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Abstract—Robustness in remote sensing image captioning is
crucial for real-world applications. However, most of the research
focuses on improving the performance of single captioning algo-
rithms, either by introducing novel feature processing units or
metatasks that indirectly improve the captioning performance.
Despite indisputable improvements in performance, we argue that
relying on the output of a single model can be critical, espe-
cially when data scarcity limits the generalization capability of
the trained algorithms. Focusing on the advantages of ensembles
for improving robustness, we propose different ways to select or
generate a single most coherent caption from a set of predictions
made by different captioning algorithms. The disjunction between
the two phases of prediction and selection/generation provides high
flexibility for inserting different captioning algorithms, each with
its peculiarities and strengths. In this context, based on neural
natural language processing tools, our approach can be considered
as an additional fusion block that enables higher robustness with a
contained complexity burden.

Index Terms—Bidirectional encoder representations from
transformers (BERT), contrastive language-image pretraining
(CLIP), ensemble fusion, generative pretrained transformer
(GPT), image captioning, natural language processing (NLP).

I. INTRODUCTION

R EMOTE sensing imagery is one of the biggest sources of
data about our planet. Every day, thousands of terabytes

of visual data are sent to Earth from various satellites orbiting
the globe. The information within these images can fuel many
applications, but the rate at which it must be analyzed makes
it unfeasible to rely on manual approaches. Thus, automatic
techniques able to discover, explain, and analyze information
hidden in remote sensing scenes are becoming increasingly
important in the remote sensing landscape. Different trends
within the remote sensing community are pushing toward this
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goal. Some studies focus solely on the visual aspect, tackling
tasks such as scene classification [1], [2], semantic segmentation
[3], [4], and object detection [5], among others.

Following the recent interest in visual-language models, an-
other line of work tries to connect visual and language modali-
ties, enhancing the interaction between the user and the machine
that analyzes the image through natural language. This joint
interaction between visual information and natural language
empowers different applications. Some widely studied applica-
tions of vision-language models in remote sensing are presented
here. Text-based image retrieval [6], [7] deals with retrieving
the most coherent image satisfying a textual description. A
second example is text-based image generation [8], [9], which
focuses on the generation of a remote sensing image given a
purely textual description of it. Visual question-answering [10]
studies the possibility of conferring more interactive abilities to
a vision-language model, enabling it to understand and answer
user queries about the image contents. A last example is image
captioning [11], which shares architectural similarities with
visual question answering, but whose goal is to generate a single
descriptive sentence of the image contents rather than answering
questions interactively.

Image captioning has been tackled extensively in the com-
puter vision community, focusing on natural images. The
majority of approaches employ the encoder–decoder structure,
coupled with the attention mechanism. For example, He et al.
[12] exploit the transformer architecture focusing on the mod-
eling of the visual scene by decomposing image regions into
parent, neighbor, and child. Then, different subattention mod-
ules are used to model the interactions between the different
spatial and semantic regions of the image, improving the feature
extraction ability of the network, and in turn, the captioning
performance. Yang et al. [13] employ a joint attribute predic-
tion submodule and semantic rewards to guide the network
in outputting more informed and detailed descriptions. Further
works such as [14] explore vision-language pretraining as a first
step toward image captioning. In this paradigm, the network is
first pretrained on a large corpus of data using self-supervised
objectives, and then, finetuned using labeled data, achieving
stronger performance compared to networks trained solely on
the labeled data.

