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Regional artificial intelligence and the geography of
environmental technologies: does local AI knowledge help
regional green-tech specialization?
Gloria Ciceronea , Alessandra Faggiana , Sandro Montresora and
Francesco Rentocchinib,c

ABSTRACT
We investigate the extent to which artificial intelligence (AI) is harnessed by regions for specializing in green technologies.
By considering the transformative role that AI is playing in the invention process and connecting it to the regional
development of environmental technologies, we examine the relationship between green-revealed technological
advantages and local AI for EU-28 (NUTS-3) regions over the period 1982–2017. Results show that AI knowledge
favours the green-tech specialization of regions, provided that they were already green-tech specialized in the past.
Conversely, AI even reduces this capacity in regions that have not already specialized in green technologies.
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1. INTRODUCTION

Recent research in regional studies and economic geogra-
phy has shown that the local development of environ-
mental technologies is a crucial leverage of regions’
capacity to increase their environmental sustainability
and become ‘green’ (Demirel et al., 2019; Gibbs &
O’Neill, 2017; Truffer & Coenen, 2012). While green-
techs can themselves have negative environmental returns
(such as the resource inefficiencies and emissions gener-
ated by their production plants and the ‘electronic waste’
produced at the end of their life cycle) (Hansen et al.,
2021), the so-called ‘sustainability transition’ in fact passes
through a suitable recombination of technologies, insti-
tutions and behaviours, which can lead to the establish-
ment of more environmentally sensitive ‘socio-technical
systems’ (Geels, 2002).

The regional capacity for developing environmental
technologies, and specializing in their invention, has in
turn been investigated and appears as unevenly distributed
across space. Their ‘relatedness’, as the synthesis of their
cognitive proximity to pre-existing technologies, has
emerged as an important driver of both the acquisition

of regional green-tech advantages and of their mainten-
ance over time (Castellani et al., 2022; Montresor & Qua-
traro, 2020), along with other regional factors that interact
with or even condition this: in particular, the green-tech
life cycle (Barbieri et al., 2020a) and regional environ-
mental policies (Santoalha & Boschma, 2021). Among
the other factors, the extent to which regional green-
tech specialization can benefit from the opportunities of
the digital transformation offered by Industry 4.0 is still
relatively unexplored (Benassi et al., 2020; 2022). This
lack of research is an unfortunate gap, particularly with
respect to artificial intelligence (AI), whose economic
transformative role has been shown to have an important
territorial dimension (Buarque et al., 2020; Capello &
Lenzi, 2021b; Laffi & Boschma, 2022) and whose
‘Earth-friendly’ applications can extend to several environ-
mental domains (World Economic Forum (WEF), 2018).

Given the high policy priority that, especially in the
aftermath of the COVID-19 pandemic, both the green
and the digital transition are receiving at the European
level,1 the absence of studies on the possible combination
of the local development of environmental and AI tech-
nologies represents an unfortunate gap. This gap has two
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dimensions, which the present paper aims to fill. On the
one hand, empirical evidence for the creation and inte-
gration of AI technologies at the regional scale is almost
non-existent, and its incipient analysis is mainly carried
out at a fairly aggregate (e.g., NUTS-2) level (Buarque
et al., 2020). On the other hand, theoretical analysis of
the mechanisms through which the distinguishing features
of AI can intersect with those of green technologies at a
local level is also scant and remains mainly speculative
(WEF, 2018).

When filling this twofold gap, we combine economic
geography and patent-based innovation studies and inves-
tigate the extent to which AI knowledge can be harnessed
for the development of green technologies at the regional
level. In doing so, we position our work in and extend a
recent stream of research that has started investigating
the regions’ capacity to diversify their environmental tech-
nologies by branching pre-existing related technologies
and by drawing on local technologies with general-purpose
properties (GPTs), for example, the so-called key enabling
technologies (KETs) (Montresor & Quatraro, 2020). We
contribute to this research in three original ways. First,
rather than looking at the simple ‘entry’ of a new green
technology in the regional knowledge-base, we extend
the analysis to the regions’ capacity of having, acquiring
or eventually keeping a green-tech specialization over
time, as in the recent work by Castellani et al. (2022). In
other words, we place a greater emphasis on the regional
experience in specializing in green-tech; we do so as we
focus on a potential GPT technology for which, unlike
KETs, such an experience represents a crucial driving vari-
able. This is the second element of originality. As we will
argue in section 2, while possibly GPT, like KETs, AI
reveals an additional distinguishing feature that enriches
the set of mechanisms through which it can affect
green-tech regional specialization: it is a potential ‘inven-
tion in the method of inventing’ (IMI), whose actual
occurrence requires a fairly large set of data to be originally
recombined, also and above all at a local level. This makes
the ‘history’ of green-tech knowledge in the region, acting
as a leverage to spur the accumulation of green-tech data
over time, a crucial aspect to consider with the local
stock of AI knowledge. The third element of novelty is
empirical. With respect to previous studies (e.g., Montre-
sor &Quatraro, 2020, is at the NUTS-2 level) we make an
original effort towards granularity in terms of
environmental domains, AI applications and, above all,
NUTS-3 administrative units. Indeed, to the best of our
knowledge, this is the first study to rely on a very disaggre-
gated map of the local endowment of AI knowledge across
European regions and which inspects its role at a local-,
technology- and time-specific level of analysis.

Relying on a three-way fixed effects (FEs) linear prob-
ability model (LPM) and checking its robustness in several
respects, we find that the stock of AI knowledge actually
helped EU-28 regions specialize in green technologies
over the period 1982–2017, provided they had already
done so in the past. Conversely, the same stock even
reduces this capacity in regions that have not already

specialized in green technologies. AI does not appear suit-
able for regional green-tech specialization per se, but AI
knowledge at the basis of the digital transformation can
help already green(-tech) regions to remain green.

The remainder of the paper is organized as follows.
Section 2 presents the relevant literature and research
hypotheses. Sections 3 and 4 describe the data used and
the empirical methodology, respectively. Section 5 dis-
cusses the main results and their robustness. Section 6
concludes and offers possible policy implications and ave-
nues for future research.

