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Summary

The thesis tackles the mechanics of submerged granular flows driven by grav-

ity, focusing on the rheological formulations and on the numerical solutions

of the equations that govern this type of flow. In particular, a two-phase

approach is assumed. The liquid phase, usually water, is described with a

Newtonian rheology. The rheology of the granular phase depends on the

type of contacts among the particles. Two opposite conditions are identi-

fied: if the contacts among particles are instantaneous the regime is named

collisional, while, when the contacts become long lasting and involved more

particles at the same time the regime is called frictional. In the thesis a

proper model for the rheology of the granular phase, able to account for

both the regimes, is presented. This model is based on the fundamental

evidence that the granular phase is characterized by the coexistence of the

collisional regime, which dominates near the free surface, and of the frictional

regime, which becomes relevant approaching the loose static bed Armanini

et al. [5]. The kinetic theories of dense gases Jenkins and Savage [48] are

adopted to describe the collisional regime, while for the frictional regime a

new rheological formulation, dependent on the Savage number, which comes

from the analysis of the force involved, is given. In addition, the model,

named heuristic model [11], introduces a specific equation of state also for

the frictional regime. The model is based only on a single parameter, which

presumably depends on the properties of the contact forces of the material.

A numerical code able to integrate the equations of the mass, momentum

xxiii



Summary xxiv

and energy of the two-phase, in uniform flow conditions, was developed by

Armanini et al. [6] and the results are compared with the experimental data.

In the applications to hyperconcentrated channel flows the effect of the side

walls and of the internal stresses of the liquid phase are neglected in the mo-

mentum balance equations, therefore the drag force is balanced by the weight

of the liquid phase. The heuristic model is able to predict in a satisfactory

way the distributions across the flow depth of the velocity, concentration,

granular temperature and stresses and in particular, it allows to discriminate

between the collisional and the frictional components of the shear and of the

normal stresses.

Another important issue addressed in the thesis concerns the balances of

the energy of the granular phase. The model is able to describe the mech-

anisms of production, diffusion and dissipation of energy, relevant to both

the mean component of the flow and the fluctuating component (i.e., the

collisional component). In uniform flow conditions, near the static loose bed,

the model predicts that the flux of the diffused fluctuating energy exceeds

an order of magnitude the locally dissipated flux of fluctuating energy. This

suggests that the motion of the grains, even at concentrations close to that of

packing, is always accompanied by a certain degree of granular temperature

as already observed by Armanini et al. [10].

Furthermore, the description of the mechanisms of exchange among the

terms of the total energy balance and of the kinetic energy balance, and

between the two energy balances is given. In the thesis, the role of the inter-

action between the liquid and the solid phase in the kinetic energy balance

is analysed [59]. A specific experimental investigation to understand the dif-

ference between the drag averaged over time and the drag calculated with

respect the average velocities and concentration is carried out. This differ-

ence between the two drags represents the contribution to the drag due to the

correlations between the fluctuating components of the concentration and of

the velocities. By integrating the heuristic model across the flow depth, it is
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possible, in principle, to derive a set of shallow water equations that are able

to describe the behaviour of debris flows and wet avalanches.





Overview of the thesis

The thesis is organized in five chapters.

– Chapter 1 contains an overview of the significance of the topic of the

thesis and a review of the literature relevant to the formulation of the

theories developed.

– In Chapter 2 a heuristic model for the rheology of the granular phase is

presented. This is the main original contribution of the thesis and the

results are published in Armanini et al. [11]. The set of equations of

hyperconcentrated granular flow, in stationary and uniform conditions,

under the hypothesis that the stresses of the liquid phase are negligi-

ble in the momentum balances, is numerically solved and the results

are compared with experimental data. The numerical method was pre-

sented in Armanini et al. [6]. The chapter also contains considerations

on the total energy balance of the granular phase and on the kinetic en-

ergy balance. The concept of core region and the effect of the sidewall

are discussed.

– In Chapter 3 the definition of the drag force for a hyperconcentrated

granular flow is tackled, underlining its role in the momentum balances

and in the energy balances. The definition of the average drag is dis-

cussed. Experimental investigations of the flow in the column and of

the free fall flow are carried out in order to better understand these

xxvii
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concepts. A part of this chapter is published in Nucci et al. [59] and

the whole content is going to be submitted to a scientific journal.

– In Chapter 4 a review of the literature regarding the definition of the

closure relation of the stresses of the liquid phase of submerged granular

flows is developed. Some relations are proposed. The set of equations

solved in Chapter 2 is written adding the equations of the liquid phase.

Preliminary numerical results are compared with experimental data.

– Chapter 5 tackles the extension of the complete system of equations

of Chapter 4 to the non-uniform and non-stationary 2D case. The

set of equations are implemented in a numerical model proposed by

Dumbser [27]. A description of the numerical model, the geometry and

the boundary conditions are presented. A set of adaptations of the

numerical model for the application to granular flows are presented.

The chapter concludes with some preliminary results.

– Chapter 6 contains the conclusions that are carried out thank to the

theories developed.



Chapter 1

Introduction

Chapter 1 contains an overview of the significance of the topic of the the-

sis and a review of the literature relevant to the formulation of the theories

developed.

1.1 Debris Flows

Flows of highly concentrated mixtures of water and sediments driven by

gravity characterize many geomorphological phenomena. Among these are

debris flows, which frequently affect urbanized mountainous areas, causing

loss of lives and property damage. Debris and mud flows are statistically rare

but these phenomena show a great destructive power. Substantially, they

are a non-stationary phenomena, which occur in a very short time. From

a hydrological point of view the most frequently cause is a long rainfall,

which saturates the ground, followed by an intense rainfall that triggers the

collapse. Furthermore, from a morphological point of view, there must be the

presence of an amount of repository material, placed on a slope such that

the gravity force, relevant to the submerged weight, governs the collapse.

Usually the availability of material is due to disaggregation of rocks caused

by chemical actions of water, alternation of freezing and thawing, vegetation,

1
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or to the leaching of moraine clusters, which become permeable and unstable.

Obviously, a debris flow moves away the material available, and a very long

process of accumulation is necessary for material to build up again. For these

reasons, the return period between two dangerous events is usually 50− 100

years. Other different mechanisms can be ascribed to the category of debris

flows, such as a landslide that flows along in a river bed, or damage to a weir

or to a natural dam. The event of 1966 in the Jiang Jia Ravine, where there

was a 600.000m3 casting of the sediment due to the collapse of a dam caused

by an earthquake, is a significant example. In particular, three possible

mechanisms of initiation of a casting due to the presence of a weir/dam are

recognized:

– the erosion due to the passage of water above the body of the bridle

– the filtration within the weir body

– the occurrence of a progressive failure mechanism

The three cases reported refer to the diagram by Takahashi [66] (page. 77).

Moreover, while the ordinary mass transport phenomena in river, bed

and suspended load are due to the drag of the streaming, the active forces

of debris flows are the gravity force and the interactions among particles. In

fact, debris flows are such hyperconcentrated that flow resistance is caused

by the contacts.

Debris flows are phenomena which have been known for a long time, but

only a few decades ago did engineers and geologists start to adopt concep-

tual tools able to tackle these phenomena with minor empiricism. The first

approaches were more or less descriptions and classifications without any

physical basis. Takahashi [66] distinguishes between four types of debris

flows, assigning to each its own rheology, but the range of validity of each

type of flow must unfortunately be known a priori. From this point of view, a

conceptual simplification able to reduce the subjectivity of the classifications

appears urgent.
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From a physical point of view, a simplified approach to the modelization of

debris flows or wet snow avalanches, is to treat them as a hyperconcentrated

flows of two fluids: the interstitial fluid, which behaviour follows the fluid

mechanics and it is treated with a proper rheology, and the solid phase that

is the granular flows, with a specific rheology too. With respect to the liquid

phase usually it is water, at constant temperature, so a Newtonian fluid which

obeys to Navier-Stokes equations. However, usually the particles with minor

dimension (less than 30µm) are considered to be scattered in the liquid phase,

because is to fine to deposit, and this mixture is treated as an homogeneous

fluid taking into account for the presence of cohesive material. The solid

phase is composed by major particles, whom dimensions are comparable to

those of sand, and it is treated as a granular flows. Under the hypothesis

that the number of the particles inside the controlled volume is sufficiently

big, that is the dimension of the particles is small enough with respect to

the infinitesimal controlled volume, continuum mechanics can be applied to

the ensemble of particles, with a proper rheology, to describe the interactions

among particles. It is evident that this approach falls for big sediments, that

is with dimensions comparable to the dimensions of the boundaries of the

flow.

In particular, the two-phase approach allows the description of the be-

haviour of debris flows in all their phases: from their formation, which typi-

cally occurs in the highest part of the basin, to the arrest phase, which often

occurs in the alluvial fans.

Since the geometry of the sections and the slope change along the path,

the same debris flow presents kinematic and dynamic characteristics that

change in space and time while flowing downstream. The concentration of the

solid phase is one of the flow quantities with the largest spatial variation. In

fact it reaches high values in the upper part of the basin, and tends gradually

to reduce, especially in the arrest area, due to the progressive deposition of

the sediment.
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To assess the consequences of these events on structures and infrastruc-

tures, one usually adopts depth integrated models. These models, however,

require closure equations, i.e. the relationships between some global quanti-

ties, such as depth integrated quantities. Usually, these consist in the flow

resistance (stress at the bed) and in the transport capacity of the solid phase,

expressed as a function of local depth integrated parameters such as the av-

erage velocity, the total flow depth and some physical properties of the solid

and liquid phase (density, particle size, etc.). More details on these aspects

are provided in [66, 9, 42, 8, 4].

In analogy to what is done for rivers, closure relationships for debris flows

are derived under steady and uniform flow conditions, but are assumed to be

locally valid in unsteady and nonuniform conditions. The closure relation-

ships can be derived experimentally, but it is always necessary to keep as

reference a conceptual model that allows the reliability of the simplified and

empirical schemes and the completeness of the experimental analysis to be

checked.

In particular, the thesis aims to become an instrument for the modeliza-

tion of debris flows.

1.2 Granular Flows

It is to point out that throughout the following discussion the presence of

cohesive sediments is neglected, in order to focus on the rheology of incoherent

debris flows. In this case the material of the solid phase consists of particles

with sizes ranging from a few centimetres up to a few meters, transported

downstream along with water.

Granular materials are an agglomerate of macroscopic particles which

show peculiar behaviours with respect to the standard states of matter. In

this respect, in fact, the granular material can be considered as a further

state of matter [43].
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The granular state of matter as a gas

The particles of the granular material interact with instantaneous collision

similar to the molecules of gases. However, there are two main differences

between an ideal gas and a granular gas:

– there are no effects due to the thermodynamic temperature;

– the interactions among grains are dissipative, either due to the friction

among particles and to the inelastic type of collision.

The particles of an ideal gas are perfectly smooth and elastic. The energy

scale is due to the product of the kBT , Boltzman constant (1.4 · 10−23JK−1)

and T the thermodynamic temperature, while, in granular flows, the parti-

cles have a mass m and a diameter D, much greater than the dimension of

molecules, such that the potential energy mgd, where g is the gravity accel-

eration, results, in standard conditions, 1012 times kBT .

The granular state of matter as a liquid

Granular matter can flow like a liquid. However experimental evidence shows

peculiar behavior of the granular flows, such that it seems that the entropy of

the system globally reduces, violating the laws of the mixing of fluids [64, 37].

Instead, the ordinary entropy of these processes is negligible compared to the

dynamic effects of these types of flows.

The granular state of matter as a solid

The static behaviour of a cluster behaves like a solid, but, the analogy is

allowed only for a slope less then the repose angle of the material. In fact,

as it is shown in figure 1.1(a) and 1.1(b), for slopes higher then the friction

angle of the material, the particles of the cluster begin to flow like a liquid.

Also in this case there is a specific behaviour: the particles, which are near

the free surface, start running, while the under particles are stop and form

a loose static bed. The velocity and the velocity gradient are normal to the

bed and the decrease asymptotically to zero approaching the lower layer.

The granular flows are characterized by the coexistence of solid particles and
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(a) α < ϕ (b) α > ϕ

Figure 1.1: Different slopes of granular clusters [43].

of a fluid that fills the voids. Usually the interstitial fluids are water or air

or both. In order to describe the mechanics of granular flows, at least a two

phase approach is needed.

1.3 A two phase approach

If the two-phase are treated as two fluids without any mass exchange be-

tween them, their dynamics is described by the same mass and momentum

conservation equations (Cauchy equations) [67, 41]:





∂ρβ

∂t
+
∂
(
ρβuβi

)

∂xi
= 0

∂ρβuβi
∂t

+
∂
(
ρβuβi u

β
j

)

∂xj
= ρβgβi +

∂T β
ij

∂xj
+ F β

i

(1.1)

Throughout the thesis, the interstitial fluid is water. The notations of eqs.(1.1)

represent: the superscript β = g is for the granular fluid phase while β = f

is for interstitial fluid. ρg = cρs and ρf = (1 − c)ρw are the density of the

granular and of the liquid phase, where c is the volume concentration; ρs

is the material density of the grains and ρw is the water density; uβi is the



1.3 A two phase approach 7

generic component of the velocity vector; T β
ij is the tensor of the internal

stresses and F β
i is the vector of the interaction forces between the two-phase.

Because of the principle of reciprocity F g
i = −F f

i . g
β
i is the component of

the mass force (per unit volume) acting on each phase, which in the present

case is the vector of the gravity acceleration g, i.e. gβi = −g∂z/∂xi, where
z represents the vertical rising direction. These are the notations generally

adopted in the thesis.

The rheology of the liquid phase depends on the properties of the fluid.

The fluid pressure of the two-phase approach corresponds to the pore pressure

of the geotechnical approach.

The rheology of the granular phase is characterized by two different mech-

anisms of interaction among particles: almost instantaneous collisional con-

tacts and long lasting contacts. A distinction between the characteristic time

scales of these two types of contact is provided by da Cruz et al. [22]. These

two kinds of interaction identify two regimes, which are known respectively

as the collisional regime and the frictional regime [48, 16, 36]. In the lit-

erature of the kinetic theory the frictional regime is also named dense flow

[44]. In general, it is possible to assume that the stresses corresponding to

the two regimes, Tcoll for the instantaneous contacts and Tfric for the long

lasting contacts, can be added [48], namely T g
ij = T coll

ij + T fric
ij . Even though

in almost all applications it is de facto assumed that these two regimes are

stratified and physically separated [48, 49, 57], recent experimental investi-

gations [10] have shown that they alternate in space and time through an

intermittent mechanism, similar to that existing between the viscous and the

turbulent sub-layers in the turbulent boundary layer of a smooth wall.

1.3.1 Favre average and ensemble average

In order to apply the properties of continuum mechanics, the equations of the

two phase approach are expressed in terms of average variables, under the

necessary condition that the control volume is sufficiently large with respect
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to the dimension of the particles, but sufficiently small with respect to the

dimension of the flow field. In the framework of granular flows, two different

type of averages are proposed: the ensemble average and the Favre average.

The ensemble average is usually adopted in the framework of the kinetic

theory, and is the average used in the thesis. According to Jenkins and

Savage [48], the ensemble value of any property ψ(u) of the flow is found:

< ψ >=
1

n

∫
ψ(u)f (1)(u, r, t)du (1.2)

where f (1)(u, r, t) is a single-particle velocity distribution function, such that

f (l)(u, r, t)du represents the probable number of particles per unit volume at

time t and position r with velocities u in the element du. The brackets <>

represent the average of all the particles, which, at each instant, are inside a

control volume. In contrast, Drew [26] proposes weighting the equations of

the two-phase on the concentration, that is, the Favre average. The Favre av-

erage is based on the definition of the average concentration of the ensemble,

given as:

c = lim
N→∞

1

N
Σc (1.3)

and the other average quantities, identified by the over line, can be derived

with respect to the average concentration. The main advantage of the Favre

average is that averaging the instantaneous equations of the mass and of the

momentum conservation, the terms due to the correlations of the fluctuations

are avoided.

The Favre average is now applied, for example, to the mass conservation

balance of the granular phase, that reads as:

∂

∂t
ρsc+

∂

∂xi
ρscu

g
i = 0 (1.4)

In terms of mean values and instantaneous variables (c = c + c′ and ui =
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ui + u′i), eq. (1.4) is:

∂

∂t
ρsc+

∂

∂t
ρsc

′+
∂

∂xi
ρscu

g
i +

∂

∂xi
ρscu

g′

i +
∂

∂xi
ρsc

′ugi +
∂

∂xi
ρsc

′ug
′

i = 0 (1.5)

Then, averaging in time, eq.(1.5) becomes:

∂

∂t
ρsc+

∂

∂t
ρsc′+

∂

∂xi
ρscu

g
i +

∂

∂xi
ρscu

′g
i +

∂

∂xi
ρsc′u

g
i +

∂

∂xi
ρsc′u

′g
i = 0 (1.6)

The average value of the fluctuating terms of the first order are equal to zero,

so eq. (1.6) reduces to:

∂

∂t
ρsc+

∂

∂xi
ρscu

g
i +

∂

∂xi
ρsc′u

′g
i = 0 (1.7)

The average velocity of the ensemble is defined as:

ugi =
< ρscu

g
i >

< ρsc >
(1.8)

where the brackets represent the average of all the particles in the control

volume. The Favre average velocity is related to the average velocity of the

ensemble by ũgi = ugi +u
g′′

i , where ug
′′

i = c′u
′g
i /c, and by multiplying the Favre

average velocity, on both sides, by the average concentration c, it results that:

cũgi = cugi + cug
′′

i = cugi +
c′u

′g
i c

c
= cugi + c′u

′g
i (1.9)

such that eq.(1.7) reduces to:

∂

∂t
ρsc+

∂

∂xi
ρscũ

g
i = 0 (1.10)

so the term due to the correlation of the fluctuation of the concentration and

the velocity disappears.

The main advantage is that the final system of equations average with
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the Favre procedure shows fewer unknowns.

1.4 Literature relevant to the thesis

1.4.1 Bagnold’s dispersive pressure theory

The pioneer of the constitutive relations of granular flows is Bagnold, thanks

to his studies on the dispersion of solid spherical grains, with constant diam-

eter and with the same density as the liquid phase, sheared in a Newtonian

fluids of varying viscosity, in a coaxial cylinder rheometer. According to Bag-

nold the collision among particles occurs to develop a dispersive pressure in

the flow field, which substantially depends on the mean distance among the

grains. For spherical particles, it is possible to express this distance, called

linear concentration λ, as the ratio between d, the diameter of the particles,

and s the mean distance between two grains: λ = d/s (figure 1.2). In case

of spheres, the linear concentration is related to the volume concentration, c,

through the following relation:

λ =
c1/3

c ∗1/3 −c1/3 (1.11)

where c∗ is the maximum value of the concentration, packing concentration,

which, for spheres, results in the so called cannonballs configuration, 0.74.