In our work, we focus on remote sensing image captioning
(RSIC), which is attracting attention due to its several implica-
tions and real-life use cases. An algorithm that can automatically
describe a remotely sensed (RS) picture can empower tasks such
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as image retrieval [6] and decrease the expertise required to
analyze an RS image by translating the information within into
a more accessible and general format. In the remote sensing
community, the task of image captioning lags behind traditional
natural image captioning [15], mainly because of the scarcity
of large-scale datasets and the intrinsic complexity of remote
sensing scenes. To date, the main sources of data for remote
sensing image captioning are three datasets, namely Sidney-
Captions [16], UCM-Captions [16], and RSICD [17]. Due to
the complexity and cost of manually labeling RS images for
captioning, remote sensing image captioning datasets are orders
of magnitude smaller than the natural image counterparts [18],
[19], forcing remote sensing researchers to adopt all kinds of
tricks to improve the performance of their algorithms. However,
we argue that a major concern is the generalization capabil-
ity. It is fair to assume that training an algorithm on a small
amount of samples can cause errors and unwanted behaviors
when applied on slightly out-of-distribution samples. This is
further exacerbated in image captioning, where data points lie
in hyperdimensional spaces and other problems exist, such as
error accumulation during inference. Most of the literature, here
not restricting the analysis to remote sensing, has been focused
on improving captioning performance by introducing several
variations to the vanilla pipeline, proposed first in the remote
sensing field by Vinyals et al. [15]. Examples are the Bahdanau
attention mechanism [20], introduced for text translation, and
then, adopted for captioning, the extraction of multilevel fea-
tures from images that enable more fine-grained cross-modal
interaction between text and image features [21], the insertion
of metatasks during training to aid the learning of better image
and text representations [22], to the more recent transformer ar-
chitecture [23], which relies solely on the attention mechanism,
exhibiting promising performance in remote sensing image cap-
tioning [24]. Despite the success of these methods in enhancing
remote sensing image captioning performance, we argue that
there are no guarantees that such improvements will hold in
more realistic scenarios. This limits the confidence in building
applications based on these algorithms, given that the reliability
of these methods is still unclear. Ensembles have been studied
extensively in the literature to solve challenging classification
problems and have been shown to boost both accuracy and
robustness [25]. In [26], for example, an ensemble is adopted to
boost the accuracy of change detection maps. Another example
is in [27], where Melgani and Bazi apply ensembles to boost
multiclass classification accuracy. Despite the success of the
application of ensembles in classification problems, this line
of research received no attention in remote sensing image cap-
tioning literature. Katpally and Bansal [28] apply the ensemble
in a natural image captioning scenario, combining the output
probabilities of each captioner, and sampling the next word
upon the resulting aggregated probability. The authors show in
the paper that this approach led to a slight boost in captioning
performance; however, we argue that approaching an ensemble
for image captioning in such a way poses significant constraints.
First, every captioner must be trained using the same dictionary
of words, limiting the exploration capability and the inventive-
ness of different captioners trained with different vocabularies.

Second, the majority of the captioners must be highly targeted
to the application domain, at the risk of severely impacting the
performance. In this article, we propose a different paradigm.
The idea is to leverage the ensemble concept a posteriori, when
all the models have already created their output description. In
this way, there are no predefined constraints, leaving the free-
dom to adopt different captioning architectures, adopt different
caption generation schemes, and use different vocabularies. We
propose three ways to leverage the ensemble of captioners, each
with strengths and drawbacks, providing a thorough analysis of
each of them on different scenarios. To summarize, the main
contributions of this article are the following.

1) We propose three strategies to employ a postgeneration
ensemble of different architectures in the context of image
captioning.

2) We validate the ensemble on four datasets, three remote
sensing image captioning datasets, and a UAV image
captioning dataset.

3) We validate the robustness and performance of the ensem-
ble in different use cases, simulating different operative
conditions.

The rest of this article is organized as follows. Section II
provides a brief introduction to image captioning, followed by
an in-depth explanation of our three proposed ensemble fusion
strategies. Section III briefly describes the datasets employed in
this study. Section IV is dedicated to the experimental validation
of the proposed methodologies, encompassing both quantitative
and qualitative results, along with discussions on the behavior of
the ensemble techniques under different scenarios. In Section V,
we elaborate on some general insights and implications drawn
from the study. Finally, Section VI concludes this article.

II. METHODOLOGY

The complete pipeline of our proposed method is represented
in Fig. 1. The two main stages are caption generation stage
and postgeneration fusion stage. The caption generation stage
employs a set of different algorithms, each of them producing
a caption for the input image. The postgeneration fusion stage
employs an ensemble module that ingests the set of generated
captions (and optionally the image) as input and produces a
single output best caption. The following subsections explore in
detail our choices for both stages.

A. Caption Generation Stage

As stated in [25], the most important requirement for an
ensemble is that each participant is different compared to the
others. In the context of our proposal and considering that we are
applying the ensemble a posteriori, differences can derive from
training strategies, training sets, architectures, or vocabularies.
For the sake of this study, and without lack of generalization,
we generate an ensemble of M = 7 different captioners by
employing a combination of architectural diversity and training
set diversity. Specifically, we built four captioners following
[15], which defines a captioner architecture as composed of two
blocks: encoder and decoder. We use different combinations, as
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Fig. 1. Conceptual pipeline of our proposed captioner ensemble fusion approach. From an image, several captions are generated using different captioners. A
postgeneration ensemble module takes this set of captions and optionally the image, outputting a single best caption.

