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and Theo Gevers Member, IEEE

Abstract

Interest point detection is an important research area in the field of image processing and computer

vision. In particular, image retrieval and object categorization heavily rely on interest point detection from

which local image descriptors are computed for image matching. In general, interest points are based on

luminance, and color has been largely ignored. However, the use of color increases the distinctiveness

of interest points. The use of color may therefore provide selective search reducing the total number of

interest points used for image matching.

This paper proposes color interest points for sparse image representation. To reduce the sensitivity

to varying imaging conditions, light invariant interest points are introduced. Color statistics based on

occurrence probability lead to color boosted points which are obtained through a saliency-based feature

selection. Further, a PCA-based scale selection method is proposed which gives a robust scale estimation

per interest point.

From large scale experiments, it is shown that the proposed color interest point detector has a

higher repeatability than a luminance-based one. Further, in the context of image retrieval, a reduced

and predictable number of color features shows an increase in performance compared to state-of-the-art

interest points. Finally, in the context of object recognition, for the Pascal VOC 2007 challenge, our
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method gives comparable performance to state-of-the-art methods using only a small fraction of the

features, reducing the computing time considerably.

Index Terms

ELI-COL, ARS-IIU, SMR-REP, color invariance, local features, object categorization, image retrieval.

I. INTRODUCTION

Interest point detection is an important research area in the field of image processing and computer

vision. In particular, image retrieval and object categorization rely heavily on interest point detection

from which local image descriptors are computed for image and object matching [1]. The majority of

interest point extraction algorithms are purely intensity based [2], [3], [4]. These methods ignore saliency

information contained in the color channels. However, it was shown that the distinctiveness of color-based

interest points is larger, and therefore color is important when matching images [5]. Furthermore, color

plays an important role in the pre-attentive stage in which features are detected [6], [7] as it is one of

the elementary stimulus features [8].

In general, the current trend in object recognition is toward increasing the number of points [9],

applying several detectors or combining them [10], [11], or making the interest point distribution as

dense as possible [12]. While such a dense sampling approach provides accurate object recognition, they

basically shift the task of discarding the non-discriminative points to the classifier. With the explosive

growth of image and video datasets, clustering and offline training of features becomes less feasible [13].

By reducing the number of features and working with a predictable number of sparse features, larger

image datasets can be processed in less time. Additionally, a stable number of features leads to a more

predictable workload for such tasks.

Our aim is to exploit state-of-the-art object classification and to focus on the extraction of distinctive

and robust interest points. In fact, the goal is to reduce the number of interest points extracted while

still obtaining state-of-the-art image retrieval or object recognition results. Recent work aims to find

distinctive features e.g. by performing an evaluation of all features within the dataset or per image class

and choosing the most frequent ones [14]. This approach requires an additional calculation step with an

inherent demand on memory and processing time dependent on the number of features. Another option

is to use color to increase the distinctiveness of interest points [15], [16]. This alternative may therefore
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provide selective search for robust features reducing the total number of interest points used for image

retrieval.

Therefore, in this paper, we propose color interest points to obtain a sparse image representation. To

reduce the sensitivity to imaging conditions, light invariant interest points are proposed. To obtain light

invariant points, the quasi-invariant derivatives of the HSI color space are used. For color boosted points,

the aim is to exploit color statistics derived from the occurrence probability of colors. In this way, color

boosted points are obtained through saliency-based feature selection. Further, a PCA-based scale selection

method is proposed which gives robust scale estimation per interest point. The use of color information

allows to extract repeatable and scale-invariant interest points. Feature selection takes place at the very

first step of the feature extraction and is carried out independently per feature.

Van de Weijer et al. [15], [16] did preliminary work on incorporating color distinctiveness into the

design of interest point detectors. Color derivatives were taken to form the basis of a color saliency

boosting function to equal the information content and saliency of a given color occurrence. However,

our aim is to select interest points based on color discriminative and invariant properties derived from

local neighborhoods. Therefore, our focus is on color models that have useful perceptual, saliency and

invariant properties to achieve a reduction in the number of interest points. We propose a method of

selecting a scale associated with the computed interest points, while maintaining the properties of the

color space used, and to steer the characteristic scale by the saliency of the surrounded structure. Opposed

to other color interest points used so far [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], the goal

here is to enhance an adapted multi-dimensional color Harris corner detector in conjunction with an

independent scale selection maintaining the main properties of the chosen color space.

The proposed method includes the following contributions to image retrieval and object categorization:

1. A scale decision strategy is proposed for the multi-channel Harris detector to provide a scale invariant,

color interest point detector. So far, the most stable corner detectors are either luminance only or are not

scale invariant.

2. The incorporation of perceptual color spaces in local, scale invariant features. The advantages of

these color spaces are directly passed on to the representation of the features. Therefore, the instability

of luminance based local features due to changing shadowing, reflections, lighting effects and color

temperature are implicitly addressed. Invariance to lighting changes and the incorporation of a visual

saliency function is achieved by a color transformation and can be passed directly to an image retrieval

and object categorization framework.

