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ABSTRACT

In modern engineering, the accurate and efficient numerical simulation of dynamic
systems is crucial, providing valuable insights across various fields such as automotive,
aerospace, robotics, and electrical engineering. These simulations help to understand
system behaviors, to optimize performance, and to guide design decisions. Nonethe-
less, systems described by Ordinary Differential Equations (ODEs) and Differential-
Algebraic Equations (DAEs) are central to such simulations. While ODEs can be
easily solved, they often fall short of modeling systems with constraints or algebraic
relationships. DAEs, however, offer a more comprehensive framework, making them
suitable for a wider range of dynamic systems. However, the inherent complexity of
DAEs poses significant challenges for numerical integration and solution.
In vehicle dynamics, the simulation of systems described by DAEs is particularly rel-
evant. The advances in autonomous and high-performance cars rely heavily on robust
simulations that accurately reflect the interactions between mechanical components,
control systems, and environmental factors. Achieving accuracy and speed in these
simulations is critical for Real-Time (RT) applications, where rapid decision-making
and control are essential. The challenges faced in vehicle dynamics simulations, such
as equations’ stiffness and complexity, are representative of broader issues in dynamic
system simulations.
This thesis addresses these challenges by integrating symbolic computation with nu-
merical methods to solve DAEs efficiently and accurately. Specifically, the index re-
duction approach transforms high-index DAEs into low-index formulations more suit-
able for numerical integration, enhancing the speed and stability of solvers. Symbolic
computation, which handles mathematical expressions in their exact form, aids this
process by simplifying the involved expressions, detecting redundancies and symbolic
cancellations, and thereby ensuring equations’ consistency while keeping complexity
at the minimum. Hence, combining symbolic and numerical methods leverages the
strengths of both techniques, aiming at improved performance and reliability. Such a
hybrid framework is designed to handle the specific requirements of vehicle dynamics
and other applications in engineering.
The thesis encompasses several advancements in dynamic system simulation by inte-
grating symbolic computation with numerical methods to reduce computational over-
head and improve performance. The research focuses on developing new algorithms
for DAEs index reduction, transforming high-index DAEs into more suitable for stan-
dard numerical integration methods. Specifically, such an index reduction process is
based on symbolic matrix factorization with simultaneous expression swell mitigation.
This novel methodology is validated through practical applications, applying the pro-
posed technique to real-world simulation problems to assess its performance, accuracy,
and efficiency. Additionally, the research aims to enhance Hard Real-Time (HRT)
vehicle dynamic simulation by designing dedicated algorithms and models for simulat-
ing tire-road interactions and vehicle structures’ deformation, improving both speed
and fidelity. Altogether, this thesis introduces several open-source software libraries



made available to the research community with comprehensive documentation and
examples.
In summary, this work bridges the gap between symbolic computation and numeri-
cal methods for the simulation of dynamic systems described by DAEs. Thanks to
mixed symbolic-numeric frameworks, innovative algorithms, and practical tools, it
contributes to the advancement of simulation techniques, setting the stage for further
investigations and applications in engineering.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND ANDMOTIVATION

In modern engineering practices, the numerical simulation of dynamic systems has be-
come increasingly important, offering invaluable insights into the behavior of complex
systems across diverse domains. From automotive engineering to aerospace, robotics,
and electrical systems, numerical simulations are indispensable for understanding sys-
tem behaviors, optimizing performance, and guiding design decisions. Central to
many of these simulations are systems described by Ordinary Differential Equations
(ODEs) and Differential-Algebraic Equations (DAEs). While ODEs are relatively
straightforward to solve, they have limited applicability in modeling systems with con-
straints or algebraic relationships [9]. DAEs, on the other hand, provide amore elegant
framework for modeling complex systems by combining differential equations with al-
gebraic constraints. This versatility makes DAEs a powerful tool for modeling a wide
range of dynamic systems. However, their solution poses significant challenges due
to their inherent mixed differential and algebraic nature. Partial Differential Equa-
tions (PDEs) and Partial Differential-Algebraic Equations (PDAEs) are also used to
model dynamic systems. The relationship between PDAEs and PDEs is analogous to
the relationship between ODEs and DAEs. Unsurprisingly, the solution of PDAEs is
also significantly challenging, requiring special discretization techniques to reduce the
system to DAEs, for which more conventional solution methods can be employed [10].
Nevertheless, the focus of this research is on DAEs, which are widely used in engineer-
ing applications and present distinctive challenges in terms of numerical integration
and solution.
The inherent complexity and possible stiffness of DAEs pose significant obstacles to
achieving fast simulations [11–13]. Additionally, stiff systems, characterized by dis-
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parate timescales among variables, demand numerical methods capable of handling
rapid changes without sacrificing stability or accuracy. Traditional numerical tech-
niques, like explicit solvers, often fail in these scenarios, necessitating the adoption of
implicit methods that lead to higher computational costs [9, 14]. Within this context,
symbolic computation are promising for overcoming the challenges posed by DAEs
in dynamic system simulation. Unlike purely numerical approaches, symbolic com-
putation operates on mathematical expressions in their exact form. Such a capability
proves valuable for lowering the structural complexities of DAEs. Indeed, symbolic
techniques can systematically reduceDAEs’ index, transforming them into formsmore
appropriate for numerical integration. This process not only unwinds the complexity
of the equations but also enhances the speed and stability of numerical solvers, thereby
improving the overall performance of simulations [9, 14, 15].
A key advantage of symbolic computation lies in its capacity to derive exact or partial
solutions for specific components of the system. These solutions can then be leveraged
to enhance the efficiency of numerical solvers by generating optimized code or simplify-
ing the equations before numerical integration. By combining symbolic and numerical
methods, researchers can exploit the strengths of each approach, thereby achieving the
best performance and reliability in simulation. However, this hybrid computational
framework does not come without its challenges. Such integration requires careful
consideration of the algorithms, data structures, and computational strategies to en-
sure an optimal implementation. Indeed, symbolic operations cannot always replace
numerical methods, as they may be computationally expensive or impractical for large-
scale systems. Vice versa, numerical methods may struggle with overly complex sym-
bolic expressions that could be simplified through symbolic computation, hindering
the overall efficiency of the simulation. In other words, symbolic computation and nu-
merical methods are complementary tools that carry different information and must be
judiciously combined to achieve the much-desired performance improvements [16, 17].
This research aims to close such a gap between symbolic computation and numerical
methods, developing a comprehensive framework that leverages the strengths of both
approaches to solve DAEs efficiently and accurately in dynamics simulations applied,
but not limited, to vehicle dynamics.
Within the domain of vehicle simulation, the accurate and fast solution of systems
described by DAEs holds paramount importance [11–13, 18, 19]. In industries like
automotive, the development of Advanced Driver-Assistance Systems (ADAS), au-
tonomous vehicles, and high-performance cars critically depends on robust simula-
tions. These simulations must accurately account for the far from trivial relationships
between mechanical components, control systems, and environmental factors such as
driver inputs. As a consequence, vehicle dynamics simulations encounter a plethora
of challenges, reflecting the complexity of real-world systems. The willingness to push
the boundaries of vehicle performance, safety, and autonomous driving capabilities de-
mands simulations that are not only accurate but also fast. This speed is crucial for
Real-Time (RT) applications, where rapid decision-making and control are essential.
Furthermore, Artificial Intelligence (AI) training and validation require extensive sim-
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ulations. Thereby, faster simulations inherently lead to more efficient training and
validation processes [20, 21]. Importantly, the challenges faced in vehicle dynamics
simulations are not unique to this field but are representative of the broader challenges
in dynamic system simulations. The need for effective simulations is a common theme
across various engineering disciplines, highlighting the importance of developing ad-
vanced computational techniques.
A fast simulation does not come only from the numerical solver but also from the
model’s structure and the sub-models that compose it. For instance, in vehicle dynam-
ics simulations, the tire-road interaction is a critical aspect that significantly impacts
the overall performance and behavior of the vehicle [22]. The tire model’s complexity
and the computational cost associated with its simulation are crucial factors in deter-
mining the overall simulation speed. Another key aspect is themodeling of the vehicle’s
structure, which involves the simulation of flexible bodies and joints. The interaction
between these components and the environment, such as the road surface, further com-
plicates the simulation. Therefore, developing dedicated algorithms and models can
significantly enhance the speed and accuracy of vehicle dynamics simulations [19]. In
this regard, this research also aims to address these challenges by compounding the so-
lutions of DAEs with tire-road interaction and vehicle structure deformation models
suitable for Hard Real-Time (HRT) applications.

1.2 OBJECTIVES AND SIGNIFICANCE

The significance of this research lies in its impact on the simulation and analysis of
complex dynamic systems, particularly in vehicle dynamics. By developing a hybrid
computational framework that combines symbolic computation with numerical meth-
ods, this study addresses critical challenges associated with solving DAEs. The con-
tributions have implications for academic and industrial applications, advancing the
state of the art in dynamic system simulation. Specifically, the primary objectives of
this thesis and their significance are the following.

• Enhance existing numerical methods with symbolic computation methods –
This involves creating a robust framework combining numerical and symbolic
methods to solve stiff high-index DAEs effectively. The framework aims to han-
dle the complexities and specific requirements of simulations across various engi-
neering disciplines. Indeed, traditional numerical methods often struggle with
the complexity and stiffness of DAEs, leading to issues such as numerical insta-
bility. By integrating symbolic computation techniques, this study seeks to im-
prove the simulation performances by preprocessing and simplifying equations,
reducing computational overhead, providing exact solutions for sub-problems,
and boosting numerical solvers’ overall stability and performance. This results
in more reliable and faster simulations, so crucial for advanced engineering sys-
tems’ design and optimization.

• Develop and implement new algorithms forDAEs index reduction – The index
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of a DAE serves as a measure of its complexity, with higher-index equations
posing numerical challenges. The novel symbolic algorithms for index reduc-
tion presented in this thesis provide a systematic approach to transforming high-
index DAEs into a form more suitable for standard numerical methods used
with ODEs. The proposed algorithms are specifically designed to mitigate the
expression swell phenomenon, a common issue in symbolic computation that
can hinder the efficiency and scalability of the index reduction process. Besides
expanding the applicability of numerical solvers to more complex systems, this
also preserves the integrity and physical relevance of the original models. The
ability to handle high-index DAEs effectively is particularly relevant in vehicle
dynamics, robotics, and control systems, where such equations frequently arise.

• Validate the proposedmethods through real-world simulation scenarios – Prac-
tical validation is crucial for demonstrating the effectiveness of the proposed
methods. This objective involves applying the developed framework and algo-
rithms to real-world simulation problems, such as the dynamics of rigid and
flexible Multi-Body (MB) systems, Trajectory Prescribed Path Control (TPPC)
problems, and electrical systems. The proposed methods’ performance, accuracy,
and computational efficiency are assessed in these contexts.

• Develop sub-models and techniques for HRT vehicle dynamic simulations –
In addition to the core research objectives, this research aims to develop ded-
icated algorithms and models for simulating the tire-road interaction and the
vehicle’s structural elements. These sub-models and techniques are integrated
into the overall simulation framework, enhancing the speed and accuracy of ve-
hicle dynamics simulations. The goal is to provide a comprehensive solution for
simulating complex vehicle systems in HRT applications.

In summary, this research aims to bridge the gap between symbolic computation and
numerical methods for solvingDAEs in vehicle simulations. Through the development
of a hybrid framework, innovative algorithms, and practical tools, it contributes to the
advancement of simulation techniques for complex dynamic systems. The validation
through real-world applications underscores the practical significance and potential
impact of the research. This thesis sets the stage for further exploration and application
of symbolic computation in dynamic system simulation, offering new possibilities for
modeling, analysis, and control in engineering.

1.3 CONTRIBUTIONS

Through the development of novel methodologies, algorithms, and software tools, this
research makes significant contributions to the dynamic system simulation field. The
primary contributions are listed below, citing for each one of them the related publica-
tions and open-source software libraries that have resulted from this study.

• Symbolic matrix factorization with expression swell mitigation [23, 24] – This
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research has developed advanced symbolic matrix factorization techniques to si-
multaneously address the expression swell phenomenon, a common challenge
in symbolic computation. Such techniques also mitigate expression swell by
introducing improved symbolic pivoting strategies and hierarchical representa-
tion methods, enhancing computational efficiency and scalability. These sym-
bolic techniques are implemented within the MAPLE® Computer Algebra Sys-
tem (CAS) on the LEM and LAST software libraries, providing a robust tool
for preprocessing and simplifying complex equations before the numerical solu-
tion computation. This integration results in a framework apt to the symbolic
index reduction algorithm and solution of linear systems.

• A novel algorithm for DAEs index reduction [2, 3, 25] – A new symbolic algo-
rithm for reducing the index of DAEs is developed, transforming high-index
DAEs into a form more suitable for numerical integration methods used with
ODEs. This algorithm addresses the complexities associated with high-index
DAEs, facilitating their numerical solution while preserving the physical rele-
vance of the models. Such an algorithm is implemented in the INDIGO soft-
ware library, available to the research community. This library provides tools for
systematically transforming high-index DAEs, enhancing the applicability and
efficiency of numerical solvers in various engineering applications.

• Models for HRT tire-road interaction [1, 4, 26, 27] – Specialized algorithms
and models for simulating tire-road interactions are developed, focusing on the
dynamics and physical modeling of tires. These models account for complex
factors such as tire deformation and contact mechanics, providing accurate and
RT simulations essential for vehicle dynamics studies. The tire-road interaction
models are integrated into the overall simulation framework, improving the fi-
delity and performance of vehicle dynamics simulations. Such an integration
supports advanced analyses and design optimizations in automotive engineer-
ing. The software libraries supporting the tire-road interaction modeling are
ACME, for 3D geometry operations, and ENVE, for tire-ground enveloping. An-
other software library is also developed for tire physical modeling, but it is not
yet available to the public.

• Symbolic-numerical analysis and solution of structures through Direct Stiff-
ness Method (DSM) [6, 8, 28] – The research extends the DSM to the mixed
symbolic-numerical analysis of structures. By leveraging symbolic computation,
the DSM approach reproduced in this research enables efficient assembly and
solution of large-scale structural systems, particularly useful in design optimiza-
tion and parametric studies. A comprehensive software package supporting the
symbolic-numerical analysis and solution of structures is developed. This pack-
age, named TRUSSME-FEM, integrates symbolic preprocessing with numerical
solution techniques and facilitates the efficient simulation and optimization of
complex structural systems.
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In essence, the research has resulted in the development of several software libraries,
including tools for symbolic matrix factorization, DAEs’ index reduction, tire-road in-
teraction modeling, and structural analysis using DSM. These libraries are designed to
be user-friendly and accessible, promoting wider adoption and further development of
advanced computational methods. The software libraries aremade available to the com-
munity under the Berkeley Software Distribution (BSD) 3-Clause License, with de-
tailed documentation and examples to facilitate their use in various applications. This
open-access approach encourages collaboration and innovation in the field of dynamic
system simulation.

1.4 THESIS OUTLINE

The main matter of this thesis is organized into several chapters, each dedicated to dif-
ferent aspects of the research objectives and contributions. The structure is designed to
provide a comprehensive understanding of the challenges, methodologies, and results
related to the numerical simulation of dynamic systems, particularly focusing on the in-
tegration of symbolic computation with numerical methods for the solution of DAEs.
The software libraries supporting the index reduction and solution of implicit DAE
system of the form F(x, x′, t) = 0 are available in [23–25]. The author also contributed
to the development of other software libraries for the solution of ODEs and ODEs on
manifolds of the form M(x, t)x′ = f(x, t), with M(x, t) a non-singular matrix. These
are respectively available in [29, 30], but they are not covered in this thesis.

1. Introduction sets the stage for the thesis, introducing the research objectives,
the significance of the problem, and the contributions of the study. It outlines
the motivation behind exploring symbolic computation techniques in the con-
text of dynamic system simulations, particularly but not limited to the case of
vehicle dynamics. The introduction provides a high-level overview of the chal-
lenges associated with the efficient and accurate solution of dynamic systems in
engineering applications. Furthermore, it outlines the challenges associated with
solving DAEs and the potential benefits of the proposed hybrid computational
framework. Notably, these chapters are based on the previous work presented
in [2, 3], as well as in the forthcoming [7, 8].

2. Brief onDifferential-AlgebraicEquations introduces the fundamental concepts
of DAEs, their significance, the different types of indices that are associated
with them, and explores the Hessenberg forms. It also discusses various solu-
tion methods for DAEs, including numerical direct discretization methods, like
the Radau collocation. All these concepts will be later used in the development
of the symbolic index reduction algorithm. The chapter concludes with a pre-
sentation of the index reduction methods and software tools for DAEs that are
currently available.

3. Essential Concepts and Techniques of Symbolic Computation provides a brief
introduction to computer algebra, as well as its applications in solving mathe-
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matical problems and engineering challenges. It begins with elementary con-
cepts and progresses to commercial CASs, focusing on the MAPLE® language.
This chapter also discusses the phenomenon of expression swell and strategies
to mitigate it through the hierarchical representations of expressions. It further
explores expression complexity metrics, and symbolic matrix factorization tech-
niques, including full-pivoting Lower-Upper (LU) and Fraction-Free Lower-
Upper (FFLU) factorizations. An improved symbolic pivoting strategy is intro-
duced to mitigate expression swell and improve computational efficiency. The
chapter concludes with a discussion on the implementation of symbolic linear
algebra techniques in the MAPLE® environment.

4. Solution of Dynamic Systems Described by Differential-Algebraic Equations
delves into the practical application of the theoretical and computational con-
cepts discussed in previous chapters. Particularly, the chapter presents a novel
symbolic index reduction algorithm for DAEs based on previously introduced
symbolic matrix factorization techniques. The outlined algorithm is designed to
reduce the index of generic first-order DAEs that are linear in the states’ deriva-
tives. Moreover, the chapter introduces a numerical integration scheme for the
reduced-index DAEs that specifically leverages the hierarchical representation
for the expression swell mitigation during the symbolic matrix factorization pro-
cess. It concludes with a proof of the symbolic-numeric scheme’s effectiveness.

5. Application Fields and Examples presents various practical applications of the
developed techniques. It covers Multi-Body Dynamics (MBD), TPPC, and
electrical circuits, providing specific examples for each field. The chapter demon-
strates the effectiveness of the symbolic index reduction algorithm in reducing
the index of DAEs arising in these applications, highlighting the robustness and
efficiency of the proposed methods. The results are compared with existing sym-
bolic and numerical approaches, showcasing the capabilities of the developed
algorithm.

6. Conclusions and FutureWork summarizes the key findings and suggests direc-
tions for future research. The chapter also speculates on potential future applica-
tions of the proposed techniques, such as Optimal Control (OC) and nonlinear
optimization.

The appendices provide in-depth technical insights and detailed explanations on com-
plementary topics that are relevant to the Chapter 5 examples, as well as in the overall
context of efficient vehicle dynamics simulations. Specifically, they focus on areas that
are essential for a broad understanding of HRT tire-road interaction simulations, as
well as the symbolic-numerical analysis and solution of structures. Each appendix is
designed to stand alone, allowing readers to refer to the sections most relevant to their
interests and needs. However, the first three appendices are interconnected, constitut-
ing a thorough guide for simulating the tire-ground interaction in vehicle dynamics
simulations.
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A. ACME: A Small 3D Geometry Library explores the implementation and fea-
tures of a novel 3D geometry library and is based on the work presented in [1]
and open-source software library available in [26]. It begins with a discussion
on the role of computational geometry in HRT simulations, followed by an in-
troduction to the new library, detailing the design choices. The appendix then
explores the data types supported by the library, including points, lines, rays,
planes, segments, triangles, disks, and balls. It continues with a section on mesh
tools, covering space partitioning and bounding volume hierarchies for fast in-
tersection. The appendix concludes with a step-by-step example to demonstrate
the practical application of the library.

B. Tire-Ground Enveloping Modeling provides a comprehensive guide to tire-
ground enveloping modeling. It presents a novel tire-ground enveloping model
for HRT vehicle dynamics simulations, followed by the implementation of the
algorithm, including its workflow and software architecture. The specific data
types are discussed, highlighting their roles in the algorithm workflow, from tire
envelope and mesh initialization to local contact parameters calculation. The
appendix also includes simulations and discussions on quasi-static simulations
on uneven road surfaces, full-vehicle model simulations, and RT performance.
Notably, this appendix is based on the previous work presented in [4], with an
open-source software library available in [27].

C. Tire Physical Modeling presents a novel tire physical model for HRT vehicle
dynamics simulations, previously introduced in [5], with no software library dis-
tributed yet. It begins with an overview of the geometric representation of tire
and road, the mechanics of tire-road vertical contact, and the associated contact
patch length and pressure distribution. The discussion extends to tangential con-
tact mechanics, including carcass deformation models, tire-road kinematic equa-
tions, tangential contact mechanics equations, and constitutive relations. The
appendix then presents a numerical solution approach, addressing tire-road con-
tact discretization, transition coordinates computation, and the solution method
for the nonlinear system arising from the model equations. The final sections
discuss the RT performance and validation of the tire physical model.

D. Symbolic-Numerical Analysis and Solution of Structures begins with an intro-
duction to symbolic structural analysis and then explains the DSM, covering the
elements’ stiffness matrices, the global stiffness matrix assemblage, and the par-
titioning and solution of the linear system arising from the DSM. The appendix
provides a detailed description of the developed software, highlighting symbolic
computation inMAPLE® and numerical computation inMATLAB®, alongwith ex-
amples of their usage. It concludes with example applications, including design
optimization and efficient simulation of parametric mechanisms using model re-
duction. It must be pointed out that this appendix is based on the works [6, 8],
which are currently submitted for publication. The software libraries supporting
the symbolic-numerical analysis and solution of structures are available in [23,
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24, 28].

A flowchart of the thesis structure is provided in Figure 1.1, illustrating the logical
progression of the chapters and appendices.
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Figure 1.1: Flowchart of the thesis structure, illustrating the logical progression of the
chapters and appendices.
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CHAPTER 2

BRIEF ON DIFFERENTIAL-ALGEBRAIC
EQUATIONS

The solution of dynamical systems represents a fundamental challenge in the fields of
applied mathematics, engineering, and physical sciences. These systems, serving as
mathematical representations, describe how a system evolves, offering a glimpse into
phenomena ranging from chemical reactions to electrical circuit dynamics. Thereby,
their solution involves determining the system’s state at each time point, considering
its Initial Conditions (ICs) and governing equations. This process is critical for com-
prehending complex system behavior and predicting its evolution. However, due to
their inherent complexity, solving such dynamical systems often requires sophisticated
algorithms and high-performance computing resources.
While the solution of ODEs has been extensively studied and is well understood, the
solution of DAE systems is more challenging due to the presence of algebraic con-
straints. Specifically, DAEs is a generalization of ODEs that involves both differen-
tial and algebraic equations. They first appeared in the last century, and they gained
popularity in various fields over these decades. Indeed, due to their simplicity- and
straightforwardness-of-use, DAEs is a powerful tool for modeling systems with con-
straints [11], like mechanisms, electrical circuits, and chemical processes. However, on
the contrary to ODEs, their solution requires specialized algorithms to obtain accurate
and efficient results. In this chapter, we offer an overview of DAE system and their
state-of-the-art solution methods. Afterward, we clarify the motivation behind this
research and the contributions of this thesis: The development of a novel and robust
algorithm for the index reduction of generic first-order DAEs using symbolic compu-
tation methods.
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2.1 OVERVIEWONDIFFERENTIAL-ALGEBRAIC EQUATIONS

A system of equations involving one or more unknown functions and their derivatives
is referred to as a DAE system (or DAEs). In its general form, a first-order DAE
system is expressed as

F(x, x′, t) = 0 , (2.1)

where x(t) = x denotes the vector of unknown functions, and F(x, x′, t) = F indicates
the vector of functions consisting of n components. Notice the components of x and
F are denoted as xi and Fi, respectively, for i = 1, 2, . . . , n. Notably, the term “DAE”
is typically used when the highest derivative x′ can not be explicitly solved in terms
of the other variables x and t within the algebraic relationship represented by (2.1).
Indeed, the Jacobian Fx′ along a specific solution of the DAE might become singular.
Systems of equations like (2.1) are also known as implicit systems. Depending on the
context, a DAE may be employed to represent either an Initial Value Problem (IVP),
if x is specified at the initial time (e.g., x(t0) = x0), or a boundary value problem, if the
solution adheres to n two-point Boundary Conditions (BCs) (e.g., g(x(t0), x(tf)) = 0).
Regardless of which kind of problem the specificDAEs represents, a prevalent category
encountered in practical applications is the so-called semi-explicit DAE, represented
as {

x′ = f(x, z, t)
0 = g(x, z, t)

,
(2.2a)
(2.2b)

where (2.2a) and (2.2b) denote the differential equations and the algebraic constraints,
respectively. An example of a DAE system of the form (2.2) is the simple pendulum in
redundant coordinates, where the motion of a mass at the end of a rod is constrained to
a fixed length. In the Cartesian coordinates, the system is described by a set of DAEs
that can be restated into the classical ODE for a pendulum.

Example 1 (The Simple Pendulum). Consider a straightforward example involving the
motion of a pendulum in Cartesian coordinates. Let the position and velocity coordi-
nates of the mass m at the end of the rod be (x, y) and (x′, y′) = (u, v) respectively,
with the angle between the rod and the vertical axis denoted as θ. The position of
the mass is given by the coordinates x = ℓ sin θ and y = ℓ cos θ, where ℓ represents
the pendulum length. The Euler-Lagrange equations yield the following first-order
semi-explicit DAE system 

x′ = u
y′ = v

u′ = −2λx
m

v′ = −
2λy
m − g

0 = x2 + y2 − ℓ2

,

(2.3a)
(2.3b)

(2.3c)

(2.3d)

(2.3e)
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which corresponds to the form (2.2). Here, g denotes gravity, and λ is the Lagrange
multiplier. The terms 2λx and 2λy represent the constraint force maintaining the con-
straint (2.3e) and thereby ensuring the rod’s fixed length. In this simple case, trans-
forming variables x = ℓ sin θ and y = ℓ cos θ, followed by algebraic manipulation,
leads to the classical ODE for a pendulum θ′′ = −g sin θ. ■

It is worth noting that, while the simple pendulum’s motion can be described by a
simple ODE, the DAE system (2.3) provides a more natural representation of the
system’s constraints. However, in more complex scenarios, such direct transformations
may not be possible, and the DAE system must be solved as is.
DAEs, in either general or specific formulations, are commonly encountered in math-
ematical models across diverse engineering and scientific disciplines. Further real-life
examples of DAE systems, spanning from MB mechanical systems to electrical cir-
cuits and TPPCs, are detailed in [9]. It is important to note that while constraints
in mechanical systems like the pendulum physically represent the system’s limitations,
those in other scenarios, such as TPPCs, may also serve as performance specifications
or control objectives.

2.1.1 THE SIGNIFICANCE OF DIFFERENTIAL-ALGEBRAIC EQUA-
TIONS

As demonstrated in the example above, working with implicit DAE models often
provides a more natural representation compared to explicit formulations, particularly
when dealing with complex systems. Indeed, DAE systems represent a generalization
of ODEs. However, contrary to DAEs, ODE systems have a well-established litera-
ture in mathematical theory and numerical solution technique. They can be typically
expressed as x′ = f(x, t) or M(x, t)x′ = f(x, t) with M(x, t) a non-singular matrix.
Nonetheless, the broader scope of DAEs encompasses problems with distinct mathe-
matical properties and presents unique challenges for numerical resolution.
To better grasp the distinction between DAEs and ODEs, let us consider this simple
example {

x′ = y
0 = x− q

,
(2.4a)
(2.4b)

where q = q(t) is a suitably smooth function. The unique solution is x = q and y = q′,
without the need for ICs or BCs, which implies that imposing arbitrary ICs could
render the DAE inconsistent. Additionally, unlike ODEs, the solution’s dependency
on the derivative of the inhomogeneous part introduces a distinctive characteristic and,
even with consistent ICs, the existence and uniqueness theory for DAEs involve more
intricate technical assumptions beyond mere smoothness, as seen in the ODE case [31,
32]. The requirement to differentiate x in (2.4b), thereby involving differentiation of
the input function q to determine y, constitutes a fundamental distinction. Hence,
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conversely to ODEs, DAEs may necessitate both integration and differentiation to be
solved.

2.1.2 THE INDEX... OR BETTER YET, THE INDICES
In the realm of DAEs, the concept of index serves as a metric for measuring the devia-
tion of a DAE from its underlying ODE with invariants. This index is a non-negative
integer providing valuable insights into the mathematical structure and potential chal-
lenges associated with analyzing and solving numerically theDAE. Generally, a higher
index indicates a more complicated system, which may pose difficulties in its resolution.
Various index definitions exist, these include, but are not limited to, theKronecker index
(for linear constant coefficient DAEs), differentiation index, structural index, tractabil-
ity index, strangeness index, geometric index, and perturbation index [33]. While these
indices may coincide in simple scenarios, they can differ in more intricate nonlinear
and fully implicit systems [34]. Furthermore, the index may exhibit local variability,
assuming different values across distinct regions, and could even remain undefined at
singular points [34]. Notice that the differentiation index is the most common index
used in practice and is typically referred to without any further epithet, i.e., “the” index.
In the following sections, we delve into the differentiation, tractability, and structural
indices, which are the most used in practice. Together with their qualitative definition,
this discussion aims to provide a brief yet comprehensive understanding of what prop-
erties we should expect from the DAEs we are dealing with. For this purpose, several
considerations that arise from the index definitions are discussed. However, it is still a
partially open problem to characterize the exact correspondence between the existing
indices. The work on this topic is still ongoing [33] and will not be covered in this
thesis.

DIFFERENTIAL INDEX Given that a DAE encompasses both differential equations
and constraints, a potential strategy involves repeatedly differentiating the constraint
equations (in the semi-explicit DAE systems of the form (2.2)) and substituting them
into the differential ones. This process is called index reduction, and it aims to transform
the DAE into an explicit ODE system in all unknowns. Indeed, the solution of the
DAE system corresponds to the solution of its underlying ODE with invariants [35].
The minimum number of differentiations required for this transformation is termed
the differential index of the DAE, with the underlying ODEs possessing an index of
0 [33].

Example 2 (Differential Index). Consider the simple examples involving a given
smooth function y = y(t) and the unknown x. Then, the scalar equation

x = y (2.5)

constitutes a DAE with a differential index of 1, as it requires one differentiation to
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yield the ODE x′ = y′. Similarly, for the system{
x1 = y
x2 = x′1

, (2.6)

differentiating the first equation leads to x2 = x′1 = y′, and subsequent differentiation
yields x′2 = x′′1 = y′′. Hence, this system possesses a differential index of 2, necessitat-
ing two differentiations to obtain the explicit underlying ODE system. In both cases,
the invariants are the equations that are replaced by their derivatives, i.e., x = y for the
first example, and x1 = y and x′1 = y′ for the second example. ■

It is crucial to understand that, while n ICs or BCs are required to define the solution
of a first-order ODEs of size n, the solution of the simple DAEs in the previous ex-
ample is solely determined by the right-hand side, necessitating only one consistent
IC. General DAE systems often include ODE subsystems, resulting in k ∈ [0, n]
Degree of Freedoms (DOFs) for the DAE solution. However, determining which k
pieces of information are necessary to determine the solution can be challenging. ICs
or BCs specified for the DAE must be consistent, satisfying both the constraints and
the hidden constraints of the system, which represent the solution manifold [35]. For
instance, in the index-1 system (2.5), an IC must adhere to x1(0) = y(0). In the case of
the index-2 system (2.6), meeting the additional constraint x2(0) = y′(0) is necessary,
along with x1(0) = y(0).
As demonstrated in the example above, the differential index indicates how far is a
DAE from an ODE system. However, computing the differential index is not a triv-
ial task, as it involves intensive manipulation of expressions. The differentiation process
can lead to large expressions, which are inevitably computationally expensive to han-
dle. Such limitations are particularly evident in high-index DAEs. To address this
issue, further indices are introduced to provide additional understandings of the math-
ematical structure of DAEs without the need for extensive symbolic analysis of the
system.
Although the concept of the differentiation index is widely used, it has a limitation:
it is unsuitable for over- and underdetermined systems. Indeed, the differentiation
index is based on a solvability concept that requires a unique solution for the DAE
system. For this reason, the strangeness index has been introduced, which extends the
differentiation index to over- and underdetermined systems. The difference between
the differentiation index and the strangeness index is that the former aims at reformu-
lating the given problem as an ODE for uniquely solvable systems, whereas the latter
aims at reformulating it as a DAE with two parts, one part that states all constraints
and another part that describes the dynamical behavior [33]. Despite the strangeness
index’s advantages, it is not widely used in practice, and the work on this index is still
ongoing. Nonetheless, we limit our study to well-determined DAE systems.

STRUCTURAL INDEX The structural index was initially introduced in the linear
constant coefficient scenario for combinatorial analysis. Given the linear DAEs Ex′ =
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Ax + f(t), the parameter-dependent pencil (E(p),A(p)) is constructed by substitut-
ing the nonzero elements of E and A with independent parameters p. The structural
index, as discussed in [36, 37] and expanded upon in subsequent works [38], refers
to the unique integer value matching the Kronecker index of (E(p),A(p)) across an
open and dense subset of the parameter set. In the context of nonlinear systems, lo-
cal linearization techniques are commonly applied. While it has been demonstrated
in [39] that the differentiation index and the structural index may differ, Pantelides’
algorithm, detailed in [36], remains widely used in practical applications. Notably, in
studies like [40], combinatorial insights are leveraged to determine which equations
should be differentiated, as well as to introduce additional variables for index reduc-
tion [41]. However, a comprehensive assessment of the validity of this approach across
various scenarios has been provided only in a few specific cases, as discussed in [33].

TRACTABILITY INDEX Relevant studies, such as [42], reveal that the index may
vary depending on a specific solution. An example is the following DAE system.

Example 3 (Differential Index Dependency on Solution). Consider the DAE system in
the semi-explicit form 

x′1 = x3
0 = x2(1− x2)
0 = x1x2 + x3(1− x2)− t

.

The second equation admits two solutions: x2 = 0 and x2 = 1. If x2 is continuous,
the system does not transition between these values. For x2 = 0, the system is semi-
explicit with an index of 1, while for x2 = 1, the index becomes 2. Unlike the index-1
scenario, no IC on x1 is necessary. Replacing the algebraic equation involving x2 with
x′2 = 0, leads the index of the modified DAE system to depend on the IC. Specifically,
if x2(0) = 1, the index is 2; otherwise, it remains 1 [42, Section 3.3]. ■

In the definition (2.1), the function F is inherently assumed to be smooth enough to
calculate the derivatives. However, smoothness is not granted in practical applications.
The tractability index is a concept introduced in Griepentrog and März [15] and März
[43] to overcome this issue. The idea is to replace the smoothness requirements for the
coefficients with the requirement for certain subspaces to be smooth. Such a concept
leverages DAE systems with properly stated leading terms [42], i.e., a vector d(x, t) is
used when formulating the DAEs as

F(x, x′, t) = A(x, t)(d(x, t))′ + b(x, t) = 0 .

In this manner, the leading term d(x, t) = D(t)x precisely figures out which derivatives
are involved. Importantly, all admissible linearizations along the solution have the
same tractability index [44].
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In essence, the tractability index concept is designed to tackle the challenges posed by
DAEs with multiple regular regions. It explicitly suggests that the domain of defini-
tion of the DAE divides into maximal smooth subspaces, each delimited by singular
points. Within each regular region, the DAE exhibits a consistent structure, which
can be revealed using matrix sequences formed with permissible projector functions.
This construction is governed by constant rank conditions. Singular points arise when
this construction process encounters difficulties. A smooth flow and reliable treatment
are expected as long as the solution remains within a regular region. However, cross-
ing or touching a boundary between regions may lead to singularities. Essentially,
monitoring the structure involves computing an admissible matrix function sequence
and monitoring the rank conditions to ensure the stability and reliability of the solu-
tion [45]. Thereby, the fundamental idea behind the tractability index concept involves
the utilization of derivatives of projectors instead of derivative arrays. However, if the
numerical computation of the projectors is adopted, challenges may arise in obtaining
their derivatives [33].

2.1.3 THE HESSENBERG FORMS
As will be better detailed in the forthcoming section, the implicit DAE system (2.1)
may represent mathematically ill-defined problems, as well as scenarios where numeri-
cal methods fail. Thankfully, numerous high-index problems encountered in practical
applications are expressed as a more restrictive formulation composed of ODEs with
algebraic constraints. Within such systems, both the algebraic and differential vari-
ables are explicitly separated and identified, even for higher-index DAEs, allowing for
the elimination of all algebraic variables using either index reduction, numerical direct
discretization, or a combination of both. These formulations, known as Hessenberg
forms of the DAEs [9], are detailed here below and will serve as the basis for further
exploration into DAE solutions in subsequent sections and chapters.

• The Hessenberg index-1 DAE system is represented as{
x′ = f(x, z, t)
0 = g(x, z, t) ,

with x ∈ Rn, z ∈ Rm, f : Rn × Rm × R → Rn, g : Rn × Rm × R → Rm,
and where the Jacobian gz is assumed non-singular for all t. This configuration
closely resembles the semi-explicit index-1 DAE system (2.2) discussed earlier.
Semi-explicit index-1 DAEs shares similarities with implicit ODEs. While it is
theoretically feasible to solve for z in the algebraic equation (using the implicit
function theorem) and then substitute it into the differential equation to derive
the underlying ODE in terms of x (though uniqueness is not guaranteed), this
approach is not universally recommended for numerical solutions due to poten-
tial ill-conditioning and stability issues. An example of a Hessenberg index-1
DAE system is in the formulation of TPPCs problems [9].



32 CHAPTER 2. BRIEF ON DAES

• The Hessenberg index-2 DAE system is expressed as{
x′ = f(x, z, t)
0 = g(x, t) ,

with x ∈ Rn, z ∈ Rm, f : Rn × Rm × R → Rn, g : Rn × Rm × R → Rm,
and where the product of Jacobians gy fz is assumed non-singular for all t, x, and
z. It is important to observe that the algebraic variable z does not appear in the
second equation. This arrangement characterizes a pure index-2 DAE, where all
algebraic variables act as index-2 variables. An example of Hessenberg index-2
DAEs arises from the modeling of incompressible fluid flow through discretized
Navier-Stokes equations [46].

• The Hessenberg index-3 DAE system is formulated as
x′ = f(x, y, z, t)
y′ = g(x, y, t)
0 = h(y, t)

,

with x ∈ Rn, z ∈ Rm, f : Rn × Rm × R → Rn, g : Rn × Rm × R → Rm,
h : Rm × R → Rm, and where the product hy gx fz is non-singular for all t, x,
y, and z. Determining the index of a Hessenberg DAEs follows a similar differ-
entiation process to the general case. However, only algebraic constraints need
to be differentiated [47]. These index-3 DAE systems are frequently encoun-
tered in practical scenarios, notably in the fields of MBD, TPPCs, and various
engineering applications [9, 46].

• The Hessenberg index-(r+ 2) DAE system is formulated as

x′r = fr(x1, x2, . . . , xr, y, z, t)
...

x′2 = f2(x1, x2, x3, y, t)
x′1 = f1(x1, x2, y, t)
y′ = g(x1, y, t)
0 = h(y, t)

for r = 1, 2, . . . , r ,

with xi ∈ Rni , y ∈ Rm, z ∈ Rm, fi : Rni × Rni+1 × · · · × Rnr × Rm × R →
Rni , g : Rn1 × Rm × R → Rm, h : Rm × R → Rm, and where the product
hy gx1 f1x2 . . . fr−1xr frz is non-singular for all t [42, Section 3.5].

2.2 SOLUTION METHODS FOR DIFFERENTIAL-ALGEBRAIC
EQUATIONS

The literature on DAE solution methods is vast and varied, with numerous approaches
available for tackling these complex systems [9, 15, 31, 32]. Methods for solving DAEs
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are broadly categorized into two classes: (i) direct discretization of the given system
and (ii) methods involving index reduction, which involves reformulating the system’s
equations so to ease the numerical solution process. While direct discretization is fa-
vored for its simplicity and straightforwardness, particularly with relatively low-index
DAEs (typically less or equal than 3), index reduction approaches are essential to tackle
higher-index DAEs. It is important to note that these two methods can be used along-
side, by applying first index reduction to come up with an index-1 or index-2 DAE
system, and secondly by applying a numerical direct discretization. As we will see, this
approach keeps expressions’ complexity low while exploiting the straightforwardness
of direct discretization. Nonetheless, there exist some classes of Radau and Bound-
ing Value Methods (BVMs) that allow for the direct discretization of very high-index
DAEs without the need for index reduction [48–51].

2.2.1 NUMERICAL DIRECT DISCRETIZATION
Direct discretization is preferred due to its simplicity and computational efficiency, as
index reduction methods can be time-consuming and computationally expensive, of-
ten requiring more user inputs and interventions. However, direct discretization is
most effective for index-1, index-2, and index-3 Hessenberg DAE systems. Usually,
many practical DAEs fall into these categories or can be transformed into simple com-
binations of Hessenberg systems. Despite this, challenges may still arise, and even
for these restricted classes of problems, direct application of numerical ODE methods
may lead to insufficient results and instabilities. For DAEs with an index greater than
2, employing index reduction techniques to solve the problem in a lower-index form
is often considered the most effective approach. Similar considerations arise in cases
resembling singularly perturbed ODE systems, such as{

y′ = f(y, z, t)
εz′ = g(y, z, t) , (2.7)

where ε is a small perturbation parameter. Setting ε = 0 reduces (2.7) to the
DAEs (2.2). In general, due to the system’s stiffness for small ε, methods designed
for such ODE system, like Backward Differentiation Formula (BDF) and Radau
collocation methods, are natural choices for directly discretizing implicit DAEs of the
form (2.1) [48].

BACKWARD EULER METHOD The concept of direct discretization is relatively
straightforward: it involves approximating x and x′ using a discretization technique,
such as multistep methods or Runge-Kutta (RK) methods. As a first example, let us
take the Backward Euler method, which is the simplest method exhibiting a stiff decay
property. Applying the Backward Euler formula to x′ in (2.1), we obtain a system of
N nonlinear equations

F
(
xn,

xn − xn−1

hn
, tn
)

= 0 for n = 1, 2, . . . ,N . (2.8)
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Here, xn represents the approximation of x(tn), hn = tn − tn−1 denotes the time step,
tn are the time points, and N is the total number of time points. Solving this nonlinear
equation system recursively provides a numerical solution for (2.1).
This method is effective for index-1 DAEs and particularly suitable for stiff index-1
DAEs and stiff ODEs. However, for higher-index DAEs this straightforward ap-
proach may not suffice. In some cases, even seemingly simple higher-index DAE
systems with well-defined and stable solutions can pose challenges, making methods
like the Backward Euler method, as well as other multistep and RK methods, unstable
or inapplicable [46]. Practical difficulties may arise during the resolution of the nonlin-
ear system (2.8) for xn given xn−1, where iterative numerical methods like the Newton
method are employed. Due to these implementation challenges, direct discretization
of fully implicit DAEs with an index greater than 1 is generally discouraged. Despite
this, for fully implicit index-1 and semi-explicit index-2 DAEs, the Backward Euler
method is stable, convergent, and first-order accurate [9, 52].

BACKWARD DIFFERENTIATION FORMULA AND LINEAR MULTISTEP METH-
ODS Although Euler is a first-order method, achieving higher accuracy without re-
ducing step size requires the use of higher-order methods. One such method is the
constant step-size BDF, which is applied to a general nonlinear DAE system of the
form (2.1) and is given by

F

xn,
1
β0h

s∑
j=0

αjxn−j, tn

 = 0 for n = 1, 2, . . . ,N ,

where β0 and αj for j = 0, 1, . . . , s are the coefficients of the BDF method. The s-step
BDF method of fixed step size h is convergent of order O(hs) under certain condi-
tions. Similar convergence results have been established for general linear multistep
methods, provided their coefficients satisfy a set of order conditions, including those
unique to DAEs [9]. BDF methods meet these additional requirements (refer to [9]
for additional information).

RADAU COLLOCATION AND IMPLICIT RUNGE-KUTTA METHODS The s-
stage implicit RK method, when applied to a general nonlinear DAE of the form (2.1),
is expressed as

F

xk + hk
s∑

j=1

aijKj,Ki, tk + cihk

 = 0 ,

xk+1 = xk + hk
s∑

i=1

biKi ,

where ci, aij, bi for i = 1, 2, . . . , s and j = 1, 2, . . . , s are the coefficients of the RK
method, with the additional assumption that the matrix A = (aij) is non-singular.
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Similarly, the s-stage implicit RK method for semi-explicit DAEs of the form (2.2) is
given by

Ki = f

xk + hk
s∑

j=1

aijKj, zk, tk + cihk

 = 0 ,

xk+1 = xk + hk
s∑

i=1

biKi ,

0 = g (xk, zk, tk + cihk) ,

for i = 1, 2, . . . , s. Notice that it is possible to avoid the quadrature step for the al-
gebraic variables z by employing stiffly accurate methods, i.e., RK methods satisfying
bi = asi for i = 1, 2, . . . , s, like the Radau collocation methods [9, 48].

Implementing direct discretization methods for DAEs faces practical challenges.
These challenges encompass obtaining a consistent set of ICs, addressing the ill-
conditioning of the iteration Jacobian matrix, and managing error estimation for
step-size control. However, for specific classes of DAEs, such as semi-explicit ones
in Hessenberg form and ODEs with hidden constraints typically found in MB me-
chanics, highly efficient and robust numerical methods called stabilized or projected
methods exist. The core approach involves discretizing the differential equations using
a suitable numerical ODE method with a stabilization technique or coordinate pro-
jection step to align the numerical solution with the constraints [53]. For a thorough
understanding of numerical aspects concerning DAEs, refer to [9, 46, 52].

2.2.1.1 SOFTWARE FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS NUMERI-
CAL SOLUTION

Several software packages are available for solving DAEs, including both general-
purpose and specialized tools. Some of the most widely used software packages for
IVP and boundary value problem DAEs’s numerical solutions are listed here below.

• DASSL, developed by Linda Petzold, utilizes BDF formulas to solve generic
index-1 DAEs. Variants tailored for large-scale problems and sensitivity anal-
ysis are also available. Specifically, DASPK, a later iteration of DASSL, can han-
dle large Hessenberg index-2 DAEs; DASPKADJOINT, on the other hand, imple-
ments the adjoint method for sensitivity analysis of DAE systems [9].

• RADAU5 is a software by Ernst Hairer and Gerhard Wanner based on the 3-stage
Radau collocation method [52]. It tackles problems expressed as Mx′ = f(x, t),
where M is a constant, possibly singular, square matrix. RADAU5 solves DAEs
up to index 3, with the identification of higher-index variables being required
from the user. Higher-order Radau methods are available, but they require more
intricate and custom implementations [48].
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• IDA is a submodule of the SUite of Nonlinear and DIfferential-ALgebraic equa-
tion Solvers (SUNDIALS) software package developed by Radu Serban and
Alan Hindmarsh at Lawrence Livermore National Laboratory (LLNL) [54, 55].
IDA is coded in C and tackles nonlinear DAEs. It is derived from the aforemen-
tioned FORTRAN package DASPK. Additionally, a related code for solving ODEs
with invariants is available under the name of CPODES.

• DAEPACK, is a software library created by Paul Barton and his team at Mas-
sachusetts Institute of Technology (MIT) [56]. While its name stands for DAE
Package, DAEPACK’s capabilities extend beyond DAE analysis, encompassing
both symbolic and numerical components for modeling and general numerical
computations.

• COLDAE was firstly presented in [57]. It employs projected Gauss collocation to
solve boundary value problems for semi-explicit DAEs with an index of at most
2.

