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Abstract

The present paper proposes an asymmetric watermarking scheme suitable for fingerprinting and precision-

critical applications. The method is based on linear algebra and is proved to be secure under projection attack. The

problem of anonymous fingerprinting is also addressed, by allowing a client to get a watermarked image from a

server without revealing her/his own identity. In particular, we consider the specific scenario where the client is

a structured organization being trusted as a whole but involving possibly untrusted members. In such a context,

where the watermarked copy can be made available to all members, but only authorized subgroups should be able

to remove the watermark and recover a distortion-free image, a multilevel access to the embedding key is provided

by applying Birkhoff polynomial interpolation. Extensivesimulations demonstrate the robustness of the proposed

method against standard image degradation operators.

I. I NTRODUCTION

Digital watermarking techniques have raised a great deal ofinterest in the scientific community after the pioneering

contribution by Cox et al. [1] (see for instance the books [2], [3], [4], and the references therein). The practice

of imperceptible alteration of a document to embed a messageinto it plays a key role in the challenging field

of copyright and copy protection and motivates the search for more efficient solutions. Here we investigate a

novel asymmetric watermarking scheme based on elementary linear algebra which, besides standard robustness

requirements, satisfies non trivial security and invertibility properties1.

Indeed, watermarking security is arising a great deal of interest in both academy and industry (see for instance

[6], [7], and [9]). The analogy with public key cryptography suggests to consider asymmetric structures, involving

1A preliminary version of this method has been presented in [5].
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a private key for embedding and a public key for detection (see [8] for a detailed survey). However, this property is

by no means sufficient in order to make a watermarking scheme secure: as remarked in [7],§ 5, almost all available

asymmetric watermarking schemes can be defeated by a standard closest point or projection attack (see Section IV

below for details). On the contrary, the proposed method is definitely secure under projection attack, as we both

mathematically prove and experimentally verify.

On the other hand, watermarking invertibility is crucial for several applications where the image integrity should

not be irreversibly corrupted by the watermark insertion. This new paradigm has been the subject of both deeply

theoretical and application oriented investigations (seefor instance [10] and [11]) and is still a very active research

area (see [12] and [13]). Specific applications include attribution of medical images for clinical purposes, copyright

protection of biological or satellite images, personal identification via fingerprinting or iris matching. The designed

scheme allows to completely remove the watermark and recover a distortion-free image by exploiting the knowledge

of the embedding key. In order to ensure the access to the original image only to authorized groups, we propose to

manage the embedding key in a distributed way. In [14] multilevel access is provided for precision-critical images in

a hierarchical context, while the proposed scheme allows on-off access for authorized or non-authorized groups by

applying a secret sharing scheme. The basic theory due to Shamir ([15]) relies on standard Lagrange interpolation,

while the hierarchical secret sharing scheme by Tassa ([16]) exploits subtler properties of Birkhoff polynomial

interpolation. Here we are going to adapt and simplify this last approach for the hierarchical management of the

embedding key, thus extending the results presented in [17]for the joint ownership of the original image. Even

though the mathematical framework is essentially the same,we point out that the application scenario is completely

different.

The present contribution addresses a problem of anonymous fingerprinting. Indeed, the proposed method allows

a client to get a watermarked image from a server without revealing her/his own identity. In the specific case of

biometric images, where a distorsion-free copy is needed for precision-critical applications, we consider the scenario

where the client is a structured organization being trustedas a whole but involving possibly untrusted members.

