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Abstract 3 

This paper aims at deriving fire fragility curves for a prototype steel pipe-rack in an industrial plant 4 

subjected to localised fires. In particular, starting from a reference case study, uncertainties related to 5 

the structural capacity and the size of the localised fires caused by a hole in a tank or a hole in a pipe 6 

are included in the analyses. Thus, the influence of uncertainties in the derivation of the fragility 7 

functions was highlighted by comparing four sets of analyses in which both demand and capacity 8 

uncertainties were progressively introduced. Moreover, alongside the cloud analysis (CA), the 9 

suitability of the Multiple Stripe Analysis (MSA) to build relevant probabilistic fire demand models 10 

was assessed. Fire fragility curves were derived by considering the interstorey drift ratio (ISDR) as 11 

engineering demand parameter (EDP) and by assessing different relevant intensity measures (IMs) 12 

that represent the severity of localised fires. It was found that by introducing uncertainties in the steel 13 

yield strength, lower probabilities to exceed the life safety and the near collapse limit states with 14 

respect to the reference case study were observed. Moreover, the inclusion of further uncertainties, 15 

described with continuous physically-based probability functions of the size of the fire diameter, 16 

affected the probabilistic models by lowering the probability of exceedance. These functions provide 17 

a more realistic description of the fire scenario, enabling a better representation of the structural 18 

vulnerability. For this case study, the CA exhibited better suitability for the derivation of fire fragility 19 

curves than the MSA. All the analysis results are thoroughly discussed in the paper. 20 
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1. Introduction 24 

Fire safety is a fundamental requirement of the design of civil and industrial structures, which 25 

according to the current European norms [1] may be satisfied by employing either a prescriptive or a 26 

performance-based approach. The prescriptive approach mainly consists in "deemed-to-satisfy" 27 

solutions and employs nominal fire curves, e.g., ISO 834 or hydrocarbon curves, that do not represent 28 

the real fire behaviour. Instead, Performance-Based Fire Engineering (PBFE) provides performance 29 

objectives and requirements to be satisfied and exploits more realistic fire curves, that consider the 30 

fire characteristics and the environment in which the structure is located. In general, PBFE allows for 31 

a better description of the actual fire behaviour, an increase in design flexibility and a reduction of 32 

the construction costs but, on the other hand, it entails an adequate expertise of the designer and the 33 

employment of advanced tools, like numerical software for thermal and structural analyses or 34 

probabilistic frameworks for the definition of plausible fire events or for fire risk assessment. Whilst 35 

numerical simulation of several types of structures and resisting mechanisms in fire can rely on 36 

thoroughly validated software and new developments, suited for the investigation of complex 37 

phenomena [2-8], the extension of probabilistic concepts to fire safety engineering requires separate 38 

studies addressing specific structural types, fire characteristics and scenarios. In this respect, fragility 39 

functions/curves are useful tools for risk assessment, hazard mitigation and expected damage 40 

estimation of structures and infrastructures, but their implementation in fire engineering is still at an 41 

initial stage, in particular for industrial plants. As performance-based fire engineering and fully 42 

probabilistic structural fire engineering approaches are arising in the design practice, the definition 43 

of probabilistic fire demand models (PFDMs) and fire fragility curves is becoming important. Indeed, 44 

despite meaningful indications of different nature can be obtained by applying the PBFE with a 45 

deterministic approach [9-14], a probabilistic approach provides more general considerations, as well 46 

as useful tools, like fire fragility curves, which show the probability of exceedance of specific limit 47 

states, defined according to appropriate engineering demand parameters (EDP), conditioned on a 48 

suitable intensity measure (IM) that characterise the fire, such as the fire dimension or the fire load. 49 
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These curves may be integrated in a fully probabilistic structural fire engineering (PSFE) framework, 50 

contributing, for instance, to estimate the expected damage of a structure when combined with 51 

probabilities of occurrence of fires in a specific context, e.g. residential or industrial.  52 

Though the probabilistic approach has been widely exploited in Performance-Based Earthquake 53 

Engineering (PBEE) [15-20], there are only a few works focused on the development of fire fragility 54 

curves [21-25]. Among the others, in [22, 23] a methodology for developing fire fragility curves for 55 

steel structures exposed to compartment fires, relevant to office and dwelling buildings, was 56 

presented. Lange et al. [24] and Shrivastava et al. [25] adapted the probabilistic framework of the 57 

Pacific Earthquake Engineering Research Center (PEER) [26] to fire engineering. In addition, 58 

methods to compute fragility curves were mainly deployed in the context of PBEE. For instance, the 59 

three main methods used to build probabilistic demand models: cloud analysis (CA), incremental 60 

dynamic analysis (IDA), and multiple stripe analysis (MSA), were compared in [15]. Shome et al. 61 

[16] and Cornell et al. [17] laid the groundwork for the adoption of cloud analysis in seismic 62 

applications. Baker [18] instead, investigated incremental dynamic analysis and multiple stripe 63 

analysis and developed a fragility functions fitting based on a maximum likelihood estimation. Luco 64 

and Cornell [19] described the concepts of efficiency and sufficiency of an IM to assess its suitability 65 

for developing seismic fragility functions, while a relative measure between two IMs, i.e., relative 66 

sufficiency, was proposed as alternative sufficiency indicator in [20]. 67 

Probabilistic fire analyses and fragility curves become even more rare when it comes to industrial and 68 

petrochemical plants, though their piping systems mainly transport flammable material, liquid or gas 69 

fuel. Natural or accidental events may severely damage the structure supporting the piping systems 70 

[27-32], usually consisting of steel pipe-racks, and they may cause a release of flammable material 71 

from a pipe or a tank. Although in general the probability of occurrence of a fire may be low, the 72 

probability of ignition of the spilled flammable material increases in industrial environments and 73 

severe consequences are expected, as shown, among the others, by Uehara [33], Chan and Lin [34], 74 

Zheng and Chen [35] and Shu and Chong [36]. Therefore, the fire risk cannot be ignored for 75 
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petrochemical plants, and the definition of specific probabilistic fire demand models (PFDMs) is 76 

desirable. For this purpose, plausible fire scenarios, representing pool fires resulting from leakage 77 

and loss of containment from a pipe or a tank, should be defined. Methods to quantify the probability 78 

of occurrence of a loss of fuel and the characteristics of the arising fires, e.g., the mass flow rate 79 

resulting from a fuel leakage through a hole in a tank or in a pipe, were provided in [37-40]. These 80 

methods introduce a variability in the fire characteristic, or in general in the fire demand, that should 81 

be carefully considered when developing PFDMs. However, uncertainties may affect the capacity of 82 

the structures as well. In this respect, Gernay et al. [22, 23] indicated several sources of uncertainties 83 

that may influence the structural capacity of residential or office buildings, like the randomness in the 84 

material properties and in the magnitude of the loads. Recently, a probabilistic model for the steel 85 

properties at elevated temperature was illustrated in [41, 42].  86 

In this context, this paper gives a novel contribution to the field by developing fire fragility curves 87 

for a prototype steel pipe rack exposed to localised fires, considering both demand and capacity 88 

uncertainties, that will be useful to apply in probabilistic frameworks to estimate the expected damage 89 

and/or in fire risk assessment analyses. It investigates the effect of including different uncertainties 90 

by increasing the number of uncertain parameters and finally provides fragility curves that are 91 

representative of a more realistic description of the fire scenario and structural behaviour. In detail, 92 

starting from a reference case study presented in [43], additional numerical analyses were performed, 93 

first integrating randomness in the steel material properties at elevated temperature, and then 94 

introducing variability of fire characteristics for both material loss from a hole in a tank or in a pipe 95 

in the model. To evaluate the effects of demand and capacity uncertainties, the four different sets of 96 

analyses were compared throughout the whole procedure that brought to the development of fire 97 

fragility curves for three relevant IMs. Among the different IM, a scaled distance, based on concepts 98 

employed to describe blast or explosion hazard and obtained as a simple function of the fire 99 

parameters, is proposed to characterise the fire severity. Efficiency and relative sufficiency concepts 100 

were used to determine the most suitable IMs and the employment of not only the CA but also of the 101 
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MSA for building the fragility curves was investigated. The numerical analyses were carried out with 102 

the software SAFIR [2], since it enables both structural and thermal analyses, and includes the 103 