2.2.2 INDEX REDUCTIONMETHODS
For higher-index DAEs, direct discretization methods might not offer the most effi-
cient solution. In such scenarios, index reduction methods are preferred. Such meth-
ods involve reformulating the DAE into a lower-index form, which can be tackled us-
ing direct discretization methods or standard techniques for ODE integration, aided
by projection or stabilization techniques. Specifically, the index is reduced by differen-
tiating the algebraic constraints and substituting them into the differential equations.
This process repeats until the DAE transforms into an explicit ODE system. As men-
tioned earlier, the number of iterations needed for this transformation is termed the
index of the DAE, with ODEs having an index of 0.
We have seen that there exist multiple definitions of the index of a DAE system, and
each of them is tailored to a particular index reduction technique. Consequently, there
are various approaches to index reduction, whose characteristics also depend on fac-
tors like the capabilities of the available package, the user’s expertise, and the specific
problem at hand. Each method has advantages and disadvantages, being more or less
suitable for different types of DAEs and varying in computational cost, implementa-
tion requirements, and theoretical foundations.

DIFFERENTIAL INDEX REDUCTION As expert readers may notice, the differen-
tial index reduction method bears close relation to symbolic computation and sym-
bolic computation software such as MAPLE®, MATHEMATICA®, and PYTHON’s library
SYMPY. These prove invaluable in executing the differentiation and substitution steps
essential for reducing the differential index of a DAE system. These tools also facili-
tate the derivation of the DAEs’ Jacobian, crucial for numerical solution approaches.
However, in some problems (very few), symbolic computation tools can also furnish
the DAEs’ solution, aiding in the validation and assessment of numerical solutions
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obtained through numerical methods. Nevertheless, it is worth noting that symbolic
computation tools are not always the optimal choice for DAEs resolution, particularly
for large-scale or intricate systems. Indeed, the computational overhead of symbolic
computation tools may become prohibitive in such cases, prompting a preference for a
mixed approach involving both symbolic computation and numerical methods.
As previously mentioned, the basic idea behind the differential index reductionmethod
is to differentiate the algebraic constraints and substitute them into the system. This
process repeats until the DAE system transforms into an explicit ODE system. To
do so, one can indiscriminately differentiate all equations in the DAE system. How-
ever, this approach is not the most efficient. In some cases, differentiating only a
subset of the equations leads to a more straightforward and less computationally ex-
pensive solution, especially for large-scale DAEs. Indeed, algebraic equations should
be only differentiated. To this end, the system should be restated into its Hessen-
berg form, where the algebraic constraints are explicitly separated from the differential
equations [58]. Thereby, the isolation process of algebraic equations is crucial for the
successful application of the differential index reduction method.

STRUCTURAL INDEX REDUCTION The most common index reduction methods
are those based on the Pantelides algorithm [36], which fall under the umbrella of the
Structural Analysis (SA) methods. However, recent advances have led to the devel-
opment of more effective algorithms, such as S. Campbell and W. Gear’s method of
differential arrays [59] and J. Pryce’s Σ-method [60]. This latter method provides a sys-
tematic approach to index reduction and the solution of DAEs using the Taylor series.
Nonetheless, it has been proven to be a generalization of the Pantelides algorithm [37].
The SA examines the regularity or singularity of DAE in a generic sense. This analysis
is typically conducted through a simplified representation of the system’s structure us-
ing tools such as the bipartite graph, which characterizes the system’s incidence matrix
non-zeros pattern. Structural regularity or singularity, as well as related properties, are
then assessed based on this graph. This approach is effective for sparse systems, where
the incidence matrices have a small proportion of non-zero entries. SA techniques also
extend to numerical regularity, which is determined by the system’s Jacobian matrix.
Understanding the link between numerical regularity and structural regularity is cru-
cial for correctly applying SA methods. Additionally, the SA of systems of equations
can be extended to include systems with existential quantifiers [38].
In essence, the SA of DAE systems aims to address the following problem. Consid-
ering a DAE system represented by equation (2.1) as a set of algebraic equations with
the leading variables as unknowns, the goal is to determine if this system is structurally
non-singular. If it is, then given values for all the derivatives x′k for i = 1, 2, . . . , n and
k = 0, 1, . . . , di−1, a unique leading value for the i variables can be computed struc-
turally and, in other words, the system behaves like a ODE system. However, if the
system is not structurally non-singular, additional latent equations can be derived by
suitably differentiating selected equations. This process transforms the system into a
ODE-like form without altering its solution set [38].



38 CHAPTER 2. BRIEF ON DAES

The structural index introduced earlier serves as a metric for quantifying the number of
times the system needs to be differentiated to attain a structurally non-singular form. It
is important to emphasize that the structural index can be significantly higher than the
differential index. In particular, Reißig, Martinson, and Barton [39] highlights that
the structural index of constant coefficients linear DAEs, with a differential index of 1,
can be arbitrarily high, which contrasts many previous findings in the literature. This
reveals that applying Pantelides’ algorithm to index-1 DAEs may lead to an indefinite
number of iterations and differentiations.

TRACTABILITY INDEX REDUCTION Another approach to index reduction is the
so-called projector-based analysis, thoroughly detailed in Lamour, März, and Tischen-
dorf [42] and März [61]. The projector-based analysis, founded on the tractability
index, explores the concept that complex DAEs can consist of distinct regularity re-
gions bordered by critical points. These regions reveal a consistent structure that can
be uncovered using matrix function sequences formed with admissible projector func-
tions and guided by constant rank conditions. Smooth solutions are expected within
these regions, but crossing borders may lead to singularities. In essence, this method
provides a way of tracking the system’s structure by computing an admissible matrix
function sequence and monitoring rank conditions [45].
More specifically, the projector-based analysis involves finding a projector that sepa-
rates the differential and algebraic components of a DAE system with properly stated
leading term [45]. Hence, the projector transforms the DAE system into a lower-
index form, which is then integrated with improved numerical stability (thanks to the
properly stated leading term) [62]. Notice that in the case of nonlinear DAEs, the
projector-based analysis is typically performed pointwise, which means that the algo-
rithmic steps of the computation of admissible null-space projectors are performed at
each time step, ensuring that the changes in the DAEs structure are accounted for
at each time step. Special continuous projector-valued functions can be reutilized for
multiple time steps, thus reducing the computational cost of the method [34].

2.2.3 SOFTWARE FOR INDEX REDUCTION
Following this brief introduction to the most widely recognized index reduction algo-
rithms, we provide an overview of the specific index reduction algorithms found in
current state-of-the-art software. The following list is limited to the most prominent
solutions dedicated to dynamic system modeling and simulation that are adopted in
both academia and industry.

• MATLAB® uses the Pantelides algorithm [36] to reduce the DAEs to index-1.
Alternatively, or if the latter fails, the more reliable but slower Gaussian elimi-
nation algorithm is employed to obtain an index-0 DAE system [63].

• MODELICA [64, 65], MODELICA-based software and MODELINGTOOLKIT
[66] employ the Pantelides algorithm [36] along with the dummy derivatives
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method [41] to automatically perform the reduction to index-1 DAEs.

• MATHEMATICA® offers a comprehensive suite of index reduction algorithms [67].
It can reduce the index of DAEs using the Pantelides [36] or structural ma-
trix [40, 68] methods. Additionally, it implements dummy derivatives [41] and
projection methods for taking hidden constraints into account during numerical
integration.

• MAPLE® performs symbolic index reduction within the dsolve function [69].
However, the implemented algorithms are not documented or referenced. They
are likely to be based on the projection method outlined in [58]. Notably, the
patents by the same authors [70–72] discuss techniques for eliminating isolated
parameters, extracting parameter sub-expressions from DAEs, and establishing
minimal disconnected clusters of parameter sub-expressions. We would like to
point out that this information is to be taken with caution, as MAPLE® does not
provide specific references on this topic.

• DAESA, developed by Guangning Tan and Ned Nedialkov in collaboration with
John Pryce, is a MATLAB® toolbox designed for conducting SA of DAEs. DAESA
can analyze fully nonlinear systems, irrespective of their order or index, making
it capable of determining crucial attributes such as the structural index, DOFs,
constraints, and variables requiring initialization, while also proposing a suitable
solution strategy [73, 74]. Additionally, it can generate a block-triangular form
of the DAEs, enabling efficient block-wise solution strategies.

• DAETS, short for DAEs by Taylor Series, is a C++ package developed by
Guangning Tan and Ned Nedialkov in collaboration with John Pryce [75–77].
It is designed for tackling IVPs associated with DAE systems. DAETS leverages
Pryce’s method for the SA of DAEs, providing a powerful means to deter-
mine the system’s index, DOFs, and to precisely identify which components
necessitate ICs.

• INITDAE is a PYTHON prototype designed to calculate consistent ICs for DAEs,
determining their index, as well as a condition number that aids in identifying
singularities. The initialization algorithm utilizes a constrained optimization ap-
proach based on projectors, with Automatic Differentiation (AD). Local struc-
tural characteristics of theDAE system are examined through the Singular Value
Decomposition (SVD) [78]

• GENDA is a software package written in FORTRAN for the numerical solution
of generic nonlinear DAEs of the form (2.1), with arbitrary high-index [79].
Its implementation is based on the construction of the discretization scheme
introduced in [80], which transforms the system into a strangeness-free DAEs
with the same local solution set. Specifically, GENDA exploits the definition of
strangeness index, which generalizes the differentiation index for systems with
undetermined components [81].
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All the showcased software solutions offer integrators for index-0 and index-1 DAEs.
Depending on the system’s stiffness, users can select the most appropriate algorithm
for numerically integrating the reduced-index system.

2.3 ADVANCING INDEX REDUCTION

Notably, in findings presented by the group of Roswitha März, which are detailed
in [42], there is little mention of symbolic computation tools in the derivation of pro-
jector functions and matrix function sequences. Instead, the authors rely on numerical
factorizationmethods with a coupled automatic differentiationmethod to compute the
projector functions and the matrix function sequences [45, 82]. However, it is notewor-
thy that in Lamour, März, and Tischendorf [42], authors show that the latest state-of-
the-art CAS allows the derivation of smooth symbolic projector functions, especially
for simple or small-scale DAEs. This can significantly reduce the computational cost
of the projector-based analysis method as it eliminates the need for numerical factor-
ization methods and automatic differentiation.
Nevertheless, the most relevant consideration arising from what we stated in Sec-
tion 2.2.2, as well as in Mehrmann [33], Bojarincev [83], Gear and Petzold [84], and
Griepentrog and März [85] (despite part of these works focused on linear DAEs), is
that a neat separation between the differential and algebraic equations of the DAE sys-
tem is crucial for the successful application of the differential index reduction method.
This separation is achieved by transforming the DAE system into its Hessenberg form.
However, this process is not always straightforward. Particularly, for generic nonlinear
DAEs, the separation process can be computationally expensive and time-consuming.

A NOVEL SYMBOLIC ALGORITHM FOR INDEX REDUCTION Starting from
these observations, we recall and further specify the primary objective of this thesis:
The development of an index reduction algorithm for DAEs based on symbolic matrix
factorization techniques. It is worth noting that the algorithm is neither directly based
on the projector-based analysis nor in index concepts other than the differential index.
The algorithm is limited to generic well-determined DAEs of the form (2.1), linear in
the states’ derivatives. Such a reduction algorithm is implemented as an open-source
MAPLE® package. On the other hand, the numerical integration is performed by an
open-source MATLAB® toolbox. Both software constitutes the INDIGO toolbox [25],
whose dependencies are the symbolic linear algebra package LAST [24] and the large
expression management package LEM [23]. The proposed symbolic algorithm and
its dedicated numerical scheme are validated through a set of benchmark DAEs from
the literature arising in various fields, including problems from MBD, electrical circuit
simulation, and TPPC. In the forthcoming chapters, we will build up the necessary
theoretical background and tools to understand the algorithm’s inner workings.



CHAPTER 3

ESSENTIAL CONCEPTS AND TECHNIQUES OF
SYMBOLIC COMPUTATION

Symbolic linear algebra plays a crucial role in the index reduction of DAEs. Nonethe-
less, it is a powerful tool to handle complex mathematical tasks involving extensive
algebraic and calculus operations. However, symbolic computation brings its own
challenges. In particular, expression swelling is a common issue when intensively
working with symbolic expressions. In this chapter, we discuss the expression swell
phenomenon and discuss strategies for its mitigation through hierarchical represen-
tation techniques. Additionally, we tackle the solution of linear systems of equations
using novelmatrix factorizationmethods. Using the newly developed LEMandLAST
MAPLE® packages, practical implementation details are demonstrated, showcasing im-
proved symbolic linear algebra capabilities with expression swell mitigation. Neverthe-
less, before we delve into the details of these packages, let us first introduce the concept
of computer algebra and its applications in scientific computing.

3.1 INTRODUCTION TO COMPUTER ALGEBRA

Mathematical scientists employ methodical approaches to model natural phenomena.
This involves translating empirical observations and theoretical constructs into mathe-
matical expressions consisting of numerical values, variables, functions, and operators.
These expressions are then subjected to established methods of mathematical reason-
ing, where they are carefully manipulated or transformed to unveil novel insights into
the studied phenomenon. This mathematical methodology has been integral to the
scientific method in the physical sciences since the era of Galileo Galilei and René
Descartes. Following their legacy, Isaac Newton applied this approach to develop
a systematic, quantitative framework for describing the motion of objects. Through
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mathematical reasoning, he uncovered the universal law of gravitation and formulated
additional principles governing phenomena such as tidal motion and planetary orbits.
Thus, the discipline of mechanics emerged, solidifying the practice of manipulating
and transforming mathematical expressions as a fundamental tool for advancing our
understanding of the physical universe.
Over the past five decades, computers have evolved into indispensable tools for mathe-
matical exploration, greatly expanding our capacity to tackle complex problems. Math-
ematicians frequently employ computers to generate numerical and graphical solutions
for challenges that surpass manual capabilities. However, computers go beyond sim-
ple arithmetic; fundamentally, they operate by manipulating symbols, represented as
binary digits (0s and 1s), following precise rules. Given this capability, it is natural to
wonder about the possibility of automating other aspects of mathematical reasoning.
While it is unrealistic to expect machines to create foundational axioms like Newton’s
or develop groundbreaking theories from scratch, there is a significant area of mathe-
matical reasoning that lends itself well to algorithmic treatment, and more specifically
to the mechanical manipulation and analysis of mathematical expressions. Currently,
computer programs routinely handle tasks such as simplifying algebraic expressions, in-
tegrating complex functions, accurately solving differential equations, and performing
many other operations crucial in applied mathematics, scientific research, and engi-
neering. The interdisciplinary field at the intersection of mathematics and computer
science dedicated to this pursuit is commonly referred to as computer algebra or symbolic
computation.

3.1.1 ELEMENTARY CONCEPTS OF COMPUTER ALGEBRA
A CAS is specialized software designed to execute symbolic mathematical operations,
allowing for precise computations across various mathematical domains. Its capabili-
ties encompass a wide range of functionalities, including arithmetic operations such as
unlimited precision rational number arithmetic, complex arithmetic, and combinato-
rial functions. Furthermore, it enables algebraic manipulation through simplification,
expansion, factorization, and substitution operations, as well as polynomial operations
like structural operations, polynomial division, and finding the greatest common divi-
sors. Additionally, it can handle equation solving for polynomial equations, systems of
linear equations, and recurrence relations, while also performing trigonometric opera-
tions, calculus computations, and solving differential equations, including ODEs and
PDEs. Moreover, it supports advanced algebraic manipulations, linear algebra opera-
tions, and code generation for conventional programming languages and mathematical
word processing.

3.1.2 COMMERCIAL COMPUTER ALGEBRA SYSTEMS
Over the past 15 years, we have witnessed the development and widespread dissemina-
tion of several large-scale (yet user-friendly) CASs. Among the most notable are:
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• AXIOM: A comprehensive CAS developed during the 1970s at IBM under the
name of Scratchpad, later sold to the Numerical Algorithms Group in England
and became the AXIOM commercial system. It was withdrawn from the market
in 2001 and released as free software. Further details about AXIOM can be found
in [86].

• DERIVE: A compact CAS originally crafted by Soft Warehouse Inc. for personal
computer use. DERIVE has also been integrated into Texas Instruments Inc.’s TI-
89 and TI-92 handheld calculators. More information about DERIVE is available
online, yet the software is no longer actively maintained.

• MACSYMA: A robust CAS initially conceived at the Massachusetts Institute of
Technology during the late 1960s and 1970s. Various versions of the original
MACSYMA system are currently in circulation. Additional insights into MAC-
SYMA can be gleaned from [87].

• MAPLE®: A highly sophisticated CAS initially developed by the Symbolic Com-
putationGroup at theUniversity ofWaterloo (Canada) and presently distributed
by Waterloo MAPLE® Inc. For more information about MAPLE®, refer to [88] or
visit the website [69].

• MATHEMATICA®: An advanced CAS created by Wolfram Research Inc. Further
details about MATHEMATICA® are provided in [89] or on the website [67].

• MUPAD: A sizable CAS developed by the University of Paderborn (Germany)
and SciFace Software GmbH & Co. KG. Refer to [90]. Later versions of MU-
PAD are distributed by MathWorks Inc. and currently constitute the MATLAB®

CAS.

• REDUCE: One of the earliest CASs, developed in the late 60s and 70s. Further
information about REDUCE can be found in [91].

• SYMPY: A Python library for symbolic mathematics that aims to become a full-
featured CAS. SYMPY is open-source and freely available.

Specialized CASs are also available for specific mathematical domains, such as the
system developed for physics applications from the 1970s onward. These include, but
are not limited to:

• TRIGMAN [92] and TRIP [93], developed in 1972 for manipulates Poisson series
(trigonometric series with polynomial coefficients);

• SCHOONSCHIP [94], introduced in 1971 for quantum physics applications at Con-
seil Européen pour la Recherche Nucléaire (CERN);

• CAMAL [95] presented in 1972 for celestial mechanics and the general theory of
relativity

• SHEEP [96] first released in 1977 for the general theory of relativity.
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Each of these software packages constitutes an integrated mathematics problem-
solving system, featuring capabilities for exact symbolic computations, as well as
some capacity for approximate numerical solutions of mathematical problems and
high-quality graphics.

3.1.3 THEMAPLE LANGUAGE
As we have just shown, there exist several commercial CASs that provide a wide range
of symbolic computation capabilities. Among these, MAPLE® is a powerful system de-
veloped by MAPLESOFT® that offers a comprehensive suite of mathematical tools. The
MAPLE® system is equipped with a high-level programming language that allows users
to interact with the system intuitively. The MAPLE® language is designed to facilitate
the execution of symbolic computations, enabling users to perform complex mathe-
matical operations with ease. The language is equipped with a wide range of built-in
functions and operators that can be used tomanipulate mathematical expressions, solve
equations, and perform various other mathematical tasks. In the following examples,
we illustrate an interactive session with the MAPLE® CAS. User inputs, denoted by the
prompt (>) at the line beginning, are entered at a computer workstation. Commands
such as factor, convert, compoly, and simplify are among the mathematical operators
available in the MAPLE® system. Upon receiving these commands, the program carries
out the corresponding mathematical operations and displays the results using notation
similar to conventional mathematical expressions.

Example 4 (Symbolic operations from algebra and trigonometry inMAPLE®).

> p1 ^= x^5 - 4*x^4 - 7*x^3 - 41*x^2 - 4*x + 35;

p1 := x5 − 4x4 − 7x3 − 41x2 − 4x+ 35

> factor(p1);

(x+ 1)(x2 − 7x+ 5)(x2 + 2x+ 7)

> p2 ^= (x^4 + 6*x^2 + 3)/(x^5 + x^3 + x^2 + 1);

p2 :=
x4 + 6x2 + 3

x5 + x3 + x2 + 1

> convert(p2, parfrac, x);

x+ 7
3(x2 − x+ 1) −

x+ 1
x2 + 1 +

5
3(x+ 1)

> p3 ^= x^6+9*x^5+30*x^4+5*x^3+35*x^2+4*x+10;

p3 := x6 + 9x5 + 30x4 + 5x3 + 35x2 + 4x+ 10

> p4 ^= 1/(1/a+c/(a*b))+(a*b*c+a*c^2)/(b+c)^2;
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1
1
a +

c
ab

+
abc+ ac2

(b+ c)2

> simplify(p4);

a

> p5 ^= (sin(x)+sin(3*x)+sin(5*x)+sin(7*x))/
(cos(x)+cos(3*x)+cos(5*x)+cos(7*x))-tan(4*x);

sin(x) + sin(3x) + sin(5x) + sin(7x)
cos(x) + cos(3x) + cos(5x) + cos(7x) − tan(4x)

> simplify(p5);

0

■

In Example 4, the initial two prompts involve assigning a polynomial to a variable, p1,
using the “’^=” operator, followed by factoring it into irreducible factors over the ratio-
nal numbers. Subsequently, the third and fourth prompts involve inputting a rational
polynomial and determining its partial fraction decomposition.
In the example below, we demonstrate differentiation operation using the prompt com-
mand diff, followed by integration using the int command. Notably, the output of
the int operator lacks the arbitrary constant of integration. In the fifth prompt, we
assign a first-order differential equation to the variable p7. In this prompt result, it can
be seen that MAPLE® denotes the derivative of an unknown function y(x) using the
total derivative symbol “d”. Subsequently, we request MAPLE® to solve the differential
equation at the sixth prompt. The presence of the symbol C1 in the solution indicates
MAPLE®’s inclusion of an arbitrary constant. This means that MAPLE® includes an
arbitrary constant in the solution of a differential equation but does not include the
arbitrary constant for an anti-differentiation.

Example 5 (Symbolic operations from calculus and differential equations inMAPLE®).

> p6 ^= cos(4*x + 3)/(x^2 + 1);

p6 :=
cos(4x+ 3)

x2 + 1

> diff(p6, x);

−4 sin(4x+ 3)
x2 + 1 − 2x cos(4x+ 3)

(x2 + 1)2

> p7 ^= cos(x)/(sin(x)^2 + 6*sin(x) + 4);
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p7 := cos(x)
sin(x)2 + 6 sin(x) + 4

> int(p7, x);

−
√

5
5 arctanh

(
(2 sin(x) + 6)

√
5

10

)

> p8 ^= diff(y(x), x) + 3*y(x) = x^2 + sin(x);

d
dx y(x) + 3y(x) = x2 + sin(x)

> dsolve(p8, y(x));

y(x) = 1
3x

2 − 2
9x+

2
27 −

cos(x)
10 +

3 sin(x)
10 + e−3x_C1

■

The term computer algebra language or symbolic programming language refers to the
programming language used to interact with a CAS, as illustrated in Examples 4 and 5.
Most CASs offer both programming and interactive modes. In programming mode,
mathematical operators like factor and simplify are combinedwith standard program-
ming functions or procedures to create programs capable of solving complex mathemat-
ical problems. To illustrate this concept, let us examine the task of determining the
equation for the tangent line to the curve

y = f (x) = x2 + 5x+ 6

at the point x = 2. Initially, we derive a general formula for the slope through differ-
entiation. Subsequently, we substitute x = 2 into this expression to obtain the slope
at that specific point,

m =
dy
dx (2) = 9 .

Using the point-slope form for a line, the equation for the tangent line is derived as

y = m(x− 2) + f (2) = 9(x− 2) + f (2)
= 9x+ 8 .

The final formula is obtained by expanding the right side of this last equation. This
process can be automated using a CAS programming language, as demonstrated in the
following examples.

Example 6 (Implementation of the TangentLine procedure inMAPLE®).



3.2. PURPOSES AND APPLICATIONS OF COMPUTER ALGEBRA 47

TangentLine ^= proc(f, x, a)
local m, l;
m ^= subs(x = a, diff(f, x));
l ^= expand(m*(x - a) + subs(x = a, f));
return l;

end proc:
■

Example 7 (Execution of the TangentLine procedure inMAPLE®).

> TangentLine(x^2 + 5*x + 6, x, 2);

9x+ 2

■

In Example 6, we provide a general procedure written in the MAPLE® computer algebra
language, which performs computations for the tangent line. This procedure calculates
the tangent line formula for any function f at the point x = a. It utilizes the diff
operator for differentiation and the subs operator for substitution. Additionally, the
expand operator is used to simplify the output. Once this procedure is entered into the
MAPLE® system, it can be accessed from the system’s interactive mode, as shown in
Example 7.

3.2 PURPOSES AND APPLICATIONS OF COMPUTER ALGE-
BRA

In their influential work “Mathematics Applied to Deterministic Problems in the Nat-
ural Sciences” ([97], SIAM, 1988, pages 5-7), Lin and Segel delineate the objectives
of applied mathematics: applied mathematics aims to clarify scientific concepts and
depict scientific phenomena using mathematical tools, fostering the advancement of
mathematics through such endeavors. They discuss three fundamental aspects of this
process concerning the resolution of scientific challenges.

1. Formulating scientific problems in mathematical terms, which involves trans-
lating real-world scientific problems into mathematical language, enabling the
application of mathematical tools for analysis and solution.

2. Solving the mathematical problems thus formulated using appropriate mathe-
matical techniques, ranging from algebraic manipulation to differential equa-
tions and numerical methods.

3. Interpreting the solutions and empirically verifying them in the context of the
original scientific problem and validated through empirical observation or exper-
imentation.



48 CHAPTER 3. SYMBOLIC COMPUTATION ESSENTIALS

The authors of [97], also emphasize the interconnected nature of this process.

4 Generating scientifically relevant new mathematics by engaging in the formu-
lation, generalization, abstraction, and axiomatic formulation of mathematical
concepts and methods, applied mathematics contributes to the development of
new mathematical theories and techniques that are pertinent to scientific in-
quiry.

While CASs theoretically have the potential to facilitate steps (1), (2), and (4) of this
process, in practice, they primarily focus on step (2), i.e., the actual solving of mathe-
matical problems. Their role in steps (1) and (4) is comparatively limited, serving more
as tools for computation rather than for the conceptualization or creation of new math-
ematics. Specifically, CASs are invaluable tools in scientific research for performing
complex calculations, solving equations, and verifying mathematical identities, espe-
cially in cases where the calculations are too complex or tedious to be performed by
hand. In the subsequent part of this section, we present some examples showcasing
the application of computer algebra software in the problem-solving process. All of
these are simple examples that are only meant to illustrate the main capabilities of
CASs, and are not intended to be exhaustive.

Example 8 (Solution of a Linear System of Equations). Suppose we have the following
system of equations 

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



x1
x2
x3
x4

 =


b1
b2
b3
b4


We want to find the symbolic solution for x and y. We can use MAPLE® CAS to solve
this system symbolically.
# Define the system of equations
> eq1 ^= 3*x + 2*y = 10;
> eq2 ^= 4*x - 5*y = 20;

# Solve the system symbolically
> sol ^= solve({eq1, eq2}, {x, y});
In this code, we first define the system of equations eq1 and eq2. We then use the solve
function to find the symbolic solution for x and y and store the symbolic solution in
the variable sol. ■

Example 9 (Optimization of aMultivariableFunction). Let us consider a more complex
example involving a multivariable function. We minimize the Rosenbrock function,
which is a commonly used test function for optimization algorithms.
# Define the Rosenbrock function



3.2. PURPOSES AND APPLICATIONS OF COMPUTER ALGEBRA 49

> rosenbrock ^= (x,y) -> (1-x)^2+100*(y-x^2)^2;

# Use optimization package to minimize the Rosenbrock function
> sol ^= Optimization:-Minimize(rosenbrock(x,y), {x=-2^.2, y=-1^.3});

In this example, we define the Rosenbrock function f (x, y) = (1 − x)2 + 100(y −
x2)2, and then use MAPLE®’s optimization function Optimization:-Minimize to find
the minimum value and the corresponding point of (x, y). The result, stored in the
variable sol, gives us the minimum value of the function and its corresponding point
at which it occurs (the minimum point is f (x, y) = 0 at (x, y) = (1, 1)). ■

Example 10 (Solution of Ordinary Differential Equations). CASs can also be used to
obtain closed-form solutions of ODEs. For example, consider the following second-
order ODE representing a ball bouncing on a flat surface with a coefficient of restitu-
tion of 7/10. The ODE is given by


y′′(t) = − 981

100
y(0) = 5, y′(0) = 0

WhenEvent(y(t) = 0, y′(t) = − 7
10 y

′(t))

with t ∈ [0, 5] .

We can use MATHEMATICA® to solve this ODE symbolically and obtain the closed-
form solution for y(t)

y(t) =



5 −
981
200

t2 0 ≤ t ≤
10
√

10
109

3

3
200

(
−327t2 + 34

√
1090t − 800

) 10
√

10
109

3
< t ≤ 8

√
10
109

3
(
−1635t2 + 289

√
1090t − 13520

)
1000

8
√

10
109

< t ≤
169

√
2

545
3

−49050t2 + 11169
√

1090t − 687154
10000

169
√

2
545

3
< t ≤

2033
15
√

1090
3
(
−817500t2 + 215305

√
1090t − 15404041

)
500000

2033
15
√

1090
< t ≤

7577
50
√

1090
3
(
−81750000t2 + 23571350

√
1090t − 1849674509

)
50000000

7577
50
√

1090
< t ≤

244117
1500

√
1090

−24525000000t2 + 7499983500
√

1090t − 624651217823
5000000000

244117
1500

√
1090

< t ≤ 5

.

Even more complex ODEs can be solved using CASs for design optimization, control
systems, and other engineering applications. For example, MATHEMATICA® can find
the symbolic solution for a proportional-derivative controller keeping the position of
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a moving mass x(t) constant through the control input u(t), given by
x′′(t) = u(t)
x(0) = x′(0) = 0
u(0) = 1
WhenEvent(mod(t, τ) = 0, u(t) = (1− x(t)− x′(t)))

with t ∈ [0, 15] .

The solution for x(t) and u(t) is respectively given by

x(t) =



t2

2
0 ≤ t ≤ 1

1
4

(
−t2 + 6t − 3

)
1 < t ≤ 2

−
3t2

8
+ 2t −

5
4

2 < t ≤ 3
1
16

(
−t2 + 2t + 25

)
3 < t ≤ 4

1
32

(
5t2 − 52t + 162

)
4 < t ≤ 5

1
64

(
7t2 − 74t + 249

)
5 < t ≤ 6

1
128

(
−3t2 + 56t − 114

)
6 < t ≤ 7

1
256

(
−17t2 + 266t − 767

)
7 < t ≤ 8

1
512

(
−11t2 + 164t − 62

)
8 < t ≤ 9

23t2 − 482t + 3521
1024

9 < t ≤ 10

45t2 − 944t + 6942
2048

10 < t ≤ 11

−t2 + 114t + 2873
4096

11 < t ≤ 12

−91t2 + 2364t − 7070
8192

12 < t ≤ 13

−89t2 + 2310t + 1577
16384

13 < t ≤ 14

93t2 − 2968t + 56270
32768

14 < t ≤ 15

, and u(t) =



1 0 ≤ t ≤ 1

−
1
2

1 < t ≤ 2

−
3
4

2 < t ≤ 3

−
1
8

3 < t ≤ 4
5
16

4 < t ≤ 5
7
32

5 < t ≤ 6

−
3
64

6 < t ≤ 7

−
17
128

7 < t ≤ 8

−
11
256

8 < t ≤ 9
23
512

9 < t ≤ 10
45

1024
10 < t ≤ 11

−
1

2048
11 < t ≤ 12

−
91

4096
12 < t ≤ 13

−
89

8192
13 < t ≤ 14

93
16384

14 < t ≤ 15

.

■

3.3 EXPRESSION SWELL

Over the past four decades, CAS have increasingly found applications in both teaching
and research. The advantages of incorporating CAS into teaching methodologies have
been extensively documented. For instance, in Stoutemyer [98], general benefits of
CAS are outlined, while Pavelle [99] provides numerous examples where CAS quickly
solves problems that were previously considered complicated or time-consuming to
tackle by hand. However, Mitic and Thomas [100] highlight an essential precondition
for the effective and successful CAS utilization: users must be aware of potential pitfalls
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and limitations, across all mathematical proficiency levels. Besides software bugs, the
primary source of performance deterioration of CASs is the expression swelling.
The expression swell is a common phenomenon of exact computations in which the size
of numbers and expressions involved in a calculation grows dramatically as the calcula-
tion progresses, thereby slowing down the execution. While symbolic calculation soft-
ware like MAPLE® and MATHEMATICA® can handle substantial symbolic expressions,
the growth of expression size during manipulation severely degrades the CASs perfor-
mance, resulting in prohibitively long Central Processing Unit (CPU) times. During
symbolic manipulation, it is not uncommon to find computations that are executed
just once; once a result is obtained, recalculating it becomes unnecessary. However,
the time required to obtain a result is often unknown. Predicting the memory and
CPU time prerequisites for a given calculation poses challenges since the size of ex-
pressions generated during computation is known only after the computation is com-
pleted. For these reasons, expression swell consistently poses a challenge, emerging as
a major source of CAS faults. It manifests in two forms: inherent expression swell and
intermediate expression swell, each of which is discussed in the following sections.

3.3.1 INHERENT EXPRESSION SWELL
Inherent expression swell occurs when a calculation generates large expressions as a
result of the problem itself. For example, the solution of a large system of linear equa-
tions can lead to large expressions. In this case, the problem is the large number of
variables and equations, and the large expressions are a natural consequence of the
problem. This type of expression swell is difficult both to mitigate and to spot, as it
can arise from any problem, without any specific pattern.

Example 11 (Inherent expression swell). As an example, consider the following Hankel
matrix 

−1 1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 1
−1 −1 1 1 −1 −1 1 1 −1
−1 1 1 −1 −1 1 1 −1 −1

1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 −1
−1 −1 1 1 −1 −1 1 −1 1
−1 1 1 −1 −1 1 −1 1 1


,

which has the following characteristic polynomial

c(λ) = λ9 + λ8 − 40λ7 − 24λ6 + 240λ5 + 144λ4

= λ4(λ+ 6)(λ4 − 5λ3 − 10λ2 + 36λ+ 24) .

The Hankel matrix has four zero eigenvalues λ1,2,3,4 = 0, one eigenvalue is λ5 =
−6, and the other four eigenvalues are roots of the seemingly simple-looking quartic
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polynomial
λ4 − 5λ3 − 10λ2 + 36λ+ 24 ,

which are

λ6,7 =
5
4
±
√

3
12

√
8a2 + 155a+ 1856

a
+

√
6

12

√√√√√√ 155a− 4a2 − 928
a

±
111
√

3√
8a2 + 155a+ 1856

a

,

λ8,9 =
5
4
±
√

3
12

√
8a2 + 155a+ 1856

a
+

√
6

12

√√√√√√ 155a− 4a2 − 928
a

±
666
√

3√
8a2 + 155a+ 1856

a

,

where a = 3
√

3142 + 18i
√

8071. ■

3.3.2 INTERMEDIATE EXPRESSION SWELL
Intermediate expression swell is an important special case of expression swell in which,
during the middle stages of a calculation, intermediate expressions’ size can grow sub-
stantially, along the way to a possibly and comparatively simple final results of the
calculation.

Example 12 (Intermediate expression swell). Let us verify the Bianchi identity for a sym-
metric connection

Kℓ
j hk;p + Kℓ

j kp;j + Kℓ
j ph;k = 0 ,

where K is the Riemann curvature tensor. Expanding the left-hand side in terms of
Christoffel symbols of the second kind, one obtains a sum of 72 terms, each of which
is a product of 2 or 3 Christoffel symbols, for a total of 180 Christoffel symbols. How-
ever, upon simplifying this expression by consistently renaming the dummy indices,
the simple result of zero is obtained, which verifies the identity. ■

3.3.3 MITIGATION STRATEGIES
Although memory space, rather than time, is the main factor limiting the use of com-
puter algebra, symbolic operations will take considerably longer time than their nu-
merical counterparts. It should be borne in mind that, in the case of symbolic ma-
nipulations, the execution time is strongly dependent, once again, on the degree of
complexity and size of the input. As mentioned earlier, the production of large expres-
sions during the computation in the form of inherent but especially as intermediate
expression swell is, as stated in Noor and Andersen [101] a serious problem in sym-
bolic computation and maybe its ultimate limitation. There, it was anticipated that
future symbolic manipulation systems would automatically carry out remedial actions
to alleviate this problem such as
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• recognition of common sub-expressions in an expression and renaming them by
a single parameter;

• handling more expressions in a factored form rather than in an expanded form;
• deferred expansion of a function or variable in an expression.

On the other hand, it is interesting that while Korncoff and Fenves [102] also recog-
nizes this problem by stating that special problem formulation techniques will have to
be adopted in light of symbolic manipulation Korncoff and Fenves place the onus of
its solution (or, at least, alleviation) on the user rather than the system, saying that as
the use of symbolic processors increases, users will have to acquire the skills and insight
required to formulate problems to best optimize the function of a particular processor.
Up to now, the problem of expression swell has not yet been solved consistently. How-
ever, as we will see in the next section, some strategies have been introduced recently
to mitigate the problem.

3.4 HIERARCHICAL REPRESENTATION

To mitigate the expression swell, one may use hierarchical representation tech-
niques [103, 104].

Definition 1 (Hierarchical Representation [105]). A hierarchical representation over a
generic domain K and a set of n independent variables {x1, . . . , xn} is an ordered list
[v1, v2, . . . , vm] of m symbols, together with an associated list [d1, d2, . . . , dm] of defi-
nitions of the symbols. For each vi, with i ≥ 1, the definition di is of the form di =
fi(σi,1, σi,2, . . . , σi,ki) where fi ∈ K[σi,1, σi,2, . . . , σi,ki ], and each σi,j is either a symbol in
[v1, v2, . . . , vm] or an expression in the independent variables. ■

Hence, the main idea behind this hierarchical representation tool is to veil complicated
expressions from the user by using auxiliary variables called veil variables or veilings
[v1, v2, . . . , vm], and to unveil them by reapply their definitions, i.e., v1 = d1, v2 = d2,
…, vm = dm only when it is strictly necessary. In other words, the veil variables are
used to represent the complicated expressions in a compact form, while the actual size
of the expressions is hidden in the veil variables. Algorithm 1 describes the veiling
procedure, which is the core of the hierarchical representation technique.

Algorithm 1 Veil an expression.

1: Require: An expression e, and the optional expression dependencies x
2: procedure VEIL(e) ▷ Veil an expression
3: c← Normalizer(e) ▷ Transform e into factored normal form
4: if ExpressionCost(e) > m then ▷ Check if c complexity is above the threshold m
5: return c ▷ Return the expression in factored normal form
6: end if
7: i← IntegerContent(e) ▷ Retrieve the integer content without sign
8: s← Sign(c) ▷ Store the symbolic sign of c
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9: if si = c then ▷ Check if the expression is a constant
10: return c ▷ Return the expression in factored normal form
11: else
12: v← StoreVeil(sc/i) ▷ Store the veiled expression and return the veiling symbol
13: return siv(x) ▷ Return the veiled expression with its dependencies
14: end if
15: end procedure

Despite the simplicity of the idea, the implementation of the hierarchical representa-
tion is not straightforward. The main difficulty is to choose the right moment to veil
and unveil the veil variables. Indeed, the user must decide when to do it by experience,
and this decision has neither theoretical background nor specific rules to follow. As
a rule of thumb, the expression veiling should occur only when they become just too
large for further calculations. As a result, a metric of expression complexity and size
must be introduced to choose the right moment to veil and unveil the veil variables.

3.4.1 EXPRESSION COMPLEXITY METRIC
Choosing the complexity and size boundaries between intermediate expressions appro-
priately is of utmost importance in order not to produce too much expression swelling,
but also not to have too many veiling levels. Therefore, a metric for measuring ex-
pression proneness to swell must be introduced first. It is important to note that the
concepts of expression complexity and size are not synonymous, yet, they are both
closely related to the expression swell phenomenon. For these reasons, more than one
measure to quantify the complexity and size of an expression could be given.
There exist two main metrics to measure the complexity and size of an expression, each
with its own advantages and disadvantages.

• The length of an expression, in terms of the number of characters used to inter-
nally represent the expression. A possible measure that exploits the length of an
expression is the following

Nβ =

{
blogβ(|n|)c+ 1 n > 0
0 n = 0 ,

where n ∈ Z is a non-negative integer representing the expression length, and
β ∈ N is the base in which the length is measured. Notably used in Carette,
Zhou, Jeffrey, and Monagan [103] and Zhou, Carette, Jeffrey, and Monagan
[104], this metric is calculated through the lengthMAPLE® function. Thismetric
is very helpful in understanding the amount of memory space required to store
expressions, as well as the CPU effort required to write, process, and read them.
However, it does not provide any information about the operands and operations
involved in the expression.

• The computational cost of an expression, calculated through the cost function of
codegen package. This metric is somehow complementary to the previous one,
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and it provides insights into the computational cost of the expressions. Con-
versely, it does not provide any information about the amount of memory space
required to store an expression.

It is evident that it is not possible to use both metrics at the same time, as they are
neither directly comparable nor convertible to each other. Hence, the choice of the
metric to use is strictly dependent on the specific problem to solve.
Previous works [103, 104] on symbolic linear algebra have shown that the hierarchical
representation of expressions is applied to matrix factorization tasks, and it has been
proven to be effective in mitigating the expression swell problem. Nonetheless, the
LULEM package [103], which implements large expression management strategies
in LU decomposition, significantly outperforms the MAPLE®’s built-in matrix factor-
ization routines. Instead, throughout this thesis we use the computational cost. As
demonstrated in the following example, the latter metric is insensitive to the number
of characters used to represent the expression itself and guarantees better control of
the final expression size, regardless of the variables’ names. Nonetheless, the compu-
tational cost also provides us with a better prediction of both the computational effort
and growth of the expression size during a given symbolic operation.

Example 13 (Expression size and complexity calculation). Let us consider two alge-
braically equivalent expressions stored in expr_1 and expr_2 variables.
> expr_1 ^= (x^2+y^2)^2/g(x)-z/f(x):
> expr_2 ^= (x_tmp^2+y_tmp^2)^2/g_tmp(x)-z_tmp/f_tmp(x):
If we respectively calculate the expression complexity calculation through the length
and codegen:-cost functions we obtain the following results.
> map(length, <expr_1, expr_2>); [

53
73

]
> map(codegen:-cost, <expr_1, expr_2>);[

3multiplications + 2additions + 2divisions + 2functions
3multiplications + 2additions + 2divisions + 2functions

]
As it can be seen, the length function is sensitive to the characters that MAPLE® in-
ternally uses to represent the expression. Conversely, the codegen’s cost calculates
the actual computational complexity of the two expressions and returns the same re-
sult. ■

3.4.2 LARGE EXPRESSIONMANAGEMENT
There exist specific modules to perform large expression management tasks and
help the user handle hierarchical representations [103, 105]. The MAPLE® module
LargeExpressions already does this job. However, from the authors’ perspective, it
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has some minor limitations given by the chosen user interface rather than the under-
lying idea or the adopted programming technique. For this reason, the authors have
reinterpreted it to a new object-oriented LEM package [23]. The new version does
not differ much from its original version, but it allows more effective control and
straightforward use of the veiling variables. The object-oriented feature also allows for
the creation of multiple instances of LEM objects, giving the ability to sharply separate
veiling variables that could lead to conflicts if improperly used. Here an example is
given to briefly illustrate the capabilities of the large expression management technique
and, particularly, of the LEM module.

Example 14 (Large expression management with LEM [23]). Let us consider a random
polynomial p generated by the randpoly function.
> p ^= randpoly([x,y,z], degree=3, dense):
Then, we create a LEM object instance and set the veiling label to X.
> LEM_obj ^= Object(LEM):
> LEM_obj:-SetVeilingLabel(’X’):
The expressions are veiled to get a more compact hierarchical representation.
> p_X ^= collect(p, x, i -> LEM_obj:-Veil(i));

p_X := −7x4 + (2, y− 55z− 94)x3 + X[1]x2 − X[2]x

The veiling variables are stored in the LEM object and can be used to unveil the ex-
pression whenever necessary.
> <LEM_obj:-VeilList()>;[

X[1] = 87y2 − 56yz− 62z2 + 97z− 73
X[2] = 4y3 + 83y2z− 62yz2 + 44z3 + 10y2 + 82yz− 71z2 − 80y+ 17z+ 75

]
In addition to the few functions just presented, LEM allows to customize the strategy
and parameters used to control the veiling process. For further information on the
LEM package refer to the documentation in [23]. ■

3.4.3 SIGNATURE OF A HIERARCHICAL REPRESENTATION
In order to zero-test for an expression in hierarchical representations, we use the prob-
abilistic approach of signatures [106], which relies on the DeMillo-Lipton-Schwarz-
Zippel lemma [107–109]. Signature functions verify the presence of equivalent expres-
sions within thousands of sub-expressions through hashing techniques [110–113]. In
MAPLE®, each expression is stored in the simplification table using its signature as a
key. The signature of an expression is itself a hashing function, with one very important
feature: equivalent expressions have identical signatures. In other words, the signature
of an expression is a unique identifier that is computed from the expression itself.
On the contrary of [103, 105], we do not implement the signature function as a sepa-
rate module. Instead, we employ the MAPLE®’s signature function to exploit the latest



3.4. HIERARCHICAL REPRESENTATION 57

improvements in the symbolic computation engine. Given for granted that the signa-
ture function is a hashing function, it is possible to compute the define the signature
of a hierarchical representation as follows.

Definition 2 (Signature of aHierarchical Representation [105]). Let H denote a hierarchi-
cal representation with n independent variables {x1, . . . , xn}, expressed as lists of symbols
[v1, v2, . . . , vm] and definitions [d1, d2, . . . , dm], where vi = fi(σi,1, σi,2, . . . , σi,ki) and
σi,j represents an expression in the independent or hierarchical variables. Take p as a prime
number. The signature of vi is recursively defined as follows.

• We define s(vi) = fi(δi,j, . . . , δi,ki) mod p.

• If σi,j is an expression in the independent variables only, then δi,j = s(σi,j, p).

• If σi,j is an expression in [v1, v2, . . . , vi − 1], then we necessarily have i > 1. Let
hi,j ∈ [1, . . . , i − 1] such that σi,j = vhi,j , then δi,j = s(σi,j, p) = s(vhi,j , p), which
is known by induction assumption.

Thereby, the signature of H is s(H) = [s(v1), s(v2), . . . , s(vm)]. ■

The signature of the expression is computed before veiling an expression in hierarchical
representation. This value then becomes the signature of the veiling symbol. When
that symbol itself appears in an expression to be veiled, the signature of the symbol
is used in the calculation of the new signature. In particular, it is not necessary to
unveil any symbol in order to compute its signature. The main advantages of using
such a technique are that it is fast, flexible, and can be adapted to different applica-
tions. Moreover, hierarchical representations can often lead to a more compact and
elegant output, and the code can solve a wider class of problems and often “reduces”
intermediate expression swell.

3.4.3.1 EXTENDING SIGNATURES CALCULATION

Calculating the signature hashing function of any expression in polynomial time is
not always possible. In particular, trigonometric functions can present an obstacle to
the signature computation. However, it is possible to use ad hoc coordinate changes to
transform trigonometric expressions into polynomials of which the signature compu-
tation can be computed with standard techniques. Nonetheless, the transformation
into polynomials may facilitate the expression simplification, hence leading to a more
compact and less swelling-prone output. In particular, for many multi-body applica-
tions, the only independent variable is time. Depending on the modeling choices, such
DAE systems may be made of trigonometric polynomials of the angles between differ-
ent components. As shown in [114], one common method to convert such systems to
rational form is the transformation

cos(θ) = x , sin(θ) = y , where x2 + y2 = 1 . (3.1)
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which has the disadvantage that an additional constraint is introduced. Another useful
change of coordinates is the Weierstraß transformation [115]

cos(θ) = 1− u2

1 + u2 , sin(θ) = 2u
1 + u2 , where u = tan

(
θ

2

)
. (3.2)

If one solves for u, then the usual problem regarding the choice of an appropriate
branch for the inverse arises. Still, this transformation has the advantage that the
number of variables remains the same, with no additional introduced constraint. Please
notice that the signature computation used in this work is implemented within the
SIG sub-package of LEM [23]. The SIG sub-package is an improved object-oriented
version of the signature computation package present in LULEM [103].

