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Abstract

A multi-dimensional file is one whose data are characterized by several attributes, each
specified in a given domain. A partial match query on a multi-dimensional file extracts all
data whose attributes match the values of one or more attributes specified in the query. The
disk allocation problem of a multi-dimensional file, F', on a database system with multiple
disks accessible in parallel is the problem of distributing F' among the disks such that the
data qualifying for each partial match query are distributed as evenly as possible among the
disks of the system. We propose an optimal solution to this problem, for multi-dimensional
files with pairwise prime domains, based on a large and flexible class of maximum distance
separable codes, namely the redundant residue codes. We also introduce a new family of residue
codes, called the redundant non-pairwise prime residue codes, to deal with files whose attribute

domains are non-pairwise prime.

Keywords: Non-uniform multi-dimensional file, partial match query, strictly optimal disk allo-

cation, redundant pairwise-prime residue code, redundant non-pairwise prime residue code.

1 Introduction

Parallel database systems are essential to important real-life applications that require to manage
extremely large volumes of data, often of the order of terabytes, which cannot be stored in a
single disk. The applications include spatial databases, airline reservation systems, cartography,
world wide web, and so on. Queries on such large databases involve the retrieval of a big portion
of data, often under critical time constraints. Therefore, to retrieve qualifying data in parallel is

mandatory. Before proceeding further, let us define a few terminology and notations.

*This work is partially supported by Texas Advanced Research Program TARP-003594013 and MIUR REAL-
WINE research grant in Italy. A preliminary version of this paper appeared in [4].



In this paper, we consider database systems of multi-dimensional files, each made up of buckets,
each, in turn, made up of records.
A record is an n-tuple < ry,...,r, > of attributes such that the value of the jth attribute r;
belongs to the interval I; = [L;, R;], for 1 < j <mn.
In order to define a bucket, let us partition uniformly the values of the jth attribute of a
. . Rj—L;+1 .
record into m; groups, each of size [%-‘, and let m; be termed the domain of r;. The

bucket < x1,...,x, > of respective domains my,...,m, is the set of the records < r1,...,r, >

such that the value of r;, for 1 < j <n, belongs to the z;-th group of I;. More formally,

Rj—Lj;+1 Rj—Lj+1 .
Lj—|—IV%-‘:CJ'STJ'SL]‘—}—[%-‘(CW—}—I)*I lfOSCE]‘Sm]'72,

LTy ey Ty D= < T1yuen, Ty > Vi
Lj+ [7’“;;1'“-‘ zj <rj < R; if 2, =mj — 1,
Thus, the bucket < z1,...,z, > stores at most II7_, [RJ_TLJ’H-I records. Finally, a multi-
dimensional file F(my,...,my) of domains my, ..., my, is the set of all II7_; m; buckets < z1,...,z, >

where z; € [0,...,m; — 1] and 1 <i < n.

Example 1: Consider two attributes that range, respectively, in I = [1...100] and I, = [1...50].
Fixing the domains m; = 20 and mgy = 10, partition I; and I, respectively, into 20 and 10 groups
of equal size. Specifically, the ith group of I; contains the values [5+1, 5i+2, 5i+3, 544, 5(i+1)],
for 0 < i <19, of the first attribute. Thus, the bucket < 2,3 > contains the records < 71,79 >,
where 11 <7y <15 and 16 < ro < 20. The multi-dimensional file (20, 10) consists of all the 200

buckets < x1,z2 >, where 0 < 21 <19 and 0 < 23 < 9, and each bucket stores 25 records.

A uniform p-ary multi-dimensional file F(p,...,p) is defined as one in which all the domains
assume the identical value p. Otherwise it is called a non-uniform multi-dimensional file. If the
n domains my, ..., m, are pairwise prime, F(m1,...,my;) is said to be a non-uniform, pairwise
prime multi-dimensional file.

The most common operation on a database system is the information retrieval. Formally,

Definition 1 Given a multi-dimensional file F(m1,...,my), a match query ¢ =< q1,...,¢, >

on F retrieves the bucket < qi,...,q, >. A partial match query (PMQ) is one whose ith attribute



q; 1s either specified or unspecified, and retrieves from F the set of buckets that match the query g
on the specified attributes. Such buckets are said to qualify for q. The query response set, QR(q),
of a PMQ with the unspecified attributes g;,,¢;,,-..,q;, consists of N(q) = Hlemij buckets that

qualify for q.

As an example, given the file F'(20,10), the PMQ ¢ =< 5,% > extracts N(< 5,* >) = 10
buckets defined as {< 5,7 > |0 < i < 9}.

In real database systems, however, the number of attributes is much larger than two. Typically,
there are thousands of buckets, and a considerably large number of them may qualify for each
PMQ. In such a context, database systems need to store their files on multiple disks.