The experimental data collected allows Bagnold to assume that, for a suffi-

ciently high value of the shear velocity, the dispersive pressure depends on

the square of the shear rate, that is, in a uniform flow in the longitudinal

Figure 1.2: Linear concentration scheme.
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direction x1 and normal direction x2:

p−Ba = a cosϕρs

(
λd
∂ug1
∂x2

)2

(1.12)

ϕ is the dynamic friction angle, which Bagnold assumes to be constant in the

grain inertial regime, and a is an experimental constant (Bagnold proposes

a = 0.042). The expression of the dispersive pressure, eq.(1.12), can be

derived from the momentum exchange that occurs due to the collisions of

the particles. Furthermore the dispersive pressure is induced by a dispersive

shear stress, that is:

τ12−Ba = a sinϕρs

(
λd
∂ug1
∂x2

)2

(1.13)

In the model proposed by Bagnold, the relation between the shear stresses

and the normal stresses is Coulombian:

τ12−Ba

p−Ba
= tanϕ (1.14)

Bagnold found a parameter Ba (called in subsequent works the Bagnold

number [38]) that distinguishes between the grain inertia regime, where the

stresses depend on the square of the shear rate, and the macro viscous regime,

where the stresses are linearly dependent on the shear rate.

In particular, Ba is the ratio between collisional and viscous stresses:

Ba =
ρfλ

1/2γ̇d2

µf
(1.15)

where d represents the grain diameter, γ̇ the shear rate and ρf and µf are

the density and the viscosity of the interstitial fluid respectively. Bagnold’s

theory shows its limit when applied to the grain inertia region in uniform

flow condition because, from the integral of the stresses, it appears that the
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concentration can only be constant.

1.4.1.1 Limits of Bagnold’s theory

Armanini et al. [8] demonstrate that applying Bagnold’s theory to submerged

granular flows driven by gravity, in uniform flow conditions, the profile of the

concentration across the flow depth is constant. In fact, in these conditions,

the shear and the normal stresses of the dispersive pressure theory are bal-

anced by the corresponding components of the gravitational forces:

τ12−Ba =

∫ h

x2

(1 + c)∆g sinαdy (1.16)

p−Ba =

∫ h

x2

c∆g cosαdy (1.17)

such that the ratio of eq.(1.16) and eq.(1.17) is:

τ12−Ba

p−Ba
=

∫ h

x2
(1 + c)∆gdy
∫ h

x2
c∆gdy

tanα (1.18)

From the previous discussion, the stresses of Bagnold’s theory are Coulom-

bian, such that the ratio is equal to tanϕ eq.(1.14) for each value of ϕ, which

is a property of the material, and the concentration is constant across the

flow depth. On the other hand, experimental evidence shows that the con-

centration assumes its maximum value approaching the mobile bed, c∗, and

becomes zero approaching the free surface [5]. Moreover, the forces between

particles or the impulsive forces in collisions result from the fluctuations of

the particle velocity about the mean. These fluctuations are an inevitable

result of the collisions between particles being swept together by the mean

flow. Bagnold does not consider these fluctuations except to assume that they

were random and that the production of mean kinetic energy associated with

them is balanced by dissipation into heat in collisions.
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1.4.2 The kinetic theory of dense gases

The limits of Bagnold’s theory were overcome in the 1980′s with the intro-

duction of the kinetic theory of dense gases for an idealized granular material

comprised of identical, smooth, imperfectly elastic, spherical particles which

is flowing at such a density and is being deformed at such a rate that particles

interact only through binary collisions with their neighbors, incorporating the

important difference that collisions between the grains inevitably dissipate

energy [48]; [46]; [47]; [54]; [45]. The assumptions are:

– the kinetic theory of gases describes a gas as a large number of small

particles (atoms or molecules), all of which are in constant, random

motion.

– the particles constantly collide with each other and with the walls of

the container.

– the kinetic theory explains macroscopic properties of gases, such as

pressure, temperature, and volume, by considering their molecular com-

position and motion.

– essentially, the theory assumes that pressure is due to collisions between

particles moving at different velocities through Brownian motion.

The fundamental idea of the theory is that the collisions between particles are

binary and that the velocities of a pair of colliding particles are independent.

The normal component of the instantaneous velocities of a particle before

and after a collision are related through the coefficient of restitution e, which

is a constant between 0 and 1. If the particles are rough, there is also a loss of

energy associated with the component of the relative velocity of the contact

points along the line of contact. In this case, the tangential components of the

instantaneous velocities of a particle before and after a collision are related

through the alternating tensor, the unit vector and a constant β = [−1; 1].
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If β is equal to −1 or to 1 there is no change in the tangential components,

if β is equal to 0 it is rolling without slipping at impact.

The theory of Jenkins and Richman [46] is applied to smooth spheres,

with mass m, velocity u, angular momentum ω and inertial momentum I,

and introducing a vector of velocity with three components (u1, u2, u3), the

spin is defined as: s = ω(I/m)1/2

In analogy with the kinetic theory of molecular gases, the concept of

ordinary temperature is replaced with the concept of granular temperature,

which is a measurement of the fluctuations of the velocities of the granular

phase. In particular, following Jenkins and Richman [46], the mean kinetic

energy of the flow is governed by two types of temperature: one accounts for

the fluctuations in the translational velocity (Θ = 1/2 < ugiu
g
i >) and the

other measures the fluctuations in the spin (Θ̃ =< u23 >), where the brackets

<> represent the average of all the particles, which, at each instant, are inside

a control volume, that is, the ensemble average. u′gi = ugi− < ugi > represent

the fluctuations of the vector of the velocity and < ugi >= ugi are the averaged

components of the velocities. In this case, the flow is characterized by the

continuum of partially elastic collisions among particles. It is evident that,

since the granular temperature changes in space and in time, it represents

the kinetic energy of the collisional regime. In analogy with the thermal

temperature it is assumed that the granular temperature plays the same

role in generating pressure and governing the mass, momentum and energy

transports.

There are two cases in which the spin is negligible: in the case of slightly

rough and nearly elastic particles (β ≃ −1 and e ≃ 1), and in the case of near

reversal of contact velocities (β ≃ 1 and e ≃ 1) where the translational and

spin temperatures are equal. The theories developed in this thesis concern

cases in which the spin is negligible.

In the kinetic theory, all the proprieties of the flow fields, such as density,

shape and size, are averaged over all possible collisions. The coefficient of
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restitution e is less than 1 so a dissipation term is included in the energy

balance.

Kinetic theory uses a spatial probability function based on the probable

number of pairs of particles to collide. If the mean flow is homogeneous,

the probability function is isotropic. The statistics of binary collisions are

determined by the complete pair distribution function of the two particles’

velocities, time and positions, integrated over all velocities.

In these processes, the dissipation gives an important contribution to the

flux of linear momentum, and fluctuation in energy arises both from particles

moving between collisions and from the transfer of energy in collisions. The

dense flows of interest are dominated by the transfer mechanics.

The stresses due to collisions among particles are derived theoretically by

Jenkins and Hanes [45], starting from the totally generic formulation by

Chapman and Cowling [19]:

T g−coll
ij = −pg−collδij + τ g−coll

ij (1.19)

where T g−coll è is the collisional component of the stress tensor of the granular

phase and δij Kronecker’s delta. pg−coll is the isotropic collisional pressure

of the granular phase and substantially depends on the granular tempera-

ture. Different relations between pg and Θ, informally called the equation of

state, are proposed. The thesis refers to the formulation of Lun et al. [55],

which appears from experimental evidence [10] more appropriate to hyper-

concentrated flows than the widely used formulation by Jenkins and Hanes

[45].

The equation of state reads:

pg−coll = f1ρsΘ (1.20)



16 1: Introduction

The collisional shear stress is expressed as:

τ g−coll
ij = µg−coll

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.21)

The collisional dynamic viscosity of the kinetic theory is scaled on the gran-

ular temperature, as the velocity scale, and on the diameter of the particles,

as the length scale, and reads as:

µg−coll = f2ρs
√
Θd (1.22)

where:

f1 = c(1 + 4cηpgo) (1.23)

and:

f2 =
5
√
π

96ηp(2− ηp)

(
1 +

8

5
ηp c go

)(
1

go
+

8

5
ηp(3ηp − 2)c

)
+

8/5√
π
ηpc

2 go

are functions of the volume concentration. go is the radial distribution func-

tion that states that the probability of collisions between two particles also

depends on the presence of other particles in the control volume [18]. Differ-

ent expressions for go were proposed, differing in particular for higher values

of concentration, where the kinetic theory lost its validity, for example the

expression eq.(1.24) [35], and eq.(1.25) [54]:

go(c) =
1

(
1− c

c∗
)1/3 (1.24)

go(c) =
1

(
1− c

c∗
)2.5c∗ (1.25)
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ηp =
(1 + e)

2
is a parameter that depends on the elastic coefficient of resti-

tution e of particles. The kinetic theory of gases needs a further equation,

which is the kinetic energy balance relevant to the granular temperature:

ρs

(
∂Θ

∂t
+ ugj

∂Θ

∂xj

)
=

∂

∂xj

(
kΘ

∂Θ

∂xj

)
+ µg−coll

(
δugi
δxj

+
δugj
δxi

)2

− f5ρs
Θ1.5

d

(1.26)

where the left side represents the inertial variation of the kinetic energy rele-

vant to the granular temperature of the flow, and on the right side there are

the terms due to the diffusion caused by the agitation of particles (kΘ is the

diffusion coefficient), due to the work done by the stresses of the granular

phase and due to the dissipation of the inelastic component of collision. The

expression of the diffusion coefficient, according to Lun et al. [55], is:

kΘ = f4ρs
√
Θd (1.27)

where:

f4 =
25
√
π

16ηp(41− 33ηp)

(
1 +

12

5
ηpc go

)(
1

go
+

12

5
η2p(4ηp − 3)c

)
+

4√
π
ηsc

2 go

and:

f5 =
12√
π
c2 go(1− e2)

1.4.2.1 Different formulations of the functions fi

In the framework of the thesis, the expressions of the functions fi of the

kinetic theory involved were proposed by Lun et al. [55], subsequently by Mi-

tarai and Nakanishi [58]. These are equivalent to that of the previous works

by Jenkins and Savage [48] and Jenkins and Richman [46], if the particles

are elastic, that is e = 1 and ηp = 1. In fact:
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– the expression of f1 is the same in the two formulations;

– the expression of f2 by Lun et al. [55] can be written for ηp = 1:

f2 =
8√
π
c2 go

[
1 +

π

12

(
1 +

5

8 c go

)2
]

which is the same as the expression by Jenkins and Savage [48]:

f2−JS =
8

5
√
π
c c

2− c

2(1− c)3

[
1 +

π

12

(
1 +

5

8
c

2− c

2(1− c)3

)2
]

– The expression of f4 by Lun et al. [55] can be written for ηp = 1:

f4 =
4√
π
c2 go

[
1 +

9π

32

(
1 +

5

12c
go

)2
]

(1.28)

which in Jenkins and Savage [48] is written:

f4−JS =
4√
π
c2

2− c

2(1− c)3

[
1 +

9π

32

(
1 +

5

12
c

2− c

2(1− c)3

)2
]

– The expression of f5 by Lun et al. [55] for ηp = 1 is:

f5(1− e2) =
24√
π
(1− e)ηp c

2 go

which is the same expression as that by Jenkins and Savage [48]:

f5−JS =
24√
π
(1− e)c2

2− c

2(1− c)3
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1.4.3 The generation of granular temperature

A detailed analysis of the mechanisms by which the granular temperature of

a granular flows is generated is presented by Campbell [16]. In particular,

for rapid granular flows, two modes are considered:

– collisional temperature generation: the granular temperature is gen-

erated from the transfer of momentum between particles when they

collide and depends on the velocities of the particles and on the elastic

coefficient of restitution of the collisions

– streaming temperature generation due to the presence of the particles

with different shear rates such that the particles that move from their

own layer accelerate or decelerate by colliding with the particles that

they meet, with the same mechanism of the generation as Reynolds

turbulent stresses. This mode dominates at very low density, and such

that the region governed by the streaming mode is often neglect.

1.4.4 A model for chains of particles

h

2
x

α
1
x

Figure 1.3: Sketch of the flow and notation.

A rheological Coulombian type model for describing the behaviour of

dense assemblies of dry grains subjected to continuous shear deformation is

represented in GDR-MiDi [34]. With reference to the notation of figure 1.3,
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GDR-MiDi [34] proposed the following relation (1.29):

µ = µs +
µ2 − µs

Io + I
I =

µs Io + µ2 I

Io + I
(1.29)

where I is the inertial number, previously introduced by Ancey and Evesque

[1]:

I =
γ̇ d√
pg/ρs

(1.30)

where γ̇ is the shear rate, d the diameter of the particles, ρs the density of the

solid phase and pg the granular pressure. The inertial number is subsequently

interpreted in term of ratio between the two temporal scales that govern the

problem is given by da Cruz et al. [22]: a micro scale d/
√
pg/ρs, which is

the time in which a particle falls in a empty space, with dimension of the

particle d by the action of a pressure pg; and a macro scale proportional to

the local strain rate γ̇ = ∂u1/∂x2, such that the inertial number is small for

slow motions and becomes larger as the flows go faster. µs of equation (1.29)

is ”the critical value at zero shear rate” of the friction coefficient and µ2 is

”the limit value at high I”. The model is based on the observation that, for

confined flows, different entities of chains of particles appear depending on

the boundary conditions of pressure and shear rate.

In particular, this model seems to be affected by some fundamental weak-

nesses, which are:

– the µ(I)-model lacks of an equation of state. This is the reason why the

authors assume that the concentration is constant. If the top layer is

governed by the collisional regime, it seems obvious that the transition

between the two layers is continuous and that it is unlikely that the flow

maintains a concentration constant from the static loose bed, in which

the concentration takes the maximum value (random packing), up to

the top layer where the motion is governed by the collisional regime.
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– for the rheological parameters µs, µ2 and Io in eq. (1.29), the authors

choose the values given by the experimental data of flows on inclined

plane: µs = tan θs with θs = 20.9; µ2 = tan(θ2) with θ2 = 32.76; and

Io = 0.279. According to the Authors, ”...this choice means that no

fit parameter exists when we shall compare results from the simulations

to the experimental data.” From this statement it can be deduced that

these parameters are ”universal ” constants, or properties of the mate-

rial, but they do not tell on which kind of property they depend (i.e.

elasticity, stiffness, roughness, or other) and on what limit its value can

be deduced. Furthermore, from the kinetic theory results that µ2 is a

property of the flow field, and its value cannot be known a priori.

Moreover, it seems that this model shows its biggest weaknesses when trying

to simulate a granular flow saturated by water, e.g. in the case studied in

this thesis. Experimental evidences [12] suggest that, in this situation, both

the effect of buoyancy, that of the lubrication produced by water on the

mechanisms of prolonged contact and the remarkable intensity of the drag

forces inhibit the effects of the side walls, observed in the dry granular flows.

In an immersed granular flows, the effect of the side walls is similar to that of

fluid flows and the velocity measurements on the free surface show that the

gradients of the velocity profile are practically negligible. Furthermore, in

contrast with previous work on the µ(I)-model, da Cruz et al. [22] makes the

hypothesis of a linear relationship between the concentration of the material

and the inertial parameter I, in order to avoid the lack of the equation of state

of the model and the limitation of considering the concentration constant

across the flow depth. It is easy to realize that in this case the model reduces

to a Coulombian model in which the angle of friction is a function of the

concentration, a model previously proposed by several authors, but which has

proved to be unreliable. Although this model has some inherent problems,

which are also declared by the authors, especially in the early works, it is

often present in the literature on enduring contacts. The µ(I)-model can be
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interpreted as a weighted combination of two Coulombian models [3, 4]. In

fact, Armanini [3] proves that the total shear stresses of the granular phase

can be rewritten as a weighted linear combination of a collisional component

and a frictional component, adopting for both components a Coulombian

scheme. If I is the dimensionless parameter that governs the frictional regime,

one of the two weight functions is I, because on the static bed I = 0, and

the other is a constant, here set equal to Io:

(Io + I)τ gij = pg(tanϕfricIo + tanϕcollI) (1.31)

that is:

τ gij = pg tanϕfric Io
Io + I

+ pg tanϕcoll I

Io + I
(1.32)

1.4.5 Granular flow regimes over fixed and mobile bed

The behaviour of a gravity-driven liquid-granular mixture was studied with a

series of experiments in a special glass-walled open channel at the Hydraulic

Laboratory of the University of Trento, Italy, [5]. The aim of the investiga-

tion was to observe the possible regimes occurring in uniform flow conditions

and, in particular, distinguishing for the different profiles of velocities, con-

centration and granular temperature, four different regimes were measured,

as it is reported in figure 1.4. In particular:

– immature flow or over-saturated flow : the solid material flows in the

lower part of the flow, while approaching the free surface a region in

which the presence of particles is occasional is observed, (figure 1.4(a));

– mature flow or saturated flow : the particles flow across the entire flow

depth and the concentration decreases monotonically from the bottom

to the free surface, (figure 1.4(b));

– plug flow or under-saturated flow : the concentration is such that the
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Figure 1.4: Different types of granular flows regimes: a) over-saturated erodi-
ble bed flow; b) saturated erodible bed flow; c) under-saturated erodible bed
flow (plug-flow); d) rigid bed flow [5]. This figure belongs to [3].

upper part of the flow is unsaturated [32], (figure 1.4(c));

– rigid bed flow : in this case the layer of the loose static bed does not

appear. The constant of elastic restitution of the collision among parti-

cles is inferior to that of the upper layers and as the distance from the

wall increases, it becomes a property of the flow field (figure 1.4(d)). In

cases (a)-(b)-(c) a static loose material composed of the same particles

formes over the rigid bed on the channel.

The considerations proposed in this thesis regard a mature flow.

1.4.6 The coexistence of the collisional and the fric-

tional regimes

The new and fundamental approach of the thesis is based on the observation

of the coexistence of the frictional and the collisional regimes of submerged

granular flows driven by gravity in a mature regime. From the visual record,

in fact, is it observed a region of the flow where the two regimes are alter-

nate in space and time, through a mechanism similar to that of the border
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Figure 1.5: Distribution along the flow depth (η is the dimensionless vertical
coordinate) of the intermittency function proposed by Armanini et al. [10]

of a turbulent boundary layer. This phenomenon is identified as intermit-

tency. Armanini et al. [10] provide an explanation of the intermittency in

granular flows in terms of time evolution of the vertical velocity of particles.

Throughout the definition of a filter function fc, which is equal to 1 when the

kinetic component of the velocity exceeds a threshold and is null otherwise,

the intermittency function, Ω, is expressed as [10]:

Ω =

∫
T
fcdt

T
(1.33)

where T is a long enough period to consider the process statistically station-

ary. In figure 1.5 the distribution across the of the intermittency function

calculated in uniform flow condition of a mature granular flow is shown [3].