3.5 SYMBOLIC MATRIX FACTORIZATION

As previously mentioned, matrix factorization is a widely employed technique for ad-
dressing linear systems. There are several types of decompositions, each with distinct
properties and characteristics. In the context of purely numerical matrices, the prac-
tice aligns well with the theoretical foundations of the algorithm. However, when
dealing with matrices consisting of either symbolic or mixed symbolic-numeric entries,
the situation becomes more intricate [105]. In exact symbolic linear algebra scenarios,
the cost of each operation during factorization can vary due to uncontrolled expres-
sion swell [104]. Furthermore, the presence of symbolic values hinders the guarantee
of numerical stability. Consequently, a key objective is to derive an output format
that retains the symbolic structure of the input matrix and ensures numerical stability.
Nonetheless, in symbolic linear algebra, much effort has been devoted to controlling
the growth of expression size by developing. Very little work has been done on the
guarantee of numerical stability. The main reason is that the techniques that are help-
ful for the numeric case are often unstable or impractical for the purely symbolic case,
ending in the pivoting on small quantities and resulting instability.
In this section, wewill focus on the full-pivoting LU and FFLUdecompositions, which
are the fundamental techniques that will be used in the next chapters, both for the large
linear system solution and DAEs index reduction. It is important to note that, the LU
and FFLU are preferred in symbolic linear algebra over the QR and Gauss-Jordan
(GJ), as LU decomposition involves simpler operations, thereby mitigating the issue
of expression swell. Additionally, as we will see, employing the LU factorization with
a minimum degree pivoting strategy proves superior in reducing fill-in and reducing
the subsequent numeric and symbolic computational cost.

3.5.1 THE FULL-PIVOTING LOWER-UPPER FACTORIZATION
The full-pivoting LU and FFLUdecompositions are widely used algorithms for solving
linear systems with minimal computational effort. They are defined as follows.
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Definition 3 (Full-Pivoting LUDecomposition). Given a matrix A ∈ Rm×n, with m ≥
n, the full-pivoting LU decomposition is defined as the process of decomposing A into the
product of

• a L ∈ Rm×m lower-triangular matrix with all diagonal entries equal to 1;
• a U ∈ Rm×n upper-triangular matrix;
• a P ∈ Rm×m and a Q ∈ Rn×n matrices for rows and columns permutation, respec-
tively;

such that PAQ = LU. ■

Definition 4 (Full-Pivoting FFLU Decomposition). Given a matrix A ∈ Rm×n, with
m ≥ n, the full-pivoting FFLU decomposition is defined as the process of decomposing A
into the product of

• a lower-triangular matrix L ∈ Rm×m with all diagonal entries equal to 1;
• a diagonal matrixD ∈ Rm×m;
• an upper-triangular matrix U ∈ Rm×n;
• a P ∈ Rm×m and a Q ∈ Rn×n matrices for rows and columns permutation, respec-
tively;

such that PDAQ = LU. ■

Pivoting for LU factorization is the process of systematically selecting pivots for Gaus-
sian elimination during the LU factorization of a matrix. The LU factorization is
closely related to Gaussian elimination, which is unstable in its pure form. To guaran-
tee the elimination process goes to completion, we must ensure that there is a non-zero
pivot at every step of the elimination process. This is the reason we need to pivot when
computing LU factorization. But we can do more with pivoting than just making sure
Gaussian elimination is completed. To ensure the numerical stability of the LU, we
need to consider that the domain of the entries of the matrix A is not only the real
number set but also the more generic symbolic domain. Hence, we need to consider
the symbolic stability of the LU factorization from two different perspectives: the nu-
merical one and the symbolic one.

3.5.1.1 THE LOWER-UPPERFACTORIZATIONFROMANUMERICALCOMPU-
TATION POINT OF VIEW

From a numerical perspective, we can reduce round-off errors during computation and
improve the algorithm backward stability by implementing the right pivoting strategy.
Depending on the matrix A, some LU decompositions may become numerically un-
stable if either numerically small pivots or symbolically zero pivots are used. Relatively
small pivots cause instability because they operate very similar to zeros during Gaus-
sian elimination. Through the process of pivoting, we can greatly reduce this instability
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by ensuring that we use the largest available entry as our pivot elements. This prevents
large factors from appearing in the computed L andU, which reduces round-off errors
during computation. The following example illustrates the importance of pivoting in
the LU factorization.

Example 15 (Backward stability of LU factorization). When a calculation is undefined
because of a division by zero, the same calculation will suffer numerical difficulties
when there is a division by a non-zero number that is relatively small. Given the fol-
lowing matrix A ∈ R2×2,

A =

[
10−20 1

1 2

]
,

when computing the factors L and U, the process does not fail in this case because
there is no division by zero.

L =

[
1 0

1020 1

]
, U =

[
10−20 1

0 2− 1020

]
.

When these computations are performed in floating point arithmetic, the number
2 − 1020 is not represented exactly but will be rounded to the nearest floating point
number which we will say is −1020. This means that our matrices are now floating
point matrices L′ and U′ where

L′ =

[
1 0

1020 1

]
, U′ =

[
10−20 1

0 −1020

]
.

The small change we made in U to get U′ shows its significance when we compute
L′U′

L′U′ =

[
10−20 1

1 0

]
6= A ,

thus when trying to solve a system such as Ax = b using the LU factorization as
the factors L′U′ suffer from a large error. This is a clear example of how the LU
factorization can be numerically unstable when small pivots are used. ■

After the LU factorization of a sparse matrix A, it is common to observe that the joint
non-zeroes pattern of L and U exhibit either equal or lower sparsity compared to the
original non-zero pattern of A. The additional elements in L and U are known as the
fill-in. This phenomenon diminishes performance as the number of non-zero elements
in the L andU factors is directly related to the number of operations required to solve a
linear system using the LU factorization. In other words, the more non-zero elements
in the L and U factors, the more operations are required to solve a linear system. This
is especially important when dealing with sparse matrices, where the number of non-
zero elements in the L and U factors can be significantly reduced by using the right
pivoting strategy. Indeed, specific reordering algorithms can be embedded in the piv-
oting strategy to minimize the fill-in of the factored matrix. These algorithms mainly
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include nested dissection [116, 117] and minimum degree [118, 119] techniques. The fol-
lowing example illustrates the importance of pivoting in reducing fill-in during the LU
factorization.

Example 16 (Fill-in reduction in LU factorization). Consider the west0479 sparse un-
symmetric matrix A ∈ R479×479, having non-zero 1887 entries [63]. The sparsity pat-
tern of the original matrix A and the L and U factors with and without pivoting, using
the minimum degree and nested dissection pivoting strategies, are shown in Figure 3.1.
As illustrated, the LU factorization ofA with pivoting has significantly less fill-in than
the LU factorization ofAwithout pivoting, thus highlighting the relevance of pivoting
in reducing fill-in during the LU factorization. ■

3.5.1.2 THE LOWER-UPPER FACTORIZATION FROM A SYMBOLIC COMPU-
TATION STANDPOINT

From a symbolic computation standpoint, i.e., when the entries of the matrix A are
not only real numbers but also symbolic expressions, the above considerations are not
sufficient anymore. Indeed, in exact linear algebra, the cost of each operation during
factorization can differ either for the fact that the expression size is not known a priori
or for the uncontrolled expression swell [104]. Moreover, numerical stability is not
guaranteed due to the presence of undefined values. Therefore, an important goal is to
obtain an output format that both maintains the symbolic structure of the input matrix
and is also stable when numerically evaluated.
Designing a pivoting strategy that is both numerically stable and symbolically viable
in terms of expression growth is a challenging task. In this context, the main issue is
that the choice of the pivot is not only related to the degrees of the matrix entries but
also to the actual complexity of the expressions. Starting from the fill-in reduction, the
minimum degree algorithm is preferred due to its ease of implementation. Conversely,
the nested dissection is not yet considered as it involves working on the system’s graph
to identify graph separators, which is no easy task in the symbolic case. Secondly, the
expression swell must be addressed both in terms of preventing the growth of the ex-
pression size and in terms of ensuring that the output symbolic code generated by the
factorization is also numerically stable. The prevention of expression swell is achieved
by the utilization of hierarchical representations with the aid of the LEM package,
which employs the computational cost metric to control the expression size. The nu-
merical stability of the symbolic code is ensured by choosing pivots that are both good
in terms of their degrees and their actual computation complexity.
It is important to note that the expression may inevitably grow during the factorization
process, thereby hindering the simplification of the expressions. This issue is mitigated
by the zero-testing capabilities of the previously presented signature functions, which
are used to verify the presence of null expressions without the need for simplification.
The zero-testing is a crucial detail in symbolic pivoting as it strongly improves numeri-
cal stability allowing for the detection of null expressions in a very efficient way. Other
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(a) Original sparsity pattern of matrix A
(1887 non-zero elements).

(b) Sparsity pattern of L and U factors us-
ing standard pivoting (15918 non-zero ele-
ments).

(c) Sparsity pattern of L andU factors using
minimum degree pivoting (13316 non-zero
elements).

(d) Sparsity pattern ofL andU factors using
nested dissection pivoting (12216 non-zero
elements).

Figure 3.1: Sparsity patterns of the original west0479 matrix A ∈ R479×479 and the
L and U factors with and without pivoting, using the minimum degree and nested
dissection pivoting strategies.

than the zero-testing, the hybrid symbolic-numerical or static pivoting approach is also
employed to validate the stability of symbolic code through random numerical evalu-
ations. This approach may be computationally less efficient compared to the former
method, but it yields satisfactory results. In other words, the “choice of pivots is nu-
merically good at most numerical specializations” as emphasized in [120]. However,
signature-based zero-testing is preferred as it is a proven and effective technique in
previous successful symbolic linear algebra works [103, 105]. It is worth noting that, to
the authors’ knowledge, there is still no well-established rule for determining whether
a generic expression is “likely” null. For this reason, this topic is still an open question.
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Algorithm 2 Symbolic LU Factorization.

1: Require: A m× n matrix A.
2: procedure LU(A, k) ▷ Symbolic full-pivoting LU procedure
3: M← A ▷ Initialize the matrix M
4: rnk← min(m, n) ▷ Initialize the rank of M
5: for k from 1 to rnk do ▷ Perform Gaussian elimination
6: p, q, l← SymbolicPivoting(M, k) ▷ Find the best pivot for the k-th step
7: if p = 0 then ▷ Check for null pivot
8: rnk← k− 1 ▷ The rank of M is k− 1
9: break ▷ The matrix is singular

10: end if
11: rk, ck ← q, l ▷ Store the pivot row and column indices
12: M← SwapRows(M, k, q) ▷ Swap the k-th and q-th rows
13: M← SwapColumns(M, k, l) ▷ Swap the k-th and l-th columns
14: for i from k+ 1 to m do ▷ Compute the k-th column of L
15: Mkk ← Veil(Mkk) ▷ Veil the k-th pivot
16: Mik ← Veil(Normalizer(Mik/Mkk)) ▷ Normalize the k-th pivot
17: for j from k+ 1 to n do ▷ Compute the k-th row of U
18: Mij ← Veil(Normalizer(Mij −MikMkj)) ▷ Finalize the Schur complement
19: end for
20: end for
21: end for
22: P, Q← PermutationMatrices(r, c) ▷ Compute the permutation matrices
23: L← LowerTriangular(M) ▷ Extract the lower-triangular part of M
24: U← UpperTriangular(M) ▷ Extract the upper-triangular part of M
25: return L, U, P, Q, r, c, rnk ▷ Return the factors and the rank of A
26: end procedure

Algorithm 3 Solve a square linear system Ax = b using the LU factorization.

1: Require: The LU factors L, U, P, Q, and a vector b.
2: procedure SOLVELU(L, U, P, Q, b) ▷ Solve the linear system Ax = b
3: y← Pb ▷ Apply the permutation matrix P to the vector b
4: m, n← Size(L) ▷ Get the size of L
5: for i from 2 to m do ▷ Solve Ly = Pb

6: yi ← Veil

yi −
i−1∑
j=1

Lijyj

 ▷ Perform forward substitution

7: end for
8: xn ← Veil(yn/Unn) ▷ Perform the first backward substitution
9: for i from n− 1 to 1 do ▷ Solve Ux = y

10: xi ← Veil

yi −
n∑

j=i+1
Uijxj

 ▷ Perform backward substitution

11: xi ← Veil(xi/Uii)
12: end for
13: x← Q⊤x ▷ Apply the permutation matrix Q⊤ to the solution x
14: end procedure
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Algorithm 4 Symbolic FFLU Factorization.

1: Require: A m× n matrix A.
2: procedure FFLU(A, k) ▷ Symbolic full-pivoting FFLU procedure
3: M← A ▷ Initialize the matrix M
4: rnk← min(m, n) ▷ Initialize the rank of M
5: for k from 1 to rnk do ▷ Perform Gaussian elimination
6: p, q, l← SymbolicPivoting(M, k) ▷ Find the best pivot for the k-th step
7: if p = 0 then ▷ Check for null pivot
8: rnk← k− 1 ▷ The rank of M is k− 1
9: break ▷ The matrix is singular

10: end if
11: rk, ck ← q, l ▷ Store the pivot row and column indices
12: M← SwapRows(M, k, q) ▷ Swap the k-th and q-th rows
13: M← SwapColumns(M, k, l) ▷ Swap the k-th and l-th columns
14: Dkk ← Mkk ▷ Veil the k-th pivot
15: for i from k+ 1 to m do ▷ Compute the k-th column of L
16: for j from k+ 1 to n do ▷ Compute the k-th row of U
17: Mij ← MkkMij −MikMkj ▷ Pertorm the “division-free” elimination
18: Mij ← Veil(Simplify(Mij)) ▷ Veil the simplified expression
19: end for
20: end for
21: end for
22: P, Q← PermutationMatrices(r, c) ▷ Compute the permutation matrices
23: L← LowerTriangular(M) ▷ Extract the lower-triangular part of M
24: U← UpperTriangular(M) ▷ Extract the upper-triangular part of M
25: return L, U, D, P, Q, r, c, rnk ▷ Return the factors and the rank of A
26: end procedure

Algorithm 5 Solve a square linear system Ax = b using the FFLU factorization.

1: Require: The FFLU factors L, U, D, P, Q, and a vector b.
2: procedure SOLVEFFLU(L, U, D, P, Q, b) ▷ Solve the linear system Ax = b
3: y← Pb ▷ Apply the permutation matrix P to the vector b
4: m, n← Size(L) ▷ Get the size of L
5: for i from 1 to m− 1 do ▷ Solve Ly = Pb

6: yi ← Veil

Diiyi −
m∑

j=i+1
Lijyj

 ▷ Perform forward substitution

7: end for
8: xn ← Veil(yn/Unn) ▷ Perform the first backward substitution
9: for i from n− 1 to 1 do ▷ Solve Ux = y

10: xi ← Veil

yi −
n∑

j=i+1
Uijxj

 ▷ Perform backward substitution

11: xi ← Veil(xi/Uii)
12: end for
13: x← Q⊤x ▷ Apply the permutation matrix Q⊤ to the solution x
14: end procedure
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Algorithm 6 Compute permutation matrices P and Q.

1: Require: The pivot row and column indices r and c.
2: procedure PERMUTATIONMATRICES(r, c) ▷ Compute the permutation matrices
3: m, n← Size(r), Size(c) ▷ Retrieve the size of the permutation matrices
4: P, Q← Identity(m), Identity(n) ▷ Initialize the permutation matrices
5: for i from 1 to m do ▷ Build the rows permutation matrix
6: P← SwapRows(P, i, ri) ▷ Swap the i-th and ri-th rows
7: end for
8: for i from 1 to n do ▷ Build the columns permutation matrix
9: Q← SwapColumns(Q, i, ci) ▷ Swap the i-th and ci-th columns

10: end for
11: return P, Q ▷ Return permutation matrices
12: end procedure

3.5.2 AN IMPROVED SYMBOLIC PIVOTING STRATEGY
We have shown that a crucial detail of both LU and FFLU decomposition, either nu-
merical or symbolic, is the pivoting strategy. This strategy hinges on two main consid-
erations: the degrees of the elements within the matrix and the actual complexity of the
expressions. From an operational standpoint, the pivoting process starts by arranging
the elements in the matrix in descending order of their degrees. Then, the pivot of the
least complexity is chosen. Sometimes these two features are conflicting. In such cases,
the prioritization of the pivot with the lowest degree is preferred. It is important to no-
tice that pivots consisting of numerical values take precedence over those with symbolic
values, primarily due to their inherent minimum expression complexity. Throughout
the pivoting process, the utilization of signatures is also employed whenever possible
to confirm the presence of null expressions without the need for simplification. To
summarize, the main steps of the pivoting strategy are the following.

1. The degree for each of the system matrix’s entries is calculated.
2. The pivots are sorted by degree and a permutation is generated.
3. The pivots are iterated in the order of the permutation and a candidate pivot is

selected at each step.
4. The candidate pivot is checked for null expressions with the aid of signatures.
5. If the candidate pivot signature is not null, the expression is simplified and their

complexity is calculated.
6. If the candidate pivot is numeric, its numerical value is calculated, otherwise, it

is set to infinity.
7. The candidate pivot with the lowest complexity or largest absolute numeric value

is selected as the best pivot and returned.

A detailed description of the developed symbolic pivoting strategy is presented in Al-
gorithm 7.
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Algorithm 7 Symbolic Full-Pivoting Strategy.

1: Require: A m× n matrix A.
2: The k-th pivoting stage.
3: procedure SYMBOLICPIVOTING(A, k) ▷ Symbolic pivoting procedure for the k-th pivot
4: dr, dc ← ComputeDegrees(A) ▷ Calculate the row and column degrees of A
5: for i from k to m do ▷ Iterate over the rows
6: for j from k to n do ▷ Iterate over the columns
7: Dij ←∞ ▷ Set the combined degree matrix to infinity
8: if Aij ̸= 0 then Dij ← dri max(0, dcj − 1) + dcj max(0, dri − 1) ▷ The degree
9: end for

10: end for
11: P ← Sort(D) ▷ Find the permutation that sorts the pivots list by degree cost
12: q, l← 0, 0 ▷ Initialize the temporary pivot row and column indices
13: p, pc, pn ←∞, ∞, ∞ ▷ Initialize the pivot value, complexity and numerical value
14: for all (i, j) in P do ▷ Iterate on the permutation set
15: if pc ̸=∞ and Dij > Dql then break ▷ No more good pivots to check
16: t← Aij ▷ Get the pivot value
17: if Signature(t) = 0 then continue ▷ Skip the next pivot
18: t← Simplify(t) ▷ Try to simplify the pivot expression
19: tc ← ExpressionComplexity(t) ▷ Calculate the computational cost of the pivot
20: tn ←∞ ▷ Set the default numerical value of the pivot to infinity
21: if t is numeric then tn ← max(1, abs(t)) ▷ Set the numerical value of the pivot
22: if tc < pc or (tc = pc and tn > pn) then ▷ If the pivot is better than the current one
23: q, l← i, j ▷ Update the best pivot row and column indices
24: p, pc, pn ← t, tc, tn ▷ Save the best pivot value, complexity and numerical value
25: end if
26: end for
27: return p, q, l ▷ The k-th pivot and its position
28: end procedure

Algorithm 8 Matrix Degrees Computation.

1: Require: A m× n matrix A.
2: procedure COMPUTEDEGREES(A) ▷ Compute the row and column degrees of A
3: dr, dc ← ZerosVector(m), ZerosVector(n) ▷ Initialize degree vectors
4: for i from 1 to m do ▷ Iterate over the rows
5: for j from 1 to n do ▷ Iterate over the columns
6: if Aij ̸= 0 then dri ← dri + 1 ▷ Increment the row degree
7: end for
8: end for
9: for j from 1 to n do ▷ Iterate over the columns

10: for i from 1 to m do ▷ Iterate over the rows
11: if Aij ̸= 0 then dcj ← dcj + 1 ▷ Increment the column degree
12: end for
13: end for
14: return dr, dc ▷ Return the row and column degrees of A
15: end procedure
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3.5.3 LINEAR ALGEBRA SYMBOLIC TOOLBOX
The considerations just made are the basis of the LAST package [24]. This package
is a MAPLE® toolbox for symbolic linear algebra. It is based on the original works
in [103, 121] and offers a set of routines for symbolic full-pivoting LU, a FFLU, QR
decomposition, and GJ factorization. The package LAST is designed to be used in
conjunction with the LEM package [23] to limit the expression swell.
An important aspect of LU decomposition is the pivoting strategy. In the LAST pack-
age, the pivoting process is developed to take into account the aforementioned aspects
of expression swell and numerical stability. In particular, the pivots are chosen based
on the degree of the elements of the system matrix and the actual complexity of the
expressions. The elements of the system matrix are sorted in descending order of their
degree and the least complex element is chosen as the pivot. Pivots with numeric values
are preferred over pivots with symbolic values due to their inherent numerical stability.
During the pivoting procedure, whenever possible, signatures are also exploited to ver-
ify the presence of null expressions. Here a simple example is given to briefly illustrate
the usage of the LAST package.

Example 17 (Symbolic linear system solving with LAST [24]). Let us consider a simple
linear system of equations in the form Ax = b and initialize them as follows.
> A ^= Matrix(3, symbol=’a’):
> B ^= Vector(3, symbol=’b’):
Then we create a LAST object and initialize the built-in LEM object with label V.
> LAST_obj ^= Object(LAST):
> LAST_obj:-InitLEM(’V’);
To solve the linear systemwith LAST it is first necessary to perform one of the available
decompositions, i.e., LU, FFLU, QR, or GJ. The intermediate results of the decom-
position are internally stored in the LAST object and are available on demand. Once
the decomposition is performed, the solution of the linear system can be obtained by
calling the GetResults routine.
> LAST_obj:-LU(A):
> ’L’ = LAST_obj:-GetResults(”L”), ’U’ = LAST_obj:-GetResults(”U”);
’r’ = LAST_obj:-GetResults(”r”)^%T, ’c’ = LAST_obj:-GetResults(”c”)^%T;

L =


1 0 0
−a2,1

a1,1
1 0

−a2,1

a1,1

V2

V1
1

 , U =

 a1,1 a1,2 a1,3
0 V1 V3
0 0 V5


r =

[
1, 2, 3

]
, c =

[
1, 2, 3

]
where r and c are the row and column permutation vectors, respectively. Pivots chosen
during the decomposition are also stored in the LAST object and are available on
demand
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> LAST_obj:-GetResults(”pivots”)[
a1,1, V1, V5

]
The LAST package also provides a routine to solve the linear system directly without
the need to call the GetResults routine. This routine is called SolveLinearSystem and
it is used as follows.
> LAST_obj:-SolveLinearSystem(B)^%T;[

− V9

a1,1
, −V8

V1
,

V7

V5

]
> LEM_obj ^= LAST_obj:-GetLEM(LAST_obj);
> <LEM_obj:-VeilList(LEM_obj)>;

V1 =
a2,2a1,1 − a2,1a1,2

a1,1

V2 =
a3,2a1,1 − a3,1a1,2

a1,1

V3 =
a2,3a1,1 − a2,1a1,3

a1,1

V4 =
a3,3a1,1 − a3,1a1,3

a1,1

V5 =
V4V1 − V2V3

V1

V6 =
b2a1,1 − a2,1b1

a1,1

V7 =
b3a1,1V1 − a3,1b1V1 − V2V6a1,1

a1,1V1

V8 =
V3V7 − V6V5

V5

V9 =
b1V1V5 − a1,3V7V1 + a1,2V8V5

V1V5


It must be noticed that in this example the size of the system is chosen to be small
for the sake of simplicity. In practice, the LAST package is designed to be used with
large systems of equations. For further information on the LAST package refer to the
documentation in [24]. ■



CHAPTER 4

SOLUTIONOF DYNAMIC SYSTEMS
DESCRIBED BY DIFFERENTIAL-ALGEBRAIC

EQUATIONS

In this chapter, we present an algorithm for the index reduction of first-order DAEs.
The proposed approach can be applied to generic DAEs and exploits neither a priori
knowledge nor ad hoc techniques to leverage the specific formulation of the system.
The index reduction is performed only by using symbolic manipulation and linear alge-
bra techniques. It is based on the successive separation of the differential and algebraic
equations of the system and the subsequent differentiation of the algebraic part. Im-
proved symbolic matrix factorization is used to perform the DAEs partitioning, ensure
numerical stability, and limit the expression swell of the reduced-index system. The
effectiveness of the algorithm will be validated in the next chapter through a set of
examples on a wide range of systems, including physical systems, engineering appli-
cations, and “artificial” DAEs with specific properties. The proposed symbolic index
reduction algorithm is implemented in MAPLE® as part of an open-source library.

4.1 DIFFERENTIAL-ALGEBRAIC EQUATIONS INDEX REDUC-
TION AND SOLUTION

As we already mentioned in the previous chapters, DAEs are extensively used in dy-
namic system modeling. The challenge in numerically solving a DAE system is as-
sessed through its differentiation index, commonly referred to as “the” index [59, 122].
Achieving accurate simulations necessitates converting high-index DAEs into low-
index counterparts, posing a well-recognized challenge [14]. This process involves
transforming a DAE system into an equivalent system with a lower index through
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successive differentiation of the system equations. For this reason, the differentiation
index is roughly defined as the number of times algebraic equations are differentiated
to obtain an equivalent system of ODEs with invariants. Index reduction is a crucial
step prior to the numerical integration of DAEs, as integrating high-index systems can
be impractical. The primary obstacle lies in the necessity to solve nonlinear systems
of equations at each integration step, which can be computationally expensive and, in
certain cases, numerically unstable. Specific numerical techniques, introduced in [14,
123, 124], have been developed to address this challenge. However, these methods are
not universally effective and may be inapplicable to some high-index DAEs. Conse-
quently, index reduction becomes an indispensable preliminary stage before numerical
integration [42].
Given its complicated nature, index reduction is the subject of extensive research and
is often carried out by leveraging the specific formulation of the DAE system, like
in the multi-body modeling [105, 114, 125–127]. When the specific formulation of
the DAE system is not known a priori, or the system is not in a specific form, the
index reduction process becomes more challenging. Many current simulation software
packages for dynamic systems use index-reduction algorithms based on the SA of the
system, such as the Pantelides algorithm [36] and the dummy derivatives method [41],
which are subcases of the Pryce’s Σ-method [37, 60, 73–77, 128]. These algorithms
are effective in reducing the index of most of the systems, but they can fail either for
numerical cancellations [129] or underestimation of the differentiation index [36, 40],
like in the case of Reißig’s DAEs family [39]. Symbolic manipulation is proven to be
successful in restating a DAEs on which the Σ-method fails to a DAEs on which the
SA may succeed [74].
Index reduction based on symbolic-numeric aided SA has been successful in handling
failures of the Pryce’s Σ-method [74] as well as in performing symbolically-informed
SA [68]. This latter SA approach, which is named σv-method, uses symbolic-numeric
LU factorization for variable substitution and rank determination on linear constant
coefficient DAEs. A valuable attempt to use pure symbolic manipulation in DAEs
index reduction is presented in [105, 114, 125], where implicit involutive form and LU
decomposition are successfully used to reduce the index of a simple constrained multi-
body system. It is clear that index reduction algorithms based on pure symbolic matrix
factorization represent a viable alternative to classic SA techniques. However, symbolic
matrix factorization feasibility is strongly tied to the performance of the symbolic com-
putation kernel and its capabilities [121]. Large expressions can lead to strong perfor-
mance degradation of the kernel. Techniques aimed at limiting this decrease of perfor-
mance while performing symbolic linear algebra operations are presented in [104, 105,
125]. In these works, the hierarchical representation of expressions is applied to matrix
factorization tasks. Nonetheless, the LULEM package [103], which implements large
expression management strategies in LU decomposition, significantly outperforms the
MAPLE®’s built-in matrix factorization routines.
The absence of user-invocable standalone functions within the MAPLE® environment
that allows for the automatic index reduction of DAEs, and the inability to extract
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both the reduced-index system and invariants from the dsolve function, are the pri-
mary motivations of this research. Furthermore, recent advances in symbolic matrix
factorization, combined with expressions hierarchical representation techniques, pro-
vide valuable tools that enable us to further investigate the applicability of a novel
algorithm for the index reduction of DAE systems, firstly presented in [2] as a prelim-
inary work. The proposed methodology is similar to the previous work of Chowdhry,
Krendl, and Linninger [68] and extends it to generic first-order DAEs, linear in the
states’ derivatives. Nonetheless, the proposed algorithm does not work on the struc-
tural matrix of the system but on the DAE system symbolic expressions. Specifically,
the idea of using matrix factorization for variable substitution and rank determination
is adopted to iteratively separate the differential and algebraic equations of the system.
The algebraic equations are then differentiated to obtain an equivalent system with a
lower differentiation index. Not less important, new libraries for symbolic matrix fac-
torization (LAST), large expression management (LEM), and signature computation
(SIG) are presented. These libraries are based on the LULEM package and extend the
work of Carette, Zhou, Jeffrey, and Monagan [103] and Zhou, Carette, Jeffrey, and
Monagan [104] and Zhou [105]. The newly presented libraries are designed to ensure
the numerical stability of the numerically evaluated expressions, limit the expression
swell, and provide an updated object-oriented interface. The effectiveness of the pre-
sented index reduction algorithm is validated through symbolic-numerical examples
on a wide range of systems, including physical systems, engineering applications, as
well as “artificial” systems with specific properties. The proposed algorithm is imple-
mented in the MAPLE® environment and is available as a collection of open-source
packages [23, 24]. Furthermore, the insights and the techniques presented in [103–
105] are used to improve the presented algorithm to embed the hierarchical represen-
tation of expressions in a future implementation of the algorithm.

4.2 A NEW INDEX REDUCTION ALGORITHM

In this section, we explore the theoretical aspect of reducing the differential index of
DAE systems. Specifically, to systematically reduce the DAE system’s index, a novel
iterative algorithm is presented. This algorithm comprises two main phases: initially,
the separation of the differential equations from the algebraic equations inherent in
DAEs; and subsequently, the differentiation of the algebraic ones to obtain an equiv-
alent system with a reduced index. The algorithm that is presented in this section
is implemented in the MAPLE® environment and is available as an open-source pack-
age [25].

4.2.1 DIFFERENTIAL AND ALGEBRAIC EQUATIONS SEPARATION
The initial phase of the index reduction procedure involves the partitioning of the DAE
system into its differential and algebraic equations. While in the case of small systems
this can be accomplished through manual identification and isolation of the algebraic
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equations, this approach is inconvenient when dealing with large systems. An alterna-
tive method for automating the separation process leverages the cokernel, or left null
space, of the DAE system matrix, which is computed through matrix factorization
techniques. The usage of the cokernel offers a more efficient and reliable means of
accomplishing the separation task, variable substitution and not less importantly rank
determination.
Consider a first-order system of DAEs F(x, x′, t) of the form

F(x, x′, t) = A(x, t) x′ − b(x, t) = 0 . (4.1)

We denote the cokernel and its orthogonal complement of A(x, t) with K(x, t) and
N(x, t) respectively (see 4.2.1.1 for details on the cokernel computation with symbolic
matrix factorization). Notice that the cokernel is the subspace obtained by the span
of K(x, t)’s columns. For this reason, hereafter, we refer to the cokernel as the matrix
K(x, t) whose columns span the cokernel. Using K(x, t) and N(x, t) it is possible to
separate the algebraic part of the DAEs (4.1) as

A(x, t) x′ = b(x, t) , and thus
{
E(x, t) x′ = g(x, t)

0 = a(x, t) , (4.2)

where A(x, t) =
[
E(x, t)

0

]
, and b(x, t) =

[
g(x, t)
a(x, t)

]
.

The separated equations of the DAEs are obtained by the left product of K(x, t) and
N(x, t) as

E(x, t) = N(x, t)A(x, t) ,
g(x, t) = N(x, t) b(x, t) ,
a(x, t) = K(x, t) b(x, t) .

This results in an equivalent DAE system, where the algebraic equations a(x, t) are
now explicit. The details of the cokernel and its orthogonal complement computation
are discussed in 4.2.1.1.

4.2.1.1 COKERNEL COMPUTATIONWITHMATRIX FACTORIZATION

The cokernel of a generic matrix A is denoted as K and satisfy KA = 0. As mentioned
before, the cokernel is the subspace obtained by the span of K’s columns. The orthog-
onal complement of the cokernel is denoted as N, moreover, the matrices N and K
stacked compose a square non-singular matrix. It is common knowledge that matrix
factorization techniques can be employed to compute the cokernel and its orthogonal
complement. Among these techniques, the LU factorization stands out as one of the
most frequently used methods.
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LOWER-UPPERDECOMPOSITION The full-pivoting LU decomposition of a ma-
trix A ∈ Rm×n (with m ≥ n) is represented as the product of matrices L and U with
the permutation matrices P and Q. It is characterized by the following properties:

• PAQ = LU;
• L ∈ Rm×m is a lower-triangular matrix with all diagonal entries equal to 1;
• U ∈ Rm×n is an upper-triangular matrix;
• P ∈ Rm×m and Q ∈ Rn×n are the rows and columns permutation matrices,

respectively.

If M is defined such that M = L−1P, then the following relation holds

MA = L−1PA = L−1PAQQ⊤ = L−1LUQ⊤ = UQ⊤ =

[
U1

0

]
Q⊤ .

If the identity matrix I is partitioned as

I =
[
I1 0
0 I2

]
, where I1 ∈ Rm×m and I2 ∈ R(m−n)×(m−n) ,

we can write [
I1 0

]
MA =

[
I1 0

] [U1

0

]
Q⊤ = U1Q⊤ ,

and [
0 I2

]
MA =

[
0 I2

] [U2

0

]
Q⊤ = 0 .

Eventually, the matrices N and K have the following form

N =
[
I1 0

]
M and K =

[
0 I2

]
M ,

where
KA = 0
NA = U1Q⊤ is full-rank

, and
[
N
K

]
is non-singular.

FRACTION-FREE LOWER-UPPER DECOMPOSITION The FFLU factorization
is a variant of the LU decomposition. It is based on the same principles as the stan-
dard LU decomposition, but it is designed to avoid the appearance of fractions in the
intermediate results. Similarly to the LU case, the FFLU decomposition of a matrix
A ∈ Rm×n (with m ≥ n) is represented as the quintet of matrices L, U, D, P, and Q,
and is characterized by the properties:

• PDAQ = LU;
• L ∈ Rm×m is a lower-triangular matrix with all diagonal entries equal to 1;
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• D ∈ Rm×m is a diagonal matrix;
• U ∈ Rm×n is an upper-triangular matrix;
• P ∈ Rm×m and Q ∈ Rn×n are the rows and columns permutation matrices,

respectively.

The procedure for computing the cokernel of a matrix A using the FFLU is similar to
the case of the LU decomposition. The only difference is in the computation of the
matrix product MA. If M = L−1PD, then MA are written as

MA = L−1PDA = L−1PDAQQ⊤ = L−1LUQ⊤ = UQ⊤ =

[
U1

0

]
Q⊤ .

Then, the subspaces N and K are computed as in the LU case.

4.2.2 ALGEBRAIC EQUATIONS DIFFERENTIATION
The algebraic equations in the DAE system (4.2) are now differentiated as

d
dt a(x, t) = Ea(x, t) x′ − ga(x, t) .

The DAEs (4.2) after differentiation of algebraic equations now take a form similar to
that of (4.1), where

A(x, t) =
[
E(x, t)
Ea(x, t)

]
, and b(x, t) =

[
g(x, t)
ga(x, t)

]
.

The set of invariants, which are collected in h(x, t), is updated adding the algebraic
equations a(x, t)

h(x, t) Invariants←−−−−−−
update

The old h(x, t)[︷ ︸︸ ︷
h(x, t)
a(x, t)

]
.

The iterative procedure, involving the sequential separation and differentiation of the
algebraic segment of the system, is iterated until A(x, t) is non-singular. When A(x, t)
is non-singular the DAE corresponds to a system of ODEs compounded by the invari-
ants h(x, t), which are the collection of the hidden constraints produced in the index
reduction process. The invariants h(x, t) can be initialized empty or with user-defined
algebraic equations aimed at preserving crucial system properties, such as energy con-
servation and/or momentum conservation. A pseudocode of the index reduction algo-
rithm can be found in Algorithm 9. Notice that in the algorithm, the choice of per-
mutation matrices P and Q computed during the matrix factorization are dependent
on the state variables x and free variable t. However, during the numerical integration
of the reduced-index system, the pivoting choice is assumed not to change, therefore
the permutation matrices are fixed and their dependencies are dropped.
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Algorithm 9 Index reduction algorithm (without large expression management) [2].

1: Require: A DAE system of the form F(x, x′, t) = A(x, t) x′ − b(x, t) = 0.
2: procedure REDUCEINDEX(F(x, x′, t)) ▷ Index reduction procedure
3: h(x, t)← ∅ ▷ The set of invariants
4: A(x, t), b(x, t)← GenerateMatrix(F(x, x′, t), x′) ▷ The DAE system matrix
5: m← Size(x) ▷ The size of x
6: while A(x, t) is singular do
7: ▷ Differential and algebraic equations separation (Section 4.2.1)
8: L(x, t), U(x, t), P, Q← MatrixFactorization(A(x, t)) ▷ Factorization of A(x, t)
9: r← Rank(U(x, t)) ▷ The rank of U(x, t) is equal to the rank of A(x, t)

10: I1 ← IdentityMatrix(r, r) ▷ The upper identity matrix
11: I2 ← IdentityMatrix(m− r, m− r) ▷ The lower identity matrix
12: E(x, t)← [I1, 0]U(x, t)Q⊤ ▷ The reordered part of A(x, t)
13: g(x, t)← [I1, 0]L(x, t)−1 P b(x, t) ▷ The differential part of b(x, t)
14: a(x, t)← [0, I2]L(x, t)−1 P b(x, t) ▷ The algebraic part of b(x, t)
15: ▷ Algebraic equations differentiation (Section 4.2.2)
16: Ea(x, t), ga(x, t)← GenerateMatrix(Diff(a(x, t), t), x′) ▷ Differentiate a(x, t)

17: A(x, t)←
[
E(x, t)
Ea(x, t)

]
and b(x, t)←

[
g(x, t)
ga(x, t)

]
▷ The new A(x, t) and b(x, t)

18: h(x, t)← h(x, t) ∪ a(x, t) ▷ Add the algebraic equations to the set of invariants
19: end while
20: return A(x, t), b(x, t), h(x, t) ▷ The DAEs reduced to an ODE system with invariants
21: end procedure

4.2.3 A STEP-BY-STEP EXAMPLE

Within this Section, we present the step-by-step results of the index reduction al-
gorithm. To do so we exploit a simple non-stiff index-3 problem found in WOL-
FRAM MATHEMATICA® documentation [67]. The initial value problem is defined as
follows

F(x, x′, t) =

 x′2 + x1 − sin(t)
x′3 + x2 − sin(t)
x3 − cos(t)

 , (4.3)

with states x = [x1, x2, x3]
⊤ and ICs x0 = [−1, 0, 1]⊤. Notice that the analytical

solution of this problem is xexact = [sin(t) − 2 cos(t), 2 sin(t), cos(t)]⊤. The index
reduction algorithm is applied to the DAE system (4.3) and the step-by-step results
for the matrices E(x, t), g(x, t), and a(x, t) are reported here below.

Index-3 DAEs: E(x, t) =
[
0 1 0
0 0 1

]
, g(x, t) =

[
sin(t)− x1
sin(t)− x2

]
,

a(x, t) =
[
cos(t)− x3

]
.
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Index-2 DAEs: E(x, t) =
[
0 1 0
0 0 1

]
, g(x, t) =

[
sin(t)− x1
sin(t)− x2

]
,

a(x, t) =
[
2 sin(t)− x2

]
.

Index-1 DAEs: E(x, t) =
[
0 0 1
0 1 0

]
, g(x, t) =

[
sin(t)− x2
sin(t)− x1

]
,

a(x, t) =
[
sin(t)− 2 cos(t)− x1

]
.

Index-0 DAEs: E(x, t) =

0 0 1
0 1 0
1 0 0

 , g(x, t) =

 sin(t)− x2
sin(t)− x1

2 sin(t) + cos(t)

 ,

a(x, t) = ∅ .
The final form of the system is an index-0 DAEs system is then

F(x, x′, t) =

 x′2 − x1 − cos(t)
x′3 − x2 − sin(t)

x′1 − cos(t)− 2 sin(t)

 ,

with invariants

h(x, t) =

 cos(t)− x3
2 sin(t)− x2

sin(t)− 2 cos(t)− x1

 .

Although the just presented example is not so complex and relevant for a real valida-
tion of the algorithm, it is useful to demonstrate the step-by-step results of the index
reduction algorithm. Furthermore, the expression complexities encountered through-
out the index reduction algorithm applied to the Index-3 problem are reported below
in Table 4.1.

4.2.4 ACKNOWLEDGING SOME ALGORITHM LIMITATIONS
While the algorithm just presented is relatively straightforward to implement, it does
have two major sources of potential issues that are both determined by the technology
used and the fundamental theory.

• Expression complexity. Symbolic manipulation often leads to a growth in expres-
sion complexity. For this reason, expression simplification may not always be
feasible due to software limitations or excessive CPU time demands. Making
the algorithm insensitive to expression swell is thus crucial to its effectiveness.

• Numerical stability of symbolic matrix factorization. The description of the algo-
rithm involves the manipulation of matrices and vectors with either symbolic or
mixed symbolic-numeric entries. Ensuring that symbolic matrix factorization
maintains numerical stability is a critical requirement of the algorithm. In the
case of LU decomposition, inadequate pivoting strategies can lead to the gen-
eration of singular matrices, which in turn can cause the algorithm to fail [105,
114, 120].
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Table 4.1: Expression complexity encountered throughout the index reduction of the
index-3 step-by-step example problem [67] DAE system index reduction with both
the LU and FFLU factorization techniques. Legend : f = functions, a = additions, m
= multiplications, and d = divisions.

Index-3 DAEs (LU Factorization) [67]
Original DAEs F(x, x′, t) = 10 f + 5 a h(x, t) = 0
Reduction step E(x, t) g(x, t) a(x, t)
Index-3 DAEs 0 4 f + 2 a 2 f + 1 a
Index-2 DAEs 0 4 f + 2 a 2 f + 1m + 1 a
Index-1 DAEs 0 4 f + 2 a 3 f + 1m + 1 a
Index-0 DAEs 0 6 f + 1m + 3 a 0
Reduced DAEs F(x, x′, t) = 12 f + 1m + 6 a h(x, t) = 7 f + 2m + 4 a

Index-3 DAEs (FFLU Factorization) [67]
Original DAEs F(x, x′, t) = 10 f + 5 a h(x, t) = 0
Reduction step E(x, t) g(x, t) a(x, t)
Index-3 DAEs 0 4 f + 2 a 2 f + 1 a
Index-2 DAEs 0 4 f + 2 a 2 f + 1m + 2 a
Index-1 DAEs 0 4 f + 2 a 3 f + 1m + 2 a
Index-0 DAEs 0 6 f + 1m + 3 a 0
Reduced DAEs F(x, x′, t) = 12 f + 1m + 6 a h(x, t) = 7 f + 2m + 4 a

These are the two main points that we acknowledge in the implementation of the
algorithm. In the forthcoming sections, each of these matters is discussed in detail,
with recommendations on techniques and open-source software solutions that are used
to address them.

4.3 INDEX REDUCTION WITH EXPRESSION SWELL MITIGA-
TION

The most interesting and relevant aspect to be explored is the connection between the
hierarchical representation of expressions (see Section 3.4) and the DAE index reduc-
tion. The use of veiling variables may be used to hide some parts of the expressions by
the collection of common sub-expressions. Even if this may appear to be a substantial
improvement, it is not so frequent to encounter expressions that are common to all the
equations of the DAE system. Still, this concept can be extended to mitigate the ex-
pression swell during matrix factorization (see Section 3.5). The veiling variables v(x, t)
would then include the states x of the DAE system. In this manner, the hierarchical
representation of the expression serves as a system augmentation technique as well as a
means to limit expression swell during the index reduction procedure. The augmented
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DAE system would then be expressed as

F(x, x′, v, t) = A(x, v, t) x′ − b(x, v, t) = 0 , (4.4a)

where v(x, t) =


v1(x, t)

v2(v1, x, t)
...

vn(v1, . . . , vn−1, x, t)

 . (4.4b)

Notice that if the matrix A(x, v, t) is non-singular, the augmented DAE system (4.4)
has index-1. This is a crucial aspect to be taken into consideration since, as demon-
strated in Section 4.4.3.1, the final reduction to index-0 DAEs is costly. Furthermore,
the vector v(x, t) and its Jacobian with respect to the states x can be sequentially eval-
uated for additional reduction of the computational burden. Nonetheless, the aug-
mented formulation (4.4) allows for the full exploitation of the signature technique to
detect null expressions without the need for symbolic simplification [113]. Eventually,
this will be the subject of future research and implementations that will exploit index-1
DAEs integrators similarly to the other state-of-the-art DAEs solver presented in the
Introduction. A pseudocode and a flowchart of the index reduction algorithm with
expression swell mitigation can be found in Algorithm 10 and Figure 4.1, respectively.
Similarly to Algorithm 9, the choice of permutation matrices P and Q computed dur-
ing the matrix factorization are dependent on the state variables x and free variable t.
However, their dependencies are dropped in the algorithm since the pivoting choice is
assumed not to change during the numerical integration of the reduced-index system.

Algorithm 10 Index reduction algorithm with expression swell mitigation.

1: Require: A DAE system of the form F(x, x′, v, t) = A(x, v, t) x′ − b(x, v, t) = 0.
2: procedure REDUCEINDEX(F(x, x′, v, t)) ▷ Index reduction procedure
3: hi(x, v, t)← ∅ ▷ The set of invariants
4: v(x, t)← ∅ ▷ The veiling variables vector
5: A(x, v, t), b(x, v, t)← GenerateMatrix(F(x, x′, v, t), x′) ▷ The DAE system matrix
6: m← Size(x) ▷ The size of x
7: while A(x, v, t) is singular do
8: ▷ Differential and algebraic equations separation (Section 4.2.1)
9: L(x, v, t), U(x, v, t), P, Q← MatrixFactorization(A(x, v, t)) ▷ Factorization step

10: vd(x, v, t)← NewVeilings(A(x, v, t), v(x, t)) ▷ New veils from factorization
11: v(x, t)← v(x, t) ∪ vd(x, v, t) ▷ Update the veiling variables vector
12: r← Rank(U(x, v, t)) ▷ The rank of U(x, v, t) is equal to the rank of A(x, v, t)
13: I1 ← IdentityMatrix(r, r) ▷ The upper identity matrix
14: I2 ← IdentityMatrix(m− r, m− r) ▷ The lower identity matrix
15: E(x, v, t)← [I1, 0]U(x, v, t)Q⊤ ▷ The reordered part of A(x, v, t)
16: g(x, v, t)← [I1, 0]L(x, v, t)−1 P b(x, v, t) ▷ The differential part of b(x, v, t)
17: a(x, v, t)← [0, I2]L(x, v, t)−1 P b(x, v, t) ▷ The algebraic part of b(x, v, t)
18: ▷ Algebraic equations differentiation (Section 4.2.2)
19: vx(x, v, t)← Jacobian(v(x, t), x) ▷ The Jacobian of a(x, v, t) with respect to x
20: a(x, v, t)← Diff(a(x, v, t), t) ▷ Differentiate a(x, v, t)
21: a(x, v, t)← Substitute(vx(x, v, t), a(x, v, t)) ▷ Remove derivatives from a(x, v, t)
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22: Ea(x, v, t), ga(x, v, t)← GenerateMatrix(a(x, v, t), x′) ▷ Get new system blocks

23: A(x, v, t)←
[
E(x, v, t)
Ea(x, v, t)

]
▷ The new matrix A(x, v, t)

24: b(x, v, t)←
[
g(x, v, t)
ga(x, v, t)

]
▷ The new vector b(x, v, t)

25: hi(x, v, t)← hi(x, v, t) ∪ a(x, v, t) ▷ Add the a(x, v, t) to the set of invariants
26: end while
27: return A(x, v, t), b(x, v, t), hi(x, v, t), v(x, t) ▷ The reduced DAEs
28: end procedure

4.4 THE SYMBOLIC-NUMERIC SOLUTION SCHEME

After this fairly long discussion on the actual implementation aspects of the index re-
duction algorithm, we can now present the INDIGO index reduction and integration
toolbox [25]. This toolbox consists of two main components: a MAPLE® package to
carry out symbolic index reduction of DAE systems, and a MATLAB® toolbox to per-
form numerical integration of the reduced-index system. INDIGO is designed to be used
in conjunction with the LEM package, to limit the expression swell, and the LAST
package, to conveniently factorize matrices. In the following paragraphs, we briefly
discuss the usage of the INDIGO package.