LOCAFI model for localised fires. Indeed, numerous works have investigated the thermal radiation 104 

emitted from hydrocarbon pool fires to propose fire models [44-50], but only recently an analytical 105 

model for localised fire, namely LOCAFI, was developed and integrated in a software [51-55]. This 106 

model quantifies the thermal impact of localised fires on vertical structural elements assuming that 107 

the flame shape is conical and based on the Heskestad flame length and temperature correlations [46, 108 

55]. 109 

The paper is organised as follows: in Section 2 the prototype steel pipe-rack is described along with 110 

the fire scenarios and the uncertain parameters; Section 3 presents the probabilistic fire analysis and 111 

the derivation of the fire fragility curves; finally, in Section 4 the conclusions and the future 112 

perspectives are drawn.  113 

2. Description of a prototype steel pipe-rack subjected to localised fires 114 

In this section the prototype steel pipe-rack is presented, together with its numerical modelling. 115 

Analogously, the pool fire scenarios and the associated localised fire models are described as well. 116 

Finally, the probabilistic approach employed to account for uncertainties is outlined and the structure 117 

of the numerical analyses is delineated. For comparison purposes, four case studies are defined 118 

depending on the source of the uncertainties introduced in numerical simulation. Further details on 119 

the structural and fire models adopted in the analyses can be found in [43]. 120 

The case study is based on an existing petrochemical plant located in Italy, whose seismic behaviour 121 

was thoroughly studied [28-31], and it is composed of several steel frames with rigid beam-to-column 122 

joints, pinned column-base joints in the transversal direction and vertical braces in the longitudinal 123 

direction with repeated modules composed of seven bays and only one equipped with bracings. The 124 

structural contribution of the piping system was neglected, and the geometry of the supporting steel 125 

pipe rack was simplified, resulting in the case study depicted in Figure 1. A regular portion of the 126 

structure was analysed, consisting of a six-bay module frame with a total extension of Ls=36m. The 127 



6 

vertical load due to the self-weight of the pipes and their content was assumed equal to qV=75kN/m, 128 

whilst a horizontal load qH=2kN/m was applied to take into account the friction of the pipes. 129 

Moreover, point loads were applied at midspan of the longitudinal beams, i.e., V=15kN vertical and 130 

H=7.5kN horizontal loads. As for the fire models later described in this paper, wind effects were 131 

neglected and no wind loads were applied. 132 

The numerical model was defined with the thermo-mechanical non-linear finite element software 133 

SAFIR [2]. In detail, the model comprised HEA 340 columns, HEA 200 longitudinal beams, a lower 134 

row of HEA 300 transversal beams and HEB 300 for the remaining transversal beams, all made of 135 

S275 steel. 936 3D Bernoulli beam finite elements, having length of 50 cm each, were employed in 136 

the analyses. Columns were pinned at their base in both principal directions, transversal beams were 137 

end fixed to the columns, whilst the longitudinal beams were pinned to the columns (Figure 1b). Since 138 

the heating of the longitudinal bracing system, based on the investigated fire scenarios, was very 139 

limited and the major thermal impact occurred in the transverse direction, the bracing system was 140 

substituted in the model with horizontal restraints in the longitudinal direction to limit the 141 

computational burden.  142 

  

 

Figure 1. Case study 143 

2.1. Fire scenarios description and localised fire models 144 

Fire scenarios consisting of pool fires resulting from a flammable material leakage or from a burning 145 

tank (Figure 2a) in industrial plants were investigated. A meaningful set of plausible localised fires 146 

impacting the structure with different levels of intensity, that cause from low consequences to the 147 

collapse of the entire structure, was considered. The set of scenarios was defined varying three 148 
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parameters, i.e., the fuel type, the fire diameter D and the fire-structure distance d, where the latter is 149 

the distance separating the edge of the fire and the structure. As shown in Figure 2b, the fires were 150 

always located in front of the structure, with the fire centre aligned with the central transversal beam 151 

of the structure. The distance between the fire centre and the structure is indicated as L. The analyses 152 

performed in [43], used as reference in this work and referred to as Case Study 0 (CS0), were 153 

performed employing the pool fire parameters reported in Table 1. Such analyses were expanded in 154 

this work as described in Section 2.2. 155 

Table 1. Set of pool fire scenarios – fuel, fire-structure distance d and fire diameter D values used in the reference analysis - CS0 156 

Pool fire parameters Number of analyses 

Fuels Pentane, Kerosene, Heptane, Gasoline, Fuel Oil, Benzene, Acetone 7 

Distance d [m] 0.5, 1, 2, 3, 4, 5, 6 7 

Diameter D [m] 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30 11 

Total number of analyses 539 

In CS0 7 liquid fuels were selected for the definition of the fire scenarios, since petrochemical plants 157 

deal with various flammable products, as well as 7 fire-structure distances. Distances higher than 6 158 

m were not investigated since for d=6 m the selected fires were already having a limited impact on 159 

the structure. Eleven equally spaced diameters were considered, assuming a uniform distribution of 160 

diameters in the 5 m to 30 m range, i.e., fires with diameters in the selected range all occur with the 161 

same probability, without distinguishing between leakage from a hole in the tank or from a pipe 162 

(Figure 2a). By varying the three parameters, 539 different localised fires were obtained and for each 163 

of them a thermo-mechanical analysis was performed, considering 60 minutes of thermal exposure. 164 

 
a) 

 
b) 

 

Figure 2. a)  Liquid outflow through a tank or a pipe; b) Fire-structure distance d and fire diameter D 165 



8 

A localised fire model integrated in SAFIR was employed to describe the fire development. Such 166 

model, i.e, LOCAFI model [55], belongs to the category of analytical models that exploit the virtual 167 

solid flame concept and was proven to provide accurate results, without being as demanding as more 168 

refined computational fluid dynamics (CFD) models. The model relies on the existing Heskestad 169 

correlations for localised fires included in Annex C of EN1991-2 [1] and describes a localised fire 170 

with a conical shape. It was validated against experimental data of fires characterised by diameters 171 

up to 50 m [55,56]. Localised fires are obtained in the model by defining the fire diameter D and the 172 

rate of heat release (RHR) Q of the fire. Indeed, additional information as the flame length Lf and 173 

temperature evolution along the flame axis can be derived from these two parameters 174 

Lf = 0.0148Q
0.40 − 1.02D [m] 

T(z) = 20 + 0.25Qc

2
3(z − z0)

−
5
3 ≤ 900 [°C] 

(1) 

with 175 

Qc = 0.8Q [W]  and  z0 = 0.00524Q
0.40 − 1.02D [m] (2) 

