UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A MULTILEVEL ASYMMETRIC SCHEME FOR DIGITAL FINGERPRINTING

G. Boato, F.G.B. De Natale, and C. Fontanari

November 2005

Technical Report DIT-05-068






A Multilevel Asymmetric Scheme

for Digital Fingerprinting

G. Boatd *, F. G. B. De Natalkand C. Fontanati
!Dept. of Information and Communication Technology, Uniitgref Trento,
Via Sommarive 14, 1-38050, Trento, Italy, tel +39 0461 88B9fhx +39 0461 882093
2Dept. of Mathematics, Fac. of Information Engineering,iteohico di Torino,
Corso Duca degli Abruzzi 24, 1-10129, Torino, Italy, tel +39105647567 fax +39 011 5647599
boato@dit.unitn.it; denatale@ing.unitn.it; claudiof@anari@polito.it

Abstract

The present paper proposes an asymmetric watermarkingnsckaitable for fingerprinting and precision-
critical applications. The method is based on linear algetnd is proved to be secure under projection attack. The
problem of anonymous fingerprinting is also addressed, lowilg a client to get a watermarked image from a
server without revealing her/his own identity. In partellwe consider the specific scenario where the client is
a structured organization being trusted as a whole but vinvglpossibly untrusted members. In such a context,
where the watermarked copy can be made available to all msmibat only authorized subgroups should be able
to remove the watermark and recover a distortion-free imagaultilevel access to the embedding key is provided
by applying Birkhoff polynomial interpolation. Extensivmulations demonstrate the robustness of the proposed

method against standard image degradation operators.

. INTRODUCTION

Digital watermarking techniques have raised a great deiatefest in the scientific community after the pioneering
contribution by Cox et al. [1] (see for instance the books [3], [4], and the references therein). The practice
of imperceptible alteration of a document to embed a mess#geit plays a key role in the challenging field
of copyright and copy protection and motivates the searchnfore efficient solutions. Here we investigate a
novel asymmetric watermarking scheme based on elemeritegrlalgebra which, besides standard robustness
requirements, satisfies non trivial security and inveitipibroperties.

Indeed, watermarking security is arising a great deal adredt in both academy and industry (see for instance

[6], [7], and [9]). The analogy with public key cryptographyggests to consider asymmetric structures, involving

1A preliminary version of this method has been presented in [5].



a private key for embedding and a public key for detectioe (82 for a detailed survey). However, this property is
by no means sufficient in order to make a watermarking scheme&eseas remarked in [7§, 5, almost all available
asymmetric watermarking schemes can be defeated by a sfaridaest point or projection attack (see Section IV
below for details). On the contrary, the proposed methodefndely secure under projection attack, as we both
mathematically prove and experimentally verify.

On the other hand, watermarking invertibility is cruciat &everal applications where the image integrity should
not be irreversibly corrupted by the watermark insertionisTiew paradigm has been the subject of both deeply
theoretical and application oriented investigations feeénstance [10] and [11]) and is still a very active reséarc
area (see [12] and [13]). Specific applications include attidm of medical images for clinical purposes, copyright
protection of biological or satellite images, personahiifecation via fingerprinting or iris matching. The designed
scheme allows to completely remove the watermark and re@odistortion-free image by exploiting the knowledge
of the embedding key. In order to ensure the access to thimakighage only to authorized groups, we propose to
manage the embedding key in a distributed way. In [14] nayél access is provided for precision-critical images in
a hierarchical context, while the proposed scheme allowsfbaccess for authorized or non-authorized groups by
applying a secret sharing scheme. The basic theory due to 5([a6]) relies on standard Lagrange interpolation,
while the hierarchical secret sharing scheme by Tassa)(j@gjloits subtler properties of Birkhoff polynomial
interpolation. Here we are going to adapt and simplify tlist lapproach for the hierarchical management of the
embedding key, thus extending the results presented inffk7fhe joint ownership of the original image. Even
though the mathematical framework is essentially the sarmeeggoint out that the application scenario is completely
different.