4.4.1 INDEX REDUCTION

The index reduction algorithm implemented in the INDIGO MAPLE® package is the
one presented in Section 4.2. To reduce the index of a DAE system in the MAPLE®

environment we need to first create an INDIGO object instance.

> Indigo_obj ^= Object(Indigo);
> Indigo_obj:-InitLAST();

Then, the system of DAEs eqns with coordinates vars is loaded.

> Indigo_obj:-LoadEquations(’Generic’, eqns, vars);

The Generic symbol is used to specify the type of the system. Notice that in this
example, we assume that the equations of the system are already available in the
MAPLE® session. The automatic index reduction process can be performed by calling
the ReduceIndex method, which iterates the separation and differentiation steps until
an index-0 DAE system is obtained.

> Indigo_obj:-ReduceIndex();

Intermediate results of the process are stored internally in the INDIGO object and are
available on demand. Once the index reduction process is completed, the user can
generate the name MATLAB® class file to perform numerical integration of the reduced-
index system.
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> Indigo_obj:-GenerateMatlabCode(name, type, data=pars);

A file name.m is generated in the current directory. As it is explained in the next section,
The string parameter type can be either Implicit, SemiExplicit or Explicit depending
on the desired numerical integration scheme. The optional parameter data introduces
default internal object data.

4.4.2 NUMERICAL INTEGRATION SCHEME

The INDIGO MATLAB® toolbox is an object-oriented library that allows the user to
exploit the automatically generated code of the reduced-index system. It is capable of
integrating systems of ODEs and DAEs using a variety of RK numerical integration
schemes. In particular, the system of equations which is integrated is composed of the
following elements.

• A differential part, which can be expressed by one of the following classes:

F(x, x′, v, t) = 0 Implicit system class,
A(x, v, t) x′ = b(x, v, t) SemiExplicit system class,

x′ = f(x, v, t) Explicit system class.

• The invariants, composed of the hidden constraints obtained from the index
reduction process hi(x, v, t), and optional user-defined invariants hu(x, v, t),
namely

h(x, v, t) =
[
hi(x, v, t)
hu(x, v, t)

]
= 0 .

• The veils, which are the set of the expression hierarchical representation variables
used in LEM to limit the expression swell

v(x, t) =


v1(x, t)

v2(v1, x, t)
...

vn(v1, . . . , vn−1, x, t)

 .

To respect the invariants during the integration the standard projection method is ap-
plied [130]. This method consists of projecting the solution x of the numerically in-
tegrated reduced-index system onto the invariants manifold h(x, v, t) = 0, which is
equivalent to the following constrained minimization

minimize
x

1
2 (x− x̃)2 subject to h(x, v, t) = 0.

To integrate the system generated through the MATLAB® package or a custom system
sys, the user must first instantiate a INDIGO RK solver.
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>>> solver = IndigoSolver(’solver_name’);
>>> solver.set_system(sys);

Once the solver is instantiated, it is only necessary to specify the ICs and the integration
time vector.

>>> [x, t, v, h] = solver.solve(t_ini:d_t:t_end, ics);

The solver returns the solution of the system in the form of multiple outputs: x con-
tains the integrated solution, x_dot the states’ time derivative, t the time vector, v the
veiling variables, and finally h the values of the invariants over the specified time mesh
t_ini:d_t:t_end.

4.4.3 PROVING THE ALGORITHM IMPLEMENTATION
In this section, we showcase an example of a high-index DAE system: an index-3
problem with an analytical solution, which describes the motion of a particle on a 3D
torus surface [131]. This example is employed to validate the numerical stability of the
reduced-index system, as well as the good conditioning of both the symbolic matrix
factorization and the numerical integration scheme. To ease the understanding of the
results, we purposely avoid the use of the veiling variables in this example. However,
the veiling variables just add an evaluation layer to the expressions, and they do not
affect the numerical properties of the integrator.

4.4.3.1 EXPRESSION COMPLEXITY OF THE REDUCED-INDEX SYSTEMS

As a first demonstration of the proposed index reduction algorithm capabilities, we
first consider the given example from a purely symbolic perspective. In particular, we
consider the computational cost of the expressions generated during the presented pro-
cedure, both with LU and FFLU factorization of the system matrix. The compactness
of the expressions generated during the index reduction algorithm is a crucial aspect,
as it ensures that limited computational overhead is introduced in the numerical inte-
gration of the reduced-index system, as well as in the projection of the solution on the
hidden constraints. Specifically, the index reduction algorithm is applied to the DAE
system and reduced to index-0. For each reduction stage of the example considered,
the computational cost is reported in Table 4.2. Notably, the results show that the
expression complexity is similar for both LU and FFLU factorization, with a slight
increase in the number of multiplications and divisions for the latter.

4.4.3.2 NUMERICAL INTEGRATIONOF THE REDUCED-INDEX SYSTEM

The numerical stability and consistency of the reduced-index system are demon-
strated by exploiting the analytical solution of the problem in [131]. Specifically, the
DAE system consists of three position variables [x1, x2, x3]

⊤, three velocity variables
[u1, u2, u3]

⊤, and one constraint with Lagrange multiplier λ. The solution manifold
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Table 4.2: Expression complexity encountered throughout the index reduction of the
particle motion DAE system with both the LU and FFLU factorization techniques.
Legend : f = functions, a = additions, m = multiplications, and d = divisions.

Particle Motion (LU Factorization) [131]
Original DAEs F(x, x′, t) = 47 f + 30m + 23 a h(x, t) = 0
Reduction step E(x, t) g(x, t) a(x, t)
Index-3 DAEs 0 39 f + 36m + 13 a 7 f + 10m + 6 a
Index-2 DAEs 0 39 f + 36m + 13 a 22 f + 20m + 8 a
Index-1 DAEs 0 39 f + 36m + 13 a 68 f + 72m + 33 a
Index-0 DAEs 388 f + 424m + 180 a 79 f + 77m + 26 a 0
Reduced DAEs F(x, x′, t) = 258 f + 239m + 109 a h(x, t) = 97 f + 102m + 47 a

Particle Motion (FFLU Factorization) [131]
Original DAEs F(x, x′, t) = 47 f + 30m + 23 a h(x, t) = 0
Reduction step E(x, t) g(x, t) a(x, t)
Index-3 DAEs 0 39 f + 36m + 13 a 7 f + 10m + 6 a
Index-2 DAEs 0 39 f + 36m + 13 a 26 f + 23m + 8 a
Index-1 DAEs 0 39 f + 36m + 13 a 68 f + 72m + 33 a
Index-0 DAEs 388 f + 424m + 180 a 79 f + 77m + 26 a 0
Reduced DAEs F(x, x′, t) = 258 f + 239m + 109 a h(x, t) = 101 f + 105m + 47 a

is 4D, and the exact solution is

xexact =

 x1
x2
x3

 =

 (ρ cos(2π − t) + r) cos(t)
(ρ cos(2π − t) + r) sin(t)

ρ sin(2π − t)

 .

The initial value problem is defined as follows

F(x, x′, t) =



x′1 − u1
x′2 − u2
x′3 − u3

u′1 − u3 cos(t) + x3 sin(t) + u2 − 2cx1λ
u′2 − u3 sin(t)− x3 cos(t)− u1 − 2cx2λ

u′3 + x3 − 2x3λ

x2
1 + x2

2 + x2
3 − 2r(x2

1 + x2
2)

1/2 + r2 − ρ2


, (4.5)

with parameters ρ = 5 and r = 10, c = 1 − r/(x2
1 + x2

2)
1/2, states x = [x1, x2, x3, u1,

u2, u3, λ]
⊤, and ICs x0 = [15, 0, 0, 0, 15, −5, λ]⊤.

The numerical integration of the reduced-index system is performed through Implicit
Euler, RadauIIA3, and RadauIIA5 RK methods. To respect the invariants during the
integration the standard projection method is applied [130]. This method consists of
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projecting the solution x of the numerically integrated system onto the invariants on the
hidden constraints h(x, t) = 0, which is equivalent to the constrained minimization

minimize
x

1
2 (x− x̃)2 subject to h(x, t) = 0 .

To verify that the projection is performed correctly and does not affect the order of the
RK method, numerical integration is performed in the interval t ∈ [0, 2π] seconds
with different integration time steps ∆t. The error of the numerical integration ε =
‖x− xexact‖∞ is reported in Figure 4.2. As it can be seen, the implemented projection
preserves the order of the method for all the integration time steps. It is important to
highlight that to obtain such results the absolute error tolerances of the integrator and
the projection are both set to ε = 10−10. The same tolerances are used in the numerical
integration of the reduced-index system in the interval t ∈ [0, 400π] seconds with
step ∆t = 0.025 seconds. The results are reported in Figure 4.3, where Implicit Euler,
RadauIIA3, and RadauIIA5 RK methods are employed, and the projection on the
hidden constraints h(x, t) is performed. The effect of the projection is highlighted on
the bottom left plot.

10−2 10−1
10−15

10−10

10−5

100
p = 0.932

p = 2.958

p = 5.095

∆t

ε

Runge-KuttaMethods Order

Implicit Euler
RadauIIA3
RadauIIA5

0 π/2 π 3π/2 2π
0

0.5

1

× 10−13

t

∥h
(x
,t
)∥

∞

Projection Error

Implicit Euler
RadauIIA3
RadauIIA5

Figure 4.2: Numerical integration error ε = ‖x − xexact‖∞ of the DAEs (4.5) over
different integration time steps ∆t, along with the computed order of the method (left).
The projection on the hidden constraints is performed and the invariants violation
‖h(x, t)‖∞ is reported (right). Notice that the implemented projection preserves the
order of the method for all the integration time steps. The tests are performed in
t ∈ [0, 2π] seconds, using Implicit Euler, RadauIIA3, and RadauIIA5 RK methods.
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Figure 4.3: Numerically integrated solution of the DAEs (4.5) in the interval t ∈
[0, 400π] seconds, with step ∆t = 0.025 seconds, using Implicit Euler (top left),
RadauIIA3 (top right), and RadauIIA5 (bottom left and right) RK methods.
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CHAPTER 5

APPLICATION FIELDS AND EXAMPLES

In the previous chapter, we presented a novel methodology for the automatic index
reduction of DAE systems. Such an index reduction is based on the separation of the
system into differential and algebraic parts with the help of symbolic linear algebra,
i.e., LU, or FFLU matrix factorization. No information on the DAE system structure
is leveraged during the reduction process. For this reason, this methodology can be
applied to generic DAEs linear in the state derivatives. Numerical integration good-
ness is showcased by assessing the order of the numerical integration scheme and the
accuracy of the projection. In this chapter, we take for granted the correctness of the
proposed methodology, and we focus on the application and capabilities of the index
reduction algorithm.

5.1 BENCHMARK PROBLEMS AND SOFTWARE COMPARI-
SON

The algorithm is applied to a variety of DAE systems, which are chosen to demonstrate
the capabilities and the wide range of applicability of the proposed methodology. The
examples are divided into three main categories: multi-body dynamics, trajectory pre-
scribed path control problems, and electrical circuits. Each of these categories is charac-
terized by a different structure of the DAE system, which is analyzed in detail and
helps us to understand the effectiveness of the proposed methodology. The examples
are mainly taken from the test sets [132–135] and are the following.

1. Multi-body dynamics:

(a) car-axis system [132, 134];
(b) flexible slider-crank mechanism [132, 134];
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(c) the multi-pendula system [77];
(d) double-wishbone suspension system [132, 134].

2. Trajectory prescribed path control problems:

(a) initial stage space shuttle reentry problem [9];
(b) final stage space shuttle reentry problem [9];
(c) the robotic arm system [60].

3. Electrical circuits:

(a) eight-nodes transistor-amplifier [132, 134];
(b) electric ring modulator [132, 134];
(c) cascaded differential amplifier [9].

Notably, in the application example 1d, the sub-models and techniques used for both
tire-ground interaction and model reduction are those presented in Appendices A, B,
C, and D. Moreover, such an example is also extensively discussed in [6, 8].
A comparison between the built-in joint index reduction algorithm and numerical in-
tegration schemes offered by MAPLE®, with those of INDIGO, will demonstrate the
effectiveness of the proposed methodology and software implementation. Notice that,
to ensure a fair comparison, the same Runge-Kutta-Fehlberg (RKF) 4(5) method with
a relative tolerance of 10−6 and an absolute tolerance of 10−7 is used in both software
packages. If such a method fails, the integration is carried out with the RadauIIA5
method in INDIGO and the implicit Rosenbrock 3(4) method in MAPLE®. The com-
putation time limit for both index reduction and code generation is 100 s. Numerical
integration is not limited by a maximum computation time, however the results are
only reported if the integration is completed thoroughly.
For the sake of completeness, we also compare some of our results with those obtained
by the MATLAB® symbolic toolbox, which works on the MUPAD CAS. Notably,
MATLAB® is capable of performing DAEs index reduction through either the Pan-
telides algorithm (reduceDAEToODE function) [36] or the Gaussian elimination method
(reduceDAEIndex function). The first is reported to be less robust and to have a higher
computational cost. On the other hand, the Gaussian elimination method is claimed
to be more robust and, to some extent, might be similar to the approach proposed in
this work, although its working principles are not fully disclosed and its success is guar-
anteed only if semilinear DAE systems are considered [136]. For the same examples
solved with MATLAB®, we also include the results obtained by MATHEMATICA®, which
performs DAEs index reduction through the Pantelides algorithm too. It is worth
noticing that MATHEMATICA® does not provide access to the reduced index DAE sys-
tem. Moreover, MATLAB® has no built-in function to compute the computational cost
of each equation in the reduced-index DAE system. This makes the comparison with
the proposed methodology and other software packages more challenging. For this
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reason, we will only limit our considerations to overall performance, i.e., the success of
both the index reduction process and numerical integration processes. A summary of
this comparison will be later reported in Table (5.18).
Before we proceed with the examples, it is also worth mentioning that during the index
reduction process, the trigonometric identities provided by Weierstraß (3.2) or (3.1)
can be used to reformulate the DAEs expressions, as well as to obtain polynomials
expressions and improve the detection of symbolic eliminations (see Section 3.4.3).
However, using such trigonometric identities does not typically lead to a significant
improvement in the computational cost of the expressions generated during the index
reduction procedure as the polynomial expressions obtained are difficult to simplify
as well. Furthermore, such transformations impose a change of coordinates in the
original DAE system, which may be undesirable in some applications. For this reason,
no reformulation is carried out in the examples presented in this chapter.

5.2 MULTI-BODY DYNAMICS

Historically, the MBD problems appeared in the early 60s when the first computer
simulations of mechanical systems were performed. Over the years, such systems have
been studied extensively, and many numerical or hybrid symbolic-numeric methods
have been developed to solve them [13]. As a consequence, the MBD field has be-
come one of the most relevant areas of research in the mechanical engineering domain
having a wide range of applications. In this section, we present four examples of MBD
problems, which are solved using the proposed index reduction algorithm. But first,
we provide a brief overview of the MBD problems, their mathematical formulation, as
well as the formal index reduction of the corresponding generic MB DAEs.
The MBD category is characterized by DAE systems that describe the motion of a
mechanism composed of interconnected rigid or flexible bodies. Within these sys-
tems, the differential equations represent motion equations, while the algebraic equa-
tions correspond to kinematic constraints, collectively constituting these MB problems.
Typically, such problems are posed as Hessenberg semi-explicit index-3 DAEs of the
form

p = q′
M(q, p, t)p′ −Φq(q, t)⊤λ = f(q, p, t)
Φ(q, t) = 0

, with Φq(q, t) =
∂

∂qΦ(q, t) , (5.1)

where q ∈ Rn and p ∈ Rn indicate respectively the generalized coordinates and the
generalized velocities, M(q, p, t) ∈ Rn×n is the mass matrix, Φ(q, t) ∈ Rm is the
constraint vector, λ ∈ Rm is the vector of Lagrange multipliers, and lastly f(q, p, t) ∈
Rn collects all the contributions fromCoriolis and centrifugal effects, as well as external
forces.

INDEX REDUCTION OF MULTI-BODY DYNAMICS EQUATIONS To solve the
problem in (5.1), one of the possible approaches is to transform the problem into a
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system of ODEs with invariants. Moreover, one may also isolate the Lagrange multi-
pliers λ and write them explicitly in terms of the state variables to obtain an index-1
DAEs representation of the MBD problem. In such cases, the index reduction can
be performed by exploiting the structure of the problem, as well as the properties of
the mass matrix M(q, p, t) and constraint vector Φ(q, t). To do so, we first need to
differentiate the constraint Φ(q, t), this yields to

d
dtΦ(q, t) = Φq(q, t)p+Φt(q, t) = 0 , with Φt(q, t) =

∂

∂tΦ(q, t) . (5.2)

Notice that when constraint does not depend on time (5.2) expresses the intuitive idea
that generalized velocity p must be orthogonal to constraint’s gradient. This provides
the opportunity to highlight that constraint Φ(q, t) imposes relationships also at the
velocity and acceleration level, i.e., (5.2) restricts the set of feasible velocities. Finally,
it must be noticed that (5.2) is still algebraic in the p coordinates, thus to obtain a fully
differential relationship, another differentiation is needed. This results in the following
equation

d2

dt2 Φ(q, t) = Φ̇q(q, t)p+Φq(q, t)p′ +Φtt(q, t) = 0 , (5.3)

with Φtt(q, t) =
∂2

∂t2 Φ(q, t) , and Φ̇q(q, t) =
d
dt Φq(q, t) ,

which does not impose any algebraic constraint on the mechanical system states and
leads to the following index-1 DAE system

q′ = p
M(q, p, t)p′ −Φq(q, t)⊤λ = f(q, p, t)
−Φq(q, t)p′ = Φ̇q(q, t)p+Φtt(q, t)

. (5.4)

System (5.4) can be also written in compact matrix notation as I 0 0
0 M(q, p, t) −Φq(q, t)⊤
0 −Φq(q, t) 0

q′
p′
λ

 =

 p
f(q, p, t)

Φ̇q(q, t)p+Φtt(q, t)

 . (5.5)

It is easy to notice that if the left-hand side matrix of (5.5) is invertible, then we can
write the system in explicit form. In specific, the matrix is invertible if and only if the
sub-block [

M(q, p, t) −Φq(q, t)⊤
−Φq(q, t) 0

]
∈ R(n+m)×(n+m)

is non-singular. To prove its non-singularity the rank additivity formula is applied as
follows

rank
([

M(q, p, t) −Φq(q, t)⊤
−Φq(q, t) 0

])
= rank (M(q, p, t)) . . .

+ rank
(
Φq(q, t)M(q, p, t)−1Φq(q, t)⊤

)
.
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Since M(q, p, t) is positive definite (and thus also non-singular), then ∀q ∈ Rn,
rank(M(q, p, t)) = n. Moreover, the second term in the right-hand side of the
equation above is non-negative and it is zero if and only if

rank
(
Φq(q, t)M(q, p, t)−1Φq(q, t)⊤

)
= m , (5.6)

which is not generally true. However, if we assume that the constraints are locally
linearly independent, then ∀q ∈ Rn, ∀t ∈ R, rank(Φq(q, t)) = m. Therefore, the
matrix in (5.5) is invertible, and the overall system is written explicitly asq′

p′
λ

 =

 I 0 0
0 M(q, p, t) −Φq(q, t)⊤
0 −Φq(q, t) 0

−1  p
f(q, p, t)

Φ̇q(q, t)p+Φtt(q, t)


An explicit expression for the inverse matrix above can be obtained through tedious
symbolic calculations. However, regardless of the specific solution, we want to stress
an important point: by differentiating the constraint twice, we can now explicitly write
an expression for the Lagrange multipliers (index-1 variables). If the accelerations p′
are isolated from (5.5) and substituted into (5.3), we obtain

p′ = M(q, q′, t)−1Φq(q, t)⊤λ+M(q, q′, t)−1f(q, p, t) = 0 . (5.7)

Then, substituting (5.7) into (5.3) we obtain the following expression

Φ̇q(q, t)p+Φq(q, t)M(q, q′, t)−1Φq(q, t)⊤λ . . .

+Φq(q, t)M(q, q′, t)−1f(q, p, t) +Φtt(q, t) = 0 .

Here the non-singular matrix in (5.6) is easily recognized, therefore the expression for
the Lagrange multipliers is given by

λ = −
(
Φq(q, t)M(q, q′, t)−1Φq(q, t)⊤

)−1
. . .(

Φ̇q(q, t)p+Φq(q, t)M(q, q′, t)−1f(q, p, t) +Φtt(q, t)
)

,

which can be either substituted into the explicit form of the DAE system (5.4) or
properly applied to obtain a numerically efficient representation of the MBD problem,
i.e.,

a set of ODEs
{
q′ = p
p′ = ṗ ,

where ṗ is obtained by solving the linear system[
M(q, p, t) −Φq(q, t)⊤
−Φq(q, t) 0

] [
ṗ
λ

]
=

[
f(q, p, t)

Φ̇q(q, t)p+Φtt(q, t)

]
.
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Technically, mechanical systems subject to holonomic constraints are represented by
DAEs systems of index 3, i.e., the differential index is one plus the number of differ-
entiations of the constraint that are needed to be able to eliminate the Lagrange multi-
pliers. Otherwise, equivalently, the number of times that we need to differentiate the
constraint to obtain a differential equation also for each of the Lagrange multipliers.

EXPLICITMATRIX INVERSE For the sake of completeness, we provide the explicit
expression for the inverse of matrix in (5.5), which is given by I 0 0

0 M(q, p, t) −Φq(q, t)⊤
0 −Φq(q, t) 0

−1

=

 I 0 0
0 X11 X12
0 X21 X22


where the quantities X11 ∈ Rn×n, X12 ∈ Rn×m, X21 ∈ Rm×n, and X22 ∈ Rm×m are
defined as follows

X11 = M(q, p, t)−1 +M(q, p, t)−1Φq(q, t)⊤X22Φq(q, t)M(q, p, t)−1 ,

X12 = X⊤
21 = M(q, p, t)−1Φq(q, t)⊤X22 ,

X22 = −
(
Φq(q, t)M(q, p, t)−1Φq(q, t)⊤

)−1
.

Notice that the matrix Φq(q, t)M(q, p, t)−1Φq(q, t)⊤ also appears in (5.6), for which
invertibility must be guaranteed.

5.2.1 CAR-AXIS DYNAMICS
After introducing the MBD problems, we now present the first example, which is the
car-axis dynamics problem. This example is taken from [132, 134] and is used to model
the motion of a car as riding over an uneven road. Here, the system is modeled as two
springs connected to two bars. The bottom of the left tire is the origin. The chassis
is represented by a bar of mass m, and its position is given by q = [xl, yl, xr, yr]⊤, as
also illustrated in Figure 5.1. The left tire is always on a flat surface, while the right
tire periodically rides over a sinusoidal road surface of height yb(t) = h sin(ωt). The
distance between the wheels is fixed, and the car chassis must always have a fixed length.
Hence, the following constraints are imposed

Φ(q) =
[

xlxb − ylyb
(xl − xr)2 + (yl − yr)2 − ℓ2

]
= 0 .

The equations of motion for the car are derived using Lagrangian mechanics. The mass
matrix M, and the force vector f are given by

M(q) = diag
(
(ℓ0 − ℓl)

xl
ℓl
, (ℓ0 − ℓl)

xl
ℓl
, (ℓ0 − ℓr)

xr
ℓr
, (ℓ0 − ℓr)

xr
ℓr

)
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and
f =

[
0,−ε2 m

2 , 0,−ε
2 m
2

]⊤
,

where
ℓl =

√
x2
l + y2l and ℓr =

√
(xr − xb)2 + (yr − yb)2

are respectively the length of the left and right springs, ℓ0 is the relaxed length of
both springs, h is the amplitude of the bump, and 1/ε2 is the Hooke’s constant of the
springs. The parameters of the car are chosen as ℓ = 1m, ℓ0 = 1/2m, ε = 0.01,
m = 10 kg, h = 0.1m, and ω = 10 rad/s. While the ICs according to [132, 134] are
q0 = [−1/2, 0,−1/2, 0]⊤ and p0 = [0, 1/2, 1, 1/2]⊤, with an integration time interval
of t ∈ [0, 3] s.

(�; �)

(��; ��) ������� ���		�	


�		 �

���	

(��; ��)

(��; ��)

��(�) = � 	�(!�)
���� �����		

Figure 5.1: Car-axis dynamics problem [132, 134]. The car is modeled as springs con-
nected to two bars. The bottom of the left tire is the origin. The car chassis is repre-
sented by a bar of mass m. The position of the chassis is given by q = [xl, yl, xr, yr]⊤.
The left tire is always on a flat surface, while the right tire periodically goes over a si-
nusoidal bump of the form yb(t) = h sin(ωt). The distance between the wheels must
always remain fixed, and the car chassis must always have a fixed length.

The car-axis DAE system is solved using the proposed index reduction algorithm with
both LU and FFLU factorization. The results are reported in Table 5.1. As expected,
the index reduces to 0, and the system is transformed into a set of ODEs. The com-
plexity of the expressions encountered during the index reduction is given in terms of
the number of functions f, additions a, multiplications m, and divisions d; and, as
reported in the table, the index reduction is successful and little expression swell is ob-
served only in the last reduction step. Notice that the FFLU factorization produces
more complex expressions than the LU factorization and, for this reason, the former is
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dropped in the following simulations. The reduced system is then numerically solved
using the RKF 4(5) integrator, and the results are shown in Figure 5.2, where the
springs’ lengths are plotted. Notably, during the simulation, the left spring remains
nearly constant at its relaxed length, while the right spring length periodically varies
due to road bumps. It is worth mentioning that also MATHEMATICA® and MATLAB®

(with both Pantelides and Gaussian elimination techniques) can correctly reduce the
index of the car-axis problem and integrate the resulting system.

0 0.5 1 1.5 2 2.5 3

0.48

0.5

0.52

t (s)

L i
(m

)

Figure 5.2: Springs length of the car-axis problem [132, 134]. Legend : ■ left spring Ll,
■ right spring Lr.

5.2.2 FLEXIBLE SLIDER-CRANKMECHANISM
The slider-crank mechanism presented in Figure 5.3 is a classic problem in mechanical
engineering. The mechanism consists of a crank, a connecting rod, and a slider. The
crank is driven by a motor at a constant angular velocity Ω, and the slider moves back
and forth in a straight line. In this case, the problem is a flexible MB system. Specifi-
cally, the rod connecting the crank and the slider is a flexible beam. The flexible MBD
problem is posed as a second-order index-3 DAEs of the formM(qr, qf)

[
q′′r
q′′f

]
−Φqr,qf(qr, qf , t)⊤λ = f(qr, qf , q′r, q′f)

Φ(qr) = 0
,

with

Φqr,qf(qr, qf , t) =
∂Φ(qr, qf , t)
∂(qr, qf)

,
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where the position or gross motion coordinates are

qr =

ϕ1
ϕ2
x3

 crank angle,
connecting rod angle,
sliding block displacement.

The deformation coordinates of the flexible connecting rod are

qf =


q1
q2
q3
q4


first lateral mode sin(πx/ℓ2) ,
second lateral mode sin(2πx/ℓ2) ,
longitudinal displacement midpoint,
longitudinal displacement endpoint.

The mass matrix M(qr, qf), and the force vector f(qr, qf , q′r, q′f) are given by

M(qr, qf) =
[
Mr(qr) +Me(qr, qf) C(qr, qf)⊤

C(qr, qf) Md

]
,

with rigid motion mass matrix

Mr(qr) =

 J1 + m2ℓ
2
1 ℓ1ℓ2m2 cos(ϕ12)/2 0

ℓ1ℓ2m2 cos(ϕ12)/2 J2 0
0 0 m3

 ,

coupling blocks

Me(qr, qf) = 0 ρℓ1(cos(ϕ12)c⊤1 + sin(ϕ12)c⊤2 )qf 0
ρℓ1(cos(ϕ12)c⊤1 + sin(ϕ12)c⊤2 )qf q⊤f Mdqf + 2ρc⊤12qf 0

0 0 0


and

C(qr, qf)⊤ =

ρℓ1(cos(ϕ12)c⊤2 − sin(ϕ12)c⊤1 )

ρc⊤21 + ρq⊤f B
0⊤

 ,

as well as elastic body space discretization mass matrix

Md = ρdhℓ2


1/2 0 0 0
0 1/2 0 0
0 0 8 1
0 0 1 2

 .

The force vector is given by

f(qr, qf , q′r, q′f) =
[

fr(qr, q′r) + fe(qr, qf , q′r, q′f)
fd(qr, qf , q′r, q′f)−∇Wd(qf)−Ddq′f

]
.
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where the rigid motion terms are collected in

fr(qr, q′r) =

−ℓ1(γ(m1 + 2m2) cos(ϕ1)/2 + ℓ2m2ϕ
′2
2 sin(ϕ12))

−ℓ2γm2 cos(ϕ2)/2 + ℓ1ℓ2m2ϕ
′2
1 sin(ϕ12)/2

0

 .

and ϕ12 = ϕ1 − ϕ2. For the force term fe(qr, qf , q′r, q′f) the expression is

fe(qr, qf , q′r, q′f) =
ρℓ1ϕ

′2
2 (cos(ϕ12)c⊤2 − sin(ϕ12)c⊤1 )qf − 2ρℓ1ϕ′

2(cos(ϕ12)c⊤1 + sin(ϕ12)c⊤2 )q′f
ρℓ1ϕ

′2
1 (sin(ϕ12)c⊤1 − cos(ϕ12)c⊤2 )qf − 2ρϕ′

2c⊤12q′f − 2ϕ′
2q′f

⊤Mdqf . . .
−ρq′f

⊤Bq′f − ργ(cos(ϕ2)c⊤1 qf − sinϕ2c⊤2 qf)
0

 ,

and for fd(qr, qf , q′r, q′f) the expression is

fd(qr, qf , q′r, q′f) = ϕ′2
2 Mdqf + ρ(ϕ′2

2 c12 + ℓ1ϕ
′2
1 (cos(ϕ12)c1 . . .

+ sin(ϕ12)c2) + 2ϕ′
2Bq′f)− ργ (sinϕ2c1 + cos(ϕ2)c2) .

The gradient of the elastic potential Wd(qf) in case of linear elasticity is ∇Wd(qf) =
Kdqf with the stiffness matrix

Kd =
Edh
ℓ2


π4/24(h/ℓ2)2 0 0 0

0 π42/3(h/ℓ2)2 0 0
0 0 16/3 −8/3
0 0 −8/3 7/3

 .

Alternatively, in the case of the nonlinear beam model, it holds ∇Wd(qf) = Kdqf +
Kd(qf), where

Kd(qf) =
π2Edh
2ℓ22


q1q4 − βq2(−4q3 + 2q4)
4q2q4 − βq1(−4q3 + 2q4)

4βq1q2
q2
1/2 + 2q2

2 − 2βq1q2

 , with β =
80
9π2 .

The damping matrix Dd is by default zero. The coupling matrices and vectors arising
from the space discretization read

B = dhℓ2


0 0 −16/π3 8/π3 − 1/π
0 0 0 1/(2π)

16/π3 0 0 0
1/π − 8/π3 −1/(2π) 0 0

 ,
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and
c1 = dhℓ2 [0, 0, 2/3, 1/6]⊤ ,
c2 = dhℓ2 [2/π, 0, 0, 0]⊤ ,
c12 = dhℓ22 [0, 0, 1/3, 1/6]⊤ ,
c21 = dhℓ22 [1/π,−1/(2π), 0, 0]⊤ .

The constraints of the slider-crank mechanism are given by

Φ(qr) =

 ℓ1 sin(ϕ1) + ℓ2 sin(ϕ2) + q4 sin(ϕ2)
x3 − ℓ1 cos(ϕ1)− ℓ2 cos(ϕ2)− q4 cos(ϕ2)

ϕ1 − Ωt

 = 0 .

For the simulation, the following parameters are used:

ℓ1 = 0.15m body 1 length,
ℓ2 = 0.30m body 2 length,
m1 = 0.36 kg body 1 mass,
m2 = 0.151104 kg body 2 mass,
m3 = 0.075552 kg body 3 mass,
J1 = 0.002727 kgm2 body 1 moment of inertia,
J2 = 0.0045339259 kgm2 body 2 moment of inertia,
ρ = 7870 kg/m3 rod density,
E = 200GN/m2 rod Young’s modulus,
γ = 0 gravity constant,
Ω = 150 rad/s prescribed crank angular velocity.

The ICs according to [132, 134] are

qr 0 =

0.000000000000000·10+0

0.000000000000000·10+0

4.500169330000000·10−1

 , q′r 0 =

 1.500000000000000·10+2

−7.499576703969453·10+1

−2.689386719979040·10−6

 ,

qf 0 =


0.000000000000000·10+0

0.000000000000000·10+0

1.033398630000000·10−5

1.693279690000000·10−5

 , q′f 0 =


4.448961125815990·10−1

4.634339319238670·10−3

−1.785910760000550·10−6

−2.689386719979040·10−6

 ,

λ0 =

 6.552727150584648·10−8

−3.824589509350831·10+2

4.635908708561371·10−9

 ,

with an integration time interval of t ∈ [0, 0.1] s.
The slider-crank mechanism DAE system is solved with the aid of the proposed index
reduction algorithm. Specifically, both the linear and nonlinear flexible beam models
are considered. The results in terms of expression complexity encountered through-
out the index reduction are similar for both formulations, and they are summarized
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in Table 5.2. As shown in the table, the expression complexity increases significantly
during the index reduction process, which is expected due to the inherent complexity
of the problem. Hierarchical representation is also employed to limit the expression
swelling, and the results are summarized in Table 5.3. The results show that the hi-
erarchical representation reduces the expression complexity by an order of magnitude,
which is beneficial for the numerical solution of the DAE system. Nevertheless, it
must be highlighted that, despite the mitigation of the expression complexity, the hi-
erarchical representation does not prevent the expression complexity from increasing
significantly during the index reduction process, which allows us to conclude that this
problem is affected by inherent expression swelling. The results of the numerical sim-
ulation are shown in Figure 5.4, where the longitudinal displacements q3 and q4 of the
flexible beam are illustrated. The flexible beam undergoes significant and fast deforma-
tion during the motion of the slider-crank mechanism, confirming the high stiffness of
the DAE system. In particular, the nonlinear beam model shows a more pronounced
and fast deformation compared to the linear beam model, which makes the numerical
solution more challenging. Indeed, the numerical solution of the slider-crank mecha-
nism with the nonlinear beam model exhibits an overflow error after t = 0.05 s, which
is likely due to either the high stiffness of the DAE system or strongly undamped oscil-
lations. The linear beam model, on the other hand, does not exhibit such issues and is
successfully solved. Nonetheless, in Figure 5.5 the LU pivots having minimum values
are depicted. Neither of them is crossing nor getting close to zero, which is a good
indicator of the numerical stability of the LU factorization and thereby of the efficacy
of the symbolic pivoting strategy.
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Figure 5.3: Representation of the flexible slider-crank mechanism [132, 134].

5.2.3 THEMULTI-PENDULA SYSTEM

The multi-pendula system consists of a chain of p coupled pendula. The first pendulum
is a standard simple pendulum, while the remaining pendula are coupled to the previous
one. Specifically, the tension in pendulum i− 1, which is represented by the Lagrange
multiplier λi−1, has a small effect on the length of pendulum p, for i = 2, . . . , p. The
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Figure 5.4: Longitudinal displacement endpoint of the in the flexible slider-crank prob-
lem [132, 134]. Color legend : ■ longitudinal displacement q3 at the rod midpoint, and
■ longitudinal displacement q4 at the rod endpoint. Line legend : — linear beammodel,
and – – nonlinear beam model.

first-order equations of motion for the multi-pendula system are the following [77]
u′1 = x1
v′1 = y1
x′1 = −λ1x1
y′1 = −λ1y1 − g
0 = x2

1 + y21 − ℓ2

and


u′i = xi
v′i = yi
x′i = −λpxi
y′i = −λpyi − g
0 = x2

i + y2i − (ℓ+ cλi−1)
2

for i = 2, . . . , p .

(5.8)
where xi, yi and ui, vi are the generalized coordinates and velocities of i-th pendu-
lum mass. The parameters of the multi-pendula system are chosen as ℓ = 1m, g =
9.81m/s2, and c = 0.1. The system (5.8) leads to a class of DAEs of size 5p and index
2p+ 1 [77], with arbitrary p ∈ Z≥2. ICs are chosen randomly, and the time interval is
t ∈ [0, 60] s.
Here, we consider p up to 5, leading to a DAE system of 25 variables and index 11. The
computational complexities encountered during the index reduction process are sum-
marized in Table 5.4, for the 2-pendula problem, Table 5.5, for the 3-pendula problem,
Table 5.6, for the 4-pendula problem, and lastly, Table 5.7, for the 5-pendula prob-
lem. The multi-pendula systems with p ≤ 3 exhibit low computational complexity
growth during the index reduction process. However, for p ≥ 4, there is a substan-
tial expression swell, which makes the index reduction process time-consuming and
computationally demanding, yet still feasible. The introduction of veiling variables is
avoided on purpose to assess the impact of strong expression swelling on the stability
of the numerical solution. It is worth noting that with p = 4 the maximum compu-
tational complexity that MAPLE® can handle within a reasonable time is reached. For
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Figure 5.5: Representation of the two pivots of the flexible slider-crank mecha-
nism [132, 134] having minimum values. Color legend : ■ pivot 1, and ■ pivot 2. Line
legend : — linear beam model, and – – nonlinear beam model.

this reason, performing the last reduction steps for p > 4 requires a significant amount
of time and computational resources. Furthermore, we believe that reducing the index
of the DAE system for p > 5 is not feasible within an acceptable time frame, even
with the aid of hierarchical representation. The numerical integration results of the
5-pendula system are depicted in Figure 5.6, where the pendula lengths are illustrated
in the time interval t ∈ [0, 60] s. Notice that the numerical solution of the 5-pendula
system is computed from its index-2 DAE form, as its index-0 form demands a signif-
icant amount of computational resources and time to be numerically solved.

5.2.4 DOUBLE-WISHBONE SUSPENSION SYSTEM
As a final example for this application field, we consider a double-wishbone suspension
system, which has been extensively discussed in [6, 8].

5.2.4.1 SUSPENSION SYSTEMMODELING

Double A-arm or double-wishbone suspensions are independent suspension systems
widely used in the automotive industry, especially in high-performance vehicles, due to
their superior handling characteristics. The studied double A-arm suspension system,
shown in Figure 5.7 is characterized by two A-shaped arms, one upper and one lower,
connected to the chassis at one end and to the wheel carrier at the other end forming,
together with the tie rod, the principal kinematic chain of the suspension system. A
second kinematic chain is formed by the push rod and the rocker, which transfer the
vertical load from the wheel carrier to the shock absorber.
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Figure 5.6: Pendula lengths of the multi-pendula problem [77] (up to 5 pendula). Leg-
end : ■ 1st pendulum length ℓ1 = ℓ, ■ 2nd pendulum length ℓ2 = ℓ + cλ1, ■ 3rd

pendulum length ℓ3 = ℓ + cλ2, ■ 4th pendulum length ℓ4 = ℓ + cλ3, and ■ 5th pen-
dulum length ℓ5 = ℓ+ cλ4.

In this example, the double A-arm suspension compliance is modeled using macro ele-
ments of the TRUSSME-FEM package [28], which is aMAPLE® package for the symbolic
modeling of compliant structures. Details on the modeling of the compliant elements
are reported in Appendix D. With the approach there presented, two suspension com-
pliance models are generated one does not include the bushings compliance, while the
other does. The linear systems have different sizes depending on the number of DOFs
considered. In the case of the suspension without bushings, the system is composed
of 78 DOFs, and has the following form[

Kff, 42×42(R) Kfs, 42×36(R)
Ksf, 36×42(R) Kss, 36×36(R)

] [
df, 42×1(R)
ds, 36×1(R)

]
=

[
ff, 42×1(R)
fs, 36×1(R)

]
.

On the other hand, the suspension model with the bushings influence is composed of
138 DOFs[

Kff, 72×72(R) Kfs, 72×66(R)
Ksf, 66×72(R) Kss, 66×66(R)

] [
df, 72×1(R)
ds, 66×1(R)

]
=

[
ff, 72×1(R)
fs, 66×1(R)

]
,

where the additional 60 DOFs are related to the compliance of the bushings. Both
systems are solved using the technique presented in Appendix D, which given the
generic compliant mechanism described by the linear system of equations[

Kff Kfs
Ksf Kss

]
︸ ︷︷ ︸

K

[
df
ds

]
︸ ︷︷ ︸
d

=

[
ff
fs

]
︸︷︷︸
f

, is sequentially solved as
df = K−1

ff
(
ff − Kfsds

)
,

fs = Ksfdf + Kssds ,

(5.9)
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# Component TRUSSME-FEM
type

1⃝ Carbon fiber cell Rigid support
2⃝ Shock absorber Constrained node
3⃝ Rocker Generic element
4⃝ Push rod Rod element
5⃝ Tie rod Rod element
6⃝ Wheel carrier Generic element
7⃝ Upper wishbone Beam elements
8⃝ Lower wishbone Beam elements
9⃝ Rod end Compliant node

Figure 5.7: Rendering and description of the TRUSSME-FEM elements [28] used to
model the rear left double-wishbone suspension of the Formula SAE E-Agle Trento
Racing Team vehicle [137].

where subscripts s and f indicate respectively the specified and the free DOFs. Notice
that the free and the specified DOFs are those that are and are not constrained by the
BCs, respectively.
The dynamic characteristic of the system is modeled through a DAE system of the
following type: 

y = q+ d
M(y)y′′ + r(q, q′, d, d′) = f(t)

Φq(q)⊤λ = r(q, q′, d, d′) + b(q, q′, t)
Φ(q) = 0

,

(5.10a)
(5.10b)

(5.10c)
(5.10d)

with r(q, q′, d, d′) = Kc(q)d+ Cc(q)d′ , (5.10e)

where q is the state vector, and t is the time. The quantity d represents the compliance
contribution of the mechanism members’ deformation. States and deformations are
conveniently condensed in a single variable y as in (5.10a). Equation (5.10b) represents
the compliance contribution to the dynamics of the system, where Kc, and Cc are the
stiffness and damping matrices of the compliant bodies, respectively. The matrix M
represents the masses of the mechanism, while f is the vector of external forces. For
convenience, we collect r in Equation (5.10e) as the vector of internal forces at the com-
pliant joint. Notice that the product Kc(q)d can be computed through the symbolic
solution of the linear systems (5.9). Equation (5.10c) represents the equilibrium equa-
tions between the rigid and compliant parts of the suspension. Specifically, Φq is the
Jacobian matrix of the constraint vector Φ with respect to the coordinates q, while b is
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the vector of external forces applied to the rigid part of the suspension. Lastly, Equa-
tion (5.10d) represents the kinematic constraints of the system. The pick-up points of
the modeled suspension are reported in Table 5.8. It is possible to derive the lengths
of the various elements from these coordinates and to impose constraints to ensure
a proper assembling of the mechanism. Components and materials specifications are
specified in Tables 5.9 and 5.10, respectively.
It is important to note that one may consider the compliance contribution as a super-
posed effect. To this end, we first assume that the influence of the members’ defor-
mation d is small with respect to the dimensions of the mechanism itself, and thus
to the state vector q, i.e., d � q. From (5.10a) it follows that M(y) ≈ M(q). It is
then possible to split the resolution of the DAEs (5.10) into two stages. Firstly, the
implicit differential equation (5.10c) and the manifold (5.10d) are integrated. Nonethe-
less, these equations are of an index-3 MB DAEs system of the type (5.1), which can be
reduced to an index-0 or index-1 DAEs system and solved as above explained. Then,
the second stage consists of adding the stationary contribution of the members’ defor-
mation d to the state vector q, that is y = q+ d = q+ Kc(q)−1(f(t)−M(q)q′′).

Table 5.8: Suspension pick-up points’ coordinates in the nominal position.

Pick-up
point name Constrained elements

Coordinates
x (mm) y (mm) z (mm)

P1 Chassis Upper-front rod −719 270 240
P2 Chassis Upper-rear rod −1010 265 225
P3 Chassis Lower-front rod −730 265 120
P4 Chassis Lower-rear rod −1010 235 98
P5 Chassis Tie rod −775 265 163
P6 Chassis Rocker −895 243 375
P7 Chassis Shock absorber −895 50 412
P8 Wheel carrier Upper-front rod −895 517 293
P9 Wheel carrier Upper-rear rod −895 517 293
P10 Wheel carrier Lower-front rod −885 550 120
P11 Wheel carrier Lower-rear rod −885 550 120
P12 Wheel carrier Tie rod −790 532 198
P13 Rocker Shock absorber −895 236 466
P14 Rocker Push rod −895 280 418
P15 Push rod Wheel carrier −895 479 312
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Table 5.9: Suspension shock absorber and
wheel specifications used in ANSYS® and
TRUSSME-FEM simulations.

Component Property Quantity

Shock
absorber

Stiffness 255 kN/m
Damping 500N s/m
Travel 0.06m

Wheel
body

Mass 12.5 kg
Inertia diam. 0.21 kgm2

Inertia axial 0.42 kgm2

Table 5.10: Properties of suspension mate-
rials used in ANSYS® and TRUSSME-FEM
simulations, where E is the Young mod-
ulus, ν is the Poisson ratio, and ρ is the
density.

Material
Properties

E (GPa) ν (–) ρ (kgm3)
AISI 1045 210.0 0.30 7800
AISI 316L 196.0 0.25 7990

Ergal 7075-T6 71.7 0.33 2810
Carbon fiber 150.0 0.34 1500
Epoxy glue 1.718 0.33 1440

5.2.4.2 SYSTEM SOLUTION

Prior to any analyses, the DAE system is handled to INDIGO for index reduction. For
this purpose, the system is reduced to a system of ODEs, and the computational com-
plexities encountered during the reduction process are reported in Table 5.11. Notice
the substantial increase in the expression complexity of the reduced system in the last
two reduction steps despite the simplification capabilities of MAPLE®, which indicates
a high level of inherent expression swell.
After the reduction process, the reduced system is numerically solved generating appro-
priate code for the SIMULINK® environment. The system is also reproduced in ANSYS®

for comparison and validation. The first test that is carried out aims to verify the ac-
curacy of the reduced system and to predict the impact of compliance on the system
dynamics. The results of the frequency response analysis are shown in Figure 5.9. The
results show that the SIMULINK® multi-body simulationwith full-compliance dynamics
contribution and the ANSYS® Finite Element (FE) modal analysis are in good agree-
ment and the first three modal shapes, which are shown in Figure 5.8, are well captured
by the reduced system with full-compliance dynamics contribution. Conversely, the
reduced system with steady-state compliance dynamics contribution can not capture
the first three modal shapes of the suspension. This result, despite expected, also intro-
duces a zero along the suspension moving direction in the system’s frequency response,
which is not present in the full-compliance dynamics contribution. The following con-
siderations can be made from these results: the compliance of the suspension system
has an impact on the system dynamics for high-frequency analyses, and the reduced
system with full-compliance dynamics contribution can capture the system dynamics
accurately. For computationally efficient simulations, the reduced system with steady-
state compliance dynamics can be used to capture the system’s behavior assuming the
suspension system is driven by low-frequency inputs.
The reduced system with full-compliance dynamics is then used to perform a transient
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(a) f1 = 7.6Hz (b) f2 = 88.5Hz (c) f3 = 159.7Hz

Figure 5.8: First three modal shapes of the suspension.

analysis of the suspension system, coupled with the tire-ground enveloping model and
the tire model presented in Appendix B (supported by the ACME C++ library described
in Appendix A) and Appendix C, respectively. The transient analysis is conducted to
understand the impact of compliance on the vehicle dynamics as well as suspension
rods’ diameter in the development of tire-ground forces. A side slip angle ramp simu-
lation is thus performed to evaluate the effect of suspension compliance on the lateral
force of the tire. For this simulation, the following four cases are analyzed:

• pure kinematic suspension model;
• kinematic and nominal compliance model;
• kinematic and compliance model with −10% suspension rods diameter;
• kinematic and compliance model with −20% suspension rods diameter.