2. BACKGROUND LITERATURE AND
RESEARCH HYPOTHESES

Despite its already extended history as a technology and
research field (Nilsson, 2010), ‘the economics of AI’ is
still at an incipient stage (Agrawal et al., 2019).2 Of the
identified domains – including ‘productivity, growth,
inequality, market power, innovation, and employment’
(Agrawal et al., 2019, front page) – academic research
has been hesitant to investigate the potential role of AI
in environmental sustainability. This lack of research is
unfortunate because this potential has already been recog-
nized in the debate involving businesses and international
organizations. Among others, in 2018 the World Econ-
omic Forum (WEF) has produced a report in which sev-
eral cases of ‘Earth-friendly AI’ have been identified in
addressing different environmental problems. For
example, new AI knowledge has been decisive in the
advancement of climate change technologies, as in the
development of new optimized energy system forecasting,
of technologies for air cleaning, as with real-time air pol-
lution monitoring and simulations, and of technologies to
face weather and natural disasters, as with climate infor-
matics for enhanced climate modelling. Interestingly,
these are cases in which inventions in the AI domain,
rather than adoptions of AI, can help the introduction of
eco-innovations (EI), as previous studies (Lee, 2020; Lee
& He, 2021) and some examples of co-occurring AI and
EI patent codes of our patent-based analysis reveal (see
section 3.2).

While the search for specific cases of environmentally
friendly AI advances, the academic literature on their
functioning unfortunately still lags behind, especially at
the local level. Although regional economics and, in par-
ticular, urban planning have addressed the role of AI in
different domains since the mid-1980s (Baráth & Futó,
1985; Sashi & Ramakrushna, 2003; Silva, 2004) –
especially through its contribution to geographic infor-
mation systems (GISs), spatial modelling (Openshaw,
1992), urban land dynamics and regional business and
energy loads forecasting (Che-Chiang & Chia-Yon,
2003; Ning & Silva, 2010) – the general mechanisms
through which AI can affect the development of green
technologies at the local level remain unexplored.

An important contribution to fill this research gap can
be made by considering recent work in the economics of
technological change, with regard to the AI impact on

Regional artificial intelligence and the geography of environmental technologies 331

REGIONAL STUDIES



innovation, and extending it to the domain of EI and
green-tech specialization/diversification at the regional
level. As Cockburn et al. (2019) have recently argued,
AI has two potential features that could crucially affect
the unfolding of the innovation process. As we argue
below, each feature has major implications when we con-
sider AI as part of the regional knowledge base, and are
thus capable of affecting the process of Schumpeterian
knowledge recombination through which innovations
have been claimed to locally emerge and geographically
distribute (Balland, 2016).

2.1. AI and the local endowment of GPTs
The first distinguishing feature of AI is its possible appli-
cation across a wide range of domains, into which it com-
plementarily introduces rapid innovations because of its
own ultimate innovation. Because of this, AI is potentially
the most important GPT of our times (Trajtenberg,
2019), asking us to extend to it what innovation studies
have taught us about previous technologies of this kind,
such as computers and the internet (Bresnahan & Trajten-
berg, 1995). In making such an extension, some critical
positions have emerged, claiming that the ‘GPT jacket’
would be too strict and even misfitting for a ‘system tech-
nology’ such as AI, which rapidly develops infrastructural
properties not included in that categorization (Vannuccini
& Prytkova, 2020). Also on the empirical side, recent
studies have cast doubt about the extent to which, by refer-
ring to publication or patent data across the world, some
families of AI (e.g., deep learning) can help to navigate
complex knowledge landscapes in the way of a GPT
(Bianchini et al., 2020). Doubts have also been raised
about the extent to which some other related technologies
(such as those included in the Industry 4.0 paradigm) actu-
ally show a technological base (e.g., in terms of citations)
consistent with GPT properties (Martinelli et al., 2021).

In spite of these caveats about the general GPT fea-
tures of AI across the world of science, its possibly local
GPT role deserves close scrutiny, especially in the develop-
ment of regional green technologies. Indeed, the GPT
endowment of places can help the recombination of exist-
ing local knowledge from which the regional specialization
in technologies has been argued to descend also in the
green domain. On the one hand, being cross-cutting and
horizontal in their application to the regional knowledge
base, GPT can be expected to move the local technological
frontier ahead and widen the set of knowledge items that
need to be recombined to allow the region to master the
complexity of green technologies. On the other hand, by
advancing through the co-occurrence of applications and
inventions, GPT also arguably increase the set of inter-
faces between the several knowledge modules and disci-
plines that are usually recombined in the development of
environmental technologies. These expectations have
been confirmed by previous studies with respect to the
new generation of GTP represented by the so-called
KETs,3 which have been found to favour regional techno-
logical diversification in general (Montresor & Quatraro,
2017) and with respect to green technologies in particular

(Montresor &Quatraro, 2020). As AI could possibly share
the previous two GPT mechanisms with KETs, we expect
the local endowment of the relative knowledge to also
favour regional green technologies. Indeed, it can be
claimed that the GPT properties of AI enable regions to
better combine the complex knowledge items on which
the inventive development of green technologies relies
and allow them not only to obtain a new specialization,
as revealed in the literature, but also to maintain this
specialization over time, where the specialization is already
present. Given the caveats about the actual GPT nature of
AI, a sort of meso-proof can be obtained by testing the fol-
lowing research hypothesis:

Hypothesis 1: The local endowment of AI knowledge positively

correlates with the regional capacity to specialize in green

technologies.