In such a context, the watermarked copy can be made availableto all members, but only authorized subgroups

should be able to remove the watermark. Just to outline a realistic example where all the above ingredients are

involved, let us introduce a biometric laboratory which, after a long and careful work employing very expensive

machinery, has completed a high precision medical atlas andoffers it to a publisher with the task of selling it

to as many as possible members of the scientific community. In this scenario, our innovative scheme allows any

research team to buy the access to the atlas in an anonymous way from the publisher, who provides each research

group with a watermarked copy and each member of the group with a share of the embedding key proportional

to her/his position in the group hierarchy. In such a way, individual use for applications where precision is not
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critical (for instance, teaching purposes) is admitted under the research group responsibility (indeed, the insertion

of a conventional watermark allows the authors of the atlas to discover and point out any leak to the publisher

without violating the privacy of the clients). On the other hand, any trusted authorized subgroup of the buyer team

by putting together the shares of its members is able to reconstruct a non-watermarked copy of the atlas for high

precision reasearch purposes.

We also stress that our approach substantially improves previous asymmetric schemes applying linear algebra.

Indeed, the eigenvector watermarking scheme introduced in[18] has been defeated by an effective attack (see [19],

Section 4.4) and the method presented in [20] is subject to malicious disabilitation of public detection (see [20],

Section III.B). On the other hand, the scheme proposed in [21]is proven to be secure under projection attack.

Unfortunately, in order to achieve such a property, the watermark cannot be chosen arbitrarily, but it turns out to be

heavily dependent on the host image (see in particular statement c) of the Theorem on p. 787, which shows that the

watermark is forced to be a suitable multiple of a sequence deterministically extracted from the original image). As

a consequence, the method of [21] is appropriate just for copyright protection, where only one key is assigned to

each image, but definitely not for fingerprinting, where every recipient is identified by its own key. On the contrary,

our approach is suitable also for fingerprinting, allowing the insertion into any image of an arbitrary watermarking

sequence. Of course, the application of a watermarking scheme for copy control requires a reasonable robustness

against standard image degradation operators. This is experimentally investigated in Section IV on two sets of

biometric images of different size and characteristics with quite satisfactory results in both cases. The embedded

watermark can be detected even in presence of a relevant amount of image degradation due to image processing

operators, such as filtering, compression, noise addition, etc., and combination of them.

The structure of the paper is the following: in Section II we give a detailed description of the proposed

watermarking method; in Section III we discuss an anonymous fingerprinting scenario involving a hierarchical

access to the embedding key in a rigorous mathematical framework; in Section IV we address watermark invertibility

for precision-critical images, security under projectionattack and robustness against several image degradation

operators; finally in Section V we draw some concluding remarks.

II. L INEAR ALGEBRA WATERMARKING

We are going to describe a subspace asymmetric watermarkingprocedure. In this kind of asymmetric watermark-

ing scheme the encoding and decoding algorithms as well as the detection key are public, while the embedding

key is kept secret. Let us fix an integern ≥ 1 and a feature spaceX (for instance, the space corresponding to the

entries in the top left corner of the DCT) and decompose it intotwo orthogonal subspacesW of dimension2n and

V. Next, we splitW into two orthogonal subspacesG andH of dimensionn and we choose matricesG andH

whose columns form an orthonormal basis ofG andH, respectively. Finally, we pick an arbitrary watermarking
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sequencew ∈ R
n.

Let φo ∈ X be the feature vector associated to the original image. We write

φo = ψo + σo (1)

whereψo ∈ W andσo ∈ V, and

ψo = Gs+Ht (2)

The watermark embedding is defined by

φw = φo +Gw (3)

whereG is the embedding key (see Figure 1).

Next we choose a symmetric matrixA (i.e.,AT = A) satisfying

A(s+ w) = s+ w (4)

and an orthogonal matrixB (i.e.,BT = B−1) satisfying

Bt = µ(s+ w) (5)

with µ := ‖t‖/‖s+ w‖ and we define

D = AGT + µBHT (6)

which is released to the public and is the crucial ingredientin the detection phase (see Figure 2). As far asB is

concerned, we point out the following easy fact.

Lemma 1: If s+ w 6= 0, then we can construct an orthogonal matrixB satisfying (5).

Proof: See Appendix.

The existence of A is ensured by the trivial choice A=I (the identity matrix), as already pointed out in [5].