Where Qc is the convective part of the rate of heat release Q and 𝑧0 is the virtual origin of the fire 176 

source. The rate of heat release Q employed in the analyses was obtained as follows 177 

Q = ṁb∆Hc (
Dπ2

4
) [kW] 

ṁb = ṁ∞(1 − e
−kβD) [

kg

m2s
] 

(3) 

where the mass burning rate ṁb was defined by Zabetakis and Burgess [58]. ṁ∞ is the limiting mass 178 

burning rate, kβ is the empirical constant defined as the product between the extinction coefficient k 179 

and the mean beam length corrector β and ∆Hc is the heat of combustion (kJ/kg). The values 180 

employed in the analyses are reported in Table 2 [59]. For pentane the mass burning rate was taken 181 

as the limiting mass burning rate, and thus, no empirical constant is provided in Table 2. As a 182 

reference value to quantify the fuel intensity, the equivalent RHR density of the fuel q was obtained 183 

as follows  184 
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q = Q/ (
Dπ2

4
) [MW/m2],  with ṁb = ṁ∞ (4) 

Table 2. Fuel properties 185 

Fuel 
Limiting mass burning rate 

ṁ∞ [kg/m2s] 

Empirical constant 

kβ [m-1]  

Heat of combustion 

∆Hc [kJ/kg]  

Equivalent RHR density 

q [MW/m2] 

Acetone 0.038 2.24 25800 0.98 

Fuel Oil 0.034 1.67 39700 1.35 

Gasoline 0.055 1.48 43700 2.40 

Kerosene 0.063 1.27 43000 2.71 

Benzene 0.085 2.70 40100 3.41 

Heptane 0.081 1.39 44600 3.61 

Pentane 0.095 – 48800 4.64 

2.2. Uncertainties in the structural and in the fire models 186 

In CS0 [43] the variability of the fire input, or in general of the thermal demand, was accounted for 187 

by varying the parameters characterising the fire considering a predetermined set of values. However, 188 

a probabilistic approach, accounting also for uncertainties that may have a significant impact on the 189 

structural capacity, e.g., steel mechanical and thermal properties and the applied loads [22], should 190 

be preferred. In the specific case of the analysed pipe-rack, applied vertical loads are well defined in 191 

case of normal service conditions, meaning that no significant variation is foreseen. Conversely, the 192 

uncertainty related to the steel properties, and in particular to the mechanical properties, may 193 

significantly affect the structural behaviour, as highlighted in [22,23]. Nevertheless, steel thermal 194 

properties have relatively low variances and the deterministic values from EN-1993-1-2 [57] can be 195 

taken [22]. Based on this discussion, in this work a probabilistic approach was adopted to consider 196 

uncertainties affecting both the fire demand and the structural capacity with reference to the yield 197 

strength at ambient and at elevated temperature. Starting from the reference case study CS0, 198 

uncertainties related to the steel yield strength were implemented in a new set of analyses, namely 199 

Case Study 1 (CS1). In detail, in CS0 the properties of steel at elevated temperature were taken as in 200 

EN 1993-1-2 [57], whilst the analyses summarised in Table 1 were run in CS1 by considering the 201 

logistic EC3-based probabilistic model proposed by Khorasani et al. [41] and Qureshi and al. [42] for 202 

the yield strength at elevated temperature, whereas the Young’s modulus and the proportional limit 203 
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were taken as in EN 1993-1-2 [57]. In this model the reduction of the yield strength at elevated 204 

temperature follows a probabilistic distribution, in which the variability of the value of the retention 205 

factor 𝑘𝑦, defined as the yield strength at a given temperature 𝑇 measured at a 2% strain normalized 206 

by the yield strength at room temperature, is accounted for by means of the following equation 207 

𝑘𝑦 =
1.7 exp[logit(�̂�∗𝑦) + 0.412 − 0.81 ∙ 10

−3 ∙ 𝑇 + 0.58 ∙ 10−6 ∙ 𝑇1.9 + 0.43𝜀]

exp[logit(�̂�∗𝑦) + 0.412 − 0.81 ∙ 10−3 ∙ 𝑇 + 0.58 ∙ 10−6 ∙ 𝑇1.9 + 0.43𝜀] + 1
 (5) 

where  208 

logit(�̂�∗𝑦) = ln (
�̂�∗𝑦

1−𝑘∗𝑦
), �̂�∗𝑦 =

𝑘𝑦,𝐸𝑁1993−1−2+10
−6

1.7
  (6) 

𝑘𝑦,𝐸𝑁1993−1−2=𝑘𝑦,𝐸𝑁1993−1−2(𝑇) is the retention factor of the yield strength at elevated temperature 209 

according to EN1993-1-2 [57] and 𝜀 is the standard normal distribution. The yield strength at ambient 210 

temperature also varies according to Eqs. (5) and (6) in terms of 𝜀. Hence, the change in the steel 211 

strength with temperature was characterised by a different 𝑘𝑦 reduction factor, determined according 212 

to Eq.(5) and values of 𝜀  generated with a Latin Hypercube sampling, in each one of the 539 analyses.  213 

Figure 3a illustrates the distributions of the retention factors 𝑘𝑦 obtained at different temperatures, 214 

i.e. 20°C, 400°C and 600°C. It can be observed that the probabilistic model allows for higher retention 215 

factors and in turn yield strengths, compared to the EN1993-1-2 until very high temperatures are 216 

reached. In detail, the 0.5 quantile of 𝑘𝑦 is always higher than 𝑘𝑦,𝐸𝑁1993−1−2 for 𝑇<700°C, whilst the 217 

mean of 𝑘𝑦 is higher than 𝑘𝑦,𝐸𝑁1993−1−2 until approximately 900°C. In particular, as reported in [60] 218 

the logistic model described in Eqs. (5) and (6) implicitly includes the effect of strain hardening at 219 

lower temperatures and therefore, 𝑘𝑦 can be higher than 1.0 at ambient temperature and consequently 220 

higher than 𝑘𝑦,𝐸𝑁1993−1−2. In this respect, the characteristic yield strength value was used in order to 221 

avoid too large yield strength values at ambient temperature. 222 

Two further set of analyses, namely Case Study 2 (CS2) and Case Study 3 (CS3), were carried out to 223 

propose a more refined thermal demand model for which the fire diameter was computed with 224 

continuous physically-based probability distributions based on the leakage of flammable material 225 
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from a hole in the tank or from a pipe. Indeed, in [43] the two probability density distributions were 226 

obtained by quantifying the liquid flow from a tank through a hole, or a pipe respectively. They were 227 

derived in order to determine the dimension of the fires that were most likely to occur and to be 228 

enough severe for the structure. For each of the two scenarios, consisting of 1000 different 229 

configurations, the fuels reported in Table 1 were considered and random tank and pipe geometries, 230 

hole dimensions and tank filling degrees varying within realistic ranges were selected. These analyses 231 

resulted in the fire diameter distributions depicted in Figure 3b. The illustrated normal distributions 232 

are defined with a mean of 20.39 m and a standard deviation of 14.75 m for a fuel leakage through a 233 

pipe and with a mean of 17.93 m and a standard deviation of 13.11 m for a fuel leakage through a 234 

hole. Therefore, the analyses of CS2 and CS3 were performed considering the diameter distributions 235 

for a liquid outflow from a pipe and from a hole, respectively. For each of the 49 fuel-distance pairs, 236 

