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Abstract. The work presented in this paper is motivated by the need to
estimate the security effort of consuming Free and Open Source Software
(FOSS) components within a proprietary software supply chain of a large
European software vendor. To this extent we have identified three differ-
ent cost models: centralized (the company checks each component and
propagates changes to the different product groups), distributed (each
product group is in charge of evaluating and fixing its consumed FOSS
components), and hybrid (only the least used components are checked in-
dividually by each development team). We investigated publicly available
factors (e. g., development activity such as commits, code size, or fraction
of code size in different programming languages) to identify which one
has the major impact on the security effort of using a FOSS component
in a larger software product.
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1 Introduction

Whether Free and Open Source Software (FOSS) is more or less secure than
proprietary software is a heavily debated question [8,9,22].

We argue that, at least from the view of a software vendor who is consuming
FOSS, this question is not the right question to ask. First, there may be just no
alternative to use FOSS components in a software supply chain, because FOSS
components are the de-facto standard (e. g., Hadoop for big data). Second, FOSS
may offer functionalities that are very expensive to re-implement and, thus, using
FOSS is the most economical choice.

A more interesting question to ask is which factors are likely to impact the
“security effort” of a selected FOSS component.

As the security of a software offering depends on all components, FOSS
should, security-wise, be treated as one’s own code. Therefore, software compa-
nies that wish to integrate FOSS into their products must tackle two challenges:
? Parts of this research were done while the author was a Security Testing Strategist
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the selection of a FOSS product and its maintenance. In order to meet the FOSS
selection challenge, large business software vendors perform a thorough security
assessment of FOSS components that are about to be integrated in their prod-
ucts by running static code analysis tools to verify the combined code base of a
proprietary application and a FOSS component in question, and by performing
a thorough audit of the results. The security maintenance problem is not easier:
when a new security issue in a FOSS component becomes publicly known, a
business software vendor has to verify whether that issue affects customers who
consume software solutions where that particular FOSS component was shipped
by the vendor. In ERP systems and industrial control systems this event may
occur years after deployment of the selected FOSS product.

Addressing either problem requires expertise about both the FOSS compo-
nent and software security. This combination is usually hard to find and resources
must be allocated to fix the problem in a potentially unsupported product. It is
therefore important to understand which characteristics of a FOSS component
(number of contributors, popularity, lines of code or choice of programming lan-
guage, etc.) are likely to be a source of “troubles”. The number of vulnerabilities
of a FOSS product is only a part of a trouble: a component may be used by
hundreds of products.

Motivated by the need to estimate the efforts and risks of consuming FOSS
components for proprietary software products of a large European software ven-
dor – SAP SE, we investigate the factors impacting three different cost models:
1. The centralized model, where vulnerabilities of a FOSS component are fixed

centrally and then pushed to all consuming products (and therefore costs
scale sub-linearly in the number of products)

2. The distributed model, where each development team fixes its own component
and effort scales linearly with usage

3. The hybrid model, where only the least used FOSS components are selected
and maintained by individual development team
In the rest of the paper we describe the FOSS consumption in SAP (§2),

introduce our research question and the three security effort models (§3), and
discuss related works (§4). Then we present the data sources used for analyzing
the impact factors (§5), describe each variable in detail and discuss the expected
relationships between them (§6). Next we (§7) discuss the statistical analysis of
the data. Finally we conclude and outline future work (§8).

2 FOSS Consumption at SAP

SAP’s product portfolio ranges from small (mobile) applications to large scale
ERP solutions that are offered to customers on-premise as well as cloud solutions.
This wide range of options requires both flexibility and empowerment of the
(worldwide distributed) development teams to choose the software development
model that fits their needs best while still providing secure software.