The results of the simulation are shown in Figure 5.10, which compares the four cases.
The lateral force Fy is depicted with solid lines, while the difference between the lateral
force of the pure kinematic simulation and the other cases is illustrated in dashed lines.
The displayed curves show a non-negligible effect of suspension compliance on the
lateral force of the tire is observed. As expected, the larger difference in the generated
Fy force is observed in the linear region of the tire slip characteristic curve, where the
slip cornering stiffness is higher. The difference then decreases as the peak approaches.
Further observations could be made on the impact of these findings on the vehicle
dynamics and handling. However, this is beyond the scope of this work.
Finally, to estimate what would be the impact of compliance in a real race, the telemetry
and inputs of a full-vehicle simulation conducted on the Pista Azzurra track in Jesolo
(Italy), are applied to the modeled rear left double-wishbone suspension. The simu-
lation is conducted using the previously reduced MB-DAE system, the tire-ground
enveloping model, and the tire model presented in Appendices B and C, respectively.
The results of the simulation are shown in Figure 5.11, where the suspension travel z
is shown in the first plot, while the translations δ and rotation θ components of the
compliance contribution at the wheel hub are shown in the second and third plots, re-
spectively. On the other hand, Figure 5.12 shows the wheel hub trajectories during the
drive simulation. The pure kinematical trajectory of the wheel hub is shown in blue,
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Figure 5.9: Frequency response analysis of the suspension model is conducted, with
tests performed under the equilibrium between the suspension system and a vertical
force of 500N applied at the wheel hub. Frequency responses are assessed by applying
input forces/torques at the wheel hub in the form of a linear chirp spanning frequencies
from 0Hz – 200Hz, with a constant amplitude of 5N/5Nm. Legend: ■ SIMULINK®

multi-body simulation with full-compliance dynamics contribution, ■ SIMULINK®

multi-body with steady-state compliance contribution, ■ ANSYS® FE modal analysis.
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Figure 5.10: Tire lateral force Fy during a side slip angle ramp simulation. Solid lines
represent the results obtained with the SIMULINK® model, while dashed lines represent
the difference between the various simulations (see legend below). Solid lines legend: ■
kinematics, ■ kinematics and compliance, ■ kinematics and compliance (−10% rods
diameter), ■ kinematics and compliance (−20% rods diameter). Dashed lines legend:
■■ = ■ − ■, ■■ = ■ − ■, ■■ = ■ − ■.

while the overall position given by both the kinematic and compliance contributions
is displayed in red. Both figures show that the compliance of the suspension system
significantly affects the wheel hub’s trajectory, especially in terms of rotations.

5.3 TRAJECTORY PRESCRIBED PATH CONTROL PROBLEMS

The TPPC problems are characterized by DAE systems that describe the motion of a
dynamical system whose trajectory or performance is prescribed by adding a set of path
constraints to the equations of motion. The model equations evolve into a nonlinear
semi-explicit DAEs. Within this system, the differential equations represent motion
equations, while the algebraic equations correspond to the system’s description and
imposed path constraints, collectively constituting TPPC problems. Historically, ad-
dressing specific TPPC challenges involved the development of software models that
promptly adjust control variables to approximate prescribed path profiles. In this con-
text, we investigate general numerical techniques directly applicable to DAEs. TPPC
problems are present in various fields, such as robot control, chemical process manage-
ment, as well as space vehicle and aircraft guidance.
The DAE systems arising from TPPC simulations has typically the Hessenberg
form [138]{

x′ = f(x, u, t) differential equations
0 = g(x, u, t) path constraints with gx fu non-singular
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Figure 5.11: Simulation of the rear left double-wishbone suspension of the Formula
SAE E-Agle Trento Racing Team vehicle [137] on the Pista Azzurra track in Jesolo
(Italy). The simulation is conducted using the index-reduced DAE system, the tire-
ground enveloping model, and the tire model presented in Appendices B and C, re-
spectively. In the first plot, the suspension travel z is shown, while the second and third
plots show the translations δ and rotation θ components of the compliance contribu-
tion at the wheel hub. Legend : ■ x-axis component, ■ y-axis component, ■ z-axis
component.

for index-2 problems, and
x′ = f(x, y, u, t)
y′ = g(x, y, t)
0 = h(y, t)

with hy gx fu non-singular

for index-3 problems. The index of such systems is typically higher than the non-
controlled counterpart. Indeed, the path constraints control is embedded in the state
equations, often increasing the length of the differentiation chain to obtain a set of
ODEs. Specifically, when the Jacobian gu is non-singular, the path equations are
commonly referred to as control variable constraints and the corresponding DAEs has
index-1. It is not uncommon to find that the path constraints in a TPPC problem are
functions only of the differential variables so that gu = 0 and the DAEs will be of
higher index [9]. To showcase the capabilities of the proposed index reduction algo-
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Figure 5.12: Wheel hub trajectories during the track drive simulation on the Pista
Azzurra track in Jesolo (Italy). The chars show the pure kinematical trajectory of the
wheel hub in blue (■) juxtaposed to the overall position given by both the kinematic
and compliance contributions displayed in red (■).

rithm in handling such high-index TPPC problems, different examples are presented.
Two problems regarding the initial and final phases of the space shuttle reentry, de-
scribed by index-2 and index-3 DAEs [9]. Lastly, one problem on the control of a
robotic arm, which is described as a complicated index-5 system [60]. A brief discus-
sion of each of these examples, together with an introduction to the application field,
is presented in the following sections.

5.3.1 SPACE SHUTTLE REENTRY PROBLEMS
In space applications, TPPC problems aid in vehicle performance analysis during de-
sign, particularly for lifting reentry vehicles aiming to determine maximum crossrange
(or downrange) capability. Trajectory profiles are constrained by skin temperature
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limits set by the thermal protection design. OC theory offers a direct approach to
addressing maximum crossrange capability with heating constraints, formulated as a
two-point boundary value problem involving DAEs and adjoint variables. However,
solving such Optimal Control Problems (OCPs) requires starting solutions close to
the optimal, especially with heating constraints, due to extreme sensitivity to initial
guesses in shooting problems. An indirect TPPC approach or using TPPC to gener-
ate initial solutions for OC may offer more success. Typically, maximizing crossrange
capability involves holding the angle of attack α near the maximum lift/drag value, of-
ten set at around 40 deg in National Aeronautics and Space Administration (NASA)
space shuttle reentry simulations, leaving bank angleβ adjustments to satisfy remaining
functional constraints. In certain scenarios, varying system parameters can effectively
optimize vehicle crossrange capability by ensuring trajectory adherence to specific con-
straints, thereby presenting a semi-explicit nonlinear DAEs TPPC problem [9, 138].
The discussion is confined to a reentry vehicle in the absence of propulsive forces, where
we simplify the simulation to model solely spherical geopotential and spherical earth.
The equations of motion in relative coordinates are thus expressed as follows

H ′ = Vr sin(γ)

ξ′ =
Vr cos(γ) sin(A)

r cos(λ)
λ′ =

Vr

r cos(γ) cos(A)

V ′
r = −

D
m − g sin(γ)− Ω2

e r cos(λ)(sin(λ) cos(A) cos(γ)− cos(λ) sin(γ))

γ′ =
L cos(β)
mVr

+
cos(γ)
Vr

(
V2
r

r − g
)
+ 2Ωe cos(λ) sin(A) . . .

+
Ω2

e r cos(λ)
Vr

(sin(λ) cos(A) sin(γ) + cos(λ) cos(γ))

A ′ =
L sin(β)

mVr cos(γ)
+

Vr

r cos(γ) sin(A) tan(λ) . . .

−2Ωe(cos(λ) cos(A) tan(γ)− sin(λ)) + Ω2
e r cos(λ) sin(λ) sin(A)

Vr cos(γ)

,

(5.11)
where the state variables are x = [H, ξ, λ,Vr, γ,A]⊤. The parameters are the following

r = H+ re, distance from the earth center,
re = 20902900 ft earth radius,
g = μ/r2 gravity force,
μ = 1.407653916× 1016 ft3/s2 gravitational constant,

Ωe = 360/(24 · 60 · 60) deg/s earth angular speed,
ρ(H) = 0.002378 exp(−H/23800) atmospheric density,
L(Vr) = 1/2ρCLSV2

r aerodynamic lift force,
D(Vr) = 1/2ρCDSV2

r aerodynamic drag force.

The aerodynamic lift and drag coefficients, respectivelyCL(α) andCD(α), as well as the
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vehicle cross-sectional area S and massm, will be later specified on the specific test. The
control variables, which dictate both the magnitude and direction of the aerodynamic
force applied to the vehicle, are assessed within the body coordinate system (refer to
Figure 5.13a). The bank angle β corresponds to a rotation or roll about the vehicle’s
x-axis, while the angle of attack α is measured from the relative velocity vector of
the vehicle to the body x-axis, representing a rotation or pitch about the body y-axis.
For a more detailed explanation of these parameters and the coordinate system on
the presented tests, please refer to [139]. Nonetheless, figure 5.13 illustrates the space
shuttle coordinate system, as well as the vehicle’s position with respect to the earth
reference frame.
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Figure 5.13: Coordinate systems for the space shuttle reentry problem [9, 138].

Once the space shuttle concludes its mission in space, it must return to Earth for land-
ing, subject to various mission constraints, such as heating limitations to prevent vehi-
cle damage. Instead of directly imposing these heating constraints as algebraic limita-
tions, an alternative approach involves prescribing a nominal drag acceleration versus a
relative velocity profile. This profile is selected to ensure that temperature constraints
are satisfied as long as the vehicle follows a trajectory complying with this drag con-
straint. During reentry, the standard equations of motion (5.11) are compounded with
an algebraic constraint representing the drag acceleration profile, forming a DAE sys-
tem. Typically, the angle of attack remains constant or is only slightly varied, while
the bank angle serves as the control variable. In the following, we examine the initial
and final phases of reentry. The first involves maneuvering the vehicle from a given
state to one lying on the nominal drag constraint. While the second entails flying the
vehicle along the nominal drag constraint.
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5.3.1.1 INITIAL STAGE REENTRY PROBLEM

We now examine the initial stage reentry TPPC problem in the same form of [138].
This problem is part of a broader trajectory optimization process aimed at determining
a surface of admissible reentry states. Following completion of on-orbit maneuvers,
the vehicle must transition to a state vector enabling safe flight to the landing site.
This set of allowable states is denoted as a target line. A given initial state qualifies as
a target line point if a trajectory can be executed from that state in such a way that the
vehicle’s drag versus relative velocity profile smoothly aligns with the specified nominal
profile, without overshooting and thus without violating any temperature constraints.
Consider now the description of the vehicle’s drag acceleration versus relative velocity
profile, expressed as

D
m − (C0 + C1(Vr − V0) + C2(Vr − V0)

2 + C3(Vr − V0)
3) = 0 , (5.12)

for a time t ∈ [t0, t1] = [32.868734542, 419.868734542] s, and where V0, is the vehicle’s
initial velocity at t0 and C0 = 3.974960446019, C1 = −0.01448947694635, C2 =
−0.2156171551995 · 10−4, and C3 = −0.1089609507291 · 10−7 are constants chosen
so that the initial state vector satisfies (5.12) and its first derivative at t0, and so that
this transitional phase smoothly joins with the nominal profile. Notice that, posed
in this way, the resulting TPPC system is a semi-explicit index-3 DAEs problem. In
this test, the set of initial values are γ = −0.749986488 deg, A = 62.7883367 deg,
H = 264039.3280 ft, ξ = 177.718047 deg, λ = 32.0417885 deg, Vr = 24317.0798 ft/s,
and β = 41.10071834 deg. The lift and drag coefficients CL = 0.8769230769 and
CD = 0.8246153846, as well as the angle of attack α = 40 deg are assumed to be
constant throughout the simulation. The vehicle mass is m = 5964.496499824 slugs,
and its cross-sectional reference area is S = 2690 ft2.
To address this index-3 DAEs, we utilize the proposed index reduction algorithm. The
complexity of expressions encountered during the algorithm’s execution is detailed in
Table 5.12. Notably, the index reduction algorithm effectively reduced the system to
index-0 without the aid of hierarchical representations, and the expression growth is
inhibited strongly by successful simplification and only limited to the last reduction
step. We conduct numerical integration of the reduced DAE system using both the
MAPLE® and INDIGO solvers. Specifically, MAPLE® encounters challenges in integrat-
ing the original DAE system due to difficulties in projecting initial values into the
solution space, where ICs are deemed inconsistent with the algebraic constraints. In
contrast, the INDIGO numerical solver successfully integrates the reduced DAE system,
yielding results depicted in Figure 5.14.

5.3.1.2 FINAL STAGE REENTRY PROBLEM

We now examine the final stage reentry TPPC problem in the same form of [9]. Let
us assume the objective is to navigate a vehicle along a predetermined azimuth A and
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Figure 5.14: Control history of the initial stage space shuttle reentry problem [9]. The
vehicle’s trajectory is prescribed by the drag acceleration D/m versus a relative velocity
Vr profile reported in (5.12). The vehicle’s state is controlled by the bank angle β and
the angle of attack is kept fixed at α = 40 deg. Legend : ■ bank angle β, and ■ angle
of attack α.

flight path angle trajectory γ, as defined by the constraints on state variables

γ + 1 + 9
( t

300

)2
= 0 , and A− 45 + 90

( t
300

)2
= 0 . (5.13)

for a time t ∈ [0, 300] s. The flight path angle γ spans from [−1, − 10] deg, while
the azimuth A ranges from [45, 135] deg. Both the bank angle β and the angle of
attack α serve as control variables, i.e., u = [β, α]⊤. The DAE system is index-2
for a lifting reentry vehicle as long as (0.05ρSVr/m)2CL(α)/ cos(γ) 6= 0. Notice
that to be physically consistent we require that Vr 6= 0 deg, ρ 6= 0 deg, α 6= 0 deg,
γ 6= 90 deg, as well as λ 6= 180 deg. The related index-1 DAEs can be obtained
directly by differentiating the algebraic constraints once and substituting for A ′ and
γ′ from the differential equations. Consistent initial values for the DAE system are
determined by selecting the initial differential and control variables to satisfy (5.13) the
two new hidden constraints in the related index-1 system. The set of initial values
used in this experiment are H = 100000 ft, ξ = 0 deg, λ = 0 deg, A = 0 deg,
Vr = 12000 ft/s, γ = −1 deg, A = 45 deg, β = −0.05220958616134 deg, and α =
2.6728700742 deg. The lift and drag coefficients are set to CL = 0.01α and CD =
0.04 + 0.1C2

L, respectively. The vehicle mass is m = 2.890532728 slugs, and its cross-
sectional reference area is S = 1 ft2.
To solve the index-2 DAE system, we apply the proposed index reduction algorithm.
The expression complexity encountered throughout the index reduction is reported in
Table 5.13. As we can see, the index reduction algorithm successfully reduces the index
of the DAE system to index-0 with minimal expression swelling in the last reduction
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step. The numerical integration of the reduced DAE system is performed using both
the MAPLE® and INDIGO numerical solvers. In this regard, MAPLE® is again not able to
integrate the original DAE system due to the incapacity of projecting the initial values
into the solution space (i.e., ICs are not judged to be consistent with the algebraic
constraints). Conversely, the numerical integration of the reduced DAE system using
the INDIGO numerical solver is successful, and the results are presented in Figure 5.15,
where the bank angle β and the angle of attack α controls history are shown.
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–
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de
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Figure 5.15: Controls history of the space shuttle reentry problem [9] in the time in-
terval t ∈ [0, 300] s. Legend : ■ bank angle β, and ■ angle of attack α.

5.3.2 ROBOT ARM CONTROL

Another example of a TPPC problem is the control of a robot arm, described as an
index-5 DAE system [60]. The system describes the path control of a two-link, flexible
joint, planar robotic arm from [140]. This system, which is frequently used as a DAEs
benchmark test, is characterized by a high index – typical of TPPC-MB problems –
as well as by the presence of various singularities [141]. The problem is a semi-explicit
DAEs of dimension 8 with 2 path constraints. The system is described by the following
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equations

x′1 = x4
x′2 = x5
x′3 = x6
x′4 = 2c(x3)(x4 + x6)

2 − x2
4d(x3)− (2x3 − x2)(a(x3) + 2b(x3))− a(x3)(u1 − u2)

x′5 = 2c(x3)(x4 + x6)
2 − x2

4d(x3) + (2x3 − x2)(1− 3a(x3)− 2b(x3)) . . .
−a(x3)(u1 − u2) + u2

x′6 = 2c(x3)(x4 + x6)
2 − x2

4d(x3) + (2x3 − x2)(a(x3)− 9b(x3)) . . .
−(a(x3) + b(x3))(u1 − u2)− d(x3)(x4 + x6)

2 − 2x2
4c(x3)

0 = cos(x1) + cos(x1 + x3)− p1(t)
0 = sin(x1) + sin(x1 + x3)− p2(t)

,

with
a(z) = 2

2− cos(z)2 , b(z) = cos(z)
2− cos(z)2 ,

c(z) = sin(z)
2− cos(z)2 , and d(z) = cos(z) sin(z)

2− cos(z)2 .

Here, the variables [x1, x2, x3]
⊤ represent the angular coordinates of the end effector,

while [x4, x5, x6]
⊤ are their derivatives. The control variables are [u1, u2]

⊤, which rep-
resent the torques applied to the joints. The end effector path constraints are given
by

p1(t) = cos(exp(t)− 1) + cos(t− 1) , and p2(t) = sin(1− exp(t)) + sin(1− t) .

Figure 5.16 illustrates the robotic arm problem, as well as its variables and control pa-
rameters.
The complexity of expressions encountered throughout the index reduction is detailed
in Table 5.14. Notably, the index reduction algorithm effectively reduces the system
to index-0 without introducing any veiling variable, however, substantial expression
growth is observed. The simplification of the expressions within 100 s of CPU time
is not feasible. Hierarchical representation through veiling variables is necessary to
simplify the handling of the system expressions. The complexity of the expressions en-
countered throughout the index reduction with the aid of hierarchical representation is
detailed in Table 5.15. Here, it can be noticed that the introduction of veiling variables
effectively reduces the overall expression complexity by 3 orders of magnitude. This is
attributed to the fact that the chunks of the system are now more efficiently handled
by the CAS, and simplification is performed.
The numerical integration of the reduced DAE system is performed using both the
MAPLE® and INDIGO numerical solvers. In this regard, MAPLE® can not integrate the
original DAE system due to the incapacity of projecting the initial values into the so-
lution space. Conversely, the numerical integration of the reduced DAE system using
the RadauIIA5 INDIGO numerical solver is successful in the interval t ∈ [0, 0.98] s.



124 CHAPTER 5. APPLICATION FIELDS AND EXAMPLES

Table5.14:E
xpression

com
plexityencountered

throughouttheindexreduction
oftheroboticarm

problem
[9]D

A
E

system
.Legend:

f=
functions,a=

additions,m
=

m
ultiplications,and

d
=

divisions.

R
oboticA

rm
[60]

O
riginalD

A
Es

F
(x,x ′,t)

=
125f

+
19d

+
56m

+
64a

h
(x,t)

=
0

R
eduction

step
E
(x,t)

g(x,t)
a(x,t)

Index-5D
A

E
s

0
66f

+
3d

+
50

m
+

35a
16f

+
12a

Index-4
D

A
E
s

0
66f

+
3d

+
50

m
+

35a
24f

+
6m

+
14a

Index-3
D

A
E
s

0
66f

+
3d

+
50

m
+

35a
162f

+
2d

+
138m

+
114a

Index-2
D

A
E
s

14f
+

2d
+

6m
+

6a
372f

+
4d

+
375m

+
253a

972f
+

1d
+

1062m
+

770
a

Index-1D
A

E
s

14f
+

2d
+

6m
+

6a
372f

+
4d

+
375m

+
253a

⋆
(6.5f

+
5.6m

+
1.8a)·10

6
+

4d
Index-0

D
A

E
s

⋆
(8.3f

+
7.1m

+
2.3a)·10

7
+

58d
(2.4f

+
2.0

m
+

0
.9a)·10

6
+

8d
0

R
educed

D
A
Es

⋆F
(x,x ′,t)

=
(8.6f

+
7.3m

+
2.4a)·10

7
+

66d
⋆h

(x,t)
=

(6.5f
+

5.6m
+

1.8a)·10
6
+

7d



5.3. TRAJECTORY PRESCRIBED PATH CONTROL PROBLEMS 125

Ta
bl

e
5.1

5:
E
xp

re
ss
io

n
co

m
pl

ex
ity

en
co

un
te

re
d

th
ro

ug
ho

ut
th

e
in

de
x

re
du

ct
io

n
wi

th
th

e
ai
d

of
hi

er
ar

ch
ica

lr
ep

re
se

nt
at

io
n

of
th

e
ro

bo
tic

ar
m

pr
ob

lem
[9

]D
A

E
sy

ste
m

.
Le
ge
nd

:
f=

fu
nc

tio
ns

,
v
=

ve
ili

ng
va

ria
bl

es
,

a
=

ad
di

tio
ns

,
m

=
m

ul
tip

lic
at

io
ns

,a
nd

d
=

di
vi
sio

ns
.

R
ob

ot
ic
A
rm

[6
0]

O
rig

in
al
D
A
Es

F(
x,
x′
,v
,t
)
=

12
5f

+
19

d
+

56
m

+
64

a
h(
x,
v,
t)

=
0

v(
x,
t)

=
0

R
ed
uc
tio

n
st
ep

E(
x,
v,
t)

g(
x,
v,
t)

a(
x,
v,
t)

In
de

x-
5D

A
E
s

0
66

f+
3d

+
50

m
+

35
a

16
f+

12
a

In
de

x-
4
D

A
E
s

0
66

f+
3d

+
50

m
+

35
a

24
f+

6m
+

14
a

In
de

x-
3
D

A
E
s

0
66

f+
3d

+
50

m
+

35
a

16
2f

+
2d

+
13

8m
+

11
4a

In
de

x-
2
D

A
E
s

14
f+

2d
+

6m
+

6a
66

f+
1v

+
3d

+
51

m
+

35
a

1m
+

1v
In

de
x-

1D
A

E
s

2v
+

1a
66

f+
1v

+
3d

+
51

m
+

35
a

9f
+

4v
+

2d
+

8m
+

5a
In

de
x-

0
D

A
E
s

7v
+

1d
+

2m
+

2a
66

f+
2v

+
3d

+
52

m
+

35
a

0
R
ed
uc
ed

D
A
Es

F(
x,
x′
,v
,t
)
=

90
f+

9v
+

4d
+

63
m

+
48

a
h(
x,
v,
t)

=
20

2f
+

5v
+

4d
+

14
1m

+
13

0
a

H
ie
ra

rc
hi

ca
lr

ep
re

se
nt

at
io

n
de

ta
ils

(2
9

ve
ils

)
O
rig

in
al
D
A
Es

v(
x,
t)

=
0

R
ed
uc
tio

n
st
ep

v(
x,
t)

In
de

x-
5D

A
E
s

0
In

de
x-

4
D

A
E
s

0
In

de
x-

3
D

A
E
s

0
In

de
x-

2
D

A
E
s

12
78

f+
3v

+
6d

+
13

19
m

+
91

8a
In

de
x-

1D
A

E
s

84
01

f+
20

v+
24

d
+

94
51

m
+

60
95

a
In

de
x-

0
D

A
E
s

37
01

0
f+

55
8v

+
56

d
+

45
08

7m
+

28
66

5a
R
ed
uc
ed

D
A
Es

v(
x,
t)

=
37

01
0
f+

55
8v

+
56

d
+

45
08

7m
+

28
66

5a



126 CHAPTER 5. APPLICATION FIELDS AND EXAMPLES

��

��

������	

����

�

�

��

Figure 5.16: Robot arm control problem.

Notice that this system presents many singularities that hinder a flawless integration
(refer to [141] for a detailed analysis). For what concerns MATHEMATICA® and MAT-
LAB® performances, the tests we performed showed that both solvers are not able to
integrate the original DAE system due to the incapacity of projecting the initial val-
ues into the solution space. Furthermore, the Pantelides algorithm implemented in
MATLAB® can not reduce the index of the system to index-1.

5.4 ELECTRICAL CIRCUITS

Historically, the simulation of electrical networks stimulated the study of DAEs and
their solutions since the early 70s [142]. DAEs encountered in this domain exhibit a
distinct structure, somewhat different from those arising from mechanical systems or
TPPC problems. Typically, these DAEs are large and sparse, often linear, although
nonlinearities may arise from some circuit components. Our focus here is not to give
a detailed account of circuit design, but rather to illustrate the types of DAEs that may
arise and how various aspects of the circuit influence DAE system properties such as
index, solvability, and numerical solution.
Consider an electrical network comprising b branches connected to n nodes. Assign-
ing a current variable ib to each branch and a voltage variable vn to each node, the
circuit equations stem from Kirchoff ’s laws, i.e., the algebraic sum of currents into a
node is zero, and the algebraic sum of the voltage drops around a loop is zero. By
convention, current denotes the net flow of positive charge, with a designated current
direction along each branch assigned by designating one node as negative and the other
as positive (with current flowing from positive to negative). The circuit’s topology is
described by a b×n network incidence matrixA. The (i, j) element ofA is±1 if node j
is the± node for the i-th branch. Denoting ib as the current variables vector, Kirchoff ’s
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current law states that A⊤ib = 0. The voltage drop across each branch is defined as
the difference between the voltage at the positive node and that at the negative node.
These branch voltages pb are expressed in terms of the nodal voltages pn as pb = Apn.
Linear circuits composed of resistors, capacitors, and inductors can result in large
sparse linear DAEs. In such circuits, the voltage-current relationship across a resis-
tor branch follows Ohm’s law, vr = Rir, with a positive resistance R. Similarly, the
voltage-current characteristics of linear capacitors and inductors satisfy ic = C(dvc/dt)
and vl = L(dil/dt), respectively. However, including transistors or unicursal ele-
ments introduces nonlinearity into DAE systems. The solvability of DAEs arising
from linear circuits lacking operational amplifiers is solely influenced by the network
topology. However, circuits containing differential amplifiers, typically realized using
operational amplifiers, may give rise to DAEs of arbitrarily high index. DAEs aris-
ing from linear circuits incorporating operational amplifiers depends on the specific
voltage-current characteristics of the circuit components for solvability. Moreover, the
number of independent ICs may vary depending on circuit parameter values. The po-
tential for arbitrarily high-index DAEs originating from circuits is demonstrated in
examples such as a cascade of differential amplifiers. Furthermore, high-index DAEs
may emerge when different variables are designated as inputs and outputs. For ex-
ample, whether a device functions as a differentiator or an integrator depends on the
designation of inputs and outputs [9].
In the following, we present three examples of electrical circuits, the first being an
eight-node transistor amplifier, the second an electric ring modulator, and the third
a cascade of differential amplifiers. The first two examples are taken from [132, 134],
while the third is from [9].

5.4.1 EIGHT-NODE TRANSISTOR-AMPLIFIER

This problem originates from electrical circuit analysis, and it is a model for the tran-
sistor amplifier. The circuit diagram is depicted in Figure 5.17. Here, Ue is the input
signal, while the amplified output signal is found in point 8. The circuit is modeled by
a system of DAEs of index-1, consisting of 8 equations, which are written in matrix
form as Mx′ = f(x, t), where x = [x1, . . . , x8]

⊤, M and f(x, t) given by

M =



−C1 C1 0 0 0 0 0 0
C1 −C1 0 0 0 0 0 0
0 0 −C2 0 0 0 0 0
0 0 0 −C3 C3 0 0 0
0 0 0 C3 −C3 0 0 0
0 0 0 0 0 −C4 0 0
0 0 0 0 0 0 −C5 C5
0 0 0 0 0 0 C5 −C5


,
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f(x, t) =



−Ue(t)
R0

+
x1

R0

−Ub

R2
+ x2

(
1
R1

+
1
R2

)
− (α− 1)g(x2 − x3)

−g(x2 − x3) +
x3

R3

−Ub

R4
+

x4

R4
+ αg(x2 − x3)

−Ub

R6
+ x5

(
1
R5

+
1
R6

)
− (α− 1)g(x5 − x6)

−g(x5 − x6) +
x6

R7

−Ub

R8
+

x7

R8
+ αg(x5 − x6)
x8

R9



,

where g(x) = β(exp(x/Uf) − 1)A, and Ue(t) = 0.1 sin(200πt)V. ICs at t = 0 and
parameters are given by

x0 =



0
Ub/(R2/R1 + 1)
Ub/(R2/R1 + 1)

Ub
Ub/(R6/R5 + 1)
Ub/(R6/R5 + 1)

Ub
0


, and

Ub = 6V ,
Uf = 0.026V ,
α = 0.99 ,
β = 10−6A ,
R0 = 1 kΩ ,
Rk = 9 kΩ with k = 1, . . . , 9 ,
Ck = k μF with k = 1, . . . , 9 .
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Figure 5.17: Eight-node transistor-amplifier circuit [132, 134].

The index reduction process is performed smoothly, and the complexity of the expres-
sions encountered throughout the index reduction is detailed in Table 5.16. As we can
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see, the expression complexity is not affected by the index reduction process. The nu-
merical integration of the reduced DAE system is carried out using both the MAPLE®

and INDIGO numerical solvers. In this regard, MAPLE®, MATHEMATICA®, MATLAB®

(both Pantelides and Gaussian elimination), and INDIGO can integrate the original
DAE system in the specified time interval t ∈ [0, 0.2] s.
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Figure 5.18: Transistor amplifier circuit integration results [132, 134] in the time in-
terval t ∈ [0, 0.2] s. Notice that the output signal U8 is equal to the state variable x8.
Legend : ■ input signal Ue(t), and ■ output signal U8.

5.4.2 ELECTRIC RINGMODULATOR

The electric ring modulator is an interesting example of a system whose structure de-
pends on the specific values of the parameters. The system is in the formMx′ = f(x, t),
where x = [x1, . . . , x15]

⊤, M and f(x, t) being given by

M = diag(C,C,Cs,Cs,Cs,Cs,Cp,Lh,Lh,Ls2,Ls3,Ls2,Ls3,Ls1,Ls1) ,
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f(x, t) =



x8 − (x10 + x11)/2 + x14 − x1/R
x9 − (x12 + x13)/2 + x15 − x2/R

x10 − q(Ud1) + q(Ud4)
−x11 + q(Ud2)− q(Ud3)
x12 + q(Ud1)− q(Ud3)
−x13 − q(Ud2) + q(Ud4)

−x7/Rp + q(Ud1) + q(Ud2)− q(Ud3)− q(Ud4)
x1
x2

x1/2− x3 − Rg2x10
−x1/2 + x4 − Rg3x11
x2/2− x5 − Rg2x12
−x2/2 + x6 − Rg3x13

−x1 + Uin1(t)− (Ri + Rg1)x14
−x2 − (Rc + Rg1)x15



,

where
Ud1 = x3 − x5 − x7 − Uin2(t) ,
Ud2 = −x4 + x6 − x7 − Uin2(t) ,
Ud3 = x4 + x5 + x7 + Uin2(t) ,
Ud4 = −x3 − x6 + x7 + Uin2(t) ,

q(U) = γ(exp(δU)− 1) ,
Uin1(t) = 0.5 sin(2000πt) ,
Uin2(t) = 2 sin(20000πt) .

ICs at t = 0 are x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤, while the parameters
are given by

C = 16 nF ,
Cs = 0 or 2 pF ,
Cp = 100 nF ,
Lh = 4.45H ,
Ls1 = 2mH ,
Ls2 = 0.5mH ,
Ls3 = 0.5mH ,
γ = 40.67286402 ,

and

R = 25 kΩ ,
Rp = 50Ω ,
Rg1 = 36.3Ω ,
Rg2 = 17.3Ω ,
Rg3 = 17.3Ω ,
Ri = 50Ω ,
Rc = 600Ω ,
δ = 17.7493332 .

Interestingly, the system is an ODEs ifCs 6= 0, otherwise, it is an index-2DAE system.
In the original test problem in [132, 134], the authors set Cs = 2 pF to obtain an ODE
system. The electric ring modulator circuit is shown in Figure 5.19.
Considering Cs = 0, the index reduction process is performed flawlessly through the
presented algorithm, the complexities of the expressions encountered throughout the
index reduction are detailed in Table 5.17. Numerical integration in the specified time
interval t ∈ [0, 1]ms is successfully performed by INDIGO numerical solvers. Con-
versely, MAPLE® is not able to integrate the original DAE due to computational time



132 CHAPTER 5. APPLICATION FIELDS AND EXAMPLES

exceeding 100 s. Results of the numerical integration are shown in Figure 5.20, where
the modulated output signal U2 is represented. Notice that the modulated signal is
influenced strongly by the Cs capacity value.
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Figure 5.19: Electric ring modulator circuit [132, 134].

5.4.3 CASCADE OF DIFFERENTIAL AMPLIFIERS

The cascade of differential amplifiers is an example of a system whose index can be
arbitrarily high, depending on how many operational amplifiers are cascaded. If we
consider a circuit with one differential amplifier as shown in Figure 5.21a and, assum-
ing that the operational amplifier is ideal, the circuit equations lead to the relation
x = −CRU ′(t) where U(t) is the generator voltage. Since the solution to the cir-
cuit equations involves at least one derivative of the input function, the system must
be index-1. By cascading a series of p ∈ N differential amplifiers in a circuit as in
Figure 5.21b, we can see that the resulting DAEs index is equal to p. Specifically, the
voltage at the output of the p-th differential amplifier is given by xp = −CpRpx′p−1,
where v = −C1R1U ′(t). Thence the following system of equations is obtained


x1 = −C1R1U ′(t)
x2 = −C2R2x′1

...
xp = −CpRpx′p−1

whose analytical solution is xi =
i∏

j=1

(−CjRj)U (i)(t) .
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Figure 5.20: Electric ring modulator circuit integration results [132, 134] in the time
interval t ∈ [0, 1]ms. The lines represent the modulated output signal U2, which is
equal to the state variable x2. Legend : ■ output signal U2 with Cs = 0 pF (DAE
system), ■ output signal U2 with Cs = 2 pF (ODE system).

Consistent ICs are easily obtained by evaluating the analytical solution at t = t0, i.e.,

x0 =


−C1R1U ′(t)

∣∣
t=t0

...
p∏

j=1

(−CjRj)U (p)(t)
∣∣
t=t0

 .

�
1

�

�

� �

�������	�
� 
������

�

(a) Circuit with a single
differential amplifier.

�
1

�

�

�� ��

1

����

1

����

�

�

�

�

��� ��	
�
���� �����
� ��� ��	
�
���� �����
� ��� ��	
�
���� �����
�

�� �� ��

(b) Circuit with a cascade of p differential amplifiers.

Figure 5.21: Circuit diagrams for the cascade of differential amplifiers problem [9].

The index reduction of such a system, which falls under the category of linear DAEs,
is straightforward. INDIGO can reduce to index-0 systems made of up to p = 100 dif-
ferential amplifiers, even if the performance of the reduction process is strongly linked
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to the capabilities of MAPLE® symbolic kernel to deal with sparse large matrices. An
interesting aspect that this last application brings to light is how systematically the in-
dex reduction process is carried out through INDIGO. The system is transformed in the
form E(x, t) x′ = g(x, t) with a(x, t) = 0, which is explicitly given by

 −C2R2 0
. . .

...
−CpRp 0




x′1
...

x′p−1
x′p

 =

 x2
...
xp


with a(x, t) = [−x1−C1R1U ′(t)]. Then the index reduction is performed p times, and
the system E(x, t) x′ = g(x, t) at the k-th index reduction step is equal to



1
. . .

1
−Ck+2Rk+2

. . .
−CpRp

1





x′1
...

x′k+1
x′k+2

...
x′p−1
x′p


=



−C1R1U ′′(t)
...

k−1∏
j=1

(−CjRj)U (k)(t)

xk+2
...
xp

k∏
j=1

(−CjRj)U (k+1)(t)



,

with algebraic equations a(x, t) = 0 and hidden constraints h(x, t) = 0 given by

a(x, t) =
[
−xk+1 +

k+1∏
j=1

(−CjRj)U (k+1)(t)
]

and

h(x, t) =


−x1 − C1R1U ′(t)

...

−xk +
k∏

j=1

(−CjRj)U (k)(t)

 .

Finally, at the pth step, the reduced index-0 system is written as

 1
. . .

1


 x′1

...
x′p

 =


−C1R1U ′′(t)

...
p−1∏
j=1

(−CjRj)U (p)(t)
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with

h(x, t) =


−x1 − C1R1U ′(t)

...

−xk +
p∏

j=1

(−CjRj)U (p)(t)

 .

5.5 SUMMARY OF RESULTS AND DISCUSSION

It is now time to summarize the results obtained from the experiments and discuss
the performance of the presented algorithm. To do so, we will consider the following
aspects: the symbolic index reduction, the numerical integration, and the overall per-
formance of the algorithm throughout the reduction steps. The results are summarized
in Table 5.18, where the solution process is for each example reported in brief. Notice
that in Table 5.18, the examples are numbered according to the order in which they are
presented in this chapter, which will be useful for the following discussions..

5.5.1 SYMBOLIC INDEX REDUCTION
The first aspect to consider is the symbolic index reduction process. Specifically, the
presented algorithm can successfully reduce the index of all the example DAE systems
here considered. The computational cost of the expressions generated during the index
reduction procedure is typically comparable to the original DAE system in most of the
tests. Additionally, we have seen that the specific type of matrix factorization plays a
crucial role in the computational cost of the expressions generated during the index re-
duction process. In this regard, the “standard” LU factorization produces better results
in terms of computational cost than the FFLU factorization. Nonetheless, in exam-
ples 3, 6, 7, and 11 the expressions generated during the index reduction procedure are
significantly more complex than the original DAE system. In these cases, the MAPLE®

symbolic computation kernel is not able to perform the simplification within 100 s of
CPU time, and the raw expressions are kept in the following reduction steps. As a
consequence, the computational cost increases inherently throughout the following re-
duction steps. Notably, the DAE systems that are hard to simplify are those having a
matrix A(x, t) that is strongly dependent on the state variables x or equivalently that
retains complicated divisions in the vector b(x, t). In these cases, the computational
cost of the vector a(x, t) increases significantly due to successive and repeated differ-
entiation and symbolic factorization. In examples 3 and 11, the hierarchical pivoting
strategy is used to mitigate the expression swell and ensure the successful index re-
duction of the DAE system. In such examples the veiling strategy proved to be of
substantial help, effectively reducing the expression complexities and ensuring the suc-
cessful index reduction of the DAE system. On the other hand, in examples 6 and 7,
the hierarchical representation is not used on purpose to understand the impact of the
expression swell on the numerical integration process.



136 CHAPTER 5. APPLICATION FIELDS AND EXAMPLES

For the sake of completeness, also the index reduction algorithms provided by MAT-
LAB® and MATHEMATICA® are tested. The results show that both software tools can
reduce the index of the DAE systems, however, the computational cost of the expres-
sions generated during the index reduction procedure cannot be evaluated due to either
the lack of a built-in function to compute the expression complexity or the inability to
access the reduced DAE systems’ expressions.
Another aspect to mention is the sudden increase in computational complexity of the
expressions generated in the last reduction steps. Even if such a sudden increase is
not critical to the correct index reduction as the presented algorithm is insensitive to
expression swell, it does undermine the numerical solution efficiency of the final DAE
system. This highlights the need for further research on expression swell mitigation
techniques in symbolic computation (see Section 3.4), as well as the need to use in-
tegrators that can handle index-1 DAEs. Specifically, the detection of linear index-1
variables during the index reduction process would be beneficial inminimizing the final
DAE system complexity. This is particularly important for the numerical integration
process, as the more complex the expressions, the more computationally expensive the
numerical integration process becomes. Discussions on future work (Section 6.2) will
provide insights on new developments in this direction.

5.5.2 NUMERICAL INTEGRATION
The numerical integration has also been carried out, with outcomes detailed in Ta-
ble 5.18. This table reports the performance comparison between the joint index re-
duction algorithm and numerical integration schemes offered by MAPLE® and those of
INDIGO. To ensure a fair comparison, both MAPLE® and INDIGO utilized the RKF 4(5)
method for numerical integration of the DAE system. Identical error tolerances are
applied, with a relative tolerance of 10−6 and an absolute tolerance of 10−7. The results
illustrate that INDIGO’s index reduction algorithm implementation effectively generates
numerically stable reduced-index DAEs, ensuring consistent integration across exam-
ples. However, exceptions arise in examples 3, 5, 6, 7, 9, 10, 11, 13, and 14. Specifically,
in examples 3, 5, 6, 7, 9, 11, and 13, MAPLE® fails to generate code for the reduced-index
system within the expected time frame thus the integration is not performed. This is
due to the complexity of the expressions generated during the index reduction proce-
dure, which overloads the MAPLE®’s CodeGeneration package. On the other hand, in
examples 10 and 14, the numerical integration can not be performed due to the inability
of MAPLE® to verify the consistency of the IVP. The INDIGO numerical integration is
successful in all examples, except for example 11, where it fails to generate the code for
the reduced-index system within the expected time frame. This is due to the complex-
ity of the expressions generated during the index reduction procedure, which overloads
the INDIGO’s CodeGeneration package. Notably, in examples 5, 6, and 7 the integration
of the reduced-index system is successfully performed using the non-default implicit
RadauIIA5 method. Nonetheless, the high expression swell in these examples leads to
a significant increase in the computational cost of the numerical integration, however,



5.5. SUMMARY OF RESULTS AND DISCUSSION 137

the numerical stability is not compromised.
MATHEMATICA® and MATLAB® are also tested for numerical integration. The results
show that both software tools can integrate the original DAE systems in the specified
time interval. The only exception is example 11, where both fail to integrate the DAE
system due to the inability to project the ICs onto the solution manifold.
It is important to highlight that during the numerical integration, the symbolic code
is not regenerated, even if the DAE system may locally change its index. Indeed,
for some numerical values of states and parameters, the DAEs system structure may
change, leading to numerical instability. While this does pose a potential issue, we
have not encountered instability in the integration process. The pivot values are con-
tinuously monitored during the numerical integration process to ensure that the DAE
system structure remains consistent, thereby experimentally proving that the presented
pivoting strategy is effective.

Table 5.18: Numerical integration results of the reduced-index DAE systems. The
table reports the name and reference of the DAE system, the index of the system, the
integration interval t ∈ [tini, tend], and the outcomes of the whole code generation
and integration process for both MAPLE® and INDIGO. If not otherwise specified, the
tests are integrated using an embedded RKF 4(5) method with a relative tolerance
of 10−6 and an absolute tolerance of 10−7. The computation time limit is 1000 s, to
both generate the necessary code and perform numerical computations. Legend:
successful code generation and numerical integration, errors in the code generation,
numerical integration or time expired, and warnings encountered or non-default
settings used in the code generation or numerical integration.

Integrated DAE system Integration outcomes and errors

1. Particle Motion MAPLE® Success

Index-3 t ∈ [0, 400π] s
MATHEMATICA® Success

MATLAB® reduceDAEIndex – Success

reduceDAEToODE – Success

INDIGO Success

2. Car-Axis MAPLE® Success

Index-3 t ∈ [0, 3] s
MATHEMATICA® Success

MATLAB® reduceDAEIndex – Success

reduceDAEToODE – Success

INDIGO Success

3. Flexible Slider-Crank MAPLE® Error, time expired in dsolve

Index-3 t ∈ [0, 0.1] s INDIGO Success

4. 2-Pendula MAPLE® Success

Index-5 t ∈ [0, 60] s INDIGO Success
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5. 3-Pendula MAPLE® Error, time expired in dsolve

Index-7 t ∈ [0, 60] s INDIGO Success with RadauIIA5 method

6. 4-Pendula MAPLE® Error, time expired in dsolve

Index-9 t ∈ [0, 60] s INDIGO Success with RadauIIA5 method

7. 5-Pendula MAPLE® Error, time expired in dsolve

Index-11 t ∈ [0, 60] s INDIGO Success with RadauIIA5 method

8. Double-Wishbone Suspension MAPLE® Success

Index-3 t ∈ [0, 60] s INDIGO Success

9. Initial St. Space Shuttle Reentry MAPLE® Error, time expired in dsolve

Index-3 t ∈ [332.8, 419.8] s INDIGO Success

10. Final St. Space Shuttle Reentry MAPLE® Error, in dsolve/^^./checkconstraints

Index-2 t ∈ [0, 300] s INDIGO Success

11. Robotic Arm MAPLE® Error, time expired in dsolve

Index-5 t ∈ [0, 2] s
MATHEMATICA® Error, time expired in NDSolve

MATLAB® reduceDAEIndex – Error, reduction not complete

reduceDAEToODE – Error, in sym/decic

INDIGO Error, time expired in CodeGeneration

12. 8-Nodes Transistor-Amplifier MAPLE® Warning, function evaluations limit exceeded

Index-1 t ∈ [0, 0.2] s
MATHEMATICA® Success

MATLAB® reduceDAEIndex – Success

reduceDAEToODE – Success

INDIGO Success

13. Electric RingModulator MAPLE® Error, time expired in dsolve

Index-2 t ∈ [0, 1]ms INDIGO Success

14. Cascaded Diff. Amplifiers MAPLE® Error, in dsolve/^^./checkconstraints

Arbitrary index t ∈ [0, 10] s INDIGO Success



CHAPTER 6

CONCLUSIONS AND FUTUREWORK

6.1 CONCLUSIONS

This thesis has focused on the development of a hybrid computational framework that
combines symbolic computation with numerical methods for the efficient and accurate
solution of DAEs. The research aimed to address the inherent challenges in solving
DAEs with a broad applicability across various domains of engineering. More specif-
ically, we have presented a methodology for the automatic index reduction of DAE
systems. The index reduction algorithm is based on the splitting of the system into dif-
ferential and algebraic parts with the help of symbolic matrix factorization. However,
the current capabilities of MAPLE® kernel do not allow for the handling of exceed-
ingly large expressions. This brought us to exploit the latest state-of-the-art symbolic
computation techniques to manage large expressions and to reduce the computational
complexity of the equations generated during the index reduction procedure. Notably,
the open-source LEM and LAST libraries implement matrix factorization with large
expression management techniques and form the core of the symbolic index reduction.
The index reduction algorithm is implemented in the INDIGO software package, which
is composed of aMAPLE® library for the symbolic analysis of DAE systems, as well as of
a MATLAB® library for the numerical integration of the reduced-index DAE systems.
Hence, the INDIGO software package is capable of automatically reducing the index
of generic DAE systems and provides a comprehensive set of tools for their solution,
ranging from the involved symbolic manipulation to the MATLAB® code generation for
the numerical integration of the DAE systems.
Symbolic-numerical examples showcase the capabilities of the proposed index reduc-
tion algorithm. The results show that the presented methodology can consistently
reduce high-index DAE systems to index 0 or index 1. The computational cost of the
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expressions generated during the index reduction procedure is comparable to the cost
of the original DAE system in the majority of cases. However, the MAPLE® symbolic
computation kernel can not always perform the simplification due to either the size
of the expressions or the complexity of the operations involved. Consequently, the ex-
pression size increases significantly throughout the remaining reduction steps. Yet, the
presented algorithm can successfully reduce the index of the DAE system. Still, the
numerical efficiency of the final DAE system degrades by the increased number of com-
putations needed to evaluate the swollen expressions. The inclusion of large expression
management techniques into the symbolic index reduction algorithm effectively limits
expression swell and augments the DAE system with index-1 variables, resulting in a
less complex representation of the expressions generated during the index reduction
process. Indeed, tests show that the DAE systems, which present intermediate expres-
sion swell during factorization, are successfully reduced to index-1 DAEs with the aid
of expression swell mitigation, while retaining a slightly more compact representation
of the generated expressions compared to the reduced index-0 DAE systems without
veiling variables. A comparison between the joint index reduction algorithm and nu-
merical integration schemes offered by MAPLE®, MATHEMATICA®, and MATLAB® with
those offered by INDIGO demonstrates the effectiveness of the proposed methodology
and software implementation.
Further investigations aimed at increasing the simulations’ efficiency in vehicle dy-
namics are presented in the appendices and are linked to the main topic of the thesis
through the MB simulation of a vehicle model’s suspension system. Nonetheless, the
comprehensive analysis and simulation of tire-ground interaction and structural anal-
ysis are also crucial elements of this research, each contributing to the advancements
in HRT vehicle simulation. Specifically, accurate modeling of tire-ground interac-
tion is fundamental for realistic vehicle dynamics simulations. This research developed
specialized algorithms and models to simulate tire-road interactions, focusing on the
physical modeling, yet providing the RT capabilities essential for studies of advanced
vehicle dynamics studies. Integrating such models into the simulation framework sig-
nificantly improves the performance and accuracy of vehicle dynamics assessments, fa-
cilitating run-time modifications of the physical tire model parameters. Similarly, the
symbolic-numerical analysis and solution of structures using the DSM method repre-
sents another significant contribution. Such a method enables an efficient assembly
and solution of large-scale structural systems, particularly useful in design optimiza-
tion, parametric studies, and model reduction.
As a concluding remark, the symbolic-numerical mixed approach we developed in this
thesis addresses the challenges of complex dynamic systems’ simulation. Beyond ve-
hicle dynamics, the methodologies and developed tools provide a solid foundation for
practical applications in various fields of engineering, such as robotics and aerospace,
as well as in scientific computing. To this end, the software packages supporting the
methodologies and algorithms developed in this research are made available to the
public as open-source software [23–30].
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6.2 FUTUREWORK

The symbolic index reduction algorithm presented in this thesis is a solid foundation for
future research in the field of symbolic computation. Nonetheless, future efforts will
focus on enhancing the algorithm to handle more complicated DAE systems. Specifi-
cally, addressing expression swell mitigation techniques while guaranteeing the numer-
ical stability of the reduced-index DAE systems is crucial for the optimization of the
algorithm’s performance. Therefore, future work can take several directions. Some of
the most promising ones are outlined below.