1.4.7 The coefficient of restitution of submerged gran-

ular flows

In submerged granular flows, the coefficient of restitution e has been observed

to be highly dependent on the Stokes number. Armanini et al. [5, 10] pro-

posed to choose the square of the granular temperature as the representative
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velocity, such that the Stokes number reads as:

St =
1

18

ρsdΘ
0.5

µ
(1.34)

Experimental measurement [10] provided the following empirical relation for

the coefficient of restitution e of granular flows.

e = 0.9− 2.8St−0.5 (1.35)

In the framework of this thesis the coefficient of restitution used is that of

relation (1.35).

1.4.8 The two phase approach

Drew [26] was the pioneering work with respect to the two phase approach

and provides the common features of dispersed two-phase flows from a con-

tinuum mechanical approach based on the idea that each material is a con-

tinuum. The role of the liquid phase on a submerged granular flows driven

by gravity is detailed by Meruane et al. [57] by highlighting that the dynamic

of the solid phase cannot be understood without the inclusion of the hydro-

dynamic fluid pressure and the drag interactions. With respect to the liquid

phase, Meruane et al. [57] proposed the k− ǫ model, which is used to include

the turbulence effects and to describe the stresses of the liquid phase.

1.4.8.1 The interphase force

Meruane et al. [57] provide the derivation of the relation for the interphase

forces, the term F β
i of eq.(1.1), that occurs without mass exchange between

the two phases. The interaction force coincides with the surface forces be-

tween the constituents. In a control volume is V , a surface S of the interface
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is identified, and its border is ∂V . In this respect the interaction force is:

F g
i =

∫

∂V

T g
ijdS (1.36)

and applying the divergence theorem eq.(1.36) becomes:

F g
i =

∫

V

∂T g
ij

∂xj
dVs (1.37)

where Vs is the volume of the solid fraction, that is Vs = cV The tensor of

the solid phase is given by the summation of a isotropic component and a

deviatoric component and results:

F g
i = −c∂p

g

∂xi
+ c

∂τ gij
∂xj

(1.38)

Meruane et al. [57] show that the normal component of the interphase force is

the fluid pressure, so pg of relation (1.38) becomes pf . Furthermore Meruane

et al. [57] give a proper relation for the stresses components of eq.(1.38),

which neglecting the virtual mass effects and the Basset effect, depends only

on the drag effects relevant to the relative velocities between the two phases.

Eq.(1.38) reduces to:

F g
i = −c∂p

f

∂xi
+Di (1.39)

The definition of the drag Di consists in the definition of the drag coefficient.

In this respect, in the framework of the drag force of a granular flow, the

literature is based on the work of di Felice [25]. This is a collection of experi-

mental studies dealing with fluidized beds, attempting to describe a relation

for the drag force of a granular flow. In particular, a voidage function is in-

troduced to modify the known expression of the drag of a single particle and

to account for the concentration. From the best fitting of these investigations
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the voidage function is a power of the concentration of the liquid phase. All

the data are collected for a concentration lower than 0.3. With respect to the

discussion of Meruane et al. [57], it is proven [2] that the Archimedes’ princi-

ple, applied to steep channel, is valid on the normal direction of the flow and

not only in the vertical direction such that in the following the definition of

the interaction forces provided by Meruane et al. [57], eq.(1.39), is modified

as:

F g
i = −c

(
∂pf

∂xi
−
∂τ fij
∂xj

)
+Di (1.40)





Chapter 2

The rheology of the granular

phase

In Chapter 2 a heuristic model for the rheology of the granular phase is pre-

sented. This is the main original contribution of the thesis and the results are

published in Armanini et al. [11]. The set of equations of hyperconcentrated

granular flow, in stationary and uniform conditions, under the hypothesis

that the stresses of the liquid phase are negligible in the momentum balances,

is numerically solved and the results are compared with experimental data.

The numerical method was presented in Armanini et al. [6]. The chapter

also contains considerations on the total energy balance of the granular phase

and on the kinetic energy balance. The concept of core region and the effect

of the sidewall are discussed.

2.1 Granular phase

A review of the literature dealing with the behaviour of the granular phase

provides a theory, called the kinetic theory of dense gases, but its validity

is restricted only to the collisional regime. In contrast, the problem of the

rheology of the frictional regime is still open. The frictional regime becomes

29
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important when the concentration increases. In this situation, in fact, the

collisions among particles are not instantaneous, but become long lasting and

involve various particles at the same time. Experimental evidences show that

the frictional regime is always present in a granular gravity flow flowing over

a loose bed composed of the same material [10]. In fact, the loose static bed

forms because the solid concentration increases, proceeding downward up to

a value (random packing concentration) for which the frictional shear stress

is so high that the flow is inhibited.

In one of the earliest works on granular flows, Johnson and Jackson [49]

observe that, while at least one conceptual scheme can be derived for the

collisional regime on the basis of a micro-structural constitutive model, the

rheological formulations of the frictional regime are essentially empirical. The

situation has not changed much in the last 30 years: different schemes of

empirical nature exist, but not a theory. Most of these schemes assume that

the frictional regime is confined in a layer contiguous to the static bed, within

which the shear stress is Coulombian, while the pressure is expressed as a

function of concentration through a quite empirical relationship [49, 64, 50,

57].

2.1.1 A heuristic rheological model for the frictional

regime

The experimental analysis of the flow [10] and the intuition suggest that the

rheology of the frictional regime is shear dependent, like in liquids, but at

the same time some pressure-dependent feature are presented, which can be

expressed by a Coulombian model used for the rheology of solids, through

a frictional angle, which is not a constant but depends on the kinematic

properties of the flow. A dimension analysis of the forces involved predicts
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that the frictional regime depends on the Savage number [63]:

Is =
ρs(γ̇d)

2

pg
(2.1)

where γ̇d2 dimensionally represents the kinematic viscosity of the granular

flow, ρs is the density of the material and pg the granular pressure. It is allow-

able that the rheology of the frictional regime depends also on other possible

contact properties of the interstitial fluid and of the material composing the

particles.

Furthermore, the relationship of the frictional shear stress must satisfy

two asymptotic conditions. It must tend to a pure Coulombian regime on

the boundary of the loose bed, and it must vanish when the parameter Is

tends to become large enough. A suitable relationship, satisfying the above

conditions, is provided by Armanini et al. [11]:

τ fric = pg tanϕfric Iso
Is + Iso

(2.2)

where ϕfric is the friction angle of the material and Iso is a parameter that

presumably depends on the contact properties of the interstitial fluid and

of the solid material composing the particles; its value must be determined

experimentally.

A hyperbolic relationship between the tangential stress and the inertia

number is discussed also by Chialvo et al. [20].

A suitable equation of state for the granular frictional regime must be now

identified. Eq. (2.2) suggests that pg Iso/(Iso + Is) can be interpreted as the

frictional component of the pressure (due to the prolonged contacts between

particles). In other words, the equation for the pressure can be written in

the following form:

pfric = pg
Iso

Iso + Is
(2.3)
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where pfric = pg − pcoll is the frictional component of the granular pressure.

Equation (2.3) can be considered as the equation of state of the frictional

regime, even if not stricto sensu, because of the presence of the shear rate

embedded in Is.

The rheological model proposed [11] is:

τ gij = pg tanϕfric Iso
Iso + Is

Dij√
Dij Dji

+ 2ρsf2dΘ
0.5Dij (2.4)

pg = pg
Iso

Iso + Is
+ ρs f1Θ (2.5)

where Dij = 1/2 (∂ui/∂xj + ∂uj/∂xi) is the shear rate tensor. Eq. (2.4)

represents the deviatoric component of the stress tensor, which has been

obtained by applying the Drucker-Prager failure criterion [24], calibrated on

the results of the experimental tests in terms of the Mohr-Coulomb friction

angle. Notice, however, that a more refined generalization to the 3D case

would require a more complex failure criterion, taking into account the third

invariant of the stress tensor. Although conceptually simple, this refinement

is beyond the aims of this work.

Furthermore, it is possible to obtain the granular pressure pg in explicit

form from eq. (2.5), within the flow field:

pg = ρsf1Θ
(γ̇d)2

(γ̇d)2 − Isof1Θ
(2.6)

A striking feature of eq. (2.6) is that it is valid except for the boundary

where γ̇ = Θ = 0, that is Is = 0, i.e. on the static bed, which represents the

boundary between the upper granular fluid and the lower static granular bed,

which behaves as a granular solid. The lower side of this interface has to be

considered as a solid, for which no relationship between the pressure and the

kinematic properties of the flow field (shear rate or granular temperature)

exists. On this side of the boundary interface, equation (2.3) then reduces

to an identity.
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Figure 2.1: Distribution along the flow depth of measured values of the
apparent friction angle, i.e. the inverse tangent of the ratio between shear
stress and pressure in a uniform flow of spheres and water.

The granular temperature also influences the frictional regime, as will be

explained in section 2.7, discussing the energy balance. On the other hand,

when c → 0 (f1 → 0), i.e. in the vicinity of the free surface, eq. (2.6) tends

to the relation provided by the kinetic theory.

The same occurs for the rheological relationship (2.4). On the static bed

boundary γ̇ = Θ = 0, so τ gij = pg tanϕfric. In contrast, approaching the free

surface where Isop
g << (γ̇ d)2ρs the expression of the shear stress tends to

that given by the kinetic theory.

These two conditions are confirmed also by the experimental data of figure

2.1, which refers to a gravity driven granular submerged uniform flow. In

particular, in figure 2.1, the distribution across the flow depth of the measured

values of the apparent friction angle, i.e. the inverse tangent of the ratio

between shear stress and pressure, is reported. The experiments and the

related results of our investigations will be explained in detail in sections

2.4 and 2.5, but for the sake of clarity it is worthwhile to highlight some

results here. The figure 2.1 shows that, as the static bed is approached, the

apparent friction angle tends to become constant and equal to the static

angle, according to the purely Coulombian model. On the other hand, when

approaching the free surface, the behaviour recovers that derived from kinetic
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theory.

2.2 Steady state flow

The model was applied to a steady uniform two-phase flow in a prismatic

wide channel. This relatively simple case is important not only per se because

it can be verified experimentally with good accuracy, but also because the

solution of the uniform flow, integrated on the depth (or on the cross-section),

provides the closure relationships for the depth integrated numerical models

(1DH and 2DH), employed in field applications to debris flows [9, 42]. In

this situation, the distribution of the fluid pressure (the pore pressure) is

hydrostatic [32]. Generally, the interaction force between the two-phase, F β
i ,

reads [41]:

F f
i = −F g

i = c
∂pf

∂xi
− c

∂τ fij
∂xj

−Df
i (2.7)

Please refer to section 3.1 for a better explanation of expression 2.7. Under

the hypothesis of plane flow in the two directions x1, x2, the system (1.1)

could be simplified and, by substituting the projections of eq. (2.7), the

momentum balance equations reduce to the following for the liquid phase:

0 = −ρw(1− c)g
∂z

∂x1
+
∂τ f21
∂x2

− c
∂τ f21
∂x2

−Df
1 (2.8)

0 = −ρw(1− c)g
∂z

∂x2
− ∂pf

∂x2
+ c

∂pf

∂x2
−Df

2 (2.9)

and for the granular phase:

0 = −ρscg
∂z

∂x1
+
∂τ g21
∂x2

+ c
∂τ f21
∂x2

+Df
1 (2.10)
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0 = −ρscg
∂z

∂x2
− ∂pg

∂x2
− c

∂pf

∂x2
+Df

2 (2.11)

By adding the momentum equations in the longitudinal direction x1 for the

two-phase (eq. 2.8 and eq. 2.10), it is obtained:

∂τ g21
∂x2

+
∂τ f21
∂x2

= (ρsc+ ρw(1− c))g
∂z

∂x1
(2.12)

In addition, accounting forDf
2 = 0, by eliminating the term ∂pf/∂x2 between

the two equations of momentum in the normal direction x2 for the two-phase

(eq. 2.9 and eq. 2.11), it is obtained:

−∂p
g

∂x2
= (ρs − ρw)cg

∂z

∂x2
(2.13)

If the particle concentration is large enough, the fluid shear stress τ f21 is

negligible compared to the granular stress, as will be better explained in

section 2.4.1. Finally, it is obtained:

∂τ g21
∂x2

=

(
1 + c

ρs − ρw
ρw

)
ρwg

∂z

∂x1
(2.14)

−∂p
g

∂x2
= c

(
ρs − ρw
ρw

)
ρwg

∂z

∂x2
(2.15)

In a uniform flow condition the rheological relationships (eq. 2.4 and eq. 2.5)

and the kinetic energy balance (eq. 1.26) become:

τ g21 = pg tanϕfric Iso p
g

Iso pg +

(
∂ug1
∂x2

d

)2

ρs

+ ρsf2dΘ
0.5∂u

g
1

∂x2
(2.16)

pg = ρsf1Θ

(
∂ug1
∂x2

d

)2

(
∂ug1
∂x2

d

)2

− Isof1Θ

(2.17)
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0 =
∂

∂x2

(
kΘ

∂Θ

∂x2

)
+ µcoll

(
∂ug1
∂x2

)2

− f5ρs
Θ1.5

d
(2.18)

The equations (2.14-2.18) form a nonlinear system of five differential algebraic

equations (DAE) that must be solved with a suitable numerical method. The

five unknowns of the problem are: ug1, c, Θ, τ g21 and pg. The boundary

conditions are assigned at the bed, where ug1 = ∂ug1/∂x2 = Θ = 0, c = c∗

and, according to eq. (2.16), τ g21 = pg tanϕfric.

2.3 Numerical method

This section is part of [6].

The governing equations of the proposed model can be written under the

general form of a nonlinear system of differential algebraic equations (DAE)

as follows:

d

dt
E(Q(t)) = f(Q(t), t), Q(0) = Q0, (2.19)

where Q = Q(t) = (q1(t), q2(t), ...qn(t)) ∈ R
n is the unknown state vector,

and E(Q) ∈ R
n and f(Q, t) ∈ R

n are two nonlinear functions of the state

vector Q and the independent variable t. Q0 is the known initial condition

of the initial value problem eq.(2.19). For its numerical solution we use a

Galerkin method, based on the following expression for the unknown solution

vector:

Qh(t) =

N∑

l=0

θl(t)Q̂l := θlQ̂l, (2.20)

where θl(t) represent piecewise polynomial basis functions of maximum de-

gree N and Q̂l are the unknown coefficients of the numerical solution. In

the above relation we have used classical tensor notation with the Einstein

summation convention over two equal indices. Equation (2.20) is valid for



2.3 Numerical method 37

one timestep ∆t = tn+1 − tn, where tn is the current solution time. To ob-

tain the unknown coefficients Q̂l, the DAE is multiplied with test functions

θk(t) that are identical with the basis functions (classical Galerkin approach),

and is subsequently integrated over a time step to obtain the following weak

formulation of the DAE:

tn+1∫

tn

θk(t)

(
d

dt
E(Qh(t))− f(Qh(t), t)

)
dt. (2.21)

For the test and basis functions θk(t) it is chosen the Lagrange interpolation

polynomials that pass through the N + 1 equidistant Newton-Cotes quadra-

ture points, tnl = tn + (l − 1)/(N − 1)∆t, hence it is used a nodal basis.

Therefore, the numerical approximations of the nonlinear functions E and f

are simply given by

Eh(t) = θlÊl, and fh(t) = θl f̂l, (2.22)

with

Êl = E(Q̂l), and f̂l = f(Q̂l, , t
n
l ) (2.23)

due to the choice of the nodal basis. The weak formulation eq.(2.21) for the

unknowns Q̂l therefore becomes




tn+1∫

tn

θk(t)
d

dt
θl(t)dt


 Êl =




tn+1∫

tn

θk(t)θl(t)dt


 f̂l, (2.24)

or, in a more compact matrix-vector notation:

KklE(Q̂l)−Mklf(Q̂l, t
n
l ) = 0, (2.25)
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with Q̂0 = Q(tn), and the mass matrix Mkl and the stiffness matrix Kkl,

which can both be precomputed once and for all. The resulting nonlinear

algebraic equation system (2.25) of dimension n(N + 1) is solved by a stan-

dard Newton method for systems with a line-search-type globalization strat-

egy. The initial guess is provided using a second order Crank-Nicholson-type

scheme for the DAE eq.(2.19) to initialize the nodal values Q̂l at all time

levels tnl :

E(Q̂l+1)−E(Q̂l)

tnl+1 − tnl
=

1

2

(
f(Q̂l+1, t

n
l+1) + f(Q̂l, t

n
l )
)
. (2.26)

Equation (2.26) is again a nonlinear algebraic equation system, however, of

smaller dimension n, which is again solved by a globally convergent Newton

method. The proposed Galerkin-type method, eq.(2.25), is theoretically of

arbitrary order of accuracy in the independent variable t and can be used

inside a classical shooting method for solving DAE boundary value problems

of the type

d

dt
E(Q(t)) = f(Q(t), t), Q(t0) = Q0,Q(t1) = Q1, (2.27)

where Q0 and Q1 are the known boundary values of the boundary value prob-

lem (BVP), eq.(2.27). The calculation is repeated by an iterative method,

changing Iso to minimize the root mean square error of the granular velocity

across the flow depth.

2.4 Experimental investigation

In the framework of the thesis the experimental data of Armanini et al. [5] are

used. In particular, the data derived from an investigation on the behaviour

of a gravity-driven liquid-granular mixture, done with a series of experiments

in a special glass-walled open channel at the Hydraulic Laboratory of the
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Figure 2.2: Representation of the glass-walled open channel used for the
experimental analysis. This figure belongs to [8].

University of Trento, Italy.

For all the details regarding the flume (figure 2.2) and the experimental

techniques please refers to Armanini et al. [5].

If liquid and solid discharges are kept constant in time (stationary regime)

it is easy to prove that the only possible solution for the mobile bed is the

uniform flow [7]. In this case the slopes of the free surface and of the mobile

bed are the same. These conditions are also confirmed by the experiments.

This situation is identified as an equilibrium condition between the granular

flow and the static bed.

The granular phase is reproduced by perfectly identical spherical plas-

tic particles, composed of barium sulfate and titanium dioxide dispersed on

polystyrene. The particles have a diameter d = 6 mm and a specific gravity

ρs/ρw = 2.21. The static friction angle was estimated to be to 20◦ from

geotechnical tests based on the tilting board [5]. The liquid and solid dis-

charges (Qs = 0.38l/s and Ql = 1.45l/s) were measured at the same time

using a volumetric technique, while the flow depth (h = 0.062m) and the

slope (of the free surface and of the static loose bed: α = 8◦) of the flow

were deduced from level measurement through the transparent sidewalls of

the flume. Since the velocity profile is asymptotic to the mobile bed, it is
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assumed that the interface of the static bed is located at the level where the

velocity is less than 1% of the maximum velocity.

2.4.1 The internal stresses of the liquid phase

In uniform flow conditions, in the integration of momentum equations, the

internal shear stresses of the liquid phase, either turbulent or laminar, are

considered negligible compared to the internal stresses of the granular phase.

Preliminary experiments of the variables of the liquid phase allows to check

if this assumption is realistic. Notice that this analysis was carried out only

in the upper part of the flow depth, where the velocity measurements of the

liquid phase are more accurate.