While, overall, SAP is using a large number of FOSS components, the actual
number of such components depends heavily on the actual product. For example,
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Table 1: Our sample of FOSS projects and their historical vulnerability data
(a) Languages

Language Portion

Java 40%
C++ 30%
PHP 13%
C 10%
JavaScript 5%
Other 1%

(b) Distribution of vulnerability types

Vulnerability Portion Vulnerability Portion

DoS 30.8% Gain Privileges 3.1%
Code execution 20.3% Directory Traversal 2.4%
Overflow 16.6% Memory Corruption 2.2%
Bypass Something 10.3% CSRF 0.9%
Gain Information 7.1% HTTP response splitting 0.3%
XSS 5.9% SQL injection 0.1%

the traditional SAP systems in ABAP usually do not contain a lot of FOSS
components; the situation is quite the opposite for recent cloud offerings based
on OpenStack (http://www.openstack.com) or Cloud Foundry (https://www.
cloudfoundry.org/).

For each vulnerability that is published for a consumed FOSS component, an
assessment is done to understand whether the vulnerability makes the consuming
SAP product insecure. In this case, a fix needs to be developed and shipped to
SAP customers. For example, in 2015 a significant number of SAP Security Notes
(i. e., patches) fixed vulnerabilities in consumed FOSS components.

Overall, this results in additional effort both for the development teams as
well as the teams that work on the incident handling (reports from customers).
Thus, there is a need for approaches that support SAP’s development teams in
estimating the effort related to maintain the consumed FOSS components.

To minimize the effort associated with integrating FOSS components as well
as to maximize the usability of the developed product, product teams consider
different factors. Not all of them are related to security: e. g., the compatibility
of the license as well as requests from customers play an important role as well.
From a effort and security perspective, developer teams currently consider:
– How widely a component is used within SAP? Already used components

require lower effort as licensing checks are already done and internal expertise
can be tapped. Thus, effort for fixing issues or integrating new versions can
be shared across multiple development teams.

– Which programming languages and build systems are used? If a development
team has already expertise in them, a lower integration and support effort
can be expected.

– What maintenance lifecycle is used by the FOSS components? If the secu-
rity maintenance provided by the FOSS community “outlives” the planned
maintenance lifecycle of the consuming SAP product, only the integration
of minor releases in SAP releases would be necessary.

– How active is the FOSS community? Consuming FOSS from active and well-
known FOSS communities (e. g., Apache) should allow a developer team to
leverage external expertise as well as externally provided security fixes.

http://www.openstack.com
https://www.cloudfoundry.org/
https://www.cloudfoundry.org/
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Table 1 illustrates the characteristics of a selection of FOSS components used
within SAP. We have chosen the most popular 166 components used by at least
5 products.

3 Research Question and Cost Models

Considering the above discussion we can summarize our research question:
RQ Which factors have significant impact on the security effort to manage a

FOSS component in centralized, distributed, and hybrid cost models?
A key question is to understand how to capture effort in broad terms. In

this respect, there are three critical activities that are generated by using FOSS
components in a commercial software company [29,26] and specifically at SAP:
the analysis of the licenses, security analysis, and maintenance. Licensing is out
of scope for this work, and we focus on the other two stages.

In the previous section we have already sketched some of the activities that
the security team must perform in both stages. A development team can be as-
signed to a maintenance which includes several tasks, security maintenance being
only one of them. Therefore, it is close to impossible to get analytical account-
ing for security maintenance to the level of individual vulnerabilities. Further,
when a FOSS component is shared across different consuming applications, each
development team can differ significantly in the choice of the solution and hence
in the effort to implement it.

Therefore, we need to find a proxy for the analysis of our three organizational
models. Preliminary discussion with developers and company’s researchers sug-
gested the combination of vulnerabilities of the FOSS component itself and the
number of company’s products using it. A large number of vulnerabilities may
be the sign of either a sloppy process or a significant attention by hackers and
may warrant a deeper analysis during the selection phase or a significant response
during the maintenance phase. This effort is amplified when several development
teams are asking to use the FOSS component as a vulnerability which eschewed
detection may impact several hundred products and may lead to several security
patches for different products.