3. Selection of distinctive features is typically done in the matching stage when the classification system
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builds its model [27]. With the proposed method it is possible to perform this choice in the first step of

the image matching pipeline making all subsequent operations faster. Moreover, this step is conducted

independently for every feature and image (e.g. without considering the global feature space) and is

based on the local visual input only (e.g. no spatial inter-relation, ground truth or occurrence frequency

of features is used).

4. Runtime of every step of the image matching process decreases with a more sparse representation

of local features. Offline procedures like constructing global dictionaries are practically infeasible when

the number of features in the training data is extensive [13]. The runtime of online procedures like the

quantization of features also depends on the number of features. With the proposed method, the amount

of data to be processed is reduced significantly.

5. Higher dimensional data can be processed. The proposed representation of multi-channel information

is not limited to a single color space.

The paper is structured as follows. In the next section, related work is discussed. Section III presents the

framework for color interest point and scale detection. Experimental results are presented in Section IV.

II. RELATED WORK

In Section II-A, the main steps of image retrieval and object categorization are outlined, see Figure 1.

A detailed comparison of interest points is presented in Section II-B.

Intensity Based or
Color Based 

Interest Points

Distribution Based
Spatial Frequency
Differential Based

Feature Extraction Descriptors Clustering Matching

Related Work Hierarchical
Partitional Clustering

Similarity Search
Supervised Learning
Unsuperv. Learning

vs. Dense Sampling

Fig. 1. The main steps of image retrieval and object categorization. (1) Feature extraction is carried out with either global or

local features. (2) Descriptors characterize the image information steered by the feature extraction. (3) Clustering is used for

signature generation. (4) Matching summarizes the classification of images.

A. Common Pipeline for Image Retrieval and Object Categorization

Feature extraction is carried out with either global or local features. In general, global features lack

robustness against occlusions and cluttering (e.g. [28], [29]) and provide a fast and efficient way of image

representation. Local features are either intensity-based or color-based interest points. Recently, dense
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sampling of local features is used as it provides good performance especially for the bags of words

approach and robust learning systems [10], [12].

Descriptors represent the local image information around the interest points. They can be categorized

into three classes: They describe the distribution of certain local properties of the image (e.g. SIFT),

spatial frequency (e.g. wavelets) or other differentials (e.g. local jets) [30]. For every feature extracted,

a local descriptor is computed. A disadvantage is that the runtime increases with their number. Efficient

ways to calculate these descriptors exist, e.g. for features with overlapping areas of support, previously

calculated results can be used.

Clustering for signature generation, feature generalization or vocabulary estimation assigns the de-

scriptiors into a subset of categories. There are hierarchical and partitional approaches to clustering. Due

to the excessive memory and runtime requirements of hierarchical clustering [31], partitional clustering,

such as the k-means, is the method of choice in creating feature signatures.

Matching summarizes the classification of images. Image descriptors are compared with previously

learnt and stored models. This is computed by a similarity search or by building a model based on

supervised or unsupervised learning techniques. Classification approaches need feature selection to discard

irrelevant and redundant information [32], [33], [34]. It is shown that a powerful matching step can

successfully discard irrelevant information and better performance is gained [12]. Training and clustering

are the most time consuming steps in state-of-the-art recognition frameworks. Clustering of a global

dictionary takes several days for current benchmark image databases, becoming less feasible for online

databases resulting in several billion of features [13]. Therefore, one of our goals is a feature selection

using color saliency within the first stage of this scheme. The use of color provides selective search

reducing the total number of interest points used for image retrieval. The aim is to use color interest

points to obtain sparse image representations. In the next section, an overview is given of the successful

approaches to detect interest points.

B. Interest Points

The Harris corner detector [2], which is based on the Moravec corner detector [35], is the first corner

detector providing a rotation invariant and isotropic corner measure that is robust to noise and scale

changes up to a factor of
√

2.

An extension of the Harris corner detector, the scale invariant Harris Laplacian (also referred to as

Harris Laplace, shape-adapted Harris, or multi-scale Harris), is proposed by Mikolajczyk and Schmid [36].

The main idea is to carry out corner and blob detection on different scales. Wherever there is a stable
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corner and a stable blob at the same scale, a characteristic scale is found. The approach is extended

to the Hessian Laplacian detector which computes points that maximize the determinant of the Hessian

matrix and uses a similar scale selection.