11 diameters D were used from a set of 539 values picked with a Latin Hypercube sampling from the 237 

distributions. In Figure 3b also the distribution of the set of diameters employed in CS0 and CS1 is 238 

reported for comparison purposes. A summary of the quantities differentiating the 4 sets of analyses 239 

is provided in Table 3. 240 

Table 3. Features of the investigated sets of analysis 241 

Sets of 

analysis 

Demand parameters Capacity parameters 

Diameter D [m] Steel yield strength 

CS0 Uniform distribution (Table 1 & Figure 3b) 
Deterministic (EN 1993-1-2 

[57]) 

CS1 Uniform distribution (Table 1 & Figure 3b) Probabilistic (Eq. 1) 

CS2 Probabilistic (Figure 3b – pipe)  Probabilistic (Eq. 1) 

CS3 Probabilistic (Figure 3b – hole) Probabilistic (Eq. 1) 
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a) 

 
b) 

Figure 3. a) Probabilistic (Qureshi and al. [42]) vs deterministic retention factor model; b) Diameters distributions in 242 
CS0&CS1, CS2 and CS3 243 

3. Probabilistic fire analysis 244 

In this work, the results of numerical analyses are used to define a probabilistic fire demand model, 245 

with the aim to develop fire fragility curves, by providing a useful tool for practitioners that want to 246 

probabilistically assess or design a steel pipe-rack structure subjected to localised fires. Such curves 247 

describe the probability that an engineering demand parameter (EDP) exceeds a structural limit state 248 

(LS) conditioned on an intensity measure (IM). 249 

P(EDP > LS|IM) (7) 

It is evident, that the selection of appropriate engineering demand parameters (EDP) and intensity 250 

measures (IMs) is crucial to propose fire fragility curves that accurately describe the structural 251 

response and the severity of the action. In this context, a significant data elaboration process had to 252 

be performed in order to only present the outcomes that provide a valuable information in terms of 253 

the selected EDPs and IMs. Therefore, in Section 3.1 and 3.2 suitable relevant IMs and EDPs are 254 

described. 255 

3.1. Intensity measures 256 

A good IM for a PFDM should be able to properly represent the severity of the fire scenario. In the 257 

literature several IMs have been proposed for compartment fires, but their ability to characterise 258 



13 

localised fires is not guaranteed. Therefore, the 8 IMs reported in Table 4 are investigated. The first 259 

7 were proposed by Randaxhe et al. [43], whereas the last one has been added in this work. Three 260 

obvious choices for the IMs consisted in the 3 parameters characterising the fire scenarios, i.e., the 261 

fire diameter D, the structure-fire distance d and the equivalent RHR density q. The latter is obtained 262 

assuming that �̇�∞ = �̇�𝑏, which is a good approximation for D > 1 m. The remaining IMs were 263 

selected as functions of D, d and q. The fire position-diameter ratio was computed by considering the 264 

distance between the structure and the fire centre L as D/2+d. Instead, Eq.(1) was employed in the 265 

definition of the flame length Lf and the structure fire distance-flame length ratio d/Lf. HFavg was 266 

obtained by means of a weighted average of the heat fluxes HF on the four sides of the cross section 267 

when it was impinged by the maximum radiative heat flux obtained with the LOCAFI model [55]. 268 

The RHR density q is typically employed as IM in applications for compartment fires [22-25], since 269 

it provides an accurate estimate of the fire severity when a uniform fire distribution is assumed in an 270 

entire compartment. However, the RHR density q cannot accurately describe the severity of fires 271 

developing in a limited zone that might be far from the structure, i.e. localised fires. In particular, the 272 

fire dimensions and the distance separating the structure and the fire might influence the heat flux 273 

received from the structure and the number of critical elements that are severely heated.  274 

In order to provide an indicator that considers these aspects and more accurately characterises the 275 

severity of a localised fire, a further IM was defined, namely the scaled distance d/Ab,PE,eq (Table 4). 276 

As shown later in this paper, the scaled distance is one of the best IM candidates yet being much 277 

simpler to derive than HFavg and is obtained as the ratio between the structure-fire distance d and the 278 

equivalent pentane surface Ab,PE,eq, computed as 279 

APE,eq =
Q

 ṁb,PE∆Hc,PE
=
q(1 − e−kβD) (

πD2

4 )

ṁb,PE ∆Hc,PE
  [m2] (8) 

Where ṁb,PE and ∆Hc,PE are the mass burning rate and the heat of combustion of pentane, respectively 280 

(Table 2). Ab,PE,eq represents the equivalent surface of pentane to obtain the same RHR of the actual 281 

localised fire. Thus, the lower the scaled distance d/Ab,PE,eq the higher the severity of the fire. It is 282 
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worth to point out that in the development of fragility curves related to the blast or explosion hazard, 283 

a scaled distance is widely employed as IM, e.g. in [61-63], which is defined as the structure-284 

explosion distance over a fractional power of an equivalent TNT mass MTNT. Analogously to Ab,PE,eq  285 

(Eq. (8)), MTNT is obtained as the mass of TNT that is necessary to obtain the same energy released 286 

by the actual explosion. 287 

Table 4. Investigated Intensity Measures (IM) 288 

IM Name Function/Formula 

D [m] Fire diameter f(D) 

d [m] Structure fire distance f(d) 

q [MW/m2] Equivalent RHR density of the fuel f(q) = ṁ∞∆Hc 

L/D Fire position-Diameter ratio f(D, d) = (D/2 + d)/D 

Lf [m] Flame length f(D, q) = Eq. (1) 
HFavg [kW/m2] Maximum average heat flux impinging the structure f(D, d, q) see [26] 

d/Lf  Structure fire distance-Flame length ratio f(D, d, q) = d/Eq. (1) 

d/Ab,PE,eq [m-1] Scaled distance f(D, d, q) = d/Eq. (8) 

 289 

3.2. Engineering demand parameters 290 

The EDP should be a good indicator of the structural response, but an EDP suited for a particular case 291 

might not be the best choice for a different structure or for a different action (e.g., fire, seismic, impact, 292 

etc.). For instance, the maximum temperature and the vertical deflections of the structural members 293 

may be identified as relevant EDPs for steel buildings exposed to compartment fires but are not suited 294 

for the proposed case study. Indeed, since the structural members are not engulfed in fire, limited 295 

vertical deflections were registered and a single temperature measure cannot adequately represent the 296 

complex thermal distribution inside and along the structural members. Therefore, in [43] the 297 

numerical results were examined thoroughly to identify an adequate EDP among different candidates, 298 

e.g., the inter-storey drift ratio, the axial load and the bending moment in the structural elements, the 299 

maximum average temperature within the whole structure and the average temperature within the 300 

most stressed structural elements. Finally, the inter-storey drift ratio (ISDR) was selected as EDP 301 

since it accurately represents the structural state regardless from the fire scenario and is widely 302 

employed for other types of structures and actions, e.g., seismic actions. Indeed, despite in general 303 
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thermally induced drifts are not directly correlated to damage, in the investigated case study large 304 

drifts were the major contributing cause of structural failure. Moreover, though localised fires may 305 

induce differential ISDR at the same floor, numerical results showed that in this work the ISDR could 306 

be associated with the damage of a significant part of the structure and thus, could be taken as an 307 

indicator of the global structural response. 308 

Detailed information on the values of ISDR associated to specific structural damage states (LS in Eq. 309 

