
Secure compilation of rich smart contracts on poor UTXO blockchains

Massimo Bartoletti
Università degli Studi di Cagliari

Cagliari, Italy
bart@unica.it

Riccardo Marchesin
Università degli Studi di Trento

Trento, Italy
riccardo.marchesin@unitn.it

Roberto Zunino
Università degli Studi di Trento

Trento, Italy
roberto.zunino@unitn.it

Abstract—Most blockchain platforms from Ethereum on-
wards render smart contracts as stateful reactive objects that
update their state and transfer crypto-assets in response to
transactions. A drawback of this design is that when users
submit a transaction, they cannot predict in which state it
will be executed. This exposes them to transaction-ordering
attacks, a widespread class of attacks where adversaries with
the power to construct blocks of transactions can extract
value from smart contracts (the so-called MEV attacks). The
UTXO model is an alternative blockchain design that thwarts
these attacks by requiring new transactions to spend past
ones: since transactions have unique identifiers, reordering
attacks are ineffective. Currently, the blockchains following
the UTXO model either provide contracts with limited
expressiveness (Bitcoin), or require complex run-time envi-
ronments (Cardano). We present ILLUM, an Intermediate-
Level Language for the UTXO Model. ILLUM can express
real-world smart contracts, e.g. those found in Decentralized
Finance. We define a compiler from ILLUM to a bare-bone
UTXO blockchain with loop-free scripts. Our compilation
target only requires minimal extensions to Bitcoin Script: in
particular, we exploit covenants, a mechanism for preserving
scripts along chains of transactions. We prove the security
of our compiler: namely, any attack targeting the compiled
contract is also observable at the ILLUM level. Hence, the
compiler does not introduce new vulnerabilities that were not
already present in the source ILLUM contract. We evaluate
the practicality of ILLUM as a compilation target for higher-
level languages. To this purpose, we implement a compiler
from a contract language inspired by Solidity to ILLUM, and
we apply it to a benchmark or real-world smart contracts.
Index Terms—Blockchain, smart contracts, UTXO model

1. Introduction
Smart contracts are agreements between mutually un-

trusted parties that are enforceable by a computer pro-
gram, without the need of a trusted intermediary. Cur-
rently, most implementations of smart contracts are based
on permissionless blockchains, where the conjunction
with crypto-assets has given rise to new applications,
like decentralized finance (DeFi) [1] and decentralized
autonomous organizations (DAOs) [2], that overall control
nearly 90 billion dollars worth of assets today [3].

Two main smart contracts models have emerged so
far. In the account-based model, contracts are reactive
objects that live on the blockchain and process user trans-
actions by updating their state and transferring crypto-
assets among users [4]. In the UTXO model, instead,

contracts, their state, and the ownership of assets are
encoded within transactions: when a new transaction is
published in the blockchain, it replaces (“spends”) an old
transaction, effectively updating the contract state and the
assets ownership. The UTXO model was first proposed
by Bitcoin, where the idea of blockchain-based contracts
originated in 2012. The account-based model was later
introduced in 2015 by Ethereum, where contracts were
popularized. Most blockchain platforms today follow the
account-based model: besides Ethereum, also other main-
stream blockchains such as Solana, Avalanche, Hedera,
Algorand and Tezos are account-based (albeit with differ-
ences, sometimes notable, from case to case).

Account-based vs. UTXO blockchains. In the account-
based model, contracts can be seen as objects with a
state accessible and modifiable by methods, as in object-
oriented programming. For instance, to withdraw 10 token
units from a Bank contract, a user A sends a transaction
withdraw(10) to Bank, which will react by updating its
state and A’s wallet. Programming contracts in the UTXO
model requires instead a paradigm shift from the common
object-oriented style [5]. Indeed, a UTXO transaction does
not directly represent a contract action: rather, it encodes
a transfer of crypto-assets from its inputs to its outputs.
Transaction outputs specify the assets they control, the
contract state, and the conditions under which the assets
can be transferred again. Transaction inputs are references
to unspent outputs of previous transactions, and provide
the values that make their spending conditions true. The
blockchain state is given by the set of Unspent Transaction
Outputs (UTXO). A transaction can spend one or more of
outputs in the UTXO set, specifying them as its inputs:
this effectively removes these outputs from the blockchain
state, and creates new ones. The new outputs update the
state of the contracts, and redistribute the assets according
to their spending conditions. These conditions are speci-
fied in a scripting language, the expressiveness of which is
reflected on that of contracts. For instance, in the banking
use case above, the state of the Bank contract could be
scattered among a set of outputs. To withdraw, A must
send a transaction which spends one or more of these
outputs, and whose output has a spending condition that
can be satisfied only by A (e.g., a signature verification
against A’s public key). In addition, the Bank state in the
new output must be a correct update of the old state (e.g.,
in the new state A’s account must have 10 tokens less than
in the old state). Programming contracts in this model is
more complex than in the account-based model, since the
links to familiar programming abstractions are weaker.

Despite this additional complexity, the UTXO model
has a series of advantages over the account-based model.
A first problem of account-based stateful platforms like
Ethereum is to undermine the concurrent execution of
transactions. Namely, a multi-core blockchain node cannot
simply execute transactions in parallel, since they may
perform conflicting accesses to shared parts of the state,
possibly leading to an inconsistent state [6]. In such plat-
forms, there is no efficient way to detect when transactions
can be safely parallelized: in general, determining the
accessed parts of the state requires to fully execute them.
In the UTXO model, instead, it is easy to detect when
transactions are parallelizable: just check if they spend
disjoint outputs, which can be done efficiently [7].

Another problem of the account-based model is that
a user sending a transaction to the blockchain network
cannot accurately predict the state in which it will be
executed. This has several negative consequences, such
as the unpredictability of transaction fees and the suscep-
tibility to maximal extractable value (MEV) attacks [8]–
[10]. Fees are a common incentive mechanism for the
blockchain network to execute transactions and a de-
fence against denial-of-service attacks. To be accepted,
a transaction must pay a fee which is proportional to
the computational resources needed to validate it. The
actual amount of these resources heavily depends on the
initial state where the transaction is performed: so, to be
sure that their transactions are accepted, users specify a
maximum fee they are willing to pay. Besides forcing
users to over-approximate fees, this also opens to attacks
where the adversary front-runs transactions so that they
are executed in a state where the paid fee is insufficient:
the consequence is that users pay the fee even for rejected
transactions that do not update the contract state according
to their intention. With MEV attacks instead, the adver-
sary colludes with malicious blockchain nodes to propose
blocks where the ordering of transactions is profitable for
the adversary (to the detriment of users). These attacks are
very common in account-based blockchains (targeting in
particular DeFi contracts), and are estimated to be worth
more than USD 1 billion [11] so far.

The UTXO model naturally mitigates these attacks. In-
deed, when a user sends a transaction T to the blockchain
network, they know exactly in which state it will be
executed, since this state is completely determined by T’s
inputs. Therefore, if an adversary M front-runs T with
their transaction TM , the transaction T will be rejected
by the blockchain network, since some of its inputs are
spent by TM . If the user still desires to perform the action
in the new state, they must resend T, updating its inputs
(and therefore, specifying the new state where the action
is executed). This thwarts both the fees exhaustion attacks
and the MEV attacks described before.

UTXO designs: Bitcoin vs. Cardano. Currently, the
two main UTXO blockchains are Bitcoin and Cardano.
These platforms follow radically different design choices
in the structure of transactions and in the scripting lan-
guages to specify their spending conditions. These differ-
ences deeply affect the expressiveness of their contracts
and the complexity of their runtime environments. On the
one hand, Bitcoin has a minimal scripting language, fea-
turing only basic arithmetic and logical operations, con-

ditionals, hashes, and (limited) signature verification [12].
This imposes a stringent limit on the expressiveness of
contracts in Bitcoin: contracts requiring unbounded com-
putational steps, or transfers of tokens different than native
crypto-currency, cannot be expressed [13]. Neglecting the
lack of expressiveness, the design choice of keeping the
scripting language minimal has some positive aspects:
besides limiting the attack surface and simplifying the
overall design (e.g., no gas mechanism is needed), it
facilitates the formal verification of contracts. On the
other side of the spectrum, Cardano’s scripting language is
an untyped lambda-calculus [14], which makes Cardano
scripts, and in turn contracts, Turing-complete. This in-
crease in expressiveness comes at a cost, in that the static
verification of general contract properties is undecidable.
Furthermore, since Cardano’s scripts feature unbounded
iteration, a gas mechanism is needed to abort time-
consuming computations and suitably reward blockchain
nodes for validating transactions. Although the gas needed
to execute a transaction is statically known (unlike in
account-based blockchains, where it depends on the actual
state where the transaction is executed), still it would be
safer to avoid the gas mechanism altogether. For instance,
a misalignment of the gas incentives led to DoS attack on
Ethereum [15]. Another drawback of Bitcoin, Cardano,
and UTXO blockchains in general, is that, due to the
absence of explicit state, writing stateful contracts is more
difficult than in account-based blockchains [5].

Our research question is whether one can find a bal-
ance between the two approaches which also overcomes
their usability issues. More specifically, ours is a quest for
a contract language and a UXTO model such that:

• the expressiveness of contracts is enough for real-
world use cases (contracts are Turing-complete);

• executing contracts requires a simple blockchain de-
sign (individual transaction scripts are not Turing-
complete, and no gas mechanism is required);

• it can serve as a compilation target of developer-
friendly higher-level contract languages.

Contributions. We address this research question by
proposing an expressive intermediate-level contract lan-
guage that compiles into transactions executable by a bare-
bone UTXO blockchain (with no gas mechanism). The
key insight is to scatter the execution of complex con-
tract actions across multiple UTXO transactions. Even if
each of these transactions contains only simple (loop-free)
scripts, the overall chain of transactions can encompass
complex (possibly recursive) behaviours.

We summarize our main contributions as follows:
• ILLUM, an Intermediate Level Language for UTXO

blockchains. ILLUM is a Turing-complete clause lan-
guage with primitives to exchange crypto-assets. We
evaluate ILLUM on a few use cases, including gam-
bling games, auctions and Ponzi schemes (Section 2).

• a compiler from ILLUM to UTXO transactions. The
scripting language used in these transactions is Bit-
coin Script extended with covenants, operators to
constrain the output scripts of the redeeming trans-
actions [16]. This is a lightweight mechanism, which
can be implemented with minimal overhead on the
runtime of UTXO blockchains [17], [18].

2

• a proof of the security of the ILLUM compiler.
Namely, we prove that, even in the presence of adver-
saries, with overwhelming probability there is a step-
by-step correspondence between the execution of an
ILLUM contract and that of the chain of transactions
resulting from its compilation. Our security result
essentially establishes Robust Trace Property Preser-
vation [19], [20], ensuring that each computational
trace (involving any computational adversary) has a
symbolic counterpart (involving a suitable symbolic
adversary). Its proof is quite complex, as it matches
every possible contract action in ILLUM (more than
20 cases) with some action at the blockchain level.

• a prototype implementation of a compiler from a
Solidity-like high-level contract language to ILLUM.
We illustrate our compilation technique in Section 7.

• an evaluation of the practicality of our approach,
based on a benchmark of common smart contracts
that we implement in the high-level language and
then translate to ILLUM with our prototype compiler.
Overall, our evaluation shows that it is feasible to rec-
oncile the UTXO model with the familiar procedural
programming style supported by Solidity, effectively
making UTXO contracts more usable in practice.

Because of space constraints, we refer to a technical
report for the proofs [21], and to a github repository1 for
the code of the prototype compiler and of the benchmark.

2. Overview

In this section we overview our approach, discussing
its main features and results. Here we will mostly focus
on intuition, leveraging on examples and postponing the
full technical development to later sections.

2.1. An intermediate contract language

ILLUM is a clause-based process calculus that can
serve as an intermediate contract language and compiles
to a bare-bone UTXO model. ILLUM contracts are sets of
clauses, each having a defining equation of the form:

X(In;Ex) = {vT if p} C

Here, X is the clause name, In and Ex are sequences
of formal parameters (respectively, internal and external),
{vT if p} is the funding precondition (namely: “v units
of tokens T are available and the condition p is true”), and
C is a process encoding the clause behaviour. We provide
some intuition about these constructs with an example.

Example: a “double or nothing” game. We specify a
gambling game between two players A and B as follows:

Init(;) = {0} (call PlayA⟨1;⟩+ call PlayB⟨1;⟩)
PlayA(v;) = {vT} (call PlayB⟨2v;⟩

+ afterRel 5 : send (vT → A))

PlayB(v;) = {vT} (call PlayA⟨2v;⟩
+ afterRel 5 : send (vT → B))

Here, we have not used external parameters, and we have
omitted writing if true in the funding precondition.

1. https://github.com/bitbart/illum-lang/

To start the game, participants can invoke the Init
clause. Since it has no funding precondition, this does
not require paying tokens upfront. After that, the con-
tract gives two options: either calling PlayA or PlayB .
Choosing either option requires the player to satisfy its
funding precondition: here, both clauses require paying
v = 1 tokens T, since the internal parameter v is set to 1
by the caller Init. Now, assume that PlayA was chosen.
The clause offers two new options: either calling PlayB
with a doubled internal parameter v, or sending v units of
T to player A after 5 time units. The first option requires
to pay other v = 1 tokens to the contract, so that its new
balance satisfies the funding precondition of PlayB . After
that, both players can take turns doubling the contract
balance, until one of them fails to do so within 5 time
units. When this happens, the other player can redeem
the whole contract balance, ending the game.

In the game seen so far, the contract balance is fully
determined by the contract itself, with players having
no choice in regard to how many tokens they can add.
External parameters allow us to make the game more
interesting, letting players arbitrarily raise the bet as long
as it is greater than the double of the previous balance:

PlayA⟨v;w⟩ = {wT if w > 2v} (call PlayB⟨w;?⟩
+ afterRel 5 : send (wT → A))

PlayB⟨v̄;w̄⟩ = {w̄T if w̄ > 2v̄} (call PlayA⟨w̄;?⟩
+ afterRel 5 : send (w̄T → B))

For instance, assume that PlayA⟨v;w⟩ is active when
a player executes call PlayB⟨w;?⟩. The internal param-
eter v̄ = w is determined by the process, while the external
parameter w̄ =? is chosen by the player, provided that
it respects the funding precondition of PlayB , namely
w̄ > 2v̄. This means that the player must pay enough
tokens to make the contract balance reach 2w tokens,
doubling the previous balance w.

More on ILLUM clauses. Generalising from the pre-
vious examples, processes C are choices D1 + · · ·+Dk

among one or more branches. Branches have two forms:
• send (v1T1 → A1∥ · · · ∥vnTn → An). This branch

sends vi tokens of type Ti to participant Ai (for all i).
The needed funds are taken from the process balance
and from the contributing participants.

• call (X1⟨E1;?⟩∥ · · · ∥Xn⟨En;?⟩). This branch in-
vokes the clauses Xi in parallel, with the actual
internal parameters given by the expressions Ei. The
external parameters ? represent values chosen by
participants. The call operation is enabled when
the funding preconditions of every Xi are satisfied.
Like in the previous case, the needed funds are taken
from the process balance, and from additional funds
possibly sent by participants.

Branches can be decorated with time constraints and
authorizations. Time constraints enable a branch only
after a certain time has passed. They can be absolute
(after t :D), making the branch D enabled since a
certain time t, or relative (afterRel δ :D), making D
enabled after a delay δ since the previous contract step.
Authorizations (A :D) enable a branch only when A has
provided their authorization. Note that multiple authoriza-
tions are possible (e.g., A :B :D). In this case, all the

3

https://github.com/bitbart/illum-lang/

involved participants must agree on the chosen branch.
Furthermore, if the branch is a call, then they must also
agree on the values of the external parameters. Effectively,
all the external parameters are chosen by the authorizers.

To stipulate a contract, participants spawn an instance
of a clause, providing the funds required by its fund-
ing precondition vT. Note that vT can be a sequence
v1T1 · · · vnTn, meaning that vi units of each token Ti are
required. Doing so activates the clause, running its pro-
cess, which can in turn spawn instances of other clauses
via call, transferring the control to them. Spawning
multiple instances of clauses is possible by exploiting
the inherent parallelism of the UTXO model. We take
advantage of this parallelism in the following example.

Exploiting parallelism. We specify a “Ponzi scheme”
contract as follows:

P(v;A) = {vT} call (S⟨2v,A;⟩∥P⟨2v;?⟩∥P⟨2v;?⟩)
S(v,A;) = {vT} send (vT → A)

The clause P takes an integer v as an internal parame-
ter, and a participant A as an external parameter (denoting
the owner). The funding precondition requires v units of
T. The clause P calls S along with two copies of itself
(each one doubling the internal parameter v). The clause
S simply transfers some tokens according to its internal
parameters v and A (note that they are before the “;”).
When P⟨v;A⟩ is active, to continue the contract we need
to satisfy the preconditions of all called clauses, which
require 6vT overall. Since the contract balance is vT,
participants must provide 5vT. In practice, the owner A
will need to convince two participants B and C to provide
2.5vT each, in exchange for setting themselves as owners
in the newly spawned copies of P. When the call is
performed, the former owner A receives 2vT. If B and C
later manage to enrol two other participants in the scheme,
they will receive 4vT, gaining 4vT − 2.5vT = 1.5vT.
Note that if C does not find new participants, but B does,
B can still continue its process, since each copy of P
executes independently. We remark that B and C are not
known when A is enrolled: this is why we need to use
external parameters.

Upon compilation, parallel active contracts can be con-
currently executed by UTXO blockchain nodes by exploit-
ing their internal parallelism. This would not be possible
with a traditional stateful account-based implementation,
where a single contract would process all transactions.

2.2. The UTXO model

ILLUM contracts can be executed on a bare-bone
UTXO blockchain, with no Turing-complete scripting lan-
guage and no gas mechanism. Basically, a UTXO model
similar to Bitcoin’s is enough, with the addition of custom
tokens and covenants [16]–[18].

A transaction T in this UTXO model is a tuple with
the following fields, similarly to Bitcoin:

• out is a sequence of transaction outputs, i.e. triples
of the form (arg, scr, val), where arg is a sequence of
values (which we use to encode the contract state),
scr is the script specifying the spending condition,
and val encodes the tokens held by the output (vT).

• in is a sequence of transaction inputs, referring to
the transaction outputs which are going to be spent
by T. An input (T′, i) refers to the i-th output of a
previous transaction T′.

• wit is a sequence of witnesses (sequences of values),
passed as parameters to the scripts of input transac-
tions. More precisely, if in(j) = (T′, i), then wit(j)
is the witness passed to the script T′.out(i).scr.

As a simple example, we display below a transaction
T1 containing a single output, which holds 1T and can
be redeemed by any transaction carrying a signature of A
in its wit field (referred to by rtx.wit).

T1

· · ·
out(1): {arg : · · · ,

scr : versig(pkA , rtx.wit), // verify signature
val : 1T}

In order to redeem the tokens held in a transaction out-
put T.out(j), a transaction T′′ has to satisfy the spending
condition T.out(j).scr. This script can access the fields
of T and T′′, perform basic arithmetic, logical and cryp-
tographic operations (hashing, signature verification of
the redeeming transaction), and enforce time constraints.
Covenant operators allow the script in T to constrain the
scripts in T′′. The covenant verscr(σ, n) mandates the n-
th output of T′′ to have a script equal to σ. The covenant
verrec(n) requires the n-th output of T′′ to have the same
script of T.out(j), the one currently being checked.

As an example, consider the following transaction
redeeming (the only output of) T1:

T2

in(1): (T1, 1)
wit(1): sigA(T2)
out(1): {arg : pkA ,

scr : versig(ctxo.arg.1, rtx.wit) and // verify signature
rtxo(1).val = 1T and // preserve value
verrec(1), // preserve script

val : 1T}

The transaction T2 can redeem its input, since it
carries a witness (a signature of A) that satisfies the script
T1.out(1).scr. Furthermore the assets in T2’s output do
not exceed those in its inputs. The spending condition of
T2 is given by the arg field (containing A’s public key
pkA), and the script scr. The script is a conjunction of
three conditions:

• the witness of the redeeming transaction must con-
tain a transaction signature, to be verified against
the public key stored in the 1st element of the arg
sequence of the current transaction output (denoted
by ctxo.arg.1). In T2, this is just pkA .

• the 1st output of the redeeming transaction must
have 1T value (here rtxo(i) is the i-th output of the
redeeming transaction).

• the 1st script of the redeeming transaction must be
equal to the current one. This is enforced using the
covenant verrec(1).

This transaction actually implements a sort of Non-
Fungible Token (NFT). To transfer the NFT to B, A
spends T2 with a redeeming transaction T3, writing her
signature in the wit field of T3, and setting the arg field to
B’s public key pkB . Note that the script and the balance
are preserved along transactions thanks to the covenant.

4

Init(;) = {0} call Bid⟨0;?,?⟩

Bid(oldBid;newBid,Bidder)
= {newBid T if newBid > oldBid and Bidder ̸= Null}

call (Bid⟨newBid;?,?⟩ ∥ Pay⟨newBid,Bidder;⟩)
+ after 1000 :Owner : send (newBid T → Owner)

Pay(v,A;) = {vT} send (vT → A)

Figure 1: An auction contract in ILLUM.

2.3. The ILLUM compiler

One of our main contributions is a compiler from
ILLUM contracts to UTXO transactions. Intuitively, we
encode active clauses into transaction outputs, where the
val field records the contract balance, scr enforces the
contract logic, and arg records the contract state.

The arg field of a transaction output encoding an active
clause will have one entry for each actual parameter, and
the following additional entries: name to represent the
clause name, branch to represent the index of the executed
branch, and nonce to keep the behaviour faithful to the
ILLUM semantics. The scr field of all transactions outputs
resulting from the compilation of an ILLUM contract is the
same, and it is preserved along chains of transactions by
using the verrec covenant.

Here we illustrate the compilation of an auction con-
tract focussing on the construction of the script.

An auction contract. The contract (Figure 1) consists of
three clauses: Init that takes no parameters and initialises
the auction with a starting bid of 0 tokens; Bid that
allows a Bidder to raise the oldBid to a newBid ; and
Pay which transfers tokens to a participant. The contract
flows as follows. After the initialisation, a participant can
call the clause Bid to start the auction, setting themselves
as the highest bidder. Then, we must execute one of
the two branches of Bid. The first branch raises the
bid, setting the values of newBid and Bidder through
external parameters, and refunds the previous bidder. The
second branch closes the auction, transferring the tokens
to the hardcoded Owner. Since the first branch of Bid
recursively calls the clause Bid itself, it can only be taken
if the funding precondition is satisfied, which means that
the new bid must be greater than the previous one. On
the other hand, the second branch of Bid can only be
executed by the owner after a deadline of 1000 time units.
By choosing this branch the owner closes the auction, and
receives the highest bid.