Scale invariant blob detectors are based on the scale-space theory introduced by Witkin [37] and

extended by Lindeberg [38]. The precision of the scale estimation using either Laplacian of Gaussian

(LoG), Difference of Gaussian (DoG) or Determinant of Hessian (DoH) [39] methods depends on the

choice of the scale sampling rate [40]. Maximally stable extremum regions (MSER) [41] are obtained

by a watershed-like algorithm. Connected regions at a certain thresholded range are selected if they

remain stable over a set of thresholds. The algorithm is very efficient both in runtime, performance and

detection rate and is extended to color in [24]. Following [42], MSER is a robust detector to geometric

transformations providing only a few but large blobs. Contrary, for blur and lighting effects it performs

significantly worse [30]. Further, it is highly dependent on the contrast of the input image. Unnikrishnan

et al. [23] extract scale and illumination invariant blobs through color by an adapted illumination model

and a modification of the LoG. This is efficiently approximated by multiplying the LoG functions’

output per channel but is of limited robustness. Additionally, it follows the original SIFT’s key-points:

adding robustness to light temperature change, but maintaining similar performance for geometrical

transformations.

The most successful color features are based on the color Harris detector introduced by Montesinos

et al. [21] and successfully used for example in [19]. In image retrieval scenarios, they apply the fixed

scale detector on gradually downsized images and use all the detections extracted. This leads to multiple

ambiguous features, and the inability to match images at different scales. Rugna et al. [22] suggest a

method to extract scale-invariant interest points based on color information for texture classification. A

color Gaussian pyramid is used [43]. Then, for every pyramid level and color channel, the original Harris

energy is calculated. Features are selected based on their persistence through the pyramid. However, a

scale selection based on the local structure is not obtained by this method. The method is independent

of the color space used. Faille [18] proposes a shadow, shading, illumination color and specularities

invariant interest point localization which models the color information as Lambertian and specular

reflection. Derivatives of the invariants are incorporated in the Harris second Moment matrix. It uses

fixed scales for matching of images under varying lighting. Weijer et al. [15] extend the color Harris

approach to arbitrary color spaces and suggest two approaches: A photometric quasi-invariant HSI

color space providing a corner detector with better noise stability characteristics compared to existing

photometric invariants and a color boosting hypothesis for defining salient colors. These two approaches
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provide a robust corner estimation under varying lighting and shadowing effects for the quasi-invariant

color space and a saliency measure [25]. Our contribution is to extend this approach by incorporating a

scale selection strategy to detect color interest points.

In conclusion, the Harris-Laplacian is taken as the basis of our color interest point as the Hessian-

Laplacian gives similar but additional locations resulting in better results due to the number (better

probability of matching) and the quality of locations (better distinctiveness). MSER is less stable under

varying lighting conditions and contrast, and is sensitive to parameter settings. Blob detectors depend on

geometric transformations [30].

III. COLOR INTEREST POINT DETECTION

In this section, the multi-channel Harris corner detector and a scale selection method are presented.

These may be used with any color space. First, different color spaces are discussed. Then, color interest

point detectors are presented and a scale selection method is proposed.

A. Color Spaces

Photometric effects such as shadowing, shading or specular effects can be modeled using an appropriate

reflection model [18], [44], [45]. The quasi invariant color space proposed in [15] is derived from an

orthonormal transformation from RGB. Compared to other Opponent Color Space (OCS) definitions

(e.g. [46], [47]), this transformation uses a rotated chromaticity axis and a different normalization [48].

It provides specular variance and is defined by

OCS =


o1

o2

o3

 =


R−G√

2

R+G−2B√
6

R+G+B√
3

 . (1)

As this color space is often motivated by early visual processing in primates, the opponent colors

blue/yellow and red/green are the end points of the o1 and o2 axis of the color space. As primates do

not see combinations of these colors (e.g. a “blueish yellow” or a “greenish red”) it is argued that the

co-occurrence of these opponent colors attracts the most attention. A polar transformation on o1 and o2

of the OCS leads to the HSI color space

HSI =


φ1

φ2

φ3

 =


tan−1

(
o1
o2

)
√
o2

1 + o2
2

o3

 . (2)
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The gradient magnitude of the hue component φ1 is invariant both to shading and to specular effects, as

it is perpendicular both to the shadow-shading direction and to the specular direction. The main drawback

is that it is unstable for large or small φ2, i.e. saturation (grey-axis). To address this shortcoming, a stable

photometric invariant h is obtained by the derivation in the φ1 direction while scaling it by the saturation

component φ2 [15],

|h′| = φ2φ
′
1. (3)

Contrary to this approach, [16] proposed to examine the saliency of color information and its gradient

magnitudes. Colors that have different occurrence probabilities p(v) will also have different information

content ι(v) of their descriptor ι(v) = −log(p(v)). The idea behind color boosting is to boost rare colors

for having a higher saliency. Traditionally, the gradients of color vectors with equal vector norms have

equal impact on the saliency function. The goal is to find a color boosting function g so that color vectors

having equal information content have equal impact on the saliency function. The saliency s at a position

x is then given by

sx = Hσ(g(fx), g(fy)), (4)

where Hσ is any saliency function at scale σ and fx and fy are the gradient magnitudes in the x and y

direction of a color vector at location x. In the following, the estimation of g(fx) is described in detail.

g(fy) is obtained in a similar way.