The present contribution addresses a problem of anonymouerflimgting. Indeed, the proposed method allows
a client to get a watermarked image from a server withoutalévg her/his own identity. In the specific case of
biometric images, where a distorsion-free copy is nheedegrcision-critical applications, we consider the scanar
where the client is a structured organization being trusted whole but involving possibly untrusted members.
In such a context, the watermarked copy can be made availalddd members, but only authorized subgroups
should be able to remove the watermark. Just to outline astieabxample where all the above ingredients are
involved, let us introduce a biometric laboratory whichteafa long and careful work employing very expensive
machinery, has completed a high precision medical atlasodfieds it to a publisher with the task of selling it
to as many as possible members of the scientific communityhignsicenario, our innovative scheme allows any
research team to buy the access to the atlas in an anonymgusorathe publisher, who provides each research
group with a watermarked copy and each member of the group avishare of the embedding key proportional

to her/his position in the group hierarchy. In such a wayjviddial use for applications where precision is not



critical (for instance, teaching purposes) is admittedeurttie research group responsibility (indeed, the ingertio
of a conventional watermark allows the authors of the attadiscover and point out any leak to the publisher
without violating the privacy of the clients). On the othemld, any trusted authorized subgroup of the buyer team
by putting together the shares of its members is able to stamt a non-watermarked copy of the atlas for high
precision reasearch purposes.

We also stress that our approach substantially improvesgque asymmetric schemes applying linear algebra.
Indeed, the eigenvector watermarking scheme introducét8inhas been defeated by an effective attack (see [19],
Section 4.4) and the method presented in [20] is subject ticima$ disabilitation of public detection (see [20],
Section II1.B). On the other hand, the scheme proposed in iroven to be secure under projection attack.
Unfortunately, in order to achieve such a property, the madek cannot be chosen arbitrarily, but it turns out to be
heavily dependent on the host image (see in particularmsttec) of the Theorem on p. 787, which shows that the
watermark is forced to be a suitable multiple of a sequenterahnistically extracted from the original image). As
a consequence, the method of [21] is appropriate just foyrégipt protection, where only one key is assigned to
each image, but definitely not for fingerprinting, where evegipient is identified by its own key. On the contrary,
our approach is suitable also for fingerprinting, allowing thsertion into any image of an arbitrary watermarking
sequence. Of course, the application of a watermarkingnsehfer copy control requires a reasonable robustness
against standard image degradation operators. This is img@ally investigated in Section IV on two sets of
biometric images of different size and characteristichwgtiite satisfactory results in both cases. The embedded
watermark can be detected even in presence of a relevantnarabimage degradation due to image processing
operators, such as filtering, compression, noise addititan, &d combination of them.

The structure of the paper is the following: in Section Il weegia detailed description of the proposed
watermarking method; in Section Il we discuss an anonymougefprinting scenario involving a hierarchical
access to the embedding key in a rigorous mathematical fvtanrkein Section IV we address watermark invertibility
for precision-critical images, security under projectiattack and robustness against several image degradation

operators; finally in Section V we draw some concluding remarks

II. LINEAR ALGEBRA WATERMARKING

We are going to describe a subspace asymmetric watermgrkegdure. In this kind of asymmetric watermark-
ing scheme the encoding and decoding algorithms as welleaslétection key are public, while the embedding
key is kept secret. Let us fix an integer> 1 and a feature spac# (for instance, the space corresponding to the
entries in the top left corner of the DCT) and decompose it into orthogonal subspacé® of dimension2n and
V. Next, we splitWy into two orthogonal subspacé&sandH of dimensionn and we choose matrices and H

whose columns form an orthonormal basisdfind H, respectively. Finally, we pick an arbitrary watermarking



sequencey € R".

Let ¢, € X be the feature vector associated to the original image. Vite wr

¢o = 7!}0 + 0o (l)
wherey, € W ando, € V, and

Y, = Gs + Ht (2)
The watermark embedding is defined by

Pw = ¢o + Gw (3)

whereG is the embedding key (see Figure 1).