A parallel database system is a database system that stores multi-dimensional files on multiple
disks that can be read or written simultaneously. This additional capability may improve signifi-
cantly the time required for data transmission if a suitable scheme is adopted for data distribution
among the disks. In other words, if the data that qualify for a query are almost evenly distributed
among the disks available in the database system, the response time is reduced by a factor equal
to the number of disks. In fact, distributing F'(m,...,m,) into a parallel database system of
D disks, denoted as dy,...,dp—_1, the time to retrieve the query response set QR(q) of a partial
match query, g, is proportional to the number of buckets that qualify for ¢ in each disk. Precisely,
the response time of a query is proportional to RT'(q) = maxo<;<p—1{N;(q)}, where N;(q) is the
number of buckets that qualify for ¢ stored on disk d;. Thus, the response time is minimum when
RT(q) = [%1, i.e., when the query response set QR(q) is balanced among all the available
disks in the system. Therefore, an optimal solution to the disk allocation problem is equivalent
to finding a load balanced distribution of the buckets among the multiple disks of the system.

We adopt the following criteria for optimality.

Definition 2 [1, 7] Given a system with D disks that can be accessed simultaneously, a disk
allocation strategy is termed optimal for a specific partial match query ¢ if it evenly distributes
N(q) among the D disks, thus achieving a response time of [%] for q. Moreover, a disk

allocation strategy is called strictly optimal if it is optimal for all partial match queries.



From now on, whenever the domains of the attributes are clear from the context, F(m, ..., my)

will be referred to as simply F.

2 Previous Work on Disk Allocation Problem

The problem of minimizing the response time of PMQs on uniform multi-dimensional files has
received a lot of attention in the past. For example, one of the first approaches to the problem
proposed of distributing F' among D disks with the help of a (pseudo)random number generator,
with 1/D as the probability of assigning a bucket to a particular disk. This solution had no
constraints on the number of disks as well as on the cardinality of the domains of the attributes.
However, it did not guarantee optimality for any class of partial match queries.

Subsequently, Fang et al. [6] interpreted each bucket of F(myq,...,my,) as a point of the n-
dimensional space mi1 X ... X my,, and suggested to partition the buckets into two geometrical
similar groups, that is in two groups with almost the same spanning tree and almost the same
set of short spanning paths. They proved that, as a consequence of the geometrical similarity in
each group, almost the same number of buckets qualifies for each PMQ. This solution, however,
can at most halves the query response time. Moreover, the partitioning of F' in more than two
groups seems quite intricate and therefore such a method is not suitable for generalizations.

A different approach, due to Du and Sobolewski [5], assumed a D-disk system and assigned
the bucket < z1,...,z, > to the disk d; where j = (37 ;) mod D. This method has been
shown to be always strictly optimal for PMQs with exactly one unspecified attribute. Moreover
for PMQs with two unspecified attributes, the method is strictly optimal when the disk system
as D =2 or D = 3, or when the attribute domains satisfy m; = 0 or 1 mod D, for 1 < i < n.

Later, Kim and Pramanik [8] solved the disk allocation problem optimally for both PMQs with
exactly two unspecified attributes and for PMQs with the domain of one unspecified attribute
larger than D. Their solution assigns the bucket < z1,...,z, > to the disk dj;, such that j =

([+]72 z;) mod D, where [+] denote the bitwise Exclusive-OR operation.



In [7], Faloutsos and Metaxas followed a completely different approach. Given a binary multi-
dimensional file F with n-attributes and D = 2* disks, their solution assigns to each disk a set of
buckets which form a linear (k — 1)-error correcting binary code, C. The code definition implies
that any two buckets stored in the same disk differ by at least k attributes. This approach is
always optimal for PMQs with at most (k — 1) unspecified attributes, and strictly optimal when
C is a mazimum distance separable (MDS) code [10]. Unfortunately, for many pair of values n, k,
there are no MDS codes, so rarely a strictly optimal solution can be found.

Abdel-Ghaffar and El Abbadi [1] extended the results of [7] to uniform p-ary multi-dimensional
files, with p > 2, and formally established the equivalence between strictly optimal allocation
strategies and mazimum distance separable codes. Based on such an equivalence and using the
fact that the Reed-Solomon codes form a large family of p-ary MDS codes applicable to p-ary
multi-dimensional files with at most p — 1 attributes, the designed strategy is strictly optimal for
files with at most pP~! buckets and uses D = p’ disks, where ¢t < p — 1. This solution does not

work for non-uniform files as well as for files whose records have more than p — 1 attributes.

3 Our Contributions

This paper presents the first systematic solution to the disk allocation problem for non-uniform
pairwise-prime multi-dimensional files. It can be considered as an extension of the results in
[7, 1]. Our method takes full advantage of all (possibly a very large number) disks, and hence the
response time is drastically reduced. The solution is based on a very large and flexible class of
semi-linear MDS codes, called the redundant residue (pairwise prime) codes [2]. The existence
of such a family of codes guarantees strictly optimal solution and alleviates the limitations of the
previous code-based disk allocation strategies which mainly suffer from the lack of enough MDS
codes for files of different sizes. Our solution handles non-uniform multi-dimensional files that
model real data much better than the uniform multi-dimensional files, as argued below with an

example.