Another effect of the local endowment of GPT on the
development of regional technologies is its influence on
the explorative extent to which regions can recombine
their extant knowledge base. On the one hand, we might
expect GPT to help more in making regions specialize
in technologies that are more cognitively distant from
others, that is, less related to them (Balland, 2016). This
would be consistent with their providing regional inter-
faces that facilitate wider opportunities for recombining
existing knowledge, which could thus involve more cogni-
tively distant knowledge items. This has been observed by
Montresor and Quatraro (2020) in looking at the role of
the regional specialization in KETs in driving regional
green-tech branching: in the presence of KET
specialization, such a green-tech branching actually
becomes less related. On the other hand, however, a sub-
stitution relationship between GPT and relatedness for
the occurrence of regional green-tech specialization is
not guaranteed and rather depends on the specific nature
of the former in relation to the latter. In particular, GPT
technologies vary among themselves, also and above all,
due to the complexity of their inherent knowledge base
and for the effect this complexity can have on their build-
ing interfaces for local knowledge recombination to occur.
Given the nature of AI as a large technical system, whose
advancement involves a larger amount of (possibly big)
data and more infrastructural factors than other GPT
(Vannuccini & Prytkova, 2020), such as KETs, AI argu-
ably represents a quite complex GPT, which could thus
work harder in the more complex role of combining and
recombining more distant knowledge items. This is par-
ticularly the case of the knowledge recombination that
leads to environmental technologies, which have been
shown to draw, in turn, on a complex, transdisciplinary
and close to the scientific frontier kind of knowledge (Bar-
bieri et al., 2020). In light of this, we could expect AI to
help more in making regions specialize in technologies
that are less cognitively distant from existing local ones,
that is, in more cognitively related technologies.

Once more, as the actual GPT nature of AI is still
under scrutiny, we do not feel there are enough aprioristic
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expectations for a substitution rather than complementary
relationship between its local endowment and relatedness
in driving green-tech specialization. Still, we expect that
AI would significantly moderate the impact of relatedness
on the development of regional environmental technol-
ogies, and not only on the development of new ones in
terms of diversification. Indeed, following Castellani
et al. (2022), we expect that the extent of cognitive proxi-
mity that relatedness expresses between technologies not
only affect regions in their capacity of making a new tech-
nology enter in the local knowledge base, but also their
capacity to keep the technology within the region over
time, where it is already present. In the absence of unam-
biguous predictions about the way in which AI knowledge
could moderate the effect of relatedness at stake, we remit
the sign recognition of such a moderation effect to the test
of the following hypothesis:

Hypothesis 2: AI knowledge significantly moderates the relation-

ship between relatedness and the regional capacity to specialize in

green technologies.

2.2. AI and local inventions of the methods of
inventing
The second and possibly more distinguishing feature of AI
compared with previous GPT is its potential role of IMI,
that is, a research tool itself, capable of changing the pro-
cedures (‘playbook’) for innovation to occur in the many
domains in which AI is applied. As Cockburn et al.
(2019) put it, this means that AI is ‘opening up the set
of problems that can be feasibly addressed, and radically
altering scientific and technical communities’ conceptual
approaches and framing of problems’ (p. 7).

While an important potential feature, the actual IMI
function of AI crucially depends on its application to
large sets of granular data on both social and physical
phenomena and behaviours. The power of AI actually
improves as it is applied to larger and larger datasets.

Extending this argument to our regional research ques-
tion, we expect that the capacity of AI to act as IMI locally
in the development of green technologies will crucially
depend on the extent to which regions have experience
with green technologies. Such an experience is in fact
necessary to generate large sets of data on the functioning
and applications of green technologies through which AI
can advance the frontier of the relative innovation methods
and increase the regional specialization in the relative
technologies. In brief, it could be argued that AI would
be able to spur local inventions in the methods of green
inventing (IMgI), and thus increase the capacity to
specialize in green technologies, providing regions have
already consolidated experience of these methods. In prin-
ciple, one might argue that AI knowledge available at the
local level could compensate for the lack of pre-existing
experience in the green-tech, and that regions could
draw on AI to remedy the lower innovative combinatorial
opportunities that the lack of specialization in the green
domain inevitably entails. Still, we do not expect that

such a compensation effect could provide non-green-
tech-specialized regions with an advantage over regions
that are already specialized in green-tech, and which, con-
sequently, can count on the big data requirement that ren-
ders the IMI property of AI effective.

This last set of considerations has an important impli-
cation for the way we should search for the relationship
between regional environmental technologies and AI
knowledge. In addition to their relatedness to the knowl-
edge base of the region, its green-tech specialization ‘his-
tory’ should be explicitly retained, especially in moderating
the relationship between AI and the capacity to gain or
maintain such a specialization. On this basis, in control-
ling for the role of path dependence in regional green-
tech specialization, we put forward the following
hypothesis:

Hypothesis 3: The correlation between local AI knowledge and

the regional capacity to specialize in green technologies is higher

for regions that have experience of such a capacity.

3. DATA AND METHODOLOGY

Our empirical analysis refers to EU-28 regions at the
NUTS-3 level for the period 1982–2017. It is based on
a longitudinal dataset obtained by combining different
sources, of which the focal ones include the Organisation
for Economic Co-operation and Development’s (OECD)
REGPAT dataset (Maraut et al., 2008) and the European
Regional Database (Cambridge Econometrics). To the
best of our knowledge, this paper is the first to adopt a
NUTS-3 level of geographical analysis in dealing with
the role of AI. Previous work has used a larger scale, gen-
erally NUTS-2, regions (e.g., Buarque et al., 2020), or had
a more general focus, such as Industry 4.0 (e.g., Capello &
Lenzi, 2021a). Naturally, the use of smaller regions creates
some computational problems, especially for some intense
data computing variables such as technological relatedness
(see below). Nevertheless, we believe this is the appropri-
ate level of analysis for two main reasons. First, especially
in some European countries, NUTS-2 regions are quite
large and comprehend smaller administrative locations
with heterogeneous socio-economic characteristics.
These are arguably reflected in heterogeneous capabilities
of specializing in green technologies, which should thus be
investigated in a disaggregated manner (Castellani et al.,
2022). Second, the recombination of local knowledge
that AI is expected to facilitate (see section 2.2) can also
be argued to vary across the different NUTS-3 in the
NUTS-2 regions, as the former delimit heterogeneous
knowledge bases, of which that of the latter is far from
being the sum. Of course, in some cases NUTS-3 could
miss one or both of the two phenomena we describe, but
as usual this will have to be considered in investigating
its holding on a systematic basis. In spite of these advan-
tages, we are aware that there could possibly be a modifi-
able area unit problem (MAUP), and we test the
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robustness of our results at the NUTS-3 level by re-run-
ning our econometric models at the NUTS-2 level as well.