Next we choose a symmetric matrik (i.e., AT = A) satisfying
A(s+w)=s+w (4)
and an orthogonal matri® (i.e., BT = B~!) satisfying
Bt = p(s +w) (5)

with g := |[t||/||s + w]|| and we define
D = AGT + uBHT (6)

which is released to the public and is the crucial ingredierthe detection phase (see Figure 2). As farRass
concerned, we point out the following easy fact.

Lemma 1: If s+ w # 0, then we can construct an orthogonal matBxsatisfying (5).
Proof: See Appendix.

The existence of A is ensured by the trivial choice A=l (theniitg matrix), as already pointed out in [5].
However, in order to obtain higher detection performancespmopose here a different choice far Namely, let
by = % complete it to an orthonormal bag, b, ..., b,) of R™ (for instance, complete it to an arbitrary

lls

basis and then apply the standard Gram-Schmidt orthonaratiain process) and leV be the matrix withb! as

the i-th column ¢ = 1,...,n). Fix now an integek > 3 and let
1 0 ... O
0 108 ... 0 .
A=N]| _ N*.
0 ... 0 10%

Hence A keeps(s + w) fixed and rescales norms of vectors in all other directionsrgeoto minimize false-

positive probability.



Let now ¢, be an extracted feature. The watermark detection is accehgaliby the decision function

5(6) = 1 if [sim(s+w,De¢e)| > ¢ @)

0 otherwise

where0 < e << 1 is a suitable threshold and

sim(s + w, Dge) = M% 't Doe 70 (8)
0 if D=0
Definitions (7) and (8) for the detector are motivated by tHefang result, which shows that the watermark is
perfectly detected in the feature vector associated to #ternwarked image.
Proposition 1. We havesim(s + w, D¢,,) = 1.
Proof: See Appendix.
Notice that the detector needs only the mattixand the vectos + w. Therefore, if we takéG, H, A, B) as a

secret key andD, s + w) as a public key, we obtain an asymmetric watermarking scheme

I11. FINGERPRINTING APPLICATIONS

In order to adapt the above watermarking scheme to anonyfitggesprinting, let us introduce an authorit,

a clientC' and a servefs. The role ofA is to provide a safe bridge betweéhand S ensuring both the privacy of
C and the security ob. More explicitly, A receives fromC' the request of an image and frashthe corresponding
original image. NextA associates t6' a conventional watermark and produces the watermarked image by using
the secret keyG, H, A, B). Finally, A distributes toC' the watermarked image and fothe public key(D, s+ w).

As a consequence is able to recognize a non-authorized use of the image withiolating the privacy ofC.

We stress that, in order to be sure tliaand not another user is responsible of a violation it is d&dehat the
watermarked image is kept secret and the proposed methoygsesijich a property. On the other hand, in the case
where(C' is a trusted hierarchical group, the embedding &egan be distributed t@’' in a hierarchical way in order
to allow watermark removal only to authorized subgroup® (e instance [14] for the case of precision-critical
images).

More precisely, letC’ be a group composed d&f participants and let us consider a collectibrof subsets of
C, which is monotone in the sense thatlife T" then any set containing’ also belongs td". A threshold secret
sharing scheme with access structlirés a method of sharing a secret among all member§',0in such a way
that only subsets ifit can recover the secret, while all other subsets have nonirafiion about it. Assume that is
divided into levels, i.eC = Ul_,U; with U;nU; = () for everyi # j. In order to reconstruct the secret, we require
at least a fixed number of shares from each level. Formally,<ifky < ... < k; is a strictly increasing sequence

of integers, then &k, . . ., k¢; h)-hierarchical threshold secret sharing scheme distdbtat@ach participant a share



of a given secret, in such a way that
P={VcU:#[Vn(U_l)] >k Vi=0,...,t}

Roughly speaking, a subset of participants can recongtnecsecret if and only if it contains at least members
of level 0, at leastk; members of leveD or level 1, at leastk, members from level§, 1, and2, and so on.