Example 2: Let us consider a multi-dimensional file, F', having three integer attributes whose
intervals are very skewed. Let the interval of the first attribute be I; = [1..1000], that of the
second be I, = [1..21], and that of the third be I3 = [1..9]. Thus, there are 1000 x 21 x 9 records
altogether. Assuming that each disk page contains no more than 100 records, let us determine
a suitable domain for each attribute such that a bucket has almost the same size as a disk page
and each bucket is full.

First, we consider the scenario when all the three attributes have the same domain value
mi = mg = mg = p. Then the bucket < z1,22,2z3 >, with 0 < z; < p—1for 1 <4 < 3,
contains the records < rq,72,73 > such that L; + [w-‘ x; <7 < L+ [W-I (x; +1)—1.

Specifically,

e For p = 4, we obtain very large buckets that do not fit in one disk page. Indeed, there are

250 x 6 x 3 records stored in each bucket.
e For p = 10, each bucket consists of 100 x 3 X 1 records, which is still too large in size.

e For p = 20, each bucket has at most 50 x 2 x 1 records. Although a bucket perfectly fits
in a page, the file F is mapped into 20® buckets, most of which are empty (consider, for

example, all the buckets with z3 > 1).
On the other hand, if different domains are allowed a much better load factor can be obtained:

e For my = 20, mo = 11 and m3 = 9, the bucket < z1,z2,23 >, for 0 < z1 <19, 0 <25 <10
and 0 < z3 < 8, consists of the records < 71,79,73 > such that 1 + z; [%-‘ < r <
(r1+1) [%], 1+ o [%1 <rs<(xz2+1) [%1, and 1+ z3 < r3 < (z3+1). Hence, each
bucket < z1, 9,3 > consists at most of 100 records and the file F' has 20 x 11 x 9 = 1980

buckets, all of which are full.

This example shows that partitioning all attributes of the file with the same domain, one can
get many empty buckets. On the contrary, if different domains are used for different attributes,

a good load factor of the buckets can be obtained.



Back to the proposed disk allocation strategy, note that the family of redundant residue codes
applies only to files whose attributes have pairwise-prime domains. It is worth to point out that
this is not a serious limitation since the attribute domains are selected when the disk allocation
strategy is designed. For the sake of completeness, we introduce a new class of Redundant Non-
Pairwise Prime Residue Codes in order to handle attributes with non-pairwise prime domains.
This may lead to a slowdown with respect to the optimal solution by a predetermined factor.

The remainder of the paper is organized as follows. Section 4 reviews basic concepts of the
coding theory that are relevant to our work. Based on the redundant pairwise prime residue codes,
Section 5 proposes a strictly optimal disk allocation strategy for non-uniform multi-dimensional
files whose attributes have pairwise-prime domains. In Section 5.1, we study how to guarantee
strict optimality when either the number of attributes of the file or the number of disks in the
system changes. Finally, a new family of redundant residue codes, called the redundant non-
pairwise prime residue codes, is introduced in Section 6 to solve the disk allocation strategy for
non-uniform multi-dimensional files whose attributes have non-pairwise prime domains. Finally,

conclusions are offered in Section 7.

4 Coding Theory Framework

Given a set of n positive integer radices, denoted as mi,mo,...,my, let S =m1 X mo X ... XMy

be the space of all n-tuples of size M = II7;m;. A code, C, is a subset of S. Each n-tuple of S
which is also in C, is called a codeword. Since S is defined on n radices, C has length n. Let the
size, v, of C be its cardinality. If all radices are equal to p > 2, C is called a p-ary code.

A code C is linear if it is closed under the addition and subtraction operations, as defined
below. Given two codewords z =< z1,Z39,...,%Z, > and y =< y1,¥2,---,Yn > of C, both the
n-tuples z + y and = — y as defined below are also codewords of C.

z +y =< (21 4+ y1) mod mq, (x2 + y2) mod mo, ..., (zn + y) mod m, >, and

z —y =< (z1 —y1) mod my, (z2 — y2) mod mo, ..., (z, — yn) mod m, >.



Let the information set Is, = {m;,, m,, ..., m; } of a code C be a set of k indices such that for
any k-tuple a;,, a;,, - - -, a;,, where a;; € [0,m;; —1], there is a unique codeword < x1,%2,...,Zn >
€ C such that z;; = a;; for 1 < j < k. Hence, if a code C' has an information set Ig,, then the
size of C' is larger than or equal to v = Hlemij. Such a code C is said to be a systematic code.

For a linear code C, the Hamming weight of a codeword x =< z1, zo, ..., T, > is the number
of non-zero components z;; and the Hamming distance between two codewords is the number
of components in which they differ. The minimum distance, d, of C is the minimum Hamming
distance between all pairs of distinct codewords in C'. Since the all-zero codeword always belong
to a linear code, the minimum distance d > 0 and the minimum Hamming weight of the codewords
of C' coincide.