(7)) is available in literature. In this study, the ISDR values of 5% and 2.5% were adopted for near 310 

collapse limit state and life safety limit state respectively, according to the indications for steel 311 

moment resisting frames of the American seismic rehabilitation prestandard [64]. The selected limit 312 

states refer to a situation in which a small increase of thermal and/or mechanical loads would lead the 313 

structure to failure, i.e. near collapse, or to a situation in which the structure is in a significant 314 

deformative state, but still has a margin of bearing capacity to support additional thermal and/or 315 

mechanical loads, i.e., life safety. 316 

3.3.  Results of the numerical analyses  317 

The results of the 2156 numerical analyses performed for the four case studies (i.e., 4 x 539 analyses) 318 

are reported. If failure was not attained earlier, the analyses were stopped at 60 min, since by 319 

preliminary checks it was found that thermal equilibrium was reached in the steel members after that 320 

time. Figure 4a and Figure 4c show the typical deformed shape of the structure at failure and after 60 321 

minutes, respectively. Figure 4 refers to CS3 and Figure 4a and Figure 4b depict the structure exposed 322 

to a heptane fire at a distance of 2 m and a diameter of 25.4 m, whereas Figure 4c and Figure 4d show 323 

the case with a heptane fire but diameter equal to 11.0 m. As depicted, the typical failure mechanism 324 

of the structure consisted in the loss of stability of the central frame, which in most of the cases 325 

experienced the largest transversal deformations. Despite the maximum displacements occurred at 326 

the top of the structure, the highest inter-storey drift ratios (ISDR) were registered in the transverse 327 

direction at the first level of the columns, i.e, at a height of 5m. Since no load increments were applied, 328 
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the progressive increase of the transversal displacements was related to the effects of the fire 329 

exposure. Indeed, strength and stiffness degradation of steel occurred and consequently the load-330 

bearing capacity of the structural members decreased. In addition, the structural members were 331 

partially restrained; thus, axial dilatation and thermal bowing of the members induced variations of 332 

the internal forces. In particular, thermal bowing in the columns was substantial due to the significant 333 

non-uniform temperature distributions in the cross sections and entailed an increase in second order 334 

effect importance, as depicted in Figure 4b and Figure 4d for the central column of the closest row to 335 

fire at a height of 5m. 336 

  
a) 

 
b) 

  
c) 

 
d) 

Figure 4. CS3 – Fuel=Heptane, d=2m:  a) D=25.4m, deformed shape at failure; b) D=25.4m, temperatures of the front 337 
row central column at 5m at failure; c) D=11.0m, deformed shape after 60 minutes; d) D=11.0m, temperatures of the 338 

front row central column at 5m after 60 minutes 339 

The maximum inter-storey drifts obtained in the analyses are represented in Figure 5 and Figure 6 340 

and they are denoted as ISDR for CS0, and as ISDR(𝜀) for CS1-CS3, where the steel yield strength 341 

at elevated temperature varied in accordance with the standard normal distribution 𝜀 in Eq.(5). The 342 

regions relevant to the life safety limit state and the near collapse limit states are indicated in green 343 

(2.5%≤ISDR<5%) and in red (ISDR≥5%).  344 
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The effects of the introduction of the variability in the steel material properties can be discussed 345 

observing the comparison between ISDR from CS0 and CS1 proposed in Figure 5a. A good 346 

correlation is found between the results of the two analyses (mean and standard deviation of the ISDR 347 

are 0.96% and 0.09% respectively), but accounting for the steel yield strength uncertainties tends to 348 

reduce the ISDR in CS1. The points inside the green and red shaded areas represent the analyses 349 

exceeding both the life safety and the near collapse limit state for each single analysis of the two sets, 350 

i.e. CS0 and CS1. Instead, the points lying inside the blue areas are associated with the analyses for 351 

which the near collapse limit state was exceeded in one CS, but only the life safety limit state was 352 

reached for the other CS. In this respect, the CS0 deterministic material property assumptions appear 353 

more severe since analyses that exceed the near collapse for CS0 are, conversely, in many cases still 354 

only exceeding the life safety limit state for CS1. Indeed, in CS1 the steel retention factors of the 355 

yield strength are on average larger than the one prescribed in the EN 1993-1-2 and used in CS0 (see 356 

the 0.5 quantile and the mean of the picked 𝑘𝑦 factors in Figure 3). Thus, higher strength is exhibited 357 

in the CS1 analyses. This holds true when the ISDR of CS0 are compared to the ones of CS2 and CS3 358 

as also in these cases the probabilistic material model was considered, as shown in Figure 5b. In 359 

addition, the mean ISDRs of CS1, CS2 and CS3, i.e., 3.59%, 3.67%, 3.60%, reflect the mean of the 360 

diameter distributions employed in such analyses, i.e., 17.5m, 20.39m, 17.93m. Larger diameters 361 

entail more severe fires, leading to higher values of ISDR. 362 

To better understand the effects of uncertainties, the results of each of the analyses performed for 363 

CS2 and CS3 were examined. As mentioned before, since the LOCAFI model was not extensively 364 

investigated for fire diameters larger than 50 m (D>50 m) [55,56], the analyses obtained for diameters 365 

larger than 50 m in CS2 (14 analyses) and in CS3 (5 analyses) are explicitly indicated in Figure 5b 366 

with grey squares and are not considered later in the development of the PFDMs. Besides, it has to 367 

be observed that some analyses experienced ISDR>5% without showing structural failure owing to 368 

lack of numerical convergence caused mainly by material fracture occurred in a highly deformed 369 

configuration, that also determined runaway in some analyses. Therefore, the analyses run until the 370 
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end (60 minutes). For such analyses it was checked that by slightly increasing the loads, failure was 371 

reached to confirm that they were in a near collapse state. 372 

a) 
 

b) 

Figure 5. Influence on the ISDR: a) of the uncertainties in the material properties; b) of the uncertainties in the material 373 
properties and the diameter distribution 374 

Finally, as shown in Figure 6, the near collapse limit state threshold (5%) was exceeded more 375 

frequently in CS0, whilst the 2.5% threshold exceedance occurred for all four case studies in a 376 

comparable number of analyses for a given fuel or structure-fire distance. Again, the trend of the 377 

results indicates that higher ISDR may be reached for the same fire scenario when the deterministic 378 

material properties are employed (CS0), for which plasticity and load redistribution occur for lower 379 

load levels or fire intensity compared to the case studies with the probabilistic material model (CS1-380 

CS3). 381 

b) 

Figure 6. a) LS thresholds exceedance for type of fuel and for distance d 382 
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3.4. Cloud analysis and Multiple stripe analysis 383 

Though numerous probabilistic seismic demand models (PSDM) are available, the literature is 384 

currently lacking extensive applications in the fire context and only few probabilistic fire demand 385 

models (PFDM) can be found [21-25]. With respect to PSDM, incremental dynamic analysis (IDA), 386 

Cloud analysis (CA) and Multiple stripe analysis (MSA) are usually employed to obtain fragility 387 

curves. PSDMs are obtained with IDA by incrementing an IM in dynamic analyses until the EDP 388 

exceeds a certain limit state (LS). However, scaling fire IMs, such as fire load or heat flux, can rapidly 389 

lead to unrealistic fire scenarios and thus, IDA is not well suited for a PFDM and is not applied in 390 

this work. Instead, both CA, also employed in [43] and MSA are proposed to develop the PFDM.  391 

3.4.1. Cloud Analysis (CA) 392 

Cloud analysis (CA) is suited to build a PSDM from EDP-IM pairs arranged in a data cloud. This 393 

procedure is particularly convenient as it does not require to perform several analyses for discrete 394 

quantities of IM as in MSA and thus, it is not necessary to determine the IM to be employed in the 395 