TABLE I
ALGORITHMS INCLUDED IN OUR ENSEMBLE PROPOSAL

depicted in Table I, and further included three more caption-
ers from the literature, namely MLAT [29], Blip-2 [30], and
CapDec [31]. It is worth noting that CapDec and Blip-2 are not
specifically tailored to remote sensing scenes, but are trained on
natural images.We start by formulating the RS image captioning
task considering a set of N images I = [I1, . . . , IN ], where Ii
is the ith image in the set. Let Ci = [ci,j ]

Ki
j=1 be the caption set

associated with the ith image, where ci,j is the jth caption of
the set and Ki is the number of captions associated with the ith
image. Each caption can be seen as a set of L ordered tokens
ci,j = [tk]

L
k=1, where L is the length of the caption in tokens.

Image captioning aims to accurately estimate the conditional
probability of the subsequent token tt, given both the image and
the sequence of preceding tokens, depicted as follows:

p(tt|t1:t−1, I). (1)

In all the models employed in our ensemble, this conditional
probability is estimated using neural network architectures, even
though this is not inherently a restriction within the scope of
our proposed framework. The image I acts as a conditioning

variable and its salient features are extracted using the en-
coder. For this purpose, we implemented two distinct encoding
strategies: a convolutional neural network (CNN) and a vision
transformer (ViT). Simultaneously, the conditioning based on
previous words was accomplished through autoregressive net-
works. Our experimentation spanned two variations, namely the
gated recurrent unit (GRU) and a transformer decoder (TD).

While a comprehensive review of the inner mechanisms of
our chosen encoders and decoders remains vital, the subsequent
sections focus on the nuances of the postprocessing block. For
detailed descriptions of how image captioning is achieved from
a mathematical viewpoint, we suggest some informative papers
such as [15] and [24] and surveys such as [33].

B. Postgeneration Fusion Stage

Within this block, we have envisioned two primary postpro-
cessing methodologies: selection and generation. Broadly, se-
lection proves advantageous in scenarios marked by pronounced
uncertainty among captioning models, where a significant pro-
portion of generated captions might lack relevance to the actual
image content. Conversely, generation becomes particularly per-
tinent when there is substantial semantic concordance among
captioners, but discrepancies or inaccuracies in the generated
captions could compromise both their performance and legibil-
ity.

In detail, we introduce two selective paradigms: the
naïve selection and the contrastive language-image pretraining
(CLIP)-coherence selection. Complementarily, we also propose
a generative approach grounded in the variational autoencoder
(VaE) framework.

1) Naïve Selection: Naïve selection, depicted in Fig. 2, is a
text-only strategy, in which the selection process relies solely on
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Fig. 2. Pipeline of the naïve selection strategy. Each caption generated in the
first stage is projected into a semantic latent space using a BERT pretrained
model. The average of the embeddings is used as a reference, and the caption
whose embedding is closest to it is selected.

the generated set of captions. This strategy leverages a distilled
bidirectional encoder representations from transformers (BERT
[34]) model, particularly suited to extract semantic vector repre-
sentations of sentences. Devlin et al. [34] showed that a massive
pretraining allows the BERT model to extract representations
of the input sentence that can benefit a wide suite of tasks
such as question-answering and language inference. We adopted
the distilled version from [35] to decrease the computational
requirements of the entire pipeline. The distilled model has
been finetuned with a contrastive learning paradigm in which the
model is asked to predict which sentence in a batch is more likely
to be paired with the input sentence. In this way, the network
sharpens its knowledge about semantically related and unrelated
sentences, reflecting this knowledge in its latent space, where
representations are more compatible for related sentences and
less compatible otherwise. The naïve selection strategy proceeds
as follows.

1) Embedding extraction: Each caption is encoded in a vector
embedding using the sentence transformer model [36],
resulting in a set of vector embeddings {e1, e2, . . . , eN}.

2) Aggregation: The average of all the vector embeddings v̄
is computed as v̄ = 1

N

∑N
i=1 ei. This average v̄ serves as

the prototype vector encapsulating the average semantic
content of the set of captions.

3) Selection: The embedding falling closest to the prototype
is identified, and the related caption is selected as the final
result.

Within the landscape of ensemble techniques, this approach
shares similarities to the majority voting principle, albeit recon-
textualized for caption generation.

