microsoft Research Center for Computational and Systems Biology, Trento, Italy, 2006, available from http://www.cosbi.eu
[26] R. Mardare. Dynamic-Epistemic reasoning on distributed systems, Technical Report, 2007, Microsoft Research Center for Computational and Systems Biology, Trento, Italy, 2006, available from http://www.cosbi.eu
[27] R. Milner, A Calculus of Communicating Systems, Springer-Verlag New York, Inc., 1982
[28] R. Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge University Press, 1999
[29] R. Milner, J. Parrow and D. Walker, Modal logics for mobile processes, TCS vol.114, 1993
[30] D. Sangiorgi, Extensionality and Intensionality of the Ambient Logics, In Proc. of the 28th ACM Annual Symposium on Principles of Programming Languages, 2001
[31] D. Sangiorgi and D. Walker, The Pi-calculus. A Theory of Mobile Processes, Cambridge University Press, 2001
[32] C. Stirling, Modal and temporal properties of processes, Springer-Verlag New York, Inc., 2001

[^0]: ${ }^{1}$ We did not consider the communication transition as, on the logical level, we can express it as a composition of dynamic operators.

[^1]: ${ }^{2}$ Observe that not any set of processes has a size, as for an infinite set it might be not possible to have the maximum required. However we accept the definition and we will use it only where it is well-defined.

[^2]: ${ }^{3}$ Else we can replace $P^{\prime}, P^{\prime \prime}$ with $(h+1, w)$-related processes having the same (h, w)-normal forms

[^3]: ${ }^{4}$ This construction is not necessarily unique.

[^4]: ${ }^{5}$ We count the processes up to structural congruence.

[^5]: ${ }^{6}$ We recall that we use a to range over \mathbb{A}^{*}, while α is used to refer to arbitrary objects of \mathbb{A}.
 ${ }^{7}$ The function I associates to each agent the process it observes. An atomic agent sees always the process 0 .