Compiling the contract, we obtain the following script:

scrAuction := inidx = 1 and

if (ctxo.name = Init) then scrInit else

if (ctxo.name = Bid) then scrBid else

if (ctxo.name = Pay) then scrPay else false

The condition inidx = 1 checks that this output is re-
deemed by an input at position 1. This is needed to thwart
attacks where a transaction spends two contracts at once,
effectively cancelling one of them. The rest of the script
is a switch among the possible clauses, where ctxo.name
denotes the name item of the arg field in the current

transaction output. For brevity here we only illustrate
the most interesting case, i.e. scrBid. Recall that the Bid
process is a choice between two branches. Consequently,
the associated script has the following form:

scrBid := if BranchCond1 then scrBranch1
else if BranchCond2 then scrBranch2
else false

The first branch calls two clauses, i.e. Bid and Pay:

call (Bid⟨newBid;?,?⟩ ∥ Pay⟨newBid,Bidder;⟩)

Consistently, BranchCond1 checks that the redeeming
transaction (rtx) has exactly two outputs: this is the goal
of the condition outlen(rtx) = 2 below. Furthermore,
BranchCond1 checks that the chosen branch is indeed the
first one: this is done by requiring that both outputs in
the redeeming transaction (rtxo(1) and rtxo(2)) have the
argument branch set to 1.

BranchCond1 := outlen(rtx) = 2 and rtxo(1).branch = 1

and rtxo(2).branch = 1

The second branch instead performs a send operation
with exactly one recipient, so we check that the redeeming
transaction has exactly one output, which has its branch
argument set to 2.

BranchCond2 := outlen(rtx) = 1 and rtxo(1).branch = 2

The script scrBranch1 verifies that the two outputs of
the redeeming transaction encode, respectively, the clauses
Bid and Pay. The part corresponding to Bid is:

rtxo(1).name = Bid and

verrec(1) and |rtxo(1).arg| = 6 and

rtxo(1).oldBid = ctxo.newBid and

rtxo(1).val = rtxo(1).newBid T and

rtxo(1).newBid > rtxo(1).oldBid and

rtxo(1).Bidder ̸= Null and · · ·

The script performs the following checks on the re-
deeming transaction: (i) the clause name in the first output
is indeed Bid; (ii) the script is preserved (via the verrec
covenant); (iii) the number of arguments is correct (3
arguments for newBid, oldBid and Bidder, and 3 argu-
ments for name, branch and nonce); (iv) the value of the
oldBid of the redeeming transaction is set to the newBid
of the current transaction, coherently with the passing of
parameters in the Bid clause; (v) the amount of tokens
of type T transferred to the redeeming transaction is the
one specified in the funding precondition; (vi) the guard
in the funding precondition is satisfied.

The part of the script corresponding to Pay is obtained
in the same way:

· · · rtxo(2).name = Pay and

verrec(2) and |rtxo(2).arg| = 5 and

rtxo(2).A = ctxo.Bidder and

rtxo(2).v = ctxo.newBid and

rtxo(2).val = ctxo.newBid T

5

The script scrBranch2 encodes the send operation in
Figure 1, enforcing the authorization of Owner and the
absolute time constraint of 1000 time units:

absAfter 1000 : versig(Owner, rtx.wit(1)) and

verscr(versig(ctxo.owner, rtx.wit(1)), 1) and

|rtxo(1).arg| = 3 and

rtxo(1).owner = Owner and

rtxo(1).val = ctxo.newBid T

The script performs the following checks on the re-
deeming transaction: (i) absAfter forces the redeeming
transaction to be published at a time greater than 1000;
(ii) the first versig checks the presence of Owner’s signa-
ture in the witness of the redeeming transaction; (iii) the
only output of the redeeming transaction has 3 arguments
(owner, branch, and nonce), and a script that accepts any
transaction signed by the owner (this is enforced by the
verscr covenant). This effectively transfers the ownership
of the tokens to Owner. The details of our compilation
technique are in Section 4.

2.4. Security of the ILLUM compiler

Our main technical result is the security of the com-
piler establishing a strict correspondence between actions
at the ILLUM level and those at the blockchain level. This
ensures that any contract behaviour that is observable at
the blockchain level is also observable in the semantics of
ILLUM. In particular, any attack that may happen at the
blockchain level can be detected by inspecting the sym-
bolic semantics of ILLUM contracts. This is a fundamental
step towards static analysis tools for the verification of
security properties of contracts in the UTXO model.

Here we outline how this result is proved in Sections 5
and 6. We start by defining the adversary model, both at
the symbolic level of ILLUM and at the computational
level of the blockchain. The adversary is modelled as a
PPTIME algorithm that schedules the actions chosen by
participants, possibly interleaving them with adversarial
actions. The bridge between the symbolic and the com-
putational level is given through a coherence relation,
which associates symbolic actions (e.g., a call action)
with their computational counterparts (e.g., a transaction).
The definition of this coherence relation is quite gruelling,
as it must consider all possible actions, which amount to
20 cases: this complexity of course reflects on the proofs.
As a first sanity check, we show in Lemma 1 that the
coherence relation precisely characterises the exchange of
assets: namely, the asset ownership is consistent between
symbolic and computational executions whenever they are
coherent. Our main security result (Theorem 2) guarantees
that any computational execution is coherent with some
symbolic execution, up-to a negligible error probability.
Together with Lemma 1, it proves that computational ex-
changes of assets, including those mediated by contracts,
are always mirrored at the symbolic level.

3. The ILLUM intermediate language

We now refine the description of ILLUM given in Sec-
tion 2, by providing its syntax and semantics. Because of

space constraints, we omit some technicalities, relying on
examples and intuitions: see [21] for full details.

Syntax. We assume a set Part of participants, (ranged
over by A,B, · · · , and by a dummy participant Null).
Contracts and deposits are denoted by the lowercase letters
x, y, · · · , while clauses will have names X, Y, · · · . Clause
parameters will be denoted by Ini and Ex i, while the ac-
tual values substituted to those parameters will be denoted
by Ini and Exi. Arithmetic expressions (integer constants
and parameters, basic operations, hashes) are denoted by
Ei, while participant expressions (constants and param-
eters) are denoted by Ni. The value of parameters and
expressions can also be key-value mappings. The domain
of a mapping can be chosen to be either the integers or
the participants. The codomain can be chosen similarly. If
M is a mapping expression, we denote with M[· · ·] the
access to one of its values, and with M[· · · → · · ·] the
update of one of its associations. Sequences are denoted
in bold, with x = x1 · · ·xn.

We remark that the precise set of data types that can
be used in parameters and expressions is not fundamental
to the design of ILLUM. Indeed, our design can be easily
adapted to different data types by suitably altering the
syntax and semantics of expressions. To support com-
pilation to the UTXO model, we simply require that
the underlying blockchain scripting language supports the
same data types and operations. We assume that data
types include at least integers and participants, since their
rôle is crucial to ILLUM constructs. Key-value mappings,
instead, are not as crucial, and could be removed if not
supported by the underlying blockchain, at the expense of
reducing the usability of ILLUM. Throughout the paper,
we mostly showcase examples that use only the funda-
mental data types (integers and participants). Notably,
the ILLUM compiler handles all these contracts without
requiring mappings to be supported by the compilation
target. In Section 7 we will also exploit mappings to
discuss more complex contracts.

Definition 1 (Clauses). A clause is defined by an equation

X(In;Ex) = {ET if p} C

where {ET if p} is the funding precondition, and C is
a process. The clause takes two sequences of parameters
In and Ex . Parameters can be of any type (integers,
participants, or mappings). These types are always clear
from the context, hence omitted. We require that all the
parameter names in E, p, and C are present in In , Ex .

When X is invoked, the calling process provides the
actual internal parameters, while the participants who are
performing the call choose the actual external ones. The
funding precondition {vT if p} encodes the require-
ments for the invocation of X. Namely, the sequence
vT = v1T1 · · · vnTn asks the participants to transfer vi
tokens of type Ti to the process C (for all i). Moreover,
p is a boolean condition on the parameters that must hold.
We write {vT} for {vT if true}.

Definition 2 (Processes). Processes have the following

6

syntax:

C ::=
∑

i∈I D i process

D ::= branch
call (· · · ∥ Xi⟨Ini;?⟩ ∥ · · ·) call clauses · · · Xi · · ·

| send (· · · ∥ EiTi → Ni ∥ · · ·) transfer EiTi to each Ni

| N :D wait for N authorization
| after E :D wait until time E
| afterRel E :D wait E after activation

where we assume that: (i) each clause name X has a unique
defining equation X(In;Ex) = {ET if p} C ; (ii) the
sequence In of actual parameters passed to a called clause
Xi matches, in length and typing, the sequence In of
formal (internal) parameters; (iii) the order of decorations
is immaterial.

A clause X(· · ·) together with two correctly typed
sequences of actual parameters In and Ex is said to be
an instantiated clause, and denoted by X⟨In;Ex⟩.

Semantics. The execution of contracts is modelled as
a transition relation between configurations, that are ab-
stract representations of the blockchain state. In a con-
figuration, tokens can be stored in deposits and active
contracts.

A deposit ⟨A, vT⟩x represents v units of token T
owned by A. It is uniquely identified by the name x,
and can only be spent upon A’s authorization. A term
⟨C ,vT⟩tx is an active contract, where x is the unique
identifier, t is the activation time, and vT is the balance,
which can only be transferred according to the contract
logic specified by C .

Besides the terms used to store tokens, in a configu-
ration we also have advertisements and authorizations.

Advertisement terms are used by a participant to pro-
pose one of the following actions:

• The activation of a new contract. This is done by
advertising Φ =

[
X⟨In;Ex⟩ ; z

]
h

, which specifies
the instantiated clause X⟨In;Ex⟩ and a nonempty
list z of deposit names that will be spent to fund the
contract. The index h is just a nonce used to differen-
tiate between two otherwise identical advertisements.

• The continuation of an active contract. This is done
by advertising Φ =

[
D̄ ; z ; (x,j)

]
h

. The list z
specifies the deposits that will be spent for the con-
tinuation and added to the balance of x. The index
h is again a nonce. The term D̄ is an advertised
branch, constructed by taking D , the j-th branch of
x, and instantiating the question marks ? appearing
in a call with the actual values Ex.

Authorization terms are used by participants to enable
the spending of deposits and to enable the execution of a
contract branch decorated by A : · · ·. Authorizations have
the form A[χ], where A is the authorizing participant, and
χ denotes the authorized action. We see here two cases of
authorization terms, relegating the others to Appendix A:

• A[z ▷ Φ] authorises the spending of a deposit z
owned by A that appears in the advertisement Φ;

• A[x▷ Φ] authorises the continuation of the
j-th branch of a contract x, as advertised by
Φ =

[
A : D̄ ; z ; (x,j)

]
h

.

Definition 3 (Configurations). A configuration Γ is a
term Γ̃ | t, where t ∈ N denotes the time, and the pre-
configuration Γ̃ has the following syntax:

Γ̃ ::= ⟨C ,vT⟩tx active contract
| ⟨A, vT⟩x deposit
| Φ advertisement
| A[χ] authorization

| (Γ̃ | Γ̃) parallel composition

We assume that: (i) the parallel composition is associa-
tive and commutative; (ii) all parallel terms are distinct;
(iii) names are unique; (iv) all expressions occurring in ac-
tive contracts are reduced to constants (integers or names).

An example. In Section 2 we have discussed the in-
tuition behind the language semantics. Here we refine
this intuition by precisely illustrating the evolution of the
configuration during the execution of a simple contract.
This example shows the semantics of the main language
constructs, and the role of advertisements and authoriza-
tions terms.

X(a;b) = {bT if b > a} Wait(b)

Wait(b) = afterRel 10 : send (bT → A)

+ B : call X⟨b;?⟩

The first branch allows A to withdraw the whole bal-
ance after 10 time units since the contract activation. The
second branch allows B to temporarily prevent A from
withdrawing: this requires B to restart the contract with an
increased balance. We start from the initial configuration:

Γ0 = ⟨C, 1T⟩z1 | ⟨B, 2T⟩z2 | ⟨B, 3T⟩z3 | t

Participant C starts by advertising Φ0 = [X⟨0;1⟩ ; z1]h,
then authorizes the use of their deposit z1 in the stipula-
tion, and finally stipulates the contract, reaching configu-
ration Γ1:

Γ0 → Γ0 | Φ0 → Γ0 | Φ0 | C[z1 ▷ Φ0]

→ ⟨Wait(1), 1T⟩tx | ⟨B, 2T⟩z2 | ⟨B, 3T⟩z3 | t = Γ1

From Γ1 there are multiple possible continuations.
For instance, B can choose to execute the second branch
of Wait . To do so, B first produces the advertisement
Φ1 = [B : call X⟨1;3⟩ ; z2 ; (x,2)]h. Then, B gives two
authorizations: one to satisfy the decoration B : · · · in the
second branch of Wait , and another one to allow the
spending of z2. With these, the configuration can evolve
as follows:

Γ1 → Γ1 | Φ1 → Γ1 | Φ1 | B[x▷ Φ1]

→ Γ1 | Φ1 | B[x▷ Φ1] | B[z2 ▷ Φ1]

→ ⟨Wait(3), 3T⟩tx′ | ⟨B, 3T⟩z3 | t = Γ2

B can again choose the second branch, this time
spending z3 to fund its execution. Otherwise, if B lets
the time pass, A can advertise the continuation:

Φ2 = [afterRel 10 : send (3T → A) ; ; (x′,1)]h
and then withdraw the contract balance:

Γ2 → ⟨Wait(3), 3T⟩tx′ | ⟨B, 3T⟩z3 | t+ 10 = Γ3

→ Γ3 | Φ2 → ⟨A, 3T⟩z4 | ⟨B, 3T⟩z3 | t+ 10

7

The semantics of ILLUM has a set of rules for reducing
contracts, and another set for deposits (see Appendix A).

Turing-completeness. ILLUM is Turing-complete: in-
deed, we can simulate in ILLUM any counter ma-
chine [22], a well-known Turing-complete computational
model. The proof is similar to that in [23]: we simu-
late any counter machine by storing each counter in the
arguments of recursive clauses. Incrementing and decre-
menting the counters is simply done by specifying the
new values of the arguments inside the call. Conditional
jumps are simulated as choices, also exploiting clause
preconditions. This construction does not exploit key-
value mappings: it is only based on the assumption that
integers are unbounded, as usual. Notice that, despite its
Turing-completeness, ILLUM can be compiled down to
a “poor” UTXO blockchain, i.e. one with non-Turing-
complete scripts. This is accomplished by spreading the
execution of a compiled contract across multiple transac-
tions, each with its own loop-free script. Note that our key-
value mappings just feature operators to lookup a single
key and to update a single association: in this way, even
with maps, UTXO scripts can be run in nearly constant-
time. This makes the gas mechanism unnecessary.

4. Compiling ILLUM to UTXO scripts

The compilation target of ILLUM is a UTXO
blockchain that is close to Bitcoin, with minimal exten-
sions in the structure of transactions and in the scripting
language to overcome its expressiveness limitations.

Scripting language. We consider a scripting language
that extends Bitcoin Script with covenants, borrowing
from [16] (see [21] for its syntax and semantics). Here
we recap some operators that are used by our compiler.
First, ctxo.f denotes the field f of the current transaction
output that is being spent. Similarly, rtxo(e).f denotes the
field f of the e-th output of the redeeming transaction.
Then, we have the covenants: verscr(scr, n) checks that
the n-th output script of the redeeming transaction is equal
to scr, while verrec(n) checks that the n-th output script
of the redeeming transaction is equal to the one of the
output being spent. The operators inidx and rtxw denote,
respectively, the position of the redeeming input among
the ones of the redeeming transaction, and the witness
associated to it. To improve readability, we will use names
instead of indices when referring to arguments in the arg
sequence (e.g., we write ctxo.owner for ctxo.arg.1).

While constructing a contract script we will need
to replace the parameters Ini and Ex i appearing in an
expression E with the respective arguments ctxo.Ini and
ctxo.Exi. To simplify the notation, we denote this substi-
tution with ctxo.E. For instance, if the contract contains
a term after t : · · · with t = In1 + Ex 1 + 3, we will
write ctxo.t instead of ctxo.In1 + ctxo.Ex1 +3. Similarly,
whenever an expression uses the arguments of a redeem-
ing transaction’s output, we denote it as rtxo(j).E.

Representing deposits. We represent a deposit ⟨A, vT⟩
in an ILLUM configuration as a transaction output with
value vT, argument owner set to A, and the script:

versig(ctxo.owner, rtxw.1)

allowing A to spend the funds by providing her signature.

How the compiler works. Representing an active con-
tract ⟨C ,vT⟩tx at the blockchain level is more complex:
we need to consider the clause X⟨In;Ex⟩ from which
it originated. The output representing x has a value vT,
and its arguments are the following: name for the clause
name X, for the actual parameters Ini and Exi, and two
technical arguments nonce and branch. The output script
of a contract is preserved along executions: we detail its
construction in the next paragraphs, refining and general-
ising the intuitions given in Section 2 (the full technical
details are in [21]).

Let X0 be the initial clause of a contract, and let
X1 · · · Xn be the clauses that can be reached by recursively
following every call operation that appears in X0’s def-
inition. We assume that Xi defines the process C i. We
generate a script for the overall contract as follows. The
script requires that the output must be redeemed from an
input in the first position. Then, it performs a switch on the
name argument to see which clause is currently encoded
in the transaction output, and choose accordingly which
script is going to be executed:

scr := inidx = 1 and

if (ctxo.name = X0) then scrX0 else
...
if (ctxo.name = Xn) then scrXn

else false

To construct the script associated to a clause X in
X0 · · · Xn, we inspect its process C = D1 + · · · + Dm,
and associate an integer nj with each Dj as follows: if
Dj ends in a call, then nj is equal to the number of
called clauses; otherwise, if Dj ends in a send, then nj

is equal to the number of participants receiving the funds.
This nj will be the number of outputs of a transaction
that redeems the j-th branch of C . This transaction must
also specify the value j in the branch argument of each
of its outputs. To check these conditions, we use:

Bj := (outlen(rtx) = nj and rtxo(1).branch = j and

· · · and rtxo(nj).branch = j)

Then, we handle all the branches, with a conditional

scrX := if B1 then scrD1 else

...
...

...
if Bm then scrDm

else false

Each branch D in D1 · · ·Dm is a sequence of decora-
tions ended by a call or send. To construct scrD , we first
focus on the decorations. If there is an authorization dec-
oration, then the witnesses of the redeeming transaction
requires a signature by the authorizing participant:

scrA1 : ··· :Ak :D ′ := versig(ctxo.A1, rtxw.1) and · · ·
and versig(ctxo.Ak, rtxw.k) and scrD ′

where D ′ does not contain any authorization decoration.
The “after” decorations are handled by the correspond-
ing script operators absAfter/relAfter for absolute/relative
timelocks:

scrafter t :D ′′ := absAfter ctxo.t : scrD ′′

scrafterRel δ :D ′′ := relAfter ctxo.δ : scrD ′′

8

Finally, we describe the terminal parts of the script,
i.e. send and call. First, we consider the case:

D ′′ = send (v1T1 → A1 ∥ · · · ∥ vnTn → An)

Here, we want each output of the redeeming transaction to
encode a deposit of value vkTk owned by Ak. We use the
operator verscr to force the redeeming transaction to have
the correct script, and | · | to check that it has exactly 3
arguments (corresponding to nonce, branch, and owner).
The script also checks the output values and the owners:

scrD ′′ :=

|rtxo(i).arg| = 3 and

verscr(versig(ctxo.owner, rtxw.1), i) and

rtxo(i).owner = ctxo.Ai and

rtxo(i).val = ctxo.viTi and · · ·

 i
∈
1
..
n

The last case is that for a call:

D ′′ = call (Y1⟨In1;?⟩ ∥ · · · ∥ Yn⟨Inn;?⟩)

Let Yi(Ini;Ex i) = {EiTi if pi}C i, where |Ini| = ki
and |Ex i| = hi. The script scrcalli requires that the i-th
output of the redeeming transaction encodes the contract
specified by Yi⟨Ini;Exi⟩, for some choice of the param-
eters Exi. We use verrec to preserve the contract script,
and then check that the output has the correct number of
arguments. We also require that the name is Yi, and that
the arguments In ij match the actual parameters.

Finally, we check the funding precondition:

scrcalli := verrec(i) and |rtxo(i)| = 3 + ki + hi and

rtxo(i).name = Yi and

rtxo(i).In i1 = ctxo.Ini 1 and · · · and

rtxo(i).In iki = ctxo.Ini ki and

rtxo(i).val = rtxo(i).Ei Ti and

rtxo(i).pi

This must be done for all Y1 · · · Yn, obtaining:

scrD ′′ := scrcall1 and · · · and scrcalln

Executing a compiled contract. The ILLUM compiler
translates an ILLUM contract into a script. In this way,
the compilation process creates a correspondence between
active contracts and transaction outputs on the blockchain.
We will formalise this coherence relation later when es-
tablishing the security of the compiler. For now, we just
note that each execution step of an active ILLUM con-
tract corresponds, in the blockchain, to a new transaction
redeeming the previous output.

A hint about the correctness of the compiler. The
script produced by the compiler imposes very stringent
conditions on the redeeming transaction T. In particu-
lar, its outputs are almost completely determined by the
compiled script: the number of outputs and their assets
are fixed; their script is determined either by verrec (in
the call branches) or by verscr (in the send branches);
the number of arguments is fixed, and the value of most
of the arguments (which encode the contract state) is
determined by the script. The only “free” fields in T
are the arguments representing the external contract pa-
rameters, which are only subject to respect the funding
precondition. This mirrors the ILLUM semantics, where

participants can choose the actual external parameters at
runtime. This “rigidity” is important in establishing the
correctness of the ILLUM compiler: if a UTXO encodes
an active contract ⟨C ,vT⟩tx, then any transaction that
redeems it must behave in “agreement” with one of the
branches of C . The full details of the proof of correctness
are presented in [21].