2) CLIP-Coherence Selection: CLIP-coherence Selection
employs the CLIP model [37], a multimodal framework that

Fig. 3. Pipeline of the CLIP-coherence selection strategy. Using a pretrained
CLIP model, an image-text coherence score is derived for each caption generated
in the first stage. The caption showing the higher coherence with the given image
is selected as the final output.

integrates both textual and visual data. The pipeline is repre-
sented in Fig. 3. The CLIP model consists of two branches: the
textual branch incorporates a transformer encoder [23] and the
visual branch utilizes a ViT [38]. Both branches generate vector
representations for images and text, respectively. A contrastive
learning paradigm is employed to learn a common feature
space where consistent image–text pairs are projected in similar
regions, while inconsistent pairs are projected far apart. This
paradigm facilitates the encapsulation of intrinsic similarities
between text and image data within a unified semantic space.
Remarkably, the CLIP model has demonstrated robust capabil-
ities in zero-shot classification and retrieval tasks in the natural
scenario, further extending in the remote sensing field [39]. To
evaluate the efficacy of the CLIP-Coherence Selection strategy,
we conducted experiments using two versions of the CLIP
model. The first version is the general-purpose CLIP model [40]
as released by OpenAI, trained on a comprehensive corpus of
web-scraped text–image pairs. The second [41] is a specialized
variant that has undergone fine tuning for remote sensing ap-
plications. This version has displayed enhanced performance



RICCI et al.: NLP-BASED FUSION APPROACH TO ROBUST IMAGE CAPTIONING 11813

metrics in remote sensing-related tasks, such as remote sensing
image retrieval and remote sensing zero-shot classification. The
CLIP-coherence selection procedure is structured as follows.

1) Embedding extraction: The image vector embedding and
the vector embedding of each caption are extracted using
respectively the vision branch and the textual branch of
the CLIP model.

2) Similarity computation: A list of scores is generated by
computing the similarity between the image vector em-
bedding and each of the caption vector embedding.

3) Caption selection: The caption that registers the highest
compatibility score is selected.

From our perspective, the CLIP-coherence selection strategy
facilitates the use of an ensemble of specialized captioners. Each
member of this ensemble can excel in a distinct subset of scenes,
eliminating the need for a universal captioner across the entire
spectrum of possible scenes. Notably, this procedure does not
involve any averaging. Consequently, even in scenarios in which
only a single caption exhibits coherence with the image, this
strategy can, in principle, be able to isolate it, irrespective of the
noise provided by the remaining candidates.

3) VaE Fusion Strategy: The VaE fusion is a text-only strat-
egy based on the VaE framework. The pipeline is represented in
Fig. 4. The idea is to condense the information of the set of gen-
erated captions and distill a single output caption. We decided
to adopt the VaE framework instead of a plain autoencoder for
its ability to learn a smooth latent-to-output distribution through
noisy sampling in the latent space. It has been demonstrated that
textual interpolation in the VaE latent space yields smoother and
more plausible outputs [42] than standard autoencoders. Due
to the inherent data restriction, instead of training a VaE from
scratch, we decided to finetune a pretrained VaE-based language
model called OPTIMUS [43] .

OPTIMUS is composed of two subnetworks: BERT [34] and
GPT-2 [44]. As mentioned in the naïve strategy, BERT acts
like an encoder, taking a sentence and producing its semantic
embedding. In this approach, the embedding is further projected
to a VaE latent space. During training, noisy sampling is used
to obtain a noisy latent vector, that eventually conditions the
decoder (GPT-2) to reconstruct the input sentence. OPTIMUS
has been pretrained on roughly 2 M sentences from English
Wikipedia. To make it more targeted to modeling sentences, the
authors used preprocessing to isolate sentences of a maximum
length of 64 (tokens). Starting from the pretrained weights,
we produce four fine-tuned OPTIMUS models, one for each
dataset, using captions in the respective trainsets. The VaE fusion
strategy, as illustrated in Fig. 4, entails the following steps.

1) Projection: Each caption is mapped to its latent space
representation (embedding) using the encoder (BERT),
resulting in a set of embeddings {e1, e2, . . . , eN}.

2) Aggregation: The average of all the embeddings is com-
puted as v̄ = 1

N

∑N
i=1 ei

3) Decoding: Conditioned on v̄, a new caption is decoded
using the decoder (GPT-2).