Using our dataset, and a set of variables we define in
the following sections, we test Hypothesis 1 by estimating
whether region r’s ‘capacity’ to specialize in a certain green
technology, c, at time t (GreenTechrct) significantly
correlates with its stock of inventive capacity in AI at
t – 1 (AIrt−1). The focus on regions’ green-tech specializ-
ation in accounting for the local development of environ-
mental technologies is driven by the economic geography
approach with which we investigate it (Montresor &
Quatraro, 2020). Following such an approach, a revealed
regional advantage in a certain technology is taken as a
standard to denote its entry and/or presence in the local
knowledge base, as well as to build up the matrix of
cognitive proximities among technologies that are
synthesized in the idea of relatedness, which we also use
(Balland, 2016).

Drawing on section 2, in the baseline model we run
this estimate by retaining among the regressors, region
r’s specialization in the same technology at t – 1 (proxied
by the lag of the dependent, GreenTechrct−1), the related-
ness to its knowledge base (measured by Relatednessrct−1)
and a vector of regional characteristics ( �Xrt−1):

GreeTechrct = a+ bGreenTechrct−1 + gAIrt−1

+ dRelatednessrct−1 + u �Xrt−1 + qt

+ mc + pr + 1rct (1)

where qt , mc, pr are time, technology and regional FEs,
respectively; and 1rct is an error term with standard
properties.

To test the other research hypotheses proposed in sec-
tion 2, we augment the baseline model of equation (1) by
progressively including some interaction terms among our
focal (lagged) regressors. First, although we have not built
a hypothesis based on that, we interact GreenTechrct−1 with
relatedness to see whether regions with previous green-
tech experience are more ‘conservative’ in renewing their
specialization over time by making relatedness more
important for such renewal to happen. Second, in order
to test Hypothesis 2, we interact (the lag of) AI withRelat-
edness to see whether a substitution relationship actually
exists between them, as opposed to a complementary
one. We then address the issue of regions’ green-tech
experience of Hypothesis 3 by interacting (the lag of) AI
knowledge stock with the lag of the dependent variable,
expecting this interaction to be positive. Finally, we satu-
rate the model with all the previous interactions together.

3.1. Dependent variable
As noted above, our dependent variable refers to region r’s
capacity to specialize in green technologies at time t, irre-
spective of the history of the same capacity. Consistent
with our theoretical arguments in section 2, we define
this variable in a technology-specific way, c. In other
words, we examine whether the regional endowment of
AI knowledge correlates with the regional capacity to

develop green technologies generically, not simply across
the broad spectrum of such technologies (see below) but
specifically, that is, with respect to each and every field,
c, which can be deemed green and in which EIs can thus
be introduced. The choice of using region–technology–
time data, instead of region–time data, to build up our
focal dependent variable is in line with the extant literature
(Montresor & Quatraro, 2020; Santoalha & Boschma,
2021) and has two main motivations. First, in doing so,
we are better able to test whether AI actually works across
the board, like a GPT, by facilitating the development of
green technologies of different kinds, which refer to differ-
ent and specific environmental domains. Second, by focus-
ing on each and every green technology (or, as we will see,
patent CPC), we can build up a more precise relatedness
variable, which measures the density of the cognitive
proximities that the relative green technology reveals
with respect to those present in the knowledge base of
the region. If we had focused on region–year data instead,
we would have been forced to relate the green technologies
in which regions specialize to those in its knowledge base
in average terms and thus less accurately.

Following the literature on the geography of inno-
vation (Balland, 2016), we define our dependent variable,
GreenTechrct , as a dichotomous variable that takes the value
of 1 if region r is specialized in a green technology c at time
t, and 0 otherwise:

GreenTechrct = 1 if RTArct . 1
0 if RTArct ≤ 1

{
(2)

where RTArct relates region r’s share of total patents in
technology c to its total share of global patents:

RTArct =
PATrct∑
r PATrct∑
c PATrct∑

r

∑
c PATrct

(3)

If the former share (at the numerator) is larger (smaller)
than the latter (at the denominator) and RTArctis higher
(lower) than 1, the region can be said to be (not) specialized
in a certain green technology, c. Accordingly, the same
region is considered to be (not) capable of eco-innovating
systematically in the relative field; thus, EIrct ¼ 1 (0).

In spite of the loss of information that the dichotomi-
zation of RTA entails, such a transformation, which is
consistent with the extant literature (Montresor &
Quatraro, 2020; Santoalha & Boschma, 2021), does also
have a twofold motivation. On the one hand, it allows
us to easily map those green technologies that are part of
or enter in (depending on its pre-existence) the regional
knowledge base, taking the presence of a specialization
as a guide-post to this. On the other hand, it enables us
to directly map the cognitive proximity between these
green technologies and those that are part of the regional
knowledge base.

As in previous studies on the topic (e.g., D’Agostino &
Moreno, 2019; Montresor & Quatraro, 2020; Santoalha
& Boschma, 2021), we define as green any patent with
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at least one technological class, c, included in the ENV-
TECH classification: a classification of environmental
technologies developed by the OECD (Haščič&Migotto,
2015), examining the International Patent Classification
(IPC) and Cooperative Patent Classification (CPC)
codes reported for those patents for which the applicants
have applied to the European Patent Office (EPO).
Table A1 in Appendix A in the supplemental data online
provides a description of the environmental technology
aggregates and their corresponding CPC classes.4 The
identification of environmental technologies is based on
the full-length CPC code of the patent class; however,
for computational purposes, we use 69 CPC codes (at
the four-digit level) to set up the final database. As is
well known, patent data have a discrete nature, and for
this reason, their distribution experience peaks over time.
To smooth this behaviour, we follow the extant literature
and aggregate patent data into nine four-year time
periods.5

Figure 1 reports the geographical distribution of our
dependent variable, showing how the investigated regions
distribute in terms of the number of their green-tech
specializations over the most recent sub-period (2014–17).