5. Adversary model

The semantics of ILLUM describes all actions that
can be performed on contracts and deposits. For this
reason the set of reachable configurations is very broad.
In particular, it always contains the configuration obtained
by donating all the deposits to a single participant. How-
ever, in a realistic scenario, this configuration would not
be reached because participants would have no interest
in authorizing the donations. To avoid considering these
unrealistic executions, we need to restrict the semantics
according to the behaviour of participants, which can de-
cide whether to authorize or not any given action. To this
aim, we introduce strategies, which are algorithms that
model the participants’ behaviour, computing the actions
chosen by a participant at each execution step. We assume
a subset Hon of participants for whom the strategies are
known. The strategies of these honest participants are
instrumental in defining the adversary model. Namely,
we see the adversary Adv as an entity that controls the
scheduling of the actions chosen by honest participants,
and possibly inserts their own actions. This is consistent
with adversarial miners/validators in blockchains, who can
read user transactions in the mempool, and produce blocks
containing some of these transactions, suitably reordered
and possibly interleaved with their own transactions. Intu-
itively, we model the adversary as a strategy that controls
all participants outside of Hon, can observe the actions
outputted by the strategies of honest participants, and can
decide to perform one of these actions or one of their own.

Symbolic runs. A symbolic run Rs is a sequence of
configurations Γi connected by semantic actions αi. The
first configuration in the sequence only contains deposits,
and has time t0 = 0. We denote with ΓRs the last configu-
ration of Rs. A run is written as Rs = Γ0

α0−→ Γ1
α1−→ · · · .

Symbolic strategy of honest participants. Each honest
participant A has a strategy Σs

A , i.e. a PPTIME algorithm
that takes as input the symbolic run Rs and outputs the
set of “choices” of A, i.e. the ILLUM actions that A wants
to perform. The strategy is subject to well-formedness
constraints: (i) the actions in Σs

A(R
s) must be enabled

by the semantics in ΓRs ; (ii) each authorization action in
Σs

A(R
s) must be of the form A[· · ·▷ · · ·], forbidding A

to impersonate another participant.

Symbolic adversarial strategy. Dishonest participants
are controlled by the adversary Adv, who is also in charge
of scheduling updates to the run. Their strategy Σs

Adv is a
PPTIME algorithm that takes as inputs the run Rs and the
sets of choices given by the honest participants’ strategies.
The output of Σs

Adv is a single ILLUM action λs that will
be used to update the run. Adv’s strategy is subject to
the following constraints: (i) λs must be enabled in ΓRs ;

9

(ii) if λs is an authorization action by a honest A, then it
must have been chosen by A; (iii) if λs is a delay, then
it must have been chosen by all honest participants. The
second condition prevents Adv from forging signatures,
while the third condition ensures that Adv cannot prevent
honest participants from meeting deadlines.

Symbolic conformance. Since a strategy Σs
A is prob-

abilistic, we implicitly assume that it takes as input an
infinite sequence of random bits rA . Consider now a set
of strategies Σs including those of honest participants,
Σs

Adv , and a random source r from which the sequences
rA are derived. We can uniquely determine a run Rs by
performing the actions outputted by Σs

Adv . Such a run is
said to conform to (Σs , r).

Computational runs. Above, we have defined an adver-
sarial model at the symbolic level. We model adversaries
at the computational level in a similar way, replacing sym-
bolic actions with computational ones. A computational
run Rc is a sequence of actions λc in one of these forms:

T appending transaction T to the blockchain
δ performing a delay
A → ∗ : m broadcasting of message m from A

The first action in the run Rc is an initial transaction
that distributes tokens to participants, and it is followed
by the broadcast of each participant’s public keys.

Computational strategies of honest participants. Each
honest A is associated with a computational strategy, i.e. a
PPTIME algorithm Σc

A that takes as input a computational
run and outputs the set of choices of A. If Σc

A(R
c)

includes an action λc = T, then T must be consistent
with Rc, essentially meaning that T is a valid transaction
in the blockchain state reached after the run Rc.

Computational adversarial strategy. Like in the sym-
bolic case, the adversary is given scheduling power. The
strategy Σc

Adv takes as input the run Rc and the actions
chosen by honest participants, and outputs a single action
that will be used to update Rc. As for honest participants,
the adversary cannot output invalid transactions. Like in
the symbolic case, Σc

Adv is only allowed to output a delay
if it has been chosen by all honest participants. We allow
the adversary to impersonate any honest participants A.
However, since Adv does not know the random source
rA , and Σc

Adv is PPTIME, Adv will be, with overwhelming
probability, unable to forge A’s signatures.

Computational conformance. Like in the symbolic
case, a set of strategies Σc and a random source r can be
used to uniquely determine a computational run Rc, that
is said to conform to the pair (Σc , r).

6. Security of the ILLUM compiler

Symbolic and computational runs describe the evo-
lution of contracts at two different level of abstraction:
in Section 4 we have shown how transaction outputs
encode ILLUM deposits and contracts. Formally this cor-
respondence between runs is modelled as a relation, which

we call coherence. Intuitively, coherence holds when the
symbolic steps in Rs and the computational steps in Rc

have the same effects on contracts and deposits.

Coherence. The coherence relation Rs ∼txout R
c is

parameterized by a map txout that relates the symbolic
names of deposits and contracts to transaction outputs.
Coherence is defined inductively, by exhaustively listing
the possible actions of Rs. Here we present the most
important cases, relegating the full definition to [21].

• Advertising Φ in Rs is matched by the broadcast
of a message m in Rc. The message m encodes a
transaction TΦ representing the action advertised by
Φ. In particular, the script of TΦ’s outputs must be
the one produced by the compiler. Note that TΦ is not
yet appended to the blockchain, but only broadcast.

• Sending an authorization A[· · ·▷ Φ] in Rs is
matched by sending a message m in Rc, containing
a corresponding signature from A on TΦ .

• Initiating a contract in Rc consumes the respective
advertisement Φ and the required authorizations and
deposits to insert a term ⟨C ,vT⟩tx in the configu-
ration. This is matched in Rc by appending TΦ to
the blockchain. This uses the signatures that were
broadcast together with the symbolic authorizations.
Moreover, the map txout is updated so that the new
symbolic name x is mapped to TΦ’s output.

• Continuing a contract in Rc is similar to the contract
initiation described above, except that it may produce
multiple deposits or contracts instead of a single one.
Again, it is matched in Rc by TΦ , where Φ is the
continuation advertisement, and txout is updated to
map the new names to each output of TΦ .

The full definition also deals with deposit operations,
delays, and transactions that spend inputs that are outside
of the image of txout . The coherence relation is instru-
mental to establish correspondence results between the
two models. Notably, Lemma 1 shows that the coherence
relation precisely characterizes the exchange of assets.

Lemma 1. If Rs ∼txout Rc and ⟨A, vT⟩x is a deposit
appearing in the last configuration ΓRs , then txout(x) is
an unspent output in Rc and encodes the deposit x (i.e.
it has the structure presented in Section 4). Notably, this
means that the token balance is preserved by txout .

This coherence result is lifted to an analogous lemma
for contracts. We also establish the injectivity of the map
txout , which ensures that no two distinct symbolic de-
posits or contracts are represented by the same transaction
output. This means that the whole volume of assets is
preserved by the map. Moreover, the coherence relation
can be used as a guide to algorithmically translate the
symbolic strategy of an honest participant into an equiv-
alent computational strategy.

From symbolic to computational strategies. Here
we present the map ℵ that translate strategies. Given
the symbolic strategy Σs

A , the computational strategy
Σc

A = ℵ(Σs
A) will do the following: first parse Rc to create

a corresponding symbolic run Rs (using the coherence
relation), then run Σs

A(R
s) producing a set of symbolic

labels Λs, and lastly use the coherence again to transform

10

each symbolic label into the corresponding computational
label, which will be the output of the strategy.

Security of the compiler. Theorem 2 gives us a way to
construct a symbolic run Rs that is coherent to a given
computational run Rc and conform to a set of given honest
symbolic strategies Σs . This is done under the assumption
that Rc conforms to the honest computational strategies
obtained by translating Σs . By contrast, we make no
assumption on the computational adversarial strategy used
to construct Rc. Together with Lemma 1, computational
exchanges of assets, including those mediated by con-
tracts, are mirrored at the symbolic level.

Theorem 2 (Security of the compiler). Let Σs be a
set of symbolic strategies for honest participants, let
Σc = ℵ(Σs), and let Σc

Adv be a computational adversar-
ial strategy. If Rc is a run with polynomial length conform-
ing to Σc ∪ {Σc

Adv}, then there exist, with overwhelming
probability, a symbolic run Rs and an adversarial strategy
Σs

Adv such that (i) Rs is coherent with Rc, and (ii) Rs

conforms to Σs ∪ {Σs
Adv}.

Proof (sketch). We match step-by-step the computational
moves with the symbolic moves according to the coher-
ence relation. In particular, looking at possible transac-
tions, we have two main cases:

• A deposit operation (e.g. donating a deposit). This
requires participant signatures. If in the symbolic run,
there are the corresponding authorizations, then this
operation has an immediate symbolic counterpart.
Otherwise, the computational signatures have been
forged, which happens with negligible probability.

• A contract operation (e.g., a call to a new clause).
This can be done only with a transaction that satisfies
the contract script. Since the script closely matches
the symbolic semantics, we can construct the corre-
sponding symbolic move (again, the only case where
this is not possible is that of a signature forgery).

The full proof in [21] considers all the possible compu-
tational moves (e.g., outputting a message, waiting), and
relates them to a specific symbolic action that maintains
the coherence relation. Technically, this requires examin-
ing all the twenty cases in the definition of coherence and
proving that whenever none of them applies, the adversary
must have managed to forge signatures.

The above security result can be seen in terms of
Robust Trace Property Preservation (RTP) [19], [20]. RTP
can be equivalently [20] stated in this form:

∀P.∀CT.∀t. CT[compile(P)]⇝ t =⇒ ∃CS. CS[P]⇝ t

This can be read in our setting as “whenever a ILLUM
contract P is compiled and run in a computational adver-
sarial context CT, producing an execution trace t, then
there exists a symbolic adversarial context CS where the
original contract P produces the same trace t”.

The above property can not be proved as-is in our
setting, for a number of reasons. First, computational
and symbolic traces have different nature, so we can
not claim to have the same trace in both worlds – we
instead claim that we have two traces Rc,Rs which are
related by the coherence relation. Furthermore, compu-
tational adversaries always have a negligible probability

to break the underlying cryptography, so RTP can only
hold with overwhelming probability and for traces having
polynomial length. The statement of Theorem 2 accounts
for these peculiarities. Finally, in our formulation, the
adversarial contexts are interpreted as (symbolic/compu-
tational) adversarial strategies.

7. From high-level languages to ILLUM

Although ILLUM provides an abstraction layer over
the UTXO transaction model, its clause-based nature may
make it unwieldy for developers familiar with the proce-
dural style, which is currently mainstream in the smart
contracts community thanks to languages like Solidity.
We show in this section that it is possible to reconcile
the UTXO model with the familiar high-level imperative
procedural style. More specifically, we consider an expres-
sive fragment of Solidity, and we show how to compile it
down to ILLUM. We evaluate our approach by developing
a prototype compiler and interpreter for the high-level
language (∼2000 LoC of OCaml code), and by applying
it to a benchmark of common smart contracts, including
complex DeFi protocols like Automated Market Makers
and Lending Pools. Overall, one can benefit from the
formal security guarantees of ILLUM, while sticking to
a familiar development process.

The HELLUM contract language. As a high-level
language for contracts in the UTXO model, we consider a
fragment of Solidity, a widespread smart contract language
that has been popularized by Ethereum. To make the
compilation into UTXO possible, we get rid of a couple of
problematic features, i.e. loops and external contract calls.
To compensate for the absence of external calls, which
are the basis to implement custom tokens in Solidity, our
language supports custom tokens natively.

The resulting High-Level Language for the UTXO
Model, hereafter dubbed HELLUM, is exemplified in
Figure 2 through a crowdfunding contract. The contract
collects funds from donors until a deadline, then it
transfers them to the owner only if the donations reach
a given target amount. If the target is not met, then
every donor is entitled to take back their donations.
The constructor sets the contract parameters. The next
modifier constrains which functions can be called next.
The deposit function receives donations, and updates
the map funds accordingly. The modifier input(x:T)
requires the caller to pay an amount x of tokens T upon a
call. The require command sets the minimum donation
to 10 token units. The finalize function can only be
called after the deadline is reached. If the collected funds
(i.e. the contract balance) exceed the target, then they
are transferred to the owner: otherwise the funds are
kept in the contract. Executing finalize enables the
withdraw function, through which donors can take back
their donations if the target has not been reached (note that
if the target was met, then withdraw transfers no funds).
The modifier auth(a) requires that any withdraw to a
must be authorized by the user controlling that address
(i.e., the one who knows a’s private key).

We argue that this variant of Solidity is still practical
for a wide range of applications (see Table 1). Regard-
ing loops, we note that in general they are discouraged

11

contract Crowdfund {
mapping (address => uint) funds ;
uint deadline ;
uint target ;
address owner ;

constructor (uint d, uint t, address o) {
owner = o;
deadline = d;
target = t;

} next(deposit , finalize)

function deposit (uint x, address a) input (x:T) {
require (x >=10) ;
funds [a] += x;

} next(deposit , finalize)

function finalize () after (deadline) {
if (balance (T) >= target)

owner . transfer (balance (T):T);
} next(withdraw)

function withdraw (address a) auth(a) {
a. transfer (funds [a]:T);
funds [a] = 0;

} next(withdraw)
}

Figure 2: A crowdfund contract in HELLUM.

function f (...) {
require expr0 ; // this is the only require in f
// chain of conditional statements
if (cond1) {

// sequence of token transfers
a1_1. transfer (amt1_1 :T1_1);
...
a1_n1 . transfer (amt1_n1 : T1_n1);
// single simultaneous assignment
x_1 ,... , x_m = expr1_1 ,... , expr1_m ;

} else if (cond2) {
a2_1. transfer (amt2_1 :T2_1);
...
a2_n2 . transfer (amt2_n2 : T2_n1);
x_1 ,... , x_m = expr2_1 ,... , expr2_m ;

}
...
else {

... // same structure as previous blocks
}

}

Figure 3: Normal form of HELLUM functions.

even in Solidity, since they may vehicle gas exhaustion
attacks [24] where an adversary causes an iteration to
exceed the block gas limit, thereby making the users
pay the gas fees for failed transactions, and, possibly,
making the contract stuck [25]. Despite this limitation,
our language features unbounded data structures, in the
form of key/value mappings. Iterative behaviours can be
obtained by shifting the duty of performing iterations
to users, by requiring them to perform repeated calls to
contract functions (see e.g. the withdrawal of funds in the
crowdfunding contract). Regarding external calls, while
in Solidity they are the basis for any interaction between
a contract and the environment (including pure transfers
of assets), in the UTXO model they are unnatural, since
transaction validation must only involve the scripts re-
ferred to in the transaction inputs. Cardano, the main smart
contract platform based on the UTXO model, does not
support external calls. In our high-level language we use
a special primitive transfer to exchange tokens, and we
restrict calls to internal pure functions.

contract Test {
uint x;

function f(uint y, address a) {
x = balance (T) - y;
if (x > 10) {

a. transfer (x:T);
require balance (T) > 20;
x += 1;

}
} next(f,g)

function g() { }
}

Figure 4: A simple contract in HELLUM.

contract Test_NF {
uint x;

function f(uint y, address a) {
require ((balance_pre (T)-y >10) && y >20) ||

(balance_pre (T)-y <=10) ;
if (balance (T)-y >10) {

a. transfer (balance_pre (T)-y:T);
x, bal_T_fin = (balance_pre (T)-y)+1,

balance_pre (T) -(balance_pre (T)-y);
}
else {

x, bal_T_fin = balance_pre (T)-y, balance_pre (T);
}

} next(f,g)

function g() {
x, bal_T_fin = x, balance_pre (T);

}
}

Figure 5: Normal form of the Test contract.

Compiling HELLUM to ILLUM. HELLUM con-
tracts can be automatically compiled to ILLUM. Here we
summarize the translation process (see Appendix I for
more details, and https://github.com/bitbart/illum-lang/for
the implementation). We use the Test contract in Figure 4
as a working example to illustrate the compilation process.

First, we process each function in the HELLUM
contract, passing it through code transformations which
bring it to the normal form displayed in Figure 3. More
specifically, a function is in normal form when:

• expressions do not contain internal calls to pure
functions (these calls are macro-expanded);

• the function starts with a single require statement,
which is the only one appearing in the function body;

• after the require, the rest of the function body is a
chain of conditional statements;

• each conditional block starts with a sequence of
transfer statements, followed by a single simul-
taneous assignment of all of the contract variables.
This assignment also defines auxiliary variables rep-
resenting the new contract balance after the transfers.

For example, the normal form obtained for the Test
contract is displayed in Figure 5. In the transformed
contract, we use the expression balance_pre(T) to de-
note the contract balance of token T before the function
call, and the auxiliary variable bal_T_fin to denote the
balance of T after the call. When in normal form, functions
are amenable to be translated into ILLUM clauses, since
the simultaneous assignments effectively specify the new
contract state as a function of the old state.

The HELLUM compiler transforms each function f

12

Contract HELLUM ILLUM
LoC B LoC B

Crowdfund 29 949 64 2150
Auction 31 772 52 1577

Payment splitter 37 1030 77 3183
Vault 39 984 90 4070

Automated Market Maker 40 1213 88 3642
Voting 42 1296 91 4519

Vesting wallet 44 1194 69 3360
Escrow 45 1359 99 3602

King of the hill 50 2062 69 4509
Blind auction 57 1742 86 5619
Lending pool 75 2062 132 6581

Lottery 78 2297 136 6401

TABLE 1: Benchmark of smart contracts in HELLUM,
displaying lines of code (LoC) and size in bytes (B).

into two ILLUM clauses, called f_run and f_next. The
clause f_run is used to take the parameters of f and run
the function body. It has one branch for each conditional
branch of f: these branches are enabled by the same
conditional guards, and perform the payments alongside
with calling f_next with the updated state passes as pa-
rameter. The funding precondition of f_run is computed
taking into account the input modifiers, as well as the
expression enclosed in the require statement.

The clause f_next allows the execution to continue
by calling one of the contract functions, as constrained by
the next modifier in the HELLUM function f. To this
purpose, f_next has one branch for each of the possible
continuation functions. The branches of f_next use the
ILLUM decorators to implement the behaviour of the auth
and after modifiers of the called HELLUM function.

The output of the compiler on the Test contract is dis-
played in Figure 6, where we use the concrete ILLUM syn-
tax supported by the compiler. There, we can observe how
the clause f_run contains a process with two branches,
one for each conditional branch in Figure 5. Both of these
branches call the Check clause so to enable the whole
call if and only if the corresponding conditional branch
in HELLUM would be taken. The clause Check requires
in its precondition that its argument is true, so blocking
the f_run branches which do not correspond to the HEL-
LUM execution. The ILLUM branches call clause Pay
to transfer the assets according to the a.transfer(...)
commands found in the corresponding conditional branch
of f in Figure 5. Finally, each branch calls f_next passing
the updated state in the parameters.

The correctness of the compilation from HELLUM to
ILLUM is straightforward. First, the code transformations
used to bring the HELLUM contract in normal form,
detailed in Appendix I, are standard and clearly preserve
the semantics of contracts. Second, the ILLUM contract
clauses are generated precisely following the simple struc-
ture of the obtained normal form, so their semantics
is faithful to the original code by construction. Indeed,
we perform the same conditional checks in ILLUM, we
transfer the same tokens, and we we update the state
variables in the same way it is done by the simultaneous
assignment of the HELLUM normal form.

Evaluation. To evaluate the practicality of ILLUM as
a compilation target of higher-level contract languages,

clause f_run (x, bal_T ; y,a) {
precond_wallet : bal_T :T
precond_if : ((bal_T -y >10) && y >20) ||

(bal_T -y <=10)
process :

call (Check (bal_T -y >10) | Pay(a,bal_T -y,T) |
f_next ((bal_T -y)+1,y))

call (Check (bal_T -y <=10) | f_next (bal_T -y, bal_T
))

}
clause f_next (x, bal_T ;) {

precond_wallet : bal_T :T
precond_if : true
process :

call f(x, bal_T)
call g(x, bal_T)

}
clause g_run (x, bal_T ;) {

precond_wallet : bal_T :T
precond_if : true
process :

call g_next (x, bal_T)
}
clause g_next (x, bal_T ;) {

precond_wallet : bal_T :T
precond_if : true
process :

call f(x, bal_T)
call g(x, bal_T)

}
clause Pay(a,v,t;) {

precond_wallet : v:t
precond_if : true
process :

send (v:t -> a)
}
clause Check (b;) {

precond_wallet :
precond_if : b
process :

send ()
}

Figure 6: Translation of the Test contract in ILLUM.

we construct a benchmark of smart contracts. The bench-
mark comprises common use cases, like e.g. those in the
OpenZeppelin library of Solidity contracts. Besides that,
we also include more complex contracts like those found
in DeFi: in particular, we implement a constant-product
Automated Market Maker (AMM) and a Lending Pool.
All the contracts in our benchmark are implemented in
HELLUM, and automatically translated into ILLUM by
our prototype compiler. Table 1 shows the size (LoC and
bytes) of the HELLUM contracts and of the correspond-
ing ILLUM clauses. Despite the compilation into ILLUM
produces just a 2x-3x expansion in the size, the ILLUM
code is inherently less readable than the original HEL-
LUM contract, as usual for intermediate-level languages.

8. Related work

Intermediate languages have already been studied that,
like our ILLUM, can serve as a compilation target of high-
level smart contract languages. SCILLA [26] is an inter-
mediate language that targets account-based blockchains
and is executed natively by the Zilliqa blockchain. SCILLA
has an imperative core featuring loop-free statements (with
operators to update state variables and transfer assets), and
a higher-order functional core with structural recursion
on lists and naturals. This gives a form of iteration, and
consequently requires the underlying blockchain to imple-
ment a gas mechanism to thwart denial-of-service attacks.
Instead, in ILLUM every operation has a bounded compu-

13

https://docs.openzeppelin.com/contracts

tational cost, thus eliminating the need for a gas mecha-
nism. Nonetheless, ILLUM achieves Turing-completeness
by spreading complex computations across multiple basic
actions. The goals of SCILLA and ILLUM are different:
SCILLA is meant to be directly interpreted by blockchain
nodes, while ILLUM is meant to be compiled to a lower-
level script language, demanding for a weaker runtime
support from the underlying blockchain.