We assume that the effort structure has the following form

e = efixed +

m∑
i=1

ei (1)

where ei is a variable effort that depends on the i-th FOSS component, and
efixed is a fixed effort that depends on the security maintenance model (e. g., the
initial set up costs). For example, with a distributed security maintenance ap-
proach an organization will have less communication overhead and more freedom
for developers in distinct product teams, but only if a small number of teams
are using a component.
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Let |vulnsi| be the number of vulnerabilities that have been cumulatively
fixed for the i-th FOSS component and let |productsi| be the number of propri-
etary products that use the component:
1. In the centralized model a security fix for all instances of a FOSS com-

ponent is issued once by the security team of the company and then dis-
tributed between all products that are using it. This may happen when, as
a part of FOSS selection process, development teams must choose only com-
ponents that have been already used by other teams and are supported by
the company. To reflect this case the effort for security maintenance scales
logarithmically with the number of products using a FOSS component.

ei ∝ log(|vulnsi| ∗ |productsi|) (2)

2. The distributed model covers the case when security fixes are not central-
ized within a company, so each development team has to take care of security
issues in FOSS components that they use. In this scenario the effort for se-
curity maintenance increases linearly with the number of products using a
FOSS component.

ei ∝ |vulnsi| ∗ |productsi| (3)

3. The hybrid model combines the two previous models: security issues in
the least consumed FOSS components (e. g., used only by lowest quartile of
products consuming FOSS) are not fixed centrally. After this threshold is
reached and some effort linearly proportional to the threshold of products to
be considered has been invested, the company fixes them centrally, pushing
the changes to the remaining products.

ei ∝
{
|vulnsi| ∗ |productsi| if |productsi| ≤ p0
p0 ∗ |vulnsi|+ log(|vulnsi| ∗ (|productsi| − p0)) otherwise

(4)

As shown in Figure 1, the hybrid model is a combination of the distributed
model and centralized model, when centralization has a steeper initial cost. The
point V0 is the switching point where the company is indifferent between the cen-
tralized and distributed cost models. The hybrid model captures the possibility
of a company to switch models after (or before) the indifference point. The fixed
effort of the centralized model is obviously higher than the one of a distributed
model (e. g., setting up a centralized vulnerability fixing team, establishing and
communicating a fixing process, etc.).

Hence, we extend the initial function after the threshold number of products
p0 is reached so that only a logarithmic effort is paid on the remaining prod-
ucts. This has the advantage of making the effort ei continuous in |productsi|.
An alternative would be to make the cost logarithmic in the overall number of
products after |productsi| > p0. This would create a sharp drop in the effort
for the security analysis of FOSS components used by several products after p0
is reached. This phenomenon is neither justified on the field, nor by economic
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Fig. 1: Illustration of the three cost models

theory. In the sequel, we have used for p0 the lowest quartile of the distribution
of the selected products.

We are not aiming to select a particular model – we consider them as equally
possible scenarios. Our goal is to see which of the FOSS characteristics can have
impact on the effort when such models are in place, keeping in mind that this
impact could differ from one model to another.

We now define the impact that the characteristics of the i-th FOSS compo-
nent have on the expected effort ei as a (not necessarily linear) function fi of
several variables and a stochastic error term εi:

ei = f(xi1, . . . , xil, yil+1, . . . , yim, dim+1, . . . , dn) + εi (5)

The variables xij , j ∈ [1, l] impact the effort as scaling factors, so that a
percentage change in them also implies a percentage change in the expected
effort. The variables yij , l ∈ [l + 1,m] directly impact the value of the effort.
Finally, the dummy variables dij , j ∈ [m+ 1, n] denote qualitative properties of
the code captured by a binary classification in {0, 1}.

For example, in our list the 36-th component is “Apache CXF” and the first
scaling factor for effort is the number of lines of code written in popular pro-
gramming languages so that xi,1

.
= locsPopulari, and x36,1 = 627, 639.

Given the above classification we can further specify the impact equation for
the i-th component as follows

log(ei) = β0 + log(

l∏
j=1

(xij + 1)βj ) +

m∑
j=l+1

βi ∗ eyij +
n∑

j=m+1

βi ∗ dij + εi (6)

where β0 is the initial fixed effort for a specific security maintenance model.
These models focus on technical aspects of security maintenance of consumed

FOSS components putting aside all organizational aspects (e. g., communication
overhead). For organizational aspects please see ben Othmane et al. [4].
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Table 2: Vulnerability prediction approaches
Paper Predictors Vulnerability data Predicted vars

Massacci & Nguyen [14] Known vulnerabilities MFSA, NVD, Bugzilla,
Microsoft Security