The saliency boosting function g : R3 → R3 is a transformation such that

p(f1,x) = p(f2,x)↔ ‖g(f1,x)‖ = ‖g(f2,x)‖, (5)

where f1,x and f2,x denote gradient magnitudes in the x direction of two arbitrary color vectors. The

transformation is obtained by deriving a function describing the surface of the 3 dimensional color

distribution which can be approximated by an ellipsoid. The third coordinate of the color space is already

aligned with the luminance which forms the longest axis of the ellipsoid. The other two axes are rotated

so that they are aligned with the other two axes of the ellipsoid [15].

This can then be approximated by ellipsoids satisfying the following:

(αk1
x)2 + (βk2

x)2 + (γk3
x)2 = R2, (6)

where vector k and its elements k[1..3]
x is the transformation of the color derivative followed by the rotation

to align the axes with those of the ellipsoid in the corresponding color space. To find the transformation
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in Eq. (5), the approximated ellipsoid is scaled to a sphere so that vectors of equal saliency lead to

vectors of equal length. The function g is therefore defined by

g(fx) = Mk(fx), (7)

where the matrix M consists of the elements M11 = α, M22 = β and M33 = γ, assuming α2+β2+γ2 =

1.

B. Color-based Interest Points

The second moment matrix M is a structure tensor describing the gradient distribution of a single

channel image I of a local neighborhood at position x:

M(x, σI , σD) =σ2
DG(σI)⊗

 L2
x(σD) LxLy(σD)

LxLy(σD) L2
y(σD)


 (x), (8)

where ⊗ denotes the convolution and G(σI) the Gaussian kernel of size σI , Lx(σD) = I ⊗ Gx(σD)

the convolution with the first derivative of the Gaussian kernel of scale σD in the x direction, and

Ly(σD) = I ⊗ Gy(σD) in the y direction. L2
x, L2

y and LxLy are then found by multiplying these

elements [16]. More generally, the second moment matrix can be computed by a transformation in the

RGB space [15]. The first step is to determine the gradients of each component of the RGB color system.

The gradients are then transformed into the desired color system. By multiplication and summation of

the transformed gradients, all components of the second moment matrix are computed. In symbolic form,

an arbitrary color space C is used with its n components [c1, . . . , cn]T . The elements for M are then

calculated more generally as follows

L2
x(σD) =

n∑
i=1

c2
i,x(σD), (9)

LxLy(σD) =

n∑
i=1

ci,x(σD)ci,y(σD),

L2
y(σD) =

n∑
i=1

c2
i,y(σD),

where ci,x and ci,y denote the components of the transformed color channel gradients at scale σD, and

where the subscript x and y indicates the direction of the gradient. As shown in several experiments [36],

[4], the relation 3σD = σI performs best. Based on the eigenvalues of M , the Harris energy C is found

as a corner measurement by
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C(x, σI , σD) = det(M(x, σI , σD))− κ · trace2(M(x, σI , σD)). (10)

The constant κ indicates the slope of the zero line, i.e. the border between corner and edge.

This leads to stable locations that are robust to noise, scale changes up to
√

2, translation and rotation

under arbitrary color spaces. For many computer vision tasks, it is crucial to provide scale invariant

features. Therefore, in the next section, a principled approach for saliency based estimation of the

characteristic scale in arbitrary color spaces for local features is proposed.

C. Color-based Scale Detection

Using the elements of the structure tensor for higher dimensional data in Eq. 8, it is straightforward

to extend the Color Harris to the Harris-Laplacian [25] by applying Harris Corners and the Laplacian of

Gaussian (LoG) on different scales. The characteristic scales are then found when both functions reach

their maximum. This method is referred to as RGB Color Harris. Contrary to this extension, we propose

a way to incorporate a global saliency measure in the process of scale selection.

The proposed scale selection is carried out on a single-channel saliency image Î . It is related to the

concept of Eigenimages [49] with the main difference that there is no training set of image templates,

but the color channel information itself serves as the template for the color distribution. Let an input

image IC in a color space C consist of IC = {f1, .., fm} color vectors where every fi consists of n

color components fi = [c1, .., cn] which are normalized and have a mean of zero. The eigenvectors of the

covariance matrix Q of IC are ei and the corresponding eigenvalues λi. Since n � m, n eigenvectors

can be efficiently estimated using single value decomposition [50]. The eigenvectors are in descending

order with respect to their corresponding eigenvalues λi. Î = [f̂1, .., f̂m] is represented by the scalar

product of the eigenvector with the highest eigenvalue e1 and the color vectors fi,

f̂i = fie1. (11)