The concept of minimum distance is essential for defining the error control capabilities of a
code. In fact, representing the error as an n-tuple e =< eg, e2, ..., e, >, and denoting a codeword
z subject to error e as x + e, a code of minimum distance d is able (i) to detect at least all errors
e with Hamming weight at most d — 1, and (ii) to correct all errors e with Hamming weight
< [(d—1)/2]. It follows directly that among all the codes of a given length n and size -y, the
codes with the highest error control are those with the largest minimum distance d.

From now on, C = [n,, d] will denote a linear code of length n, size v and minimum distance
d. Furthermore, when max {Hlemji} < v < max {Hfjllmji}, the inequality d < n —k+1
holds, which is known as the Singleton bound [10]. The class of codes that satisfy the equality
d = n—k+ 1 plays an important role in our solution approach as evident from the following

definition.

Definition 3 [10] A code C = [n, 7, d] with minimum distance d = n—k+1 is called ¢ maximum
distance separable (MDS) code which is also a systematic code. Any k radices of an MDS code,

C, form an information set.

Among the MDS codes, of particular interest are the Redundant Pairwise-Prime Residue

Codes, which are defined on a Redundant Residue Number System (RRNS). An RRNS has n



pairwise-prime positive radices, mi, mg, ..., Mg, Mk41,--., My, called moduli. Let the first k
moduli be termed as the non-redundant moduli, while the remaining n — & moduli be the re-
dundant moduli. Let M, = Hlemi and Mg = IIl_, , ym; be the product of, respectively, the
non-redundant and the redundant moduli. Also let M = II7"_;m; be the product of all moduli.
It is well known that every integer X € [0, M) can be uniquely represented by a residue vector
=< Z1,%2,...,Zy > such that z; = X mod m;, for 1 <i < n. Clearly, 0 < z; < m;. Similarly,
given a residue vector z, the corresponding integer X can be uniquely determined by applying the
Chinese Remainder Theorem [2]. The residue representations of the integers in the range [0, M)

can be partitioned into codes as follows:

Definition 4 For fized k € [1,...,n — 1] and given a set of n pairwise-prime redundant moduli,
M1, M2,y My Mg 15 - - -, My, let Mg = Hlem,-, Mg =11}, . ym;, and M =1I}"_ym;. For fized
a € [0,M — My,), the redundant residue RR-(n,k,a)-code (or briefly, RR-(n,k)-code) consists
of all the residue vectors representing integers in the range [a, a + Myg). In particular, for o =0,

RR-(n,k,0)-code consists of all the residue vectors representing integers in [0, Mry).

Every codeword of an RR-~(n, k, a)-code has an information part consisting of the first k residue
digits and a parity part, consisting of the remaining n — k residue digits. Moreover, as proved
in [9], C is semi-linear, i.e., it is linear under certain conditions. All the main properties of the
linear codes also hold for the semi-linear codes.

In particular,

Lemma 1 [9] An RR-(n,k)-code C has a minimum distance d if and only if

maz {0 m;, b > Mg > maz{1% " m,;. for 1 <4 <mn.
{ i=1 ]z} R Z { i—=1 jz}a SIS

Therefore,

Lemma 2 (2, 9] For fized k € [1,...,n — 1], the RR-(n,k)-code C defined by the moduli
My .oy Mky Mgyly--- My Such that m; < mg < ... < Mg < Mgy < ... < my has mini-
mum distance d = n — k + 1 and hence it is an MDS code. Moreover, varying the number k of

non-redundant moduli from 1 to n — 1, we obtain n — 1 different MDS codes.



Procedure Decluster (k, F(ma, ..., Mg, Met1,..., M), Co = [n,I1¥_1m;,d], D = 7 1ms)

1. Based on the seed code Cp, partition S =m1 X ...mg X Mrt1 X My,
into D codes Cy,...,Cp—_1 such that C; consists of the residue representations

of the integers in the range [jTI%_,m;, (j + 1)TI5_;m;).

2. For 0 < j < D —1, assign code C; to disk d;.

Figure 1: Procedure Decluster

Fact 1 Givenn moduli mq,...,mg, Mg41,..., My and a fized integer k € [1,...,n—1], let M1, =
Hé“:lmi and Mp =11} . ym;. Then, the entire space S = m1 Xmg X ... Mk X Mg i1 X ... XMy can

be partitioned into My subspaces, denoted as Co,C1,...Curp—1 such that C; = RR-(n,k,jMjy).

5 Disk Allocation Strategy Based on Redundant Residue Codes

We are now ready to present the Decluster procedure, which solves the disk allocation problem for
multi-dimensional files whose attributes have pairwise prime domains. For fixed k € [1,...,n—1],
the procedure Decluster in Figure 1 distributes a file F'(mq,...,mg, mg41,-.., my) among a set
of D = TI_, . ;m; disks denoted as dg,ds,...,dp_1, with the help of the RR-(n,k,0)-code =
Co = [n,TT%_;m;, d], whose codewords are the residue representations of the integers in the range
[0, Hé“:lmi). In this paper, Cy will be called the seed code.
Let us prove some properties of the above procedure.