The internal stress of the liquid phase are estimated as the difference

between the longitudinal component of the gravity force of the liquid phase

and the drag force (eq. 2.8). This force (per unit volume), Df
1 , is assumed

according to Meruane et al. [57], as:

Df
1 =

3

4
CD

ρw
d
f(c)c | uf1 − ug1 |(uf1 − ug1) (2.28)

where CD =
(
0.63 + 4.8/

√
Red

)2
is the drag coefficient [23]; Red = ρw(1 −

c)(uf1 − ug1)d/µw is the particle Reynolds number and f(c) = (1 − c)1−m

(m = 3.6÷ 3.7 depending on the regime of the flow) is a function, proposed

by di Felice [25], taking into account the effect of the particle concentration

on the drag forces. According to this author the empirical expression for

the voidage function is valid for all concentration values. On the other hand,

further investigations provided a different relation for the voidage function

in a submerged granular flows, but the considerations of section 3.2 does

not invalidate the results obtained in Armanini et al. [11]. Figure 2.3(b)

shows that the internal stresses are very small compared to the stresses of

the granular phase and, hence, they can be neglected in eqs. (2.8) and (2.12).

This assumption implies that the drag force is substantially balanced by the
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Figure 2.3: Distribution along the flow depth of the experimental: (a) veloc-
ity; (b) internal shear stresses of the granular and the liquid phases calculated
from the momentum balance in the longitudinal direction assuming that the
drag is totally balanced by the weight of the fluid phase.

weight of the liquid phase. This evidence is account for the discussion on the

granular energy balance.

2.5 Results

The comparison between the experimental data and the prediction of the

model is reported in the next figures. Data are expressed in non-dimensional

form, assuming as reference scales the total flow depth h, the material density

of the particles ρs and the gravity acceleration g. In particular, as already de-

fined, η = x2/h represents the dimensionless distance from the static bed. In

figures 2.4(a) and 2.4(b) the distributions of the concentration of the granular

phase and of the granular temperature are reported. The calculated concen-

tration profile shows minor discrepancy from the experimental data, while its

value at the bed is well in agreement with the measurement of the random

packing concentration obtained with a volumetric method. The distribution

of the granular temperature, in figure 2.4(b), shows most mismatches in the

proximity of the free surface, where the model prediction gives a value ap-

preciably larger than the experimental data. It appears that the particle
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concentration remains at values close to the maximum in a region near to

the static bed which covers nearly 50% of the flow depth. In this region

the granular temperature attains very low values. This zone is dominated by

frictional stresses. In the upper half of the depth, ruled by collisional stresses,

the concentration begins to decrease sharply while the granular temperature

increases significantly. In figures 2.5(a) and 2.5(b) the normal distributions

of the granular velocity and of its gradient are reported. The model repro-

duces both parameters quite well, even though the gradient shows minor

disagreement, possibly related to the imprecision associated with the com-

putation of the spatial derivatives from experimental data. In figures 2.6(b)

and 2.6(a) the normal distributions of the granular shear stress and of the

granular pressure are depicted. Despite some discrepancies between the com-

puted results and the experimental data profiles shown in figure 2.4(a) and

2.4(b), the agreement between predicted and experimental data concerning

granular shear stress and pressure is very good. It is likely that these devi-

ations are reflected minimally in the pressure and shear stress distributions

since they are close to zero near the free surface. In figure 2.7(a) and 2.7(b)

the distributions of the collisional and the frictional components of the shear

stresses and of the granular pressure are presented. These profiles exhibit
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Figure 2.4: Comparison between results of the numerical simulation (line)
and experimental data (symbols) of: (a) particle concentration profile; (b)
granular temperature profile.
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Figure 2.5: Comparison between results of the numerical simulation (line)
and experimental data (symbols) of: (a) granular velocity profile; (b) granu-
lar velocity gradient profile.

a reasonably good agreement with the experimental data, and confirm the

coexistence of the collisional and the frictional regimes across the flow depth,

with the collisional component dominating the region close to the free sur-

face, and the frictional component developed mostly in the region close to

the static bed. As already observed for the concentration, around the middle

of the flow depth, the dominance of one regime over the other is inverted,

but in the region near the static loose bed the collisional component of both

the tangential and the normal stresses is not negligible.

The only parameter of the model that needs to be calibrated is Iso. Its
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Figure 2.6: Comparison between computed (lines) and observed (symbols)
of: (a) granular pressure profile; (b) granular shear stresses profile.
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Figure 2.7: Collisional and frictional component of (a) pressure and of (b)
shear stress. Comparison between computed (lines) and observed (symbols)
values.

value affects the apportionment between the collisional and the frictional

stresses, while the total stresses are influenced only minimally. From eq.

2.3 it is easy to deduce that Iso is the value of Is at the distance from the

static bed where there is a perfect balance between frictional and collisional

pressure (pcoll = pfric). The value Iso = 0.04 was obtained by best fitting the

experimental velocity profile of the granular phase.

2.6 The kinetic energy balance

The mechanisms that regulate the energy balance have been analyzed. In

figure 2.8 it is plotted the distribution of the different terms comprising the

granular kinetic energy balance, eq.(2.18), measured in the experiments and

calculated with the mathematical model. Notice that in the kinetic energy

balance a term, which accounts for the fluctuating component of the inter-

action forces between the phases (drag force), and which contributes to the

dissipative mechanism [40], is included as it is presented in section 3.5.
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Figure 2.8: Distribution along the depth of the (dimensionless) terms of the
kinetic energy balance of the collisional component eq.(2.18). Experimental
data (symbols) and predictions of the model (lines)

2.7 The total energy balance of the granular

phase

A further novelty of the heuristic model, with respect to previous models on

the granular flows, is the analysis of the total energy balance of the granular

phase. In fact, by multiplying each term of the granular momentum equations

by the respective component of the granular velocity the energy balance of

the granular phase reads:

ρg
(
∂

∂t
+ ugj

∂

∂xj

)
ugiu

g
i

2
= ρg ugi g

g
i +

∂

∂xj
ugiT

g
ij − T g

ij

∂ugi
∂xj

− F g
i u

g
i (2.29)

By restricting the scope of the analysis to the case of uniform flow, in which

the average velocity has only the longitudinal component, the total energy

balance becomes:

−ug1 (cρs + (1− c)ρw) g
∂z

∂x1
+

∂

∂x2
(ug1τ

g
21)−τ fric21

∂ug1
∂x2

−τ coll21

∂ug1
∂x2

= 0 (2.30)
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In eq.(2.30) it is assumed that, as previously stated, the term F f
i = −F g

i

is balanced with a good approximation by the buoyancy forces and by the

longitudinal component of the weight of the liquid phase. The terms of

eq.(2.30) can be interpreted in analogy with the energy balance in a turbulent

channel flow. The first term of the equation represents the work done by the

gravity forces (in this case also including the interphase forces), the second

term is the diffusion of the energy due to the total granular shear stress, the

third term is the dissipation of kinetic energy due to the frictional stresses,

while the last term is the work due to the collisional stresses. This term, with

its sign changed, corresponds to the production of collisional kinetic energy

in the collisional kinetic energy balance (second term of eq. 2.18). Figure 2.9

shows the distribution across the flow depth of the different dimensionless

terms of the total energy balance.
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Figure 2.9: Distribution along the depth of the dimensionless terms of the
total energy balance eq.(2.29). Each terms of eq.(2.29) is divided by ρsg

1.5h0.5.
Comparison between experimental data (symbols) and results of the model
(lines).
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2.8 The core region

Louge [53] introduces the concept of core region to indicate the region of the

flow where the ratio between the stresses of the frictional regime over the total

stresses of the granular phase, named ηLou, depends on the concentration.

ηLou =
τ fric

τ tot
=

τ fric

τ fric + τ coll
=

1

1 +
τ coll

τ ric

(2.31)

Louge [53] obtains a linear relationship between the volume concentration

and the ratio between the frictional and the total shear stresses is found by

interpolating the results of the particle simulation with a straight line, whose

coefficients have to be calibrated a posteriori. On the other hand the results

of the heuristic model [11] suggest that this ratio does not depend on the

concentration in a constant manner. In fact, remembering the definition of
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Figure 2.10: Comparison between computed (solid line) and observed (cir-
cles) values of the ratio of frictional to total stresses plotted versus volume
concentration.
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the stresses of the granular phase:

τ coll = f2ρs
√
Θ dγ̇ (2.32)

τ fric = p tanϕ
Iso

Iso + Is
(2.33)

and the equation of state for the pressure of the granular phase:

p
(
I2o + I2

)
= pIso + f1ρsΘ (Iso + Is)

p = f1ρsΘ
(Iso + Is)

Is
(2.34)

is it possible to rewrite the frictional stresses and to derive an expression of

the parameter ηLou:

τ fric = f1ρs Θ
(Iso + Is)

Is
tanϕ

Iso
Iso + Is

= f1ρs Θ tanϕ
Iso
Is

(2.35)

ηLou =
1

1 +
f2
√
Θ d γ̇

f1Θ tanϕ

Is
Iso

=
1

1 +
f2
f1

γ̇ d√
Θ tanϕ

Is
Iso

, (2.36)

where Is is eq.(2.1). By substituting the expression of the pressure of the

granular phase 2.36 reduces to:

ηLou =
1

1 +
f2
f1

γ̇ d√
Θ tanϕ

(
γ̇2 d2

f1Θ Iso
− 1

) (2.37)

Figure 2.10 represented the ratio τ fric/τ tot of the frictional to the total shear

stress, as a function of the volume concentration. The agreement between the

experiments and the model is fairly good. In particular, the model confirms
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that the above ratio tends to vary linearly with the concentration when the

concentration tends to its maximum [53].

2.9 The kinetic energy balance in the core

region

Recently, Jenkins [44] proposed a model for the rheology of the granular

phase that is based on an extension of the kinetic theory of gases to the

dense regime. This model is based on the assumption that the concentration

of the solid phase is constant in the core region of the flow and that the

diffusion term is negligible in the kinetic energy balance. It means that

in the core region the production of kinetic energy is totally balanced by

the dissipation term. Figure 2.8 shows that the heuristic model is able to

reproduce the terms of the kinetic energy balance with a reasonable degree

of accuracy. In particular, both numerical and experimental data suggest

that the diffusive term is not negligible and, hence, production does not

balance dissipation, as is usually assumed [44]. An attempt to see if such a

simplification is acceptable at least in the region dominated by the frictional

regime is presented. A limit analysis is carried out for the behaviour of the

collisional energy balance equation in the proximity of the static loose bed.

Substituting the proper closure relationships in the kinetic energy equation

(2.18), gives:

0 =
∂

∂x2
f4d

2
√
Θ
∂Θ

∂x2
+ f2d

2
√
Θ

(
∂ug1
∂x2

)2

− f5Θ
1.5 (2.38)

When the concentration tends to its maximum value (c→ c∗) then go → ∞
and the asymptotic order of magnitude of the fi functions (i = 1, 5) defined
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by Lun et al. [55] is O(go). At this limit the equation of state (2.5) becomes:

(
∂ug1
∂x2

d

)2

= Iso f1Θ (2.39)

Substituting (2.39) into the expression (2.38), yields:

0 =
∂

∂x2
d2f4

√
Θ
∂Θ

∂x2
+ f2

√
Θf1ΘIso − f5Θ

1.5 (2.40)

In conclusion when (c → c∗), f2 f1Iso → O(g2o) while f5 → O(go), so the

dissipation term is negligible. Therefore, in the proximity of the mobile bed,

where the frictional regime is dominant (c → c∗), the production of kinetic

collisional energy turns out to be balanced by the diffusion. Obviously this

assumption cannot be extended in the region where the collisional regime is

dominant.

A possible picture of the total kinetic energy balance (eq. 2.30) is the

following: in the proximity of the static bed, the kinetic energy of the gran-

ular phase is produced by the work of the gravity forces. The flow in this

region is characterized by a series of arrays of sliding particles moving along

superimposed layers. Such a picture also corresponds to the idea of Jenkins

[44], in which the length scale corresponds to a cluster of particles instead of

a single particle size.

This relatively slow longitudinal movement forces the particles to move

in horizontal strings [10], but their bouncing between inter-particle hollows

induces their oscillation in the normal direction. This movement is unstable

and some particles are affected by more intense fluctuations and start to

collide: this collisional kinetic energy is diffused in the normal direction by

the shear stress. The model predicts that the flux of the diffused fluctuating

energy considerably exceeds the flux of fluctuating energy that is locally

dissipated: the term of diffusion is, in fact, an order of magnitude larger

than the dissipation and is balanced by the production. Furthermore, a

possible explanation of the exchange among the different terms of the total
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gd observed at the free surface in the experiment described in section
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and of the collisional component of the kinetic energy of the granular flow

and in order to clarify the mechanism of energy exchange in the region near

the static loose bed, which seems to be dominated by the balance between

production and diffusion, while the dissipation is an order of magnitude less

than the other two terms, suggests the idea that the motion of the grains,

even at concentrations close to that of packing, is always accompanied by a

certain degree of granular temperature (which is present also in the rheology

of the frictional component) according to Lois et al. [52]. This is reasonable,

since partially elastic particles, in order to move at a concentration close to

that of packing, are forced to bounce over the particles of the underlying

layer and this mechanism generates granular temperature, which is diffused

towards the upper layers.

2.10 The influence of the sidewall

Jop et al. [51], Taberlet et al. [65] performed a variety of experiments on

the influences of the wall on the equations of granular flows. However, the

transversal shear stresses have not been included in the momentum balance

(eq. 2.14). In fact, in contrast to what occurs in dry granular flows, in a
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submerged granular flow the presence of a liquid interstitial fluid inhibits

the possible formation of chains of forces in the transverse direction. This

effect is likely due to the buoyancy, the drag and the lubrication, which are

determinant due to the high value of the density of water. This hypothesis

is corroborated by an almost uniform transversal distribution of the longitu-

dinal velocity measured on the free surface, as it is possible to appreciate in

figure 2.11. This experimental observation allows us to consider, as a first

approximation, the contribution of the stress τ31 to be negligible compared

to τ21 in the longitudinal momentum balance. Further investigations are un-

derway to ascertain the validity of this hypothesis, i.e. if the τ31 component

of the shear stress is negligible everywhere in the channel cross-section.



Chapter 3

Further investigations on the

interphase forces

In Chapter 3 the definition of the drag force for a hyperconcentrated granular

flow is tackled, underlining its role in the momentum balances and in the

energy balances. The definition of the average drag is discussed. Experimental

investigations of the flow in the column and of the free fall flow are carried

out in order to better understand these concepts. A part of this chapter is

published in Nucci et al. [59] and the whole content is going to be submitted

to a scientific journal.

3.1 Introduction

In submerged granular flows driven by gravity, described with the two-phase

approach, the interaction force that occurs between the two phases, without

mass exchange, is equal in value and opposite in sign due to the principle of

reciprocity. Two effects are ascribed to the interaction: the buoyancy due to

the gradient in the stresses of the liquid phase, induced by the presence of

the particles, and the drag effect relevant to the difference in velocities of the

two phases. The expression of the interaction forces is given by the integral

53
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over the surface of the particles of the gradients of the normal and the shear

stresses, as it is derived in section 1.4.8.1, and it is:

F f
i = −F g

i = −c
(
∂pf

∂xi
−
∂τ fij
∂xj

)
−Di (3.1)

where Dβ
i ∝ ufi −ugi is the drag force. The definition of the drag of a cluster of

particles is derived from the known relation of the drag of a single particle [2],

through a function that takes into account for the presence of the assemble

of particles, called voidage function, which is a function of the concentration.

The drag force exercised by the liquid phase on a single spherical particle per

unit area is:

Dsp−i =
α2d

2

α3d3
ρwCD

U2
r−i

2
(3.2)

where: α2 and α3 are a shape factors (i.e. for spherical particles α2 = π/4

and α3 = π/6) , Ur−i = ufi − ugi is the relative velocity between the two

phases and CD is the drag coefficient of a single sphere, which is a function

of the Reynolds number. Although lots of expressions of the drag coefficient

exist in literature, in the framework of the thesis, the relation by Dallavalle

[23], which is valid for a large range of Reynolds number, is assumed:

CD =

(
4.8√
Re

+ 0.63

)2

(3.3)

whit Re = ρwd(u
f
i −ugi )/µw is the Reynolds number. The aim of this chapter

is to clarify the role of the drag in the momentum balances and in the energy

balances. A review of the literature of the topic supplies several works, rele-

vant, in particular, to industrial and low concentration applications. In the

framework of this thesis the definition of the voidage function valid also for

hyperconcentrated flow driven by gravity is reached. Furthermore the thesis

tackles the analysis of the fluctuations in the drag force, and attempts to
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explain of the role of these terms in the momentum and energy balances.

3.2 Voidage function

As it is reported in section 2.4.1, the drag force in a submerged granular flows

(per unit volume), Df
i , is derived according to Meruane et al. [57], as:

Df
i =

3

4
CD

ρw
d
f(c)c | uf − ug |(ufi − ugi ) (3.4)

The function f(c) of eq.(3.4) represents the voidage function. An available

relation of the voidage function was given by di Felice [25], deduced by the

best fitting of different experimental investigations of fluidized bed, that is:

f(c) = (1− c)1−m (3.5)

where m = 3.6÷ 3.7 depending on the regime of the flow. The collection of

works in [25] regards diluted cases, that is, c < 0.3.

When the concentration of the solid phase increases, that is, when its

value tends to the maximum value (random package), for a submerged gran-

ular flow driven by gravity, it is possible to consider that the flow of the liquid

phase tends to a flow in porous media, probably in laminar regime and the

relation (3.4) can be written as (3.6):

Df
i =

3

4

ρw
d
CDf(c)U

2
r−i (3.6)

The relative velocity of the expression (3.6) is the velocity in porous media,

Ur−i = ufili /(1 − c). The factor (1 − c) is such that the Darcy’s velocity is

the velocity in pores. In fact, the mass conservation equation of the liquid

phase in uniform flow conditions is: Ql = ufi (1 − c)A, while the discharge

in the Darcy regime is: Ql = ufili A, where Ql is the liquid discharge and

A the surface of the section. The velocity in porous media is related to
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the hydraulic gradient by the hydraulic conductivity K: ufili = K∂h∗/∂xi.