The idea is to leverage the modeling capability of the vari-
ational latent space to retain a condensed representation of the
input captions, thus discarding noise from possible errors or

Fig. 4. Pipeline of the VaE fusion strategy. The embeddings derived using
BERT are further projected in a smooth VaE latent space. There, the average
representation is computed, and used to condition a GPT-2-based decoder to
distill the final caption.

misspellings. Decoding from such a representation can be seen
as extracting the condensed semantic meaning of the input set
of captions. We formulate this strategy as a way to deal with
possible syntactic errors in the input captions. Indeed, such
a scenario cannot be tackled using selective strategies, which
are restricted to the already generated candidates. Details of
architecture and training are provided in Section V.

III. DATASET

The testbed of this work is composed of four datasets. Three
have been widely adopted in remote sensing image caption-
ing literature: UCM-Captions, SIDNEY-Captions, and RSICD
dataset. In addition, we decided to include another dataset for
UAV imagery image captioning, called UAV-Captions [45], to
further increase the diversity of the testing set. Examples of
images and captions can be found in Fig. 5. The next subsections
explore in detail each dataset.
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Fig. 5. Examples from (a) RSICD, (b) Sidney-Captions, (c) UCM-Captions,
and (d) UAV-Captions datasets.

A. UCM-Captions Dataset

The UCM-Captions dataset includes 2100 aerial images, each
of which has a size of 256 × 256 pixels with a spatial resolution
of one foot. This dataset is defined based on the UC Merced
Land Use dataset, in which each image is associated with one of
21 land-use classes. Each image in the UCM-Captions dataset
was annotated with five captions, resulting in 10 500 captions.
Although five captions per image are considered, captions be-
longing to the same classes are very similar in both datasets. The
Sydney-Captions and the UCM-Captions datasets were initially
built for scene classification problems with a few images.

B. SIDNEY-Captions Dataset

The Sydney-Captions dataset includes 613 images, each of
which has a size of 500 × 500 pixels with a spatial resolution
of 0.5 m. This dataset was built based on the Sydney scene
classification dataset, which includes RS images annotated with
one of the seven land-use classes. Each image in the Sydney-
Captions dataset was annotated by the five captions, providing
3 065 captions in total.

C. RSICD Dataset

This dataset includes 10 921 images of size 224 × 224 with
varying spatial resolutions. Each image is described with five
captions. For some images, caption replication has been used to
artificially augment the number of captions associated with the
image up to reach the predefined number of five captions per
image. The total number of captions in the dataset is 54 605.

D. UAV-Captions Dataset

The UAV-Captions dataset was acquired near the city of
Civezzano, Italy, at different off-nadir angles on October 17,
2012. The data acquisition was performed using a Canon EOS
550D camera, characterized by a CMOS APS-C sensor with
18 megapixels. The images are characterized by three channels
(RGB) with a spatial resolution of approximately 2 cm. The
obtained images are of size 5184 × 3456 pixels with 8-bit
radiometric resolution. This dataset is composed of ten images
that are subdivided into training (6), validation, and test. All
the images are subdivided into a nonoverlapping grid of equal
tiles of size 256 × 256 pixels. More in detail, 1746, 294, and
882 tiles are extracted from training, validation, and test images,
respectively. Three different captions are manually produced for
each tile.

IV. EXPERIMENTAL VALIDATION

In our experimental setup, all custom-trained captioners uni-
formly employed the same scheme and hyperparameters for
both training and inference. Each captioner utilized the tokenizer
from BERT [34] with an embedding dimension of d = 256. For
training, we used a batch size of b = 8, a learning rate of α =
1× 10−4, and a dropout probability of p = 0.15. We decided
to freeze the parameters of the encoders, while keep updating
the parameters of the decoders. To mitigate potential overfitting
due to the limited dataset size, we implemented early stopping,
monitoring the validation BLEU-4 metric. The AdamW op-
timizer was employed with a weight decay of λ = 1× 10−7.
All models have been developed using Pytorch, and trained on
an NVIDIA Geforce RTX 3090 GPU. Notably, the VaE was
finetuned for e = 10 epochs, adhering to the configuration for
the base model’s pretraining used by the original authors [43] .