Lemma 3 The Decluster procedure guarantees that every partial match query (PMQ), q, on the
file F with at most d — 1 unspecified attributes has response time RT(q) = 1.

Proof. No more than one bucket in each disk qualifies for ¢ because the seed code has minimum

distance d, and thus, two buckets stored in the same disk must differ in at least d attributes. O

Theorem 1 Let the pairwise-prime domains of the attributes of the file F(mq, ..., mg, mgi1,...,mMy)
be arranged in an increasing order such that m; < ... < mg < Mgy < ... < my. For fized

k € [l.n — 1], given the seed code Co = [n,11¥_ m;,n — k + 1], the associated Decluster proce-
dure leads to a strictly optimal disk allocation strategy for every PM(Q) q on F. Hence, using
D =TI}, . m; disks, the response time for every PMQ, q, whose response set has size N(q) is
given by RT(q) = [%W.

10



Proof. Fixed k, for any partial match query with at most n — k unspecified attributes, the result
follows from Lemma 3 and the fact that N(q) < D.

For PMQs with more than n — k& unspecified attributes, let ¢ be an arbitrary query whose

attributes ¢;,, . .., g;, are specified, and the remaining n —u attributes satisfy ¢;; = a;; foru+1 <
Jj<n.
Let M, = II7_,  ym;; be the product of the domains of the unspecified attributes of ¢g. By

the Chinese Remainder Theorem [2], there is a unique integer X in the range [0, M;) such that
X = aj,; modm;, ;, for 1 < j < n—wu. In the range [0, M), where M = II'_;m;, there
are % strings < z1,...,%p, > such that z;, , = a;,,, for 1 < j < n —u. Those n-tuples
correspond to the integers X + kM, where 0 < k < %, and verify (X +kM;) = X mod m;,; for
1 < j <n—u. Recall that by Fact 1, the code C} associated with the disk d;, for 0 < j < D —1,
consists of the residue representations of the integers in [ijZlmi, (j+ l)Hlemi). There are at
most ’VE’%—‘ buckets qualifying for ¢ among the codewords of C;. Hence the response time is
RT(q) = [%{nz-‘ Since N(q) = MMS and D =TI7_, . ;m;, for every PMQ g, the claim follows:

- 25 -4 2 - 4.

5.1 Capturing Dynamic Scenario

Our solution to the disk allocation problem can efficiently manage situations in which either (i)
the number of disks available in the system changes, or (ii) the number of attributes in a file
changes, without redistributing the entire multi-dimensional file from scratch among the disks.
Nonetheless, in either cases, some buckets must be moved from one disk to another. We say that
such buckets must be relocated.

Assume a pairwise-prime multi-dimensional file F(mq,...,mg, mgi1,...,my)

with my; < ... < mg < mgy1 < ... < my, that has been distributed by the Decluster procedure

11



among D =T1I}" ,  ;m; = Mg disks using the MDS seed code Cy = [n, M1, = ¢ mi,n —k +1].
First, suppose the number of available disks increases from D to myD. To reduce the response
time, fewer buckets will be assigned to each disk. The file F' will be declustered using the new

MDS seed code Ct = [n, ];/[nf ,n — k + 2], which assigns ]:/[n—t buckets to each disks in the new

configuration. This means that each code stored at the beginning into a single disk d;, for

0 < j < Mg — 1, is now spread out among the my, disks, {myd;,mpd; +1,...,(my + 1)d; — 1},

Moreover, the new solution is strictly optimal because the new response time is RT " (q) = [%-I .

Similarly, if the number of available disks reduces from Mpg to mﬂ;ffl, a new MDS seed code
C~ = [n, Mymy1,n—k] will be used to decluster F. The buckets distributed in my1 consecutive
disks in the initial disk system, are now collapsed into a single disk of the new disk system. The
new disk allocation remains strictly optimal. Note that the response time increases because fewer
disks are available, and only the PMQ with no more than n — k — 1 unspecified attributes can
now exhibit constant response time.

Finally, observe that when the number (D) of disks available is not a multiple of the at-
tribute domains, the fastest disk allocation strategy achievable with our strategy will involve
D =117, _, ,1m; disks where D is the product of the u largest domains of F such that IT?, _, m; >
D >T1I7_, _, . 1m;. For every PMQ, g, the response time RT(q) using only D disks is slower than
the response time RT™(q) achieved using all the D disks. However, the slowdown is upper bounded
by my—_, because RT(q) < RT*(q)mp—y.-

Suppose now that D remains unchanged, while the number of attributes of the file F' changes.
Although this situation may have less impact in practice, this could be the case when more
refined searches, using a new attribute of F, are performed or a previously used attribute of the
file becomes obsolete. If F' is searched according to a new attribute n + 1, whose domain is my41,
each bucket < aj,...,a, > is partitioned into the m,; buckets. These are < ay,...,an,0 >,
< Qlyeslp, 1 >, oo, < Q1,...,Gn, Myt — 1 >, one for each value of the (n + 1)-th attribute.