Quite interestingly, unlike for other standard (non-
green) technologies, no clear pattern is evident from the
map. In fact, although some clusters are evident (e.g.,
northern Italy, Denmark and most of Finland and Swe-
den), it is difficult to identify a classic core–periphery
mechanism by looking at Figure 1 alone. This result is
indicative of a geography of green technologies that does
not fully overlap with the general innovation geography
and whose ‘special’ determinants, such as AI possibly,
require special attention.

3.2. Regressors and controls
Our focal regressor, AIrt , measures region r’s availability of
AI technological knowledge, and is still proxied by
regional patent applications, PATrct , in those c domains
that can be deemed AI related (c [ AI ). Unlike with
respect to EI, however, this regressor is not green-tech,
but simply region specific. This is an important methodo-
logical choice that has different motivations. First, as we
will see below, AI-related patents are identified by exam-
ining patent classes and/or patent keywords that only ‘talk’
about the nature and typologies of AI technologies,
regardless of their specific domain of application, that
are green or not green in nature. Mapping regional AI
onto each and every green technology c with respect to
which we have built our dependent variable, GreenTechrct,
would therefore require an additional identification cri-
terion for our focal regressor. The most viable solution
might appear to be that of considering, for each regional
green-tech c, those regional AI patents that are also
‘marked’ by the respective green-tech patent code, that
is, in which AI- and EI-related codes co-occur. However,
considering this green-tech-specific regional AI regressor,
and examining this correlation with the regional specializ-
ation in the same technology, would amount to an aprior-
istic identification of the relationship that we are instead

looking for, and would drastically reduce the scope of
the analysis with respect to what we have elaborated in sec-
tion 2. Indeed, we maintain that AI knowledge is expected
to help green technologies by operating as a GPT and an
IMI on a wide set of green and non-green technologies
rather than by simply being co-invented in a green-tech
field. In other words, we expect that it is the regional
endowment of AI that will matter for regional GreenTech
and that the former will have an effect on the latter,
which is across the board and invariant with respect to
the different domains in which EIs can occur. Notwith-
standing the above, we also check the robustness of our
results against a more stringent definition of AI patents,
defined by all patents that combine at least one AI patent
class and one green patent class (see the robustness check
section).

As AI and other kinds of regional knowledge develop
cumulatively over time, we maintain that the role of AI
on regional green technologies should be proxied by the
stock of AI knowledge available at a certain period in
time, t, rather than by its current or lagged flows. Accord-
ingly, we follow the existing literature (Griliches, 1990;
Hall et al., 2000) and build AIrt using the perpetual inven-
tory method formula:

AIrt = AIrt−1(1− d)+
∑
c[AI

PATrct (4)

where AIrt−1 is the stock of region r’s AI patents at period t
– 1; δ is the depreciation rate, which is assumed to be con-
stant at 5%; and PATrct , with c [ AI , is the number of new
patents whose technologies c refer to AI in period t.6 In
order to have a more accurate measurement, the AI patent
stock is computed using information for the whole period
for which patent data are available (1977–2017).

To identify AI-related technologies from patent infor-
mation, we follow the recent contributions by Buarque
et al. (2020) and Calvino et al. (2018), who adopt the
classification developed by theWorld Intellectual Property
Organization (WIPO) (2019). In turn, the WIPO
suggests a mixed search strategy that relies on (1) relevant
patent classes and (2) a search of relevant AI-related key-
words in patent titles/abstracts/claims. For example,
patents pertaining to the following CPC-based classes
are identified as AI technologies: data processing, AI
(CPC class Y10S706) and computer systems based on bio-
logical models (CPC class G06N003). Similarly, patents
reporting the stem words (where all suffixes have been
removed) ‘artificial intelligence’ or ‘computational intelli-
gence’ are identified as AI-related.7 As we state below,
we check the robustness of our results against an alterna-
tive definition of AI technologies (see Tables B6 and B7
in Appendix B in the supplemental data online).

As mentioned in section 2, the AI patents identified
capture new inventive knowledge that we expect could
be helpful in advancing the development of green technol-
ogies. While postponing the systematic search of this cor-
relation to the results, we notice here that the contents of
some exemplificative patents, in which AI- and EI-related
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patent codes co-occur, actually point to some correlation.
The patent document with publication number
EP3189726A1, for example, covers an irrigation system
controlled and optimized via an AI optimization algor-
ithm, which gathers data through sensors and predicts
and distributes the optimal amount of water needed,
based on the information collected. By using machine
learning algorithms, this invention can thus be expected
to improve the technological knowledge about the efficient
management of water resources. Similarly, the patent
document published with number EP3078611A1 refers
to the use of artificial neural networks and sensors to clas-
sify solid waste and send it to the appropriate waste dispo-
sal department: still a novel piece of knowledge potentially
useful for green technologies about waste management.

Figure 2 shows the geographical distribution of the AI
stock knowledge across the retained regions for the most
recent period (2014–17). Compared with the distribution
of green technologies, the distribution of AI appears more
concentrated in a few ‘hotspots’. This result is not surpris-
ing, given that AI is more recent and AI patents are still
relatively few compared with those associated with other

technologies. However, this result calls for a deeper analysis
of the reasons for the emergence of these hot spots and
how they might or might not be related to green
technologies.

In addition to AI, two variables are crucial for testing
our arguments in section 2. The first is region r’s experi-
ence with green technologies to which AI can be applied.
As noted above, we proxy this experience by lagging our
focal dependent variable by one period, GreenTechcrt−1.
The fact that region r is already specialized in a focal
green technology c indicates, by definition, that the same
region has previously put in relatively more inventive effort
and obtained relatively more patented outcomes than in
other domains. In other words, GreenTechcrt−1 reveals
(when equal to or greater than 1) the presence of a com-
parative advantage of r in the inventive development of
c: an advantage that the region has arguably obtained hav-
ing relatively more focal capabilities and knowledge, and in
this sense being more experienced in technology c, than
non-specialized regions. Consistently with Hypothesis 3,
we argue that this kind of pre-existing experience in c
could give regions an advantage in understanding how to

Figure 1. Number of green-tech specializations (EIs) by region, 2014–17.
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apply AI and set it to work in its development. The second
variable of interest in examining the regional capacity to
specialize in a certain technology, c, is its relatedness to
the stock of knowledge of the focal region,
Relatednessrct−1. Drawing on the notion of technological/
cognitive proximity in economic geography (Boschma,
2005), substantial research efforts have been applied to
finding a relatedness measurement suited to this purpose
(e.g., Colombelli et al., 2014; Essletzbichler, 2015; Kogler
et al., 2013; Rigby, 2015). Among the different alterna-
tives, we refer to the relatedness specification by Santoalha
and Boschma (2021). In particular, we first examined
regional patent applications in technological fields using
pairwise comparison. This was in order to identify concur-
rent patenting that can reveal a proximity linkage between
each regional green technology c at time t, and each and
every one of those technologies (out of the remaining z)
in which it was specialized at time t – k. All the individual
proximity linkages to green technology c were then
grouped together through a density indicator for the
same technology, and an average density was finally calcu-
lated with respect to all the green technologies of region r

(for details, see Appendix A3 in the supplemental data
online).