In the UTXO realm, a variety of contract languages
have been proposed, starting from Bitcoin Script [27],
a low-level, stack-based language that is interpreted by
Bitcoin nodes. Since writing spending conditions directly
in Bitcoin Script can be quite complex, a few languages
have been proposed to relieve programmers from this task,
like Simplicity [28] and Miniscript [29]. Although these
languages allow for representing Bitcoin scripts in a more
structured and human-readable manner, they do not make
writing contracts in Bitcoin much easier (except for basic
single-transaction use cases). In general, Bitcoin contracts
take the form of protocols where participants exchange
messages and send transactions to the blockchain [30].
The languages [28], [29] however can only specify the
individual transactions used in these protocols, and not
the overall global contract. BitML [31] is a higher-level
language that allows to specify global contracts and com-
pile them to sets of Bitcoin transactions. To be compliant
with the strict constraints of Bitcoin, the expressive power
of BitML is limited to contracts with bounded execution
lengths. This rules out relevant use cases, like e.g. the
auction in Section 2 and the crowdfunding in Section 7,
which allow for an unbounded number of steps. The
work [32] enhances the expressiveness of BitML with a
weak form of recursion: each recursive step can only be
performed with the approval of all participants. In ILLUM
instead recursion is unconstrained: participants cannot
prevent an enabled recursion step from happening. This
expressiveness gain comes at a cost, in that ILLUM cannot
be compiled into standard Bitcoin transactions. Executing
ILLUM on Bitcoin would be possible by extending Bitcoin
Script with covenants, in a form that is just a bit more
expressive than a recently proposed covenant opcode [33].

To overcome the expressiveness limitations of the
Bitcoin UTXO model, the Cardano blockchain extends it
with some additional functionalities [34], [35]: (i) special
transaction fields to store contract state; (ii) a mechanism
to preserve contract code along chains of transactions;
(iii) native custom tokens [36]; (iv) an expressive scripting
language [14]. The first three functionalities are present
also in our UTXO model: in particular, we use arg fields
to encode the contract state, and covenants to preserve the
contract code. The main difference between our UTXO
model and Cardano’s is the scripting language. Cardano’s
scripting language is an untyped lambda calculus enriched
with built-in functions to interact with the blockchain. This
makes Cardano scripts Turing-complete, and consequently
requires a complex runtime environment (including a gas
mechanism). Our scripts instead are not Turing-complete,
but still our contracts are such, as shown in Section 3.
Existing smart contract languages for Cardano (e.g., Plu-
tus, Aiken), although based on high-level languages (i.e.,
Haskell), impose a low-level programming style for smart
contracts, requiring developers to reason at the level of
transactions, not too distantly from the awkward UTXO

programming style exemplified in Section 2.2. Program-
ming in this style is inherently more complex than us-
ing higher-level procedural languages, which are main-
stream in the blockchain developers community. Indeed,
in existing Cardano languages, performing a contract
action amounts to replacing the old state with a new
one (i.e., spending some transaction outputs with a new
transaction). Accordingly, programming a contract action
amounts to verifying through the redeem scripts that the
new state is a correct update of the old one, checking mul-
tiple transaction fields that encode the contract state. This
programming style is quite burdensome, since forgetting
even a single check may give rise to vulnerabilities (e.g.,
adversaries could be able to set a data field of the new state
to a value at their choice). To the best of our knowledge,
we are the first to propose a practical procedural high-level
language for smart contracts that can be automatically
compiled to UTXO blockchains.

Our UTXO model can be implemented efficiently.
Most operators of our scripting language are borrowed
from Bitcoin Script, which is interpreted very efficiently
by Bitcoin nodes. Implementing arg fields and the opcodes
to access them poses no challenge. Covenants, both of
kind verscr and verrec, can be implemented by exploiting
a mechanism similar to “Pay to Script Hash” in Bit-
coin [37], which stores in the scr field the hash of the
script, instead of the script itself. For the verscr covenant,
we would specify the hash h of the script (rather than
the script) in the first argument: then, verscr(h, i) would
simply check that the hash in rtxo(i).scr is equal to h.
Similarly, the verrec(i) covenant would check that the
hash in rtxo(i).scr is equal to the hash in the current script,
ctxo.scr. Both checks can be done very efficiently, as one
just needs to compare two hashes. A further optimization
can be achieved by exploiting Taproot [38], a mechanism
allowing users to reveal the parts of the contract (clause
branches) only when they are executed. This decreases
the size of witnesses that must be included along with
transactions, which in turn decreases the transaction fees.

One of the main advantages of UTXO blockchains
over account-based ones is the possibility of parallelizing
transaction validation over multiple cores. Indeed, there
is an easy criterion to determine if two UTXO trans-
actions are parallelizable, i.e. checking that their inputs
are disjoint. Instead, in account-based blockchains two
transactions, even targeting different contracts, may read-
/write the same part of the state, e.g. when they update
the same account. A few works study how to overcome
this limitation: some of them exploit dynamic techniques
adopted from software transactional memory [6], [39]–
[41], while some others are based on the static analysis
of contracts [7], [42]. In particular, [6] provides empirical
evidence about the effectiveness of parallelizing transac-
tion execution in Ethereum, showing an overall speedup of
1.33x for miners and 1.69x for validators, using only three
cores, based on a benchmark of representative contracts.

Acknowledgments. Work partially supported by
projects PRIN 2022 DeLiCE (F53D23009130001)
and SERICS (PE00000014) under the MUR National
Recovery and Resilience Plan funded by the European
Union – NextGenerationEU.

14

References

[1] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz,
and W. J. Knottenbelt, “SoK: Decentralized Finance (DeFi),” 2021.

[2] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F. Wang,
“Decentralized Autonomous Organizations: Concept, model, and
applications,” IEEE Trans. Comput. Soc. Syst., vol. 6, no. 5, pp.
870–878, 2019.

[3] “Defillama: Total value locked,” https://defillama.com, 2024.

[4] I. Sergey and A. Hobor, “A concurrent perspective on smart
contracts,” in Financial Cryptography Workshops, ser. LNCS, vol.
10323. Springer, 2017, pp. 478–493.

[5] L. Brünjes and M. J. Gabbay, “UTxO- vs account-based smart con-
tract blockchain programming paradigms,” in ISoLA, ser. LNCS,
vol. 12478. Springer, 2020, pp. 73–88.

[6] T. D. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding
concurrency to smart contracts,” in ACM Symposium on Principles
of Distributed Computing (PODC). ACM, 2017, pp. 303–312.

[7] M. Bartoletti, L. Galletta, and M. Murgia, “A theory of transaction
parallelism in blockchains,” Log. Methods Comput. Sci., vol. 17,
no. 4, 2021.

[8] S. Eskandari, S. Moosavi, and J. Clark, “SoK: Transparent Dishon-
esty: Front-Running Attacks on Blockchain,” in Financial Cryptog-
raphy. Springer, 2020, pp. 170–189.

[9] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov,
L. Breidenbach, and A. Juels, “Flash boys 2.0: Frontrunning in
decentralized exchanges, miner extractable value, and consensus
instability,” in IEEE Symp. on Security and Privacy. IEEE, 2020,
pp. 910–927.

[10] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain ex-
tractable value: How dark is the forest?” in IEEE Symp. on Security
and Privacy. IEEE, 2022, pp. 198–214.

[11] “Flashbots transparency dashboard: REV activities since the
Merge,” 2023, available at https://transparency.flashbots.net/. Ac-
cessed: 2023-09-20.

[12] N. Atzei, M. Bartoletti, S. Lande, and R. Zunino, “A formal model
of Bitcoin transactions,” in Financial Cryptography, ser. LNCS,
vol. 10957. Springer, 2018, pp. 541–560.

[13] N. Atzei, M. Bartoletti, S. Lande, N. Yoshida, and R. Zunino,
“Developing secure Bitcoin contracts with BitML,” in ESEC/FSE,
2019.

[14] Plutus Team, “Formal specification of the PlutusCore language,”
2022. [Online]. Available: https://aiken-lang.org/resources/plutus-
core-specification.pdf

[15] D. Perez and B. Livshits, “Broken Metre: Attacking resource
metering in EVM,” in Annual Network and Distributed System
Security Symposium, NDSS. The Internet Society, 2020.

[16] M. Bartoletti, S. Lande, and R. Zunino, “Bitcoin covenants un-
chained,” in ISoLA, ser. LNCS, vol. 12478. Springer, 2020, pp.
25–42.

[17] M. Möser, I. Eyal, and E. G. Sirer, “Bitcoin covenants,” in Finan-
cial Cryptography Workshops, ser. LNCS, vol. 9604. Springer,
2016, pp. 126–141.

[18] R. O’Connor and M. Piekarska, “Enhancing Bitcoin transactions
with covenants,” in Financial Cryptography Workshops, ser. LNCS,
vol. 10323. Springer, 2017.

[19] M. Patrignani, A. Ahmed, and D. Clarke, “Formal approaches to
secure compilation: A survey of fully abstract compilation and
related work,” ACM Comput. Surv., vol. 51, no. 6, pp. 125:1–
125:36, 2019.

[20] C. Abate, R. Blanco, D. Garg, C. Hritcu, M. Patrignani, and
J. Thibault, “Journey beyond full abstraction: Exploring robust
property preservation for secure compilation,” in IEEE Computer
Security Foundations Symposium (CSF), 2019, pp. 256–271.

[21] M. Bartoletti, R. Marchesin, and R. Zunino, “Secure compilation
of rich smart contracts on poor UTXO blockchains,” CoRR,
vol. abs/2305.09545, 2023. [Online]. Available: https://doi.org/10.
48550/arXiv.2305.09545

[22] P. C. Fischer, A. R. Meyer, and A. L. Rosenberg, “Counter
machines and counter languages,” Mathematical systems theory,
vol. 2, no. 3, pp. 265–283, 1968.

[23] M. Bartoletti, S. Lande, and R. Zunino, “Computationally sound
Bitcoin tokens,” in IEEE Computer Security Foundations Sympo-
sium (CSF), 2021, pp. 1–15.

[24] Solidity Academy, “#100DaysOfSolidity #073: Understanding de-
nial of service attacks in Solidity smart contracts,” 2023. [Online].
Available: https://medium.com/@solidity101/100daysofsolidity-
073-understanding-denial-of-service-attacks-in-solidity-smart-
contracts-a790de3d0943

[25] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
Ethereum smart contracts (SoK),” in Principles of Security and
Trust, ser. LNCS, vol. 10204. Springer, 2017, pp. 164–186.

[26] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and
K. C. G. Hao, “Safer smart contract programming with Scilla,”
Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp. 185:1–
185:30, 2019.

[27] Bitcoin Wiki, “Bitcoin Script,” https://en.bitcoin.it/wiki/Script,
2014.

[28] R. O’Connor, “Simplicity: A new language for blockchains,” in
PLAS, 2017. [Online]. Available: http://arxiv.org/abs/1711.03028

[29] P. Wuille and A. Poelstra, “Miniscript: Streamlined Bitcoin
scripting,” https://medium.com/blockstream/miniscript-bitcoin-
scripting-3aeff3853620, 2019.

[30] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino, “SoK:
unraveling Bitcoin smart contracts,” in POST, ser. LNCS, vol.
10804. Springer, 2018, pp. 217–242.

[31] M. Bartoletti and R. Zunino, “BitML: a calculus for Bitcoin smart
contracts,” in ACM CCS, 2018.

[32] M. Bartoletti, S. Lande, M. Murgia, and R. Zunino, “Verifying
liquidity of recursive Bitcoin contracts,” Log. Methods Comput.
Sci., vol. 18, no. 1, 2022.

[33] J. Rubin, “CHECKTEMPLATEVERIFY,” 2020, BIP 119, https:
//github.com/bitcoin/bips/blob/master/bip-0119.mediawiki.

[34] M. M. T. Chakravarty, J. Chapman, K. MacKenzie, O. Melkonian,
M. P. Jones, and P. Wadler, “The extended UTXO model,” in
Financial Cryptography and Data Security Workshops, ser. LNCS,
vol. 12063. Springer, 2020, pp. 525–539.

[35] Cardano, “EUTXO handbook,” https://ucarecdn.com/3da33f2f-
73ac-4c9b-844b-f215dcce0628/EUTXOhandbook for EC.pdf,
2022.

[36] M. M. T. Chakravarty, J. Chapman, K. MacKenzie, O. Melkonian,
J. Müller, M. P. Jones, P. Vinogradova, P. Wadler, and J. Zahnent-
ferner, “UTXOma: UTXO with multi-asset support,” in ISoLA, ser.
LNCS, vol. 12478. Springer, 2020, pp. 112–130.

[37] G. Andresen, “Pay to Script Hash,” 2012, BIP 16, https://github.
com/bitcoin/bips/wiki/Comments:BIP-0016.

[38] A. T. Pieter Wuille, Jonas Nick, “Taproot: SegWit version 1
spending rules,” 2020, BIP 341, https://github.com/bitcoin/bips/
blob/master/bip-0341.mediawiki.

[39] T. D. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding
concurrency to smart contracts,” Bulletin of the EATCS, vol. 124,
2018.

[40] P. S. Anjana, S. Kumari, S. Peri, S. Rathor, and A. Somani, “An
efficient framework for optimistic concurrent execution of smart
contracts,” in Euromicro Int. Conf. on Parallel, Distributed, and
Network-Based Processing (PDP), 2019, pp. 83–92.

[41] V. Saraph and M. Herlihy, “An empirical study of speculative con-
currency in Ethereum smart contracts,” in Tokenomics, ser. OASIcs,
vol. 71. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020,
pp. 4:1–4:15.

[42] G. Pı̂rlea, A. Kumar, and I. Sergey, “Practical smart contract
sharding with ownership and commutativity analysis,” in ACM
SIGPLAN International Conference on Programming Language
Design and Implementation. ACM, 2021, pp. 1327–1341.

[43] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value
numbers and redundant computations,” in ACM Symposium on
Principles of Programming Languages (POPL). ACM Press,
1988, pp. 12–27.

15

https://defillama.com
https://transparency.flashbots.net/
https://aiken-lang.org/resources/plutus-core-specification.pdf
https://aiken-lang.org/resources/plutus-core-specification.pdf
https://doi.org/10.48550/arXiv.2305.09545
https://doi.org/10.48550/arXiv.2305.09545
https://medium.com/@solidity101/100daysofsolidity-073-understanding-denial-of-service-attacks-in-solidity-smart-contracts-a790de3d0943
https://medium.com/@solidity101/100daysofsolidity-073-understanding-denial-of-service-attacks-in-solidity-smart-contracts-a790de3d0943
https://medium.com/@solidity101/100daysofsolidity-073-understanding-denial-of-service-attacks-in-solidity-smart-contracts-a790de3d0943
https://en.bitcoin.it/wiki/Script
http://arxiv.org/abs/1711.03028
https://medium.com/blockstream/miniscript-bitcoin-scripting-3aeff3853620
https://medium.com/blockstream/miniscript-bitcoin-scripting-3aeff3853620
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://ucarecdn.com/3da33f2f-73ac-4c9b-844b-f215dcce0628/EUTXOhandbook_for_EC.pdf
https://ucarecdn.com/3da33f2f-73ac-4c9b-844b-f215dcce0628/EUTXOhandbook_for_EC.pdf
https://github.com/bitcoin/bips/wiki/Comments:BIP-0016
https://github.com/bitcoin/bips/wiki/Comments:BIP-0016
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

A. Symbolic model of ILLUM contracts

In this appendix we fully define the symbolic model.
We start with the syntax of contracts, clauses and config-
urations. We will then define the semantics of ILLUM as
a state transition system in Figure 8.

Notation. To improve readability, in the appendices we
slightly simplify the model presented in the main text.
First, we assume a single type of token. From a technical
standpoint, handling multiple tokens would just require
to change the semantics so that sums of values become
sums of sequences of tokens. We prefer to omit this,
as it would bloat an already heavy notation. We also
simplify the arithmetic of the blockchain. In particular,
we assume integers to be the only numerical data type.
This restricts the arithmetic operations that are possible
in contracts. Again, having rationals and divisions can be
done without changing the fundamental theory developed
in these appendices. We also omit mappings, since they
are not strictly needed in the definition of the compiler,
and could be easily added to the model. Lastly, we adopt
a different notation in the naming of the internal and
external parameters of a clause: instead of the In and
Ex , hereafter we use α and β. Actual values passed to
clauses are also changed from In to a and from Ex to b.

Syntax of expressions. Before introducing the terms of
ILLUM’s symbolic model, we define the syntax of expres-
sions. First we have arithmetic expressions E, defined as:

E ::= k (constants)
| α, β (variables)
| |E| (size)
| E + E
| E − E
| H(E) (hash)
| if p then E else E

Then there are name expressions N, defined as:

N ::= A (names) | α, β (variables)

We also define boolean expressions, or conditions as

p ::= true | not p | p and p | E = E | N = N | E < E

In the following, we will also freely use other boolean
operations that can be derived from the ones listed above.

Definition 4 (Contracts). The syntax of contracts is:

C ::=
∑

i∈I D i contract

D ::= contract branch
call (· · · , Xi⟨Pi;?⟩, · · ·) call to clauses X1 · · · Xn

| send (· · · , Ei → Ni · · ·) transfer Ei to each Ni

| N :D wait for N authorization
| after E :D wait until time E
| afterRel E :D wait E after activation

where Pi is a sequence of arithmetic expressions E and
name expressions N. We also assume that:
(i) each recursion variable has a unique defining equa-

tion X(α;β) = {E if p} C , with the syntax below;

(ii) the sequence of expressions Pi passed to a called
clause X matches, in length and typing, the sequence
of formal parameter α of formal parameters;

(iii) the order of decorations is immaterial, for instance
A : after t :D is identified with after t :A :D .

Definition 5 (Clauses). A clause is defined by an equation

X(α;β) = {E if p} C .

where {E if p} is the funding precondition and C is a
contract. The clause takes two sequences of parameters
α and β. Parameters are of two types: integers and
participants, and we will assume that in the sequences all
integer parameters precede participants. We ask that the
only variables in E, and in all the expressions contained
in C and p, are the ones taken as parameters by X.

The term {E if p} gives conditions that must hold
in order to activate C . In particular, E denotes the amount
of tokens that must be stored in C . These tokens will be
taken both from the calling contract, and from additional
deposits. The proposition p is a predicate on the actual
values that are passed to the clause at call time. If p is
not satisfied then the clause cannot be called, and C will
not be activated. When p = true, we simply write {E} C .

Evaluation and closed form. We specify below the sub-
stitution of actual values for parameters. By substituting
the parameters of a clause X with two sequences of actual
values a and b (with ai ∈ Z∪Part, and bi ∈ Z∪Part∪{∗})
we produce an instantiated clause, denoted with X⟨a;b⟩.
We define a relation X⟨a;b⟩ ≡ {v} C ′ that holds iff no
bj is equal to ∗ and the following conditions hold:
(i) The actual values are well-typed, i.e. the types of a

and b match the ones of α and β respectively. In
particular, there must be ∗ among the elements of b.

(ii) JE{a/α, b/β}K = v;
(iii) Jp{a/α, b/β}K = true;
(iv) JC {a/α, b/β}K = C ′.

Here, writing a/α means that we replace every pa-
rameter αi in the expression with the value ai, and J·K is
a simple evaluation operator that performs all arithmetic
and logic operations present in an expression. Notice that,
after the evaluation, every expression inside C ′ is reduced
to an constant. Such a contract is said to be in closed form.
Unless specified otherwise, from this point onward we will
be working with contracts in closed form.

Definition 6 (Configurations). A configuration Γ is a term
Γ̃ | t | D(w), where t ∈ N denotes the time, D(w) is the
destroyed funds counter, and Γ̃ has the following syntax:

Γ̃ ::= ∅ empty
| ⟨C , v⟩tx active contract
| ⟨A, v⟩x deposit
| Φ complete advertisement
| Θ incomplete advertisement
| A[χ] authorization

| Γ̃ | Γ̃ parallel composition

We also assume that (i) parallel composition is associative
and commutative; (ii) all parallel terms are distinct and
names are never repeated; (iii) all contracts C appearing
in a configuration are in closed form.

16

Γ contains ⟨A, v1⟩z1 and ⟨A, v2⟩z2
Γ

auth−join(A,z1,z2,i)−−−−−−−−−−−−−→ Γ | A[z1, z2, i▷ v1 + v2]

Γ = Γ′ | A[z, z′ ▷ v + v′] | A[z, z′ ▷ v + v′] y fresh

Γ | ⟨A, v⟩z | ⟨A, v′⟩z′
join(x,y)−−−−−→ Γ′ | ⟨A, v + v′⟩y

Γ contains ⟨A, v + v′⟩z

Γ
auth−divide(A,z,v,v′)
−−−−−−−−−−−−−−→ Γ | A[z ▷ v, v′]

Γ = Γ′ | A[z ▷ v, v′] y, y′ fresh

Γ | ⟨A, v + v′⟩z
divide(z,v,v′)
−−−−−−−−→ Γ′ | ⟨A, v⟩y | ⟨A, v′⟩y′

Γ contains ⟨A, v⟩z
Γ

auth−donate(A,z,B)−−−−−−−−−−−−→ Γ | A[z ▷ B]

Γ = Γ′ | A[z ▷ B] y fresh

Γ | ⟨A, v⟩z
donate(z,B)−−−−−−−→ Γ′ | ⟨B, v⟩y

Figure 7: Semantics of ILLUM deposits.

Active contracts. An active contract is a term ⟨C , v⟩tx.
It is uniquely identified by its name x, and it represents
an amount of v tokens (its balance) that can only be spent
according to the conditions set by one of C ’s branches.
The integer t is the time when the contract has been added
to the configuration. We assume C to be in closed form.

Deposits. The terms ⟨A, v⟩x in a configuration, called
deposits, are uniquely identified by their name x, and
represent an amount v of tokens owned by participant
A. The owner of a deposit is the only one who can
provide the authorization to spend it. Figure 7 defines the
semantics of deposits: ⟨A, v⟩x can be donated to another
participant, split into two smaller deposits, or merged with
another one. Moreover, a deposit can be spent to fund the
activation of a new contract, or the execution of a contract
step. Deposit can be destroyed. In this case the destroyed
tokens are added to a counter D(w), which keeps track of
the tokens that was stored in a deposit which the owner
has decided to destroy, denoting with w ∈ N the total.
We assume that only dishonest participants can spend the
tokens in the counter, and that they can do so freely,
without the need to produce any authorization term.