The number of buckets increases from M = I ;m; to M' = Mmyy,. Since the number of

12



disks is unchanged, more buckets must be assigned to each disk. Assuming the MDS C =
[n, M1,,n —k+ 1], as the seed code according to which F' was distributed, the new seed code will
be C* = [n+ 1, Migmy41,t] where t < n —k + 1. Depending on the value of m,_;, C* may or
may not be an MDS code, and therefore optimality is no longer guaranteed. About the relocation
process, the bucket < ay,...,a, > initially stored into the disk d; is now partitioned into my 1
buckets, as mentioned above. Precisely, the buckets < ay,...,a,,Zp+1 >, which is the residue

representation of X + kM for fixed k € [0,mp41 — 1], will be assigned to the disk d[ Xk J,

My omp41
according to Fact 1.

A similar reasoning applies when the number of attributes of F' decreases.

6 Redundant Non-Pairwise Prime Residue Codes

The solution proposed in the last section works for pairwise-prime files. This is not a strong
constraint because the domains of the attributes are selected while the database is designed
depending on the original interval of the attributes and on the size of the disk page (see Example
2). Nevertheless, for the sake of completeness, let us extend our solution to the case of non-pairwise

prime domains.

Consider a set of n non-pairwise prime moduli m, mo, ..., mg, Mg41, ..., My and also consider
all the n-tuples < z1,...,z, > for z; € [0,m;), of the n-dimensional space S = mj X...xmy. Let
M =1I7_;m; and 7 = L.c.m.(m, mg, ..., my) be, respectively, the product and the least common

multiple (l.c.m.) of the n moduli.

In contrast to the pairwise-prime case, there are n-tuples < z1,...,z, > € S which do not
represent any integer X. That is, there is no integer X such that z; = X mod m;, for 1 < i < n.
In fact, a general form of the Chinese Remainder Theorem [11] implies that if S consists of M
strings, only the integers in [0, 7) have a residue representation < z1,...,z, > € S. Precisely,

if g;; = g.c.d(m;, m;) is the greatest common divisor (g.c.d.) of the two moduli m; and m, only

13



those n-tuples which satisfy the congruence
z; = xj mod g;j, for 1 <4,5<n

are valid integer representations in the n-dimensional space S.
Note that those 7 valid residue representations form a subset of S, which is a code by definition.
However, the minimum distance of such a code is unknown (if the code itself is not generated).

To overcome this limitation, some explicit redundancy can be added as follows.

Definition 5 Given n non-pairwise prime moduli my,...,mg, Mg41,...,Mp,

for fized k € [1,...,n—1], let the first k moduli be called non-redundant, and the remaining n—k
moduli be called redundant. Moreover, let A = l.c.m(my, mo,...,mg) and 7 = l.c.m(my, ma, ..., my).

The non-pairwise prime redundant residue code or NPRR-(n,k)-code, C, consists of the set of

valid integer representations, i.e. the set of representations of all integers in [0, A).

It is easy to see that the NPRR-(n, k)-code C is a semi-linear code. To derive the minimum

distance of the NPRR-(n, k)-code C, let

e o denote the l.c.m. of the n — k redundant moduli;

A denote the L.c.m. of the k£ non-redundant moduli;

7 denote the l.c.m. of all n modulj;

e partitioning the n moduli into two arbitrary sets sq 1 and sg— of sizesd —1 and n—d +1
respectively, let s, , and P be the l.c.m of the moduli in 841 and sz—,respectively. In

other words, us,_, = l.c.m.(m;; |m;; € s4—1) and s = l.em.(mi;|m;; € s7=7);

e partitioning the n moduli in two arbitrary sets s; and s of sizes d and n — d respec-
tively, let v,, and Vs be the l.c.m of the moduli in sy and sz, respectively. That is,

vs, = l.c.m.(mj;|m;; € sq) and Vs = l.em.(mi;|m;; € sg);
e S; be the set of all possible sy subsets among {my1,...,m,};

e S; 1 be the set of all possible sy 1 subsets among {my,...,m,}.
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Theorem 2 Given the radices my,...,my for fized k € [1..n — 1], the NPRR-(n,k)-code C has

the minimum distance d if and only if the following relation holds:

maZs,cS Y4 > _P > maz = Hea-y
S - Sd— — .
4=0d ng(Vsda VsE) ng(Aa p) dmi=Rd-t ng(#sd_laﬂsd_—l)

Proof. The semi-linear NPRR-(n, k)-code, C, has minimum distance d if no codeword has
Hamming weight < d — 1 (except for the all-zero codeword) and if there is at least one code-
word of Hamming weight d. A codeword with d — 1 non-zero digits represents an integer X =
X' fhs s for some s4_1. The smallest value of X is obtained for X’ = 1 and min,, ,es,_, (usd__l).