In order to construct a suitablgy, .. ., k; h)-hierarchical threshold secret sharing scheme for the ddibg
key G, it is natural to apply Birkhoff polynomial interpolatioithe key point is that the Birkhoff scheme involves
not only a polynomial, but also its (higher order) derivaty To be formal, as in in [22], p. 124, |& = (E; ;),
i=1,...,m; j=0,...,d — 1, be anm x d interpolation matrix, whose elements are zeros or ones @xactly

dones. LetX =xq,...,2m,, 71 < T2 < ... < Iy, be a set ofn distinct interpolation points. For polynomials
d—1
P(z)= Z a;x’
i=0
of degree< d — 1 we consider thel interpolation equations
P(J)(mz) = Bi,j

for E;; = 1, where PU) denotes thej-th derivative of P and B; ; are given data. Here the unknowns are the
coefficientsay, . .., aq_1 Of P(x). However, it is easy to convince ourselves that a Birkhotéripolation problem
can admit infinitely many solutions even if the number of egunet equals the number of unknowns. Indeed, think
for a moment at the case in whidhy o = 0 for everyi = 1,..., h. In such a case, the interpolation system involves
only derivatives of the polynomiaP, hence it keeps no track of the constant teggnwhich remains undetermined.
More generally, elementary linear algebra consideratsimswy that if a Birkhoff interpolation problem admits a
unique solution then its associated interpolation malfix (£; ;), i =1,...,d;, j =0,...,d — 1, has to satisfy

the following Folya condition
#{E;=1:j<h}>h+1 0<h<d-1

(see for instance p. 126 of [22]).

The idea now is to exploit this necessary condition in ordeerieure that only authorized subsets can access
the secret matribxG. Intuitively speaking, an evaluation of the polynomiakifscarries more information than an
evaluation of any of its derivatives since it involves moaefficients; therefore it sounds reasonable to assign to
a participant of higher level the evaluation of a lower orderivative. More precisely, we propose the following
algorithm (see Figure 4):

1) Protect the matrixG with a secret key consisting of a sequence- (sg,..., s,) with s; € R for every

0<< 2.



2) Letd = k; and pick a polynomial
d—1
P(z)= Z a;x’
=0

wherea; = s; for every0 < i < z anda; arbitrary elements oR for z4+1<i<d— 1.
3) Identify each participant of levél with a random element € R and associate ta the shareP®*i-1) (v),

where P(*) denotes as above theth derivative of P andk_; := 0.

Fix now a subset of the structured grolp:= {u1,..., un,} C A with m > d. Up to reordering we may

assume that;; € U with [ (i) < 1(j) for everyi < j. Consider then x d matrix My whosei-th row is given

by

d —_
o (Laata ) () ©)

In order to reconstruct the secret sequencthe members of/ have to solve the following linear system:
ao PR (uy)
My : = : (10)
ag—1 Phriem=1 (y,,)
in the unknownsag, . .., aq4.
The key point is that (10) is a Birkhoff interpolation problemith associated interpolation matri&, = (E; ;),
i=1,...,m; j=0,...,d—1 defined as follows:
. (11)
0 otherwise
In the following, we will provide two theorems that represéme theoretical framework for reconstruction of
Both theorems are based on the fact thiat T" if and only if Ey satisfies the &lya condition.
Theorem 1: If V' ¢ I" thenV cannot reconstruct the secret sequesice
Proof: See Appendix.
Moreover, we can apply Theorem 10.1 in [22], p.128, whosestaht can be rephrased as follows:
Proposition 2: A Birkhoff interpolation problem admits a unique soluticor falmost all choices of interpolation
pointszy,...,xy,, i. €. outside of a subset &™ with m-dimensional measure zero, if and only if it satisfies the
Polya condition.
Hence our random selection of the interpolation pointsvalais to deduce the following:
Theorem 2: If V €T thenV recovers the secret sequence
Proof: See Appendix.

As a consequence, a set of participants of the hierarchroalpg” can reconstruct the secret sequenchence

access the matrig&r and finally remove the watermark, if and only if it belongs te tiredefined access structure.