Bulletin, Apple Knowledge
Base, Chrome Issue

Tracker

Vulnerabilities

Shin & Williams [25] Code complexity
metrics

MFSA, NVD, Bugzilla Vulnerable
functions

Shin et al. [24] Code complexity,
Developer activity

MFSA, Red Hat Linux
package manager

Vulnerable files

Nguyen & Tran [16] Member and
Component

dependency graphs,
Code metrics

MFSA, NVD Vulnerable
functions

Walden & Doyle [27] SAVD, SAVI NVD Post-release
vulnerabilities

Scandriato et al. [21] Frequencies of terms Fortify SCA warnings Vulnerable files

Walden et al. [28] Code metrics,
Frequencies of terms

NVD Vulnerable files

4 Related Work

An extensive body of research explores the applicability of various metrics for
estimating the number of vulnerabilities of a FOSS component.

The simplest metric is time (since release), and the corresponding model
is a Vulnerability Discovery Model. Massacci and Nguyen [14] provide a com-
prehensive survey and independent empirical validation of several vulnerability
discovery models. Several other metrics have been used: code complexity met-
rics [25,24,16], developer activity metrics [24], static analysis defect densities [27],
frequencies of occurrence of programming constructs [21,28], etc. We illustrate
some representative cases in Table 2.

Shin and Williams [25] evaluated software complexity metrics for identifying
vulnerable functions. The authors collected information about vulnerabilities in
Mozilla JavaScript Engine (JSE) from MFSA4, and showed that nesting com-
plexity could be an important factor to consider. The authors stress that their
approach has few false positives, but several false negatives. In a follow-up work,
Shin et al. [24] also analyzed several developer activity metrics showing that
poor developer collaboration can potentially lead to vulnerabilities, and that
code complexity metrics alone are not a good vulnerability predictor.

Nguyen and Tran [16] built a vulnerability prediction model that represents
software with dependency graphs and uses machine learning techniques to train
the predictor. They used static code analysis tools to compute several source
code metrics and tools for extracting dependency information from the source
code, adding this information to the graphs that represent an application. To
validate the approach, the authors analyzed Mozilla JSE. In comparison to [25],
the model had a slightly bigger number of false positives, but less false negatives.
4 https://www.mozilla.org/en-US/security/advisories/

https://www.mozilla.org/en-US/security/advisories/
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Walden and Doyle [27] used static analysis for predicting web application
security risks. They measured the static-analysis vulnerability density
(SAVD) metric across version histories of five PHP web applications, which is
calculated as the number of warnings issued by the Fortify SCA5 tool per one
thousand lines of code. The authors performed multiple regression analyses using
SAVD values for different severity levels as explanatory variables, and the post-
release vulnerability density as the response variable showing that SAVD metric
could be a potential predictor for the number of new vulnerabilities.

Scandriato et al. [21] proposed to use a machine learning approach that
mines source code of Android components and tracks the occurrences of specific
patterns. The authors used the Fortify SCA tool: if the tool issues a warning
about a file, this file is considered to be vulnerable. However, it may not be
the case as Fortify can have many false positives, and authors verified manually
only the alerts for 2 applications out of 20. The results show that the approach
had good precision and recall when used for prediction within a single project.
Walden et al. [28] confirmed that the vulnerability prediction technique based
on text mining (described in [21]) could be more accurate than models based on
software metrics. They have collected a dataset of PHP vulnerabilities for three
open source web applications by mining the NVD and security announcements
of those applications. They have built two prediction models: 1) a model that
predicts potentially vulnerable files based on source code metrics; and 2) a model
that uses the occurrence of terms in a PHP file and machine learning. The
analysis shows that the machine learning model had better precision and recall
than the code metrics model, however, this model is applicable only for scripting
languages (and must be additionally adjusted for languages other than PHP).

Choosing the right source of vulnerability information is crucial, as any vul-
nerability prediction approach highly depends on the accuracy and complete-
ness of the information in these sources. Massacci and Nguyen [13] addressed
the question of selecting the right source of ground truth for vulnerability anal-
ysis. The authors show that different vulnerability features are often scattered
across vulnerability databases and discuss problems that are present in these
sources. Additionally, the authors provide a study on Mozilla Firefox vulnera-
bilities. Their example shows that if a vulnerability prediction approach is using
only one source of vulnerability data - MFSA, it would actually miss an impor-
tant number of vulnerabilities that are present in other sources such as MFSA
and NVD. Of course, the same should be true also for the cases when only the
NVD is used as the ground truth for predicting vulnerabilities.