> A,

Consequently, the corresponding word is not a codeword if and only if min,, ,es, , (usd__l)

NSd_lusd_—l
ng(uSd_l ’p/s_dfl ) :

or equivalently
Hsg_1

max S _—
8d—1€54—1 (SCd(Msdl ,Msd_l)

)ZAWhereT:

Now, if a codeword of Hamming weight d exists, the above condition must be denied for any

subset of d digits. Hence, a < A.
maXs,es, (gcd(usd ,usg)>

From the above two conditions and recalling that 7 can be expressed as 7 = %, the claim

follows. =

For non-pairwise prime redundant residue codes, Fact 1 can be rewritten as follows:

Fact 2 For fized k € [1,...,n — 1] and given a set of n non-pairwise prime radices my,..., My,
let mqy,...,mg and mgi1,...,my be respectively the non-redundant and the redundant moduli.
Considering the NPRR-(n, k)-code C = [n,A,d], all the integers in [0,7), can be partitioned into
% codes, each having the same size and the same distance as C. More precisely, code C; for
0 < j < % —1, consists of the set of residue representations of the integers X € [jA, (j +1)A —1].

Note that Cy = C.

Proof. Follows directly by observing that the Hamming distance of the two codewords z; and
z2 belonging to Cj is the same as the Hamming distance between the two codewords z; + jA and

x2 + jA belonging to C;, where 0 < j < T — 1. o
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Procedure Partition (S =mi X ... X my, Co)
1. Build % codes Co,C1,...,Cz_; as defined in Fact 2, andlet Z=CoUC1U...UCz_;.
2. From the remaining (M — 7) n-tuples of the space S = m1 X ... X my, find a set of %
n-tuples T = {T(0),T(1),...,T (% — 1)} such that
e T(0) is the all-zero codeword;
e for every pair i,j, with 1 <i < j < X T()—T(j) € Z or T(j) — T(i) & Z.

3. Compute the multiple-sum between each code Co, C1, ..., Cz _; and each n-tuple of T. That
is, compute the M/A sets C;[T(i)], where 0 < j<7/A—1and 0<i< M/7 —1.

Figure 2: Procedure Partition

Finally, let the multiple-sum set, C[z] = {z + w|w € C}, be obtained by the modular sum,
digit-by-digit, of the n-tuple x over all the n-tuples of the code C.
Now, for a given NPRR-(n, k)-code Cj, the entire n-dimensional space S = mj X ... X m,, can

be partitioned by the algorithm in Figure 2.

To prove the correctness of the above procedure, let us prove the following.
Lemma 4 The set of subsets {C;[T(i)] | 0<j<7/A—-1and0 <i < M/7 —1} forms a
partition of the space S =mq X ... x my. Moreover, each subset C;[T(i)] is a code [n, A, d].
Proof. First note that C;[T'(0)] = C}, for 0 < j < 7/A — 1. Next let us prove, by contradiction,
that C;[T'(i)] N Cr[T(s)] = 0 for any choice of 4, j,r,s. Suppose that the two n-tuples X (j,7) €
C;[T(i)] and Y (r,s) € Cr[T(s)], obtained by the residue vectors X, Y € Cy, are equal. W.l.o.g.
assume j > r. Note that X(j,4) is the sum of the residue representation of (X + jA) and of the
n-tuple T'(¢), while Y (r, s) is the sum of the residue representation of (Y +rA) and of the n-tuple
T(s). Now X(4,%) is equal to Y (r,s) if and only if X — Y + (j — )X\ = T'(s) — T'(¢) belongs to
Cj—r. This cannot be true since it is against the criteria used for the selection of the n-tuples in
T. Hence, the subsets in {C;[T'(i)] | 0<j<7/A—1and 0<i< M/r —1} form a partition of
the space S = my X ... X my,.

It still remains to prove that, for any pair j,¢, the set of subsets C;[T'(¢)] has the same

minimum distance as Cy. Consider two arbitrary n-tuples X(j,7) and Y (j,i), both belong-
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Procedure Non-Pairwise Prime Decluster
(k, F(ma,...,mg, Mk41,-..,my), Co =[n,A,d], D= %)
1. Partition (S =m1 X ... X my, Co);
/* This step builds the D codes {C;[T(:)] | 0<j<7/A—1land 0<i< M/ —1}. */
2. For0<j<7/A—-1 and 0<i< M/T -1,
assign code Cj[T'(4)] to the disk d;z ;.

Figure 3: Non-Pairwise Prime Decluster Procedure

ing to C;[T'()], and derived from X and Y in Cp. Repeating the above reasoning, it is easy
to see that the n-tuples X (j,i) — Y(j,4) and X — Y are the same. Hence, all the subsets in
{C;IT(#)] ] 0<j<7/A—1and 0 <i< M/ —1} inherit the same minimum distance d as the

set Cj. O

Finally, the decluster procedure for non-pairwise primes is described in Figure 3.