However, in order to obtain higher detection performances we propose here a different choice forA. Namely, let

b1 := s+w
‖s+w‖ , complete it to an orthonormal basis(b1, b2, . . . , bn) of R

n (for instance, complete it to an arbitrary

basis and then apply the standard Gram-Schmidt orthonormalization process) and letN be the matrix withbTi as

the i-th column (i = 1, . . . , n). Fix now an integerk ≥ 3 and let

A = N



















1 0 . . . 0

0 10k . . . 0
...

...
...

0 . . . 0 10k



















NT .

HenceA keeps(s + w) fixed and rescales norms of vectors in all other directions in order to minimize false-

positive probability.
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Let now φe be an extracted feature. The watermark detection is accomplished by the decision function

δ(φe) =







1 if |sim(s+ w,Dφe)| ≥ ε

0 otherwise
(7)

where0 ≤ ε << 1 is a suitable threshold and

sim(s+ w,Dφe) =







(s+w)T Dφe

‖s+w‖‖Dφe‖
if Dφe 6= 0

0 if Dφe = 0
(8)

Definitions (7) and (8) for the detector are motivated by the following result, which shows that the watermark is

perfectly detected in the feature vector associated to the watermarked image.

Proposition 1: We havesim(s+ w,Dφw) = 1.

Proof: See Appendix.

Notice that the detector needs only the matrixD and the vectors+w. Therefore, if we take(G,H,A,B) as a

secret key and(D, s+ w) as a public key, we obtain an asymmetric watermarking scheme.

III. F INGERPRINTING APPLICATIONS

In order to adapt the above watermarking scheme to anonymousfingerprinting, let us introduce an authorityA,

a clientC and a serverS. The role ofA is to provide a safe bridge betweenC andS ensuring both the privacy of

C and the security ofS. More explicitly,A receives fromC the request of an image and fromS the corresponding

original image. Next,A associates toC a conventional watermarkw and produces the watermarked image by using

the secret key(G,H,A,B). Finally,A distributes toC the watermarked image and toS the public key(D, s+w).

As a consequence,S is able to recognize a non-authorized use of the image without violating the privacy ofC.

We stress that, in order to be sure thatC and not another user is responsible of a violation it is essential that the

watermarked image is kept secret and the proposed method enjoys such a property. On the other hand, in the case

whereC is a trusted hierarchical group, the embedding keyG can be distributed toC in a hierarchical way in order

to allow watermark removal only to authorized subgroups (see for instance [14] for the case of precision-critical

images).

More precisely, letC be a group composed ofh participants and let us consider a collectionΓ of subsets of

C, which is monotone in the sense that ifU ∈ Γ then any set containingU also belongs toΓ. A threshold secret

sharing scheme with access structureΓ is a method of sharing a secret among all members ofC, in such a way

that only subsets inΓ can recover the secret, while all other subsets have no information about it. Assume thatC is

divided into levels, i.e.C = ∪t
l=0Ul with Ui ∩Uj = ∅ for everyi 6= j. In order to reconstruct the secret, we require

at least a fixed number of shares from each level. Formally, if0 < k0 < . . . < kt is a strictly increasing sequence

of integers, then a(k0, . . . , kt;h)-hierarchical threshold secret sharing scheme distributes to each participant a share
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of a given secrets, in such a way that

Γ =
{

V ⊂ U : #
[

V ∩
(

∪i
l=0Ul

)]

≥ ki ∀i = 0, . . . , t
}

Roughly speaking, a subset of participants can reconstructthe secret if and only if it contains at leastk0 members

of level 0, at leastk1 members of level0 or level 1, at leastk2 members from levels0, 1, and2, and so on.