In particular, in uniform flow conditions, the hydraulic gradient coincides

with the slope of the free surface, which is also the slope of the mobile bed,

∂h∗/∂xi = sinα. With respect tho the hydraulic conductivity K, it is a

property of the flow field usually expressed as a function of the permeability

k that is a property of the porous media only, and dimensionally is a surface

(K = kg/νw). In laminar regime, the permeability can by expressed by

the Kozeny Carman equation: k = (1 − c)3c−2d2180−1 [17]. Furthermore,

the drag coefficient, in this condition, is expressed by the Stocks relation:

CD = 24/Red. Armanini et al. [11] prove that, when the concentration is

large enough, in the momentum balance of the liquid phase in the longitudinal

direction, the internal stresses of the liquid phase are negligible compared

to the other terms of the balance and thus the drag is balanced by the

weight of the liquid phase per unit volume. With simple steps, the theoretical

expression of the voidage function at this limit is derived:

ρw(1− c)g sinα =
3

4

ρw
d
U2
r

24νw
d(1− c)Ur

cf(c)

=
3

4

ρw
d
Ur

24νw
d(1− c)

cf(c)

=
3

4

ρw
d

(1− c)3

c2
gd2

180νw
sinα

24νw
d(1− c)

cf(c)

and results that:

f(c) = 10
c

(1− c)
(3.7)

In figure 3.1 it is reported the distribution of the voidage function derived

under the hypothesis of laminar flow eq.(3.7) (dot line). Of course, this rela-

tion is valid only at the limit when the concentration c tends to its maximum

value c∗, which is reported in figure 3.1 in dashed line. In figure 3.1 the re-

lation (3.7) is compared with the expression proposed by di Felice [25]. The
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Figure 3.1: The dot line represents the voidage function according to the
theoretical relation derived eq.(3.7) while the red line represents the voidage
function according to eq.(3.5). In dashed line the maximum value of the
concentration is reported.

gap between the two relation is significant when the concentration increases.

This observation confirms that the relation of di Felice [25] is no more valid

at this limit. A relation of the voidage function valid for all the values of

concentration, can be obtained as a combination of generalization of the ex-

pression by di Felice [25] and the theoretical relations derived at the limit

when the concentration tends to the maximum value, such as:

f =
1

(1− c)n
c ∗ −c
c∗ + 10

c

1− c

(
1− c ∗ −c

c∗

)
(3.8)

where n is a suitable parameter, which in principle is a function of the con-

centration. The simplest expression is to consider n = 0 such that eq.(3.8)

reads:

f ≃ 1− c

c∗
1− 11c

1− c
(3.9)
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3.3 The drag force fluctuations

In order to account for the temporal and spatial variation of the phenomenon,

a statistical approach is proposed. It means that the drag can be expressed

as an average component, D, and a fluctuating component, D′. Choosing a

period T sufficiently long to make the averaged flow statistically stationary,

the average drag is defined as:

D =
1

T

∫

T

Ddt (3.10)

The definition of average can be applied also to the velocity and to the

concentration:

uβi =
1

T

∫

T

uβi dt (3.11)

c =
1

T

∫

T

cdt (3.12)

The Reynolds decomposition is applied to the expression of the drag in the

case that the liquid phase is faster then the granular phase (ufi > ugi ), which

is presumable because the viscosity of the liquid phase is smaller then the

viscosity of the granular phase. It is observed that the average drag, D,

differs from the drag calculated by the average of velocities and concentration,

D(c, U), and this difference is named residual drag DR, that is:

D = D(c, U) +DR (3.13)

Following the steps reported in Appendix B, it is derived an approximated

expression for the drag of the average velocities and concentration:

D(c, U) ≃ 17.28
µw

d2
c

(1− c)n+1
(uf − ug)

+ 4.44

√
µw

√
ρw

d1.5
c

(1− c)n+0.5
(uf − ug)1.5+
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+0.297
ρw
d

c

(1− c)n
(uf − ug)2 (3.14)

while the residual drag results:

DR ≃
{[

17.28
µw

d2

(
(n+ 1)

c

(1− c)n+2
+

1

(1− c)n+1

)]

+

[
4.44

√
µw

√
ρw

d1.5

(
1

(1− c)n+0.5
+ (n + 0.5)

c

(1− c)n+1.5

)
(1.5(uf − ug)0.5)

]

−
[
0.297

ρw
d
2

(
1

(1− c)n
+ n

c

(1− c)n+1

)
(uf − ug)

]}
c′(u′f − u′g)

+

{[
17.28

µw

d2
n+ 1

(1− c)n+2
(uf − ug)

]

+

[
4.44

√
µw

√
ρw

d1.5
(n+ 0.5)

(1− c)n+1.5
(uf − ug)1.5

]

+

[
0.297

ρw
d

1

(1− c)n+1
(uf − ug)2

]}
c′c′

+

{
17.28

µw

d2
(n+ 1)

(1− c)n+2
+ 4.44

√
µw

√
ρw

d1.5
(n+ 0.5)

(1− c)n+1.5
1.5(uf − ug)0.5

−0.297
ρw
d
2n

1

(1− c)n+1
(uf − ug)

}
c′c′(u′f − u′g)

+0.297
ρw
d

c

(1− c)n
(u′f − u′g)

2

+0.297
ρw
d

(
1

(1− c)n
+ n

c

(1− c)n+1

)
c′(u′f − u′g)

2

+0.297
ρw
d
n

1

(1− c)n+1
c′c′(u′f − u′g)

2
(3.15)

The relation (3.15) can be simplified and expressed in dimensionless variables

as:

D̂R = χ1c′(u′f − u′g) + χ2c′c′ + χ3c′c′(u′f − u′g) + χ4(u′f − u′g)
2

+ χ5c′(u′f − u′g)
2
+ χ6c′c′(u′f − u′g)

2
(3.16)
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Figure 3.2: Magnitude of each coefficient of the fluctuating components of
the drag force as a function of the concentration.

where the hat stays for dimensionless residual drag, and where:

χ1 =

(
17.28

1

Re
+ 4.44

1√
Re

(1.5(uf − ug)0.5)− 0.594(uf − ug)

)

(
n

c

(1− c)n+1
+

1

(1− c)n

)

χ2 =

(
17.28

1

Re
(uf − ug) + 4.44

1√
Re

(uf − ug)1.5 + 0.297(uf − ug)2
)

n

(1− c)n+1

χ3 =

(
17.28

1

Re
+ 4.44

1

Re
1.5(uf − ug)0.5 − 0.594(uf − ug)

)

n
1

(1 − c)n+1

χ4 = 0.297
c

(1− c)n

χ5 = 0.297

(
1

(1− c)n
+ n

c

(1− c)n+1

)

χ6 = 0.297n
1

(1− c)n+1

Figure 3.2 shows the entity of the coefficients χi with respect to the concen-
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tration.

3.4 Experimental investigations

Figure 3.3: Section of the column in the x1, x2 plane. This figure belongs to
[56].

Experimental investigations on the interphase force of a submerged gran-

ular flow were carried out in the Hydraulics Laboratory of DICAM (Depart-

ment of Civil, Environmental and Mechanical engineering) of the University

Figure 3.4: Column sets up in the hydraulic laboratory with the two cameras
for videos. This figure belongs to [56].
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of Trento. In particular, the flow in the column and the free fall flow were

reproduced in a column setup. The solid phase was composed of heavy iden-

tical spherical particles with d = 6 mm and ρs = 2210 kg/m3 . The liquid

phase was water and there was no cohesion. The column is 2 meters high

and the section square as it is reported in figure 3.3. For e better explanation

of the experimental method of acquisition and elaboration of the data please

refer to section 2.4 and to Armanini et al. [5].

In the case of the column, the data was recorded by two cameras (figure

3.4). The cameras were 1 meter from the lateral side of the column, with a

512x1024 pixel resolution, and two different frequencies of acquisition were

used (60 fps and 500 fps).

3.4.1 The measurement of the concentration

With the measurement technique adopted, the value of the concentration

that is measured refers to the surface concentration. On the other hand, the

equations of the mass and momentum conservation are written with respect

to the volume concentration.

It is possible to deduce a relation between these two concentrations based

on geometrical considerations. In figure 3.5 a sketch of a general disposition

of the particles is given. In the case of spherical particles, Bagnold [13]

proposes a relation between the linear concentration, which is defined as the

ratio between the diameter of the particle and the distance between two

Ab

Figure 3.5: Hypothetical disposition of particles
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particles (λ = d/s), and the volume concentration, that is:

λ =
c1/3

c
1/3
∗ − c1/3

(3.17)

The surface concentration, λa, is given by the ratio between the surface of a

particle and the average surface. Referring to figure 3.5, the area of the base

of the pyramid is:

Ab =
(s+ d)2

2

√
3

2
(3.18)

which must be projected as:

Abv =
(s+ d)2

2

√
3

2
δ (3.19)

with δ assuming values between 1 and
√
3/2.

λa =
Aparticles

Asection
=

(πd2/4)

(s+ d)2
√
3/4δ

=
π

2
√
3δ

(
λ

λ+ 1

)2

(3.20)

This means that:

λ

λ+ 1
= (λa2

√
3δ/π)1/2 (3.21)

and from eq. (3.17):

c

c∗
=

(
λ

1 + λ

)3

(3.22)

so:

c

c∗
= (λa2

√
3δ/π)3/2 (3.23)

The expression 3.23 is calibrated with measurements obtained by introducing
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a coefficient ξ, which is probably a function of the concentration:

c

c∗
= (λa2

√
3δ/π)3/2ξ (3.24)

From experimental interpolation ξ is more or less equal to 1.

3.4.2 Flow in the column

The column is filled by a solid volume of known weight and is fed from

the bottom with a discharge of water that makes the bed move. A precise

system of filters is designed to avoid most of the oscillations generated during

the inclusion of water: a cylinder of gravel, of section slightly smaller than

that of the column, was added, to avoid phenomena of abrupt narrowing

on entering the column and abrupt enlargement on output from the tube; a

plastic honeycomb was placed in the entrance to make the input stream as

homogeneous as possible. Finally, in the gap between the honeycomb and

the base of the column, two meshes were inserted: a rigid metal mesh and a

plastic mesh suitable to assume the best form useful to dissipate the current

above. The system of equations (1.1) is rewritten for a 3D flow in the three

directions x = (x1, x2, x3), with x3 the vertical such that g = (0, 0,−g) and
with uβ = (uβ1 , u

β
2 , u

β
3) the vector of velocities, where the superscript β = f

F
dx3 W

p1+dp1/dx3

τ0

p1

Ql

Figure 3.6: Scheme of the forces involved in the momentum balances.
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stands for the liquid phase and β = g for the solid phase. The scheme of the

forces involved, in uniform flow conditions, is represented in figure 3.6. The

system (1.1) becomes (3.25):

∂

∂t
ρsc+

∂

∂x1
ρscu
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In the first instance the flow is stationary and uniform in the vertical direction.

Under these hypothesis the average value of the velocity of the solid phase

is null because there is no solid discharge, while the averaged value of the

liquid phase is constant and is derived from the continuity equation. The

system of eqs.(3.25) reduce to:

∂

∂x3
ρscu

g′

3 u
g′

3 +
∂

∂x3
ρsc′u

g′

3 u
g′

3 = −ρscg −
∂pg

∂x3
+
∂τ g31
∂x1

+
∂τ g32
∂x2

+
∂τ g33
∂x3

− c
∂pf

∂x3
+ c

(
∂τ f31
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+
∂τ f32
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+
∂τ f33
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)

+D3 +D′
3 (3.26)
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(
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∂x1

+
∂τ f32
∂x2

+
∂τ f33
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)

−D3 −D′
3 (3.27)

3.4.2.1 Experimental results

A collection of investigations, differing in the liquid discharge, that is, dif-

ferent concentration, were carried out in a uniform steady state flow in the

x3 vertical direction. The results are reported in the following figures, dis-

tinguishing the measurements along the direction x3 from the measurements

in the plane of the section of the column x1, x2. In particular, with respect

to the vertical direction, figures represent: the profile of the concentration

(figure 3.7); the averaged value of the velocities in the vertical direction x3

(figure 3.8(a)); the fluctuations of the velocities (figure 3.9(a)) and the terms

due to the correlations of the fluctuations of the velocities and the concen-

tration (figures 3.10(a) and 3.11(a)). Figure 3.8(a) shows that the velocity

of the granular phase is approximately null, while the velocity of the liquid
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Figure 3.7: Distribution across the flow depth of concentration.
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Figure 3.8: Distribution along the flow depth of the average value of the
velocity (a) in the vertical direction x3; (b) the average value of the velocity
in the horizontal plane x1, x2.

phase is constant. While, with respect to the horizontal plane x1, x2, figures

represent: the averaged value of the velocities (figure 3.8(b)); the fluctua-

tions of the velocities (figure 3.9(b)) and the terms due to the correlations of

the fluctuations of the velocities and the concentration (figures 3.10(b) and

3.11(b)). From the experimental evidences it emerges that:

1. there is no gradient of concentration (figure 3.7)

2. From figures 3.9(a), 3.9(b), 3.10(a), 3.10(b), 3.11(a), 3.11(b) it is clear

that the fluctuations of the velocities, the correlations of the fluctua-
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Figure 3.9: Distribution along the flow depth of the fluctuations of the ve-
locities: (a) in the vertical direction x3; (b) in the horizontal plane x1, x2. In
blue the measurement of the granular phase and in red of the liquid phase.
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Figure 3.10: Distribution along the flow depth of the dimensionless correla-
tions of the fluctuations of the velocities and the concentration: (a) in the
vertical direction x3; (b) in the horizontal plane x1, x2. In blue the measure-
ment of the granular phase and in red of the liquid phase.
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Figure 3.11: Distribution along the flow depth of the correlations of the
dimensionless fluctuations of the velocities and concentration: (a) in the ver-
tical direction x3; (b) in the horizontal plane x1, x2. In blue the measurement
of the granular phase and in red of the liquid phase.

tions of the velocities and the concentration are small. In this respect,

the gradients of these terms are considered negligible.

3. the hypothesis that the gradients of the velocities are negligible allows

the shear stresses, of the liquid and of the solid, to be considered null

except in a restricted layer near the wall.

4. in first assumption it is assumed that D′
3 is null.

Following the steps in appendix A the system (3.25) reduces to:

0 = −ρw(1− c)g − (1− c)
∂pf

∂x3
+ (1− c)

τ fr3
Rh

−D3 (3.28)

0 = −ρscg −
∂pg

∂x3
− c

∂pf

∂x3
+ c

τ fr3
Rh

+D3 (3.29)

where τ fr3 is the shear stresses normal to the section of the column in the

vertical direction, and Rh is the hydraulic radius of the section of the column.

Adding together eq.(3.28) and eq.(3.29) it results:

0 = −ρscg − ρw(1− c)g − ∂pg

∂x3
− ∂pf

∂x3
+
τ fr3
Rh

(3.30)
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Because ug3 = 0 and the concentration is high enough it is assumed that:

∂pg

∂x3
= −ρscg (3.31)

so:

0 = −ρw(1− c)g − ∂pf

∂x3
+
τ fr3
Rh

(3.32)

Figure 3.12 reports the distribution of the measured drag as a function of

the concentration, derived from the balance (3.32):
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Figure 3.12: Distribution of the drag vs concentration. Measurements of the
flow in the column.

3.4.2.2 The velocity of the liquid phase

The drag force represents the component of the interaction force that de-

pends on the difference between the velocities of the two phases. Up to now

the continuity equation of the liquid phase is sufficient to deduce the aver-

age values of the velocities, since the fluid discharge is imposed. In order to

quantify the fluctuations of the velocities of the fluid phase and to obtain

measurements of the different correlation terms, the velocities of the liquid

phase were measured by using smaller and lighter particles and by assuming

that the velocities of these particles are the velocities of the liquid phase. 3

runs with different liquid discharges were done. In figure 3.13 the results
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obtained for the test with liquid discharge of 160 [l/min], is reported: From
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Figure 3.13: Different terms of the correlations of the fluctuations of the
momentum balance for different runs: with a liquid discharge of 160 [l/min]

figure 3.13 appears that the only correlations that should be taken into ac-

count are c′c′ and (u′f − u′s)2, such that the residual component of the drag

force, eq.(3.16), reduces to.

DR ≃
{[

0.297
ρw
d

1

(1− c)n+1
(uf − ug)2

]}
c′c′+0.297

ρw
d

c

(1− c)n
(u′f − u′g)

2

(3.33)

3.4.2.3 The pressure of the liquid phase

The water pressure in the column was measured using a differential piezome-

ter. The flow is confined such that the pressure is constant in the layer of the

column where there is only water. However, the water pressure varies linearly,

increasing going towards the bottom of the column, due to the presence of

the solid phase. The graph in figure 3.14 summarizes the pressure measured

in the investigations of the flow in the column: The order of magnitude of

the pressure measurement is verified through a pressure gauge installed in

the column.
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Figure 3.14: Measurements of the fluid pressure for different discharges.

3.4.3 Free fall flow

The setup of the column is that the solid material is released instantaneously

(with a guillotine mechanism) from the top into still water. In free fall flow

in still water, the pressure of the liquid phase is hydrostatic. Under the

hypothesis that the granular pressure is balanced by the weight of the solid

phase, eqs. (3.28) and (3.29) reduce to:

0 = (1− c)
τ fr3
Rh

−D3 (3.34)

0 = −cρwg + c
τr3
Rh

+D3 (3.35)

Figure 3.15 shows the distribution of the average drag, derived from the

balances (3.34) and (3.35), as a function of the concentration.

3.4.4 Preliminary results

In order to summarize the results obtained in the framework of the experi-

mental investigation on the column, the data presented in figures 3.12 and

3.15 are combined in 3.16: The experiments confirm that the drag force

increases when the concentration becomes higher. The voidage function is
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Figure 3.15: Distribution of the average drag vs concentration. Measure-
ments of the free fall flow.

deduced by the ratio of the measured drag over the drag of the single sphere.

Moreover the voidage function should satisfy two boundary conditions:

that are the voidage function is one when there is no concentration of parti-

cles (c = 0) and that the voidage function tends to the value derived for the

flow in porous media when the concentration tends to its maximum. The

experimental data obtained are analyzed and then compared with the rela-

tions derived in section 3.2 as well as with the empirical relation by di Felice

[25]. From figure 3.17 it is deduced that the experimental data are in accor-

dance with the expression of di Felice [25] for concentrations lower than 0.3

but it is not able to reproduce the boundary condition of the flow in porous

media. On the other hand the simpler relation derived in section 3.2, that is
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Figure 3.16: Distribution of the average drag vs concentration. Summary of
the measured data.
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Figure 3.17: The voidage function calculated from the experimental data is
shown in blue dot. The red line represents the voidage function according to
eq.(3.5), while the green line is the voidage function according to eq.(3.9)

eq.(3.9), satisfies the boundary conditions and reproduces the behaviour of

the experimental data.