The LoG gives a maximum in the center of a Gaussian blob. From the LoG’s scale, the size of the

blob can be estimated. Therefore it is used to find the characteristic scale of a local structure [51]. To

be more robust to noise, we take the following approach. At position x of scale σ, Λx,σ is defined by

Λx,σ =

[(
∂2Î

∂x2
+
∂2Î

∂y2

)
⊗GσD

⊗ ΓσD

]
(x) (12)
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where ΓσD
is the circularly symmetric raised cosine kernel, which is defined for each location (xe, ye)

as

ΓσD
=

1 + (cos( π
σD

√
x2
e + y2

e)

3
. (13)

A convolution with this kernel gives smoother borders than the Gaussian kernel G for scale decision

and leads to detection of larger structure [52]. For computational efficiency, Λ can be approximated by

the sum of the independently computed values L2
x and L2

y of Î:

Λx,σD
=
{[
σ2
D|L2

x(x, σD) + L2
y(x, σD)|

]
⊗ ΓσD

}
(x). (14)

It is known that corner locations shift when the scale changes – the smaller the scale change from one

iteration to the next, the more precise the location is estimated. As the Harris detector is robust to scale

changes up to a factor t =
√

2, this factor is the standard used in various applications [39], [53]. The scale

space of the Harris function is obtained by calculating the Harris energy under varying σ. The number

of different scales examined is of importance for the processing time. Each step must be calculated on

its own (but independently and therefore possibly in parallel) and the processing time increases with the

size of the kernels.

Using scale levels lS = 1, 2, . . . with a factor t from 1.2 to
√

2, the Harris energy is calculated at

scales tsσ. A potential characteristic scale of a possible region is obtained when both the Harris Energy

and the Laplacian of Gaussian are at their extremes:

∇Λx,σD
= ∇CH,x,σI ,σD

= 0. (15)

With this non-maxima suppression, the locations with their corresponding scales are found. However,

there may be multiple candidates of scale sizes per location. All the candidate scales are taken into

account. The size of the largest structure detected by Λx,σ is then approximated. Having the chosen

constants σ and t, the functions Êx give the location of highest local maximum of CH,x,σI ,σD
and Λ̂x

the largest scale of local maxima of Λx,σD
. Therefore, Êx and 3targ max(Λ̂x)σD define all candidates for

interest points and the corresponding region size. The multi-channel Harris energy CH is the saliency

property which can be used to select interest points.

D. Light Invariant Points

To extract invariant points from an arbitrary color image, the input image is transformed to the

illumination invariant image IC = {f1, .., fm} with fi = [φ1, φ2]. The fully illumination variant part
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of the image in HSI , φ3, is discarded. For c1,[x|y], the stable photometric invariants h[x,y] derived in

Eq. 3 are estimated. c2,[x|y] are the gradient magnitudes of φ2 in the spatial direction of [x|y]. The structure

tensor C(x, σI , σD) is built under increasing scales σD and σi with a constant factor t = [1.2,
√

2]. Scale

selection is carried out on all three color components xi = [φ1, φ2, φ3], from which the saliency image

Î is built.

E. Color Boosted Points

Color boosted points are extracted in the OCS color space IC = {f1, .., fm} with fi = [o1, o2, o3].

The saliency boosting function is estimated based on the whole set of training images. For experiments

without training images (e.g. the repeatability experiments in Section IV-A), the results on the Corel

dataset are used (α = 0.85, β = 0.524, γ = 0.065) [16]. The values and a discussion about the impact of

change of the parameters per dataset is given in [16]. The saliency boosting function g(fi) is estimated

for every location, providing an image where rare colors provide higher gradient magnitudes compared

to more common colors. The subsequent operations are equal to the extraction of light invariant points.

F. Discussion

To illustrate the different interest point detectors, examples are shown in Figure 2. Parameters are equal

to the ones in the experiments. As the baseline, Harris Laplacian is extracted with the suggested threshold

on C of 500, the proposed approaches give at most 400 interest points per image. The first column gives

three images from the VOC 2007 dataset. The other columns give the Harris Laplacian, light invariant

points and color boosted points. Interest point locations and scales are indicated by the white circles.

Generally, it can be derived that the luminance-based Harris Laplacian detects many background features

that are solely detected due to shadows and shading. Intensity-based features are very sensitive to the

smallest changes in the lighting conditions and thus less valuable for visual recognition and matching.

The first row of Figure 2 shows that the two proposed approaches lead to very similar results. For

light invariant points, shadows and specular reflections are disregarded. For color boosted points, patterns

containing very common colors are disregarded. Both are able to reduce the number of non-robust features

effectively.