In order to construct a suitable(k0, . . . , kt;h)-hierarchical threshold secret sharing scheme for the embedding

keyG, it is natural to apply Birkhoff polynomial interpolation.The key point is that the Birkhoff scheme involves

not only a polynomial, but also its (higher order) derivatives. To be formal, as in in [22], p. 124, letE = (Ei,j),

i = 1, . . . ,m; j = 0, . . . , d− 1, be anm× d interpolation matrix, whose elements are zeros or ones, with exactly

d ones. LetX = x1, . . . , xm, x1 < x2 < . . . < xm, be a set ofm distinct interpolation points. For polynomials

P (x) =
d−1
∑

i=0

aix
i

of degree≤ d− 1 we consider thed interpolation equations

P (j)(xi) = Bi,j

for Ei,j = 1, whereP (j) denotes thej-th derivative ofP andBi,j are given data. Here the unknowns are thed

coefficientsa0, . . . , ad−1 of P (x). However, it is easy to convince ourselves that a Birkhoff interpolation problem

can admit infinitely many solutions even if the number of equations equals the number of unknowns. Indeed, think

for a moment at the case in whichEi,0 = 0 for everyi = 1, . . . , h. In such a case, the interpolation system involves

only derivatives of the polynomialP , hence it keeps no track of the constant terma0, which remains undetermined.

More generally, elementary linear algebra considerationsshow that if a Birkhoff interpolation problem admits a

unique solution then its associated interpolation matrixE = (Ei,j), i = 1, . . . , d; j = 0, . . . , d − 1, has to satisfy

the following Ṕolya condition

# {Ei,j = 1 : j ≤ h} ≥ h+ 1 0 ≤ h ≤ d− 1

(see for instance p. 126 of [22]).

The idea now is to exploit this necessary condition in order toensure that only authorized subsets can access

the secret matrixG. Intuitively speaking, an evaluation of the polynomial itself carries more information than an

evaluation of any of its derivatives since it involves more coefficients; therefore it sounds reasonable to assign to

a participant of higher level the evaluation of a lower orderderivative. More precisely, we propose the following

algorithm (see Figure 4):

1) Protect the matrixG with a secret key consisting of a sequences = (s0, . . . , sz) with si ∈ R for every

0 ≤ i ≤ z.
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2) Let d = kt and pick a polynomial

P (x) =
d−1
∑

i=0

aix
i

whereai = si for every0 ≤ i ≤ z andai arbitrary elements ofR for z + 1 ≤ i ≤ d− 1.

3) Identify each participant of levell with a random elementu ∈ R and associate tou the shareP (kl−1) (u),

whereP (k) denotes as above thek-th derivative ofP andk−1 := 0.

Fix now a subset of the structured groupV := {u1, . . . , um} ⊂ A with m ≥ d. Up to reordering we may

assume thatui ∈ Ul(i) with l (i) ≤ l (j) for every i ≤ j. Consider them× d matrix MV whosei-th row is given

by
d

dxkl(i)−1

(

1, x, x2, . . . , x(d−1)
)

(ui) (9)

In order to reconstruct the secret sequences, the members ofV have to solve the following linear system:

MV













a0

...

ad−1













=













P kl(1)−1 (u1)
...

P kl(m)−1 (um)













(10)

in the unknownsa0, . . . , ad.

The key point is that (10) is a Birkhoff interpolation problemwith associated interpolation matrixEV = (Ei,j),

i = 1, . . . ,m; j = 0, . . . , d− 1 defined as follows:

Ei,j =







1 if j = kl(i)−1

0 otherwise
(11)

In the following, we will provide two theorems that represent the theoretical framework for reconstruction ofs.

Both theorems are based on the fact thatV ∈ Γ if and only if EV satisfies the Ṕolya condition.

Theorem 1: If V /∈ Γ thenV cannot reconstruct the secret sequences.

Proof: See Appendix.

Moreover, we can apply Theorem 10.1 in [22], p.128, whose statement can be rephrased as follows:

Proposition 2: A Birkhoff interpolation problem admits a unique solution for almost all choices of interpolation

pointsx1, . . . , xm, i. e. outside of a subset ofRm with m-dimensional measure zero, if and only if it satisfies the

Pólya condition.