DETECTION OF LINEAR INDEX-1 VARIABLES During the index reduction pro-
cedure of MB-type DAE systems, we noticed that the expression swell occurs in the
last factorization step. This is due to the presence of index-1 variables that are linearly
present in the system’s equations, which are explicitly substituted in the DAE system
by factorization. Notably, such variables correspond to the Lagrange multipliers. The
detection and exploitation of this type of linear index-1 variables would have a rele-
vant impact on the optimization of the algorithm, as it enables us to avoid the last
factorization step, which is typically the most computationally expensive step in the
algorithm.

SYSTEM AUGMENTATION One may also argue that veiling variables are linear
index-1 variables. However, so far, we have only considered them as an auxiliary eval-
uation layer for the expressions generated during the index reduction procedure, and
have not exploited them as state variables in the DAE system. This system augmen-
tation technique can be exploited whenever a “complicated” pivot is detected in the
factorization process. Specifically, if a complicated expression is detected in the pivot
position, we could substitute it with a veiling variable that will also be added to the
system as a state variable. This has the following advantages.

• The augmentation introduces a new equation to the system that grants us a 1 in
the pivot position, which allows us to continue with the factorization process by
keeping the complexity of the expressions at the minimum level.

• The symbolic complexity of the reduced-index DAE system is better mitigated,
as the pivot is not a complicated expression, but a 1 in the diagonal of the matrix
being factorized. Nonetheless, the overhead is relegated to the right-hand side
of the system, which does not affect the numerical stability of the system.

Notably, finding consistent ICs for the augmented system would not get more com-
plicated, as the newly introduced state variables would also be stored in the veiling
variable vector. This allows us to find consistent ICs for the augmented system almost
as straightforwardly as before. Hence, the veils add an evaluation layer to the system
and, once the ICs for the original state variables are found, the veiling variables’ ICs
can be computed through the evaluation of their expressions at the initial time.
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COMPUTER ALGEBRA SYSTEM The MAPLE® CAS is a powerful tool for sym-
bolic computation. However, the current capabilities of its kernel do not allow for
an effective handling of large expressions. This is why we resorted to the latest state-
of-the-art symbolic computation techniques to handle exceedingly large expressions
and to mitigate the computational complexity of the expressions generated during the
index reduction procedure. However, in some cases, the MAPLE® symbolic computa-
tion kernel still struggles to perform the index reduction procedure. This is due to the
CAS’s sensitivity to the size and number of the generated expressions. Despite this
being a normal behavior for CASs, it would be beneficial to explore the possibility of
implementing the symbolic index reduction algorithm in a modern open-source CAS.
This would allow us to have more control over the symbolic computation kernel while
having an in-depth understanding of the CAS’ internal design. As a consequence, we
would be able to exploit the full potential of the symbolic index reduction algorithm
and to optimize the algorithm’s performance.

6.3 FORTHCOMING USES OF THE PROPOSED TECHNIQUE

In this thesis, we have only explored the capabilities of the proposed methodology in
some application examples, which are mainly focused on the validation of the symbolic
index reduction algorithm implemented in the INDIGO software package. However, the
proposed methodology has a wider range of applications in real-world problems. Some
of the most promising are outlined below.

OPTIMAL CONTROL DAEs found extensive application also in OCP [143–145].
The proposed methodology can be used in OCPs to reduce the index of the DAE
system and to obtain an index-reduced formulation of the DAE system. This would
allow us to apply standard numerical integration schemes to solve the OCP. Specifi-
cally, the index-0 or index-1 DAE system can be integrated as a standard ODE, while
the hidden constraints can be enforced by introducing a quadratic penalty term in the
cost function. Without doubt, ad hoc solution schemes can be developed to handle the
hidden constraints more efficiently.
Another approach would be to exploit a common interface between ODE and DAE
systems. In particular, we can provide the OCP solver with the derivatives of the state
variables, and with the appropriate Jacobian matrices at any given time on the solu-
tion mesh. How the Jacobian matrices are computed will thereby be hidden from the
solver, which will only use them to compute the OC input regardless of the underlying
system’s structure. This would allow us to solve the OCP by integrating DAE systems
just as ODEs, while also enforcing invariants or hidden constraints and providing the
Jacobian matrices at each time. Notice that additional investigations on the numeri-
cal stability of the reduced-index system and hidden constraints’ preservation may be
necessary to ensure the convergence of the OCP solver.
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NONLINEAR OPTIMIZATION Similarly to Shmoylova, Gerhard, Postma, and
Roche [58], nonlinear Programming (NLP) problems can also be tackled by using
DAE systems. Specifically, if one formulates a NLP problem through a Lagrangian
function, the Karush-Kuhn-Tucker (KKT) conditions would yield an index-2 DAE
system. The proposed methodology can be used to reduce the index of the DAE
system and to obtain an index-0 or index-1 DAE system. This would allow us to apply
numerical integration schemes to solve the NLP problem.
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APPENDIX A

A SMALL 3D GEOMETRY LIBRARY

In the past few decades, the simulation of both manned and unmanned vehicles has
gained increasing significance. The demand for highly efficient RT simulators under-
scores the necessity for algorithms that are not only efficient but also accurate in mod-
eling vehicle movements within a virtual environment. Typically, the virtual world
comprises numerous basic geometric entities capable of colliding and adjusting accord-
ingly. The ability to quickly solve basic geometric problems is one of the most impor-
tant roles in this kind of simulation. The ACME library, previously introduced in Stocco
and Bertolazzi [1], is built to efficiently perform simple operations on a large number
of basic geometric entities. Specifically, the library is tailored to address specific HRT
tire-ground contact geometry analysis. This chapter describes the implementation de-
tails of the ACME library, exploring its data types, features, and ease of use. The soft-
ware is implemented in C++ and is freely available online under the BSD 2-Clause
license. Online documentation includes descriptions of the C++ and MATLAB® MEX
Application Programming Interfaces (APIs), along with usage examples.

A.1 COMPUTATIONAL GEOMETRY IN REAL-TIME SIMULA-
TIONS

Over the recent decades, there has been a notable shift in the automotive manu-
facturing sector towards prioritizing simulation. In particular, the advent of high-
performance CPUs and Graphics Processing Units (GPUs) has intensified the focus
on RT simulators. These sophisticated simulators, characterized by high fidelity and
full integration, demand substantial computational capabilities. Moreover, specialized
codes are essential to meet the dual requirements of HRT responsiveness and high
accuracy within very limited time intervals. Indeed, the time step in driving simulators
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is typically set at 1ms, which is a trade-off to capture most of the typical frequencies
in vehicle subsystems.
An important aspect of simulation lies in the vehicle-environment interaction. In driv-
ing simulators the virtual environment on which the vehicle moves is made from a
multitude of basic geometric entities that can intersect and evolve. Consequently, the
efficient resolution of simple geometric problems assumes a crucial role in achieving
high accuracy and, by extension, a realistic simulation. Specifically, when working
with numerous geometric objects, it is essential to partition the 3D space with an ap-
propriate data structure. This structured partitioning facilitates efficient access to spa-
tial objects. The absence of spatial partitioning would necessitate scanning the entire
database during any search, resulting in a significant increase in processing time.
There is a multitude of geometric libraries already implemented and capable of solving
complicated geometric problems, e.g., mesh-mesh intersection, re-meshing, Delaunay
triangulation, and so on. The sheer size of such libraries and their high complexity
make them unsuitable for application in the simulation environment introduced ear-
lier. The need to easily maintain and correct inefficiencies has led to the development
of a new geometry library. In this chapter, we introduce a C++ library named ACME,
designed to efficiently address the resolution of basic 3D geometric problems at high
speed. The first version of ACMEwas tailor-made to performHRT tire-ground contact
geometry analysis, where geometrical objects and tire-ground intersection objects were
initially coexistent in the same code. The desire to bring the library to the next level
made it necessary to formalize and create a more effective framework. Consequently,
all the geometrical algorithms are then collected in an independent library. But why
create a new library even if there are plenty of alternatives available out there? The dy-
namic nature of the simulation field, with the continual introduction of new features,
underscores the importance of maintaining a simple yet robust minimum core. This ap-
proach enables quick response to changes. Most of the available geometry libraries are
either excessively large or overly complex for this specific purpose [146, 147]. Further-
more, we aim to reduce the dependencies by relying solely on the C++ EIGEN template
library, which is well-recognized for its efficiency with small vectors and matrices.

A.2 A NEWGEOMETRY LIBRARY

As previously mentioned, the software is implemented in C++, a widely used and high-
performance object-oriented general-purpose programming language. Since its inven-
tion by Bjarne Stroustrup in 1985, C++ has undergone significant extensions and mod-
ifications. Therefore, we chose to develop our code based on the C++11 standard [148].
The adoption of the 2011 standard introduced notable improvements in the coding
style, exemplified by the introduction of the new smart pointer classes, extensively uti-
lized in the ACME library. The source code of the software is freely available online [26]
and is released under the BSD 2-Clause license. The online documentation includes
descriptions of the C++ and MATLAB® MEX APIs, along with usage examples. Rig-
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orous testing has been conducted on MACOS®, LINUX®, and WINDOWS® Operative
Systems (OSs) to ensure the software’s compatibility across diverse platforms.

A.2.1 DESIGN CHOICES
This software is neither intended as a black box nor as aGraphical User Interface (GUI)
based application for end-users. Instead, it is designed as an easy-to-use set of C++
classes that provides a basic and reliable foundation, which can be extended by the
developers according to their specific needs. The design of the software is grounded in
the following principles.

DRIVEN BY ACTUAL NEEDS The implementation focuses on a stable minimum
core library, including only features that are currently in use. This deliberate choice
allows for progressive testing of the software and a less concerned third-party extension
process.

BUILD ON THE STATE-OF-THE-ART EIGEN LIBRARY For a flexible and exten-
sible framework, ACME is built on the EIGEN template library for linear algebra [149].
Recognized for its efficiency with small vectors and matrices, EIGEN is an apt choice in
the field of computational geometry where matrices and vectors are typically of limited
size. Additionally, EIGEN can leverage Linear Algebra PACKage (LAPACK)/Basic
Linear Algebra Subprograms (BLAS) [150] for peak performance when dealing with
larger matrices and vectors. Relying on this well-tested and high-performing template
library allows ACME to achieve high-performance levels while maintaining an elegant
and expressive API.

AVOIDING MEMORY LEAKS Managing dynamically allocated memory is one of
the most critical aspects of a low-level programming language like C++. Often, the
most insidious errors are due to flaws in memory allocation and release policies, re-
sulting in excessive use of resources (memory leak), or irreversible error conditions that
undermine program stability (access violation). The usage of C++11 smart pointers in
ACME significantly reduces the likelihood of these errors. Smart pointers, as part of
the standard library utility classes, act as wrappers for raw pointers, offering transpar-
ent memory release policies suitable for various use cases. Notably, SHAREDPOINTER
objects retain shared ownership, allowing multiple objects to own the same instance.
The object is only destroyed and its memory deallocated when either the last SHARED-
POINTER owning it is destroyed or reassigned to another SHAREDPOINTER. Addition-
ally, the object can be destroyed using the delete expression or a custom delete ex-
pression.

POLYMORPHIC BEHAVIOR ACME capitalizes on C++ polymorphism as a funda-
mental design pattern. This polymorphic behavior greatly simplifies the management
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of heterogeneous objects that share a common interface of geometric entities. Notably,
the same C++ polymorphic behavior is also present in the MATLAB® MEX wrapper.

HIGH-QUALITY DOCUMENTATION Comprehensive documentation is available
on the provided website, encompassing both the C++ and MATLAB® MEX APIs, along
with examples. The documentation is generated using a combination of DOXYGEN and
SPHINX. DOXYGEN processes annotated C++ sources to create documentation, while
SPHINX enhances the graphical quality of the generated HTML code, providing a
more visually appealing and graphically rich design.

A.2.2 DATA TYPES

ACME supports a limited number of geometrical entities, carefully chosen to maintain
the library’s essential nature for efficiency and easy maintenance. The chosen classes
specifically describe and manipulate virtual ground surfaces and tires. While the li-
brary is intentionally kept minimal, it is extensible according to the needs of end-users.
The geometric entities are systematically organized into classes, each being within the
ACME namespace and publicly inheriting from the virtual superclass ENTITY. The de-
rived classes, representing the homonyms geometric entities are POINT, LINE, RAY,
PLANE, SEGMENT, TRIANGLE, DISK, and BALL, are integral components of the library.
In Figure A.1, a representation of all ACME basic ENTITY objects is shown. A concise
mathematical description of each data type in the software follows.

TRIANGLEPLANE

p1

p2

p3p

n̂

SEGMENT
p1 p2

RAY

LINE

o d̂

o d̂

AABB

pmax

o

BALL
pmin

DISK

n̂

o

r

r

Figure A.1: Representation of all ACME basic ENTITY objects.
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POINT In the 3D Euclidean space, a point represents an exact location. A point
p ∈ R3 is represented by an ordered triplet of coordinates

p = [x, y, z]⊤ .

The POINT class is built through public inheritance from the virtual class ENTITY and
the EIGEN::MATRIXBASE template class. It is worth noting that in many C++ libraries,
vectors and points are often described by the same class. However, in ACME, we have
provided a clear way to distinguish them. This distinction is evident in the inheritance
structure, where the POINT class inherits publicly from the ENTITY class. On the
other hand, the inheritance of the MATRIXBASE template class makes it possible to
easily build mathematical vectors out of point entities and vice versa. In our software,
both vectors and points are represented by column sets of elements.

LINE A line ℓ is defined by an origin point o and a unit direction vector d̂, such that
the line corresponds to the set

ℓ(o, d̂) =
{
o+ d̂t

∣∣ t ∈ R
}

.

RAY A ray ϱ is defined by an origin point o and a unit direction vector d̂, such that
the ray corresponds to the set

ϱ(o, d̂) =
{
o+ d̂t

∣∣ t ∈ R≥0

}
.

PLANE A plane π is defined by a generic point on the plane p and a unit normal
vector n̂, such that the plane corresponds to the set

π(p, n̂) =
{
n̂ · (p− [x, y, z]⊤) = 0

∣∣ [x, y, z]⊤ ∈ R3
}

.

SEGMENT A segment σ is defined by two points p1 and p2, such that the segment
corresponds to the set

σ(p1, p2) =
{
p1 + (p2 − p1) t

∣∣ t ∈ R, 0 ≤ t ≤ 1
}

.

TRIANGLE A triangle τ is defined by three points p1, p2 and p3, such that the triangle
corresponds to the set

τ(p1, p2, p3) =
{
t1p1 + t2p2 + t3p3

∣∣ t1, t2, t3 ∈ R≥0, t1 + t2 + t3 ≤ 1
}

.

DISK A disk ϕ is defined by a radius r, a center point o, and a unit normal vector to
the disk face n̂. Equivalently, using the same notation for the center point and the unit
normal vector to the face, a disk can be defined by a radius r and a laying plane π(o, n̂).
In both cases, the disk corresponds to the set

ϕ(r, o, n̂) = ϕ(r, π(o, n̂)) =
{∥∥o− [x, y, z]⊤

∥∥2
2 ≤ r2

∣∣ [x, y, z]⊤ ∈ π(o, n̂)
}

.
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BALL A ball ω is defined by a radius r and a center point o, such that it corresponds
to the set

ω(r, o) =
{∥∥o− [x, y, z]⊤

∥∥2
2 ≤ r2

∣∣ [x, y, z]⊤ ∈ R3
}

.

A.2.3 MESH TOOLS
In addition to the fundamental data types presented, we also provide other classes
that are useful in scenarios involving mesh or manipulation of large numbers of enti-
ties. These objects include COLLECTION, Axis-Aligned Bounding Box (AABB), and
AABBTREE.

COLLECTION The COLLECTION object consists of a vector of SHAREDPOINTER to
ENTITY type objects. This class can be used when a substantial number of ENTITY
object instances need to be grouped into a single object. The grouping, coupledwith the
usage of SHAREDPOINTER objects, facilitates effective data manipulation and ensures
safe memory management. Nonetheless, the COLLECTION object is not a geometric
entity and does not have any geometric meaning. It is merely a container for ENTITY
objects that can be used to perform operations on a large number of ENTITY objects
simultaneously. In Figure A.2, an example of two COLLECTION objects bounded in
two different AABBs is reported.

AABB An AABB β is defined by a maximum point pmax and a minimum point pmin,
which are respectively equal to

pmax = [xmax, ymax, zmax]
⊤ and pmin = [xmin, ymin, zmin]

⊤ .

The AABB corresponds to the set

β(pmax, pmin) =

[x, y, z]⊤ ∈ R3
∣∣∣∣ xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax
zmin ≤ z ≤ zmax

 .

Indeed, this type of geometrical entity is very simple, requiring only two POINT objects
to fully describe the space it occupies. Furthermore, the algorithms involved in AABB
collision detection and/or intersection are highly efficient. Specifically, the basic algo-
rithm for AABB-AABB collision detection can be executed solely through two-way
comparison operators, making it lightweight and fast to perform.

AABBTREE There are plenty of possible tree structures. Some of them are suitable
for a more rough spatial description with low computational complexity, while oth-
ers are suitable for accurate spatial indexing but carry high computational complex-
ity. In the ACME library, the AABB tree is chosen due to its balanced complexity-
performance ratio, making it effective for RT applications. The performance of a



A.2. A NEW GEOMETRY LIBRARY 151

COLLECTION2

AABB1

COLLECTION1

x

y
z

AABB2

AABB

Figure A.2: Example COLLECTION objects bounded in two different AABBs. The two
AABB objects are then bounded in a master AABB depicted in red.

generic Bounding Volume Hierarchy (BVH) is generally measured by the computa-
tion time required to solve an intersection query. To enhance the BVH performance
and consequently reduce the number of comparisons among pairs of Bounding Volume
Primitives (BVPs), a BVH should be as compact as possible, minimizing the bounding
volume contained in each BVP [151, 152]. Several techniques can be employed to build
an AABB tree, with the most common being the top-down and bottom-up strategies.
While the top-down strategy allows to easily perform the tree construction [151–153],
the bottom-up approach usually achieves more compact trees and better performances,
albeit being more intricate to construct [151, 154]. The typical average computational
complexity of tree construction is O(n log n), while the intersection of two AABB
trees has an average cost ofO(m log n), where n andm are the numbers of BVPs of the
two trees. If one intends to intersect two sets of BVPs without the use of the AABB
tree the computational cost is always O(nm), as each element of the first set must be
compared with all the elements of the second set [155]. Notably, The AABBTREE im-
plemented in the ACME library is directly derived from the one presented in [156, 157]
and has been extended from the 2D to the 3D case (please refer to [1] for a detailed
description of the AABBTREE implementation).
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A.2.4 BASIC INTERSECTION ALGORITHMS
Specific algorithms for basic intersections are not discussed here for the sake of brevity.
It is important to note that comprehensive sources for intersection testing are limited.
Exceptions include [158] and [159], which serve as extensive collections of geometric
tests of various types. References [153] and [160] are equally valuable, although not
as exhaustive. Individual articles on specific tests can also be found in the five-volume
Graphic Gems series [161–165].

A.2.5 SOFTWARE FUNCTIONALITIES

The ACME geometry library consists of a C++ core and a MATLAB® MEX wrapper. The
library is built to efficiently create, intersect and destroy basic geometry entities objects.
It is possible to check geometrical conditions between objects, like parallelism, orthog-
onality, collinearity and coplanarity. The intersections that can be performed with the
ACME library are limited to those that potentially return a single ACME::ENTITY object.
For example, the intersection of a coplanar disk and a triangle may potentially return
a circular arc and two segments, making it unsuitable for direct execution through the
ACME library. The sets of geometrical condition tests and intersections that can be
performed are summarized in Tables A.1 and A.2 respectively.

Geometrical
intersection

tests

POINT
LINE
R
AY

PLANE
SEGM

ENT
TRIANGLE

D
ISK

BALL

Parallelism − • • • • • • −
Orthogonality − • • • • • • −
Collinearity − • • − − − − −
Coplanarity − • • • • • • −

Table A.1: Geometrical conditions tests that can be performed through ACME library.
Legend : • available test, and − not available test.

Thanks to the MATLAB® MEX, objects can also be manipulated and visualized in the
MATLAB® environment. An interesting feature of the MATLAB® MEX is that it pre-
serves C++ polymorphism. In other words, when performing an intersection between
two generic objects, both in C++ and in MATLAB®, the software outputs the exact data
type of the entity resulting from the intersection, maintaining all checks and verifica-
tions transparent to the end-user.
Table A.3 presents a comparison of timing performances between the CGAL and
ACME libraries in a C++ environment. As evident from the results, there is a notable
increase in speed. This could be attributed to the greater complexity of the CGAL
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Geometrical
intersection

tests

POINT
LINE
R
AY

PLANE
SEGM

ENT
TRIANGLE

D
ISK

BALL
POINT • • • • • • • •
LINE • • • • • • • •
RAY • • • • • • • •

PLANE • • • • • • • •
SEGMENT • • • • • • • •
TRIANGLE • • • • • ◦ ◦ −

DISK • • • • • ◦ ◦ −
BALL • • • • • − − −

Table A.2: Geometrical intersection tests that can be performed through ACME library.
Legend : • intersection can be always performed, ◦ intersection can be performed only
if entities are not coplanar, and − intersection can not be performed.

library, which, in addition to having a much more intricate and comprehensive frame-
work than ACME, likely carries out additional checks or dynamic allocations on the
objects in use.

A.3 A STEP-BY-STEP EXAMPLE

We now present an example that illustrates some capabilities of the ACME library.
Specifically, the same example will be presented in both the C++ language and the
MATLAB® environment, allowing us to understand the few differences between the
two working environments. In the following C++ and MATLAB® code snippets, we
will create the DISK objects

ϕ1(r1, o1, n̂1) = ϕ1(2, [0, 0, 0]⊤ , [0, 1, 0]⊤) ,

and
ϕ2(r2, o2, n̂2) = ϕ2(1, [0, 0, 0]⊤ , [1, 1, 0]⊤) ,

that will be indicated by the variables d1 and d2, respectively. Then, we will then inter-
sect them, obtaining a geometric entity whose type is unknown to us. Subsequently,
we will use the type() method to identify and print a string describing the type of the
obtained ENTITY object. In both cases, the output will be the string “segment”. Finally,
we will plot the obtained ENTITY object in a MATLAB® figure. The C++ and MATLAB®

code snippets are reported in the following. The visualization of the example problem
is reported in Figure A.3, which is obtained through the last 6 lines of the MATLAB®

example code.
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Intersected
entities

CGAL ACME Speed-up
μ (ns) σ2 (ns2) μ (ns) σ2 (ns2) (×)

LINE-LINE 18.3 0.291 2.2 0.0132 8.3
RAY-RAY 1030 0.739 8.5 0.0974 121

SEGMENT-SEGMENT 1050 1.05 8 0.138 131
TRIANGLE-TRIANGLE 2920 3.83 24 0.454 121

LINE-RAY 13 0.0268 1.9 0.0164 6.8
LINE-SEGMENT 17 0.104 6.9 0.192 2.4
LINE-TRIANGLE 11.3 0.0228 5.6 0.0526 2
RAY-TRIANGLE 11.6 2.28 25.5 0.858 −0.45

SEGMENT-TRIANGLE 15 0.568 13.8 0.247 1.1

Table A.3: Timing performance comparison between CGAL and ACME libraries. The
test consists of 105 intersections between randomly created objects. Notice that inter-
sections are only made between types of geometric entities common to the two libraries.
Legend : μ average intersection run-time, and σ2 intersection run-time variance.

C++

#include ”acme.hh”
using namespace acme;
using namespace std;

int main(void){
^/ Create the disks
entity *d1 = new disk(
2, point(0,0,0), vec3(0,1,0)

);
entity *d2 = new disk(
1, point(0,0,0), vec3(1,1,0)

);

^/ Perform the intersection
entity *e1 = intersection(d1,d2);

^/ Check output entity type
cout << e1->type() << endl;
return 0;

}

MATLAB®

% Create the disks
d1 = acme_disk( ^^.
2, [0,0,0]’, [0,1,0]’ ^^.

);
d2 = acme_disk( ^^.
1, [0,0,0]’, [1,1,0]’ ^^.

);

% Perform the intersection
e1 = d1.intersection(d2);

% Check output entity type
disp(e1.type());

% Plot output
f1 = figure;
grid on; grid minor;
d1.plot(f1, ’red’);
d2.plot(f1, ’blue’);
e1.plot(f1, ’green’);
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Figure A.3: Visualization of the example problem, which is obtained through the last
6 lines of the MATLAB® example code.
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APPENDIX B

TIRE-GROUND ENVELOPINGMODELING

As previously introduced in Appendix A, simulation has become vital in vehicle de-
velopment and virtual testing, especially for autonomous vehicles. High-performance
HRT simulators, which are crucial for those undertakings, require efficient algorithms
to accurately model vehicle behavior within virtual environments. A prime example
is tire-ground contact modeling, which is pivotal if we aim to achieve a high level of
realism when simulating wheeled vehicles. Contact modeling focuses on an accurate
estimation of the parameters needed to compute the forces and torques generated by
vehicle-ground interaction. However, the complexity of this task is compounded by
the fact that tire-ground contact is a highly nonlinear phenomenon, which is further
exacerbated by the need to perform tests to fine-tune state-of-the-art tire-ground con-
tact models. To tackle those challenges, we have developed a novel enveloping model
that does not require any fitting of experimental data and is based on the 3D geome-
try of the intersection between undeformed volumes. In this appendix, we provide a
detailed description of the algorithm’s formulation, the current software implementa-
tion, which is available as a BSD 3-Clause Library under the name ENVE, as well as
the achieved scalability and RT performance.

B.1 INTRODUCTION TO TIRE-GROUND CONTACT MODEL-
ING

From the 1950s onwards, vehicle simulation has been crucial for evaluating ride and
handling. More recently, as we shift towards autonomous vehicles, there’s a growing
need for high-quality simulations to develop and test them in various scenarios. Real-
world testing is time-consuming and costly, making driving simulators essential for
accelerating the transition to autonomous driving, enhancing safety, and reducing ex-
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penses. Beyond the hardware, a simulator’s essence lies in its software, responsible for
shaping the virtual environment based on physics. Aside from computer graphics, this
software comprises multiple subprograms, including a Multi-Body System (MBS) –
used to integrate theMB car system – and several other subprograms that allow theMB
system to interact with the environment. In the case of a road vehicle, interactions with
the environment primarily occur through tire-ground contact, aerodynamic forces, and,
less frequently, through collisions with external objects. To obtain a sufficiently realis-
tic simulation of the vehicle it is therefore of crucial importance to correctly estimate
the forces and torques generated by the tire-ground contact [166]. In order to be able
to calculate the stress generated by the contact, the first step is to estimate the ground
rut pose with respect to the tire reference frame [167]. An incorrect estimate of the lo-
cal contact plane or surface would inevitably lead to unrealistic or unreliable simulations.
Since tire-ground contact evaluation is one of the most time-consuming processes in
MB simulations, algorithms designed specifically for this purpose are needed to ensure
high efficiency and scalability. Specifically, in the case of Driver In the Loop (DIL),
Hardware In the Loop (HIL), and/or Software In the Loop (SIL) simulations, this
software must guarantee a capability that is at least as fast as RT. It is also desirable to
obtain a faster than RT capability, in order to speed up costly offline simulations and
to allow for the use of less powerful machines. As a matter of fact, the development of
faster and at the same time more accurate contact models still remains an open research
topic [168, 169].
From the scientific literature, it is known that appropriate contact methods must be
applied when road unevenness is characterized by wavelengths 2–3 times smaller than
the contact patch length. This occurs when riding is done either over cobblestone
or Belgian block roads, or simply over road surfaces that present sharp obstacles, e.g.,
cleats, bumps or potholes [166]. The role of the tire-ground contact model is to rep-
resent the excitation of pneumatic tires caused by uneven terrain surfaces. Although
the term “uneven ground surface” comprehends any kind of unevenness, attention is
mainly paid to short irregularities, as tire deformation is particularly important in those
instances. The ability of the tire to deform, i.e., to follow the ground surface shape, is
defined as the enveloping property of the tire-ground contact. In specific, the envelop-
ing is the quasi-static component of the tire-ground contact phenomenon, whereas the
dynamic component comes from the carcass flexibility and is implemented in the tire
force-calculation model [166, 170]. The enveloping property depends on the tire ge-
ometry and structure, and can be represented through physical models such as those
presented in [171–175], or (semi-)empirical models such as [170, 176]. In contrast to
physical models, the empirical models try to describe the contact through much sim-
pler models designed to mimic the behavior of the tire-ground interaction.
In the early days of vehicle simulation, studies on tire behavior havemostly been limited
to the case of flat and asperity-free contact surfaces, focusing on the deformation and
dynamics of the tire carcass induced by the contact forces. The importance of accurately
describing the local contact area has been highlighted in [167, 177], where the influence
of obstacles on the overall tire behavior is studied. While the tire is riding over 3D un-
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even road surfaces the local road plane shows variations in height, and in forward and
banking angles. The banking slope angle gives rise to the so-called tire camber thrust,
which must be taken into account in order to properly simulate the force generated
by the tire. Since then, many enveloping models for arbitrarily uneven surfaces have
been developed. Most of the models developed so far are based on heuristic concepts.
Without a doubt, the most famous enveloping model is certainly the SWIFT® model,
which allows the MagicFormulae model to be used even on rough road surfaces [170].
Simple and parameterless contact models like that used in TMEASY [176, 178] can be
applied, but do not always guarantee adequate enveloping properties, which can cause
sudden and unrealistic variations of the banking and slope angles in the proximity of
sharp cleats or asperities. Another family of more sophisticated enveloping models
is based on the physical concept of radial and radial-interradial spring tire [171–173].
Models based on the tire radial-spring behavior are a good compromise between com-
putational effort, robustness and physical consistency. Unlike the SWIFT® model, the
radial spring tire models do not show any working range limit in shape, magnitude
and orientation of the incoming road obstacles [171]. For this reason, the results are
physically consistent even in the case of high cleats. The state-of-the-art approach
is referred to as “full-physical tire modeling”. In particular, the commercial software
FTIRE® [179] and CDTIRE® [168, 180] are the leading virtual tire simulation models
in this category. They are proven to be multi-purpose physics-based tire models that
are able to simulate nearly all tire dynamics phenomena. They combine a discrete
elements description of both belt and sidewalls elements with a brush type contact,
and RT capabilities [181]. In terms of enveloping behavior, they are also providing
physically consistent and extremely realistic results [180, 182]. Unfortunately, little in-
formation on the actual computational time performance is available for both FTIRE®

and CDTIRE®.
A very simple physical contact modeling approach we have not yet mentioned before
relies on the geometry of intersection between undeformed regions, also known as
displaced area models [174]. This kind of model is derived from the physics of the
linear radial-spring tiremodel. As stated also in [171] a common approach formodeling
the 2D vehicle-road contact is to assume that the tire is described by a disk moving
on a ground region. Indeed, if we assume that the tire is represented by an infinite
number of independent linear radial springs, the force resulting from the contact is
linearly proportional to the intersection area and acts along the line passing through
the centroid of the intersection region and the wheel center. Despite the simplicity of
this approach and the limits that arise from neglecting the tire carcass being a unique
cohesive body capable of transmitting shear forces, it provides a good approximation
of the contact information. Models based on the geometry of intersection between
undeformed regions are already available, but they all lack a full 3D description of the
contact. This limits the comparison between other enveloping models to 2D contact
scenarios. Moreover, no robust software implementation is freely available and can be
used to determine the tire contact point and normal or equivalently a contact plane.
This appendix aims to present a software-based algorithm (hereafter called ENVE) to
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model the 3D geometrical contact between tire and ground, represented respectively
as a generic axial-symmetric surface and a triangular mesh. In particular, the adopted
methodology is derived from the physics of the linear radial-spring tire model and
is based on the geometry of the intersection between undeformed regions. Indeed,
ENVE is an enveloping model that is fully parameterizable by the tire’s external shape
alone and does not require any fitting on experimental data. As will be shown in the
following, the proposed approach achieves an efficient and robust modeling of the
tire-ground geometrical contact with scalable precision. This model is intended to be
coupled with a tire model, i.e., empirical or physical tire model, with or without belt
and sidewall dynamics. The tiremodel calculates tire-ground forces based on geometric
contact parameters supplied by the ENVE software. In this study, we demonstrate the
efficiency and efficacy of the software by coupling ENVE with the MAGIC FORMULA 6.2
tire model.

Remark 1. In this appendix, the focus will only be on the enveloping properties of the tire-
ground contact, i.e., the calculation of the so-called effective road surface. To evaluate dynamic
response, one can employ a rigid ring model coupled with a tire model for force calculation,
as exemplified by MAGIC FORMULA-SWIFT® [166, 170]. In this appendix, our aim is to
determine the application point and direction of contact forces, and as such, we do not delve
into the modeling of tire-ground contact forces or the tire carcass dynamics.

This appendix has twomain goals. The first is to provide amethodology for the analysis
of the geometrical tire-ground contact, which takes into account the geometry of the
tire cross-section and of the road surface to compute information needed by the tire
model to obtain forces. The proposed enveloping model offers advantages over SWIFT®

in terms of algorithm simplicity and scalability. It excels in computing contact on
multiple sections, making it suitable for supporting physical-based tire models like the
brush model. Additionally, it does not rely on independently identified parameters,
further enhancing its effectiveness and immediacy of use. These characteristics make
it suitable for HRT applications where computational efficiency is the main concern
without diminishing the level of accuracy. The second is to evaluate the impact of
this new approach coupled with a tire model in an advanced simulation environment
with HRT scheduling. The software, which is also called ENVE, is built on the ACME
geometry library (see Appendix A or Stocco and Bertolazzi [1]), and is designed to be
integrated into vehicle dynamics MB kernel codes as well as into simpler simulation
environments [20, 21].

B.2 TIRE-GROUND ENVELOPINGMODEL

Let us consider a reference frameHxyzwith unit vectors (ĥx, ĥy, ĥz), whose originH is
located in the wheel hub (see Figure B.1). The axes are oriented according to the ISO
8855:2011 standard [183]. The x-axis is directed towards the longitudinal direction
of motion, the z-axis points upwards and the y-axis is oriented in such a way that
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the coordinate system is right-handed. The tire is defined geometrically as an axially
symmetric (around the axis ĥy), convex and closed set T

T =
{
[x, y, z]T ∈ R3, y ∈ [yl, yr], R(y) : R 7→ R≥0

∣∣ √x2 + z2 ≤ R(y)
}

,

whose interior and boundary are respectively denoted with T̊ and ∂T . The function
R(y) can be chosen arbitrarily to properly reconstruct the tire’s external morphology.
On the other hand, the ground is modeled as a closed half-space G

G =
{
[x, y, z]T ∈ R3 ∣∣ z ≤ g(x, y), g(x, y) : R2 7→ R, f(x, y) : R2 7→ R≥0

}
,

whose interior and boundary are respectively denoted with G̊ and ∂G. The map g(x, y)
is a mapping between R2 to R that defines the height of the track surface. Similarly,
the map f(x, y) defines the local friction coefficient scaling factor, which is used to
scale the tire performance according to the local ground surface conditions. Notice
that the concept behind the friction coefficient scaling factor can be extended to other
relevant local properties of the ground surface, e.g., temperature, water film thickness,
and asphalt wear.

T

����

����
G

Figure B.1: Representation of the intersection between the tire T and a Belgian block
road boundary G alongside the hubHxyz and the contact point Pxyz reference frames.

To identify and quantify the contact between the tire and the ground we need to define
what the intersection volume and the contact patch regions are. The intersection region
is a closed set V , collecting all the points of the tire T , which are also points of the
ground set G, i.e., V = T ∩ G (see Figure B.2). On the other hand, the contact patch
is defined as a closed set P that collects all the points of the tire which are also interior
points of the ground boundary surface ∂G, i.e., P = T ∩ ∂G. The contact area A and
the contact volume V are defined respectively as
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@T

@G

Figure B.2: Representation of the ground boundary ∂G normal directions (green ar-
rows) inside the tire set boundary ∂T . Each of these directions, together with other
information, is exploited to calculate the contact point P and normal n̂.

A =

∫∫
P

1 dx , (B.1) and V =

∫∫∫
V

1 dx . (B.2)

The tire is assumed to be modeled by an infinite number of independent linear radial-
springs, whose stiffness k is uniform all over the tire section. The inaccuracy introduced
by this assumption is recovered by the tire force-calculation model, which employs
concentrated parameters to describe the non-uniformity of the carcass stiffness. Before
calculating the direction n̂ and application point P of the resultant contact force, we
have to make three important observations.

Observation 1. The force generated by the contact is produced by the deformation of the
radial springs. If the terrain is non-deformable the contact force magnitude ‖F⃗‖ is linearly
proportional to the intersection volume V, i.e.,

‖F⃗‖ =
∫∫∫

V
k dx = kV ∝ V .

Notice that the proportionality constant is the stiffness coefficient k, which is a func-
tion of the tire’s internal structure and pressure. However, these dependencies are
considered by the tire force-calculation model through lumped parameters. It should
be pointed out that the damping effect is not considered due to the quasi-static nature
of the enveloping phenomenon.

Observation 2. Since the tire is assumed to be modeled by an infinite number of independent
radial springs, the contact force F⃗ can not produce any rolling resistance torque around the
wheel hub axis ĥy. In other words, the contact force acts along the direction determined by
one of the families of lines passing through the contact point P and the hub axis ĥy.

It is also important to note that the rolling resistance is not considered in the enveloping
models. It is typically considered to be part of the tire contact force model, which
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must be fed with the information provided by the enveloping model. For instance,
the SWIFT® model is coupled with the MagicFormulae model to compute the contact
forces and torques generated by the tire-ground contact.
Thanks to these observations, the duality between the physical and geometrical models
of the tire-ground contact can be exploited. Hence, the contact point P is calculated
as the weighted average of contact surface points. The weight is proportional to the
infinitesimal radial volume interested in the tire-ground contact. This infinitesimal ra-
dial volume is calculated as the intersection of the contact volume with the line ℓ(x, ĥy)

passing through the point x = [x, y, x]T and matching the axes of the wheel ĥy orthog-
onally. If proj(x, ∂G) defines the intersection point of the line ℓ(x, ĥy) with ∂G, then
P is calculated as

P =
1
V

∫∫∫
V

proj(x, ∂G) dx . (B.3)

The application direction of the resultant tire-ground contact force is denoted by n̂. It
is calculated as the average of the directions d̂(x, ĥy) of the lines ℓ(x, ĥy), i.e.,

n⃗ =

∫∫∫
V
d̂(x, ĥy) dx, where n̂ =

n⃗
‖n⃗‖ . (B.4)

Similarly, the overall tire friction coefficient scaling factor λ is calculated as

λ =
1
V

∫∫∫
V
f(x) dx . (B.5)

The solution of the here defined integrals (B.3), (B.4), and (B.5) is not straightforward.
This is why, in the next section, we propose a numerical approximation of these inte-
grals.
It should be pointed out that the local ground plane is hereafter identified by the ref-
erence frame Pxyz whose origin point is P and axes directions are

êz = n̂ , êx =
ĥy × n̂
‖ĥy × n̂‖

, and êy = n̂× êx .

The βx and βy angles, which are used to describe the local ground surface orientation
with respect to the wheel hub, are calculated as the Euler angles (zxy sequence) be-
tween the hub reference frame Hxyz and the contact point reference frame Pxyz (see
Figure B.3).

B.3 ALGORITHM IMPLEMENTATION

So far, we have not yet described the actual shapes of the sets T and G, which represent
the tire and the ground sets respectively. Since we will deal with complicated obstacle
shapes it is important to restate the presented enveloping model in a formulation that
does not limit its numerical efficiency, robustness, and scalability. For this reason, a
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Figure B.3: Representation of the contact pose Pxyz along with the hub reference
frame Hxyz according to the ISO standard [183]. The constant pose is defined by the
contact point P and the normal êz = n̂, which also allows us to identify the forward
and banking angles βx and βy.

discretized representation of tire and ground elements is required both to eventually
solve the contact problem and to offer a highly scalable framework to work with. More
specifically, the tire’s external shape roughly corresponds to the external tread pattern
profile revolved around the hub axis ĥy. The tire set is discretized into a series of laterally
lumped disks, also called ribs. On the other hand, the ground boundary is represented
by a triangular mesh (see Figure B.4). Both tire and ground descriptions are fully
scalable as the density of the ribs and the triangles can be adjusted according to the
accuracy and execution speed needed for the specific simulation. This representation
approach turns out to be useful in the case of HRT simulation (where the execution
speed represents an important requirement that needs to be satisfied) but also in the
case of offline simulations (where the demanded precision is usually higher).
The representation of tire and ground allows us to restate the enveloping model pre-
sented in Section B.2 in a more “software-friendly” formulation. We will consider
the discretized tire S as a set of n tire ribs ϕ, i.e., S =

{
ϕ1, ϕ2, . . . ϕn−1, ϕn

}
. The

generic tire rib ϕ is defined geometrically as a disk of radius r, whose center is O, and
whose face normal corresponds to ĥy. In addition, the rib also retains its “virtual” width
w ∈ R≥0, which will be used in the numerical integration processes

ϕ =
{
w ∈ R≥0, x = [x, y, z]T

∣∣O = [0, y, 0]T , . . .

r = R(y), ‖O− x‖ ≤ r, ĥy · (O− x) = 0
}

.
(B.6)
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Figure B.4: Tire-road intersection with multiple instances of SHELL objects. Notice
that the MESH is modeled as a multitude of TRIANGLEGROUND objects, while the
SHELL object is made of a set of RIBs. The RIBs diameters and positions are extracted
directly from the custom function R(y) defined in the SHAPE object.

Similarly, the discretized ground boundary ∂G is represented through a triangularmesh
setM of m triangles τ , i.e.,M =

{
τ1, τ2, . . . , τm−1, τm

}
, where

τ =
{
λ ∈ R≥0, x ∈ R3

∣∣∣ x = t1 p1 + t2 p2 + t3 p3, . . .

t1 + t2 + t3 ≤ 1, t1 ≥ 0, t2 ≥ 0, t3 ≥ 0
}

,
(B.7)

and where p1, p2, and p3 are the three vertices of the triangle. Notice that the mesh
triangle τ also carries a friction coefficient scaling factor λ ∈ R≥0, which is considered
constant over the triangle surface.
The intersection between the set of ribs S and the ground mesh trianglesM allows us
to identify the contact parameters, namely the contact patch area A, the intersection
volume V, the contact point location P, and the contact force direction n̂. Trivially, if
a generic rib ϕ is intersected with a generic mesh triangle τ , the result will be a set
σ = ϕ ∩ τ . This intersection can lead to four different cases, in which the set σ can
be: (1) an empty set, if ϕ does not touch τ at all; (2) a point, if ϕ intersects τ one of
its vertices; (3) a segment, if ϕ intersects τ or a portion of it; and (4) a convex hull, if
ϕ and τ are coplanar and intersect. Cases 1 and 2 are not considered since they are
not relevant to the modeled contact. Case 4 corresponds to a tire lying on the ground,
which is not relevant for a vehicle simulation in which the tire is always rolling. Hence,
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case 3 is the only relevant one for the modeled contact. In this case, the intersection
region is a segment σ such that

σ =
{
x ∈ R3 ∣∣ x = (1− t) pa + t pb, t ∈ [0, 1]

}
,

where pa and pb are the two extrema points of the segment. We can now calculate the
contact patch area A by restating (B.1) as the summation

A =

n∑
i=1

wi

m∑
j=1

‖pb,ij − pa,ij‖2 , (B.8)

where wi is the “virtual” width of the i-th rib.
To solve integrals (B.2), (B.3) and (B.4), they are first transformed to cylindrical coor-
dinates. Moreover, σ̄ denotes the transformation to into cylindrical coordinates of σ.
The radius r̄(θ) represents the distance from the rib center point O to a generic point
of the intersection segment σ̄. Denote with ri the radius of the i-th rib and with r̄ij(θ)
the distance between the i-th rib center point and the segment σ̄ij; where the segment
σ̄ij is identified as the intersection of the i-th rib with the j-th triangle. The range of
the angle θ for the generic segment σ̄ is denoted with [θa, θb] ⊂ (π, 2π), which are
implicitly defined as[

cos θa
sin θa

]
=

pa −O
‖pa −O‖ , and

[
cos θb
sin θb

]
=

pb −O
‖pb −O‖ .

With this notation the integrals (B.2), (B.3), (B.4) and (B.5) are rewritten as

vij(θ) =
r2i − r̄ij(θ)2

2 , (B.9)

V =

n∑
i=1

wi

m∑
j=1

∫ θbij

θaij

vij(θ) dθ , (B.10)

P =
1
V

n∑
i=1

wi

m∑
j=1

∫ θbij

θaij


r̄ij(θ) cos(θ)vij(θ)

yivij(θ)

r̄ij(θ) sin(θ)vij(θ)

 dθ , (B.11)

n⃗ =

n∑
i=1

wi

m∑
j=1

∫ θbij

θaij


cos(θ)vij(θ)

0

sin(θ)vij(θ)

 dθ , n̂ =
n⃗
‖n⃗‖ , (B.12)

λ =
1
V

n∑
i=1

wi

m∑
j=1

∫ θbij

θaij

λvij(θ) dθ . (B.13)
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Notice that the intermediate variable vij(θ) in (B.9) represents the length of the generic
segment radially connecting the σ̄ij to the external tire boundary at the angle θ (see Fig-
ure B.5). From a physical perspective, vij(θ) is the deflection of the infinitesimal radial
springs at the angle θ. It is possible to find a closed-form solution for r̄ij(θ). However,
the analytical expression of the resulting P and n̂ is excessively long. For practical pur-
poses, it is better to use a quadrature formula to numerically approximate the integrals.
In this work, Simpson’s 1/3 rule is used.