To provide a comprehensive assessment of the proposed
ensemble across diverse contexts, we delineated three evalu-
ation scenarios. These scenarios are crafted to unveil impor-
tant insights into the ensemble’s performance under different
conditions. The performance is reported using several common
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TABLE II
UCM-CAPTIONS: STANDARD EVALUATION BLEU1-4 (B1-4), ROUGE (R),

METEOR (M), AND CIDER (C)

TABLE III
UAV-CAPTIONS: STANDARD EVALUATION BLEU1-4 (B1-4), ROUGE (R),

METEOR (M), AND CIDER (C)

TABLE IV
SIDNEY-CAPTIONS: STANDARD EVALUATION BLEU1-4 (B1-4), ROUGE (R),

METEOR (M), AND CIDER (C)

metrics for image captioning: BLEU1-4 (B1-4) [46], Rouge
(R) [47], Meteor (M) [48], and Cider (C) [49].

In tables, a color encoding scheme is employed for ease of
visualization. Specifically, the colors are utilized as follows.

1) LightCyan : Algorithm trained on UCM-Captions.

2) LightRed : Algorithm trained on RSICD-Captions.

3) LightGreen : Algorithm trained on SIDNEY-Captions.

4) LightYellow : Algorithm trained on UAV-Captions.

TABLE V
RSICD-CAPTIONS: STANDARD EVALUATION BLEU1-4 (B1-4), ROUGE (R),

METEOR (M), AND CIDER (C)

TABLE VI
RSICD-CAPTIONS: GENERALIZATION EVALUATION BLEU1-4 (B1-4), ROUGE

(R), METEOR (M), AND CIDER (C)

A. Scenario 1: Standard Evaluation

In this experiment, we exclusively use custom captioners that
are trained and evaluated on the same dataset. The ensemble thus
comprises our four custom-trained captioners in conjunction
with three pre-existing captioners from the literature, for a total
of N = 7 captioners. The performance is reported for each of
the four datasets. Such an approach is the canonical scenario fre-
quently observed in remote sensing image captioning literature.
In each table, the first seven rows represent the performance of
the single captioners, while the last four results of the ensemble
using the various strategies .

The ensemble’s performance is summarized in Tables II–V.
Most custom-built captioners achieve satisfactory results, with
the notable exceptions of Blip-2 and CapDec, which lag be-
hind across all evaluation metrics. It is important to highlight
that these models have not been specifically trained on remote
sensing data, making their lower scores somewhat expected. A
critical issue arises when considering the limitations of existing
evaluation metrics. For example, if the ground-truth caption
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TABLE VII
SIDNEY-CAPTIONS: GENERALIZATION EVALUATION BLEU1-4 (B1-4), ROUGE

(R), METEOR (M), CIDER (C)

TABLE VIII
UAV-CAPTIONS: GENERALIZATION EVALUATION BLEU1-4 (B1-4), ROUGE (R),

METEOR (M), AND CIDER (C)

states “This is a part of a city with houses arranged in lines,” and
the prediction is “That is a view of a residential area with many
houses arranged neatly,” conventional metrics will assign a low
score, despite the high degree of semantic similarity between the
two captions. Despite these challenges, the ensemble method
performs consistently well, often aligning with or exceeding
the best results from individual captioners (see Table III). The
naïve approach, despite its simplicity, proves to be a competitive
baseline, occasionally surpassing the performance of single,
specialized models. Moreover, the VaE framework demonstrates
its utility by effectively capturing the essence of the set of
captions and distilling this information into a single, informative

Fig. 6. Qualitative results on UCM-Captions, scenario 1.

output. Unexpectedly, the CLIP selection pipeline appears to
hinder performance, particularly the non finetuned variant. Two
factors may contribute to this outcome. First, the CLIP model is
not particularly specialized for remote sensing image captioning,
and second, it often selects captions produced by Blip-2, which
are generally coherent, but arranged using a different word
distribution, and consequently, receive lower evaluation scores.
These observations indicate a need to reconsider the evaluation
metrics used in image captioning. Current metrics, which pri-
oritize syntax and exact word matching over semantic integrity,
may not fully capture the quality of a generated caption. This
observation is confirmed in the qualitative results depicted in
Figs. 6 and 7. It can be noticed how the ensemble, and especially
the selective strategies can often select a very coherent caption.

B. Scenario 2: Generalization Evaluation

This scenario is designed to simulate a more real-world oper-
ational environment characterized by a higher diversity between
training and testing data. Specifically, each dataset, in turn,
undergoes prediction using captioners that have been trained on
every other dataset, excluding the dataset in focus. This design
aims to test the generalization capabilities of the algorithms
when exposed to unfamiliar data, and the possible benefits of
using the ensemble in such a scenario.