Hence our random selection of the interpolation points allows us to deduce the following:

Theorem 2: If V ∈ Γ thenV recovers the secret sequences.

Proof: See Appendix.

As a consequence, a set of participants of the hierarchical groupC can reconstruct the secret sequences, hence

access the matrixG and finally remove the watermark, if and only if it belongs to the predefined access structure.
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IV. I NVERTIBILITY , SECURITY AND ROBUSTNESS ANALYSIS

Standard watermarking techniques based on lossy compression such as least significant bit watermarking present a

possible drawback. Indeed, the manipulation of the image introduce a small amount of distortion which irreversibly

impacts its integrity. Although the changes are imperceptible, they need to be avoided in some precision-critical

applications, in particular for biomedical images, due to legal or scientific reasons.

In the proposed asymmetric watermarking scheme the knowledge of the embedding keyG and the watermarking

sequencew allows to remove the watermark and therefore to recover the original image in a distortion-free way

as follows

φo = φw −Gw (12)

(see Figure 3). Extensive tests of watermark removal confirm that the recovered image is identical pixel per pixel

to the original one.

We point out that, even though it is not part of the public key of the method,w can be published without

occurring in additional security problems. Here security of the watermark refers to the inability by not authorized

users to decode the embedded sequence. As discussed in [7],§ 5, the crucial test for asymmetric watermarking

security is represented by the projection attack. As explained in [21], III.B., p. 786, a projection attack replaces the

feature vectorφw associated to the watermarked image with a feature vectorφ̃ satisfying

‖φ̃− φw‖ = min ‖φ− φw‖
2 (13)

under the constraint

δ(φ) = sim(s+ w,Dφ) = 0 (14)

Hence,φ̃ is the non-watermarked feature vector closest toφw. By definition (8), condition (14) says that(s +

w)TDφ = 0, i.e., φ has to lie on the hyperplane through the origin of the featurespace having normal vector

a = DT (s+w). As a consequence, the feature vectorφ̃ satisfying condition (13) is the projection ofφw onto this

hyperplane, which is given by

φ̃ = φw −
aTφw

‖a‖2
a (15)

The main result of [5] is the following:

Theorem 3: For every choice of the watermarkw, our scheme is secure under projection attack.

Proof: See Appendix.

Figures 5 (c) and 11 (c) show the effect of a projection attack on a couple of sample images (Figures 5 (b) and

11 (b)). The resulting degradation is apparent (PSNR15.9 and16.4, respectively).
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We stress that the corresponding result in [21] implies thatw is a multiple ofs (see statement c) of the Theorem

on p. 787). On the contrary, the security of our scheme does not depend on a specific watermark, thus making it

suitable also for fingerprinting.

Robustness of our asymmetric watermarking scheme against standard image degradation operators and combi-

nation of them can be evaluated by simulations. We consider biometric images of different size and with different

characteristics and we run our experiments on two skew databases.

The first one contains20 biomedical and biometric images, including human brain samples and irides for

identification purposes, of size450× 430 on average. In order to implement the embedding procedure, we choose

X as the subspace corresponding to a32× 32 submatrix in the upper-left corner of the DCT of the originalimage.

Next, we splitX into W, corresponding to the upper-left20 × 20 submatrix, and its complementary subspaceV.

Finally, we defineG by randomly selecting half entries ofW andH by taking the remaining ones. In order to

construct matricesG andH we simply orthonormalize random basis ofG andH, respectively. We always setk = 3

and consider randomly generated watermark sequences of length n = 200, suitably scaled to meet imperceptibility

(see Figures 5 (b)).