IV. INVERTIBILITY, SECURITY AND ROBUSTNESS ANALYSIS

Standard watermarking technigues based on lossy compnesgih as least significant bit watermarking present a
possible drawback. Indeed, the manipulation of the imagfedance a small amount of distortion which irreversibly
impacts its integrity. Although the changes are impertdptithey need to be avoided in some precision-critical
applications, in particular for biomedical images, duedgal or scientific reasons.

In the proposed asymmetric watermarking scheme the kng&letithe embedding ke§f and the watermarking
sequencev allows to remove the watermark and therefore to recover tiggnal image in a distortion-free way

as follows

o = P — Gw (12)

(see Figure 3). Extensive tests of watermark removal confirinttigarecovered image is identical pixel per pixel
to the original one.

We point out that, even though it is not part of the public kdyttee method,w can be published without
occurring in additional security problems. Here securityhe watermark refers to the inability by not authorized
users to decode the embedded sequence. As discussed ing,7the crucial test for asymmetric watermarking
security is represented by the projection attack. As empthin [21], Il.B., p. 786, a projection attack replaces the

feature vectok,, associated to the watermarked image with a feature vectatisfying

|6 — ¢l = min [|¢ — ¢y, | (13)

under the constraint

d(¢) =sim(s +w,D¢p) =0 (14)

Hence, ¢ is the non-watermarked feature vector closestio By definition (8), condition (14) says thgs +
w)' D¢ = 0, i.e., ¢ has to lie on the hyperplane through the origin of the feaspace having normal vector
a = DT (s+w). As a consequence, the feature vectmsatisfying condition (13) is the projection gf, onto this
hyperplane, which is given by

It aT¢w

T P

(15)

The main result of [5] is the following:
Theorem 3: For every choice of the watermatk, our scheme is secure under projection attack.
Proof: See Appendix.
Figures 5 (c) and 11 (c) show the effect of a projection attatla @ouple of sample images (Figures 5 (b) and

11 (b)). The resulting degradation is apparent (PSNR and 16.4, respectively).



We stress that the corresponding result in [21] implies th& a multiple ofs (see statement ¢) of the Theorem
on p. 787). On the contrary, the security of our scheme doesleend on a specific watermark, thus making it
suitable also for fingerprinting.

Robustness of our asymmetric watermarking scheme agdarsiesd image degradation operators and combi-
nation of them can be evaluated by simulations. We consimendtric images of different size and with different
characteristics and we run our experiments on two skew daésh

The first one contain®0 biomedical and biometric images, including human brain am and irides for
identification purposes, of siz&0 x 430 on average. In order to implement the embedding procedwe;shwose
X as the subspace corresponding t8Ra< 32 submatrix in the upper-left corner of the DCT of the origiimahge.
Next, we splitX’ into W, corresponding to the upper-lefd x 20 submatrix, and its complementary subspate
Finally, we defineG by randomly selecting half entries & and H by taking the remaining ones. In order to
construct matriceé’ and H we simply orthonormalize random basis@fndH, respectively. We always sét= 3
and consider randomly generated watermark sequencesgthler= 200, suitably scaled to meet imperceptibility
(see Figures 5 (b)).

First, an image of a iris (Figures 5 (a)) is watermarked andatiete responses far00 different watermarks are
investigated after the following attacks: additive whitauSsian noise with power5 dB; additive uniform noise
in the interval[—20, 20]; 3 x 3 moving average; Gaussian lowpass filtering of size 3 with standard deviation
0.5; median filtering using the 3-by-3 neighborhood; resizingadinear factor of0.6 using the nearest neighbor
interpolation method; JPEG compression with quality faefii; 3 x 3 moving average and additive uniform noise
in the interval[—20, 20]; additive white Gaussian noise with pow&s dB and JPEG compression with quality
factor equal t25%. Despite the different typology of the tested images andaifmns, detection works perfectly
in all cases. Indeed, the really embedded watermark is alwdgntified by a peak in the plot of sim values (see
Figures 6 and 7).