3.5 The fluctuations of the drag in the kinetic

energy balance

An other consequence of the fluctuations of the drag force is that an addi-

tional dissipation mechanism, ug′D′ also appears in the kinetic energy bal-

ance, which in uniform flow conditions reads as:

0 =
∂

∂x2

(
kΘ

∂Θ

∂x2

)
+ µcoll

(
∂ug1
∂x2

)2

− f̂5ρs(1− e2)
Θ1.5

d
+ ug′D′ (3.36)

where f̂5 = f5/(1 − e2) and e, the elastic coefficient of restitution, is con-

stant. This further dissipation rate results from the velocity and concentra-

tion fluctuations on a scale much larger than the grain size. Such large-scale

fluctuations would not exist if the sediment was not in the turbulent flow of

the fluid [40]. There are different approaches to account for the effect on the
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dissipation rate in the kinetic energy balance due to the fluctuations in the

drag. In Armanini et al. [11] it is embedded in the coefficient of restitution e,

which in this case is assumed to be dependent on the Stokes number relevant

to the granular temperature St = ρsdΘ
0.5/(18µw)[10]:

e = eo − 2.85St−0.5 (3.37)

where eo represents the value of the restitution coefficient in the absence of

interstitial fluid. According to the kinetic theory:

f̂5(1− e2o)ρs
Θ1.5

d
(3.38)

is the dissipation rate due to inelastic collisions. Then, following Armanini

et al. [10], the dissipation due to the fluctuations is expressed as:

ug′D′ = f̂5(2.85
2St−1 − 2eo2.85St

−0.5)
Θ1.5

d
(3.39)

In Nucci et al. [59], the approach of the heuristic model is compared with

the diffusive model proposed by Hsu et al. [40], that is:

ug′D′ = −2c
ρw
d
UrCDf(c)Ks (3.40)

where Ks is the oscillatory component of the solid phase, and Ur the relative

velocity between the phases.

In figure 3.18 is reported a comparison of the distributions across the flow

depth of the dissipation rate of the term of the correlations according to the

approach by Armanini et al. [11] and the approach by Hsu et al. [40]. Figure

3.18 also includes the distribution across the flow depth of the term of the

dissipation rate due to the inelastic collisions f̂5(1−e2o)ρsΘ1.5/d of eq. (1.26),

in order to highlight the different order of magnitude.

From figure 3.18 it appears evident that the two ways of defining the fluc-
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Figure 3.18: Comparison between the dissipation rate in the kinetic energy
balance, obtained according to different formulations. The stars represent the
dissipation rate due to the drag fluctuations, obtained following Armanini
et al. (2014), eq.(3.39). The crosses represent the dissipation rate of the
drag fluctuations obtained according to the diffusive hypothesis by Hsu et
al. (2004), eq.(3.40). The circles represent the kinetic energy dissipation rate
due to the inelastic collisions, eq.(3.38). The experimental data are presented
in Armanini et al. (2009).

tuating components give different results, but it is not possible to determine

which is the most reliable. However, it should be noted that:

– the results depend on the value of the dry coefficient of restitution eo

and this contribution is predominant across the entire flow depth;

– in the approach by Hsu et al. [40] the velocity fluctuations are divided

into two contributions: a term at the scale of Θ that represents the

correlations of the small-scale fluctuations of particle velocities, and a

term at the scale of ks that represents the large-scale sediment velocity

fluctuations. However some preliminary, and not yet published, mea-

surements of the instantaneous velocities show that this separation is

somehow arbitrary, because the spectrum of the particle velocity fluc-

tuations is continuous and monotonically decreasing;
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– it is, however, proved [11] that the kinetic theories of dense gases, mod-

ified as in Jenkins and Hanes [45], interpret quite well the flow of the

granular phase also in the upper part of the flow depth, where the

fluctuations in the drag could become important. For this reason the

calculation of eq. (3.40) adopts Ks = Θ.





Chapter 4

Further investigations on the

diluted flow conditions

In Chapter 4 a review of the literature regarding the definition of the closure

relation of the stresses of the liquid phase of submerged granular flows is de-

veloped. Some relations are proposed. The set of equations solved in Chapter

2 is written adding the equations of the liquid phase. Preliminary numerical

results are compared with experimental data.

4.1 Introduction

A complete description of the dynamics of the solid phase is given only includ-

ing the role of the interstitial fluid. However, often studies of granular flows

neglect the presence of the liquid phase, with different justifications. For

example, Campbell [16] considers the particles to be much denser than the

interstitial fluid and thus assumes that the dynamics of the phenomena is de-

scribed only by the interactions among particles, e.g. the internal stresses of

the granular phase. From a review of the literature, two different approaches

treating the mixture of the two phases, differing for the basic assumptions,

are presented, called the mixture theory and the two-phase model. The mix-

79
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ture theory was formulated to study the dynamics of mixtures through a

generalization of the principles of continuous mechanics. The key abstrac-

tion in this theory is that, at any time, every point in space is occupied

simultaneously by one particle of each constituent [67]. The mixture theory

had been the only approach to study granular flows up to the formulation

of the kinetic theory was formulated, and it was widely used [66, 64, 41].

Among these, Iverson [41] derived from the model proposed by Savage and

Hutter [64] a model for submerged granular flow where the presence of the

interstitial fluid alters the behaviour of the flow, and developed a system

of mass and momentum equations for the mixture, in order to study snow

avalanches.

The two-phase model works on the fluid particle flow with a phase-averaged

formulation that means an average of the mass and momentum balance laws

for fluid and solid constituents over time or volume [26]. In this formulation

the control volume is sufficiently larger than the particles and sufficiently

small to be considered infinitesimal. Please refer to the considerations on

the different types of averaging in section 1.3.1.

4.2 Literature review

Among the pioneering work in this field, Drew [26] examines the common fea-

tures of dispersed two-phase flows, based on the ideas that each material is

continuum. The equations proposed by Drew [26] are basic and generic and

consist in the average balance equations for average mass and momentum for

a general two-phase flow. Furthermore, Drew [26] defines closure relations

for the stresses of each phase and a relation for the interaction force. With

respect to the original Favre average two-phase equations [26], Hsu et al. [40]

proposes a closure for the correlations between the velocity fluctuations with

respect to the collisional component of the stresses of the granular phase. It

is observed that, because of the flow turbulence, the sediment concentration
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fluctuates on a scale much larger than the grain size, and this is the reason

why a second averaging process needs to be carried out in order to calcu-

late the large scale turbulence. In fact, the Reynolds stresses describe the

correlation of velocity fluctuations within a region smaller than several grain

diameters. However, for river flow, it is important to take into account the

effects of large-scale turbulence that may involve boundary layers or break-

ing waves. In particular Hsu et al. [40] proposes a correlation between the

velocity of the solid and the liquid phase using a coefficient α. The theory is

applied to a steady open channel, two-dimensional, unidirectional, free sur-

face, driven by gravity flows, with small inclination, and, in particular to the

dilute regions, neglecting collisional stress and large-scale Reynolds stress

in the sediment-phase momentum equations. Furthermore the small-scale

Reynolds stress in fluid-phase momentum equation is negligible.

Another work on the governing equations for a two-phase model is by Zhang

and Reese [68]. The interphase momentum correlation, that is, the drag

force, is modeled by considering the effect of solid-particle fluctuations. The

influence of particles on the κ − ǫ turbulence model parameters is tackled,

and the constitutive equations for the particulate stresses, which account for

the effect of the gas turbulence, are given. Zhang and Reese [68] introduce

a coefficient k12 relating to the autocorrelation of the force experienced by a

representative particle. The correlation time is taken to be comparable to the

collision interval and the force acting on a particle is the drag force. Meru-

ane et al. [57] suggest a set of governing equations describing the role of the

interstitial fluid on the dynamics of gravitational granular flows. The system

of equations is based on fundamental principles of the mixture theory, where

the granular flow is considered compressible. A satisfactory explanation on

why the liquid phase can or cannot be negligible is given. It is demonstrated

that the normal component of the interphase force is product of the gradient

of the fluid pressure and the solid concentration. Furthermore, with respect

to the stress component of the interphase force, Meruane et al. [57] neglect
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both virtual mass effect and Basset force and consider only the drag force

effects. To consider the turbulence modulation Meruane et al. [57] add the

work of the interphase force as a product term in both the κ and ǫ equations.

Following the mixture theory approach proposed in Truesdell [67], Meruane

et al. [57] propose the governing equations for a dense granular flow consist-

ing of a heterogeneous mixture of solid particles and a Newtonian ambient

fluid are obtained.

4.3 Stresses tensor of the liquid phase

Assuming that the state variables of the governing equations are mean quan-

tities obtained by Reynolds averaging of the equations, the stress tensor for

the liquid phase can be written as:

τ fij = µf

(
∂ufi
∂xj

+
∂ufj
∂xi

)
− ρwu

f ′

i u
f ′

i (4.1)

where µf is the dynamic viscosity of the fluid and ρwu
f ′

i u
f ′

i is a generic term

of the Reynolds stresses. According to the diffusive model of Boussinesq [15],

the term due to turbulent fluctuations can be expressed as a linear function

of the shear rate:

−uf ′

i u
f ′

i = νt

(
∂ufi
∂xj

+
∂ufj
∂xi

)
(4.2)

where νt is derived in analogy with the kinematic viscosity of the flow but it

represents a kinematic property of the flow. In first instance it is assumed

that νt is a scalar and it is noted that this hypothesis is not general and it

falls in default when applied to the normal stresses of the Reynolds tensor.

Anyway, the closure suggested by Boussinesq [15] can be applied when there

are few terms of the turbulent tensor efforts that count in the balance of
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momentum. In the case of fluid-particle flows is more complicated than that

for the case of pure fluid flows, as the solid particles modify the structure and

intensity of the fluid turbulence, thus altering the transport rate of momen-

tum [31]. A detailed description of the mechanism relevant to the turbulence

in granular flows is proven by Elghobashi and Truesdell [31] ”...In gravita-

tional environment, particles also transfer their momentum to the small-scale

motion but in an anisotropic manner. The pressure-strain correlation acts

to remove this anisotropy by transferring energy from the direction of grav-

ity to the other two directions, but at the same wave number, i.e., to the

small-scale motion in directions normal to gravity. This input of energy in

the two directions with lowest energy content causes a reverse cascade. This

reverse cascade tends to build up the energy level at lower wave numbers, thus

reducing the decay rate of energy as compared to that of particle-free turbu-

lence. This reduction of the energy decay rate slows down the rate of growth

of the integral length scale. The associated augmentation of the dissipation

rate reduces the Kolmogorov length scale...”.

4.3.1 Dynamic viscosity of interstitial fluid

The presence of particles in the pore fluid influences the effective fluid viscos-

ity. The influence is complex and has been the object of systematic research

[41]. In the framework of sediment transport in river bed, Einstein [30] pro-

poses an expression to modify the viscosity of water, taking into account the

solid grains, that is: µe = µf(1 + 2.5c) where µe is the effective viscosity.

Although the relation proposed by Einstein was derived in the mono-phase

approach and it is valid in diluted region, it represents the basic approach

to treat the problem, i.e. to derive a relation for the viscosity of the liquid

phase that is a function of the concentration.
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4.3.2 Closure models for the Reynolds stresses in gran-

ular flows

From a dimensional point of view, the diffusive coefficient νt introduced by

Boussinesq [15] is the product between a length and a velocity, such that in

general:

νt = [Λ][U] (4.3)

Different models for expressing the diffusive coefficient, improperly also called

eddy viscosity exits. In this chapter some closure relation of the stresses of

the liquid phase in two-phase flows are provided.

4.3.2.1 Mixing length models in granular flows

The mixing-length model by Prandtl [61] is the first proper model to describe

the distribution of the eddy viscosity of the turbulence. Following an analogy

with the kinetic theory of gases, the eddy viscosity is scaled on the mean

fluctuation velocity and on a mixing length. For two-phase granular flows

the idea is to use the mixing length as the length scale and the shear rate of

the liquid phase dot the mixing length as the velocity scale, and to express

the mixing length as a function of the concentration. In this respect different

expressions for the mixing length are evaluated, eqs.(4.4)-(4.9):

ℓ1 = κη

(
c ∗ −c
c∗

)a

h (4.4)

ℓ2 = κη

(
c ∗ −c
c∗

)
d

λ
(4.5)

ℓ3 = κη

(
c ∗ −c
c∗

)
h+

d

λ
(4.6)

ℓ4 = κη

(
c ∗ −c
c∗

)b
d

λ
(4.7)

(4.8)



4.3 Stresses tensor of the liquid phase 85

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.03 0.06 0.09 0.12

η

τ /(ρgh)

tau_w tauf_2

tauf_1 tauf_3

tauf_4 tauf_5

tau_6

Figure 4.1: Comparison among the expression of the stresses of the liquid
phase following different relations of the mixing length of a two phase flow.
Furthermore, the red dot represents the stresses according to relation (4.11).

ℓ5 = κ

(
d

go

)
(4.9)

where: κ is the von Karman constant, η the non-dimensional normal coor-

dinate, h the water depth of the flow, c∗ the maximum value of the concen-

tration, d the diameter of the particles, λ the linear concentration [13], go

the radial distribution function [54] and a and b constant. In uniform flow

conditions the stresses of the liquid phase reads:

τ f12 = ρw(1− c)ℓ2

(
∂uf1
∂x2

+
∂uf2
∂x1

)2

(4.10)

In figure 4.1 a comparison of the different entities of the shear stresses of

the liquid phase, evaluated for the different relations of the mixing length

ℓi, choosing a = 2, b = 0.1 and making dimensionless by the water depth,

the density of the solid phase and the gravity vector, is presented. The

experimental data used for these considerations were obtained in Armanini

et al. [5]. From figure 4.1, the relations named 2, 3, 5 made the entity of

the internal stresses of the liquid phase too big for the type of flow under

consideration. Furthermore, from this previous analysis we see that none of
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the equations proposed, eqs.(4.4)-(4.9), are able to reproduce the free surface

flows. In fact, a valid expression of the mixing length must take into account

that the shear stresses of the liquid phase are zero at the free surface. In this

respect, a proper relation is:

τ fij = ρw(1− c)(κη)(1− η)h2

(
∂ufi
∂xj

+
∂ufj
∂xi

)2

f2(c) (4.11)

where f2(c) is a function of the concentration that take into account the

influence of the particles. This model is valid when is applied to the wall

turbulence.

4.3.2.2 k − ǫ models in granular flows

A standard turbulence energy-dissipation model for the turbulence of the

liquid phase is the k − ǫ model [62], where k is the energy of the turbulence

(k = 1/3(uf
′

1 + uf
′

2 + uf
′

3 )) and ǫ is the dissipation rate, such that, according

to Meruane et al. [57] the eddy viscosity is:

νt = cµ
k2

ǫ
(4.12)

where cµ is a constant. The equations of the two-phase approach are com-

pleted with the energy balances of the k − ǫ model, although there are no

general turbulent closures for the liquid phase in the case of two-phase flows.

In the literature there is still an ambiguity and this issue is currently dealt

with using different approaches. Meruane et al. [57] and Crowe et al. [21] in-

clude a source term in the kinetic energy equation of the liquid phase, which

represents the irreversible work on the fluid associated with the drag force

on the particles:

0 =
∂

∂x2

(
µt

σt

∂k

∂x2

)
+ µt

(
∂uf

∂x2

)2

+D|uf − ug|2 − ρw
ρs

(1− c)ǫ (4.13)
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0 = c1ǫ
ǫ

k

[
µt

(
∂uf

∂x2

)2

+D|uf − ug|2
]
+

∂

∂x2

(
µt

σǫ

∂ǫ

∂x2

)
−c2ǫ

ρw
ρs

(1−c)ǫ
2

k
(4.14)

where µt = ρwνt. In contrast, Hsu et al. [39] considered the work on the fluid

associated with the drag force on the particles as dissipative terms in the

energy balances of the k − ǫ model.

4.4 Preliminary results

The set of equations that governs the two-phase uniform steady flow, in the

x1 longitudinal direction, proposed in Chapter 2, are written for the dilute

flows, where the stresses of the fluid phase are not neglected, as:

∂τ f21
∂x2

= ρwg
∂z

∂x1
+

1

1− c
D1 (4.15)

∂τ g21
∂x2

= c(ρs − ρw)g
∂z

∂x1
− 1

1− c
D1 (4.16)

∂pg

∂x2
= −c(ρs − ρw)g

∂z

∂x2
(4.17)

Please refer to appendix C for further explanation. In the following the

system of equations (4.15)-(4.17) is solved with the numerical procedure de-

scribed in section 2.3. The closure relations are the relations of the heuris-

tic model for the granular stresses, the drag expression derived in Chapter

4, while for the stresses of the liquid phase a mixing length model, as in

eq.(4.11), is proposed:

τ g21 = µg−collγ̇ + tanϕpg
Iso

Iso + Is
(4.18)

pg = pg
Iso

Iso + Is
+ f1Θ (4.19)

τ f21 = (µe + µt)
∂uf1
∂x2

f2(c) (4.20)
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Figure 4.2: Comparison between results of the numerical simulation (solid
line) and experimental data (circles) of: (a) particle concentration profile; (b)
granular temperature profile.

D1 =
3

4
CDc

ρw
ρsd

(uf1 − us1)|uf1 − us1|f(c) (4.21)

In first instance it is assumed that f2(c) = 0, and the shear stresses of the

liquid phase are considered null. This hypothesis allows the set of equations

(4.15)-(4.17) to be solved, and the results of this investigation to be com-

pared with the measurement of the velocity of the liquid phase published in

Armanini et al. [11] (figure 4.3(a)).

With respect to the results proposed in Armanini et al. [11], the set of

equations (4.15)-(4.17) is solved with a further variable, which is the velocity

of the liquid phase. Moreover the interaction force is expressed through the

voidage function derived in chapter 3, eq.(3.17). The preliminary considera-

tions proposed in section 2.4.1 are confirmed by the distribution across the

flow depth of the velocity of the liquid phase (figure 4.3(a)) obtained under

the hypothesis that the stresses of the liquid phase are negligible compared

with the other terms of the balance of the liquid phase in the longitudinal

direction (figure 4.5).

A preliminary analysis of the nature of the solution of the complete set of

equations (4.17), including the closure for the internal stresses of the liquid

phase, shows that the velocity of the liquid phase, even in the simplest case of
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Figure 4.3: Comparison between results of the numerical simulation (solid
line) and experimental data (circles) of: (a) velocity of the liquid phase; (b)
velocity of the granular phase.
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Figure 4.4: Collisional and frictional component of (a) pressure and of (b)
shear stress. Comparison between computed (solid line) and observed (cir-
cles) values.
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Figure 4.6: Terms of the momentum equation in x1 of the solid phase.

laminar regime with constant viscosity, has four possible solutions real and

non-real, depending on the absolute value of the difference in velocities of

the two phases. The numerical resolutions of the complete set of equations

is still an open issue.



Chapter 5

The extension to the 2D model

Chapter 5 tackles the extension of the complete system of equations of Chap-

ter 4 to the non-uniform and non-stationary 2D case. The set of equations

are implemented in a numerical model proposed by Dumbser [27]. A descrip-

tion of the numerical model, the geometry and the boundary conditions are

presented. A set of adaptations of the numerical model for the application to

granular flows are presented. The chapter concludes with some preliminary

results.