PSDM model a priori. This allows for the selection of the most suitable IM a posteriori, i.e., in light 396 

of the results of the numerical analyses and of the CA.  397 

The CA method assumes that an EDP follows a lognormal distribution when conditioned on an IM. 398 

Hence, the probabilistic demand model can be characterised as follows 399 

EDP̂ = 𝑎IM𝑏 

ln(EDP̂) = 𝐴 + 𝐵 ln(IM) 
 

 

(9) 

where EDP̂ is the median of the EDP, and the parameters 𝑎 = exp(𝐴) and 𝑏 = 𝐵 are identified by 400 

means of a linear regression. Indeed, the conditional median of the EDP given the IM is linear in the 401 

log–log space, whereas the conditional dispersion of the EDP given the IM is constant. Such 402 

dispersion, referred to as 𝛽EDP|IM, can be determined as the standard deviation of the linear regression 403 

𝜎𝑙𝑛(EDP)|IM 404 
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𝛽EDP|IM = 𝜎𝑙𝑛(EDP)|IM =
√∑ [ln(EDPi) − ln(EDP̂i)]

2𝑛
i=1

𝑛 − 2
  

 

(10) 

Finally, the fragility function can be defined in the form of a lognormal cumulative distribution 405 

function [42] 406 

 P(EDP > LS|IM) = 1 − Φ(
ln(

LS

𝑎IM𝑏
)

𝛽EDP|IM
) (11) 

3.4.2. Multi Stripe Analysis (MSA) 407 

MSA can be applied to build a demand model by considering a discrete set of IMs, so that EDP-IM 408 

pairs are arranged in a stripe for each IM level. However, a minimum number of analyses should be 409 

performed for each level of IMs to obtain meaningful models [15]. In the framework of this work, 410 

MSA analysis was employed for IMs and CSs that allowed for stripes with at least 7 occurrences, i.e., 411 

at least 7 analyses were performed for each value of the IM. Though at least 10 instances per stripe 412 

are usually suggested [15], the threshold was lowered to 7 to test the ability of MSA to provide 413 

efficient PFDMs with only few results for each IM level.  414 

MSA is based on the definition of fraction of collapses for a predefined LS and for each i-th level of 415 

IM, i.e., for each stripe. Such fraction is obtained dividing the number kI of analyses in which EDP >416 

LS by the total number of analyses performed. Assuming that observations of “collapse” or “no-417 

collapse” are independent for the different fire scenarios, a binomial distribution can be used to 418 

express the probability of observing kI collapses among nI fire scenarios given an IMi 419 

P(ki collapses in ni fire scenarios) = (
ni
ki
) pi

ki  (1 − pi)
ni−ki   (12) 

where pI is the probability to observe a collapse C given an IMi. Such probability can be defined with 420 

a lognormal cumulative distribution function [18] 421 

pi = Pi(C|IMi) = Φ(
ln (
IMi
𝜃
)

𝛽
) (13) 
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The function Φ( ) is the standard normal cumulative distribution function, while 𝜃 and 𝛽 define the 422 

shape of the fragility function and are the median of the fragility function, i.e., the IM level generating 423 

a probability of exceedance of 50%, and the standard deviation of ln(IM), respectively. The parameter 424 

𝛽 is the dispersion of the fragility function and must not be confused with the term 𝛽EDP|IM in Eq. 425 

(10), which is the dispersion of the EDP conditioned on IM. In this work the fragility function is built 426 

with the maximum likelihood method, which aims at finding the probability distribution with the 427 

highest likelihood of having produced the fraction of collapse observed for each IMi. The likelihood 428 

is defined as the product of the binomial probabilities 429 

Likelihood =∏ (
ni
ki
) pi

ki  (1 − pi)
ni−ki

𝑚

𝑖=1
 

Likelihood = ∏ (ni
ki
) Φ(

ln(
IMi
𝜃
)

𝛽
)

ki

 (1 − Φ(
ln(

IMi
𝜃
)

𝛽
))

ni−ki

𝑚
𝑖=1    

(14) 

where m is the number of IM levels or stripes. The optimal parameters 𝜃 and �̂� of the fragility function 430 

are obtained by maximising the likelihood as follows 431 

{𝜃, �̂�} = max
θ,β

∑ [ln (ni
ki
) + ki lnΦ(

ln(
IMi
𝜃
)

𝛽
)+ (ni − ki) ln (1 − Φ(

ln(
IMi
𝜃
)

𝛽
))]m

i=1    (15) 

Once the optimal parameters are defined, the fragility function can be obtained employing the 432 

distribution assumed earlier (Eq.(13)) 433 

P(EDP > LS|IM) = Φ(
ln (
IM

𝜃
)

�̂�
) (16) 

The dispersion of the EDP conditioned on the IM for the i-th stripe 𝛽EDP𝑖|IM𝑖 can be taken as in [25].  434 

𝛽EDP𝑖|IM𝑖 =
𝜎EDP𝑖|IM𝑖
𝜇EDP𝑖|IM𝑖

 

𝜎EDPi|IMi =
√∑ [EDPi,o−𝜇EDPi|IMi]

2
o
i=1

𝑛
     𝜇EDP𝑖|IM𝑖 =

∑ EDPI,o
𝑜
i=1

𝑛
    with o=occurrences at IMi 

 

 

(17) 
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3.5. CA and MSA results  435 

In order to derive the fire fragility curves, the results of the four case studies were analysed by means 436 

of CA and MSA. The ISDR was used as unique EDP and the IMs given in Table 4 were exploited. 437 

The CA was applied to all cases and all IMs, as mentioned in Section 3.4, whilst the MSA was 438 

employed only when at least 7 instances per stripe were available. As a result, the MSA was applied 439 

to CS0 and CS1 for IMs consisting of single fire parameters or simple functions of them, i.e., D, d, q, 440 

L/D and Lf; while, due to the variability of the diameters D introduced in the analyses, MSA was used 441 

only for d and q in CS2 and CS3. Indeed, it appears that obtaining well-defined stripes is not trivial 442 

when uncertainties are included into the demand model as continuous probabilistic density functions. 443 

The obtained PFDMs are shown against the numerical results in an EDP-IM space in Figure 7. The 444 

CA regression is represented as a continuous line, while single points are used for each stripe of the 445 

MSA. A log-log space representation is preferred to better show the linear regression fit when only 446 

the CA is available. The parameters of the CA and the MSA defined in Sections 3.4.1 and 3.4.2 are 447 

reported in Table 5 and Table 6, respectively. 448 

Table 5. Cloud analysis parameters 449 

CA parameters 

IM 
CS0 CS1 CS2 CS3 

𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 

D 0.014 0.355 0.014 0.336 0.012 0.373 0.012 0.384 

d 0.043 -0.188 0.040 -0.163 0.039 -0.138 0.039 -0.162 

q 0.030 0.210 0.029 0.199 0.028 0.218 0.028 0.212 

L/D 0.026 -0.975 0.025 -0.902 0.025 -0.912 0.026 -0.864 

Lf 0.009 0.422 0.009 0.399 0.008 0.457 0.007 0.469 

HFavg 0.007 0.620 0.007 0.569 0.005 0.706 0.005 0.708 

d/Lf 0.020 -0.251 0.020 -0.227 0.017 -0.284 0.017 -0.289 

d/Ab,PE,eq 0.018 -0.185 0.018 -0.170 0.017 -0.185 0.017 -0.186 

Table 6. Multiple stripe analysis parameters 450 

MSA parameters 

IM 
CS0 CS1 CS2 CS3 

𝜃 �̂� 𝜃 �̂� 𝜃 �̂� 𝜃 �̂� 

Life 

safety 

limit 

state 

D 5.911 0.461 6.209 0.550 - - - - 

d 17.601 1.401 15.627 1.474 4748.121 6.707 26.229 2.125 

q 0.323 1.523 0.465 1.367 0.249 1.948 0.409 1.598 
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LS=2.5% 
L/D 1.071 0.189 1.034 0.214 - - - - 