In Tables VI–IX, a marked decline in the performance of all
captioners is observed across every metric and dataset. This is
especially true for models trained on the UAV-Captions dataset,
which consistently shows the lowest performance metrics, as
highlighted by the yellow lines in the tables. Just by looking
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Fig. 7. Qualitative results on RSICD-Captions, scenario 1.

TABLE IX
UCM-CAPTIONS: GENERALIZATION EVALUATION BLEU1-4 (B1-4), ROUGE (R),

METEOR (M), CIDER (C)

at the metrics, we can deduce that UCM, RSICD, and SYD-
NEY datasets share certain features or characteristics that make
them more closely aligned, while UAV-Captions is substantially
different. Among ensemble approaches, the VaE fusion stands
out as the most effective method. The unique strength of this
approach lies in the capability of the VaE to act as a semantic
“translator.” The VaE is fine-tuned on the captions of the target

Fig. 8. Qualitative results on UCM-Captions, scenario 2.

dataset, allowing it to adapt its decoder to the specific vocabulary.
This adaption facilitates a sort of semantic distillation through
the latent space, thereby “translating” the global meaning of the
set of captions into the language style of the target dataset. This
improves the relevance of the captions generated, which in turn
results in a notable improvement across all performance metrics.
The VaE is thus able to focus on the semantic aspects of input
captions while overlooking syntactic variations or variations in
the choice of words. Unlike other selective ensemble methods,
the VaE inherently performs this semantic translation, making it
a useful tool for bridging the semantic gap across diverse training
datasets. Qualitative results, depicted in Figs. 8 and 9, highlight a
difficult scenario for the ensemble, in which most of the captions
are unrelated and not coherent with the image. By far the most
robust alternative in this case is the CLIP-selection strategy,
particularly CLIP-rsicdv2, which provides coherent captions for
all the images. Its general, nonspecialized counterpart, CLIP-
vitlarge14, is tricked in the first image on the UCM-Captions
dataset but provides coherent captions for all the other cases.
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Fig. 9. Qualitative results on RSICD-Captions, scenario 2.

C. Scenario 3: Robustness Evaluation

In this setup, we add noise to the caption set to mimic
real-world issues like errors or misspellings. We want to test
the resilience of the ensemble to such kind of errors in the input
set. To simulate the errors, we decided to operate considering
different levels of noise. We represent these levels as a percent-
age of corrupted words over the total word count in the input set
of captions. The errors have been simulated using word deletion,
word replacing, and character replacing. We decided to test seven
noise levels, from 0% to 30% in steps of 5%. Mathematically,
the corruption level is represented as

Corruption Level =
Number of Corrupted Words

Total Word Count
× 100. (2)

Errors are simulated using word deletion, word substitution, and
character substitution. We evaluate the ensemble’s performance
across seven discrete noise levels, ranging from 0% to 30%,
incremented in steps of 5%.

Results are provided in Tables X– XIII. A key observation is
the different performance of selective and generative strategies
under varying levels of noise corruption. Specifically, under
low noise conditions, selective strategies exhibit superior per-
formance, while under conditions of elevated noise, the VaE

TABLE X
SIDNEY-CAPTIONS: ROBUSTNESS EVALUATION RESULTS EXPRESSED IN

TERMS OF BLEU-4

TABLE XI
RSICD-CAPTIONS: ROBUSTNESS EVALUATION RESULTS EXPRESSED IN TERMS

OF BLEU-4

TABLE XII
UCM-CAPTIONS: ROBUSTNESS EVALUATION RESULTS EXPRESSED IN TERMS

OF BLEU-4

TABLE XIII
UAV-CAPTIONS: ROBUSTNESS EVALUATION RESULTS EXPRESSED IN TERMS OF

BLEU-4

generative approach demonstrates a less rapid decrease in per-
formance, highlighting its ability to leverage the global meaning
to correct errors. This trend is not observed for the RSICD-
Captions dataset. We hypothesize that the bigger size of this
dataset increases the variability of captions and scenes, thereby
making it more difficult for the VaE to adapt to its distribution.
In contrast, smaller datasets present a lower range of variance
and complexity, which may render the VaE more effective in
adapting to the dataset’s inherent distribution. Importantly, our
experiments validate the efficacy of ensemble strategies in miti-
gating the impact of syntactic errors. This suggests that ensemble
methods can serve as a robust countermeasure against various
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TABLE XIV
COMPARATIVE ANALYSIS OF CAPTIONING STRATEGIES

Fig. 10. Qualitative results on UCM-Captions, scenario 3. Noise level: 20%.

forms of linguistic noise, thereby enhancing overall resilience.
Qualitative results are depicted in Figs. 10 and 11.