Advertisements (general). Some actions, in particular
the ones related to contracts, require to be advertised
before they can be performed, meaning that a participants
who wants to execute them has to inform the others by in-
troducing an advertisement term in the configuration. Such
terms can be of two kinds: either complete or incomplete.
An incomplete advertisement Θ is only used as a message,
while the complete term Φ is also needed by the semantics
in order to carry on certain actions, as we will see in
the next section. As a result, incomplete advertisement
have the option of leaving some features unspecified. The
actions that can be advertised are the following: (i) the
activation of a new contract; (ii) the continuation of an
active contract; (iii) the destruction of a set of deposits. In
the following paragraphs we will describe precisely how
each of the three term is structured. The main focus will be

the definition of complete advertisement, and, after that,
we will mention what are the parts can be left unspecified
to obtain the incomplete version.

Advertisement (initial). A complete initial advertise-
ment is a term Φ = [X⟨a;b⟩ ; z ;w]h, where X⟨a;b⟩
presents the proposed contract and its parameters, z is a
non empty list of deposit names (that will be spent to
fund the initialization), and w ∈ N ∪ {⋆} is the amount
of destroyed funds that are going to be taken from D and
used in the initialization. Here ⋆ is a special symbol that
means no currency is taken from the counter: it will be
treated as 0 in arithmetical operations 2. The subscript
h ∈ N is just a nonce, used to differentiate two otherwise
identical terms. In an initial advertisement the clause X
must have its precondition p equal to true. This is a
technical requirement, added to simplify the language
implementation, but it can also be justified intuitively:
since the contract is not yet started, if the participants
want the arguments to satisfy some proposition p, they can
simply choose to initiate a different contract. In a complete
advertisement the special symbol ∗ must not appear in the
parameters β passed to the clause.

Advertisements (continuation). When a configuration
contains an active contract ⟨C , v⟩tx, a participant that
wants to execute D , the j-th branch of x, will produce
the advertisement term Φ =

[
D̄ ; z ;w ; (x,j)

]
h

. Like in
the previous case, z and w are used to specify the source
of additional funds used in the continuation action (here
we also allow z to be an empty list); and h ∈ N is again
a nonce. The term D̄ is called advertised branch, and it
needs a more detailed presentation. D̄ is constructed by
taking a branch D while replacing the question marks ?
inside a call termination with actual values bj which
can be freely chosen by the participant producing the
advertisement term. We will identify D̄ and D̄ ′ if one can
be obtained from the other by exchanging the decorations’
order. Notice that, since every active contract is in closed
form, the only expressions appearing inside D̄ will be
constants. To denote that D̄ has been constructed starting
from D we write D̄ ≈ D . The terms D̄ have the syntax:

D̄ ::= send (v1 → A1 · · · vn → An)

| call (X1⟨a1;b1⟩ · · · Xn⟨an;bn⟩)
| A : D̄ | after t : D̄ | afterRel δ : D̄

with aij ∈ Z ∪ Part and bij ∈ Z ∪ Part ∪ {∗}.

Advertisements (destruction). A destruction advertise-
ment Φ = [z ;w]h is produced when one wants to remove
some deposits from the configuration, adding their value
to the destroyed funds counter. Here z is a nonempty
list of the deposit names that are going to be destroyed,
w ∈ N∪{⋆} is an amount of funds from the counter, h is
a nonce that differentiates two otherwise identical terms.

2. In a configuration an advertisement term with w = ⋆ behaves
identically to one with w = 0. The only difference between the two
terms is that honest participants will only be allowed to produce terms
that have w = ⋆. We address the reason behind the use of ⋆ when
comparing the symbolic model with the computational one.

17

Incomplete advertisements. In an incomplete adver-
tisement term Θ some informations may be left unspeci-
fied. Again, we have three types of advertisements: (i) Ini-
tial, with Θ = [X⟨a;b⟩ ; z ;w]. Here some of the values
βi may be equal to ∗, the sequence z may be empty,
and w can also take the value ∗. (ii) Continuation, with
Θ =

[
D̄ ; z ;w ; (x,j)

]
. Similarly to the case above,

w can be set equal to ∗, and values bj inside call
operations in D̄ can also be set to ∗. (iii) Destruction,
with Θ = [z ;w], where we allow w to be equal to ∗.

Validity of advertisements. We now define validity
of an advertisement, which must hold for an advertised
operation to be performed. Mainly, validity checks that
all the terms in the advertisement actually occur in the
configuration. Remember that the value ⋆ is treated as a
0 in all arithmetic operations. A complete advertisement
Φ is valid in Γ if one of the following holds:

• (Initial) Φ = [X⟨a;b⟩ ; z ;w]h, where X⟨a;b⟩ ≡
{v} C , and the configuration Γ contains deposits
⟨Aj , uj⟩zj and the counter D(w′), with w′ ≥ w and∑

j uj + w ≥ v ≥ 0.
• (Continuation) Φ =

[
D̄ ; z ;w ; (x,j)

]
h

, and the
following conditions hold: (i) the configuration con-
tains the deposits ⟨Aj , uj⟩zj , the contract ⟨C , v⟩tx,
and D(w′) with w′ ≥ w; (ii) The j-th branch
of C is a D such that D̄ ≈ D ; (iii) the time
t in Γ is greater than all ti appearing in after
decorations of D̄ , and t − t0 is greater than all δi
appearing in afterRel decorations of D̄ ; (iv) if
D̄ ends in send (v1 → A1, · · · vn → An) then we
must have

∑
j uj + w + v ≥

∑
i vi; (v) if instead

D̄ ends in call (X1⟨a1;b1⟩, · · · , Xn⟨an;bn⟩) then
there must be vi ≥ 0, and C i such that for every
i = 1 · · ·n we have Xi⟨ai;bi⟩ ≡ {vi} C i, and∑

j uj + w + v ≥
∑

i vi;
• (Destruction) Φ = [z ;w]h and the configuration Γ

contains the deposits zj , and D(w′) with w′ ≥ w.

Authorizations. Authorization are terms of the form
A[χ], where A is the authorizer, and χ = · · · ▷ · · ·
has a LHS that denotes what is being authorized, and
a RHS denoting the authorized action. Authorizations
are required for all deposit actions (joining, dividing or
donating deposit), and for spending the deposits in an
advertised action. Lastly, some contract branches may
require a participant authorization:

1) z ▷Φ, where z is a deposit, is used to authorize the
use of z to fund the action advertised by Φ.

2) x ▷ Φ, where x is a contract and Φ =[
A : D̄ ; z ;w ; (x,j)

]
h

, is used to authorize the
execution of the j-th branch of x, satisfying the
decoration A : · · ·.

3) z1, z2, i ▷ v1 + v2 is used to authorize the use of
deposit ⟨A, vi⟩zi in a join operation with another de-
posit zj of value vj (we have i ̸= j and i, j ∈ {1, 2}).

4) z ▷ v, v′ is used to authorize the splitting of deposit
⟨A, v + v′⟩z into two, of value v and v′ respectively.

5) z ▷ B is used to authorize the transfer of deposit
⟨A, v⟩z to a participant B. If χ = z ▷ Φ, the
authorization allows to use the deposit z to fund the
action advertised by Φ.

Time. A configuration Γ keeps track of time by simply
including an integer t. This term is used to check whether
a branch of an active contract decorated by after or
afterRel can be executed.

Definition 7 (Semantics). The operational semantics of
ILLUM is a labelled transition system between configura-
tions, defined by the rules in Figure 8.

Γ does not contain Θ

Γ
msg(Θ)−−−−→ Γ | Θ

Φ valid in Γ Γ does not contain Φ

Γ
adv(Φ)−−−−→ Γ | Φ

Γ contains Φ but not B[z ▷ Φ]

Φ valid in Γ and funded with deposit z

Γ
auth−in(B,z,Φ)−−−−−−−−−−→ Γ | B[z ▷ Φ]

Γ contains Φ but not A[x▷ Φ]

Φ =
[
D̄ ;z ;w ; (x,j)

]
h

valid in Γ D̄ ≈ A :D ′

Γ
auth−act(A,Φ)−−−−−−−−−→ Γ | A[x▷ Φ]

Φ = [X⟨a;b⟩ ;z ;w]h valid in Γ′ X⟨a;b⟩ ≡ {v} C

∆pre = Φ |
(
∥ j⟨Bj , uj⟩zj

)
|
(
∥ jBj [zj ▷ Φ]

)
Γ′ = (Γ | ∆pre | D(w′) | t)

init(Φ,x)−−−−−−→ Γ | ⟨C , v⟩tx | D((w′ − w)) | t

D = A1 : · · · :An :D ′ D ′ ̸= A :D ′′

Φ =
[
D̄ ;z ;w ; (x,j)

]
h

valid in Γ′ with D̄ ≈ D

D̄ ends in send (v1 → C1 · · · vm → Cm)

∆auth =
(
∥ lBl[zl ▷ Φ]

)
|
(
∥ kAk[x▷ Φ]

)
(if Ak = Ak′ the authorization only appears once)

∆dep =
(
∥ l⟨Bl, ul⟩zl

)
∆post =

(
∥ i⟨Ci, vi⟩yi

)
∆pre = Φ | ∆auth | ∆dep | ⟨C , v⟩tx y1 · · · ym fresh

Γ′ = (Γ | ∆pre | D(w′))
send(Φ)−−−−−→ Γ | ∆post | D((w′ − w))

D = A1 : · · · :An :D ′ D ′ ̸= A :D ′′

Φ =
[
D̄ ;z ;w ; (x,j)

]
h

valid in Γ′ with D̄ ≈ D

D̄ ends in call (X1⟨a1;b1⟩ · · · Xm⟨am;bm⟩)
and ∀i. Xi⟨ai;bi⟩ ≡ {vi} C i

∆auth =
(
∥ lBl[zl ▷ Φ]

)
|
(
∥ kAk[x▷ Φ]

)
(if Ak = Ak′ the authorization only appears once)

∆dep =
(
∥ l⟨Bl, ul⟩zl

)
∆post =

(
∥ i⟨C i, vi⟩tyi

)
∆pre = Φ | ∆auth | ∆dep | ⟨C , v⟩t0x y1 · · · ym fresh

Γ′ = (Γ | ∆pre | D(w′) | t)
call(Φ)−−−−→ Γ | ∆post | D((w′ − w)) | t

δ > 0

Γ | t delay(δ)−−−−−→ Γ | t+ δ

Figure 8: Semantics of ILLUM contracts.

18

e ::= v integer constant
| e ◦ e′ binary operations (◦ ∈ {+,−,=, <})
| e.n n-th element of a list
| rtxw witnesses of the redeeming tx input
| |e| size (in bytes)

| H(e) hash 3

| if e then e′ else e′′ conditional check
| versig(e, e′) signature verification
| absAfter e : e′ absolute time constraint
| relAfter e : e′ relative time constraint
| o.f field f ∈ {arg, val}

of o ∈ {ctxo, rtxo(e)}
| inidx index of redeeming tx input
| inlen(tx) number of inputs of tx ∈ {rtx, ctx}
| outlen(tx) number of outputs of tx ∈ {rtx, ctx}
| verscr(e, e′) checks if rtxo(e′).scr = e

| verrec(e) checks if rtxo(e).scr = ctxo.scr

Figure 9: Syntax of scripts.

B. Computational Model

In this appendix we present in more detail low level
model of the blockchain that serves as target of compila-
tion for ILLUM contracts.

Definition 8 (Transaction). A transaction T is defined as
a 5-uple (in, wit, out, absLock, relLock) where

• in is the list of inputs. Each element of in is a pair
(T′, i), where T′ is a transaction and i is an integer.

• wit is the list of witnesses. It has the same length as
in, and each element of wit is a list of integers.

• out is the list of outputs. Each output is a triple
(val, scr, arg), where arg is a list of integers, scr
is a script (its syntax will be specified in the next
paragraphs), and val is an integer.

• absLock is the absolute timelock, and it is a non
negative integer.

• relLock is the list of relative timelocks. It has the
same lenth as in and each of its elements is a non
negative integer.

Given l ∈ {in,wit, out, relLock}, we will use l(j) to denote
its j-th element. The lists in, wit, and relLock may be
empty; if that is the case we denote them with ⊥ and we
talk about an initial (or coinbase) transaction.

Definition 9 (Syntax of scripts). The scr field of a transac-
tion output has the syntax in Figure 9. There, the terms ctx
and rtx are used to denote the current and redeeming trans-
action respectively. Moreover, the term ctxo is used by a
script to refer to the current output (i.e. the one of which
it is the script); and the term rtxo(n), refers to the n-th
output of the redeeming transaction. In scr use some short-
hands for common logical operations, setting (i) true ≜
1, (ii) false ≜ 0, (iii) e and e′ ≜ if e then e′ else false,
(iv) not e ≜ if e then false else true, (v) e or e′ ≜
if e then true else e′.

Script evaluation. In order to determine if a transaction
can redeem an output, its script must be executed. For
this reason, we need to define an evaluation semantics for
scripts. We let J·K(T,i) be the evaluation operator, where T
is the redeeming transaction and i index of the redeeming
input. For ease of notation, in the following paragraphs
we will shorten J·K(T,i) to J·K, and implicitly assume that
T.in(i) is the redeeming input, unless specified otherwise.
We will also assume that the transaction that is being
redeemed is named T′, and that the redeemed output is its
j-th. Note that T′ and j can be determined from T and i,
since we have that

T′ = first(T.in(i)) and j = second(T.in(i)).

The evaluation yield ⊥ when a failure occurs (i.e. trying
to access the n-th element of a list with less than n terms).
All the operators in the script’s syntax are strict, meaning
that their evaluation yields ⊥ if one of their arguments
is ⊥. Here we highlight the behaviour of the evaluation
semantics on the non-trivial terms:

• JrtxwK evaluates to T.wit(i), which is the sequence
of witnesses associated to the redeeming input.

• Jversig(e, e′)K evaluates to true if the signature Je′K
is correctly verified on the hash of T∗ (which denotes
the transaction obtained by replacing the wit field
in T with ⊥) against the key JeK, and to false
otherwise.

• JabsAfter e : e′K evaluates to Je′K if the field absLock
of the redeeming transaction T is greater or
equal to JeK, otherwise it evaluates to ⊥. Simi-
lary, JrelAfter e : e′K evaluates to Je′K if the field
relLock(i) of T is greater or equal to JeK, otherwise
it fails, yielding ⊥.

• Jverscr(e, e′)K evaluates to true when the script of the
Je′K-th output of the redeeming transaction is equal
to JeK, otherwise it returns false.

• Jverrec(e)K evaluates to true when the JeK-th output
of the redeeming transaction is equal to the output
that is being redeemed, otherwise it returns false.

Until now we have discussed a lot about a transaction’s in-
put “redeeming” a certain output, without giving a proper
definition. Now that we have a semantics of script, we can
be more precise.

Definition 10 (Redeeming an output). We say that the
k-th input of a transaction T published at time t can
redeem the k′-th output of T′ published at time t′, and we
write (T′, k′, t′) ⇝ (T, k, t), if the following conditions
are verified:

1) T.in(k) = (T′, k′).
2) JT′.out(k′).scrK(T,k) = true.
3) t ≥ T.absLock
4) t− t′ ≥ T.relLock(i).

Finally, we may define the structure that keeps track
of all the transactions: the blockchain.

Definition 11 (Blockchain). A blockchain B is a sequence
of pairs (Ti, ti), such that the sequence of ti is nonde-
creasing. If (T, t) is an element of B we say that the
transaction T appears at time t in B. A blockchain is
said to be consistent if the following conditions hold:

1) The first pair in B is (T0, 0) with T0 initial, and this
is the only transaction appearing in the B.

19

2) If T appears in the blockchain at time t, and it is not
the first transaction, then each of its inputs redeems
an output of some transaction Tj , appearing in B at
an earlier time.

3) Every output of a transaction in B is referenced at
most once by an input of a later transaction.

4) If T is in B, and oj denotes the output referenced by
T.in(j), then we have∑

i

T.out(i).val ≤
∑
j

oj.val

Meaning that the sum of T outputs’ values must not
exceed the sum of its inputs’ values.

If B(T, t) is consistent then we say that (T, t) is a consis-
tent update to B. An output of a transaction appearing in
B is said to be spent if in the blockchain there appears a
transaction that redeems it. The set of unspent outputs is
denoted by UTXO(B), (and in general we will abbreviate
the expression “unspent transaction output” with UTXO).

Notice how, in this model, a consistent blockchain
presents only one initial transaction, meaning that mining
is not included in our computational model. We conclude
this section by defining deposit outputs: these are outputs
with a certain structure, and they will be useful to repre-
sent symbolic deposits in the computational model.

Definition 12 (Deposit output). An output o is said to be
a deposit output owned by A when it has exactly three
arguments, the following script

scr = versig(key(ctxo.arg3), rtxw.1),

and the third argument is equal to A.

C. The ILLUM compiler

In this appendix we give the full definition of the com-
piler, which is will allow us to encode symbolic contracts
as transaction outputs in the computational model. The
compiler will be formalized as a function that takes an
initial or continuation advertisement Φ and constructs a
transaction TΦ . First we will focus on the construction of
the output(s) of TΦ ; then we will spend a few words in
order to describe the various auxiliary inputs taken by the
compiler, which are used to construct the other fields of
TΦ . We will then conclude with the full definition of the
compiler Badv.

Constructing the outputs (general). As we mentioned,
we will be encoding contracts as transaction outputs.
Moreover, in our implementation, all contracts descending
from the same initial advertisement will share a common
script. We will be able to discern what specific contract
is being encoded in an output by looking at its arguments
arg, which the script will access in order to enforce
the correct execution path. If Φ is initial, then TΦ will
have a single output that represents the newly activated
contract; otherwise, if Φ is a continuation advertisement[
D̄ ; z ;w ; (x,j)

]
h

, then T will have multiple outputs,
either representing deposits (if D̄ ends with a send), or
contracts (if D̄ ends with a call).

Constructing the outputs (value). The value of
each output of TΦ is easily determined. If Φ =
[X⟨a;b⟩ ; z ;w]h is a valid initial advertisement, with
X⟨a;b⟩ ≡ {v} C , then the single output of TΦ

will have value v. If Φ =
[
D̄ ; z ;w ; (x,j)

]
h

is
a valid continuation advertisement, with D̄ ending in
call (X1⟨a1;b1⟩, · · · , Xn⟨an;bn⟩), and for each i =
1 · · ·n we have Xi⟨ai;bi⟩ ≡ {vi} C i, then TΦ will have
n outputs, and the i-th output will have value vi. Lastly,
if Φ is a valid continuation advertisement, with D̄ ending
in send (v1 → A1, · · · vn → An), then TΦ will have n
outputs, and the i-th output will have value vi.

Constructing the outputs (arguments). The value of
the arg field of TΦ will be determined differently de-
pending on the type of advertisement Φ. Here, we also
present the various names that we will give to arguments
to avoid having to refer to them only by their position in
the sequence.

If TΦ is compiled from an initial advertisement Φ =
[X⟨a;b⟩ ; z ;w]h, with then the first three element of its
arg field will be called nonce, branch and name. The first
is just a computational counterpart to the symbolic nonce
h that appears in Φ, and it gives us a way to force two
otherwise identical transactions to be distinct; the second
is just a dummy argument, used to make this case more
similar to the continuation case, and we will set it to 0;
the third is equal to X, the name of the clause that this
output will encode.

After those, there are two sequences of arguments αi

and βi, one for each parameter of the clause X(α;β): they
store the values ai, bi specified in Φ.

If instead the transaction is compiled from a contin-
uation advertisement Φ =

[
D̄ ; z ;w ; (x,j)

]
h

, with D̄
ending in call (X1⟨a1;b1⟩, · · · , Xn⟨an;bn⟩), then we
need to specify the sequence of arguments for each of its n
outputs. For each k ∈ {1, · · ·n}, the first three elements of
TΦ .out(k).arg are again denoted with nonce, branch and
name. nonce will again be the counterpart of h; branch
will be set to j, which denotes the branch of the “parent”
contract that this transaction is continuing; and name will
be Xk. Then, we have the αi and βi arguments, referring
to the parameters of the clause Xk. These will take the
values aki and bki specified in D̄ .

Lastly, if a transaction is compiled from a continua-
tion advertisement

[
D̄ ; z ;w ; (x,j)

]
h

, with D̄ ending in
send (v1 → A1, · · · , vn → An), then each of its n outputs
will only need three arguments: nonce, branch, and owner.
The value of the first two is set like in the previous case,
while the owner argument of the k-th output is set to Ak.

Notation for arguments and expressions. In the con-
struction of the script we will need to replace the pa-
rameters αi, βi appearing in the contract expressions E
with the respective arguments ctxo.αi, ctxo.βj. In order
to make the script more readable we denote this sub-
stitution with ctxo.E. For example if the contract has a
term after t : · · · with t = α1 + α2 + β1 + 3, we will
write ctxo.t instead of ctxo.α1 + ctxo.α2 + ctxo.β1 + 3.
Similarly, whenever an expression uses the arguments of a
redeeming transaction’s output, we denote it as rtxo(j).E.
This is less frequent, but needed when dealing with the
preconditions of a called clause.

20

Constructing the outputs (script). The construction of
the script is fully detailed in Section 4 of the main text.

Inputs of the compiler. What we have shown until now
is how the outputs are constructed starting from a given
advertisement term Φ. However, the compiler that we are
going to define does not only create the outputs, but an
entire transaction, which is the computational counterpart
of the symbolic advertisement. In order to do so, the
compiler will need to take some additional inputs. First,
we take two auxiliary parameters that give us information
about the state of the relationship between the symbolic
and the computational model, and help us check that the
transaction respects certain constraints. These are key,
which maps symbolic participants to their public key;
and txout, which maps names of contracts or deposits
in the current symbolic configuration to outputs (T, j)
in the blockchain. Moreover, we take four additional
parameters that will be used to construct certain fields
of the transaction. These are in, which is a non empty
list of outputs (T, j) that will be used to construct the
inputs of the transaction; t0, which is an integer used
to construct the absolute timelock; t, which is a list of
integers with the same length of in that will be used to
construct the relative timelocks; and nonce, a non empty
list of integers that will be used to construct the nonce
argument in each output.