To the best of our knowledge, there is no work that predicts the effort required
to resolve security issues in consumed third-party products.

5 Data Sources

We considered the following public data sources to obtain the metrics of FOSS
projects that could impact the security effort in maintaining them:
5 http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/

http://www8.hp.com/us/en/software-solutions/static-code-analysis- sast/
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1. National Vulnerability Database (NVD) – the US government public
vulnerability database, we use it as the main source of public vulnerabilities
(https://nvd.nist.gov/).

2. Open Sourced Vulnerability Database (OSVDB) – an independent
public vulnerability database. We use it as the secondary source of public
vulnerabilities to complement the data we obtain from the NVD (http:
//osvdb.org).

3. Black Duck Code Center – a commercial platform for the open source
governance can be used within an organization for the approval of the usage
of FOSS components by identifying legal, operational and security risks that
can be caused by these components. We use SAP installation to identify the
most popular FOSS components within SAP.

4. Open Hub (formerly Ohloh) – a free offering from the Black Duck
that is supported by the online community. The Open Hub retrieves data
from source code repositories of FOSS projects and maintains statistics
that represent various properties of the code base of a project (https:
//www.openhub.net/).

5. Coverity Scan Service website – in 2006 Coverity started the initiative of
providing free static code scans for FOSS projects, and many of the projects
have registered since that time. We use this website as one of the sources
that can help to infer whether a FOSS project is using SAST tools (https:
//scan.coverity.com/projects)

6. Exploit Database website – the public exploit database that is main-
tained by the Offensive Security6 company. We use this website as the source
for the exploit numbers (https://www.exploit-db.com/).

7. Core Infrastructure Initiative (CII) Census – the experimental
methodology for parsing through data of open source projects to help identify
projects that need some external funding in order to improve their security.
We use a part of their data to obtain information about Debian installations
(https://www.coreinfrastructure.org/programs/census-project).

6 FOSS Project Metrics Selection

Initially we considered SAP installation of the Black Duck Code Center reposi-
tory as the source of metrics that could impact the security maintenance effort
when using FOSS components. We also performed a literature review and a sur-
vey of other repositories to identify potentially interesting variables not currently
used in the industrial setting, clustering them by the following four categories:
Security Development Lifecycle (SDL) – metrics that characterize how

the SDL is implemented within a FOSS project. It includes indicators
whether a project encourages to report security issues privately, is using
one or more static analysis tools during development, etc.

Implementation – various implementation characteristics such as the main
programming language and the type of a project.

6 https://www.offensive-security.com/

https://nvd.nist.gov/
http://osvdb.org
http://osvdb.org
https://www.openhub.net/
https://www.openhub.net/
https://scan.coverity.com/projects
https://scan.coverity.com/projects
https://www.exploit-db.com/
https://www.coreinfrastructure.org/programs/census-project
https://www.offensive-security.com/
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Popularity – metrics that are relevant to the overall popularity of a FOSS
project (e. g., user count and age in years).

Effort – we use these variables as the proxy for the desired response variable -
the effort required by companies to update and maintain their applications
that are using FOSS components.
Table 3 shows the initial set of metrics that we considered, describing the

rationale for including them and references to the literature in which the same
or similar metrics were used.

The age of a project, its size and the number of developers (years,
locsTotal, and contribs) are traditionally used in various studies that inves-
tigate defects and vulnerabilities in software [7,31], the software evolution [5,3]
and maintenance [32]. We consider security vulnerabilities to be a specific class
of software defects, which are likely to be impacted by these factors.

Several studies considered the popularity of FOSS projects as being relevant
to their quality and maintenance [19,20,32] - we used userCount from Open
Hub and debianInst from CII Census as measures of popularity for a project.
Many studies investigated whether frequent changes to the source code can intro-
duce new defects [15,34,24,32,11] - we intended to capture this with locsAdded,
locsRemoved, and commits metrics from Open Hub.