V. DISCUSSION

After collecting and analyzing all the results for the three pro-
posed configurations, we summarize our findings and insights
on the concept of ensemble in image captioning. As the results
demonstrate, an ensemble of captioners can be used to increase
the generalization robustness of the output to various situations,
scenes, vocabulary, and other factors of variation. Upon the

Fig. 11. Qualitative results on RSICD-Captions, scenario 3. Noise level: 20%.

proposed techniques, the main strengths and drawbacks are
reported in Table XIV.

The naïve approach, despite its simplicity, proves to be a
very strong baseline in this context. The main problem of the
naïve approach is the lack of prior filtering on the set of input
captions. This problem affects also the VaE framework, which
is further affected by the nondeterministic behavior that adds a
source of potential errors during caption distillation. The more
promising approach in our opinion is the CLIP selection, which
provides an effective way of dealing with situations of high
variability in the input set. We speculate that the release of
more targeted CLIP models for the remote sensing scenario can
benefit the selection ability, and thus, improve the robustness of
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TABLE XV
SINGLE MODEL CAPTION GENERATION TIME (SECONDS PER IMAGE)

TABLE XVI
ENSEMBLE FUSTION STRATEGY ADDITIONAL TIME (SECONDS PER IMAGE),

TOTAL TIME, AND % OVER TOTAL TIME

the CLIP selection ensemble strategy. Furthermore, we analyzed
the additional computation time required to run our ensemble.
This mainly depends on the number of models included in
the ensemble, with little additional computation time required
by the selection/fusion methods. Table XV reports the time
used by each captioner to produce a caption for an image, and
Table XVI reports the additional computational time for the
fusion strategy, along with the total time. As can be seen, running
the ensemble requires the generation of a caption by each model
plus the added time for the fusion strategy. This leads to a severe
increase in computational time, with the slowest method being
VaE with 4.045 seconds per image.

VI. CONCLUSION

In this study, we have systematically investigated the gen-
eration and application of an ensemble approach to increase
the robustness of image captioning. Specifically, the strategies
employed were a posteriori, acting after individual captions have
been generated. Two strategies, naïve and CLIP-selection, focus
on choosing the most coherent caption from a generated set,
which we refer to as selective captioning. The other strategy,
based on the VaE framework synthesizes a new caption based
on the entire set of generated captions, which we refer to as
generative captioning. We conducted a comprehensive analy-
sis on three well-established remote sensing image captioning
datasets in addition to a novel dataset, termed UAV-Captions.
Three scenarios have been designed to test different aspects of
the captioning process, which allowed us to expose and discuss
the strengths and weaknesses of each implemented method. Our
findings demonstrate that our ensemble-based approaches offer
a scalable and robust pipeline for integrating various caption-
ing algorithms. This leads to more reliable and contextually
accurate captions. More specifically, our results suggest that the
CLIP coherence selection is less sensible to noisy and unrelated
captions, and thus, more suitable in situations in which there
is a high variation in the generated caption set. The approach

based on the VaE has shown to be robust to noise, but at low
noise levels, it is outperformed by the selective strategies. In
addition, we show that the use of multiple captioners incurs a
significant computational overhead with respect to single-model
alternatives, making the use of the ensemble suitable only when
time is not a constraint. Avenues for future research in this area
include the integration of CLIP models specifically tailored for
remote sensing imagery [39], as well as the implementation of
automated filtering mechanisms to prune less coherent caption
candidates before ensemble application. The integration of tai-
lored CLIP models can reduce the leaking of irrelevant captions
as happened in Fig. 10 for the CLIP-vitlarge14. This model is
trained on natural images, and we can see that from the colors
in the image, the model is tricked into describing the image as a
“woman in white dress.” The more the CLIP model is tailored
to the RS scenario, the less the selection of irrelevant captions.
On the other hand, a mechanism to filter the captions before
naïve and VaE solution can benefit both strategies, by removing
a portion of irrelevant captions that could contaminate the se-
lection and distillation with unrelated information. In summary,
the ensemble strategies examined in this article hold promise for
significantly enhancing the reliability and contextual relevance
of image captions in remote sensing applications.
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