Definition 13 (Compiler). Below we define the function
Badv, also known as compiler. This definition is structured
in two phases: first we show how to construct a transaction
T that is the “candidate output” of

Badv(Φ, txout,key, in, t0, t,nonce)

and then we check that it satisfies certain constraints. If it
does then T is the actual output, otherwise the compilation
fails and we output ⊥.

Construction.
• (Inputs) The k-th input of T is set to be equal to
ink = (Tk, jk).

• (Timelocks) The absolute timelock of T is set to be
equal to t0, while the k-th relative timelock is set to
be equal to tk.

• (Output - initial) If Φ = [X⟨a;b⟩ ; z ;w]h, then
T will only have one output. The output will have
3 + |a| + |b| arguments: we have name = X,
αi = ai, βi = bi, and the nonce argument is given by
nonce1.The output’s script is constructed as detailed
in the above paragraphs, and the output’s value is v,
where X⟨a;b⟩ = {v} C .

• (Outputs - call) If Φ =
[
D̄ ; z ;w ; (x,j)

]
h

, where
D̄ ends in call (X1⟨a1;b1⟩, · · · , Xn⟨an;bn⟩), with
Xk⟨ak;bk⟩ ≡ {vk} C k, then TΦ has n outputs. Let
in1 = (T1, j1): each of the n outputs of T will have
the same script as the j1-th output of T1. Moreover,
for each k, the k-th output of T will have arguments
nonce = noncek, name = Xk, branch = j, αi = aki ,
βi = bki , and value vk.

• (Outputs - send) If Φ =
[
D̄ ; z ;w ; (x,j)

]
h

, where
D̄ ends with send (v1 → A1, · · · , vn → An), then T
will have n outputs. For each k, the k-th output will
be a deposit output of value vk owned by Ak in the

sense of Definition 12. Its nonce argument will be
equal to noncek, and branch will be set to j.

Conditions. If one of the following is not satisfied then
the return value of Badv is set to be ⊥, otherwise it is T:

• If Φ is a continuation advertisement, then the first
input of T must be txout(x). Aside from that,
regardless of the type of advertisement, if Φ takes
as input the deposits z then among the inputs of T
there must appear (in order) the outputs txout(zj),
for all j = 1 · · · |z|. If w = ⋆ then T has no other
inputs. Otherwise, removing the inputs listed above
leaves a list of inputs without a symbolic counterpart
(i.e. not in ran txout) such that the amount of their
values is equal to w, the sum that Φ takes from the
destroyed funds counter.

• If Φ is a continuation advertisement, then T.absLock
must be greater than all t appearing in any after
decoration in D̄ . Similarly T.relLock(1) must be
greater than all δ appearing in any afterRel dec-
oration.

It’s important to notice that the compiler Badv does
not constructs a new transaction starting from an active
contract, but from that the advertisement that propose
it. This means that two active contracts that are equal
in the symbolic model, may correspond to transactions
with very different outputs. We can say that a transaction
will remember the whole “history” of a contract, while a
symbolic configuration only sees active contracts in the
“present”. In order to be able to talk, about the actual
contract that is being represented in a transaction output,
we give the following definition.

Definition 14 (Contract encoded by an output). Take an
output o of a compiler generated transaction and a clause
X such that X⟨a;b⟩ ≡ {v}C , and let kα, kβ be equal to
the lengths of a, b respectively. We say that the output o
encodes the contract ⟨C , v⟩, if it has a total of 3+kα+kβ
arguments, and the following equivalences hold:
(i) o.arg3 = X;
(ii) ∀i ∈ {1 · · · kα}. o.arg3+i = ai;
(iii) ∀i ∈ {1 · · · kβ}. o.arg3+kα+i = bi;

Notice, that just like deposit outputs, it may be that an
output “encoding a contract” does not actually correspond
to any active contract in the configuration. However, we
will show that if the computational run is coherent to
the symbolic run, then at every active contract in the
configuration will correspond a unique contract output in
the blockchain.

Destroyed funds. At this point, we have talked about
how contracts and deposits are represented in the com-
putational model, but there is a third term used by the
symbolic model to store currency: the destroyed funds
counter D(w), which must be handled in a different way.
There will not be a precise correspondence between D(w)
and some specific outputs: the value w will instead be an
approximate representation of every output that does not
encode a deposit nor a contract4.

4. More precisely, this is an approximation from above, as in the next
section will prove that the amount of currency stored in outputs that
do not encode deposits or contracts is lower or equal to the value w
specified by the counter.

21

The ⋆ symbol. Now that the concept of destroyed funds
has been clarified, we can address the difference between
choosing w = ⋆ and w = 0 in an advertisement term, and
show how the computational model justifies using these
two different terms in the symbolic setting.

By looking at the compiler’s definition (more precisely
at the first condition that the constructed transaction needs
to satisfy), we can see that if Φ has w = ⋆, then all the
inputs of TΦ will belong to the image of txout, meaning
that they all correspond to some symbolic structure (de-
posits in general, and a contract if Φ is a continuation
advertisement). Instead if Φ has w ̸= ⋆ then there is
at least one input that does not belong to ran txout. In
particular, if w = 0 this means that those additional inputs
have all value 0. This difference can be used to justify the
fact that if the symbolic strategy of an honest participants
may only choose an action that produces or consumes a
symbolic advertisement Φ if the term w inside of Φ is
equal to ⋆ (see the third condition of Definition 16).

This requirement is tied to the assumption that when-
ever a honest participant proposes an action, they want to
be sure that the currency it is funded with can actually
be spent. In this regard, deposit outputs do not pose any
problem: from the structure of the script a participant
knows that the output only needs the owner’s signature
in order to be spent. Instead, outputs that do not have
a symbolic counterpart may have an irredeemable script,
that prevents them from being spent. In the computational
model it might actually be very difficult to confirm if that
is indeed the case, but in the symbolic context it is outright
impossible. So, we simply assume that honest participants
will ignore these funds when proposing a contract.

D. Adversary model

We will now formalize the adversary model for IL-
LUM, defining symbolic runs, strategies and conformance.
We denote with Hon ⊆ Part the set of honest participants,
and with Adv /∈ Part the symbolic adversary. We will
assume that the adversary is able to control the choices
of all dishonest participants.

Randomness in symbolic strategies. As we will soon
see, in we will model the choices of participants as
probabilistic algorithms, which we construct by giving as
considering a deterministic algorithm that takes a random
sequence of bits as an additional input. When defining
strategies, we will assume that each honest participant
A will have access to their own seed rA , and that the
adversary has access to rAdv . We define a function r called
randomness source that associates to each participant (and
to the adversary) their random seed. Once the randomness
source is assigned, every probabilistic algorithm can be
seen as a deterministic one. With a slight notational abuse,
the random seed will be listed among the algorithms’
inputs only when we explicitly need it.

Definition 15 (Symbolic run). A symbolic run Rs is
a (possibly infinite) sequence of configurations Γi con-
nected by transition labels αi. The first configuration
in the sequence is called initial configuration and it is
Γ0 = ∆dep | t0 | D(0), where ∆dep only contains deposits

and t0 = 0. If Rs is finite we denote with ΓRs its last con-
figuration. A run is written as Rs = Γ0

α0−→ Γ1
α1−→ · · · .

Without loss of generality, we will assume that if an action
αi introduces a new symbolic name, then that name is
never used: not only in Γi (as the semantics requires), but
also in all the other previous configurations.

Definition 16 (Symbolic strategies). A symbolic strategy
Σs

A is a probabilistic polynomial time algorithm that takes
as input the symbolic run and outputs a finite set of
transition labels α, representing the actions that A wants
to perform in order to advance the run. The output of Σs

A
(i.e. the set of A’s choices) is subject to the following
constraints:

1) A must chose labels that are enabled by the se-
mantics. Formally this is expressed by saying that
if α ∈ Σs

A(R
s), then it exists Γ such that ΓRs

α−→ Γ.
2) A can not impersonate a different participant B and

forge their authorizations. In order to express this
formally, we first define AB , the set of labels that
express authorizations given by participant B, as

AB = { auth− in(B, ·, ·), auth− act(B, ·, ·),
auth− join(B, ·, ·, ·), auth− divide(B, ·, ·, ·),
auth− donate(B, ·, ·) }.

Then, we have that if α ∈ Σs
A(R

s) ∩AB , then B =
A.

3) A can only choose adv(Φ) if the term w inside Φ
is equal to ⋆. Similarly, A can only choose an init,
call,send, or destroy action only if the consumed
term Φ has w = ⋆.

4) The strategy is persistent, meaning that if at a certain
point A chooses an action α (that is not a delay), then
at the next step of the run that same action α must be
chosen again, if it is still enabled. Formally we can

say that if α ∈ Σs
A(R

s), α ̸= delay(δ), Rs α′

−→ Ṙs,
and it exists Γ such that ΓṘs

α−→ Γ; then α ∈ Σs
A(Ṙ

s)

Definition 17 (Symbolic adversarial strategy). An adver-
sarial strategy Σs

Adv is a probabilistic polynomial algo-
rithm that takes as input the run Rs, together with the set
of transition labels Λsi chosen by each honest participant
Ai. The strategy returns as output a single label λs that will
be used to update the symbolic run. If λs = Σs

Adv(R
s,Λs),

then one of the following cases holds:
1) λs is neither an authorization nor a delay, and it is

enabled by the semantics. Formally we can say that
λs = α where: (i) α ̸= delay(δ); (ii) there is no
B for which α ∈ AB ; (iii) there exists Γ such that
ΓRs

α−→ Γ.
2) λs is an authorization given by a honest participant,

and it is chosen by the strategy of the corresponding
participant. In short we can say that if λs ∈ AAi then
we also must have λs ∈ Λsi.

3) λs is an authorization given by a dishonest participant
B ̸∈ Hon = {A1, . . . ,An} and it is enabled by the
semantics.

4) λs is a delay and it is chosen by the strategies of
all honest participants. Symbolically this is λs =
delay(δ) and ∀i ∈ {1 . . . k}. (Λsi = ∅ or delay(δi) ∈
Λsi with δi ≥ δ)

22

Definition 18 (Symbolic conformance). Given a random
source r and a set of strategies Σs that includes those of
honest participants A1, . . . ,Ak and the adversarial strategy
Σs

Adv , it is possible to uniquely determine a run Rs. We
say that this run conforms to the pair (Σs , r). More pre-
cisely, the conformance relations between Rs and (Σs , r)
holds if and only if one of the two following conditions
is verified

1) Rs = Γ0 where Γ0 = (∥ j⟨Aj , vj⟩xj
) | 0 | D(0) is

an initial configuration.
2) Ṙs α−→ Rs where Ṙs conforms to (Σs , r)

and, given ∀i. Λsi = Σs
Ai
(Ṙs, rAi

), we have
Σs

Adv(Ṙ
s,Λs, rAdv) = α

If we are considering a set Σs that does not include an
adversarial strategy, then we say that a run Rs conforms
to (Σs , r) if there exists an adversarial strategy Σs

Adv such
that Rs conforms to ({Σs

Adv} ∪Σs , r).

Computational adversary model. Below, we model
adversaries at the computational level. We will follow a
structure similar to what we did above for the symbolic
model.

Randomness and keys. The choices of participants will
again be modelled as probabilistic algorithms. For this
reason, we provide a randomness source rA to each honest
participant, and one to the adversary. In the computational
model, these randomness sources are not only passed as
an additional input to the strategies in order to make
then a probabilistic, but they are also used to generate
the participants’ keys. Given a security parameter η, we
have that each honest participant will use the first η bits
of their random sequence to produce an asymmetric key
pair, KA(rA). This key will be used to produce a witness
by signing a transaction, whenever the script requires it.
The public and secret part of the key K are denoted
respectively with Kp and Ks. Similarly, the adversary
will use their random source rAdv to generate the keys of
all dishonest participant, using η bits for each key pair.
With a slight notational abuse, the random seed will not
be listed among the inputs of the algorithms that use it,
unless it is explicitly needed.

Definition 19 (Computational run). A computational run
Rc is a (possibly infinite) sequence of labels λc, each
encoding one of these possible actions.

T appending transaction T to the blockchain
δ performing a delay
A → ∗ : m broadcasting of message m from A

Every computational run starts with the initial transaction
T0 that distributes a certain quantity of currency to each
participant. We will assume that all of T0’s outputs are
deposit outputs. Immediately after that, every participant
broadcasts the public part of the key that they have gen-
erated using their random source. So we have

Rc
0 = T0 · · ·Ai → ∗ : (Kp

Ai
(rAi

)) · · ·
· · ·Bj → ∗ : (Kp

Bj
(rAdv)) · · ·

where all outputs of T0 are standard, Ai are all the
participants in Hon, and Bj are all the others.

Definition 20 (Blockchain of computational runs). In
order to keep track of the transactions that occur in Rc,
while ignoring the messages, we define the blockchain of
the computational run BRc as follows:

BT0
= (T0, 0) BRcλc =

{
BRc(T, δRc) if λc = T

BRc otherwise

where δRc denotes the sum of the delays present in the
run up until that point.

We can use the notion of consistency for a blockchain,
to define consistency for the runs.

Definition 21 (Consistent computational run). A compu-
tational run Rc is said to be consistent if:

1) Its blockchain BRc is consistent.
2) If Rc = Ṙc T · · · , then among the labels of Ṙc we

can find, in this order: a message B → ∗ : T that en-
codes the transaction sent after all T’s timelocks have
expired5; and all messages B → ∗ : (T, j, wit, i)
where wit is the i-th witness of the j-th input of T.
These messages may be sent from different partici-
pants.

The second condition required to have a consistent run
amounts to saying that a transaction and its witnesses are
broadcast before they are appended to the blockchain. This
is a reasonable assumption: the blockchain is public, so
in order to include a transaction one also has to broadcast
it. If Rcλc is a consistent run, then we say that λc is a
consistent update to Rc. Note that delays and messages
are always consistent updates to a run. We now present
the computational strategies, the way in which participants
can interact with the run, updating it.

Definition 22 (Computational strategies). A computa-
tional strategy for an honest participant A is a probabilistic
polynomial algorithm Σc

A , that takes as input the compu-
tational run Rc and outputs a finite set of computational
labels Λc, whose elements λc consistently update Rc.
Moreover, if λc is a message, then it is sent from A. We
require strategies to be persistent: if λc ∈ Σc

A(R
c) is not

a delay, and λ̇c ̸= λc is such that both Rcλ̇c and Rcλ̇cλc

are consistent, then we must have λc ∈ Σc
A(R

cλ̇c).

Definition 23 (Computational adversarial strategies). The
computational adversarial strategy is a polynomial al-
gorithm Σc

Adv that takes as input the computational run
and the set of choices taken by each honest participant,
and returns as output a single computational label used
to update the run. If λc = Σc

Adv(R
c,Λc) then λc is a

consistent update to Rc, with the following constraint: if
λc = δ is a delay, then it must have been chosen by all the
honest participants’ strategies. Formally, we can express
this as ∀i ∈ {1, . . . , k}. (Λci = ∅ or δi ∈ Λci with δi ≥ δ).

Notice that we are allowing the adversary to imperson-
ate every participant B, by introducing in the run messages

5. In order to formalize what is meant by “all T’s timelocks have
expired”, assume the following: (i) the j-th input of T is an output of a
transaction Tj which appears in BRc at time tj ; (ii) the sum of delays
from the beginning of the run up until the sending of the message is t
; (iii) the transaction has relative timelocks T.relLock(j) : δj and an
absolute timelock T.absLock : t0. We say that all T’s timelocks have
expired if t ≥ t0 and ∀j. t− tj ≥ δj .

23

B → ∗ : m. However, since they do not have direct access
to B’s random source, they will be, with overwhelming
probability, unable to forge B’s signature, since they are
restricted to using a polynomial time strategy.

Definition 24 (Computational conformance). Take a ran-
domness source r, and a set of strategies Σc containing
those of all honest participants {A1, · · · ,Ak} as well as
the adversarial strategy. We say that a run Rc conforms
to (Σc , r) if one of the two following conditions holds

1) Rc is initial, with keys derived from the randomness
source r.

2) Rc = Ṙcλc with Ṙc conforming to (Σc , r),
and, given Λci = Σc

Ai
(Ṙc, rAi), we have

Σc
Adv(Ṙ

c,Λc, rAdv) = λc.

E. Coherence

In this appendix we formally define the coherence
relation between symbolic and computational runs, and
we prove some of its properties.

Before we begin with the definition, it is important
to note that the coherence relation does not only involve
the two runs, but also three auxiliary functions, txout ,
key , and prevTx . The first two are essentially the same
functions that we used in the previous chapter to provide
context to the compiler, and they are used to map symbolic
names to transaction outputs; to map participants to their
public deposit’s key. The third function prevTx maps a
symbolic advertisement term Φ to a transaction TΦ that
encodes it. It will be used to keep track of previous
advertisements to avoid repeating them.

Definition 25 (Coherence). The definition of the coher-
ence relation

coher(Rs,Rc, txout , key , prevTx)

is split into three sections, each one consisting of one or
more inductive cases.

Base case. The relation:

coher(Rs,Rc, txout , key , prevTx)

holds if the following conditions are verified:

1) Rs = Γ0 it is an initial configuration;
2) key maps each owner of a deposit in Rc to a public

key;
3) Rc is initial, and the keys broadcast after the first

transaction are the ones in the image of key ;
4) txout maps exactly the name x of each deposit

⟨A, v⟩x in Γ0 to a different deposit output of T0 of
value v owned by A6;

5) prevTx is the empty function.

6. Note that we may not have a unique way to determine txout : for
example this happens if in the initial configuration a participant owns
two deposits of the same value. We do not give a detailed explanation
on how to handle this edge cases: the key fact here is that even in those
case it is still possible to construct txout so that it is injective.

Inductive case 1. The relation:

coher(Rs α−→ Γ,Rcλc, txout , key , prevTx)

holds if coher(Rs,Rc, txout ′, key ′, prevTx ′) holds, in ad-
dition to one of the following conditions.

In all cases where explicit changes are not mentioned
we will assume that txout = txout ′, key = key ′, and
prevTx = prevTx ′.

1) α = msg(Θ), λc = A → ∗ : C, where Θ is an
incomplete advertisement and C is a bitstring that
encodes it. In C every deposit name zj is represented
by the transaction output txout(zj).

2) α = adv(Φ), λc = A → ∗ : TΦ , where Φ =
[X⟨a;b⟩ ; z ;w]h is a valid initial advertisement in
Rs and

TΦ = Badv(Φ, txout ′, key ′, in, t0, t,nonce)

for some in, t0, t and nonce. Moreover, we require
this to be is the first time that λc appears in Rc after
all timelocks in TΦ are expired. The function prevTx
extends prevTx ′ by mapping Φ to TΦ .

3) α = adv(Φ), λc = A → ∗ : TΦ , where Φ =[
D̄ ; z ;w ; (x,j)

]
h

is a valid continuation adver-
tisement in ΓRs and

TΦ = Badv(Φ, txout ′, key ′, in, t0, t,nonce)

for some in, t0,t, and nonce. We have the same ad-
ditional restriction of (2), and again prevTx extends
prevTx ′ by mapping Φ to TΦ .

4) α = init(Φ, x), λc = TΦ , where TΦ = prevTx ′(Φ).
In the symbolic setting this step produces ⟨C , v⟩x,
and so we extend txout ′ to txout by mapping x to
the single output of TΦ .

5) α = call(Φ), λc = TΦ , where TΦ = prevTx ′(Φ).
With this action the symbolic run produces the ac-
tive contracts ⟨C 1, v1⟩ty1

· · · ⟨C k, vk⟩tyk
, so we extend

txout ′ to txout by mapping each yi to the i-th output
of TΦ .

6) α = send(Φ), λc = TΦ , where TΦ = prevTx ′(Φ).
This time the symbolic action doesn’t produce any
contract, but deposits ⟨A1, v1⟩y1 , · · · , ⟨Ak, vk⟩yk

. For
this reason txout ′ is extended by mapping txout(yi)
to be equal to the i-th output of TΦ .

7) α = auth − action(A,Φ), λc = B → ∗ : m, where
m is a quadruple (TΦ , 1, wit, i). We have that wit
is a the signature with A’s key on the first input of
TΦ = prevTx ′(Φ). The index i is the position of
wit as witness, and can be deduced by looking at
the script of prevTx ′(Φ). Moreover, we want λc to
be is the first instance of this signature being sent
after a broadcast of TΦ that, in turn, appears after all
of TΦ’s timelocks have expired.

8) α = auth − in(A, z,Φ), λc = B → ∗ : (m, i),
where m is a quadruple (TΦ , j, wit, 1), with being
a signature with A’s key on the j-th input of the
transaction TΦ = prevTx ′(Φ). As in (8), we want
this to appear in the run after a message encoding TΦ

(which, again, has been sent after all TΦ’s timelocks
have expired). Moreover we ask that the j-th input
is exactly txout ′(z), or equivalently that z is the j-th
deposit specified in Φ. Differently from (8) this case
may happen even with advertisements of any form.

24

9) α = delay(δ), λc = δ. Symbolic delays trivially
translate to computational ones, without changing the
mapping between outputs and names. This means
that two coherent runs always have the same time.

10) α = auth − join(A, x, x′, i), λc = B → ∗ : m,
where m is a quadruple (T, i, wit, j) such that wit
signature on input txout ′(x) for a previously broad-
cast transaction T that takes two inputs (txout ′(x)
and txout ′(x′), in order) and has a single output that
encodes a deposit ⟨A, v + v′⟩. Moreover λc is the
first instance of such signature being broadcast in the
computational run (from the broadcast of T onward).

11) α = join(x, x′), λc = T, where T has exactly two
inputs given by txout ′(x) and txout ′(x′), of value v
and v′ respectively, and a single deposit output owned
by A of value v + v′. In the symbolic run the action
α consumes the two deposits x and x′ in order to
produce ⟨A, v + v′⟩y. We extend txout ′ by mapping
txout(y) to the output of T.