First, an image of a iris (Figures 5 (a)) is watermarked and detection responses for100 different watermarks are

investigated after the following attacks: additive white Gaussian noise with power15 dB; additive uniform noise

in the interval[−20, 20]; 3 × 3 moving average; Gaussian lowpass filtering of size3 × 3 with standard deviation

0.5; median filtering using the 3-by-3 neighborhood; resizing ofa linear factor of0.6 using the nearest neighbor

interpolation method; JPEG compression with quality factor25%; 3×3 moving average and additive uniform noise

in the interval [−20, 20]; additive white Gaussian noise with power15 dB and JPEG compression with quality

factor equal to25%. Despite the different typology of the tested images and operations, detection works perfectly

in all cases. Indeed, the really embedded watermark is always identified by a peak in the plot of sim values (see

Figures 6 and 7).

Next, ε = 0.06 is set and the probability of detection is evaluated after a JPEG compression as a function of the

quality factor on a database of20 images and10 different watermarks per image. The results summarized in Figure 8

show that detection probability equals1 for JPEG compression quality factor down to20. Such performances seem

to outperform those reported in [8], Figure 6, where the detection probability for quality factor20 is always less

than 0.3. A similar analysis for white Gaussian noise addition as a function of its power is reported in Figure 9,

where detection probability equals1 for AWGN power up to20 dB.

Finally, the false positive probability is measured by considering 20 unwatermarked images and10 different

watermarks per image and letting the detection thresholdε vary down to0 (see Figure 10). False positive probability

is definitely under1/200 for everyε ≥ 0.18, thus improving the performances described in [21], Figure 6.

The same set of tests are also run considering much smaller biometric images representing faces (see for instance



10

Figure 11 (a)) of size150 × 190 on average. In this case we have to reset all parameters and wechooseX as the

subspace corresponding to a15 × 15 submatrix in the upper left corner of the DCT of the original image. Next,

we splitX into W, corresponding to the upper left10× 10 submatrix, and its complementary subspaceV. Finally,

we defineG by randomly selecting half entries ofW andH by taking the remaining ones. The matricesG andH

are constructed as in previous experimental setting, by simply orthonormalizing random bases ofG andH and the

experiments are performed on a database of40 faces. We setk = 3 and consider randomly generated watermark

sequences of lengthn = 50, suitably scaled to meet imperceptibility (see Figure 11 (b)).

Figures 12 and 13 report detection responses considering Figure 11 (a) watermarked with100 different watermarks

and the same attacks as for Figure 5 (a). Also with such a different database, detection works perfectly in all cases.

Indeed, the really embedded watermark is always identified bya peak in the plot of sim values.

Figure 14 reports detection probability after JPEG compression as a function of the quality factor on a database

of 40 images and10 different watermarks per image (ε = 0.035): also in this case, detection probability equals1

for JPEG compression quality factor down to20. A similar analysis for white Gaussian noise addition as a function

of its power is reported in Figure 15 (ε = 0.035): exactly as for the previous database, detection probability equals

1 for AWGN power up to20 dB.

Finally, the false positive probability is measured by considering 40 unwatermarked images and10 different

watermarks per image and letting the detection thresholdε vary down to0 (see Figure 16). Once again, false

positive probability becomes definitely negligible for every ε ≥ 0.12. We point out that requiring false positive

probability close to zero would cause a few missed detections in the tests of Figures 6 and 7, as well as of Figures

12 and 13. Nevertheless, those cases correspond to heavy attacks (e.g. combined operators) that would make anyway

unusable the images for sensitive applications.

V. CONCLUSION

We present an asymmetric watermarking scheme which is robust against the most dangerous attack for asymmetric

schemes, namely, the projection attack. Moreover, the proposed scheme is suitable for fingerprinting, allowing the

insertion of an arbitrary watermarking sequence, and for precision-critical applications, guaranteeing the recovery

of a distortion-free image. The problem of anonymous fingerprinting is also addressed, in particular we consider

the scenario where the client is a structured organization.Accordingly, a multilevel access to the watermarking

removal procedure is provided, by exploiting advanced mathematical tools from the theory of Birkhoff polyno-

mial interpolation. Finally, our experimental results demonstrate robustness of the method against standard image

degradation operations.