In conclusion, we control for several specific factors
that may confound our focal relationship. In equation
(1), vector �Xrt−1 includes the gross value added
(GVA) per employee of regions as a proxy for their
level of economic development; and the regional stock
of patents at time t – 1, overall, as a proxy for generic
regional innovativeness, which naturally can affect
regional innovativeness in the green domain. As for
the crucial role of environmental regulations, the lack
of regional data on such regulations forced us to resort
to a country-specific indicator (the Environmental Policy
Stringency) that drastically reduced the number of obser-
vations and thus suggested we should implement it in a
robustness check (see Table B10 in Appendix B in the
supplemental data online). As a further robustness
check, in Appendix B online we follow Castellani
et al. (2022) and, by taking advantage of the regional
information on the polluting emissions of plants con-
tained in the European Pollution Release and Transfer
Registry (E-PRTR), we control for what can be

Figure 2. Artificial intelligence (AI) knowledge stock by region, 2014–17.
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considered the regional exposure to environmental policy
(see Table B11 in Appendix B online).

Table 1 provides the descriptive statistics of the vari-
ables used in the econometric analysis.

3.3. Econometric strategy
Regarding our econometric strategy, we estimate our base-
line model (equation 1) by relying on a three-way FEs
LPM. We prefer this approach to the estimation of a
more standard logit or probit model for three main
reasons. First, given the refined level of analysis (NUTS-
3 regions), a non-linear estimation strategy (such as logit
and probit) would have been more prone to an incidental
parameter problem (Greene, 2015). Second, non-linear
models are more computationally intensive because of
the need to maximize the maximum likelihood via compu-
ter power. Finally, the usual drawbacks of the LPM are not
crucial in the present paper. While the heteroskedasticity
of error terms can be easily accommodated by computing
robust standard errors (which we do; see the notes to tables
of results and the robustness check section), the fact that
the LPM does not bound the predicted probability in
the unit interval is unfortunately unavoidable. Neverthe-
less, our current interest in the estimation of the relation-
ship between AI and GreenTech, as opposed to the
prediction of GreenTech, makes the LPM an ideal esti-
mation strategy.8

An important point in estimating our econometric
model concerns the possibility that the effect of local AI
knowledge on GreenTech could span the regional bound-
aries and come to spill over the green-tech specialization
of spatially contiguous regions. In order to ascertain this
eventuality, we have built spatial weights for each period
in our data and implemented a standard Moran’s test for
spatial autocorrelation. Results show that we do not reject
the null hypothesis of i.i.d. errors for nearly all our time
periods (five of them, totalling 20 years). On this basis,
we proceed to discuss the results of the model we have pre-
sented in equation (1) and, to further control for the issue
at stake, we will run a robustness check that computes
standard errors robust to spatial correlation (see Table
B5 in Appendix B in the supplemental data online).

4. RESULTS

Table 2 presents the results of our empirical analysis start-
ing with the baseline, more conservative model in column
(a), followed by three models with the interaction terms

included separately in columns (b–d). The final model,
with all the interaction terms included simultaneously, is
presented in column (e), while an additional specification
including the triple interaction between AI, GreenTech
lagged and Relatedness is reported among the robustness
checks (see Table B8 in Appendix B in the supplemental
data online). For the purposes of interpretation of the
regression results, all continuous variables have been nor-
malized to a range between 0 and 1.

First, note that nearly all the controls used are signifi-
cant and have the expected sign. A larger stock of patents
in a region, denoting a higher degree of general innova-
tiveness for the region, positively correlates with the
region’s capacity to eco-innovate and specialize in specific
green technologies. The same capacity also appears to be
path dependent, as the lag of the dependent variable
GreenTech is also significant and positive. The develop-
ment of green technologies as place dependent is also con-
firmed. The regional propensity to specialize in a certain
environmental technology positively correlates with its
relatedness to those technologies the regions is already
specialized in, suggesting that the recombination of cogni-
tively proximate local knowledge is possibly the channel
through which this specialization occurs, supporting pre-
vious work on this issue (Montresor & Quatraro, 2020;
Santoalha & Boschma, 2021). The only exception to
this confirmed picture is the non-significant (although
positive) coefficient of regional GVA per employee,
which is nevertheless in line with the results of previous
works on green-tech specialization (Montresor & Qua-
traro, 2020; Santoalha & Boschma, 2021). Note that the
significance of the results does not change when all the
interaction terms are included simultaneously in the final
model in column I.

Coming to the core of our analysis, one of the most
interesting results in Table 2 is that, in model (a), AI
and GreenTech are significantly but negatively correlated,
thus contradicting Hypothesis 1. Given our theoretically
grounded expectation that AI ‘will possibly’ help the
inventive development of, and the regional capacity to
specialize in, green technologies (see section 2), at first
glance this result might seem to be counterintuitive and
call for deeper reflection. Certainly, at least part of the
explanation of this result could precisely rely on the pro-
spective and potential nature of the regional green-tech
impact that AI has been expected to have. Given the
still incipient stage of development at which (at least the
last generation of) AI stands and the early stages of the

Table 1. Descriptive statistics (n ¼ 654,810).
Variable Mean SD Minimum Maximum

GreenTech 0.05 0.21 0 1

AI stock 14.31 169.00 0 8003.57

Relatedness 0.12 0.05 0 0.50

Patent stock 1883.00 12,771.93 0 406,044.70

GVA per employee 45.11 14.71 3.06 316.39

Note: Number of regions: 1267 NUTS-3 regions; number of green technologies: 69; period of coverage: 1982–2017.
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lifecycle of (at least some of the) available environmental
technologies (Barbieri et al., 2020a), it could be the case
that AI is not helping the development of green technol-
ogies ‘now’, that is, in the temporal window that the avail-
able data allow us to observe. In turn, this possibility may
be explained by the fact that AI spurs regions to specialize
in technologies other than the green technologies that we
are examining, that is, technologies marked by a higher
degree of maturity and by ‘new and larger volumes of
data’, on which the application of AI, as noted above,
depends (Hall & Pesenti, 2017, p. 2).