Lf 12.046 0.319 12.882 0.338 - - - - 

Near 

collapse 

limit 

state 

 

LS=5.0% 

D 43.435 0.750 138.181 1.137 - - - - 

d 0.500 0.923 0.107 1.496 0.248 1.227 0.254 1.143 

q 7.954 0.920 21.924 1.151 49.972 2.011 34.131 1.676 

L/D 0.541 0.056 0.466 0.133 - - - - 

Lf 58.685 0.489 121.218 0.719 - - - - 

 

Figure 7. Cloud and multi-stripe analysis fit models 451 

Not all IMs allow for equally well-defined PFDMs and the dispersion of the EDP conditioned on IM 452 

𝛽EDP|IM provides a quantitative measure of the variations between the actual and the predicted EDP 453 

values for a given IM. Such dispersions are summarised in Figure 8 for all the derived PFDMs. When 454 

the MSA was used, dispersion values were determined according to Eq. (17) at each IM level. As 455 
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expected, the MSA applied with L/D and Lf as IMs, showed the highest variability in the dispersion 456 

because only 7 analyses per stripe were used, confirming that at least 10 analyses for each IM level 457 

[15] are probably necessary to obtain efficient demand models.  458 

 

Figure 8. Cloud vs multi-stripe analysis dispersions 459 

In fact, the dispersion is a good indicator to evaluate the efficiency of an IMs. An IM is efficient if it 460 

generates low 𝛽EDP|IM values, usually below 0.3 [15]. Therefore, the dispersion of the CA was 461 

employed to select the best IM candidates for developing the fire fragility curves. Dispersions were 462 

compared in the efficiency plot of Figure 9a, from which it can be observed that for CS2 and CS3 q 463 

and d, which are the only IMs completely independent from the diameter D (Table 4), cannot be 464 

deemed efficient. This is due to the fact that the fire diameter D is a fundamental parameter to 465 

characterise the fire severity and this is even more true when a probabilistic distribution of D is 466 

assumed as in CS2 and CS3. Nevertheless, even though for CS0 and CS1 q and d can be considered 467 

efficient, they show the highest dispersion values among the different IM. Based on this discussion, 468 

q and d were discarded and among the remaining IM candidates, the three with the highest efficiency 469 

were selected, namely L/D, HFavg and d/Ab,PE,eq. 470 

Besides, the sufficiency of the IMs was investigated to ensure an accurate estimate of the probability 471 

of a structural response given an IM, i.e., P(EDP|IM). According to Luco and Cornell [19], IMs are 472 

sufficient when the structural response to a demand shows no trend in the correlation with the 473 
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parameters defining such demand. However, the IMs candidates employed in this work were defined 474 

as functions of the fire parameters, i.e., D, d and q, and correlation was always observed between the 475 

residuals of EDP and these parameters. In this situation, a more appropriate sufficiency measure is 476 

the relative sufficiency, which compares the sufficiency of IMs by evaluating the amount of 477 

information gained on average about the structural response. The amount of information 𝐼 gained by 478 

IM2 with respect to IM1 can be evaluated according to [20] 479 

I(EDP|IM2|IM1) ≈
1

n
∑ log2

p[EDP = EDPi|IM2]

p[EDP = EDPi|IM1]

n

i=1
  

P(EDP = EDPi|IM) =
1

𝛽EDP|IMEDPi
Φ

(

 
 
ln (

EDPi
𝑎IMi

𝑏)

𝛽EDP|IM

)

 
 

 

(18) 

and is expressed in unit of bits of information. EDPi is the parameter evaluating the structural response 480 

(ISDR) for each of the n fire scenarios, P(EDP|IM) is the probability of a structural response given 481 

the IM and Φ( ) is the standard gaussian probability density function. An IM is more sufficient than 482 

another if it provides more information on the structural response. It follows that IM2 is more 483 

sufficient than IM1 for positive values of I(EDP|IM2|IM1). The higher the value of I(EDP|IMi|IM1), 484 

the more sufficient the IMi is. A relative sufficiency plot is depicted in Figure 9b, by comparing the 485 

amount of information 𝐼 of the candidates IMs with respect to the diameter (IM1=D). The choice of 486 

the reference IM is arbitrary, since selecting a different IM the relative sufficiency plot translates 487 

vertically, but the difference between the values of 𝐼 for each IM remain unchanged. The three best 488 

IMs in terms of relative sufficiency are the same as for the efficiency and thus, no further 489 

consideration was necessary to choose the IMs for developing the fragility curves. For all the four 490 

sets of analyses d/Ab,PE,eq permits for dispersions and amounts of information comparable with the 491 

ones obtained considering HFavg as IM. However, d/Ab,PE,eq has the advantage of being much more 492 

straightforward to calculate than HFavg. As expected, Figure 9 shows that IMs are less efficient and 493 

less sufficient when uncertainties are introduced, but their ranking remains unchanged. Moreover, 494 
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being d and q completely independent from the diameter D, their relative sufficiency is significantly 495 

worse when probabilistic distributions of the diameter are used (CS2 and CS3) and the diameter 496 

provides more relevant information to characterise the fire severity, and in turn the structural 497 

response. 498 

 

a) 

 

b) 

Figure 9. a) Efficiency and b) relative sufficiency of IMs 499 

3.6. Fire fragility curves 500 

Fire fragility curves were derived from the PFDMs obtained for each of the IM candidates given in 501 

Table 4. However, only the fragility curves obtained for the three most efficient and sufficient IMs 502 

are shown and discussed. The proposed curves can be used to quantify the probability that a steel 503 

pipe-rack exposed to a localised fire exceeds a predetermined limit state. The curves are developed 504 

for two limit states, namely the near collapse limit state and life safety limit state, for which a 5% and 505 

a 2.5% threshold is set on the ISDR. Fragility curves were derived for all the case studies, i.e. CS0, 506 

CS1, CS2 and CS3. 507 

Figure 10 shows the fragility curves for the PFDM based on L/D as IM. A limitation should be applied 508 

to this model since for L/D<0.5 part of the structure would be engulfed into the localised fire and a 509 

different structural response is expected, with the ISDR no longer being the most appropriate EDP. 510 

Therefore, these curves may not be suited for the range shaded in grey. All the fragility curves for a 511 

given limit state attain the median of the probability distribution, i.e., P(ISDR>LS|L/D)=50% at 512 
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similar ISDR values. For the life safety limit state the 50% probability is exceeded for 513 

0.45<L/D<0.52, while for the near collapse limit state this occurs for 1.03<L/D<1.06. As expected, 514 

here and in all the subsequent figures, the fragility curves show a higher dispersion when the 515 

parameter uncertainties are incorporated, i.e. CS1, CS2, CS3. 516 

For L/D fire fragility curves for CS0 and CS1 are obtained also from the MSA, as illustrated in Figure 517 