The presence of security coding standards as a taxonomy of common pro-
gramming errors [10,23] that caused vulnerabilities in projects should reduce the
amount of vulnerabilities and the effort as well. We could not find references to
how the presence of security tests could impact the effort.

Wheeler [29] suggested that successful FOSS projects should use SAST tools,
which should at least reduce the amount of “unforgivable” security issues dis-
cussed by Christey [6].

Numbers of vulnerabilities and exploits have a strong correlation (in our
dataset: rho = 0.71, p < 0.01) because security researchers can create exploits
to test published vulnerabilities and, alternatively, they can create exploits to
prove that a vulnerability indeed exists (so that it will be published as a CVE
entry after an exploit was disclosed). We tested both values without finding
significant differences and for simplicity we report here the vulns variable as the
proxy for effort.

After obtaining the values of these metrics for a sample of 50 projects we
understood that only variables that could be extracted automatically and semi-
automatically are interesting for the maintenance phase. Gathering the data
manually introduces bias and limits the size of a dataset that we can analyze,
and, therefore, the validity of the analysis at all. Thus, we removed the man-
ual variables and expanded the initial dataset up to 166 projects (at least 5
consuming products in SAP Black Duck repository).

We also tried to find commonalities between FOSS projects and to cluster
them. However, this process would introduce significant human bias. For ex-
ample, the “Apache Struts 2” FOSS component is used by SAP as a library in
one project, and as a development framework in another one (indeed, it can
be considered to be both a framework and a set of libraries). If we “split” the
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“Apache Struts 2” data point into another two instances marked as “library”
and “framework”, this would introduce dependency relations between these data
points. Assigning arbitrarily only one category to such data points would also
be inappropriate.

A comprehensive classification of FOSS projects would require to perform a
large number of interviews with developers to understand the exact nature of the
usage of a component and the security risk. However, it is unclear what would
be the added value to developers of this classification.

Below we describe relations between explanatory and response variable:
1. locsPopular and locsBucket (xij) – the more there are lines of code,

the more there are potential vulnerabilities (that are eventually disclosed
publicly). We use these two variables instead of just having locsTotal be-
cause almost every project in our dataset is written in multiple programming
languages, including widely-used languages (locsPopular), and rarely-used
ones (locsBucket). Therefore, different ratios between these two variables
could impact the effort differently.

2. locsEvolution (yij) shows how the code base of a project was changed for
the whole period of its life. We compute this metric by obtaining the sum of
the total number of added and removed lines of code divided by locsTotal.
Figure 2 shows that we could not use added and deleted lines of code as
the measure of global changes as they correlate with each other and with
locsTotal, however locsEvolution has no correlations with locsTotal and
can be used as an independent predictor.

3. userCount and debianInst (yij) – the more there are users, the more
potential security vulnerabilities will be reported. debianInst provides an
alternative measure for userCount, however, the two measures are not ex-
actly correlated as some software is usually downloaded from the Web (e. g.,
Wordpress) so it is very unlikely that someone would install it from the De-
bian repository, even if a corresponding package exists. On the other hand,
some software may be distributed only as a Debian package.

4. years (yij) – more vulnerabilities could be discovered over time.
5. commits (yij) – many commits introduce many atomic changes that can

lead to more security issues.
6. contribs (yij) – many contributors might induce vulnerabilities as they

might not have exhaustive knowledge on the project and can incidentally
break some features they are unaware of.

7. noManagedLang (dij) – parts written in programming languages without
built-in memory management could have more security vulnerabilities (e. g.,
DoS, Sensitive information disclosure, etc.).

8. scriptingLang (dij) – software including fragments in scripting languages
could be prone to code injection vulnerabilities.
In spite of their intuitive appeal we excluded dummy variables related to the

programming language from our final analysis because we realized that essen-
tially all projects have components of both, therefore, all regression equations
would violate the independence assumption.
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Table 3: FOSS project metrics
Variable Category Source Collection

method
Rationale Ref.

noSecTest SDL Project website,
code repository

Manual The test suite neither
contains tests for past

vulnerabilities (regression)
nor for tests for security

functionality.