5.1 Introduction

The system of equations (1.1) for a non-stationary flow in the plane x1, x2,

is:

∂ρw(1− c)

∂t
+
∂ρw(1− c)uf1

∂x1
+
∂ρw(1− c)uf2

∂x2
= 0 (5.1)

∂ρw(1− c)uf1
∂t

+
∂ρw(1− c)uf1u

f
1

∂x1
+
∂ρw(1− c)uf1u

f
2

∂x2
=

−ρw(1− c)g
∂z

∂x1
− (1− c)

∂pf

∂x1
+ (1− c)

∂τ f11
∂x1

+

91
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+(1− c)
∂τ f21
∂x2

−D1 (5.2)

∂ρw(1− c)uf2
∂t

+
∂ρw(1− c)uf2u

f
1

∂x1
+
∂ρw(1− c)uf2u

f
2

∂x2

= −ρw(1− c)g
∂z

∂x2
− (1− c)

∂pf

∂x2
+ (1− c)

∂τ f22
∂x2

+(1− c)
∂τ f12
∂x1

−D2 (5.3)

∂ρsc

∂t
+
∂ρscu

g
1

∂x1
+
∂ρscu

g
2

∂x2
= 0 (5.4)

∂ρscu
g
1

∂t
+
∂ρscu

g
1u

g
1

∂x1
+
∂ρscu

g
1u

g
2

∂x2

= −ρscg
∂z

∂x1
− ∂pg

∂x1
+
∂τ g11
∂x1

+
∂τ g21
∂x2

− c
∂pf

∂x1
+ c

∂τ f11
∂x1

+c
∂τ f21
∂x2

+D1 (5.5)

∂ρscu
g
2

∂t
+
∂ρscu

g
2u

g
1

∂x1
+
∂ρscu

g
2u

g
2

∂x2

= −ρscg
∂z

∂x2
− ∂pg

∂x2
+
∂τ g22
∂x2

+
∂τ g12
∂x1

− c
∂pf

∂x2
+ c

∂τ f22
∂x2

+c
∂τ f12
∂x1

+D2 (5.6)

∂ρscΘ

∂t
+
∂ρscΘu

g
1

∂x1
+
∂ρscΘu

g
2

∂x2
∂

∂x1

[
κθ
∂Θ

∂x1

]
+

∂

∂x2

[
κθ
∂Θ

∂x2

]
+ µgγ̇g

2 − f5
Θ1.5

d
(5.7)

where z is the vertical coordinate. The resulting system consists of a set of

partial differential equations, (5.1)-(5.7), whose conservative part is hyper-

bolic, and can be written in the compact formulation, eq.(5.8):

dQ

dt
+A(Q) · ∇Q = S(Q), (5.8)
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5.2 The numerical model for PDE equations

Recently Dumbser [27] developed a high-order, path conservative, WENO fi-

nite volume scheme, which solves the element interface with the new general-

ized Osher−type scheme [29], and is able to solve the BaerNunziato model for

compressible multiphase flows. The domain Ω is discretized with an unstruc-

tured mesh, triangular for 2D flows. The sides of the triangles are called Ti.

The numerical solutions is given as unh ∈ Vh where Vh is the space of piecewise

polynomials of degree N . The numerical approximation is wn
h ∈ Wh where

Wh is the space of piecewise polynomials of degree M , with M ≥ N . The

reconstruction is done by defining a stencil Si containing the element Ti and

an appropriate set of neighbors of Ti. The reconstructed solution is found

by imposing a weak identity between the numerical and the approximated

solutions, (5.9):

[φk, w
n
h ]Tj

= [φk, u
n
h]Tj

∀Tj ∈ Si (5.9)

i.e. eq.(5.9) must hold at least exactly in the element Ti under consideration.

φk is the test function of the space Vh used to evolve wn
h inside each element

with the local space-time Galerkin approach. The monotonicity is ensured

using the unstructured WENO scheme. The governing PDE’s, eqs.(5.8), are

multiplied by θk, which is a test function ∈ Zh of the space of piecewise

polynomials of degree M , and the resulting system is then integrated in

time:
(
[θk, qh]

tn+1

Ti
−
〈
∂

∂t
θk, qh

〉

Ti

)
+ 〈θk, A(qh) · ∇qh〉Ti

= [θk, w
n
h ]

tn

Ti
+ 〈θk, S(qh)〉Ti

(5.10)

The initial condition is the reconstructed solutions at time tn, wn
h . The result

of the local system is called the predictor solution qh, an element that is

local in space and in time. The system can be solved very efficiently using
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the one-step finite-volume and discontinuous Galerkin schemes developed in

Dumbser et al. [28]. Finally, in order to update the numerical solution unh
from the time level tn to the new time level tn+1, a path-conservative PNPM

scheme is implemented, eq.(5.11):

[φk, u
tn+1

h ]t
n+1

Ti
− [φk, u

n
h]

tn

Ti
+ 〈φk, A(qh) · ∇qh〉Ti ∂Ti

+φk, Di+ 1

2

(q−h , q
+
h ) · −→n ∂Ti

= 〈φk, S(qh)〉Ti
(5.11)

To solve the interface between the two elements of the volume, Di+ 1

2

(q−h , q
+
h ),

a Osher-type scheme is used.

5.3 The equation of state of the liquid phase

In order to ensure that the pressure of the liquid phase is hydrostatic, the

Tait equation of state [14], named EOS, is included by Dumbser [27]. This

closure relation is also very common in weakly compressible smooth particle

hydrodynamics (SPH) schemes, for the simulation of free surface flows. This

simplification is in good agreement with the real behaviour of water in typical

environmental flow conditions, i.e. close to atmospheric pressure and typical

ambient temperatures.

The fluid pressure is expressed as:

pf = kf

(
ρf
ρfo

− 1

)γ

(5.12)

where kf is a constant that governs the compressibility of the fluid and hence

the speed of sound, ρf is the liquid density, ρfo is the liquid reference density

at atmospheric standard conditions and γ is a parameter that is used to fit the

EOS with experimental data. In the application to free surface flows, the Tait

equation of state yields a relative pressure with respect to the atmospheric

reference pressure (pf (ρfo) = 0).
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5.4 The equation of state of the granular phase

The pressure of the granular phase is given by the equation of state of the

heuristic model. As is better explained in chapter 2, the equation of state

is derived in analogy with the rheological formulation, and in uniform flow

conditions satisfies the two boundary conditions: approaching the free surface

it tends to the expression of the kinetic theory, while, at the boundary with

the loose static bed, it reduces to an identity. From a theoretical point of

view, in fact, this boundary represents the transition between the liquid and

the solid behaviour of the granular flows, where the pressure cannot depend

on the kinematic properties of the flow field such as the granular temperature.

The equation of state of the heuristic model is given by an implicit expression

depending on the Savage number :

pg = pg
Iso

Iso + Is
+ ρsf1Θ (5.13)

The formulation eq.(5.13) can be made explicit with simple steps, by substi-

tuting the expression of the Savage number :

(Iso + Is)p
g = pgIso + f1Θ(Iso + Is) (5.14)

(γ̇d)2

pg
pg = f1Θ

(
Iso +

(γ̇d)2

pg

)
(5.15)

pg(γ̇d)2 = f1Θp
gIso + (γ̇d)2f1Θ (5.16)

pg((γ̇d)2 − f1ΘIso) = (γ̇d)2f1Θ (5.17)

which results in:

pg =
(γ̇d)2f1Θ

(γ̇d)2 − f1ΘIso
(5.18)

However, from a numerical point of view, the explicit formulation of the

equation of state of the heuristic model, at the limit with the loose static
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bed, exhibits two solutions:

– 1: (γ̇d)2 = f1ΘIso

– 2: (γ̇d)2 >> f1ΘIso

To avoid this ambiguity, and in order to supply an equation of state that

is also valid in the solid state of the granular flows, in analogy to the Tait

equation used for the fluid pressure, a compressible behaviour of the solid

state is included:

pg−com = ks

(
ρs
ρso

− 1

)γ

(5.19)

such that the equation of state for the granular phase becomes:

pg = pg−com + pg
Iso

Iso + Is
+ f1ρsΘ (5.20)

The hypothesis that the solid phase is compressible is also proposed in the

literature of the numerical modelization of two phase granular flows [60].

Since a new variable is introduced, ρs, a further partial differential equation

is needed and the final system to solve consists of 8 equations:

∂ρw(1− c)

∂t
+
∂ρw(1− c)uf1

∂x1
+
∂ρw(1− c)uf2

∂x2
= 0 (5.21)

∂ρw(1− c)uf1
∂t

+
∂ρw(1− c)uf1u

f
1

∂x1
+
∂ρw(1− c)uf1u

f
2

∂x2
+
∂(1 − c)pf

∂x1

= −ρw(1− c)g
∂z

∂x1
− pf

∂c

∂x1
+
∂(1 − c)τ f11

∂x1
+ τ f11

∂c

∂x1

+
∂(1− c)τ f21

∂x2
+ τ f21

∂c

∂x2
−D1 (5.22)

∂ρw(1− c)uf2
∂t

+
∂ρw(1− c)uf2u

f
1

∂x1
+
∂ρw(1− c)uf2u

f
2

∂x2
+
∂(1 − c)pf

∂x2
=
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= −ρw(1− c)g
∂z

∂x2
− pf

∂c

∂x2
+
∂(1 − c)τ f22

∂x2
+ τ f22

∂c

∂x2

+
∂(1− c)τ f12

∂x1
+ τ f12

∂c

∂x1
−D2 (5.23)

∂ρsc

∂t
+
∂ρscu

g
1

∂x1
+
∂ρscu

g
2

∂x2
= 0 (5.24)

∂ρscu
g
1

∂t
+
∂ρscu

g
1u

g
1

∂x1
+
∂ρscu

g
1u

g
2

∂x2
+
∂cpf

∂x1
+
∂f1ρsΘ

∂x1
+
∂pg−com

∂x1

= −ρscg
∂z

∂x1
− ∂

∂x1
pg

Iso
Iso + Is

+
∂

∂x1
tanϕpg

Iso
Iso + Is

+
∂

∂x1
µg−coll∂u

g
1

∂x1

+
∂

∂x2
tanϕpg

Iso
Iso + Is

+
∂

∂x2
µg−coll

(
∂ug2
∂x1

+
∂ug1
∂x2

)
+ pf

∂c

∂x1

+
∂cτ f11
∂x1

− τ f11
∂c

∂x1
+
∂τ f21c

∂x2
− τ f21

∂c

∂x2
+D1 (5.25)

∂ρscu
g
2

∂t
+
∂ρscu

g
2u

g
1

∂x1
+
∂ρscu

g
2u

g
2

∂x2
+
∂cpf

∂x2
+
∂f1ρsΘ

∂x2
+
∂pg−com

∂x2

= −ρscg
∂z

∂x2
− ∂

∂x2
pg

Iso
Iso + Is

+
∂

∂x2
tanϕpg

Iso
Iso + Is

+
∂

∂x2
µg−coll∂u

g
2

∂x2

+
∂

∂x1
tanϕpg

Iso
Iso + Is

+
∂

∂x1
µg−coll

(
∂ug1
∂x2

+
∂ug2
∂x1

)
+ pf

∂c

∂x2

+
∂cτ f22
∂x2

− τ f22
∂c

∂x2
+
∂cτ f12
∂x1

− τ12
∂c

∂x1
+D2 (5.26)

∂ρscΘ

∂t
+
∂ρscΘu

g
1

∂x1
+
∂ρscΘu

g
2

∂x2
∂

∂x1

[
κθ
∂Θ

∂x1

]
+

∂

∂x2

[
κθ
∂Θ

∂x2

]
+ µgγ̇g

2 − f5
Θ1.5

d
(5.27)

∂ρs
∂t

+
∂ρsu

g
1

∂x1
+
∂ρsu

g
2

∂x2
= 0 (5.28)
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5.4.1 The numerical formulation

For the numerical formulation, the system of equations (5.21)-(5.28), which

shows 8 real eigenvalues, is written as:

∂Wt+∂Fx(W )+∂Fy(W )+∂Gx(W ;∇W )+∂Gy(W ;∇W )+NCx+NCy = S

(5.29)

where the vector W is of the conservative variables is:

W (1) = ρw(1− c)

W (2) = ρw(1− c)uf1

W (3) = ρw(1− c)uf2

W (4) = ρsc

W (5) = ρscu
g
1

W (6) = ρscu
g
2

W (7) = ρscΘ

W (8) = ρs

The vector of the fluxes in the x1 longitudinal direction is:

Fx(1) = W (2)

Fx(2) = W (2)W (2)/W (1) + (1− c)pw

Fx(3) = W (3)W (2)/W (1)

Fx(4) = W (5)

Fx(5) = W (5)W (5)/W (4) + cpw + f1ρsΘ+ pg−com

Fx(6) = W (5)W (6)/W (4)

Fx(7) = W (7)W (5)/W (4)

Fx(8) = W (8)W (5)/W (4)



5.4 The equation of state of the granular phase 99

The vector of fluxes in the y normal directions is:

Fy(1) =W (3)

Fy(2) =W (2)W (3)/W (1)

Fy(3) =W (3)W (3)/W (1) + (1− c)pw

Fy(4) =W (6)

Fy(5) =W (5)W (6)/W (4)

Fy(6) =W (6)W (6)/W (4) + cpw + f1ρsΘ+ pg−com

Fy(7) =W (7)W (6)/W (4)

Fy(8) =W (8)W (6)/W (4)

The vector of viscous fluxes, in the x longitudinal direction, is:

Gx(1) = 0

Gx(2) = (1− c)2µw
∂uf1
∂x1

Gx(3) = (1− c)µw

(
∂uf1
∂x2

+
∂uf2
∂x1

)

Gx(4) = 0

Gx(5) = −pg Iso
Iso + Is

+ tanϕpg
Iso

Iso + Is
+ 2µg−coll∂u

g
1

∂x1
+ 2cµw

∂uf1
∂x1

Gx(6) = tanϕpg
Iso

Iso + Is
+ µg−coll

(
∂ug1
∂x2

+
∂ug2
∂x1

)
+ cµw

(
∂uf1
∂x2

+
∂uf2
∂x1

)

Gx(7) = kΘ
∂Θ

∂x1
Gx(8) = 0
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The vector of viscous fluxes, in the y normal direction, is:

Gy(1) = 0

Gy(2) = (1− c)µw

(
∂uf1
∂x2

+
∂uf2
∂x1

)

Gy(3) = (1− c)2µw
∂uf2
∂x2

Gy(4) = 0

Gy(5) = tanϕ
Iso

Iso + Is
+ µg−coll

(
∂ug1
∂x2

+
∂ug1
∂x1

)
+ cµw

(
∂uf1
∂x2

+
∂uf2
∂x1

)

Gy(6) = pg
Iso

Iso + Is
+ tanϕpg

Iso
Iso + Is

+ 2µg−coll∂u
g
2

∂x2
+ 2cµw

∂uf2
∂x2

Gy(7) = kΘ
∂Θ

∂x2
Gy(8) = 0

the vector of non-conservative terms, in the x longitudinal direction, is:

NCx(1) = 0

NCx(2) = −pwc+ 2µw
∂uf1
∂x1

c

NCx(3) = µw

(
∂uf1
∂x2

+
∂uf2
∂x1

)
c

NCx(4) = 0

NCx(5) = pwc− 2µw
∂uf1
∂x1

c

NCx(6) = −µw

(
∂uf1
∂x2

+
∂uf2
∂x1

)
c

NCx(7) = 0

NCx(8) = 0
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The vector of non-conservative terms, in the y normal direction, is:

NCy(1) = 0

NCy(2) = µw

(
∂uf1
∂x2

+
∂uf2
∂x1

)
c

NCy(3) = −pwc+ 2µw
∂uf2
∂x2

c

NCy(4) = 0

NCy(5) = −µw

(
∂uf1
∂x2

+
∂uf2
∂x1

)
c

NCy(6) = pwc− 2µw
∂uf2
∂x2

c

NCy(7) = 0

NCy(8) = 0

and finally the vector of the source terms is:

S(1) = 0

S(2) = −ρwg(1− c) sinα−D1

S(3) = −ρwg(1− c) cosα−D2

S(4) = 0

S(5) = −ρsgc sinα+D1

S(6) = −ρsgc cosα +D2

S(7) = −f5
Θ1.5

d
S(8) = 0

5.4.1.1 Modifications of the numerical model

The Bear−Nunziato model is solved under the hypothesis that the interaction

among the different phases is negligible [27]. For submerged granular flows
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Figure 5.1: Geometry in Gambit.

the interaction between the liquid and the solid phase plays an important

role (please refer to the content of the Chapter 3). The numerical model is

then modified to include the fact that the fluxes also depend on the gradient

of the vector of conservative variables.

5.4.2 Geometry and Boundary Conditions

As a preliminary analysis of the PDE solve numerical model, the experimen-

tal configuration and the data from the laboratory investigations proposed

in section 2.4 are reproduced.

The domain is designed using Gambit2D and represents the channel of

figure 2.2. In figure 5.1 the channel is reproduced by a rectangle 2m long and

0.0617 m in height. Furthermore, Gambit 2D, setup on the generic solver,

allows to assign the boundary conditions and to create a triangular mesh of

data spacing.

Different types of boundary conditions are considered: wall, Lagrangian

wall, space-time dependent, constant Dirichlet boundaries and periodic

boundaries. In particular, in order to reproduce the case studied in section

2.4, at the bottom a wall type boundary is assigned, while at the free sur-

face constant Dirichlet type boundary conditions are imposed. In order to

reproduce the re-circulation of the channel setup, the two vertical sides are

periodic boundaries type.

The output of Gambit 2D is the geometry designed, with the boundaries

assigned, and discretized by a mesh. It is exported in a file.neu and represents

the domain of calculus.

The numerical model PDE solve reads a file including all input informa-

tion:
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– number of space dimensions (2D or 3D)

– equation subtype, i.e. a number that identifies the set of equations to

solve

– the number of variables of the PDE system

– the number of auxiliary variables

– the name and values of the constant of the problem:

– the constants of compressibility of the liquid phase and of the solid

phase (kf = ks) and the constant γ;

– the reference densities (ρfo and ρso),

– the value of the parameter of the heuristic model, Iso,

– the water depth h,

– the diameter of the spherical particles d

– the value of the maximum packing concentration c∗

– the initial conditions

– the boundary conditions

– the file name of the mesh and the type of discretization

– the numerical inputs: the local space-time Galerkin predictor type; the

initial guess type in time, the orders of the original basis and of the

reconstructed solution, the type of the reconstructed solver, the method

to solve the numerical fluxes and some numerical parameters such as

the CFL number, the minimum interval of time discretization and the

tolerance.

– finally the instruction for where and how to write the outputs
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5.5 Preliminary results

A preliminary test of the numerical model is to reproduce the uniform flow

conditions that are the output of the simulation proposed in Chapter 2.

The boundary conditions and the initial conditions for the PDE model

are the data out of the DAE model. Figures 5.2(a), 5.2(b), 5.3(a) ad 5.3(b)

show the distributions across the flow depth of the inputs of the numerical

simulation of Chapter 2, named DAE, with line, while the inputs of the

PDE are in dots. It seems that the PDE are able to reproduces in a correct

way the primitive variables. Furthermore, the comparison reported in figures

5.4(a) and 5.4(b) shows that the numerical model PDEs is able to correctly

compute the distributions across the flow depth of the stresses of the granular

phase of DAEs.