10b. The fragility curves based on the MSA fit the fraction of collapses, intended as the ratio between 518 

the cases in which a limit state was exceeded over the total number of fire scenarios (539) given an 519 

IMi. Though the IM ranges relevant to collapses are similar to the ones from CA, different values of 520 

probabilities of exceedance are found. For instance, a higher curve is derived for the near collapse in 521 

CS0, for which at L/D=0.5 the probability of exceedance is higher than 90%. Conversely, by 522 

comparing the CS1 case study at the near collapse limit state the MSA and the CA provide similar 523 

fragility curves. This was also observed at the life safety limit state for which good agreement between 524 

the two methods to derive fragility curves is shown in Figure 10. However, since only few data were 525 

available for each stripe (7 or 14) and the curve fit rather disperse fraction of collapses, the MSA 526 

based fragility curves are deemed less reliable and the use of CA is suggested when less than 10 data 527 

are available for each IM level, as recommended in [15].   528 

 

a) 

 

b) 

Figure 10 fragility curves for near collapse and life safety preventions with L/D as IM. a) CA; b) MSA 529 

A significant improvement in efficiency and relative sufficiency was obtained by employing HFavg 530 

and d/Ab,PE,eq, whose associated CA based fragility curves are depicted in Figure 11a and Figure 531 
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11b, respectively. In Figure 11a, the probability of exceeding the life safety and the near collapse 532 

limit states surpasses the 50% for 8.7<HFavg<10.8 kW/m2 and 26.6<HFavg<31.1 kW/m2 respectively. 533 

For IM=d/Ab,PE,eq, the probability of exceeding the life safety and the near collapse limit states 534 

attains the 50% for 0.13<d/Ab,PE,eq <0.21 m-1 and for 3.1∙10-3<d/Ab,PE,eq <4.9∙10-3 m-1 respectively, 535 

as illustrated in Figure 11b. 536 

 

a) 

 

b) 

Figure 11. CA based fragility curves for near collapse and life safety preventions with: a) HFavg as IM; b) 𝐝/𝐀𝐛,𝐏𝐄,𝐞𝐪  as 537 
IM 538 

It is interesting to note that in general, the fragility curves show lower probabilities of exceedance for 539 

a given value of IM when the probabilistic model for the steel strength at elevated temperature is 540 

considered (CS1-CS3 in Figure 10 and Figure 11). However, this may not be true for low probabilities 541 

of exceedance owing to the higher dispersions found in CS1 to CS3. This is a typical effect when 542 

considering parameter uncertainties, as the introduction of further uncertainties inflates the tails of 543 

the probability distributions, causing their cumulative distributions, i.e., the fragility functions, to 544 

span over larger IM ranges. Nevertheless, the medians of the probability distributions, i.e., the values 545 

of IM for which a probability of exceedance of 50% is reached, are always less demanding for CS1-546 

CS3. Therefore, it can be concluded that in general less severe fragility curves are obtained when the 547 

probabilistic model for the steel strength is considered. This was expected because the retention 548 

factors at elevated temperature included in Eurocode are for design purposes and thus, inherently 549 
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conservative. Indeed, in the probabilistic model the retention factor 𝑘𝑦 of the steel yield strength 𝑓𝑦 550 

in CS1 - CS3 is higher than the nominal one 𝑘𝑦,𝐸𝑁1993−1−2 used in CS0 (see Figure 3a). 551 

In addition, the employment of probabilistic fire diameter distributions rather than a uniform one may 552 

have a significant influence on the fragility curves (CS1 vs CS2 and CS3), whilst very similar curves 553 

are always found for two normal diameter distributions with different mean and standard deviation 554 

because of the different type of leakage, i.e. CS2 vs CS3. Hence, the fragility curves seem more 555 

sensitive to the fact that a discrete diameter distribution is employed, rather than to the variation of 556 

the mean and standard deviation of the diameter of continuous density probability distributions. It 557 

should be noted that the difference in the mean and standard deviations of the normal distributions 558 

between leakage from a hole and from a pipe is in the order of about 12%. Moreover, it cannot be 559 

concluded that discrete diameter distributions always provide more severe fragility functions. Indeed, 560 

as shown in Figure 11, CS2 and CS3 fragility curves may be more or less severe than the ones from 561 

CS1 depending on the limit state and on the IM. Nevertheless, the definition of fire demand models 562 

based on probabilistic distributions is desirable and should be preferred since they provide more 563 

realistic fire scenarios based on leakage from a hole in the tank (CS2) or from a pipe (CS3). 564 

4. Conclusions 565 

The paper presented the development of probabilistic fire demand models for a prototype steel pipe-566 

rack exposed to localised fires by adding uncertainties related to the structural capacity, i.e. yield 567 

strength, and to the fire diameter that is caused by a hole in a tank or by a hole in a pipe. PFDMs were 568 

defined for each case study by means of the Cloud analysis (CA) and, when suitable, also through the 569 

Multiple stripe analysis (MSA). It is shown that the CA is a viable method to derive PFDMs and fire 570 

fragility curves, whilst in order to benefit from the application of MSA, suitable IMs should be 571 

identified before performing the analyses so as to obtain stripes with at least 10 instances by scaling 572 

the severity of the fire based on such IMs. As expected, by allowing for the uncertainty of the steel 573 

yield strength, lower values of ISDR with respect to the reference case study CS0 were observed 574 
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because the retention factors, and in turn the yield strength values at elevated temperature were, on 575 

average, larger than the ones prescribed in EN 1993-1-2. Indeed, the steel structural members 576 

plasticized later with the probabilistic material model (CS1, CS2 and CS3), allowing for both a delay 577 

in load redistribution and smaller displacements, therefore resulting in less severe fragility curves. 578 

The fire fragility curves were derived for different EDP-IM candidates. In this respect, the most 579 

suitable IMs for steel pipe-racks, with similar characteristics with the prototype one, exposed to 580 

localised fires were identified as the ones that maximise the efficiency (lowest dispersion of the EDP 581 

given the IM) and the relative sufficiency (highest amount of information on the structural response). 582 

Three suitable IMs were identified: i) the fire position-diameter ratio L/D, which is easy to use for 583 

practitioners, but has lower efficiency and relative sufficiency indicators among the three proposed 584 

IMs; ii) the maximum average heat flux impinging the structure HFavg and iii) the scaled distance 585 

d/Ab,PE,eq, which consists of a simple function of the fire parameters q, d and D, derived in similar 586 

fashion for explosion hazard as the structure-explosion distance over a fractional power of an 587 

equivalent TNT mass. The HFavg and the d/Ab,PE,eq are more efficient and more relatively sufficient 588 

IMs, but the maximum average heat flux impinging the structure HFavg is not as straightforward to 589 

calculate as the scaled distance d/Ab,PE,eq, that showed comparable efficiency and sufficiency with 590 

HFavg and accounts for the effects of the distance of the fire from the structure and the extension of 591 

the fire. MSA based fragility curves with L/D as IM were developed for the CS0 and CS1, but only 592 

7 analyses were available for some stripes and thus, the CA fragility functions are deemed more 593 

reliable. Furthermore, probabilistic diameter distributions in CS2 and CS3 had influence on the 594 

fragility curves by lowering the probability of exceedance of the limit states for same values of IM 595 

and should be considered since they provide more realistic fire scenarios. In general, the definition of 596 

fire demand models based on probabilistic distributions for demand and capacity is desirable and 597 

should be preferred since they provide more realistic fire scenarios. Future perspectives will focus on 598 

considering multiple burning pool fires and the presence of the wind. 599 
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