Theorem 3 For a fized k € [1.n—1], let F(m1,...,mg, Mgt1,--.,my) be a file whose attributes
are not pairwise prime and let Cy = [n,A,d] be the seed code. Distributing F among D = %
disks using the Non-Pairwise Prime Decluster procedure, the response time for a PMQ, q, with
s specified attributes gi,,--.,q, s given by RT(q) = [MAS-I’ where My = Le.m(miy,...,m;,).
Finally, the ratio between the response time of this procedure, say RT(q), and the best achievable

A

response time, say RT*(q), is given by {ﬁﬁ(&))} = [+
A

H;’:lmi]‘

Proof. Consider the n-tuple ¢’ belonging to S = mj X mgo X ... X m, and obtained by substituting
all the unspecified attributes of the PMQ), g, with 0. By the previous discussion, there must be %
and j such that ¢’ € C;[T(4)], and ¢’ is stored into disk diz +; and there exists € Cy such that
q =+ jA+T(i). Then, d;z 4 stores q' along with the buckets ¢ + uM;s = z + jA +T (i) + uMj,
for all values of u such that 0 < (z 4+ uM,) < A. Note that uM;, has always a valid residue
presentation since uMy < 7. Therefore, at most [ﬁs-l buckets qualify for the query g on the same
disk.

It remains to show how far is the response time for non-pairwise prime decluster procedure
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from the optimal response time. Using D = % disks, the optimal response time for ¢ would be
M
w(g) — [N@7 _ | M=amij | _ A
RT(q)—[ D ]—[ | = ||

421

™
1™

Therefore, our solution is times slower than the strictly optimal solution. o
Example 3: Consider the redundant residue number system (RNS) associated with the non-
pairwise prime radices, m1 = 3, my = 6, m3 = 5. For fixed k = 2, let m1, m9 be the non-redundant
moduli, and let m3 be the redundant modulus. According to our definitions, M = 90, 7 = 30,
and A = 6. In other words, the space S consists of 3 X 6 x 5 number of 3-tuples, but the RNSs
associated with the moduli m1,mo, mg and m1,ma, can represent the integers in [0, 29] and [0, 5],
respectively. Let the code C' = [3,6,2] consist of the residue representations of the integers in
[0,5] in the RNS of radices m; = 3, mg = 6,m3 = 5. That is, C = {< 0,0,0 >, < 1,1,1 >, <
2,2,2>,<0,3,3>,<1,4,4>,<2,50>}.

From Fact 2, the valid residue representations are partitioned into 96—0 = 15 codes. Precisely,
code C}[0,0,0] corresponds to the residue representations of the integers in the range [67,6(j +
1) — 1], where 0 < j < 4. In particular,
C;={<0,0,1><1,1,2>,<2,2,3>,<0,3,4>,<1,4,0>,<2,5,1>},
Cy;=1{<0,0,2>,<1,1,3><2,2,4>,<0,3,0>,<1,4,1>,<2,52 >},

C3=4{<0,0,3 ><1,1,4>,<220>,<0,3,1><1,4,2>,<2,53 >}, and
Cs=1{<0,0,4><1,1,0><2,2,1>,<0,3,2>,<1,4,3>,<2,5,4>}.

Now let T'= {T'(0) =< 0,0,0 >,7(1) =< 1,0,3 >,T(2) =< 2,3,0 >} be the set of 3-tuples
such that T'(1), T(2), T(1) — T(2) =< 2,3,3 > and T'(2) — T(1) =< 1,3,2 > does not belong
to Z = CoUCy UCyUC3UCy. Hence, the codes C}[1,0,3] = {< 1,0,3 > + C;[0,0,0]} and
C;12,3,0] = {<2,3,0 > + C}[0,0,0]}, for 0 < j <4, complete the partition of S.

Finally, the non-pairwise prime decluster procedure assigns the code C;[T'(7)] to the disk ds; ;.

Altogether there are 15 codes and hence D = 15 disks are required.
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Now, consider the PMQ g =< %, *,2 >. Since My = 5, there are at most [ﬁs-l = 2 qualifying

buckets for each disk. Hence, RT'(q) = 2 = RT™*(q) in this case.

7 Conclusion

In this paper, we studied the disk allocation problem for distributing non-uniform multi-dimensional
files on to parallel database systems that exploit the ability of accessing multiple disks simulta-
neously. Based on a large and flexible class of maximum distance separable codes, called the
redundant residue codes, a strictly optimal allocation method is derived for every query ¢ when
the attribute domains of the multi-dimensional file are pairwise prime. We also introduced a
new family of residue codes, called the redundant non-pairwise prime residue codes, that can be

applied with multi-dimensional files that have attribute domains non-pairwise prime.
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