Remark 2. Simpson’s 1/3 rule quadrature formula of f(x) for the interval [a, b] reads as∫ b

a
f(x) dx =

h
6 [f(a) + 4f (c) + f(b)]− h5

2880 f
(4)(ξ) ,

where h = b − a, c = (a + b)/2, and ξ ∈ [a, b] [184]. Notice that if r ≤ 1, θb − θa ≤
π/6, and 1 ≥ ‖O − pa,b‖ ≥ 4/5, the relative error of the numerically computed integrals
in (B.10), (B.11), and (B.12) is below 1%.

Remark 3. The midpoint r̄((θa + θb)/2) is computed as

r̄
(
θb − θa

2

)
=

2̄r(θa)̄r(θb)
r̄(θa) + r̄(θb) cos

(
θb − θa

2

)
.

ϕ

σ

τ

r(θa) r(θb)

θa

θb

σpa pb

O

r

θ vij(θ)

Figure B.5: Representation of the intersection between a tire rib ϕ (■) and a ground
mesh triangle τ (■). The intersection set σ (■) is a segment with vertices pa and pb,
at θa and θb angles respectively.

B.4 SOFTWARE ARCHITECTURE

The ENVE algorithm-based software is written in C++ (2011 standard [148]), which is
one of the most widely supported, common and fast among object-oriented general-
purpose programming languages. We have only reduced the dependencies on the
EIGEN [149] and ACME [1] libraries: this provides us with a flexible and extensible
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framework. EIGEN is a template library for linear algebra. It is very efficient for
small vectors and matrices and can exploit LAPACK/BLAS [150] for peak perfor-
mance when matrices and vectors have a large size. ACME, on the other hand, is an
easy-to-use geometry library that aims to be a minimal tool for HRT scheduling ap-
plications. Furthermore, MATLAB® MEX and SIMULINK® S-FUNCTION extensions are
provided to allow the integration of ENVE in more complex simulation environments.
The software is distributed under the BSD 3-Clause License and is freely available
online [27].

B.4.1 DATA TYPES
The software is built on a limited number of classes. We have chosen to keep the library
as essential as possible for ease of maintenance and efficiency. For this reason, we use
the necessary classes to describe and manipulate virtual ground surfaces and tires. Each
geometrical entity representing the tire and ground is organized in a specific class. A
brief description of the data types used in the software is now given in this section.

TRIANGLEGROUND The generic ground triangle τ is defined by the three points
p1, p2 and p3. In this way, it geometrically corresponds to the TRIANGLE object de-
scribed in the ACME library [1]. For this reason, the TRIANGLEGROUND object pub-
licly inherits from the ACME::TRIANGLE object. Since the TRIANGLEGROUND object
describes the generic triangle representing a local road region, this class also carries
a scaling factor for the friction coefficient λ. The mathematical representation corre-
sponds to the definition in (B.7).

MESH The mesh represents the discretized ground setM on which the tire rolls. It
is composed of a multitude of TRIANGLEGROUND objects. The size of these triangles is
determined according to end-use requirements and desired accuracy. As a consequence,
the number of triangles can range from a few dozen to tens of thousands. For this
reason, the ACME library’s AABBTREE data structure is used to efficiently manage the
intersection between the tire and the ground, and substantial acceleration of the overall
algorithm is achieved.

FLAT Using a mesh to represent a flat ground surface is not always the most efficient
choice, as this can prolong the time needed for computation unnecessarily. With a
MESH the software is forced to go through the creation of an AABBTREE and to make
an evaluation of the intersection of the same tree with the AABB containing the tire.
To eliminate this source of inefficiency, the FLAT class has been implemented, to rep-
resent a perfectly flat terrain. The FLAT object publicly inherit from the ACME::PLANE
object and a friction coefficient scaling factor λ is added to the class description

π =
{
λ ∈ R≥0, x, p, n̂ ∈ R3 ∣∣ n̂ · (p− x) = 0

}
,

where p is a generic point on the plane and n̂ is a unit normal vector.



B.4. SOFTWARE ARCHITECTURE 169

SHAPE The SHAPE object describes the overall external shape of the tire T and of
all the ribs in the set S. The external boundary of the tire ∂T is defined as a surface
generated by the revolution of an arbitrary function R(y). By using the proper surface
of revolution, it is possible to represent a wide variety of tire morphologies, ranging
from car tires to motorcycle tires (see Figure B.1).

RIB As mentioned before, the rib is considered a small section of the overall tire.
Geometrically the rib is defined as a disk ϕ of radius r, whose center O is located in
[0, y, 0]T in the Hxyz wheel hub reference frame and whose lateral coordinate y is
constant throughout the whole disk area. The RIB object publicly inherit from the
ACME::DISK object. In addition, the RIB class also carries its “virtual” width w ∈
R≥0, which is stored as a class member. The mathematical representation of this set
corresponds to that in (B.6).

SHELL The shell object encapsulates the set of RIB objects S, along with a shared
pointer to a SHAPE object and an object of the type ACME::AABB. This last object
represents the bounding box that contains the tire at every instant of time. The SHELL
object also contains all the attributes and secondary objects that are used to describe
the tire and its intersection with the terrain. Whenever an intersection between the
tire and the terrain occurs, the affine transformation describing the tire pose as well as
the tire AABB is updated. Once these basic operations are completed, the bounding
box is intersected with the ACME::AABBTREE of the mesh. A list of shared pointers to
TRIANGLEGROUND objects that are internal or that simply touch the tire bounding box
is generated. This list is supplied one by one to the RIB objects to find the intersection
parameters described in the previous section. To avoid unnecessary recalculations, the
intersection parameters are stored in members that are internal to the SHELL class; they
are then eventually extracted with methods specifically designed for this purpose.

B.4.2 ALGORITHMWORKFLOW
The workflow of the algorithm is highly streamlined. It is divided into three main
algorithms that are briefly described below briefly described and that are also reported
in the pseudocodes. Other minor algorithms are used to support the main ones and
are not reported here for the sake of brevity.

SHELL INITIALIZATION The initialization of the SHELL object is done by passing a
SHAPE object and the number of ribs n as input parameters. Firstly, the SHAPE object
is used to reconstruct the tire’s external shape; then the RIB objects are instantiated by
discretizing the tire into n ribs.

Algorithm 11 Initialization of a SHELL object.

1: Require: The tire SHAPE object, and the number of ribs n
2: function SHELL(SHAPE, n) ▷ SHELL class constructor



170 APPENDIX B. TIRE-GROUND ENVELOPINGMODELING

3: S ← ∅ ▷ Initialize the set of ribs
4: w← SHAPE.width()/n ▷ The ribs width
5: for i← 1 to n do
6: yi ← w/2 + (i− 1)w ▷ The i-th rib lateral coordinate
7: ri ← SHAPE.radius(yi) ▷ The i-th rib radius
8: Si ← RIB(ri, yi, w) ▷ The i-th rib
9: end for

10: F← I4×4 ▷ The default affine transformation
11: B← AABB(S,F) ▷ The bounding box of the tire
12: store S, B, F ▷ Store the data in class members
13: end function

MESH INITIALIZATION The MESH object is initialized by passing a Road Data
Format or Wavefront OBJ extension file containing the triangles’ vertices and faces
as input. The file is first parsed to instantiate the mesh TRIANGLEGROUND objects
and then used to build the AABBTREE, which will later be used to accelerate the
intersection process as well as the calculation of contact parameters.

Algorithm 12 Initialization of a MESH object.

1: Require: The mesh file path
2: function MESH(path) ▷ MESH class constructor
3: V← ∅ ▷ Initialize ground mesh vertices
4: F← ∅ ▷ Initialize mesh faces
5: λ← ∅ ▷ Initialize mesh λs
6: V, F, λ← MESH.parse(file) ▷ Parse the mesh file
7: M← ∅ ▷ Initialize the set of triangles
8: B← ∅ ▷ Initialize the set of triangles’ AABBs
9: n← F.size() ▷ The number of triangles

10: for i← 1 to n do
11: p1 ← V(F(i, 1)) ▷ The 1st triangle vertex
12: p2 ← V(F(i, 2)) ▷ The 2nd triangle vertex
13: p3 ← V(F(i, 3)) ▷ The 3rd triangle vertex
14: Mi ← TRIANGLEGROUND(p1, p2, p3, λ(i))
15: Bi ← AABB(Mi) ▷ The i-th triangle AABB
16: end for
17: T← AABBTREE(M, B) ▷ The mesh’s AABBTREE
18: storeM, T ▷ Store the data in class members
19: end function

CONTACT PARAMETERS CALCULATION The contact parameters are calculated
by intersecting the SHELL object and the MESH object. This is done by calling the
“setup” method of the SHELL object. Firstly, this method intersects the mesh’s AABB-
TREEwith the tire’s AABB and returns a list of triangles that are potentially intersecting
the tire. Then, the tire ribs are intersected with the triangles and the contact parameters
are calculated as described in Section B.2.

Algorithm 13 Contact parameters calculation.
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1: Require: The new tire affine transformation F, and the MESH objectM
2: function SHELL.setup(F,M) ▷ The intersection method
3: B← SHELL.update_aabb(F) ▷ Update the tire AABB
4: L← MESH.intersect(B) ▷ The intersecting triangles
5: r← S.size() ▷ The number of tire ribs
6: n← L.size() ▷ The number of intersecting triangles
7: A← 0 ▷ Initialize the contact patch area
8: V← 0 ▷ Initialize the intersection volume
9: P← 0 ▷ Initialize the contact point

10: n̂← 0 ▷ Initialize the contact normal
11: λ← 0 ▷ Initialize the friction coefficient scaling factor
12: for i← 1 to r do
13: for j← 1 to n do
14: σ ← Si ∩ML(j) ▷ The intersection set (segment)
15: A← A+ σ.area() ▷ The contact area (B.8)
16: V← V+ σ.volume() ▷ The contact volume (B.10)
17: P← P+ σ.point() ▷ The contact point (B.11)
18: n̂← n̂+ σ.normal() ▷ The contact normal (B.12)
19: λ← λ+ σ.lambda() ▷ The contact λ (B.13)
20: end for
21: end for
22: λ← λ/V ▷ The average λ
23: return A, V, P, n̂, λ ▷ The contact parameters
24: end function

B.5 SIMULATIONS AND DISCUSSION

In this section, we present some simulations to prove the capabilities of the proposed
model. The simulations are divided into two categories: quasi-static simulations, and
RT performance assessments. Quasi-static simulations are carried out according to
the SAE J2731 standard [185] to assess the enveloping capabilities at low speed of the
presentedmodel, while dynamic simulations highlight the outcomes of the tire-ground
enveloping model in a dynamic scenario. In both types of simulations, a comparison
with the SWIFT® model [170] and the TMEASY model [178] is provided. Simulations
are performed bymodeling the tire as a 205/60R15 (2.2 bar inflation pressure) passenger
car tire, which is one of the tires used in [170] to validate the SWIFT® model. The tire is
discretized into 10 × 10 cams for the SWIFT® model and 10 ribs for the ENVE model.

B.5.1 QUASI-STATIC SIMULATIONS ON UNEVEN ROAD SURFACES
Asmentioned before the aim of the first set of simulations is to assess the enveloping ca-
pabilities of the presented model at a low speed according to SAE J2731 standard [185].
As motivated in the SAE standard, we want to assess under quasi-static considerations
the ability of the model to correctly estimate the contact point height z1 and the for-
ward and lateral slope angles βx and βy respectively. In this regard, we have considered

1The contact point height is defined as the z-axis component of the contact point position P in the absolute
reference frame.
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three different road surfaces, characterized by different degrees of unevenness. On
each of these surfaces, we have performed a set of simulations with constant vertical
loads Fz of 2, 4 and 6 kN. It must be pointed out that the TMEASY model output does
not change with the vertical load Fz and is thus reported with a single line in the plots.
The first simulation is performed on a series of different obstacles positioned orthog-
onally to the forward direction of the tire. Specifically, the obstacles’ cross-sections
are depicted at the top of Figure B.6. The results of the simulation are reported in
the last two plots of Figure B.6. As it can be noticed, the behavior of the presented
model is similar to that of the SWIFT® model, which is considered to be very close to
the ground truth (see [170] for an in-depth discussion on the SWIFT® model and its ac-
curacy). The performance of ENVE depends on the geometry of the obstacles. Indeed,
in the presented model the contact parameters are defined only by the geometry of the
obstacles, which is not entirely true in the real world. Tire nonlinear radial stiffness
and inflation pressure also play a non-negligible role in defining the overall tire-ground
contact behavior. However, given the simplicity of the model, the results are quite sat-
isfactory. Conversely, the TMEASY model does not produce realistic results, causing
abrupt changes in the contact parameters: z, βx, and βy.
The last simulation is performed on a rough Belgian block road surface depicted in Fig-
ure B.1. The results reported in Figure B.7, show that the ENVE model behavior is very
close to that of the SWIFT® model in terms of contact point height z and forward
slope angle βy. However, the ENVE model is not able to correctly estimate the lateral
slope angle βx. Even on the rough Belgian block road surface, the TMEASY model is
unable to correctly estimate the contact point height z and the lateral slope angle βx.
Moreover, it strongly overestimates the forward slope angle βy.

B.5.2 FULL-VEHICLE MODEL SIMULATION
To evaluate the behavior of the presented tire-ground enveloping model in a typical use
case, it is integrated into a complete RT vehicle simulation framework, and compared
with the SWIFT® [170] and TMEASY [176, 178] enveloping models. The used frame-
work consists of a DIL/SIL/HIL simulator based on a custom high-fidelity vehicle
model. Vehicle dynamics is described by a 14 DOFs full-vehicle model able to accu-
rately simulate the impact of suspension kinematics and compliance on vehicle behav-
ior within the typical range of frequencies for the ride and handling analysis. Contrary
to widespread practice, the vehicle dynamic equations are not linearized. This improves
model accuracy in nonlinear regions and vehicle attitude even in abnormal conditions.
The described formulation enables the vehicle model for 3D road simulations. It is
worth noting that additional DOFs are used to describe internal components’ dynam-
ics, such as the powertrain, the steering system or the tire subsystems. The structure
of the model is organized in a modular fashion mirroring the mechanical interfaces of
vehicle components. This modular structure makes the integration of third-party soft-
ware or, more generally, of any external system a fairly straightforward process. As a
result, it is possible to easily configure the vehicle model for HIL, SIL and/or DIL sim-
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Figure B.6: Quasi-static simulations of a 205/60R15 tire rolling over a stepped road
surface. The TMEASY model output does not change with the vertical load Fz and is
reported with a single line. Colors legend : ■ Fz = 2 kN, ■ Fz = 4 kN, and ■ Fz =
6 kN. Lines legend : — ENVE, – – SWIFT®, and ■ TMEASY, and ■ road surface cross-
section.

ulations. The developed enveloping model is thus interfaced, as a subsystem with the
vehicleMB system through a pre-defined model interface. Inputs of the tire-ground
contact subsystem are the wheels’ reference frames as well as the wheels’ geometrical
characteristics and the 3D road surface mesh. The outputs of the subsystem are, for
each wheel, the equivalent tire contact point, the local contact plane, the contact pene-
tration and the local friction coefficient. Road contact parameters, extracted from the
tire-ground enveloping model, are then used by the MAGIC FORMULA 6.2 tire model
to compute contact forces.
The modeled vehicle is a passenger car with sedan-like characteristics. The vehicle
features a fully electric powertrain with a front-wheel drive transmission layout. The
modeled suspensions are a MacPherson configuration for the front suspensions and
a Multi-Link scheme for the rear suspensions. For the sake of brevity, only the most
relevant vehicle parameters are listed in Table B.1.
Model accuracy and robustness are widely tested with DIL simulations by driving the
vehicle in urban scenarios, characterized by speed bumps, sidewalks or, generally, un-
even road surfaces. In this work, we present the results obtained by driving the vehicle
at a longitudinal speed of 10 km/h over a 45 deg oblique and 1 cm high step. The
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Figure B.7: Quasi-static simulations of a 205/60R15 tire rolling over a Belgian block
road surface. The TMEASY model output does not change with the vertical load Fz
and is reported with a single line. Colors legend : ■ Fz = 2 kN, ■ Fz = 4 kN, and
■ Fz = 6 kN. Lines legend : — ENVE, – – SWIFT®, and ■ TMEASY, and ■ road
surface cross-section.

reported results are the chassis accelerations (Figure B.8), front-left tire forces (Fig-
ure B.9), and the tires deflections (Figure B.10). Note that ENVE and SWIFT® envelop-
ing models present a similar behavior even in the case of a simulation of a full-vehicle
model. In fact, the generated chassis accelerations, the tires’ forces, and deflections are
in agreement with each other. The discontinuities in both the contact point height and
the banking and forward slope angles of the TMEASY model reflect on the full-vehicle
model simulations with abrupt changes contact forces as well as chassis acceleration
not seen in experimental measurements. Notice that according to the results reported
in Figure B.7, the ENVE model is able to correctly estimate the contact point height,
but it slightly underestimates the banking angle. This causes the correct prediction of
the vertical contact force magnitude, but a slight underestimation of the lateral contact
force magnitude. This error may be emphasized or reduced depending on the tire’s
properties.
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Parameter description Value
Total mass of the vehicle 1300 kg
Center-of-mass height 0.30m
Front axle distance from the center-of-mass 1.25m
Rear axle distance from the center-of-mass 1.45m
Wheelbase 2.70m
Yaw inertia 1400 kgm2

Track width 1.50m
Steering ratio 20
Maximum torque at wheel 1200Nm
Maximum motor power 150 kW
Wheel inertia around rotation axis 1.40 kgm2

Size specification of the tires 205/60R15
Spring stiffness at wheel 3530 kN/m
Damping coefficients at wheel for jounce 789N s/m
Damping coefficients at wheel for rebound 1578N s/m

Table B.1: Main parameters of the modeled vehicle.

B.5.3 REAL-TIME PERFORMANCE
To access the computations’ performance of the ENVE C++ software implementation,
we will make use of theReal-Time Factor (RTF) metric. Specifically, the RTF is de-
fined as the ratio between the time needed to process the input and the input duration.
In order to consider a system a RT system, RTF should be≤ 1. We performed a test in
which the triangles inside the AABB of the tire are increased from 1 up to 104, while
the number of ribs is increased from 1 to 10. The simulation platform is an iHawkTM

Concurrent Real-Time provided with 2.5GHz Intel Xeon Silver 4215 8 Core, 11MB
cache, 32GB DDR4 Random Access Memory (RAM), and 64 bit RedHawk Linux
RTOS with CentoOS distribution. All tests are performed on a shielded CPU. The
results reported in Figure B.11, show that the RTF of ENVE is mostly impacted by
the number of triangles inside the AABB of the tire rather than the number of ribs.
Overall, the RTF of the software is ≤ 1 for a number of triangles inside the AABB of
the tire up to ≈ 1000, which corresponds to a regular grid discretization of ≈ 1.5 cm
spacing. However, in a typical vehicle simulation, only a part of the time step can be
used to perform the tire-ground contact calculations. The available time depends on
several factors, such as the complexity of both the vehicle and the tire models. To the
author’s knowledge, a good practice is to use roughly 25% of the integration time step
to establish the contact parameters. This means that the RTF of the software should
be ≤ 0.25 to be considered RT. In this case, the maximum number of triangles inside
the tire AABB drops to ≈ 200, which corresponds to a regular grid discretization of
≈ 3.5 cm spacing. Overall, these performances are more than sufficient for most RT
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Figure B.8: Chassis accelerations of the full-vehicle model driving over a 45 deg oblique
step of 1 cm at a longitudinal speed of 10 km/h. Legend : ■ ENVE, ■ SWIFT®, and
■ TMEASY.

applications. Further improvements can be achieved by parallelizing the AABBTREE-
AABB and the RIB-TRIANGLEGROUND intersection algorithms, which are currently
implemented in a serial fashion. Moreover, different instances of ENVE objects can
run concurrently in separated CPUs to further improve the overall performance of the
full-vehicle model.
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Figure B.9: Front-left tire forces of the full-vehicle model driving over a 45 deg oblique
step of 1 cm at a longitudinal speed of 10 km/h. Legend : ■ ENVE, ■ SWIFT®, and
■ TMEASY.
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Figure B.10: Tires deflections of the full-vehicle model driving over a 45 deg oblique
step of 1 cm at a longitudinal speed of 10 km/h. Legend : ■ ENVE, ■ SWIFT®, and
■ TMEASY.
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Figure B.11: Real-time factor of the ENVE algorithm C++ implementation [27] as a
function of the number of triangles in the tire AABB and the number of ribs which
discretize the tire.
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APPENDIX C

TIRE PHYSICAL MODELING

We present a novel tire brush model with carcass flexibility, primarily designed for RT
applications while preserving the physical significance of its parameters. The model
has been already presented in [5], and it is here reported to provide a comprehensive
overview of the tire modeling approach. Specifically, it is built upon the methodolo-
gies in [1, 4], also outlined in Appendix A and Appendix B. The tire’s geometry is
discretized and represented using a series of ribs, each intersecting the local road sur-
face independently. The carcass in-plane fore-aft displacement, in-plane deflection,
and out-of-plane sidewall torsion are approximated through a second-order polyno-
mial. Forces and torques originating from the tire-road contact area are described using
brush mechanics. Notably, the kinematics of the bristles are directly linked to carcass
deformation. Extensive effort is dedicated to understanding the possible sources of
instability, as well as describing and implementing a robust numerical scheme to effec-
tively solve the nonlinear system of equations arising from the modeling. Numerical
performance results are provided to demonstrate the suitability of the presented model
for demanding HRT simulations. Validation of the model here presented is carried
out by fitting experimental data and comparing it with the state-of-the-art MAGIC
FORMULA model, proving its reliability and accuracy in reproducing tire behavior.

C.1 INTRODUCTION TO TIRE MODELING

Numerous investigations and experiments have been conducted over the past century
to understand tire characteristics and behavior, revealing a close relationship between
tire performance and the technologies, techniques, and materials used in manufactur-
ing [22, 186]. However, accurately modeling tire characteristics from construction
specifications is challenging due to the complex tire internal structure. To tackle this
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challenge, two main modeling approaches have been proposed so far: empirical and
physical [166, 187–189].
The empirical approach is popular because of its simplicity, low computational cost,
and ability to capture accurate tire behavior. In this approach, tire-road interaction
forces are approximated using a combination of functions derived from physical in-
sights, as well as years of experimental campaigns and experience. The identification
process for computing the set of parameters that best fit experimental data for a spe-
cific tire is one of the biggest challenges for these models. The MAGIC FORMULA model,
initially developed by Bakker, Nyborg, and Pacejka [190] and later improved multiple
times [166], is the most-known and state-of-the-art empirical model. It fits experi-
mental data through a sequence of numerical optimizations on predetermined curve
shapes [191]. Due to its diffusion, low computational complexity and overall perfor-
mance, the MAGIC FORMULA model is considered the standard in both data fitting and
vehicle simulation [166, 187].
The physical approach involves direct geometrical and physical tire modeling, provid-
ing a deeper understanding of the complex phenomena related to tire behavior [22].
While the computational burden heavily depends on the desired accuracy, this ap-
proach can better generalize behavior without fitting a large experimental dataset for
every specific tire. Additionally, physical models usually depend on a smaller number
of parameters that have a direct physical meaning. The FE method represents a physi-
cal approach to tire modeling primarily used, though not exclusively, for assessing static
characteristics, stiffnesses, resonant frequencies, and vibration modes [192]. Another
physical modeling technique is based on the Discrete Element (DE) method [193],
which employs a limited number of interconnected elements and nodes to mimic the
degrees of freedom and constraints of real tire carcass structures [179, 180, 194]. Promi-
nent DE models like FTIRE® and CDTIRE® are capable of running under RT environ-
ments [168, 195], and encompass advanced features such as detailed external geometry
description, flexible and visco-plastic rim, air cavity vibration, deformable and visco-
elastic ground soil compatibility, as well as temperature and wear modeling. However,
the availability of detailed information regarding the computational time performance
of both FTIRE® and CDTIRE® remains limited.
A big branch of physical modeling relies on the brush mechanics theory [166], which
originates from a simplified version of Kalker’s conformal contact theory [196–201].
This theory assumes the road surface to be non-deformable, and describes the tire be-
havior within the contact patch area using one or more rows of radial bristles along or
parallels to its equator, having a frictional constraint with the road, and deflecting ac-
cording to kinematic equations. Over the years, several extensions of the original brush
model have emerged, addressing dynamic friction behavior [202–205], realistic contact
pressure distribution [206–208], high camber angles and high steering speeds [209,
210], carcass deformation influence [186, 206, 208, 211–217], effects of temperature
and wear [207, 218], and a more accurate description of external tire morphology [219,
220]. Brush models are effective at efficiently capturing the behavior of the tire tread
layer, and they can also be coupled to a simplified carcass deformation model under
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proper assumptions. Sakai’s [221–224], NEO-FIALA [206, 212–215], TREADSIM [225],
and TAMETIRE® [207] are three notable advanced tire models that combine a brush
model with a carcass deflection and, although different in design, they can accurately
describe significant tire characteristics that are beyond the capabilities of empirical
models. These include: (1) advanced frictional properties at the tire-road interface,
such as local contact pressure and velocity dependency of the friction coefficient; (2)
description of the tangential stress within the contact patch, crucial for understanding
the tire’s lateral and longitudinal force generation; and (3) carcass in-plane fore-aft dis-
placement and deflection, and out-of-plane sidewall torsion, often described through
a beam on elastic foundation or a second-order polynomial approximation.
Despite the extensive literature on tire modeling, the author aims to develop a novel
tire model suitable for RT vehicle simulations, highlighting the scope for further en-
hancement in the field of tire modeling. This new model is built upon a minimal
set of physical parameters rather than empirical formulas, to characterize tire proper-
ties. For this reason, the contributions of this thesis to the existing state-of-the-art
tire modeling include the development of a fully scalable physical tire model capable
of running within a time step of 1ms. Such a time step is a typical requirement for
RT simulations that aim at reproducing stiff subsystems with high-frequency dynam-
ics [166]. The tire model is structured modularly, facilitating straightforward extension
to incorporate additional features such as the effect of temperature and wear, and not
less importantly, to achieve the desired computational performance through the newly
developed numerical solution scheme. Possible sources of instability are also analyzed,
and practical solutions to ensure robustness are discussed. In summary, this study
aims to advance the current understanding of flexible carcass tire model behavior and
provide a numerical framework enabling the newly developed physical tire model’s in-
tegration into HRT simulations. To demonstrate the suitability of the proposed model
in such demanding conditions, timing and numerical scheme performance outcomes
are provided. Validation of the model is performed by fitting experimental data pro-
vided by the Tire Research Facility (TIRF) for the Formula SAE (FSAE) Tire Test
Consortium (TTC) testing program (refer to Kasprzak and Gentz [226] for a compre-
hensive description FSAE TTC’s testing set-up, procedures, and data acquisition), as
well as by comparing it with the state-of-the-art MAGIC FORMULA model, ensuring its
reliability and accuracy in reproducing tire behavior.

C.2 TIRE MODELING

Pneumatic radial tires are inflated composite structures whose primary structural sub-
components are the rim, the carcass, and the tread. While the rim maintains tire shape,
the carcass constitutes the main tire structure connecting the rim to the tread. The
tread, on the other hand, serves as the outer rubber layer providing a link between
the road and the carcass. In the following sections, we will describe the tire modeling
approach, focusing on the carcass and tread, as the rim is considered a rigid body.
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C.2.1 TIRE AND ROAD GEOMETRIC REPRESENTATION

Let us consider a reference frame Hxyz with unit vectors (ĥx, ĥy, ĥz), having its origin
H located at the wheel hub. The axes are oriented according to the ISO 8855:2011
standard [183]. The x-axis is directed towards the longitudinal direction of motion,
the z-axis points upward, and the y-axis is oriented so that the coordinate system is
right-handed (refer to Figure C.1). Geometrically, the tire is characterized as axially
symmetric (about the axis ĥy), convex, and closed set T defined as

T =


 xy
z

 ∈ R3, y ∈ [yl, yr] , R(y) : R 7→ R
∣∣ √x2 + z2 ≤ R(y)

 .

Here, the function R(y) can be chosen arbitrarily to reconstruct the desired outermost
shape of the tire. On the other hand, the road is modeled as a closed half-space R
whose boundary is defined by the plane passing through the point p with unit normal
n̂, i.e.,

R =
{
x ∈ R3 | (x− p) · n̂ ≤ 0

}
,

where x = [x, y, z]⊤. The contact patch region is defined as a closed set P comprising
all the points of the tire T which are also interior points of the road boundary surface
∂R, i.e., P = T ∩ ∂R. The contact patch reference frame Oxyz has the origin in
O, which corresponds to the centroid of the region P . Its unit vectors (êx, êy, êz) are
defined as êx = ĥx, êy = n̂× êx, and êz = n̂.

�̂� �̂�

�̂�

�
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Figure C.1: Tire-road schematics according to ISO coordinate system [183].
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Figure C.2: Illustration of the tire-road contact geometry parameters.

C.2.2 TIRE-ROAD VERTICAL CONTACT MECHANICS
When the contact patch set is not empty (i.e., P 6= ∅) there is a multitude of contact
points x = [x, y, z]⊤ ∈ P . At each point, the stress component along the z-axis
(also known as normal stress) qz(x, t) is applied. The integral of the normal stress
distribution over the entire contact patch region is equal to the tire’s vertical load Fz(t).
The vertical normal stress distribution is extremely difficult to calculate analytically,
and it depends on the tread pattern properties, carcass stiffness, friction and inflation
pressure [22]. To easily model the tire’s vertical characteristics, we employ a single-
contact point approach. The total vertical tire stiffness is calculated as

kz(ω, γ, p) = ksz + kpzp+ kωz ω + kγz γ2 .

Here, ksz represents the structural vertical stiffness, kpz denotes the vertical stiffness de-
pendence on inflation pressure, kωz indicates the vertical stiffness dependence on rolling
speed, and kγz is the vertical stiffness dependence on camber angle. The total vertical
force is thereby calculated as

Fz(t) = kz(ω(t), γ(t), p)ρ(t) + czρ̇(t) + kbz max(0, ρ(t)− ρb) , (C.1)

where Fz ∈ R≥0, ρ(t) ∈ R≥0 represents the deflection at the tire contact point, ρb
represents the bottoming threshold, cz is the vertical damping coefficient, and kbz in-
dicates the bottoming vertical stiffness. Specifically, the tire contact point deflection
ρ(t) is calculated with the method outlined in [1, 4]. This technique not only facilitates
efficient and robust computation of the contact point deflection ρ(t) but also allows
us to compute the tire deflection ϱ(y, t) at a specific lateral coordinate y and time t.
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Alternatively, for cases where the technique outlined in [4] is not employed, a viable
approximation, particularly for small camber angles (|γ(t)| < π/10), is

ρ(t) = max
y∈ [yl,yr]

ϱ(y, t) (refer to Figure C.2) .

C.2.2.1 CONTACT PATCH LENGTH

The geometrical intersection between the tire set T and road boundary surface ∂R
provides us only a rough approximation of the tire-road contact patch area. Based on
the findings in [227, 228], we introduce a contact transition radius Rℓ ∈ R≥0 to take
the tire belt stiffness into account and get a more realistic result (see Figure C.2). The
contact length at any given lateral coordinate y on the contact patch reference system
can be computed as

ℓ(y, t) = 2
√(

2(R(y)− Rℓ)− ϱ(y, t)
)
ϱ(y, t) , (C.2)

where ϱ(y, t) is the tire radial deflection. Notice that the equation (C.2) can be easily
found from the study of Rhyne [228] by imposing null radial counter-deflection.

C.2.2.2 CONTACT PRESSURE DISTRIBUTION

The pressure distribution is one of the most complex, challenging-to-model factors
significantly impacting tire behavior [229]. Both experimental results and FE analyses
reveal that the pressure trend over the contact patch is strongly three-dimensional and
is influenced by numerous factors, including carcass structural stiffness, contact pres-
sure, relative camber angle, tread pattern topology, and local road macro-roughness.
Experimental evidence suggests that adequately inflated modern radial tires typically
exhibit a plateau in the pressure distribution at the central part of the contact patch [22,
Chapter 5]. Conversely, overinflated and underinflated radial tires may have more com-
plicated distribution shapes [22, 230]. Recent efforts have been aimed at more detailed
modeling of the contact patch to better match experimental results [206–208]. An in-
teresting approach involves modeling the contact pressure distribution using a quartic
polynomial function Υ(χ) = c0 + c1χ1 + c2χ2 + c3χ3 + c4χ4. This function represents
the normalized contact pressure distribution shape along the normalized longitudinal
coordinate χ ∈ [0, 1]. To determinate the polynomial coefficients c0, . . . , c4 the fol-
lowing constraints are imposed

d2

dχ2 Υ

(
1
2

)
= −λ∫ 1

0
Υ(χ) dχ = 1∫ 1

0
Υ(χ)χ dχ =

1
2 − δ

Υ(0) = Υ(−1) = 0

(C.3)
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Then, we solve for c0, . . . , c4, and the solution of the system is

c0 = 0 ,

c1 = −
1
3λ+ 10 + 60δ ,

c2 = 2λ− 30− 180δ ,

c3 = −
10
3 λ+ 40 + 120δ ,

c4 =
5
3λ− 20 .

Here, λ ∈ R and δ ∈ R respectively denote the convexity and longitudinal barycentre
shift of the base curveΥ(χ). The only drawback of this approach is that for certain val-
ues of δ and λ, the condition of positive pressureΥ(χ) ≥ 0 within the range χ ∈ [0, 1]
is not always guaranteed and must be numerically checked in the software implementa-
tion. Thus, a careful selection of these parameters is essential. On the other hand, the
use of a polynomial to describe the pressure distribution over the contact patch allows
us to adopt some numerically robust algorithms and efficient evaluations for some of
the calculations that will follow. Given the objective of achieving RT applicability for
the numerical tire model, this aspect should not be overlooked. The vertical contact
stress distribution qz(x, t) is then written as

qz(x, t) =
Fz(t)
AP(t)

Υ

(
ℓ(y, t)/2− x

ℓ(y, t)

)
, (C.4)

where x = [x, y, z]⊤ ∈ P , Fz denotes the tire’s vertical load, and AP represents the
contact patch area, defined as

AP(t) =
∫ yl

yr
ℓ(y, t) dy .

It must be stressed that the contact patch region P is a function of time t and of the
lateral coordinate y. This variability arises because the contact patch is not fixed but
rather a function of the tire-road contact geometry.

C.2.3 TIRE-ROAD TANGENTIAL CONTACT MECHANICS
In the present work, we assume that the vertical problem can be decoupled from the
tangential, implying that the tangential stresses do not affect the vertical one, but not
vice versa. Additionally, the vertical and lateral carcass flexibility characteristics are
assumed to be fully independent. In simpler terms, we assume that neither friction-
related phenomena nor carcass deformation affect the vertical pressure distribution
qz. Consequently, we can analyze tire-road tangential contact mechanics sequentially
from the vertical component, while still maintaining the tangential contact forces pro-
portionality to the vertical load Fz. It is worth noting that this assumption greatly
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simplifies the numerical solution of the tire model, as it avoids the need to find the
vertical and tangential forces through a system of nonlinear equations, which would be
computationally expensive.

C.2.3.1 CARCASS DEFORMATIONMODEL

In numerous tire models, the carcass is modeled as a beam on elastic foundation [22,
186, 225, 231]. Experimental findings from the studies [186, 231] demonstrate that
carcass deflection comprises both bending and shears components. The significance
of the shear contribution varies depending on the carcass ply cord angles. Conse-
quently, formulations like the Timoshenko-Ehrenfest or Euler-Bernoulli beam are
particularly suited to describe the lateral bending of carcass structure in the cornering
conditions [186]. Models like those in [186, 206–208, 213, 214, 221–224, 232] adopt
a second-order polynomial (parabola) as a local approximation of the beam on elastic
foundation in the proximity of contact patch area. This approach provides a straight-
forward yet accurate description of the deformed carcass centreline within the contact
region. However, the models currently present in the literature are only able to fully
describe the lateral deformation and do not allow for modeling the longitudinal dis-
placement. Indeed, during traction, braking and cornering, the contact patch is subject
to non-negligible fore-aft, lateral, bending and torsional displacements. These dis-
placements strongly impact the generation of longitudinal, lateral, and vertical forces,
as well as rolling resistance, overturning, and self-alignment torques. To take into
account the longitudinal displacement of the carcass, we define the two-dimensional
carcass centreline as

L(x, c⃗) =
[
Lx

Ly

]
=

 xc

yc + θc(x− xc)− yc
Ψ

2 (x− xc)2

 , (C.5)

where time-dependent parameters xc and yc represent the carcass longitudinal and the
lateral translating deformations, respectively, θc denotes the carcass twisting angle, and
Ψ is the lateral bending shape factor. As depicted in Figure C.3, we model the carcass
deformation through a point c⃗ = [xc, yc, θc]⊤ described within the contact patch refer-
ence frameOxyz. The carcass point c is connected through a set of independent spring
elements to the point [0, 0,−Rz]

⊤, defined in the hub reference frame Hxyz, where
Rz = n̂ · (H−O).
As mentioned at the beginning of this, the carcass is the subcomponent of a tire that
connects the rim to the tread and, it has a significant impact on the tire’s overall behav-
ior. From a pure physics perspective, the carcass is a system that is rigidly connected
to the rim and has to deform in order to accommodate the tread’s deformation. This
involves balancing forces generated by the carcass state against the stresses of the tread
state deformation. Thence, the carcass equilibrium equations in matrix form are writ-
ten as

G⃗(⃗c) = K(⃗c)⃗c− F⃗(⃗c, t) = 0 , (C.6)
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Figure C.3: Depictions of the deformed carcass baselineL(x, c⃗), along with the contact
line of bristles, adherence limit, distribution of bending torque, and the adherence and
sliding regions.

where

F⃗(⃗c, t) =

 Fax(⃗c, t)
Fay(⃗c, t)
Maz(⃗c, t)

+

 Fsx(⃗c, t)
Fsy(⃗c, t)
Msz(⃗c, t)

 ,

and the matrix K represents the carcass stiffness matrix, which is assumed to be a
diagonal matrix of the form

K(⃗c) =

Kx(p, xc) 0 0
0 Ky(p, yc) 0
0 0 Kθ(p, θc)

 .

The entries Kx(p, xc), Ky(p, tc), and Kθ(p, θc) are the longitudinal, lateral and twisting
carcass stiffnesses, respectively. These values are influenced by the tire construction
technology and inflation pressure p, as well as the deformation of the tire carcass. They
can be expressed as follows

Kx(p, xc) = ksx + p kpx + kbx h(xc, xb, hx) ,

Ky(p, yc) = ksy + p kpy + kby h(yc, yb, hy) ,

Kθ(p, θc) = ksθ + p kpθ + kbθ h(θc, θb, hθ) .

Here, the function h(x, b, h) is defined as

h(x, b, h) = (pos(−x− b, h) + pos(x− b, h))2 ,
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where

pos(x, h) =


√
x2 + h2

2 + x x > 0

h2

2(
√
x2 + h2 − x)

otherwise

is a regularized function of the positive part. Notice that the deformation of the tire
carcass has a physical limit given by the maximum deformation of the sidewalls. For
this reason, the parameters kbx, kby , and kbθ are introduced to model the longitudinal,
lateral and twisting bottoming stiffnesses, respectively.
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Figure C.4: Representation of the contact patch region P and contact patch reference
frame ξi(yi, t). Notice that the contact patch is defined as a D-convex and arbitrary
region, whose shape is described along the y-axis by the quantity ℓ(y, t).

C.2.3.2 TIRE-ROAD TANGENTIAL CONTACT MECHANICS EQUATIONS

For each point x ∈ P , given a carcass pose c⃗, we associate a speed field v(x, t) and a
displacement vector u⃗(x, c⃗, t). The speed field v represents the relative speed between
the outer tread layer and the road, while the displacement vector u⃗ represents the de-
formation of the material point (also referred to as a bristle) located at the coordinate
x. Additionally, each material point is also subjected to an external force q⃗(x, c⃗, t) gen-
erated by the tire-road contact.
We define the generic tangential position as t = xêx + yêy, the tangential velocity
field as v⃗t(x, c⃗, t) = vx(x, c⃗, t)êx + vy(x, c⃗, t)êy, the tangential displacement vectors as
u⃗t(x, c⃗, t) = ux(x, c⃗, t)êx+uy(x, c⃗, t)êy, and the tangential stress vector as vtqt(x, c⃗, t) =
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Figure C.5: Illustration of the brush model. The tire T is discretized into a series of
nD ribs. Carcass and bristles are represented as the main components of the model.
Conversely, the rim is assumed to be a rigid body and thus has no impact on the tire-
road contact.

qx(x, c⃗, t)êx + qy(x, c⃗, t)êy, in a such a way that

v⃗ =
[
v⃗t
vz

]
, u⃗ =

[
u⃗t
uz

]
, and q⃗ =

[
q⃗t
qz

]
. (C.7)

The bristles tangential micro-sliding speed is defined as

v⃗s(x, c⃗, t) =
[
vsx(x, c⃗, t)
vsy(x, c⃗, t)

]
,

which represents the relative speed between a material point within the contact patch
P and the road surface ∂R. In the following, we will employ an isotropic steady-state
Coulomb frictionmodel, which enables us to write the equations governing the contact
mechanics between the tire tread layer and the road surface as

v⃗s = 0 ⇐⇒ ‖qt‖ ≤ μsqz and q⃗t = −μdqz
v⃗s
‖⃗vs‖

⇐⇒ v⃗s 6= 0 . (C.8)

In these equations, μs represents the static friction coefficient and μd(x, c⃗, t) denotes
the “dynamic” friction coefficient. It is important to note that (C.8) is only valid under
the assumption of memory-less friction, meaning there is a one-to-one map between
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the tangential stress and the micro-sliding speed [233]. To solve (C.8), two additional
sets of equations are necessary. The first set consists of the so-called tire-road kinematic
equations, which link the wheel hub’s relative motion to the deformation field over the
contact patch area. The second set includes the constitutive relations, which correlate
the bristles deformation field to the generated tangential stress q⃗t.

C.2.3.3 RUBBER FRICTION

Friction significantly affects tire behavior. As noted in prior works [234–237], it is in-
fluenced by various factors such as tread rubber compound, road surface roughness at
both micro and macro levels, relative speed of sliding surfaces, and temperature con-
ditions. To keep the complexity under an acceptable level, we adopt a steady-state
Coulomb friction model. In doing so, the dynamic characteristic of friction, known as
frictional memory, is disregarded. Such a behavior arises from the fact that the friction
coefficient depends not only on the relative sliding speed but also on the contact his-
tory, i.e., the sliding trajectory [238]. Including this phenomenon would significantly
increase the complexity of the whole tire model, necessitating a dense discretization of
the tire tread layer.
Numerous physical formulations aim to capture the relationship between the friction
coefficient and sliding speed. One of the most important is the Savkoor friction law,
which includes the so-called Stribeck effect [229, 235, 236]. When accounting for con-
tact pressure dependency, the “dynamic” friction coefficient μd(x) can be expressed
as

μd = μw(μp0 + μp1 exp(−μp2qz))(μk + (μs − μk)) . . .

exp
(
−μ2

v0
log2

(
‖⃗vs‖
vμ

+ μv1
exp
(
−‖⃗vs‖vμ

)))
,

where

• μw represents the friction coefficient scaling factor, used to tune the friction
coefficient under different conditions, such as wet, dry, icy, etc.;

• μs is the static friction coefficient;

• μk is the kinetic friction coefficient;

• μp0 , μp1 , μp2 are parameters aimed at fitting the rubber-asphalt contact friction
pressure dependency;

• μv0
and μv1

are parameters used to reproduce the rubber-asphalt contact friction
velocity dependency;

• vμ is the Stribeck velocity.
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C.2.3.4 TIRE-ROAD KINEMATIC EQUATIONS

The relative velocity between the bristles and the road, first introduced with the name
of micro-sliding velocity v⃗s, are expressed in Eulerian form similar to that in [166, 187,
210, 216, 217, 239, 240]. Hence, using (C.5) and (C.7), v⃗s can be written as

v⃗s = Vr

(
σ + φêz × (L+ t) + d

dxL
)
+

d
dt u⃗t , (C.9)

where the material point deformation u⃗t is assumed to be small. For a comprehensive
description and derivation of such sliding refer to [166, 187, 188, 210, 216, 239, 240].
The theoretical translational slips σ represent the normalized difference between the
longitudinal and lateral components of the speed of the wheel hub and that of the tire
periphery Vr(y, t) = ω(t)Rr(y, t). Therefore, they are defined as

σ(y, t) =
[
σx(y, t)
σy(y, t)

]
= − 1
|Vr(y, t)|

[
Vx(t)− Vr(y, t) + ẋc(t)
Vy(t)− Rz(t)γ̇(t) + ẏc(t)

]
,

where σx and σy are referred to as the longitudinal and the lateral theoretical slips. The
theoretical spin slip φ is obtained from

φ(y, t) = − ψ̇(t) + ω(t) sin(γ(t)) + θ̇c(t)
|Vr(y, t)|

.

The quantity Rr represents the so-called real rolling radius, which is calculated as

Rr(y, t) = R(y)−
ϱ(y, t)

3 .

Other definitions of slips are available in the literature, such as the practical longitudinal
slip κ and slip angle α [166], which are defined as[

κ(y, t)
α(y, t)

]
= − 1
|Vx(t)|

[
Vx(t)− Vr(y, t) + ẋc(t)

arctanVy(t)− Rz(t)γ̇(t) + ẏc(t)

]
,

and thus [
σx

σy

]
=

1
1 + |κ|

[
κ

− tan(α)

]
.

Since we are using the same Eulerian form of [210], the total time derivative is given
by

d
dt =

∂

∂t + v⃗t · ∇t ,

where ∇t collects the tangential components of the gradient, and ∂/∂t = 0 since we
are neglecting the viscous component of the Kelvin-Voigt element representing the
rubber material point [241]. Neglecting the viscous effect of the tread rubber material
eliminates any explicit time dependence in the formulation of brush model forces and
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torques. Consequently, the tread rubber always operates under stationary conditions.
Considering these points, the total derivative of the material point can be explicitly
expressed as

d
dt u⃗t =

∂

∂t u⃗t︸︷︷︸
=0

+v⃗t · ∇t⃗ut ,

where the tangential gradient is given by ∇t = [∂/∂x, ∂/∂y]⊤. The velocity field v⃗t
of the tread rubber is formulated as

v⃗t = −Vr

d
dxL∥∥∥ d
dxL

∥∥∥ .

Given the assumption of small carcass deformations (approximatively |xc| < ρb, |yc| <
ρb, and |θc| < π/10) and small tire camber angles (|γ(t)| < π/10) the following
relationships holds [242]

d
dxLx ≈ 1 and d

dxLy ≈ 0 .

The trajectories of the bristles moving within the contact patch are straightened in the
longitudinal direction. Therefore, the formulation is constrained to a velocity field of
the form v⃗t = [−Vr, 0]⊤
By separating the longitudinal and tangential displacements of the bristles, we derive
the bristle micro-sliding speed formulated as

v⃗s = Vr

(
σ⃗ + φn̂z × (L+ t) + d

dxL −
d
dx u⃗t

)
. (C.10)

C.2.3.5 CONSTITUTIVE RELATIONS

In the present work, we assume that – from a frictional perspective – two regions are
identified along the contact patch region P . The first is the adhesion region A, where
bristle tips do not slide with respect to the ground, generating the so-called adhesive
forces. The second is the sliding region S, where bristles tips slide on the ground sur-
face, producing instead the sliding forces. The boundary separating these two regions
is called transition line ξs(ξ, c⃗, t). Although this assumption may be not realistic in the
case of high spin slip value, it greatly simplifies the problem [242]. By adopting this
approach, the domain corresponds to the contact patch interior P̊ , where the partial dif-
ferential equations ruling the tire-road kinematics are defined, and the corresponding
BCs can be uniquely formulated on ∂P [210]. This research aims to develop a for-
mulation that strikes a balance between realism and computational efficiency, rather
than striving for a rigorous closed-form expression for the tangential bristle contact
mechanics.
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ADHESION REGION Each material point, acting independently of others, enters
the contact patch through the leading edge in an undeformed state. As a result of van
der Waals molecular bonding and rubber indentation at the rubber/ground interface,
the tip of the bristles sticks to the ground. However, due to themicro-sliding velocity v⃗s
between the root of the bristles and the road, a tangential deflection u⃗t starts to build
up, along with tangential stress q⃗t. Initially null, this bristle deformation increases
gradually along the contact length until it reaches the transition line ξs(ξ, c⃗). This
transition line represents the contact length coordinate at which the local force exerted
by the bristle deformation in adhesion equals the maximum possible static friction
force.
It is important to note that within the adhesion region, the tips of the bristles do not
slide relative to the ground, resulting in a zero micro-sliding velocity. Consequently,
the deformation of the bristles increases along the contact length direction with a spa-
tial derivative equal to

d
dx u⃗t =

d
dx

[
ux
uy

]
, (C.11)

which is easily found from (C.10) by imposing v⃗s = 0.
We now introduce a new contact patch coordinate system (also depicted in Figure C.4)

ξ(y, t) =

 ξ(x, y, t)η

ζ

 =

 ℓ(y, t)/2− x
y
z

 .