In the presence of heavier shadowing effects in the second row of Figure 2, the color boosted points

(h) are less robust and introduce small, more ambiguous features compared to the light invariant points

(g). Harris Laplacian interest points (f) are located all over the shadows in the background. The third row

of Figure 2) shows the ability of the color points to reduce the features caused by specular effects: the
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(a) VOC 2007 nr. 395 (b) Harris Laplacian (c) light invariant points (d) color boosted points

(e) VOC 2007 nr. 337 (f) Harris Laplacian (g) light invariant points (h) color boosted points

(i) VOC 2007 nr. 134 (j) Harris Laplacian (k) light invariant points (l) color boosted points

Fig. 2. Three visual examples of the VOC 2007 dataset (row 1-3). The original images are found in the first column, luminance

based Harris Laplacian in the second, light invariant points in the third, and color boosted points in the fourth. White circles

indicate the location and the scale of interest points, parameters are chosen equal to the ones used in the experiments with 500

as the suggested threshold for Harris Laplacian and a maximum of 400 interest points for the proposed approaches.

color reflections on the car (i) are chosen by Harris Laplacian (j), but disregarded by the light invariant

points (k), leading to a reduced number, but more stable features. The color boosted points (l) focus on

salient colors, and provide therefore few features on colors of the reflection.

IV. EXPERIMENTS

The stability of the proposed color interest points is tested by carrying out repeatability experiments

on natural scenes in Section IV-A. For the image retrieval experiment in Section IV-B, we test whether

fewer but more informative interest points will increase the retrieval precision for K-nearest neighbor

(k-nn) classifiers. Finally, in the context of object recognition, the color interest points are tested on
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Image  Retrieval
Section 4.2
ALOI, 3 challenges, 
1000 classes, 32000 images

SIFT knn

SIFT kmeans Signatures SVM

Object Categorization
CVPR 09 benchmark 
Section 4.3
VOC 2007, 20 classes, 
9963 images

Feature Extraction Descriptors Clustering Matching

Intensity Based or
Color Based 

Interest Points

Repeatability
Section 4.1
18 challenges,
165 images

nn

Fig. 3. The main stages of image matching and the correspondent stages of the experiments.

international object categorization benchmarks1 [54].

In Figure 3, the steps of the experiments are shown. We evaluate the interest points in the feature

extraction by using a (geometric) nearest neighbor matching (nn) for the repeatability experiments, a

simple k-nn matching for image retrieval and a more robust state-of-the-art classification scheme for the

object categorization benchmark.

Throughout the experiments, if we consider both of the proposed approaches, we refer to them as color

points. For evaluating the impact of perceptual color spaces, we use the proposed scale selection in RGB

and refer to it as RGB points. Further, we use RGB Color Harris with luminance-based Laplacian scale

selection denoted by RGB Color Harris. It is a straightforward extension of [21]. As the state-of-the-art

reference, we use the Harris Laplacian and its color variations. All experiments are carried out with the

best performing parameters σD = 1, l = 10, t =
√

2 in [42] (defined in Section II). In case we choose a

subset of the provided points, we rank the points by their Harris energy (according to eq. 10).

A. Repeatability

Mikolajczyk and Schmid [42] provide a way to test the quality of interest points: they measure

the repeatability of interest points under different challenges2. We use the 18 challenges with color

1http://www.featurespace.org
2http://lear.inrialpes.fr/people/mikolajczyk/Database
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Fig. 4. “Graffiti” test set used in the repeatability experiment challenging viewpoint variation.
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Fig. 5. The mean repeatability rate of the 18 repeatability

challenges per number of points.
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Fig. 6. The mean repeatability rate of the 5 datasets

challenging lighting changes (cars, nuts, movi, fruits, toy).

information. An example set with challenging viewpoint changes is shown in Figure 4. The repeatability

rate is defined as the ratio between the number of actual corresponding interest points and the total

number of interest points that occur in the area common to both images. Feature detectors tend to have

higher repeatability rates when they produce a richer description.

In Figure 5, the averaged results of the experiments are shown. We carry out the repeatability challenges

on a varying number of features. It is observed that for all approaches, 1000 interest points per image

are enough to reach more than 90% of the maximum repeatability rate. The experiment is carried out

for up to 6000 interest points per image, when on average every pixel is selected by at least 10 features.

We denote this as a dense distribution of interest points.

For the Harris Laplacian, the literature suggests a fixed threshold on the Harris energy (in the figures

denoted as suggested parameters). This leads to a variable number of points for the images of the dataset

due to their contrast. 1000 color points reach Harris Laplacian performance with the suggested parameters.

This results in an average number of 2688 points in the experiment where the number of points varies

from a minimum of 763 to a maximum of 9191 per image with a standard deviation of 2536 (we will

denote these properties by “2688 [763,9191] ± 2536” in the following). Comparing light invariant points

with Harris Laplacian, 100 light invariant points are enough to outperform the state-of-the-art.
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Figure 6 shows the mean repeatability over the five datasets with varying lighting (cars, nuts, movi,

fruits, toy). Increasing the number of Harris Laplacian points does not improve the repeatability against

light changes significantly. In contrast, light invariant points remain more stable for all chosen numbers

of points. Generally, color boosted points prove to be less repeatable than the HSI points. The reason

is that the saliency function is sensitive to luminance changes.