Next, e = 0.06 is set and the probability of detection is evaluated aftePB@ compression as a function of the
guality factor on a database 26 images and 0 different watermarks per image. The results summarized iarEi§
show that detection probability equaldor JPEG compression quality factor down2@. Such performances seem
to outperform those reported in [8], Figure 6, where the diegrobability for quality factor20 is always less
than0.3. A similar analysis for white Gaussian noise addition as raction of its power is reported in Figure 9,
where detection probability equalsfor AWGN power up t020 dB.

Finally, the false positive probability is measured by cdesing 20 unwatermarked images and different
watermarks per image and letting the detection threshelty down to0 (see Figure 10). False positive probability
is definitely underl /200 for everye > 0.18, thus improving the performances described in [21], Figure 6

The same set of tests are also run considering much smalleebic images representing faces (see for instance
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Figure 11 (a)) of sizd 50 x 190 on average. In this case we have to reset all parameters actioeseX’ as the
subspace corresponding tola x 15 submatrix in the upper left corner of the DCT of the originalaige. Next,
we split X into W, corresponding to the upper leffd x 10 submatrix, and its complementary subsp¥td-inally,

we defineG by randomly selecting half entries o andH by taking the remaining ones. The matricésand H

are constructed as in previous experimental setting, bplgimrthonormalizing random bases @fand’H and the
experiments are performed on a databasd(Oofaces. We set = 3 and consider randomly generated watermark
sequences of length = 50, suitably scaled to meet imperceptibility (see Figure 1).(b)

Figures 12 and 13 report detection responses consideringeFidua) watermarked with00 different watermarks
and the same attacks as for Figure 5 (a). Also with such a diffedatabase, detection works perfectly in all cases.
Indeed, the really embedded watermark is always identified pgak in the plot of sim values.

Figure 14 reports detection probability after JPEG compresaga function of the quality factor on a database
of 40 images and 0 different watermarks per image & 0.035): also in this case, detection probability equals
for JPEG compression quality factor down2@. A similar analysis for white Gaussian noise addition asrecfion
of its power is reported in Figure 15 & 0.035): exactly as for the previous database, detection prabakijuals
1 for AWGN power up to20 dB.

Finally, the false positive probability is measured by cdesing 40 unwatermarked images arid different
watermarks per image and letting the detection threshol@iry down to0 (see Figure 16). Once again, false
positive probability becomes definitely negligible for ewer > 0.12. We point out that requiring false positive
probability close to zero would cause a few missed detestinrihe tests of Figures 6 and 7, as well as of Figures
12 and 13. Nevertheless, those cases correspond to heasksate.g. combined operators) that would make anyway

unusable the images for sensitive applications.

V. CONCLUSION

We present an asymmetric watermarking scheme which is ralgasnst the most dangerous attack for asymmetric
schemes, namely, the projection attack. Moreover, theqseg scheme is suitable for fingerprinting, allowing the
insertion of an arbitrary watermarking sequence, and fecigion-critical applications, guaranteeing the recpver
of a distortion-free image. The problem of anonymous fingatg is also addressed, in particular we consider
the scenario where the client is a structured organizatacordingly, a multilevel access to the watermarking
removal procedure is provided, by exploiting advanced eratitical tools from the theory of Birkhoff polyno-
mial interpolation. Finally, our experimental results dersivate robustness of the method against standard image
degradation operations.

Future work will deal with the optimal choice of the watermamkbedding domain with respect to robustness

to geometric attacks and specific legal applications.
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VI. APPENDIX

Here we provide detailed proofs of our mathematical results

Proof: [Lemma 1] If ¢ = 0, just takeB equal to the identity matrix. Far# 0, leta; := II%H andb; := ”jj—g” and
complete them to orthonormal bases, as, . ..,a,) and(by,be,...,b,) of R™. If M (resp.,N) is the matrix with
al (resp.,b}) as thei-th column ¢ = 1,...,n), thenM(1,0,...,0)" = af andN(1,0,...,0)" = bI. The matrix
B := NM™" is orthogonal since it is product of orthogonal matrices &d = NM7al = N(1,0,...,0)T =7,
so (5) holds. ]

Proof: [Proposition 1] ¢From definitions (6), (3), (1), (2) it follows thd¢,, = (AGT + uBH")(Gs + Ht +
oo + Gw) = A(s +w) + uBt = (1 + p?)(s + w) by conditions (4) and (5). Hence from (8) we deduce

(1+4%)(s +w)" (s +w)

s+, Déu) = =0 s £ wl?