Regarding the interaction terms, first, notice that the
interaction between relatedness and the lagged dependent
variable, GreenTechrct, is significantly positive in model (b).
In regions that have already acquired a revealed technologi-
cal advantage in a certain environmental domain, the role of
relatedness in keeping the relative specialization increases in
importance, as could be expected. Quite interestingly, hav-
ing been able to exploit the relatedness-based recombina-
tion of existing knowledge to enter the green-tech realm
makes regions more dependent on the ‘power’ of relatedness
to remain in this realm and keep the specialization.

The interaction between relatedness and our focal AI
regressor in model (c) is also significant, supporting
Hypothesis 2. Furthermore, its sign is positive and rep-
resents another extremely important result of our analy-
sis: the complexity of environmental technologies seems
to call for ‘special’ enabling technologies to complement
relatedness and to make it work better in favouring

recombinant EIs. AI appears to be another of these
relatedness-reinforcing technologies, differentiating it
from the relatedness-substituting role that has been
found with respect to the previous generation of KETs
(Montresor & Quatraro, 2020).

Coming to Hypothesis 3, the positive and significant
coefficient of the interaction term between the lagged
values of GreenTech and AI in model (d), fully confirms
this hypothesis. Regions with a pre-existing revealed com-
parative advantage in the focal green-tech do actually
benefit from the presence of AI in keeping that specializ-
ation over time. In other words, as expected, pre-existing
experience with environmental technologies might com-
pensate for their short-life effect from scratch and possibly
allow regions to develop that large set of information/data
that make AI function as an IMI. In brief, while an uncon-
ditional endowment of AI leads regions to prioritize other
technologies, circumventing green technologies, AI helps
regions that have already specialized in green technologies
keep their green-tech specialization over time.

All in all, apart fromHypothesis 1, Hypotheses 2 and 3
are confirmed in the relative models. Furthermore, note
that when we saturate the model and include all the pre-
vious three interaction terms (model e), the sign and sig-
nificance remain unaltered, thus increasing our degree of
confidence in the results discussed above.

In order to control for the robustness of previous
results, we have conducted a set of checks on several issues
that may affect our estimates: (1) the level of analysis

Table 2. GreenTech (dependent variable) and AI at the NUTS-3 level: linear probability model (LPM).
(a) (b) (c) (d) (e)

GreenTech (t – 1) 0.227*** 0.181*** 0.227*** 0.223*** 0.162***

[0.005] [0.018] [0.005] [0.005] [0.017]

AI stock (t – 1) −0.379** −0.384** −2.391*** −0.521*** −2.285***
[0.149] [0.152] [0.443] [0.167] [0.443]

Relatedness 0.091*** 0.088*** 0.092*** 0.090*** 0.088***

[0.008] [0.008] [0.008] [0.008] [0.008]

Patent stock (t – 1) 0.404*** 0.410*** 0.445*** 0.382*** 0.426***

[0.117] [0.119] [0.106] [0.113] [0.109]

GVA per employee (t – 1) 0.016 0.017 0.014 0.015 0.013

[0.025] [0.025] [0.025] [0.026] [0.026]

GreenTech(t – 1)*Relat. 0.166*** 0.213***

[0.058] [0.054]

AI(t – 1)*Relat. 9.837*** 8.594***

[2.054] [1.934]

GreenTech(t – 1)*AI(t – 1) 0.995*** 1.003***

[0.220] [0.221]

NUTS-3 FEs Yes Yes Yes Yes Yes

CPC FEs Yes Yes Yes Yes Yes

Period FEs Yes Yes Yes Yes Yes

N 654,810 654,810 654,810 654,810 654,810

R2 0.171 0.171 0.172 0.172 0.172

Note: The analysis covers 69 green CPC classes in 1267 NUTS-3 regions over nine four-year periods covering 1982–2017. The dependent variable takes the
value of 1 if a region specializes in a green technology in a given period, and 0 otherwise. Robust standard errors clustered at the NUTS-3 level are shown in
parentheses. *p<0.10, **p<0.05, ***p<0.01.
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(NUTS-2 instead of NUTS-3); (2) biases due to model
stringency; (3) robust standard errors for different cluster
definitions; (4) measurement error in the definition of
AI; (5) inclusion of the triple interaction of the focal
regressors; and (6) controlling for environmental regu-
lation and exposure to environmental policy. Discussion
and results on the analysis above is reported in Appendix
B in the supplemental data online.

In conclusion, we should underline that the correlations
identified are not only highly significant and interesting
due to their sign/direction but also quite appreciable in
terms of intensity. AI appears particularly relevant in low-
ering the capacity of regions to specialize in green technol-
ogies: all else being equal, an increase of 0.1 in AIrt (with
AIrt ranging between 0 and 1) leads to a nearly 3.8 percen-
tage point decrease in the probability of green specializ-
ation (specification a). The effect of AI is also effective in
reinforcing regions’ capacity to keep their green-tech
specialization. An increase of 0.1 in AIrt increases the prob-
ability of specializing in green technologies by nearly 5 per-
centage points for regions that have already specialized in
green-tech (specification d). Finally, the contribution of
AIrt to the probability of specializing in green technologies
at provincial (NUTS-3) level increases by 13 percentage
points when there is an interquartile increase in the value
of relatedness (from 0.17 to 0.3, in specification c), thus
confirming the interpretative framework of recombinant
innovations under which we have conducted our analysis.