The variable ξ represents the distance from the entrance to the longitudinal coordinate,
measured longitudinally from the contact patch leading edge. From now on, we will
use the superscript “ ξ ” to denote variables described in reference system ξ, e.g., u⃗t(ξ, c⃗).
Substituting ξ in (C.11) we obtain

d
dξ u⃗

ξ
t =

d
dξ

[
uξx
uξy

]
. (C.12)

The specific deformation u⃗ξt at a contact length coordinate ξ and lateral coordinate y is
obtained from integrating (C.12) over space, while imposing the boundary condition
u⃗t(x = [0, y, 0]⊤, c⃗) = 0, namely

u⃗ξt =

∫ ξ

0

d
dζ u⃗t(ζ, c⃗) dζ. (C.13)

The infinitesimal adherence force at a specific contact length coordinate ξ is determined
by the product between (C.13) and the tread tangential stiffness matrix k

q⃗ξt = −νKtu⃗ξt .
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Here, ν represents the tread pattern void ratio, and Kt denotes the tangential stiffness
matrix. This latter is typically expressed as

Kt =

[
kxx kyx
kyx kyy

]
,

where kxy ≈ kyx � kxx ≈ kyy, as proofed by Okonieski, Moseley, and Cai [243]. The
total bristles force induced by the deformation in adherence is obtained by integrating
the following over the entire adhesion region A

F⃗a(⃗c, t) =
∫
A
q⃗ξt dξ . (C.14)

In the original brush model presented in [166], the self-aligning moment is attributed
solely to the asymmetrical distribution of lateral shear stress along the contact length.
However, in this study, we will also consider that the difference in longitudinal force
on each side of the contact patch contributes to the generation of the self-aligning
moment. Thereby, the adhesive self-aligning moment is defined as the cross-product
between forces induced by deformation and the position vector (the sum of bristle
position and carcass baseline position vectors), which reads

M⃗a(⃗c, t) =
∫
A
q⃗ξt ×

(
Lξ + ξ

)
dξ . (C.15)

SLIDE REGION When the local force induced by bristle deformation in adhesion is
greater than the local maximum explicable static friction force, the bristle tips begin to
slide over the ground with a micro-sliding velocity v⃗ξs 6= 0. The local force exerted by
bristle deformation in sliding opposes the micro-sliding velocity. Thus, its direction is
denoted as

d⃗t(ξ, c⃗) =
[
dtx(ξ, c⃗)
dty(ξ, c⃗)

]
= − v⃗ξs
‖⃗vξs ‖

.

The total bristles force induced by the deformation in sliding is determined by integrat-
ing the following expression over the entire sliding region S

F⃗s(⃗c, t) =
∫
S
μξd q

ξ
z d⃗ξt dξ . (C.16)

Similar to the adhesive scenario, the self-aligning moment is defined as the cross-
product between the local force induced by the sliding and the position vector

M⃗s(⃗c, t) =
∫
S
μξd q

ξ
z d⃗ξt ×

(
Lξ + ξ

)
dξ . (C.17)
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C.3 A NUMERICAL SOLUTION APPROACH

Due to the complexity of the problem outlined in the preceding sections, finding an
analytical solution is not feasible. Therefore, we need to further analyze the contact
zone between the tire and the road and set some more assumptions that will allow us
to obtain an effective numerical scheme.

C.3.1 TIRE-ROAD CONTACT DISCRETIZATION
An essential characteristic of the contact patch set P is its constant compactness and
D-convexity along the êx direction [210, 244]. Leveraging the D-convexity properties
enables us to discretize the contact patch into longitudinal sections. To optimize the
intersection of the tire and road sets, we discretized the tire set T into a series of nD
ribs, similarly to the approach in [4, 219]. Each tire rib, denoted asD, is characterized
as a conical frustum which is located in o = [0, yD, 0]⊤ in theHxyz coordinate system,
with a radius of R(yD) and a width of wD

D =
{
wD, yD ∈ R, x = [x, y, z]⊤ ∈ R3 |

√
x2 + z2 ≤ R(yD), |y− yD| ≤

wD

2

}
.

This new representation allows us to build the discretized tire set TD as

TD = {D1,D2, . . . ,DnD−1,DnD} .

Notice that we will employ a set of contact patch coordinate systems ξi equal to the
ribs nD . These coordinate systems are redefined as

ξi(x, yi, t) =

 ξi(x, yi, t)ηi
ζ

 =

 ℓ(yi, t)/2− x
yi

zi(x)

 ,

where zi(x) represents the height of the rib i at the point x, considering the possibility
of the contact patch being sloped in the longitudinal direction. Similar to our previous
approach, the variables described in the reference system ξi will be denoted with the
superscript “ ξi ”, e.g., u⃗t(ξi, c⃗). It is worth noting that this tire representation is fully
adjustable in scale, allowing for the density of ribs representing the tire to be tailored
based on the required accuracy and computational speed for a specific simulation.
By applying the considerations and assumptions outlined in Section C.2.3.5 to the con-
stitutive relations, we can express the integrals of forces and moments relative to the
adhesion and sliding zones as summations of the components from each rib. Specifi-
cally, if the transition coordinate ξis is assumed to be known, the integrals (C.14) and
(C.15) can be analytically solved. Conversely, integrals (C.16) and (C.17) must be nu-
merically calculated.
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C.3.2 THE TRANSITION COORDINATE
Starting from the beginning of each rib contact region, the bristle tips stick to the
ground up to the transition coordinate ξis . Determining ξis entails locating the precise
point where the local force induced by bristle deformation in adhesion equals the lo-
cal maximum static friction force that can be sustained. This requires applying the
adhesion criteria outlined in (C.8)(

qξix
)2

+
(
qξiy
)2

=
(
μsq

ξi
z

)2
. (C.18)

Due to the complexity of the pressure distribution model and the shear field descrip-
tion, finding an analytical solution to equation (C.18) is not feasible. However, through
calculus, it can be demonstrated that the longitudinal and lateral tangential stresses qξix ,
qξiy , and normal stress qξiz can be described by polynomial functions. Consequently,
both the right- and left-hand sides of (C.18) are also polynomials. We can therefore
exploit many powerful and robust root-finding algorithms, like Sturm’s sequence and
the Bisection methods [245] or the Algorithm 748 by Alefeld, Potra, and Shi [246].

C.3.3 TIRE NONLINEAR SYSTEM AND SOLUTIONMETHOD
As mentioned earlier, tire behavior is greatly influenced by carcass compliance. How-
ever, most tire models similar to the one presented in this paper (i.e., Sakai’s [221–224],
NEO-FIALA [206, 212–215], TREADSIM [225], and TAMETIRE® [207]) lack or miss the
sufficient discussion on the numerical method’s performance in computing carcass de-
formation. This is a critical aspect, as the carcass deformation is the most challenging
part of the tire model to tackle. Indeed, to solve the nonlinear system arising from
carcass modeling (C.6), an efficient iterative approach satisfying RT constraints is nec-
essary. Many tire models, such as those in [206, 212–215, 247, 248], employ Picard’s
Iteration Method (also known as the Fixed-Point Method), which is simple to im-
plement but suffers from a slow convergence rate, potentially compromising model
robustness. Alternatively, TAMETIRE® employs a mixed Newton/quasi-Newton it-
erative method [207]. If the Jacobian JG1 is unavailable, quasi-Newton methods can
be utilized, albeit with a slight decrease in convergence rate and robustness. Notice
that the Frobenius norm2 of the Jacobian JF3 is typically small (‖JF‖F � 1), while the
Frobenius norm of the carcass stiffness matrix Jacbobian JK is usually large (‖JK‖F � 1).
Therefore, a good first approximation of JG is given by

JG = JK − JF ≈ JK .

If we set the initial iteration point at c⃗ = [0, 0, 0]⊤, the bottoming effect of the carcass
stiffness is absent. As a consequence, the initial estimation of the Jacobian JG can

1JG (⃗c) = ∂G⃗(⃗c)/∂⃗c.
2For a matrix A ∈ Rn×m, the Frobenius norm is defined as ∥A∥F =

√∑
ij A2

ij.
3JF (⃗c) = ∂F⃗(⃗c)/∂⃗c.
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be straightforwardly computed by accounting solely for the structural and inflation
pressure components of the carcass stiffness.

C.4 NUMERICAL PERFORMANCE AND VALIDATION

In this section, we present numerical simulations to validate the tire model and the
numerical solution approach. Specifically, we will compare the performance of the
quasi-Newton methods used to solve the nonlinear system of equations (C.6), as well
as the fitting quality of the tire model to experimental data. A comparison with the
MAGIC FORMULA is also provided.

C.4.1 PERFORMANCE OF THE QUASI-NEWTONMETHODS
We evaluate the performance of the quasi-Newton numerical methods mentioned
earlier. Specifically, we aim to identify the most suitable method for solving the
nonlinear system of equations (C.6) among Picard Iteration Method (PIM), Green-
stadt’s 1st Method (G1M) [249], Greenstadt’s 2nd Method (G2M) [249], Eirola-
Nevanlinna Method (ENM) [250], Broyden’s Bad Method (BBM) [251], Broyden’s
Good Method (BGM) [251], Broyden’s Combined Method (BCM) [252], and their
respective dumped versions, denoted with the prefix “D-”. We will compare these
algorithms based on function evaluations, iterations, convergence speed, and success
ratio. Table C.1 presents the performance data of the quasi-Newton solvers. The
tests are conducted on a set of 105 simulations with inputs distributed evenly within
the following ranges σx ∈ [−1, 1], σy ∈ [−1, 1], φ ∈ [−0.1, 0.1], Fz ∈ [0, 5 · 105],
and γ ∈ [−π/10, π/10], which represent typical operating conditions for a passen-
ger car tire. All tests are performed on a shielded CPU. The simulation platform is
a Concurrent® iHawk™ with 2.5GHz Intel® Xeon® Silver 4215 8-core, 11MB cache,
32GB DDR4 RAM, and 64 bit RedHawk™ Linux RT operative system with CentOS
distribution.
As depicted in Table C.1, both the PIM and D-PIM fail to converge to the solution
with the required tolerance. The G1M and D-G1M can not complete the tests due to
overflow issues. Conversely, the G2M and ENM, and their dumped version, D-G2M
and D-ENM, show a good success ratio but exhibited high average and variance itera-
tions and function evaluations. Although the pure BBM suffered from overflow issues,
its dumped version, D-BBM, successfully converged to the solution with the required
tolerance and maintained an acceptable success ratio. The BGM and BCM, as well
as their dumped versions, D-BGM and D-BCM, demonstrated the best performance
overall. They exhibited the highest success ratio and the lowest average and variance
in both iterations and function evaluations. Notably, the BCM showed superior com-
putational efficiency. It is worth mentioning that no relaxation steps were accepted
in D-BCM. Consequently, the performance of the BCM method is deemed excellent
for meeting the demands of HRT simulations, i.e., achieving a computational time of
less than 1ms. Only a small percentage of the tests required and a high number of
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iterations, however, in these cases the vertical load and resulting carcass deformations
exceeded the structural limits, leading to instability in the iterative process.
The bottom part of Table C.1 presents the performance of the BCM in relation to the
number of ribs. Notably, the number of ribs does not impact the efficacy of the itera-
tive method but merely affects the computational time. This arises from the fact that a
change in the number of ribs does not alter the number of unknowns in (C.6). Conse-
quently, the computational time scales linearly with the number of ribs. However, it is
worth noting that the variance of the computational time increases more than linearly
due to small yet significant variations in the performance of Algorithm 748.

C.4.2 VALIDATIONOF THE TIRE MODEL
To demonstrate the effectiveness of the proposed fitting procedure, we validate the pro-
posed tire model under pure slip conditions by comparing its predictions with those of a
MAGIC FORMULA 5.2 [166] on the fitting of experimental data for a HOOSIER® 18x6-10
LCO tire. As previously mentioned in the introduction, the dataset is obtained from
the Calspan TIRF for the FSAE TTC testing program [226]. In Figures C.6, C.7 and
C.8, we compare the fitting of the longitudinal and lateral forces and aligning moment
for the HOOSIER® tire at several discrete values of vertical load with zero camber angle.
The results indicate that the proposed model provides data fitting comparable to the
MAGIC FORMULA 5.2 for the lateral force, while a higher Root Mean Square (RMS)
error is observed for the longitudinal force and aligning moment. Given the limited
number of parameters and the simplicity of the proposed model, these results are con-
sidered satisfactory.
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Table C.1: Comparison between quasi-Newton methods’ performance based on a
dataset comprising 105 tests. The inputs are evenly distributed within the ranges
σx ∈ [−1, 1], σy ∈ [−1, 1], φ ∈ [−0.1, 0.1], Fz ∈ [0, 5 · 105], and γ ∈ [−π/10, π/10],
using a 325/660R13 race car tire discretized with 5 ribs. Convergence is considered
achieved when ‖G(⃗c)‖2 ≤ 10−8 and ‖⃗ck+1 − c⃗k‖2 ≤ 10−16. Maximum algorithm it-
eration and relaxation steps are set to 100 and 10, respectively. The bottom part of the
table demonstrates the impact of changing the number of ribs on the BCM method’s
performance.
Symbols legend : min minimum number of evaluations/iterations, max maximum num-
ber of evaluations/iterations, μ average evaluations/iterations, σ2 evaluations/iterations
variance.

Quasi-NewtonMethods Performance with 5 Ribs

Method
Time (μs) Success

min max μ σ2

PIM 518.0 7949.0 617.2 13953.2 0.0%
G1M − − − − Overflow
G2M 23.5 1089.4 69.0 5252.0 99.5%
ENM 25.0 2025.0 81.5 11002.8 99.4%
BBM − − − − 0.0%
BGM 22.6 948.1 62.5 1973.0 99.9%
BCM 22.9 264.4 55.7 885.9 100.0%

D-PIM 507.0 5383.0 1151.9 568491 0.0%
D-G1M − − − − Overflow
D-G2M 21.5 3195.5 80.4 40321.9 99.5%

D-
ENM

27.0 5207.7 97.5 52752.6 99.5%

D-BBM 22.3 1284.0 76.9 5126.3 100.0%
D-

BGM
21.3 3238.9 67.0 8142.9 99.9%

D-BCM 22.5 316.8 62.1 1615.1 100.0%

Broyden CombinedMethod Performance

Ribs
Time (μs) Success

min max μ σ2

1 12.1 89.0 19.4 20.6 100.0%
5 22.9 264.4 55.7 885.9 100.0%
10 106.9 361.8 167.3 1746.22 100.0%
15 158.0 523.5 249.4 3878.2 100.0%
20 210.1 693.3 332.9 7028.7 100.0%
25 262.7 858.4 414.0 10708.3 100.0%
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Figure C.6: Comparison between the MAGIC FORMULA and the proposed model re-
garding the fitting of longitudinal force experimental data for a HOOSIER® 18x6-10
LCO tire. Experiments are performed under pure longitudinal slips at several dis-
crete values of vertical load with zero camber angle. The dataset is provided by the
Calspan TIRF for the FSAE TTC testing program [226]. Lines and marks legend :
• experimental data, — proposed model, and – – MAGIC FORMULA 5.2. Colors legend :
■ Fz = 222N, ■ Fz = 444N, ■ Fz = 667N, ■ Fz = 890N, and ■ Fz = 1120N.
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Figure C.7: Comparison between the MAGIC FORMULA and the proposed model re-
garding the fitting of lateral force experimental data for a HOOSIER® 18x6-10 LCO
tire. Experiments are performed under pure lateral slips at several discrete values of
vertical load with zero camber angle. The dataset is provided by the Calspan TIRF
for the FSAE TTC testing program [226]. Lines and marks legend : • experimental
data, — proposed model, and – – MAGIC FORMULA 5.2. Colors legend : ■ Fz = 222N,
■ Fz = 444N, ■ Fz = 667N, ■ Fz = 890N, and ■ Fz = 1120N.
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Figure C.8: Comparison between the MAGIC FORMULA and the proposed model re-
garding the fitting of self-aligning moment experimental data for a HOOSIER® 18x6-10
LCO tire. Experiments are performed under pure lateral slips at several discrete values
of vertical load with zero camber angle. The dataset is provided by the Calspan TIRF
for the FSAE TTC testing program [226]. Lines and marks legend : • experimental
data, — proposed model, and – – MAGIC FORMULA 5.2. Colors legend : ■ Fz = 222N,
■ Fz = 444N, ■ Fz = 667N, ■ Fz = 890N, and ■ Fz = 1120N.
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APPENDIX D

SYMBOLIC-NUMERICAL ANALYSIS AND
SOLUTIONOF STRUCTURES

Understanding how structures react to external forces and imposed displacements is
fundamental in engineering. This knowledge is essential for predicting system behav-
ior, optimizing performance, and ensuring safety. Structural analysis involves evalu-
ating deformations and internal reactions under specified BCs, a process foundational
in structural mechanics. Typically, structural analysis is carried out numerically us-
ing the DSM, a Finite Element Method (FEM) implementation known for solving
large systems of equations. However, this method’s principles can also be applied in
a symbolic or hybrid symbolic-numerical fashion. This dual approach is valuable for
reducing computational load, as symbolic solutions can be simplified and translated
into efficient code for simulations. Moreover, symbolic DSM facilitates model reduc-
tion, enabling the creation of smaller-scale models for faster simulations. Despite its
advantages, symbolic computation has limitations, particularly in solving large linear
systems of equations, which can be computationally intensive and may exceed soft-
ware capabilities. This chapter introduces TRUSSME-FEM, a toolbox built on the DSM,
harnessing symbolic computation from MAPLE® and numerical capabilities from MAT-
LAB® for structural analysis. The toolbox facilitates both symbolic and hybrid symbolic-
numerical analyses, streamlining code generation for efficient simulations. To address
challenges in the symbolic solution of large linear systems, TRUSSME-FEM incorpo-
rates the routines for symbolic matrix factorization previously presented in Chapter 3,
employing hierarchical representation for managing large expressions in the symbolic
solution.
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D.1 INTRODUCTION TO SYMBOLIC STRUCTURAL ANALYSIS

Structural mechanics is foundational in engineering for predicting system behavior
under external forces. Achieving optimal performance in mechanical systems requires
refining analytical processes to ensure precision and reliability, especially with the in-
creasing adoption of complex structures. Structural analysis typically involves evaluat-
ing deformations and internal reactions under specified BCs, such as applied loads and
displacements. Accurately predicting these responses is crucial for identifying critical
areas and optimizing performance during the design process. Moreover, it is essential
for simulating dynamic behavior during the simulation phase.
Traditionally, deformation and internal reaction analysis are performed numerically us-
ing FEM, which was introduced in the mid-20th century and is now widely utilized for
analyzing complex structures with relative ease [253]. It is important to note that FEM
is a general concept based on discretizing structures into finite elements, leading to
multiple implementation approaches with varying performance and capabilities across
software platforms. Specifically, the FEM implementation used in this chapter is the
DSM, introduced by Turner in 1959 [254] and further refined in 1964 [255]. DSM
involves assembling stiffness matrices of individual elements into a global stiffness ma-
trix, which is then used to solve equations relating node displacements and rotations to
internal and external forces and moments. BCs are enforced by appropriately modify-
ing the global stiffness matrix, force, and displacement vectors. Consequently, DSM
is a versatile method applicable to various structures, including trusses, beams, frames,
and plates.
The drive to optimize product performance while minimizing design and production
costs necessitates parametric studies and optimization techniques. However, tradi-
tional numeric design optimization brings complexities, requiring numerous simula-
tions and substantial computational resources. In response, symbolic computation
emerges as a valuable alternative. While the DSM is typically associated with the
numerical solution of large equation systems, its theoretical foundations enable sym-
bolic or hybrid symbolic-numerical structural analysis. Symbolic solutions provide
crucial derivatives of the solution concerning structural parameters, essential for fast
optimizations. Additionally, symbolic approaches facilitate lean code generation, ex-
ploiting expression simplification for efficient simulations. Symbolic DSM also aids
model reduction by deriving smaller models to reduce simulation time. Despite its
advantages, symbolic computation poses challenges, particularly in solving large linear
equation systems due to software limitations [103, 105] (see Chapter 3).
Symbolic computation in structural analysis has been explored in literature [101, 256].
Successful attempts include symbolic manipulation in stiffness matrix generation [257]
and solving equation systems [258, 259]. However, as highlighted in [256], the sym-
bolic structural solution remains limited by symbolic kernel capabilities, restricting the
analysis to relatively small structures. Nonetheless, recent decades have seen significant
advancements in solving large linear equation systems symbolically [103, 105]. These
advances, utilizing symbolic matrix factorization with hierarchical representation, en-
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able solutions previously deemed impractical.
The absence of a symbolic analysis and solution package for structures within the
MAPLE® environment spurred the development of this toolbox1. Specifically, the au-
thors’ necessity for a tool to symbolically represent, solve, and generate code for mod-
eling, simulating, and optimizing compliant mechanisms prompted the creation of
TRUSSME-FEM. Leveraging the symbolic computation capabilities of MAPLE® and the
numerical efficiency of MATLAB®, this toolbox constitutes a framework for symbolic-
numerical analysis and solution of structures. Grounded in the aforementioned DSM,
the solution method enables modeling, analysis, and resolution of structures. Depend-
ing on the symbolic kernel’s capabilities, available computation time, and problem com-
plexity, the symbolic solution can be found either symbolically in closed form or nu-
merically. In both scenarios, a MATLAB® class can be generated to efficiently evaluate
the symbolic solution or solve the problem numerically. Throughout code generation,
model inputs and class internal data are also mapped into the generated code. Par-
ticular emphasis is placed on the symbolic solution of linear equation systems arising
from the DSM, where the symbolic matrix factorization routines from Chapter 3 are
employed. Notably the toolbox, named TRUSSME-FEM, along with its optional de-
pendencies(LEM [23] and LAST [24]), is released as open-source software under the
BSD 3-Clause License [28].

D.2 THE DIRECT STIFFNESS METHOD

The forthcoming discussion of the solution method is indispensable for grasping the
toolbox implementation and is not intended to offer an exhaustive review of the DSM.
For a more thorough understanding of DSM theory, please consult [254, 255, 261,
262]. As delineated in [263], DSM furnishes a systematic approach to analyzing stati-
cally determinate and indeterminate structures. The structural analysis problem can be
formulated as follows: given a structure subjected to external loads and/or prescribed
displacements, determine the displacements and rotations of the nodes, along with the
internal forces and moments within the elements. These displacements and rotations
of nodes are termed DOFs. The relationship between DOFs and the forces and mo-
ments acting on the structure (both internal and external) is expressed in the system of
equations

Kn dn = f n . (D.1)

Here, Kn ∈ RN×N represents the stiffness matrix, dn ∈ RN denotes the displacement
vector, f n ∈ RN signifies the force vector, and N signifies the number of DOFs of
the structure. The superscript n indicates that these quantities are expressed in the
nodes’ reference frames. Subsequent sections briefly outline the derivation of the com-
ponents of the system of equations (D.1). Furthermore, the toolbox’s solution method
for effectively handling the system of equations is later discussed.

1It is worth noting that, unlike MAPLE®, MATHEMATICA® features a pre-existing suite of packages tailored
for symbolic analysis of elastic structural elements, known as the Structural Mechanics package [260].
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D.2.1 ELEMENT STIFFNESS MATRIX
To derive the global stiffness matrix Kn in (D.1), we must initially define the stiffness
matrix Ke ∈ RNe×Ne for individual elements e ∈ E , which connect a subset of the
structure’s nodes. Here, E denotes the set of elements in the structure, and Ne signifies
the number of DOFs of the element. Unless specified otherwise, the matrix Ke is
always assumed to be expressed in the element reference frame. Stiffness matrices
are derived from various theories, such as the Euler-Bernoulli and the Timoshenko-
Ehrenfest beam theories, the plane stress theory, etc. [262]. However, describing the
derivation of such matrices Ke is beyond our scope, and they are assumed to be known.

D.2.2 ELEMENT STIFFNESS MATRIX CONDENSATION
The stiffness matrix Ke delineates how an element reacts when subjected to unit dis-
placements imposed at each of its nodes’ DOFs. Typically, when deriving such a ma-
trix, it is assumed that the element is rigidly connected at each of its nodes’ DOFs,
thus possessing no internal DOFs. However, in certain structures, internal DOFs
may arise due to links that allow for specific movements at nodes while constraining
others. To address this scenario, thematrixKe must be adjusted accordingly [261]. This
adjustment, known as condensation, involves reordering rows and columns of the ma-
trix Ke such that rows and columns corresponding to free nodal DOFs are relocated
to the bottom-right corner of the matrix. This reordering, executed via a permuta-
tion matrix Pe, facilitates the elimination of stiffness entries associated with free nodal
DOFs from the original matrix Ke. Consequently, a new condensed stiffness matrix
Ke,c ∈ RNe,c×Ne,c is derived, whereNe,c denotes the number of constrainedDOFs of the
element. The condensed stiffness matrix Ke,c is then computed through the following
operations

Pe Ke P⊤
e =

[
Ke,11 Ke,12
Ke,21 Ke,22

]
stiffness−−−−−−→

condensation
Pe Ke,c P⊤

e =

[
Kc 0
0 0

]
.

where Kc = Ke,11 − Ke,12 Ke,22
−1 Ke,21. It is important to apply condensation to each

element of the structure as needed. Subsequently, the subscript c in Ke,c is dropped,
and the condensed stiffness matrix is denoted simply as Ke.

D.2.3 GLOBAL STIFFNESS MATRIX ASSEMBLAGE
The global stiffness matrix Kg is constructed by aggregating the stiffness contributions
from individual elements of the structure. The superscript g signifies that these quanti-
ties are expressed in the global reference frame. To achieve this, the element’s stiffness
matrix Kg

e is initially derived by transforming Ke from the element reference frame to
the global reference frame as follows

Kg
e = T⊤

e Ke Te , where Te = diag (Re, . . . ,Re) .



D.2. THE DIRECT STIFFNESS METHOD 209

Note that Re represents the rotation matrix from the e-th element reference frame to
the global reference frame. Each transformed stiffnessmatrixKg

e is then integrated into
the global stiffness matrixKg by incorporating the contributions of individual elements
into their respective positions corresponding to the structure’s DOFs. Consequently,
the matrix Kg

e is multiplied by the injection matrix Je ∈ RNe×N, which is a matrix of
zeros except for the positions corresponding to the structure’s DOFs, which are set to
one. Thus, the global stiffness matrix Kg is formulated as follows

Kg =
∑
e∈E

J⊤e Kg
e Je =

∑
e∈E

J⊤e T⊤
e Ke Te Je ,

where E is the set of elements of the structure.
Following this transformation, we arrive at the linear system of equations (D.1) ex-
pressed in the global reference frame, denoted as Kg dg = f g, where dg and f g rep-
resent the displacement and force vectors in the global reference frame, respectively.
However, BCs for displacements and forces are typically applied in the nodes’ refer-
ence frames. Consequently, to account for this, the system of equations (D.1) must be
adjusted by incorporating the nodes’ rotations Qi with respect to the global reference
frame, which are expressed in the block diagonal matrix Q. This adjustment allows us
to express the system (D.1) as

QKg Q⊤︸ ︷︷ ︸
Kn

Qdg︸︷︷︸
dn

= Qf g︸︷︷︸
f n

, where Q = diag (Q1, . . . ,QN) ,

and N is the number of nodes of the structure.
To construct the nodal force vector f n and displacement vector dn, it is necessary to
incorporate the individual nodes’ BCs into their corresponding DOFs. This process
involves multiplying the i-th nodal force vector f ni and displacement vector dni by the
injection matrix Ji ∈ RNi×N, where Ni represents the number of DOFs of the node.
Consequently, the vectors f n and dn are respectively derived as

f n =
∑
i∈N

J⊤i f ni and dn =
∑
i∈N

J⊤i dni .

D.2.4 LINEAR SYSTEM PARTITIONING AND SOLUTION
To solve the system of equations (D.1), it is beneficial to split it into two distinct sets of
equations: the first set is solved for the free displacements dnf , while the second set is
solved for the reaction (internal) forces f ns . This division is accomplished by rearranging
and partitioning the stiffness matrix Kn into four submatrices Kn

ff, Kn
fs, Kn

sf, and Kn
ss,

where the subscripts f and s denote the free and specified (or subject to BCs) DOFs,
respectively. Similarly, the displacement and force vectors are partitioned accordingly,
e.g., dnf , dns , and f nf , f ns . Subsequently, the system of equations (D.1) can be expressed
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as [
Kn

ff Kn
fs

Kn
sf Kn

ss

]
︸ ︷︷ ︸
Pn Kn (Pn)⊤

[
dnf
dns

]
︸ ︷︷ ︸
Pn dn

=

[
f nf

f ns + f nr

]
︸ ︷︷ ︸

Pn f n

, (D.2)

where Pn denotes the permutation matrix responsible for rearranging the rows and
columns of the stiffness matrix Kn. It is noteworthy that the vector f nr is introduced
to conveniently represent the forces and moments applied to the nodes’ DOFs that
are also subject to BCs. This vector is henceforth referred to as the ”remainder” force
vector. The linear system (D.2) is subsequently solved for the unknowns dnf and f ns
through the following operations

[solve for dnf ] Kn
ffdnf = f nf − Kn

fs dns , (D.3a)
[compute f ns ] f ns = Kn

sf dnf + Kn
ss dns − f nr . (D.3b)

As will be elucidated later, obtaining a symbolic solution for (D.3a) is not always fea-
sible due to limitations in software capabilities. In such instances, one can resort to
the numerical solution by performing a numerical factorization of the Kn

ff matrix and
evaluating both (D.3a) and (D.3b). If one’s sole interest lies in the free displacements
dnf and not in the specified forces (or support reactions) f nf , it suffices to compute the
solution for (D.3a) only.

D.3 SOFTWARE DESCRIPTION

This section outlines the implementation of the TRUSSME-FEM toolbox, which com-
prises two main components: the symbolic and numerical parts. The symbolic com-
ponent, developed in MAPLE®, facilitates the symbolic analysis of the structure. Con-
versely, the numerical component, developed in MATLAB®, is utilized for numerically
evaluating the symbolic expressions generated earlier. Each component is discussed in
detail, accompanied by usage examples.

D.3.1 THE SYMBOLIC COMPUTATION INMAPLE
As previously stated, the TRUSSME-FEM package serves as a symbolic implementation
of the DSM method for assembling and solving structures. The package’s interface
is designed with the philosophy of offering users a collection of user-friendly func-
tions that can be seamlessly combined to conduct structural analysis. TRUSSME-FEM
is structured to be employed in a step-by-step manner. Users are prompted to define
the nodes, elements, and loads of the structure, followed by the generation of the struc-
ture’s model. To accomplish this, the following procedure is recommended.

1. Node Definition: Specify the nodes of the structure, including their names, co-
ordinates, reference frames, DOFs, and BCs on nodal displacements and rota-
tions.



D.3. SOFTWARE DESCRIPTION 211

2. Material Definition: Define the materials used in the structure, providing in-
formation such as name, Young’s modulus, Poisson’s ratio, and density.

3. Element Definition: Define the elements connecting the nodes, specifying
their names, node connections, reference frames, material properties, and cross-
section details. Available element types include spring, rod, beam, or a generic
element which serves as a base class for custom element definitions with user-
defined stiffness matrices.

4. Load Definition: Specify the loads acting on the structure, including their
names, application nodes, and magnitudes.

5a. ModelGeneration: Combine the defined nodes, elements, and loads to create a
unified model of the structure. This model encapsulates components such as the
global stiffness matrix, load vector, displacement vector, and permutation matrix
used to reorder the system of equations in the form (D.2).

5b. Solvability Check (Optional): Analyze the generated FE model to ascertain
if the structure retains under-constrained DOFs. This step involves automati-
cally checking the solvability of the system of equations (D.3a). If the system
is singular but solvable, indicating zero entries in the stiffness matrix and load
vector corresponding to under-constrained DOFs, the TRUSSME-FEM package
can identify and address this issue, issuing a warning message to notify the user.

6. System Solution: Solve the system of equations to obtain the solution in sym-
bolic form. If a closed-form solution is unavailable or if numerical evaluation is
desired, the code-generation process can be employed to obtain the solution in
numerical form.

D.3.1.1 SYMBOLIC COMPUTATION USAGE EXAMPLE

Consider the depicted simple structure illustrated in Figure D.1. This structure com-
prises three nodes (N1, N2, N3) interconnected by two elements (E1, E1). Nodes N1
and N3 are fully constrained in all DOFs, while node N2 serves as a hinge connecting
the two elements. A vertical load F is applied at node N2. Both elements are beams
characterized by a cross-section A and moment of inertia Iz, and are constructed from
a material with Young’s modulus E.
To describe the structure in TRUSSME-FEM, we begin by defining the nodes. The
MakeNode function is utilized for this purpose.

> N1 ^= MakeNode(”N1”, <0,0,0>, dofs=<0,0,0,0,0,0>):
> N2 ^= MakeNode(”N2”, <L_1,0,0>, dofs=<1,1,1,1,1,1>):
> N3 ^= MakeNode(”N3”, <L_1+L_2,0,0>, dofs=<0,0,0,0,0,0>):

This function requires the node name, coordinates, and DOFs as inputs. In this case,
we have not specified reference frames, so the default ground frame (the identity ma-
trix) is chosen for both nodes. Similarly, no constraints on displacements are specified,
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Figure D.1: Simple structure used to demonstrate the usage of the TRUSSME-FEM
package.

so they are assumed to be zero. The DOFs are set using a six-element vector. The first
three elements represent displacements along the x-, y-, and z-axes, while the remain-
ing three represent rotations about these axes. A value of 0 indicates a constrained
DOF, while 1 indicates a free DOF. Here, nodes N1 and N3 are constrained in all
directions, while N2 is free. The hinge modeling at node N2 will be explained later in
this section.
Before defining the elements, the material properties must be specified. Custom ma-
terials can be defined using the MakeMaterial function, which requires the material
name, Young’s modulus, Poisson’s ratio, and density as inputs. If the shear modulus is
not provided, it is calculated from Young’s modulus and Poisson’s ratio. In this case,
the material is defined as follows.

> M ^= MakeMaterial(name=”GenericMaterial”, elastic_modulus=E,
shear_modulus=G, poisson_ratio=nu, density=rho):

Next, the MakeBeam function is employed, necessitating the element’s name, nodes at
its ends, material, and cross-section properties.

> E1 ^= MakeBeam(”E1”, N1, [N2, <0,0,0,0,0,0^], material=M, area=A,
inertia=[I_x,I_y,I_z], frame=GenerateFrameXY(N1[”coordinates”],
N2[”coordinates”], [0,0,1])):

> E2 ^= MakeBeam(”E2”, [N2, <0,0,0,0,0,1^], N3, material=M, area=A,
inertia=[I_x,I_y,I_z], frame=GenerateFrameXY(N2[”coordinates”],
N3[”coordinates”], [0,0,1])):

During the element definition, the reference frame is also specified. Here, the
GenerateFrameXY function aligns the coordinate system axes based on the coordi-
nates of the two nodes. Additional details about how the element ends are connected
to the nodes can be provided using an augmented six-element vector, such as [N,
<1,1,1,1,1,1^]. If this vector is not provided, the element ends are assumed to be
rigidly connected to the nodes in all directions. In the provided code snippet, element
E1 is connected rigidly to nodes N1 and N2, while element E2 is hinged to node N2
with constrained translational DOFs and free rotational DOFs. Element E2 is then
rigidly connected to node N3. This hinge connection is achieved by specifying the
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free rotational DOFs of the element ends. In this case, element E2 can rotate freely
around the z-axis.
Once the nodes and elements are defined, the loads acting on the structure can be
specified using the MakeLoad function.
> F ^= MakeLoad(”F”, N2, <0,-P,0,0,0,0>):

Similarly, the MakeLoad function requires the load name, the node where the load is
applied, and its magnitude as inputs. Optionally, the load reference frame can be
specified using the frame parameter. If not specified, the node’s reference frame is
used. In this scenario, the load is applied to node N2 in the y-direction.
Subsequently, the FE model of the structure can be generated using the GenerateFEM
function, followed by solving the linear system of equations with SolveFEM.
> fem ^= GenerateFEM([N1,N2,N3], [E1,E2], [F], tryhard):
> SolveFEM(fem, use_LEM=false, use_LAST=false):

When using the tryhard flag, the solvability check described in step (5b) of the list
above is activated. To enhance performance, the TRUSSME-FEM package is designed
to complement the LEM and LAST packages, which help manage expression expan-
sion during the symbolic solution procedure. Detailed instructions on utilizing these
packages can be found in Section 3.4 and Section 3.5, as well as in their respective doc-
umentation [23, 24]. If both libraries are unavailable, the toolbox defaults to utilizing
the linear algebra routines built into MAPLE®. If the LEM and LAST packages are
preferred for solving the linear system of equations, the use_LEM and use_LAST flags
must be set to true. In such cases, the solution may be obtained in a veiled form. To
unveil the solution, the use_LEM flag must be set to false. Once the linear system of
equations is solved, the solution is stored in the fem table.
> f = fem[”f”]^%T; d = fem[”d”]^%T;

f =
[

0,
PL3

2
L3

1 + L3
2
, 0, 0, 0,

PL1L3
2

L3
1 + L3

2
, 0, −P, 0, 0, 0, 0, 0,

PL3
1

L3
1 + L3

2
, 0, 0, 0, −

PL3
1L2

L3
1 + L3

2

]

d =

[
0, 0, 0, 0, 0, 0, 0,

PL3
1L

3
2

3EIz(L3
1 + L3

2)
, 0, 0, 0,

PL2
1L

3
2

2EIz(L3
1 + L3

2)
0, 0, 0, 0, 0, 0

]
In cases where no symbolic solution could be obtained, or if the user just prefers to
assess the solution numerically, the GenerateMatlabCode function can be employed.
> GenerateMatlabCode(”FemClass”, fem, path=”./dir/”, info=”Usage example

class”, vars=[P], data=[I_x=4.0e-4, I_y=2.0e-4, I_z=2.0e-4, E=210.0e6,
nu=0.33, A=5.0e-3, L_1=1.0, L_2=1.0]);

This function creates the FemClass.m file in the ./dir/ directory, which contains a class
definition of the aforementioned FE model. During the code generation process, users
can establish default class properties in the data field and variable parameters in the
vars field. The latter is intended to represent parameters that may vary during the
structure analysis, such as the load magnitude P. Further insights into the generated
class and its application are elaborated in the subsequent section.
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D.3.2 THE NUMERICAL COMPUTATION INMATLAB
Since the symbolic solution of (D.3a) may not always be feasible, users have the option
to employ a numerical solution. This involves numerically factorizing the Kn

ff matrix
and evaluating (D.3). The numerical solution can be achieved within the MAPLE®

environment through variable substitution or in MATLAB® post the code generation
process. In the latter scenario, the TRUSSME-FEM MATLAB® toolbox comes into play.
This toolbox is built upon the TrussMe.System base class, which is utilized to define
the components of (D.3) and to establish a unified framework that can be leveraged
by inherited classes. Within this abstract class, various methods are present, including
several virtual methods that need to be implemented in the inherited classes:

• stiffness matrix Kn;
• free-free stiffness matrix Kn

ff;
• free-specified stiffness matrix Kn

fs;
• specified-free stiffness matrix Kn

sf;
• specified-specified stiffness matrix
Kn

ss;
• displacement vector d*;
• free displacement vector dnf *;

• specified displacement vector dns ;
• force vector f *;
• free force vector f nf ;
• specified force vector f ns *;
• remainder force vector f nr ;
• DOFs permutation Pn;
• getters and setters for the system

data;

where (*) denotes that the functionality is accessible only when the symbolic solution
of the system is available; otherwise, an empty vector is returned.

D.3.2.1 NUMERICAL COMPUTATION USAGE EXAMPLE

The TRUSSME-FEM MATLAB® toolbox serves to numerically assess the problem’s so-
lution. Utilizing the toolbox is straightforward, particularly when the code is gen-
erated using the TRUSSME-FEM MAPLE® package. Suppose we have generated the
FemClass.m file through the TRUSSME-FEM MAPLE® package; this file encompasses
the class definition of the structure. To employ the generated class, we first instantiate
it.
>>> fem = FemClass();

Optionally, during instantiation, we have the liberty to assign values to the class’s in-
ternal data.
>>> data.I_x = 4.0e-4; data.I_y = 2.0e-4; data.I_z = 2.0e-4; ^^.

data.E = 210.0e9; data.E = 210.0e9; data.A = 5.0e-3; ^^.
data.L_1 = 1.0; data.L_2 = 1.0;

>>> fem = FemClass(data);

Following instantiation, we can manipulate the internal data values either by setting
or retrieving them using dedicated methods.
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>>> fem.set_data_field(’I_x’, 4.0e-4);
>>> I_x = fem.get_data_field(’I_x’);
>>> fem.set_data(data);
>>> data = fem.get_data();

Once instantiated, we can acquire the components of the system of equations (D.3)
through the following methods.

>>> x = [1000];
>>> v = fem.v(x);
>>> d = fem.d(x,v);
>>> f = fem.f(x,v);

It is worth noting that the vector x includes the system’s parameters, such as the load
value P of 1000N, while the vector v holds the veiling variables that might have been
retained during the symbolic solution computation. In cases where the symbolic solu-
tion is unavailable, numerical computation becomes the only viable alternative, which
is achieved by invoking the compute_d and compute_f methods.

>>> x = [1000];
>>> v = fem.v(x);
>>> d = fem.compute_d(x,v);
>>> f = fem.compute_f(x,v);

The least squares solution can also be acquired by incorporating the tolerance value
and maximum number of iterations into the compute_d and compute_f methods, such
as fem.compute_f(x, v, tol, iter). Alternative numerical solution methods, relying
on constrained minimization of energy functional, can be utilized to solve the system
of equations (D.3) [262]. However, these methods are not currently integrated into
the TRUSSME-FEM MATLAB® toolbox.

D.4 EXAMPLE APPLICATIONS

In this section, we briefly showcase two example applications of the TRUSSME-FEM
toolbox. All examples revolve around the rear left double wishbone suspension of the
Formula SAE E-Agle Trento Racing Team (University of Trento) vehicle [137]. The
suspension system is depicted in Figure D.2. On the left side, a rendering of the sys-
tem is shown along with the names of its main components, while on the right side,
a schematic representation of the suspension system is presented. In the subsequent
paragraphs, we delve into how the TRUSSME-FEM toolbox can facilitate the design
optimization of the suspension system and effectively incorporate the kinematics and
compliance of the suspension system throughmodel reduction. The outcomes obtained
using the TRUSSME-FEM toolbox are validated against results obtained from the com-
mercial software ANSYS®. For a comprehensive analysis of the results from the example
applications, please refer to [8].
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Figure D.2: Rendering and schematic representation of the rear left double wishbone
suspension. The spherical and cylindrical constraints are respectively represented by
the symbols S⃝ and C⃝.

Before delving into the example applications, it is essential to clarify the workflow in-
volving the TRUSSME-FEM package. In this scenario, the TRUSSME-FEM package is
utilized to symbolically assemble the structure and simplify the expressions of its lin-
ear system components. Subsequently, the symbolic code is exported into a MATLAB®

class, where internal data and input parameters of the system are specified. This MAT-
LAB® class is then employed to numerically evaluate the solution of the problem within
the SIMULINK® environment. This approach becomes necessary due to the significant
slowdown of the symbolic kernel caused by the size and complexity of the resulting
linear system.
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D.4.1 DESIGN OPTIMIZATION
Mechanisms involving motion are prevalent in engineering applications. Typically,
the design of such mechanisms assumes rigid bodies. However, in certain instances,
the flexibility of the mechanism can significantly impact its performance. Optimiza-
tion emerges as a potent tool for designing structures with optimal performance. The
TRUSSME-FEM toolbox facilitates shape optimization aimed at reducing the compli-
ance of the mechanism and minimizing internal forces. Specifically, the presented
optimizations aim to minimize both the wheel compliance hub angle θz and the tie
rod axial force Fa by varying the x- and z- coordinates of the hard point connecting
the tie rod to the chassis, referred to as point P5 according to [8]. The results of these
optimizations are depicted in FiguresD.3 andD.4. These optimization demonstrations
underscore that the current design does not represent the optimal solution in terms of
minimum tie rod axial force and minimum wheel compliance hub angle. Optimum
conditions are attained through a combination of values indicated by the green point.
It is noteworthy that these optimization examples serve solely as a proof of concept
for the model’s parametric characteristics. In a real-world scenario, a multi-objective
optimization considering compliance, structural analysis, and kinematic characteristics
of the suspension would be imperative.

Figure D.3: Optimization of the point P5 x- and z-coordinates to minimize the wheel
compliance hub angle θz. The experiments are conducted under the application of a
constant torque Mz of 0.4 kNm. Marks legend: • current design, • optimality condi-
tion.
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Figure D.4: Optimization of the point P5 x- and z-coordinates to minimize the tie
rod axial force Fa. The experiments are conducted under the application of a constant
torque Mz of 0.4 kNm. Marks legend: • current design, • optimality condition.

D.4.2 MODEL REDUCTION
This example application explores the inclusion of suspension compliance in vehicle
simulation using a hybrid symbolic-numerical approach. This methodology facilitates
easy generalization and RT modification of model parameters without the need for
code regeneration. The suspension’s dynamic characteristics are modeled through a
system of differential-algebraic equations, integrated using methods described in [8].
Depending on the modeling approach, suspension pick-up points’ positions and tire
force at the hub are extracted either through semi-analytical solutions or numerical
integration. These are then utilized to calculate the suspension’s compliance charac-
teristics. The compliance contribution can be incorporated into the overall suspension
system displacement as either a steady-state or full dynamic contribution [8]. The for-
mer approach reduces computational costs, while the latter yields accurate simulations
at a higher computational expense. Results from this approach are compared with sim-
ulation data from commercial software ANSYS®, showing good agreement under both
static (Figure D.6 and Figure D.5) and dynamic conditions (Figure 5.9 in Chapter 5).
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Figure D.5: Displacements of the wheel carrier reference frame in the x-, y-, and z-
axes directions for different loads applied at the wheel hub. In the left-hand side of the
figure, the forces are applied and torques are null. Conversely, the right-hand half side
of the figure reports the results where torques are applied and forces are null. Legend:
■ Fx = 4.0 kN, ■ Fy = 4.0 kN, ■ Fz = 4.0 kN, with Mx = My = Mz = 0.0 kNm.
■ Mx = 0.4 kNm, ■ My = 0.4 kNm, ■ Mz = 0.4 kNm, with Fx = Fy = Fz =
0.0 kN.
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Figure D.6: Rotations of the wheel carrier reference frame around the x-, y-, and z-
axes directions for different loads applied at the wheel hub. In the left-hand side of the
figure, the forces are applied and torques are null. Conversely, the right-hand half side
of the figure reports the results where torques are applied and forces are null. Legend:
■ Fx = 4.0 kN, ■ Fy = 4.0 kN, ■ Fz = 4.0 kN, with Mx = My = Mz = 0.0 kNm.
■ Mx = 0.4 kNm, ■ My = 0.4 kNm, ■ Mz = 0.4 kNm, with Fx = Fy = Fz =
0.0 kN.
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