In conclusion, the use of color information allows for extracting repeatable and scale invariant interest

points. Further, the number of interest point can be reduced without loss of performance.

B. Image Retrieval

Fig. 7. Example images from the ALOI database.

This experiment evaluates the impact of different color spaces in image retrieval scenarios with varying

illumination direction and intensity. The Amsterdam Library of Object Images (ALOI)3 provides images

of 1000 objects under supervised, predefined conditions recorded against a (dark) uniform background.

Example images are shown in Figure 7.

The following experiment is carried out with 7000 images as the ground truth set and 1000 query

images. The interest point approaches evaluated provide the locations and scales for the subsequent

calculation of SIFT descriptors [40]. For matching, the similarity between two images is determined by

using the 30 nearest SIFT descriptors between the two images. These 30 smallest distances are ranked

in an increasing order. The final score is found by weighted sum of these distances, where the weight is

the inverse rank of the descriptor. We measure the mean average precision (MAP) for the first 30 query

results. Note that the only difference between the evaluated approaches is in the stage of interest point

extraction.

The maximum number of N interest points implies that the N interest points with the largest Harris

energies are extracted. If fewer than N interest points are detected for an image, then all of them are

3http://staff.science.uva.nl/∼aloi/
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Fig. 8. Mean average precision (MAP) under varying maximum number of features for changing illumination direction on the

ALOI database.
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suggested parameters of Harris Laplacian for changing

illumination direction on the ALOI database.
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Fig. 10. Best performing color points compared to sug-

gested parameters of Harris Laplacian for object rotation

on the ALOI database.

used. First, all extractable interest points (up to 22117 maxima of the Harris energy per image) are used

and then N is decreased (see Figure 8). Every approach has its best performing maximum number of

interest points. Overcoming many problems of illumination changes, the color points remain more stable

on the test images and thereby outperform all other approaches with a maximum number of 200 color

points per image. Harris Laplacian reaches the best performance with a maximum of 500 points, which
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(a) ALOI 225 (b) ALOI 245 (c) ALOI 584

Fig. 11. Sparse color points retrieve object 225 (a) perfectly with rank 8-13 going to object 245 (b). Dense points perform

worse shifting object 584 (c) to rank 2-8.

approximately coincides with the suggested parameters of a fixed threshold providing 381 [12,8873] ±

393 Harris Laplacian points. The precision-recall graph showing the averages over 1000 queries for the

best performing parameters of the color points and the suggested parameters of the Harris Laplacian

(max. of 200 color points, 381 [12,8873] ± 393 Harris Laplacian points) is given in Figure 9.

This argument also holds for geometrical transformations of the objects: For each of the 1000 ALOI

objects, 9 images are taken rotating the object 60 degrees in both directions. From 5 to 30 degree and

355 to 330 degree rotation, the steps are taken in 5 degree increments. Up to 60 degree and 300 degrees,

respectively, the steps are carried out in 10 degree increments. This results in a database of 18000 images

(see Figure 10).

The ALOI provides predefined changes in illumination color. The best performing parameters are

evaluated on the dataset of 18000 images. The changes of color temperature are not severe enough to

change locations of the detectors significantly. All approaches perform equally well with precision and

recall of more than 0.99. Hence, no plot is shown.

Figure 11 shows one specific example of decrease in performance with an increasing number of interest

points. Object 225 is shown in Figure 11(a): it is retrieved within the first 7 ranks being correct for 200

light invariant points. The next candidate on rank 8 is object 245 (Figure11(b)) for this set of parameters.

This is not surprising as it contains similar texture. With this very few interest points, object 225 does

not appear in ranks 1–7 for querying any of the other 999 objects. This means that the description is

robust and distinct. Regarding all the interest points available, object 225 appears in 43 other queries in

the top ranks, worsening the overall results significantly. Querying for object 225 itself, it still ranks one

correct candidate at the first rank, having the following 7 from object 584 (Figure 11(c)). It seems that

the only distinct features, the spikes at the border of object 225 and on the head of object 584 remain.

The other features become more ambiguous, the more points we consider.

The difference in the image retrieval results is not only significant because of the images of colorful
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Fig. 12. Annotated sample images from the VOC 2007 dataset.

objects, our point is also emphasized by the use of a simple classification by the nearest neighbor. A

more stable matching approach would gain and possibly compensate for retrieval performance, but the

difference in the quality of the data would no longer be so obvious. Additionally, the approach has a

runtime of O(n2), a reduction of the number of points changes the runtime of each query significantly.

In conclusion, the proposed color interest point detector has high repeatability and a reduced number

of color features show no loss in performance.