[29] [1] [6]

privateVulns SDL Project website Manual There is a possibility to
report security issues

privately.

secList SDL Project website Manual There is a list of past
security vulnerabilities.

noSast SDL Project website,
code repository,

Coverity
website

Manual A project is not using static
code analysis tools.

[29] [1]

noManagedLang Implement. Open Hub Automatic Parts of the project are
written in a language

without automatic memory
management.

[32] [30]

scriptingLang Implement. Open Hub Automatic Parts of a project are
written in a scripting

language.

[32]

noCodingStand Implement. Project website Manual A project has no coding
standards for potential

contributors.

[1]

locsTotal Implement. Open Hub Automatic Total size of code bases
(LoC).

[5] [7] [31]
[3] [33]

locsPopular Implement. Open Hub Automatic Total size of Java, C, C++,
PHP, JavaScript, and SQL

code (LoC).

locsBucket Implement. Open Hub Automatic Size of the code bases for
other programming
languages (LoC).

locsAdded,
locsRemoved

Implement. Open Hub Automatic The development activity of
a project.

[15] [7] [34]
[24] [11] [32]

userCount Popularity Open Hub Automatic The user count of a project
(Open Hub).

[19] [18] [1]
[32] [20] [30]

debianInst Popularity CII Census Semi-
automatic

The number of installations
of a Debian package that
corresponds to a project.

commits Popularity Open Hub Automatic Number of total commits. [15] [24] [32]

contribs Popularity Open Hub Automatic Total number of
contributors.

[15] [24] [32]

years Popularity Open Hub Automatic Age of a project in years. [17] [32] [11]

vulns Effort NVD, OSVDB,
and other vuln.

databases

Semi-
Automatic

The total number of
publicly disclosed
vulnerabilities.

exploits Effort Exploit DB
website

Semi-
automatic

The total number of
publicly available exploits.

blackduck Effort Black Duck
Code Center

Automatic The total number of
requests for a FOSS

component within SAP.
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Table 4 shows the descriptive statistics of response and explanatory variables
selected for the analysis.
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Fig. 2: The locsEvolution metric

7 Analysis

To analyze the statistical significance of the models and identify the variables
that impact security effort, we employ a least-square regression (OLS). Our
reported R2 values (0.21, 0.34, 0.39) and F-statistic values (5.30, 10.13, 12.41)
are acceptable considering that we have deliberately run the OLS regression with
all variables of interest, as our purpose is to see which variables have no impact.
The results of estimates for each security effort model are given in Table 5.
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Table 4: Descriptive statistics
Statistic

Variable Min 1st Quartile Median Mean 3rd Quartile Max

effort_centralized 0.69 3.64 4.43 4.81 5.75 10.13
effort_distributed 2.00 38.24 84.50 706.60 316.50 25020.00
effort_hybrid 2.00 2540.00 44.00 210.10 139.10 4554.00

years 1.00 7.00 10.00 10.27 13.75 28.00
userCount 0.00 9.00 52.00 258.00 178.00 9390.00
debianInst 0.00 42.75 1407.00 21970.00 12390.00 175900.00
contribs 1.00 15.00 32.00 115.20 101.20 1433.00
commits 18.00 1160.00 4365.00 9785.00 8806.00 174803.00
locsPopular 0.00 32350.00 110700.00 345700.00 310700.00 13830000.00
locsBucket 58.00 5216.00 32770.00 195600.00 128000.00 9372000.00
locsEvolution 1.70 4.85 7.10 15.18 12.60 638.10

Table 5: Ordinary least-square regression results
Centralized model Distributed model Hybrid model