12) α = auth− divide(A, x, v, v′), continues like (10).
13) α = divide(x, v, v′), continues like (11)
14) α = auth− donate(A, x,B), continues like (10)
15) α = donate(x,B), continues like (11)
16) α = adv(Φ), λc = A → ∗ : T, where Φ is

a destroy advertisement [z ;w]h; the transaction T
is not compatible with either one of the two pre-
vious adv() cases, nor it represents a join, divide
or donate operation. Moreover, among the inputs of
T there appear (in order) the outputs txout(zj),
for all j = 1 · · · |z|. If w = ⋆ then these are all
the inputs, otherwise removing those leaves a list of
inputs outside of ran txout ′, such that the sum of
their values is w. Lastly, we have the same additional
restrictions of (2), and prevTx extends prevTx ′ by
mapping Φ to T.

17) α = destroy(Φ), λc = T, where T = prevTx ′(Φ).
Notice that from the advertisement of Φ we know that
λc cannot correspond to any of the already mentioned
cases.

Inductive case 2. The predicate:

coher(Rs,Rcλc, txout , key , prevTx)

holds if coher(Rs,Rc, txout , key , prevTx) holds, in ad-
dition to one of the following conditions:

1) λc = T with no input of T belonging to the image
of txout .

2) λc = A → ∗ : m that does not correspond to any of
the symbolic moves described in the first inductive
case of the definition.

Now that we have formalized the concept of coher-
ence, we can establish some results about the relation
between the two models. Notice that, for most of the fol-
lowing propositions, a rigorous proof by induction would
need to examine all 20 inductive rules appearing in the
definition. For the sake of brevity we will focus only on
the cases that are relevant to each proof. In most cases we
will only be interested in the runs and the txout map, so
we will write Rs ∼txout R

c.
We start with a lemma regarding the txout map.

Lemma 3. Assuming coher(Rs,Rc, txout , key , prevTx)
holds, the map txout is injective.

Proof. By induction. In the base case we are mapping
every deposit to a different output of T0, so txout is
injective. In all of the inductive cases we can assume the
injectivity of txout ′, and we will need to check that txout
remains injective. Obviously, we will only need to look at
the cases that have txout ̸= txout ′.

For this reason, we are only concerned with cases cor-
responding to init, call, send, join, divide, and donate
actions. All of these create new symbolic names, which
are then mapped to outputs of a newly created transaction
that is appended to the blockchain in that very step. This
means that all these outputs are different from all the ones
in ran txout (since the transaction they belong to was
not present on the blockchain in previous steps). This, in
conjunction with the fact that each new name is mapped
to a different output of the new transaction, proves that
the new map txout is still injective.

Next we have a proposition that clarifies the rela-
tionship between unspent outputs in the computational
model’s blockchain and active contract or deposit in the
symbolic configuration. The proposition will also shows
that if coherence holds, then the txout map does what
it is intuitively expected to do: it associates deposits and
contracts to transaction outputs of the same value.

Proposition 4. Assume that:

coher(Rs,Rc, txout , key , prevTx)

and let x be the name of a deposit or a contract in the
symbolic run Rs. If x is the name of a deposit or of an
active contract in ΓRs , then the output txout(x) is unspent
in BRc . If instead x is the name of a deposit or contract
in Rs, appearing in some previous configuration but not
in ΓRs , then the output txout(x) is spent BRc . Moreover,
the map txout preserves the value, so that deposits (resp.
active contracts) of value (resp. balance) v are always
mapped to outputs of value v.

Proof. By looking at the previous proof, we can see that
once txout(x) is determined, it does not change. So,
we just need to prove two statements: (i) whenever a
new contract or deposit is inserted in the configuration,
the domain of txout is extended, and the image of that
new name is a newly created output (which is obviously
unspent) of correct value; (ii) a UTXO belonging to
ran txout is spent in the computational setting if and only
if its pre-image is consumed in the symbolic run.

To prove (i) notice that in Definition 25 the cases
in which the symbolic action creates a new deposit or a
new contract are exactly the cases in which the domain
of txout is extended. These all happen in the first set
of inductive cases, in the items related to the following
operations: send, join, divide and donate (for deposits),
init and call (for contracts). We can immediately see
from the coherence definition that all these cases append
a transaction T to the computational run. Moreover, this
T has the correct number of outputs; and txout is updated
accordingly. The fact that the output’s value matches the
symbolic value is ensured either by a direct specification
in the coherence definition (for join, divide, and donate
operations), or by the script’s covenant 7 in cases that

7. Later, in Proposition 5 we will give a more profound justification
on why the covenant really forces the value to be correct

25

append a compiler generated transaction (which happens
in send, init and call operations).

To prove the second condition we need to only check
the inductive steps that spend a UTXO associated to some
symbolic name, or the ones that remove some symbolic
name from the configuration. By looking at the definition
of coherence we can see that these two cases coincide.
They happens only in the first set of inductive cases, and
specifically in the cases related to init, call, send, join,
divide, donate and destroy operations. The semantic
transition rule for each of those actions consumes some
deposit or contract, and we can see (either thanks to a
direct specification in the coherence definition, or to the
definition of the compiler) that the corresponding trans-
action appended to the computational run always spends
the corresponding UTXOs.

The next result further refines the above proposition,
by showing that we can always determine the structure of
an output associated to a symbolic term. It also serves as
a justification for the definitions of deposit output and of
output encoding a contract that were given in the previous
sections.

Proposition 5. Assume that:

coher(Rs,Rc, txout , key , prevTx)

If an output in Rc is the image of a symbolic name, then
we can fully determine its structure

• If ⟨A, v⟩x is in Rs, then txout(x) is a deposit output
owned by A.

• If ⟨C , v⟩tx is in Rs, then txout(x) is the output of a
compiler generated transaction. Moreover txout(x)
is a contract output encoding C .

Proof. Again, we proceed by induction. In the base case
there is no contract in the configuration, and the symbolic
deposits are all mapped by txout to deposit outputs of
T0, so both statements hold. Among the inductive cases
we only need to check those that introduce a deposit or a
contract in the symbolic configuration, and hence extend
txout ′. We start with the deposit operations join, divide,
and donate. In those cases, the definition of coherence
explicitly states that txout ′ is extended by mapping the
newly created deposit to a deposit output, with the correct
value and owner.

This only leaves us with the send(Φ) case for de-
posits, and the init(Φ) and call(Φ) cases for contracts.
In those cases the inductive step adds the transaction
TΦ = prevTx ′(Φ) to the computational, and extends the
txout relation by mapping the newly created symbolic
terms (deposits or contracts) to TΦ’s outputs.

Notice that if Φ is a valid initial or continuation ad-
vertisement term in the symbolic run, then the transaction
prevTx ′(Φ) must be compiler generated. This fact can
easily be proved by induction on the coherence definition:
in the base case prevTx ′ is the empty map, and the only
inductive cases that we need to check are the ones that
modify prevTx , extending its domain to a new initial or
continuation advertisement Φ. Those cases are the one
corresponding to a symbolic adv(Φ) operation, and the
conditions that they need to satisfy directly imply that
prevTx (Φ) must be compiler generated.

But now, if we look at how the compiler generates the
output(s) of TΦ , we see that if Φ =

[
D̄ ; z ;w ; (x,j)

]
h

,
with D̄ ending in send (A1 → v1, · · ·An → vn), then (by
the compiler definition) the i-th output of TΦ will be a
deposit output of value vi owned by Ai, and (by definition
of coherence) it will be the image under txout of i-th
deposit created by send(Φ), which proves our claim for
this inductive case. If instead Φ =

[
D̄ ; z ;w ; (x,j)

]
h

with D̄ ending in call (X1⟨a1;b1⟩, · · · , Xn⟨an;bn⟩),
with Xi⟨ai;bi⟩ ≡ {vi} C i; then (by the compiler defi-
nition) the i-th output of TΦ will be an output of value vi
encoding the contract C i, and (by definition of coherence)
it will be the image under txout of i-th contract created by
call(Φ), which proves our claim for this inductive case.
The initial advertisement case is identical to the call(Φ)
seen above, with only one output.

The above propositions state that it is possible to “keep
track” of symbolic deposits and active contracts by seeing
them as computational outputs. However, there is another
term in the symbolic configuration that is used to store
an amount of currency usable by the participants: the
destroyed fund counter D. In the following proposition
we will show how the counter approximates from above
the amount of currency contained in output that do not
correspond to any other symbolic term.

Proposition 6. Assume that:

coher(Rs,Rc, txout , key , prevTx)

The sum of all values stored in transaction outputs that do
not belong to ran txout is smaller or equal to the value
w specified by the destroyed fund counter D(w) in ΓRs .

Proof. By induction. In the base case all outputs in Rc

are images of symbolic deposits, and Γ0 contains D(0),
so this proposition holds.

In the definition of coherence there are two sets of
inductive cases: in either of them, we will look at the
inductive premise and denote with w0 the amount of
funds contained in the destroyed funds counter present in
the last configuration of the symbolic run, and with W0

the sum of the values of all unspent transaction outputs
in the computational blockchain that do not correspond
to symbolic deposits or contracts. This means that our
inductive hypothesis states that W0 ≤ w0, and, after
having defined W1 and w1 in a similar way, we want
to prove that W1 ≤ w1.

While looking at the items in the first set of inductive
cases in Definition 25, we only care about proving our
proposition in the cases that either modify the counter
with a symbolic action, or insert in the computational
blockchain a transaction that spends or produces some
inputs outside of ran txout .

When the symbolic action is init(Φ), call(Φ), or
send(Φ), the corresponding transaction TΦ may spend
some inputs that do not have a symbolic correspondent.
Since TΦ must be compiler generated, we know that the
total value of these inputs must amount exactly to the
value w that appears in Φ (or to 0 if w = ⋆). By spending
these outputs we decrease W0 to W1 = W0 − w. The
semantics of these actions tells us that, in the symbolic
run, the amount w is removed from the counter, giving us

26

D(w1) with w1 = w0−w. This means that the inequality
W1 ≤ w1 holds.

Next, we need to check what happens when the
symbolic action is destroy([z ;w]h). The semantics of
destroy tells us that the value w0 in the counter is
increased by

∑
j uj , where each uj is the value contained

in the deposit zj . In the computational run instead we
are creating a transaction T which spends w from inputs
without a symbolic counterpart. Let us denote with w′

the sum of the values of T’s outputs. This value must
be smaller or equal to the sum of T’s input values,
which is

∑
j uj + w. Moreover, notice that none of T’s

output will have a symbolic counterpart. For this reason,
the total the value stored by outputs without a symbolic
counterpart becomes W1 = W0 − w + w′, and since we
have w′ ≤

∑
j uj + w, this gives us W1 ≤ W0 +

∑
j uj .

In turn, this implies W1 ≤ w1 = w0 +
∑

j uj , and the
inequality is preserved.

Lastly, we look at the second set of inductive defini-
tions, where the first case tells us that we can insert any
transaction T whose input do not have a symbolic counter-
part without performing any action on the symbolic run.
T may only reduce the total amount of funds stored in
outputs that are outside of ran txout , since the sum of the
values of its inputs must be greater or equal to the sum
of the values of its outputs. This means that W1 ≤ W0

while w1 = w0, and the inequality holds.

F. Correctness of the compiler

In our implementation of ILLUM, the logic of con-
tracts is only enforced through the script of a compiler-
generated transaction. By looking at how such scripts
are constructed, it is intuitively obvious that they can be
redeemed only by following the symbolic contract logic:
in this section we will prove two theorems that justify
more precisely why that is actually true, showing that the
compiler correctly implements the language.

From Proposition 5 we know that if the two runs are
coherent, each active contract corresponds to a transac-
tion’s output that encodes it. However, we want to make
sure that the only transactions that are able to redeem an
output that encodes an active contract are the compiler
generated ones. This is important because otherwise it
would be really easy to “break” the coherence relation, by
redeeming the balance of a contract with a transaction that
is not compiler generated, and hence does not carry any
meaning to the symbolic setting. The following theorem
proves that this may never happen.

Theorem 7. Assume that:

coher(Rs,Rc, txout , key , prevTx)

and let ⟨C , v⟩tx be an active contract in ΓRs . Take
a transaction T that consistently updates Rc, and has
an input that redeems the UTXO txout(x). Then T is
compiler generated (and possibly completed by including
witnesses), meaning that there exists Φ, in, t0, t, nonce
such that

T = Badv(Φ, txout , key , in, t0, t,nonce)

for some Φ, in, t0, t, nonce. Moreover, the input of
T that redeems txout(x) is the first, and we have Φ =

[
D̄ ; z ;w ; (x,j)

]
h

, for some values z, w, x, h, and for
D̄ , j, such that D̄ ≈ D where D is the j-th branch of C .

Proof. The proof is organized in two parts: first we will
show how to construct the terms Φ, in, t0, t, nonce
starting from the fields of a transaction T that redeems
txout(x); then we will prove that using the constructed
terms as inputs for the compiler yields exactly T.

Constructing in is easy: we just take ini to be the i-
th the input of T. Obviously, one of these inputs will be
txout(x). By Proposition 5 txout(x) is compiler gener-
ated, so we know the structure of its script. The first part
of the script sets the condition inidx = 1, which tells us
that the output must be redeemed by an input in position
1. This means that in1 = txout(x). The fact that this
same instructions is present in every compiler generated
transaction means that none of the other inputs of T can
be the image of a contract in the symbolic configuration.
This implies that all other inputs of T are either outside
of ran txout , or are the image of a deposit. We are
now able to construct z and w: the first is constructed
by taking the preimage of all inputs of T that are in
(ran txout \ {txout(x)}), and the other is set to be the
sum of the values of the inputs that are not in ran txout
(or it is set to ⋆ if there are no such inputs). t0 is set to
be equal to T’s absolute timelock, while every other ti
is set to the value of T.relLock(i). We construct noncek
by taking the first argument of the k-th output of T (this
is possible since, as we will show later in the proof, each
output of T has more than one argument).

Choosing D̄ and j requires a bit more work. Note that
in the rest of the proof we will be referring to arguments
by their name, instead of more precisely tracking their
position. The paragraph “Constructing the outputs: argu-
ments” of the previous appendix motivates why we are
able to do so.

From Proposition 5 we know that txout(x) encodes
contract C , which means that T will have to satisfy scrC .
This term is organized as a conditional check, so T must
satisfy one of its branches. We assume that the taken
branch is the k-th:

if Bk then scrDk
,

where Bk is a shorthand for the expression

outlen(rtx) = nk and rtxo(1).branch = k and

· · · and rtxo(nk).branch = k.

The value of branch argument (the second) will then be
the same across all outputs of T. The value j, which
represent the branch in the symbolic advertisement, will
be set to be equal to the second argument of any output
of T.

We can now use the fact that T must satisfy scrDk
in

order to construct the last term, D̄ . We have two cases,
since Dk ends either in a send or in a call. Now that
we know which is the branch that is being executed,
we can easily inspect C , to determine which of these
two cases we are dealing with. If Dk ends in a send,
then we set D̄ to be equal to Dk. If instead Dk ends
in call (X1⟨a1;?1⟩, · · · , Xn⟨an;?n⟩), then, in order to
construct D̄ , we need to “complete” it, assigning a value
to the placeholders. The script scrDk

specifies that the i-th
output has 3+ |αi|+ |βi| arguments, where αi

l and βi
h are

27

the parameters in Xi, the i-th called clause. For this reason
we are able to construct D̄ by filling the placeholders ?i

with the last |βi| arguments of the i-th output of T.
At this point we have constructed the terms Φ, in, t0,

t, nonce, so we can pass them as inputs to the compiler
and construct

T′ = Badv(Φ, txout , key , in, t0, t,nonce)

It is easy to check that the conditions set by the compiler
are satisfied, proving that T′ is a proper transaction and
not ⊥.

1) We already know that in1 is txout(x). The rest of
the condition follows from the fact that in, z and
w have been constructed together, starting from T’s
inputs.

2) We know that t0 and t1 have been constructed
from T’s timelocks. But these timelocks must be
greater than the value appearing in the after (and
respectively afterRel) decorations of D̄ , since the
txout(x)’s script specifies the conditions

scrafter t :D = absAfter ctxo.t : scrD
scrafterRel δ :D = relAfter ctxo.δ : scrD .

In order to conclude the proof, we now need to show that
T = T′.

1) (Inputs and timelocks)
The inputs and timelocks of T′ are determined by
in, t0 and t. By constructions of the parameters, T′

must have the same inputs and timelocks of T.
2) (Outputs - call)

If D̄ ends in call X1⟨a1;b1⟩, · · · , Xn⟨an;bn⟩, with
Xi⟨ai;bi⟩ ≡ {vi} C i, then we have the following

a) (Number of outputs) T′ must have n outputs.
The same happens for T, since there is an
outlen(rtx) = n condition specified by the script
in the same if statement that checks the branch.

b) (Arguments) According to the compiler defini-
tion, the i-th output of T′ will have arguments
nonce = noncei, name = Xi, branch = j,
αl = ail , and βl = bil . This coincides with the
number of arguments of the i-th output of T, since
the script scrDj

, which T must satisfy, contains
the term arglen(rtxo(i)) = |αi| + |βi| + 3. The
value of noncei has been chosen to be exactly
equal to the first element of the i-th output of T,
and this is also the first argument of T′. The same
reasoning holds for the last |βi|, which were used
in the construction of the values bil . Regarding the
remaining argument we can see that the script of
txout(x) forces each of them to have a precise
value: the second (the branch argument) must be
equal to j, the third (the name argument) must
be equal to Xi, and for all the other m = |αi|
arguments we have the following constraint:

rtxo(i).α1 = ctxo.ai1 and · · · and

rtxo(i).αm = ctxo.aim

which appears in the last part of the script for a
clause operation. Remember that the expression
ctxo.ail is a shorthand for whatever combination
of parameters have been used to specify the value

assigned to the variable αi
l in C . However, we

already know that these values must evaluate to
ail , since they are evaluated from the arguments of
txout(x) (which we know to be compiler gener-
ated and encoding C). This means that the argu-
ments of each output of T are the same to the one
of the corresponding output of T′.

c) (Value) The i-th output of T′ has value vi. In the
script for a branch that contains a call operation,
we have the following term

rtxo(i).val = rtxo(i).Ei,

where Ei is the expression in the precondition of
Xj . We know that Ei must evaluate to vi, since we
have Xi⟨ai;bi⟩ ≡ {vi} C i. So, since T has to
satisfy the script, the value of its i-th output must
be vi.

d) (Script) The script of each output of T′ is the
same of its first input, which is txout(x). The
script of txout(x) contains the covenant verrec(i)
that forces the i-th output of any transaction who
redeems it to be equal to its own. From this we
can conclude that the script of each output of T
coincides with the script of each output of T′

3) (Outputs - send) If D̄ ends in a send, then we can
use a reasoning similar to the call case to show
that the outputs of T′ must be equal to the outputs
of T. Actually, the situation is even simpler, since in
this case the redeeming transaction must only have
two arguments. However we will not delve into the
details to avoid excessively lengthening this already
long proof.

Essentially, we have just shown that any transaction
that can redeem an output representing an active contract
can be represented symbolically with a continuation ad-
vertisement term. This result plays a fundamental role
in the proof of the computational soundness theorem.
We can take this correspondence between transactions
and advertisements even further, by showing that if the
computational transaction respects the timing conditions
set in the coherence definition (in particular in item 3),
then the corresponding symbolic advertisement is actually
valid in the configuration.

Theorem 8. Under the same hypotheses of Theorem 7,
let Φ =

[
D̄ ; z ;w ; (x,j)

]
h

be the continuation adver-
tisement constructed in the proof. Then Φ is valid in ΓRs .

Proof. We know that the deposits zj are the pre-image
under txout of some outputs in BRc . Moreover, these
outputs are unspent so, by Proposition 4 they must actually
appear in the configuration. Also, thanks to Propositon 6,
and remembering how w was constructed, we know that
w must be smaller or equal to the value stored in D.

Then, we have the timing requirements: the time in
the configuration must be so that all waiting decorations
in D̄ are satisfied. In the computational setting all of T
timelocks are expired, and those same timelocks were
subject to the script’s constrictions, which in turn were
based on the after and afterRel decorations of D̄ .
Since the time increases in the same way in both models,
the timing requirements are satisfied.

28

Then, we have a condition which states that the sum
of the “output” values of D̄ (meaning the funds of each
clause if D̄ ends in call and the values distributed to
each participant if it ends in a send) must be greater than
0 and lower or equal to the sum of the inputs values (the
deposits zi, the value w and the balance of the contract
x). Since these directly translate to inputs and outputs of
T we do not need to prove anything.

The last condition for validity applies only if D̄ ends
in a call operation: the proposition pi in each clause
precondition must be satisfied. Again, the fact that T must
satisfy a compiler generated script is enough to prove this
condition, since by including

and rtxo(1).p and · · · and rtxo(n).p

the script ensures that all clauses are satisfied.

G. Translating symbolic strategies

This appendix aims to construct an algorithmic map
ℵ that transforms an honest symbolic strategy Σs

A into
a computational strategy Σc

A = ℵ(Σs
A). By Definition

22 ℵ(Σs
A) will be an algorithm that takes as input a

computational run Rc and a randomness source rA , and
returns a set of computational labels Λc, while attaining
to some constraints.

The general idea behind our construction of ℵ(Σs
A) is

the following: the algorithm will first parse Rc in order to
create a symbolic run Rs, then it will use Σc

A to produce
a set of symbolic actions, which will lastly be translated
into computational labels, concluding the process. In this
way, Σc

A = ℵ(Σs
A) is emulating its symbolic counterpart

Σs
A . These procedures closely resemble the definition of

the coherence relation, so we will not present every detail.

Parsing the computational run. Here, we will take a
consistent computational run Rc and parse it, in order to
construct a symbolic run Rs coherent to it. This will be
a step-by-step construction, that takes a single label and
finds a corresponding symbolic action. While doing that,
we update the maps txout (between names and outputs),
prevTx (between advertisements and transactions), and
key (between participants and their public key): these
will helps us to keep track of the symbolic terms that
we created.

We begin with the initial prefix of Rc, which contains
a transaction T0 followed by messages that transmit the
computational participant’s public keys. By looking at
those messages, we create a set of symbolic participants,
and the key that associates to each of them their public
key. Then, by looking at the outputs of T0 we obtain a se-
ries of deposits, which, together with an empty destroyed
funds counter D(0), and the time t = 0, will form the
initial symbolic configuration Γ0, which will be the prefix
of the symbolic run. The map txout is constructed to map
each deposit of Γ0 to the corresponding output.

Then, we have different scenarios according to the next
computational step λc. If λc is a message we ignore it,
except for the following cases:

1) It is the encoding of a incomplete advertisement Θ,
in which case we perform the symbolic step msg(Θ).