=1

[

Proof: [Theorem 1] SinceV ¢ T', Ey doesn't satisfies &tya condition and it follows that the corresponding
Birkhoff interpolation problem admits infinitely many salns. ThusY cannot reconstruct. ]

Proof: [Theorem 2] SinceV € T, Ey satisfies Blya condition and with a random selection of interpolation
points it is possible to apply Proposition 1. Thus the uniguatsm of the Birkhoff interpolation problem conveys
the secrets; = a; fori <z <d - 1. [ |

Proof: [Theorem 3] By (6) we havea = D7 (s + w) = (GAT + uHBT)(s + w) = G(s + w) + Ht since
AT (s +w) = A(s +w) = s +w by (4) anduBT (s + w) = t by (5). On the other hand, if we let, = ¢,, — o,,
from (3), (1), (2) it follows that),, = ¢, + Gw — 0, = Gs + Ht + 0, + Gw — 0, = G(s + w) + Ht. Hence we
see thatz = ¢, and from (15) we deduce

Do
9w 2

by definition of,,. Sinceo, € V is the fragile part of the original feature vector, we cowéias in [21], Ill.B.,

gg:qﬁw

Y = Puw — Yuw = 0o

p. 786, that the image reconstructed frgnhas a high probability of being perceptually distorted. ]
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Fig. 1. Watermark embedding.

Fig. 2. Watermark detection.

Fig. 3. Watermark removal.

Fig. 4. Multilevel access to the embedding key.

Fig. 5. Original image (a) of an iris, watermarked image (b) (RSNi5.4) and the image under projection
attack (c) (PSNRL7.0).

Fig. 6. Sim values versus watermark for the iris image afterféliewing attacks: (a) no attack; (b) additive
white Gaussian noise with poweb dB; (c) additive uniform noise in the interval20, 20]; (d) 3 x 3 moving
average; (e) Gaussian lowpass filtering; (f) median filtering.

Fig. 7. Sim values versus watermark for the iris image aftefélewing attacks: (g) scaling with a factor of
0.6; (h) JPEG compression with quality factor equal®ds; (i) 3 x 3 moving average and additive uniform
noise in the interval—20, 20]; (I) additive white Gaussian noise with pow&s dB and JPEG compression
with quality factor equal t®5%.

Fig. 8. Detection probability versus JPEG compression quéditjor.

Fig. 9. Detection probability versus additive white Gausgi@ise power.

Fig. 10. False positive probability versus threshold.

Fig. 11. Original image (a) of a face, watermarked image (b) (RSNM0.5) and the image under projection
attack (c) (PSNRL6.4).

Fig. 12. Sim values versus watermark for the face image afeefdalfowing attacks: (a) no attack; (b) additive
white Gaussian noise with powéb dB; (c) additive uniform noise in the intervi20, 20]; (d) 3 x 3 moving
average; (e) Gaussian lowpass filtering; (f) median filtering.

Fig. 13. Sim values versus watermark for the face image afefdliowing attacks: (g) scaling with a factor
of 0.6; (h) JPEG compression with quality factor equa238t; (i) 3 x 3 moving average and additive uniform
noise in the interval—20, 20]; (I) additive white Gaussian noise with pow&s dB and JPEG compression
with quality factor equal t®5%.

Fig. 14. Detection probability versus JPEG compression quilittor (faces database).

Fig. 15. Detection probability versus additive white Gaassnoise power (faces database).

Fig. 16. False positive probability versus threshold (fadatmbase).
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Fig. 8.
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Fig. 10.

False—positive probability

0.9

0.8

0.7

0.6

05

0.4

0.3

0.2

0.1

0

0.02

0.04

0.06

0.08

0.1
Threshold

0.12

0.14

0.16

0.18

0.2

23



24

Fig. 11.



Fig. 12.
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Fig. 13.
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Fig. 14.
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