5. CONCLUSIONS

The green transition and the digital transformation are two
of the most relevant and investigated patterns of develop-
ment that regions are currently experiencing and to which
policy makers are devoting substantial resources. While
continuous research has been dedicated to their respective
analysis, to the best of our knowledge, no previous work
has attempted to investigate, on a systematic and disaggre-
gated basis, the extent to which the two transitions can cross
over at the regional level by possibly reinforcing each other.

Attempting to fill this gap, in this paper, we have inves-
tigated the extent to which the regional endowment of AI,
as one of the main drivers of the recent digital transform-
ation, reveals a distribution that significantly correlates
with geographical regions in terms of green-tech specializ-
ation as one of the main drivers of their green transition.

With all the caveats of a patent-based analysis of
regional technologies (regarding which, see Acs et al.,
2002), our results provide an interesting reading of the
extent to which the two transitions can actually meet.
At regional level, the relationship between AI and green
technologies is not as straightforward as might be thought.
In fact, the frequently hypothesized role of AI in green
technology and future environmental sustainability is not
supported by our empirical analysis. Contrary to expec-
tations, the unconditional availability of AI in a region
generally favours non-green-tech sectors. The exception
is represented by regions that already display a green-
tech revealed technological advantage. Although we can

speculate on the reasons for this negative relationship,
for example, referring to the large volume of data necessary
to effectively use AI, doing so requires further research in
the future. In particular, future studies should focus on the
maturity of green technologies (Barbieri et al., 2020) since
in regions that are already ‘green’, AI seems to have a posi-
tive, not negative, effect on green specialization. For the
time being, however, we have arguments to conclude
that AI does not appear suitable for the regional green
(-tech) transition. Nevertheless, this study sheds light on
an important boundary condition on the negative relation-
ship depicted above: the digital (AI) transformation can
help regions that are already green(-tech) remain so,
thus pointing to a path-dependent process in the geo-
graphical agglomeration of technologies (green and digi-
tal), which may have important implications for the
development of sound territorial policies.

This conclusion is accompanied by an important pol-
icy implication that is particularly relevant at a moment
in which green and digital ‘deals’ are at the centre of
the policy debate. Policy package (e.g., mix) interven-
tions devised to search for the complementarity between
AI and green technologies should be wisely implemented
if positive geographical externalities are to be expected,
for example, by paying crucial attention to the green-
tech competencies and skills that are already present in
regions (Consoli et al., 2016; Vona et al., 2019). Indeed,
should they be missing, rather than serving as comp-
lements, the two patterns of transition could pose a cru-
cial trade-off to policymakers for the solution to which
they are required to act.

ACKNOWLEDGEMENTS

Previous versions of this paper were presented at the fol-
lowing conferences and seminar series: Italian Association
of Regional Sciences (AISRE) conference, GSSI
L’Aquila, Italy, 16–18 September 2019; 5th Geography
of Innovation conference, University of Stavanger, Nor-
way, 29–31 January 2020; Regional Innovation Policies
Conference 2019 on ‘Technological Change, Social Inno-
vation, and Regional Transformation’, University of Flor-
ence, Italy, 7–8 November 2019; SEEDS Annual
Workshop (virtual event), 18 December 2020; 18th Inter-
national Schumpeter Society (ISS) Conference, organized
by LUISS Rome (virtual), 8–10 July 2021; Western
Regional Science Association 60th Annual Meeting (vir-
tual), 22–25 February 2021; 61st Annual Meeting of Ita-
lian Economists Society (Società Italiana degli Economisti
SIE) (virtual), 20–23 October 2020; and AISRE 2020
Conference on ‘Regions In-Between Unexpected Threats
and Opportunities’ (virtual), 2–4 September 2020. We are
grateful to the discussants and participants at these events
for useful comments. We also thank the anonymous
reviewers and the editor for their helpful suggestions.
Francesco Rentocchini is currently an employee of the
European Commission. The views expressed are purely
his personal views and may not in any circumstances be

340 Gloria Cicerone et al.

REGIONAL STUDIES



regarded as stating an official position of the European
Commission. The usual caveats apply.

DISCLOSURE STATEMENT

No potential conflict of interest was reported by the
authors.

NOTES

1. See https://ec.europa.eu/commission/presscorner/
detail/en/ip_20_940/.
2. AI broadly refers to technologies that exhibit human-
like intelligence (Furman & Seamans, 2019), such as
machine learning, autonomous robotics and vehicles, com-
puter vision, language processing, AI-enabled traffic lights,
and neural networks.While interest in the economics of AI
has been growing in recent years, the history of AI technol-
ogy dates back at least to the 1960s. The current season of
‘AI Spring’ should not forget the numerous ‘winters’ AI
technological development has experienced (Floridi, 2020;
Klein & Frana, 2021; Russell & Bohannon, 2015). This is
an important aspect to consider when defining the temporal
window along which to investigate its effects. To this end,
section A2 in the supplemental data online explores how
different AI technological waves could have influenced
green-tech specialization and provides additional robust-
ness checks to our results, which are largely confirmed.
3. These technologies include (European Commission,
2012): industrial biotechnologies, nanotechnologies,
micro- and nanoelectronics, photonics, advanced
materials, and advanced manufacturing technologies.
4. Following Barbieri et al. (2020a), we have converted
IPC classes into CPC classes from ENV-TECH using
the concordance table provided by the EPO and the US
Patent and Trademark Office (USPTO) (see https://
www.cooperativepatentclassification.org/).
5. The time periods are as follows: 1982–85, 1986–89,
1990–93, 1994–97, 1998–2001, 2002–05, 2006–09,
2010–13 and 2014–17.
6. Depreciation rates of 10% and 15% yield identical
results.
7. For the list of CPCs and keyword searches, see WIPO
(2019, methodological appx).
8. Following Boschma et al. (2013), we also run a
dynamic panel data model estimation strategy via general-
ized method of moments (GMM) implementation à la
Blundell and Bond (1998). Our results are fully supported
in this robustness check and are available from the authors
upon request. We thank one of the reviewers for this
suggestion.
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