C. Object Categorization

We now evaluate the color point detectors on the PASCAL VOC 2007 dataset4 [55] in the context

of object categorization [54]. This dataset consists of 9963 images, 20 classes of objects are annotated.

The number of objects in one image is not fixed. The whole dataset contains 12608 objects. Twenty

classes of objects (aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse,

motorbike, person, sheep, sofa, train, and tvmonitor) are annotated with ground truth. Example images

are shown in Figure 12.

The evaluated descriptors are clustered into 4000 clusters using the k-means algorithm. The image

representation is obtained by a histogram of cluster occurrences. This is a 4000 bin histogram where bins

correspond to clusters. Each bin contains the number of descriptors in the image that fall into the cluster

corresponding to that bin. The Euclidean distance is used for quantization. For training, χ2 distance and

the generalized RBF kernel are used. Classification is performed using SVM kernel-fusion [27]5. The

performance is measured using the average precision (AP) per class or mean average precision (MAP)

for all classes.

For the evaluation of detectors only, the standard SIFT is used. For descriptor evaluation only, the

Harris Laplacian is used as a detector. This builds an independent evaluation of features with the best

performing classification framework. 33 different approaches are evaluated.

4http://www.pascal-network.org/challenges/VOC/voc2007/
5http://www.featurespace.org/
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The best performing approaches are denoted as follows.

Light invariant [400 | 800] SIFT uses the [400 | 800] most salient features and standard SIFT as a

baseline description.

Dense [de1p | de2 | hap | hep] [30 | 192]c denotes the approach with either dense sampling combined

with Hessian Laplacian and Harris Laplacian, dense sampling, Harris Laplacian, or Hessian Laplacian

as the feature detection. The description is given either with 30 or 192 dimensional color descriptor of

segmentation maps based on gradient, color and region shapes. An extensive parameter evaluation is

given in [56].

HarLap [C-SIFT | oSIFT | cHoG | SURF | DAISY | 165c | 45c | 37c | 30c] uses the baseline

Harris Laplacian detector and evaluates different descriptor performances: C-SIFT is a color SIFT de-

scriptor using the intensity normalized OCS providing a 384 dimensional feature vector. It is the best

performing descriptor of [57]. oSIFT denotes a modification of the baseline SIFT. The proposed rank-

ordering normalizes the descriptor in order to be invariant to monotonic deformations of the baseline

descriptor [58].

cHoG provides a compressed histogram of gradients that exploits gradient statistics in a canonical

image patch. Tree-coding techniques are used to quantize the histograms to a length of 63 [59].

SURF is also inspired by SIFT, but uses the sum of approximated 2D Haar wavelet responses and

makes efficient use of integral images [60]. The DAISY descriptor uses a circular grid and does not use

weighted sums of gradient norms, but convolutions of gradients for the histogram of length 200 [61]. 165c

denotes the color histogram of length 165; whereas 45c, 37c and 30c denote the color moments having

a descriptor lenght of 45, 37 and 30, respectively. These color descriptors are described and evaluated

in [57].
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Fig. 13. Overall results for rank 1 approaches per class.
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Fig. 14. Overall results for rank 2 approaches.

The results show that light invariant 800 SIFT outperforms all other approaches in 4 out of 20 classes
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Fig. 15. Overall mean results for all classes.

(Figure. 13) and is ranked second in 3 other challenges (Figure 14). This is remarkable as the leading

approaches use three detectors and dense sampling, providing a vast number of features for the subsequent

steps of the categorization framework. The proposed method uses only a subset of these features and is

still obtaining state-of-the-art results. The mean results over all classes are shown in Figure 15.

It is shown that, even with the baseline SIFT descriptor, light invariant points are able to outperform

other approaches using more and better feature descriptions. Therefore, feature localization, scale esti-

mation and their selection have an impact on state-of-the-art classification schemes. Using more stable

and salient features, the number of features can be reduced while retaining the meaningful features and

thus achieving state-of-the-art performance.

V. CONCLUSION

In this paper, a principled approach has been proposed to extract scale invariant interest points based

on color and saliency. This allows the use of color-based interest points for arbitrary image matching. A

PCA-based scale selection method is proposed which provides robustness to scale changes. Perceptual

color spaces are incorporated and their advantages are directly passed on to the feature extraction. The

use of color information allows for extracting repeatable and scale invariant interest points. Hence, more

discriminative features and a sparser representation of images for image matching have been achieved. By

reducing the number of features and providing a predictable number of sparse features, larger datasets can

be processed in less time. Additionally, a stable number of features lead to a more predictable workload
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for such tasks.

From large scale experiments, it has been shown that the proposed color interest point detector has

a higher repeatability than a state-of-the-art luminance-based one. Further, a reduced number of color

features increase the performance in image retrieval. Finally, for the PASCAL VOC 2007 challenge, our

method gave comparable performance to the state-of-the-art in object categorization using only a subset

of the features used for matching, reducing the computing time considerably.
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