Intercept 9.40 · 10−1 (4.29 · 100 )§ 1.89 · 100 (2.33 · 100 )†−1.83 · 100 (−1.96)∗

log(locsPop+1) 2.68 · 10−2 (1.32 · 100 ) 1.46 · 10−1 (1.94 · 100 )∗ 0.25 · 100 (2.89)‡

log(locsBucket+1) −4.01 · 10−5 (−2.00 · 10−3) 1.28 · 10−2 (1.86 · 10−1) 9.42 · 10−2 (1.20)
locsEvolution 1.83 · 10−4 (0.31 · 100 ) 8.62 · 10−4 (3.98 · 10−1) 9.31 · 10−4 (0.38)
years 2.07 · 10−2 (2.66 · 100 )‡ 8.47 · 10−2 (2.94 · 100 )‡ 9.47 · 10−2 (2.87)‡

commits −1.01 · 10−6 (−0.46 · 100 ) −5.96 · 10−6 (−7.26 · 10−1) −1.11 · 10−5 (−1.19)
contribs −7.50 · 10−5 (−0.47 · 100 ) −3.31 · 10−4 (−0.57 · 100 ) 5.66 · 10−4 (0.84)
userCount 8.77 · 10−5 (2.22 · 100 )† 5.49 · 10−4 (3.74 · 100 )§ 5.81 · 10−4 (3.46)§

debianInst 1.70 · 10−6 (2.39 · 100 )† 8.99 · 10−6 (3.41 · 100 )§ 1.10 · 10−5 (3.64)§

N 166 166 166
Multiple R2 0.21 0.34 0.39
Adjusted R2 0.17 0.30 0.36
F-statistic 5.30 (p < 0.01) 10.13 (p < 0.01) 12.41 (p < 0.01)

Note, t-statistics are in parentheses. Signif.codes: ∗ 5%, † 1%, ‡ 0.1%, § 0.001%

Zhang et al. [31] demonstrated a positive relationship between the size of a
code base (LOC) and defect-proneness. Zhang [33] evaluated the LOC metrics for
defect prediction and concluded that larger modules tend to have more defects.
Security vulnerabilities are a subclass of software defects, and our results show
that this effect only holds for particular programming languages: the locsPop-
ular variable has a positive impact on the effort (it is statistically significant for
the distributed and hybrid models), the locsBucket is essentially negligible
as a contribution (10−5).

The locsEvolution, commits and contribs variables do not seem to have
an impact. We expected the opposite result, as many works (e. g., [15,7,24]) sug-
gest a positive relation between number (or frequency) of changes and defects.
However, these works assessed changes with respect to distinct releases or com-
ponents or methods, while we are using the cumulative number of changes for
all versions in a project; we may not capture the impact because of this.

The study by Li et al. [12] showed that the number of security bugs can grow
significantly over time. Also, according to the vulnerability discovery process
model described by Alhazmi et al. [2], the longer is the active phase of a software
the more attention it will attract, and more hackers will get familiar with it to
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break it. Massacci and Nguyen [13] illustrated this model by showing that the
vulnerability discovery rate was the highest during the active phase of Mozilla
Firefox 2.0. We find that the age of a project – years has a significant impact
in all our effort models, thus supporting those models.

It is a folk knowledge that “Given enough eyeballs, all bugs are shallow” [19],
meaning that FOSS projects have the unique opportunity to be tested and scru-
tinized not only by their developers, but by their user community as well. We
found that in our models the number of external users (userCount and debian-
Inst) of a FOSS component has small but statistically significant impact. This
could be explained by the intuition that only a major increase of the popularity
of a FOSS project could result in finding and publishing new vulnerabilities:
not every user would have enough knowledge in software security for finding
vulnerabilities (or motivation for reporting them).

8 Conclusions

In this paper we have investigated the publicly available factors that can impact
the effort required for performing security maintenance process within large soft-
ware vendors that have extensive consumption of FOSS components. We have
defined three security effort models – centralized, distributed, and hybrid,
and selected variables that may impact these models. We automatically collected
data on these variables from 166 FOSS components currently consumed by SAP
products and analyzed the statistical significance of these models.

As a proxy for security maintenance effort of consumed FOSS components we
used the combination of the number of products using a these components, and
the number of known vulnerabilities in them. As the summary of our findings,
the main factors that influence the security maintenance effort are the amount
of lines of code of a FOSS component and the age of the component. We have
also observed that the external popularity of a FOSS component has statistically
significant but small impact on the effort, meaning that only large changes in
popularity will have a visible effect.

As a future work we plan collecting a wider sample of FOSS projects, assess-
ing other explanatory variables and investigating our models further. Using the
data for prediction of the effort is also a promising direction for the future work.
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