2) It is the encoding of a compiler generated transac-
tion TΦ , never sent before in the computational run

(i.e. not belonging to ran prevTx). In this case λc

corresponds to the advertisement of the valid term
Φ that has a subscript h never used in the symbolic
configuration (and we update ran prevTx).

3) It is the encoding of a transactions T that takes
at least an input in ran txout , is neither compiler-
generated nor correspondent to a join divide or do-
nate operation, and never sent before in the compu-
tational run. In this case λc corresponds to a destroy
advertisement.

4) It is a quadruple (T, j, wit, i), where wit is the
signature with A’s key on the j-th output of T (a
transaction that is already present as a message in
the run). Moreover prevTx−1(T) = Φ; and it is the
first time λc is broadcast after a broadcast of T. In
this case λc corresponds to a symbolic authorization
step, either auth− in(A, z,Φ) or auth− act(A,Φ)
depending on what kind of advertisement Φ is, and
on which input of T is being signed.

If λc is a transaction with at least one input in ran txout ,
then we can analyse its structure and find the corre-
sponding action among the following: init(Φ), call(Φ),
send(Φ), join(x, y), divide(x, v, v′), donate(B, x), or
destroy(Φ). Lastly if λc is a computational delay we
directly translate it to a symbolic one.

Each step in this conversion process is uniquely de-
termined, up to different choices for the names of par-
ticipants, deposit, contracts, and h subscripts, meaning
that the above paragraph can be seen as proof for this
proposition:

Proposition 9. Given Rc we can find Rs, txout , key ,
prevTx such that

coher(Rs,Rc, txout , key , prevTx).

Moreover if Ṙs, txout ′, key ′, prevTx ′ are such that

coher(Ṙs,Rc, txout ′, key ′, prevTx ′),

then we can get Ṙs from Rs by substituting each name
x with txout ′−1(txout(x)), each advertisement Φ with
prevTx ′−1

(prevTx (Φ)), and each participant name A
with key ′−1

(key(A)).

Randomness. Every strategy, symbolic or computa-
tional, takes as input a random seed rA . In order provide
a proper translation between strategies we need to make
a few remarks on this randomness source. Every com-
putational strategy needs to use its randomness source in
order to produce the key pairs that will be broadcast at the
start of the run. This action does not have any symbolic
counterpart, since it is assumed that symbolic participants
can give authorizations without needing to worry about
the low level signature details. It is also very important
that the random bits used for key generation are never
reused when choosing which action to perform in later
steps, since this would cause a correlation between the
keys and the later outputs of the run, potentially leaking
information about the secret keys. So, in order to avoid
this problem, the symbolic strategy that we are trying to
emulate must be prevented from seeing the part of the
random sequence used in the keys generation process. For
this reason we will split the sequence rA in two, π1(rA)
and π2(rA) where the first part can be used in strategies

29

and is given as input to the Σs
A , while the second is only

used for the initial keys generation.

From symbolic actions to computational labels. Once
we have converted Rc to Rs we can compute Λs =
Σs

A(R
s, π1(rA)). Then, we can transform each element

α of Λs into a computational label λc, by following
the corresponding case inside the coherence definition.
However we must ensure that the constraints posed in
Definition 22 are respected. In the following paragraphs
we will show how to do that. When calling the compiler
Badv we will always assume that the auxiliary functions
are the ones constructed by the parsing step.

Advertisements.
1) (Incomplete advertisement). If α = msg(Θ), then λc

is simply a message encoding Θ.
2) (Complete initial advertisement). Remember that by

Definition 16 Σs
A can choose α = adv(Φ) with Φ

complete only if the advertisement has w = ⋆. If
Φ = [X⟨a;b⟩ ; z ; ⋆]h then we can compile it to TΦ

by choosing the compiler’s inputs in the following
way: ini = txout(zi) for all i; t0 is the time in ΓRs ;
t1 is the biggest delay specified in a afterRel in
D ; tj = 0 for all j > 1; and nonce is a list of num-
bers chosen so that the compiled transaction TΦ is
different from any previously broadcast transaction.
The corresponding computational label in this case
is λc = A : TΦ → ∗.

3) (Complete continuation advertisement). If Φ =[
D̄ ; z ; ⋆ ; (x,j)

]
h

then, similarly to the case above,
we can construct TΦ by setting the appropriate com-
piler inputs. We then have that α = adv(Φ) corre-
sponds to λc = A : TΦ → ∗.

4) (Complete destroy advertisement). If α = adv(Φ)
with Φ = [z ; ⋆]h then λc = A : TΦ → ∗, where TΦ

is a transaction with inputs given by txout(zj) and
an irredeemable output that has script scr = false.

Authorizations.
1) (Advertised actions). If α = auth − act(A,Φ) or

auth − in(A,Φ, z) then λc = A : m → ∗ where
m is a quadruple (TΦ , j, wit, i) encoding the corre-
sponding witness. Notice that since α can be sent
only if Φ is in the configuration, there must have
already been an action adv(Φ) in the symbolic run.
The fact that Rs is obtained by parsing Rc, which is
consistent, means that if this step is reached TΦ is
already present in the run.

2) (Deposits). If α is an authorization for a join,
divide, or donate action, then we are not sure if
the corresponding transaction is already present in
the run (since they do not require a symbolic adver-
tisement). So, if there T is not in the blockchain then
λc = A : T → ∗. If instead it is already present we
act like in item 1, with λc = A : m → ∗, and m
encodes the required signature.

Actions.
1) (Advertised actions). If α is an init, call, send

or destroy action, consuming a term Φ, then the
corresponding computational label is λc = TΦ =
prevTx (Φ). Remembering again that in Φ we must

have w = ⋆, we will prove that λc satisfies the
constraints given to symbolic strategies. Indeed, for
α to be possible the advertised term Φ and all
the authorizations must be in the configuration ΓRs .
Since Rs is constructed by parsing Rc this means
that TΦ has been sent on the computational run
(after its timelocks are exhausted), and that all the
witnesses that correspond to a symbolic authorization
are present. However, since w = ⋆ these are all the
needed witnesses and T may be choosen as an action
by a computational strategy.

2) (Deposit actions).If α is a join, divide, or donate
action, then the corresponding computational label is
λc = T. Again, the parsing ensures us that T and all
its witnesses are already sent in the computational
run.

H. Security of the compiler

In this appendix we prove the main result of this
paper: the security of the ILLUM compiler. We will see
that if the participants choose their computational strategy
by translating a symbolic strategy, then no matter what
the computational adversary does, it is possible, with
overwhelming probability, to simulate any of its computa-
tional action in the symbolic world, therefore maintaining
coherence.

Theorem 10 (Security of the compiler). Let Σs be a
set of computational strategies for all honest participants,
and Σc be a set of computational strategies consisting
of Σc

A = ℵ(Σs
A) for all A ∈ Hon and of an adversary

strategy Σc
Adv . Given the security parameter η and any

k ∈ N, we define

P (r) = ∀Rc conforming to (Σc , r) with |Rc| ≤ ηk,

∃Rs, txout , key , prevTx , such that
coher(Rs,Rc, txout , key , prevTx) holds
and Rs conforms to (Σs , π1(r)).

then, the set {r|P (r)} has overwhelming probability

Proof. Consider any given r, and take Rc that satisfies
the conformance hypothesis and the length requirement.
Assume also that there is no corresponding symbolic
run Rs. We will show that this happens with negligible
probability.

Take Ṙc, the longest prefix of Rc such that there exist
a corresponding run Ṙs and maps txout , key , and prevTx
for which coher(Ṙs, Ṙc, txout , key , prevTx) holds. This
Ṙc is not empty, since the initial prefix of Rc (consisting
of T0 and the broadcast of public keys) can always be
transformed into a corresponding initial symbolic run (and
the conformance with strategies trivially holds for initial
runs). We will now proceed by cases on all the possible
labels λc that can extend Ṙc to show that either it’s pos-
sible extending Ṙs to a run coherent with Ṙcλc (reaching
a contradiction), or that the adversary has managed to
produce a signature forgery (which only happens with
negligible probability).

1) λc = B → ∗ : m. Looking at the coherence definition
we can see that we need to consider four distinct
cases for the message: (i) m encodes an incomplete

30

advertisement Φ; (ii) m encodes a transaction TΦ ,
where Φ is a valid advertisement term; (iii) m is
quadruple encoding a witness for an input (with a
symbolic counterpart) of some T that was already
broadcast in the run after its timelocks have expired;
(iv) m is any other message. The first two cases are
handled with a msg(Φ) and an adv(Φ) symbolic ac-
tion respectively, and in the fourth case the symbolic
run ignores the message m. This leaves us with case
(iii) where the adversarial strategy has been able
to produce a witness: this means either that it has
forged a signature (and this happens with negligible
probability), or that some honest A chose to provide
it. However, if that’s true, then the symbolic strategy
of A must have enabled the authorization at some
point, since Σc

A = ℵ(Σs
A). This means that Σs

Adv can
choose it as next action α, meaning that Ṙs α−→ Γ is
still coherent with Rcλc.

2) λc = T. Again, we have multiple cases.

a) If T does not have any inputs in ran txout then co-
herence is achieved without adding any additional
step to Ṙs.

b) If T has some inputs in ran txout , and one of them
is the image of an active contract, then, by Theo-
rem 7 we have that T must be a compiler-generated
transaction TΦ . Since λc has been chosen by Σc

Adv ,
we know it must follow the rules for strategies, so
T has been broadcast earlier (and not before its
timelock are over), and all its witnesses have been
broadcast too. This means that there has been a
corresponding symbolic advertisement, (since Ṙs

is coherent to Ṙc), so Φ has been included in the
configuration. Theorem 7 also tells us that Φ is
in the form

[
D̄ ; z ;w ; (x,j)

]
h

and Theorem 8
proves that Φ is valid in ΓṘs . Notice also that,
thanks to the conditions on strategies, we know
that T’s witness have been broadcast in some
previous step of the run, and, by coherence, this
means that all the required symbolic authorizations
are present in ΓRs . The validity of Φ and the
presence of the deposit’s authorization ensure that
the continuation action corresponding to T (either
call(Φ) or a send(Φ)) can be performed in Ṙs,
meaning that we can extend Ṙs and still achieving
coherence.

c) If T has some inputs in ran txout , but none of
them is the image of any active contract, we have 3
possible situations: T = TΦ is compiler-generated
starting from an initial advertisement Φ; T is a
transaction associated to a deposit action join,
divide, or donate; or T is some other transaction.
In the first case we can carry out the same reason-
ing of step (b) to conclude that α = init(Φ) is a
continuation that achieves coherence. In the second
case we can achieve coherence by letting α be
the corresponding symbolic deposit operation. In
this case too all deposits and authorizations must
be present in the run. In the third case we will
choose α to be a destroy operation. Again, we
notice that T must have been broadcast at some
point, and since it is not a compiler generated
transaction, nor it does correspond to a deposit

contract Foo {
int x; // integer
uint u; // unsigned integer
address a; // address (externally - owned)
mapping (address => uint) m;
... // other state variables

constructor (...) { ... } // Entry point

function f(int x, ... , address b, ...)
input (e:T) // Receive tokens
auth(c) // Authorizations
after (t) // Time constraint
... // other modifiers ...

{
int y; // local variables
... // function body

} next(g1 ,... , gn) // Possible continuations

... // other functions

function g (...) view { // pure function
... // return expression

}
}

Figure 10: General form of HELLUM contracts.

action, the broadcast message falls into the case
described by item 4 of the first inductive case of
Definition 25; and the broadcast is thus mirrored
in the symbolic run by the advertisement adv(Φ),
where Φ = [z ;w]h. In this case too all of T
witnesses must have been advertised, meaning that
all authorization for deposits zj are present in ΓṘs .
This means that in this case too we can achieve
coherence by extending Ṙs with α = destroy(Φ).

3) λc = δ. Here we can extend Ṙs with delay(δ). This
trivially keep coherence between runs. Moreover the
resulting symbolic run still conforms to the strategies:
in the computational case all honest participant had
to agree on the delay, which, by the definition of
ℵ implies that it is also the case for the symbolic
strategies.

In each of these cases we manage, with overwhelming
probability, to extend Ṙs to something that is coherent
with Ṙcλc (against the maximality of the prefix Ṙc), and
this concludes our proof.

I. Compiling HELLUM into ILLUM

We describe in this section how to compile high-level
contracts written in HELLUM to the intermediate-level
language ILLUM, as sketched in Section 7.

We start by providing more details about HELLUM,
referring to https://github.com/bitbart/illum-lang/ for its
concrete syntax and typing rules. A contract has a set
of variables that define its state, and a set of functions
with an imperative, loop-free body that can modify the
contract state and transfer tokens. Base types comprise
bool, int, uint, string, and address. Variables can
also be mappings from base types to base types. A
function can have modifiers that must be satisfied before
it can be called (as in Solidity), and continuations that
specify which functions can be called after it. The general
form of contracts is in Figure 10.

HELLUM functions have four possible modifiers:

31

https://github.com/bitbart/illum-lang/

• after(t) requires that the function is called only
after (absolute) time t. Here, we abstract from the
granularity of time: it could be e.g. a block number
(as in Solidity) or a timestamp;

• auth(a) requires that the function call is authorized
by address a (through a’s private key);

• input(e:T) requires that e tokens of type T are sent
to the contract alongside with the function call, by
any address;

• next(g1 ... gn) specifies the functions that can
be called after the current function has been executed.
When the next modifier is omitted, any continuation
(except the constructor) is possible.

Note that the expressions appearing within the after
modifier may only depend on the contract variables, while
the expressions within input and auth may also depend
on the function parameters. A function can use multiple
instances of the same modifiers, except for next.

Function bodies are as in Solidity, but for the absence
of loops and contract calls: they comprise assignments
(to variables and mappings), sequences of commands,
conditionals, and require(e) statements, which make
the function fail when the expression e evaluates to false.
The command a.transfer(e:T) transfers e units of
token T to address a. Local variables, not contributing to
the contract state, can be declared and used. Expressions
are standard, and follow the Solidity syntax. The special
expression balance(T) gives the number of units of
token T currently available in the contract. Expressions
can contain calls to pure functions (tagged as view in the
contract). The HELLUM compiler includes a semantic
analyzer that performs type checking and other checks to
ensure the well-formedness of contracts.

Compilation: normal form. The first phase of the
HELLUM compiler is a series of code transformations to
bring contracts in the normal form described in Section 7.
This phase is split into several steps:

1) macro-expand calls to pure functions into the corre-
sponding expressions;

2) rewrite each function as a chain of conditional state-
ments, and merge the require statements in a single
require at the top of the function;

3) rewrite the body of each conditional branch in static-
single-assignment (SSA) form [43], where each vari-
able is written exactly once. Besides the contract
variables, in this step we also add auxiliary variables
keeping track of the varying contract token balances;

4) rewrite the body of each conditional branch so that
the token transfers occur before all the assignments;

5) rewrite the body of each conditional branch so that all
the assignments are folded into a single, simultaneous
assignment of all the contract variables.

Below, we illustrate the code transformations 2 to 5
through a series of examples, referring to the repository
https://github.com/bitbart/illum-lang/ for the full details
and for the transformation from normal form contracts
to ILLUM, as sketched in Section 7.

For step (2) of the normal form construction, we match
patterns of the function body, and rewrite them to pull
require statements out of conditional blocks, and push
transfer and assignment commands within conditional

blocks. These transformations modify the guards condi-
tionals and other expressions preserving the semantics. We
illustrate the patterns through code snippets, showing how
the left part is transformed into the right part.

Payments and assignments before a conditional are
pushed within the conditional, adapting the guards to
match the state updates. For instance:

a. transfer (y:T);
if (balance (T) <7) {

// c1
}
else {

// c2
}

if (balance (T)-y <7) {
a. transfer (y:T);
// c1

}
else {

a. transfer (y:T);
// c2

}

x=y -5;
if (x <3) {

// c1
}
else {

// c2
}

if (y -5 <3) {
x=y -5;
// c1

}
else {

x=y -5;
// c2

}

The commands (of any kind) after a conditional are
pushed within all the conditional branches. For instance:

if (x <3) {
// c1

}
else {

// c2
}
x=x+1;

if (x <3) {
// c1
x=x+1;

}
else {

// c2
x=x+1;

}

Nested conditional statements are flattened:

if (x <=9) {
if (x >5) {

// c1
}
else {

// c2
}

}
else {

// c3
}

if (x <=9 && x >5) {
// c1;

}
else if (x <=9) {

// c2
}
else {

// c3
}

Each require command is moved to the top of the
function by swapping it with the previous command, and
updating the guard accordingly. For instance:

x=x+y;
require x <500;

require x+y <500;
x=x+y;

a. transfer (x:T);
require balance (T) >5;

require balance (T)-x >5;
a. transfer (x+y:T);

The most complex case is when a a require occurs
in each branch of a conditional statement. In this case, we
pull all the require out of the branches, and we combine
the guards in the require commands with the guards of
the conditional, obtaining a single require. For instance:

32

https://github.com/bitbart/illum-lang/

if (x <2) {
require x >0;
// c1

} else if (x <4) {
require x >2;
// c2

} else {
require x <8;
// c3

}

require ((x <2 && x >0) ||
(x >=2 && (x <4 && x >2))) ||
((x >=2 && x >=4) && x <8);

if (x <2) {
// c1

}
else if (x <4) {

// c2
}
else {

// c3
}

For step (3) of the normal form construction, we
rewrite every conditional branch in SSA form. We do
so by introducing an expression balance_pre(T) (which
returns the amount of token T stored in the contract before
the function invocation) as well as local variables when
they are needed. For illustration, we consider a single
branch and assume that a, x, y are global variables of
the contract, while z is a function parameter.

y = x + balance (T);
x = z;
a. transfer (x:T);
a. transfer (y:T);
y = balance (T) + z;

The transformation introduces new local variables at
each step, to keep track of the values of a,x,y,z and
of the contract balance. For instance, the variables x_i
are introduced at every assignment of x. A new variable
bal_T_i is introduced upon each transfer to keep track
of the balance of token T. Initially, we let bal_T_i to
be balance_pre(T) (plus eventual function inputs). Our
branch ends up rewritten as:

x_0 ,y_0 ,a_0 ,z_0 , bal_T_0 =
x, y, a, z, balance_pre (T);
y_1 = x_0+ bal_T_0 ;
x_1 = z_0;
a_0. transfer (x_1:T);
bal_T_1 = bal_T_0 -x_1;
a_0. transfer (y_1:T);
bal_T_2 = bal_T_1 -y_1;
y_2 = bal_T_2 +z_0;
x,y,a, bal_T_fin = x_1 ,y_2 ,a_0 , bal_T_2 ;

For step (4), we now move the two transfer()
statements to the top by exchanging them with the as-
signments. To do this, we replace the variables appearing
in transfer() with the expression on the right hand side
of the assignment. In our example, we get:

a. transfer (z:T);
a. transfer (x+ balance_pre (T):T);
x_0 ,y_0 ,a_0 ,z_0 , bal_T_0 =
x, y, a, z, balance_pre (T);
y_1 = x_0+ bal_T_0 ;
x_1 = z_0;
bal_T_1 = bal_T_0 -x_1;
bal_T_2 = bal_T_1 -y_1;
y_2 = bal_T_2 +z_0;
x,y,a, bal_T_fin = x_1 ,y_2 ,a_0 , bal_T_2 ;

For step (5), we collapse all the assignments into a
single simultaneous one, that assigns the new values to
the contract variables. In our example:

a. transfer (z:T);
a. transfer (x+ balance_pre (T):T);
x,y,a, bal_T_fin = z ,((balance_pre (T)-z) -(x+

balance_pre (T)))+z,a ,(balance_pre (T)-z) -(x+
balance_pre (T));

From this last normal form, we can generate the
ILLUM function clauses f_run and f_next as discussed
in Section 7.

On loops in HELLUM. The HELLUM language
does not feature loops. On the one hand, this makes the
compilation to ILLUM easier, but on the other hand this
reduces the expressivity of HELLUM. Allowing loops in
HELLUM could be done in three ways. The simplest
option is to extend the language with specific iterators on
key-value maps (e.g., map, filter, fold). These operators
could then be compiled in corresponding operators in a
suitably extended ILLUM. More specifically, this would
only require extending the ILLUM and UTXO script ex-
pressions with suitable operators. Since such loops would
be bounded, this option does not strictly require a gas
mechanism to prevent divergent behaviours. A second
option would be to allow arbitrary (unbounded) loops
in HELLUM and suitably extend the ILLUM expressions
with operators that can simulate such arbitrary HELLUM
loops (e.g., a fixed point operator). Note that such an
extension would make the evaluation of ILLUM expres-
sions potentially divergent, hence it would require a gas
mechanism or some other means to bound the computa-
tion. For example, the Cardano scripting language (Plutus
Core) is an untyped lambda calculus, thus allowing for
unbounded computation, but the Cardano platform limits
the execution of scripts to a given amount of computation
steps. A last option would be to allow arbitrary HELLUM
loops but compile them to a chain of recursive ILLUM
clauses. Intuitively, calling such a recursive clause would
only perform a part of the loop (say, the first iteration),
and then call itself with the updated state. The recursion
then stops whenever the loop is over, and proceeds to call
another clause. While this mechanism effectively makes
ILLUM Turing-complete, it requires the users to perform
a potentially large number of calls, hence to append a
large number of transactions on the blockchain, paying
the fees for all of them. Further, this could lead to Denial
of Service attacks. A malicious participant could call a
HELLUM function which performs a long loop, pay the
fees for the first few iterations and then stop interacting.
In this way, the other participants are prevented to call
other methods until they first complete the long loop by
paying all the fees themselves. Worse, there is nothing
stopping a malicious participant from calling the method
again after its completion, blocking honest users from
accessing the contract and forcing them to pay the fees
once again. Therefore, this last option for handling loops
would require more complex protocols to counter attacks
like the ones described above.

33

	Introduction
	Overview
	An intermediate contract language
	The UTXO model
	The Illum compiler
	Security of the Illum compiler

	The Illum intermediate language
	Compiling Illum to UTXO scripts
	Adversary model
	Security of the Illum compiler
	From high-level languages to Illum
	Related work
	References
	 A: Symbolic model of Illum contracts
	 B: Computational Model
	 C: The Illum compiler
	 D: Adversary model
	 E: Coherence
	 F: Correctness of the compiler
	 G: Translating symbolic strategies
	 H: Security of the compiler
	 I: Compiling HeLLUM into Illum