Future work will deal with the optimal choice of the watermarkembedding domain with respect to robustness

to geometric attacks and specific legal applications.
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VI. A PPENDIX

Here we provide detailed proofs of our mathematical results.

Proof: [Lemma 1] If t = 0, just takeB equal to the identity matrix. Fort 6= 0, leta1 := t
‖t‖ andb1 := s+w

‖s+w‖ and

complete them to orthonormal bases(a1, a2, . . . , an) and(b1, b2, . . . , bn) of R
n. If M (resp.,N ) is the matrix with

aT
i (resp.,bTi ) as thei-th column (i = 1, . . . , n), thenM(1, 0, . . . , 0)T = aT

1 andN(1, 0, . . . , 0)T = bT1 . The matrix

B := NMT is orthogonal since it is product of orthogonal matrices andBaT
1 = NMTaT

1 = N(1, 0, . . . , 0)T = bT1 ,

so (5) holds.

Proof: [Proposition 1] ¿From definitions (6), (3), (1), (2) it follows thatDφw = (AGT +µBHT )(Gs+Ht+

σo +Gw) = A(s+ w) + µBt = (1 + µ2)(s+ w) by conditions (4) and (5). Hence from (8) we deduce

sim(s+ w,Dφw) =
(1 + µ2)(s+ w)T (s+ w)

(1 + µ2)‖s+ w‖2
= 1

Proof: [Theorem 1] SinceV /∈ Γ, EV doesn’t satisfies Ṕolya condition and it follows that the corresponding

Birkhoff interpolation problem admits infinitely many solutions. ThusV cannot reconstructs.

Proof: [Theorem 2] SinceV ∈ Γ, EV satisfies Ṕolya condition and with a random selection of interpolation

points it is possible to apply Proposition 1. Thus the unique solution of the Birkhoff interpolation problem conveys

the secret:si = ai for i ≤ z ≤ d− 1.

Proof: [Theorem 3] By (6) we havea = DT (s + w) = (GAT + µHBT )(s + w) = G(s + w) + Ht since

AT (s+w) = A(s+w) = s+w by (4) andµBT (s+w) = t by (5). On the other hand, if we letψw = φw − σo,

from (3), (1), (2) it follows thatψw = φo +Gw − σo = Gs+Ht+ σo +Gw − σo = G(s+ w) +Ht. Hence we

see thata = ψw and from (15) we deduce

φ̃ = φw −
ψT

wφw

‖ψw‖2
ψw = φw − ψw = σo

by definition ofψw. Sinceσo ∈ V is the fragile part of the original feature vector, we conclude as in [21], III.B.,

p. 786, that the image reconstructed from̃φ has a high probability of being perceptually distorted.
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average; (e) Gaussian lowpass filtering; (f) median filtering.

Fig. 7. Sim values versus watermark for the iris image after thefollowing attacks: (g) scaling with a factor of
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noise in the interval[−20, 20]; (l) additive white Gaussian noise with power15 dB and JPEG compression

with quality factor equal to25%.

Fig. 8. Detection probability versus JPEG compression qualityfactor.
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Fig. 10. False positive probability versus threshold.
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Fig. 13. Sim values versus watermark for the face image after the following attacks: (g) scaling with a factor

of 0.6; (h) JPEG compression with quality factor equal to25%; (i) 3×3 moving average and additive uniform

noise in the interval[−20, 20]; (l) additive white Gaussian noise with power15 dB and JPEG compression

with quality factor equal to25%.

Fig. 14. Detection probability versus JPEG compression quality factor (faces database).

Fig. 15. Detection probability versus additive white Gaussian noise power (faces database).

Fig. 16. False positive probability versus threshold (facesdatabase).
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