With respect to the results ofDAEs, the equation of state of the heuristic

model is modified to include the compressibility of the solid phase, and it

seems from figure 5.4(a) that this hypothesis gives reasonable results. The

mismatches of figure 5.4(b) near the free surfaces are probably due to the

different computational procedure of the gradients of the variables of the two

numerical solvers compared.
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Figure 5.2: Comparison between results of the numerical simulation DAE
(solid line) and results of the numerical simulation PDE (circles) of: (a)
particle concentration profile; (b) granular temperature profile.
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Figure 5.3: Comparison between results of the numerical simulation DAE
(solid line) and results of the numerical simulation PDE (circles) of: (a)
granular velocity profile; (b) liquid velocity gradient profile.
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Figure 5.4: Comparison between results of the numerical simulation DAE
(solid line) and results of the numerical simulation PDE (circles) of: (a)
granular pressure profile; (b) granular shear stresses profile.
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The content of this chapter is a preliminary dissertation on the numerical

method proposed in order to simulate the unsteady flow of granular fluids,

such as a dam break, and then, passing to the 3D formulation, the flow in

enlargements and narrowing of granular flows. In the hydraulic laboratory

of the University of Trento some data on dam breaks have already been

analyzed [33] while we are working on analyzing the experimental data for

the non-uniform motion.



Chapter 6

Conclusions

The thesis tackles the mechanics of granular flows. In particular, focusing on

submerged granular flows driven by gravity, two phases are observed. In the

framework of the thesis, the interstitial fluid is water, while the solid phase

is composed of identical spherical heavy particles with constant diameter.

From a physical point of view, the more reliable way to describe the be-

haviour of the solid phase is to treat it as a granular flow. The phenomenon

is characterized by an absence of mass exchange between the two phases.

The mechanics is described by the set of mass and momentum conservation

equations, written separately for each phase. The closure relations for the

stresses of the granular phase, of the interstitial fluid and of the interphase

forces are needed. The thesis discusses these three aspects.

The main contributions of the thesis regard the rheology of the granular

phase. It is observed that in uniform flow conditions, the granular phase

behaves like a gas approaching the free surface, like a solid in a mobile static

bed composed of the same material, and like a liquid in an intermediate

region [5]. The mechanics of the granular phase is based on the types of con-

tacts among particles: if the contacts are instantaneous, the regime is called

collisional, while if the contacts become long lasting and involve several par-

ticles at the same time, the regime is called frictional. The experimental
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evidence [5] shows, in fact, that in uniform flow conditions, the collisional

regime dominates approaching the free surface, while the frictional regime be-

comes relevant approaching the loose static bed. The novelty of the approach

adopted in the thesis is to consider the collisional regime and the frictional

regime as coexisting across the flow depth, with a mechanism of intermit-

tency similar to that of the turbulent boundary layer on smooth wall [10].

The collisional regime is described by the kinetic theory of dense gases [55],

which, in analogy with the kinetic theory, replaces the concept of ordinary

temperature with the concept of granular temperature, which is a measure-

ment of the fluctuations of the granular phase, and adds a dissipation term,

due to the inelastic collisions among particles, to the kinetic energy balance.

Regarding the frictional regime, the observations and the intuition sug-

gest that the rheology shows, at the same time, both shear-dependent and

shear-independent features. In this respect, an analysis of the forces involved

identifies the Savage number as the dimensionless parameter that governs

the frictional regime. A heuristic relation for the shear stress of the fric-

tional regime is derived as a function of the Savage number. In analogy an

equation of state for the frictional regime is derived. Since the literature

of the frictional regime of granular flows lacks a theory, the considerations

reported in Chapter 2 represent the major contribution of the thesis. The

model, named the heuristic model, is solved numerically, [6] , and the re-

sults are compared with experimental data [11]. With respect to previous

works [64, 34, 22, 44, 20], the formulation of the heuristic model allows the

concentration of the solid phase to become an independent variable of the

problem, in order to avoid the assumption that the concentration is constant,

which is in contrast with experimental evidence, and to avoid any empirical

formulations.

A further novelty of the heuristic model, [11], regards the equation of

the total energy balance of the granular phase. An attempt to explain the

mechanisms of exchange of energy, among different terms of the total energy
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balance and of the kinetic energy balance and between the terms of the two

balances is provided. An analysis of the order of magnitudes of the terms of

the kinetic energy balance suggests that the granular temperature also plays

a role in the frictional regime.

Concerning the interphase forces, a proper relation, valid also for hyper-

concentrated flows, is theoretically derived. A specific experimental investi-

gation is carried out in order to understand the difference between the drag

averaged over time and the drag calculated with respect to the average veloc-

ities. This difference between the two drags, named residual drag, represents

the contribution to the drag due to the correlations between the fluctuating

components of the concentration and of the velocities. Moreover, the role of

this correlation in the kinetic energy balance is analyzed, comparing different

approaches [39, 11].

Regarding the rheology of the interstitial fluid, it is water treated with

a Newtonian rheology. In the framework of the thesis different relations

for the stresses of the liquid phase are provided. For the laminar regime, the

viscosity of water is modified to account for the presence of particles [30]. For

the turbulent regime different models are considered: the simplest approach

is to modify the mixing-length model with a mixing length dependent on the

concentration of the granular phase, while a more complicated approach is

to modify the equations of the k− ǫ model of turbulence through a term due

to the work done by the granular phase [57].

Finally, the application to non-stationary and non-uniform flow condi-

tions of the theory developed in the thesis in two dimensions is implemented

with preliminary results.
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Appendix A

Equations of the flow in the

column

The flow in the column is a 3D flow in x = (x1, x2, x3), where x3 the vertical

direction such that the gravity acceleration vector is g = (0, 0,−g). The

vector uβ = (uβ1 , u
β
2 , u

β
3) represent the velocities in the three direction and

the superscript is β = g, f for the granular or the liquid phase respective. In

the following, the steps needed to derives the simplified system of equation,

proposed in Chapter 3, are treated separated for the solid phase and for the

liquid phase. In both the systems the flow is assumed to be statistically sta-

tionary in order to define the average of each as: u(x) =
1

T
lim
T→∞

∫
u(τ,x)dτ ,

and c(x) =
1

T
lim
T→∞

∫
c(τ,x)dτ . The Reynolds decomposition is applied to

the equations, that is to write each variable as the summation of the aver-

aged value and the instantaneous value u = u+u′ and to average it time, for

example: u = u+ u′ with u = u and u′ = 0.
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A.1 Equations of the solid phase
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Since there is no a solid discharge filled in the column, for the solid phase in

uniform flow conditions it is assumed that ug = 0, 0, ug
′

3 and that ∂/∂x1 =

∂/∂x2 = 0, so A.4 becomes:
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then averaging eq.A.8, it results:
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The interaction forces in the three directions are:
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Substituting A.15 in A.12 the final system of averaged in time equations

results:
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From the experimental evidence the mean flow is in the vertical direction, so

is the momentum equation in x3 to be analyzed. Then, eliminating all the
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terms negligible, it reads as:

0 = −ρscg −
∂pg

∂x3
− c

∂pf

∂x3
+ c

∂τ f13
∂x1

+ c
∂τ f23
∂x2

+D3 +D′ (A.20)

Furthermore eq.(A.20) is averaged over the section of column (A) and reads:

0 = −ρscg −
∂pg

∂x3
− c

∂pf

∂x3
+ c

τr3
Rh

+D3 (A.21)

A.2 Equations of the liquid phase

∂

∂t
ρw(1− c) +

∂

∂x1
ρw(1− c)uf1 +

∂

∂x2
ρw(1− c)uf2

+
∂

∂x3
ρw(1− c)uf3 = 0

∂

∂t
ρw(1− c)uf1 +

∂

∂x1
ρw(1− c)uf1u

f
1 +

∂

∂x2
ρw(1− c)uf1u

f
2

+
∂

∂x3
ρw(1− c)uf1u

f
3 = −∂p

f

∂x1
+
∂τ f11
∂x1

+
∂τ f21
∂x2

+
∂τ f31
∂x3

+ F f
1

∂

∂t
ρw(1− c)uf2 +

∂

∂x1
ρw(1− c)uf2u

f
1 +

∂

∂x2
ρw(1− c)uf2u

f
2

+
∂

∂x3
ρw(1− c)uf2u

f
3 = −∂p

f

∂x2
+
∂τ f12
∂x1

+
∂τ f22
∂x2

+
∂τ f32
∂x3

+ F f
2

∂

∂t
ρw(1− c)uf3 +

∂

∂x1
ρw(1− c)uf3u

f
1 +

∂

∂x2
ρw(1− c)uf3u

f
2

+
∂

∂x3
ρw(1− c)uf3u

f
3 = −ρw(1− c)g − ∂pf

∂x3
+
∂τ f13
∂x1

+
∂τ f23
∂x2

+
∂τ f33
∂x3

+ F f
3 (A.22)

A constant discharge of water is filled in the column, and from the continuity

equation is found that the velocity of the liquid phase is constant because
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a uniform flow condition is assumed, and the vector of the velocity reads

as: u = 0, 0, uf3 . Furthermore, in this condition ∂/∂x1 = ∂/∂x2 = 0. A.22

becomes:

∂

∂t
ρw(1− c) +

∂

∂x3
ρw(1− c)uf3 = 0

∂τ f33
∂x3

= −F f
1

∂τ f32
∂x3

= −F f
2

∂

∂t
ρw(1− c)uf3 +

∂

∂x3
ρw(1− c)uf3u

f
3 = −ρw(1− c)g − ∂pf

∂x3

+
∂τ f13
∂x1

+
∂τ f23
∂x2

+
∂τ f33
∂x3

+ F f
3 (A.23)

Averaging in time eq.(A.23), in which each term is substituted by the sum-

mation of its average plus its fluctuations, it results:

∂

∂t
ρw(1− c) +

∂

∂x3
ρw(1− c)uf3 +

∂

∂x3
ρwc′u

f ′

3 = 0

∂τ f31
∂x3

= −F f
1

∂τ f32
∂x3

= −F f
2

∂

∂t
ρw(1− c)uf3 +

∂

∂t
ρwc′u

f ′

3 +
∂

∂x3
ρw

(
uf3u

f
3 + uf

′

3 u
f ′

3 − cuf3u
f
3 − cuf

′

3 u
f ′

3

−2uf3u
f ′

3 c
′ − c′uf

′

3 u
f ′

3

)
− ρw(1− c)g − ∂pf

∂x3
+
∂τ f13
∂x1

+
∂τ f23
∂x2

+
∂τ f33
∂x3

+ F f
3

(A.24)
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The interaction forces in the three directions are:

F f
1 = −c∂τ

f
31

∂x3

F f
2 = −c∂τ

f
33

∂x3

F f
3 = c

∂pf

∂x3
− c

∂τ f13
∂x1

− c
∂τ f23
∂x2

− c
∂τ f33
∂x3

−D3 −D′ (A.25)

Substituting A.25 in A.24 the final system of equations is:

∂

∂t
ρw(1− c) +

∂

∂x3
ρw(1− c)uf3 +

∂

∂x3
ρwc′u

f ′

3 = 0

∂τ f31
∂x3

= c
∂τ f31
∂x3

∂τ f32
∂x3

= c
∂τ f32
∂x3

∂

∂t
ρw(1− c)uf3 +

∂

∂t
ρwc′u

f ′

3 +
∂

∂x3
ρw

(
uf3u

f
3 + uf

′

3 u
f ′

3 − cuf3u
f
3 − cuf

′

3 u
f ′

3

−2uf3u
f ′

3 c
′ − c′uf

′

3 u
f ′

3

)
= −ρw(1− c)g − (1− c)

∂pf

∂x3

+(1− c)

(
∂τ f13
∂x1

+
∂τ f23
∂x2

+
∂τ f33
∂x3

)
−D3 −D′ (A.26)

Focus on the momentum equation in x3, eliminating the term that are negli-

gible, it results:

0 = −ρw(1− c)g − (1− c)
∂pf

∂x3
+ (1− c)

(
∂τ f13
∂x1

+
∂τ f23
∂x2

)
−D3 (A.27)

Finally the momentum equation is averaged on the section A and results:

0 = −ρw(1− c)g − (1− c)
∂pf

∂x3
+ (1− c) +

τr3
Rh

−D3 (A.28)
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Decomposition of the drag force

In the case that the liquid phase is faster then the granular phase, i.e. ufi > ugi ,

the drag force is:

D =
3

4
CD

ρw
d
c f(c)(uf − ug)2 (B.1)

where: CD =
(

4.98√
Re

+ 0.63
)2

and Re = ρw(1−c)(uf −ug)d/µw By expanding

each terms of eq.(B.1), it reads as:

D =
3

4

(
4.8√
Re

+ 0.63

)2
ρw
d
c (1− c)−n (uf − ug)2

=
3

4

(
23.04

Re
+

5.92√
Re

+ 0.397

)
ρw
d
c (1− c)−n (uf − ug)2

=
3

4

(
23.04µw

ρwd(1− c)(uf − ug)
+

5.92
√
µw√

ρwd(1− c)(uf − ug)
+ 0.397

)
ρw
d
c

(1− c)−n (uf − ug)2

(B.2)

Eq. (B.2) shows three different dependence on the relative velocities of the

two-phase, and in the following each terms is treated separately. In particular
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D = D1 +D2 +D3, where:

D1 = 17.28
µw

d2
c (1− c)−n−1 (uf − ug) (B.3)

D2 = 4.44

√
µw

√
ρw

d1.5
c (1− c)−n−0.5 (uf − ug)1.5 (B.4)

D3 = 0.297
ρw
d
c (1− c)−n (uf − ug)2 (B.5)

In order to obtained the average value of the drag force, each termsD1, D2, D3

is rewritten using the Reynolds decomposition and averaging the expressions.

The average of the fluctuations of the first order are considered null.

B.1 Drag 1-Reynolds decomposition and av-

erage

The Reynolds decomposition is applied to the term of the drag force called

1:

D1 = 17.28
µw

d2
c (1− c)−n−1 (uf − ug) (B.6)

Furthermore a simplification is introduce changing the exponent of the term:

(1 − c)−n−1 = (1 − c)−m. Then, applying the Reynolds decomposition and

expanding into a Taylor series and, finally, it results that:

(1− c)−m = (1− c− c′)−m ≃ 1

(1− c− c′)m(1− c+ c′)m
(1− c+ c′)m

≃ (1− c)m −m(1− c)m−1c′

[(1− c)2 − c′2]m
≃ 1

(1− c)m
+m

c′

(1 − c)m+1

(B.7)

that is:

D1 ≃ 17.28
µw

d2
(c+ c′)

(
1

(1− c)m
+m

c′

(1− c)m+1

)
(uf − ug + u′f − u′g)
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≃ 17.28
µw

d2

{
c

(1− c)m
(uf − ug) +

c

(1− c)m
(u′f − u′g)

+
c′

(1− c)m
(uf − ug) +

c′

(1− c)m
(u′f − u′g)

m
cc′

(1− c)m+1
(uf − ug) +m

cc′

(1− c)m+1
(u′f − u′g)

m
c′c′

(1− c)m+1
(uf − ug) +m

c′c′

(1− c)m+1
(u′f − u′g)

}
(B.8)

by averaging and eliminating the correlations of the first order, it results:

D1 ≃ 17.28
µw

d2

{
c

(1− c)m
(uf − ug) +

1

(1− c)m
c′(u′f − u′g)

+m
c

(1− c)m+1
c′(u′f − u′g) +m

c′c′

(1− c)m+1
(uf − ug)

+m
1

(1− c)m+1
c′c′(u′f − u′g)

}
(B.9)

So it is possible to collect the terms dependent on the average valuer of the

velocity, which results:

D1(c, U) = 17.28
µw

d2
c

(1− c)m
(uf − ug) (B.10)

while the residual component collecting is:

DR−1 = 17.28
µw

d2

{[
m

c

(1− c)m+1
+

1

(1− c)m

]
c′(u′f − u′g)

+
m

(1− c)m+1
c′c′(uf − ug) +m

1

(1− c)m+1
c′c′(u′f − u′g)

}

(B.11)
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B.2 Drag 2-Reynolds decomposition and av-

erage

The Reynolds decomposition is applied to the term of the drag force called

2:

D2 ≃ 4.44

√
µw

√
ρw

d1.5
(c+c′)

(
1

(1− c)n
+ n

c′

(1− c)n+1

)
(uf−ug+u′f−u′g)1.5

(B.12)

A simplification is introduce changing the exponent of the term: (1−c)−n−0.5 =

(1− c)−r. Then, applying the Reynolds decomposition and expanding into a

Taylor series and, finally, it results that:

(1− c)−r = (1− c− c′)−r ≃ 1

(1− c− c′)r(1− c+ c′)r
(1− c + c′)r

=
(1− c)r − r(1− c)r−1c′

[(1− c)2 − c′2]r
≃ 1

(1− c)r
+ r

c′

(1− c)r+1
(B.13)

Furthermore, it is assumed that:

(uf − ug + u′f − u′g)
1.5 ≃ (uf − ug)1.5 + 1.5(uf − ug)0.5(u′f − u′g) (B.14)

by averaging and eliminating the correlations of the first order, the second

term of the drag is:

D2 ≃ 4.44

√
µw

√
ρw

d1.5

{
c

(1− c)r
(uf − ug)1.5

+
1

(1− c)r
[1.5(uf − ug)0.5c′(u′f − u′g)] + r

c′c′

(1− c)r+1
(uf − ug)1.5

+r
c

(1− c)r+1
[1.5(uf − ug)0.5c′(u′f − u′g)]

+r
1

(1− c)r+1
[1.5(uf − ug)0.5c′c′(u′f − u′g)]

}
(B.15)
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So it is possible to collect the terms dependent on the average valuer of the

velocity, which results:

D2(c, U) = 4.44

√
µw

√
ρw

d1.5
c

(1− c)r
(uf − ug)1.5 (B.16)

and collect all the other terms in the residual drag, that is:

DR−2 = 4.44

√
µw

√
ρw

d1.5

{
1

(1− c)r
[1.5(uf − ug)0.5c′(u′f − u′g)]+

+r
c′c′

(1− c)r+1
(uf − ug)1.5 + r

c

(1− c)r+1
[1.5(uf − ug)0.5c′(u′f − u′g)]

+r
1

(1− c)r+1
[1.5(uf − ug)0.5c′c′(u′f − u′g)]

}
(B.17)

or collecting:

DR−2 = 4.44

√
µw

√
ρw

d1.5

{
r

c′c′

(1− c)r+1
(uf − ug)1.5

+

(
1

(1− c)r
+ r

c

(1− c)r+1

)
[1.5(uf − ug)0.5c′(u′f − u′g)]

+r
1

(1− c)r+1
[1.5(uf − ug)0.5c′c′(u′f − u′g)]

}
(B.18)

B.3 Drag 3-Reynolds decompositions and av-

erage

The Reynolds decomposition is applied to the term of the drag force called

3, with the following simplification in applying the Reynolds decomposition

and expanding into a Taylor series the voidage function, that is:

(1− c)−n = (1− c− c′)−n ≃ 1

(1− c− c′)n(1− c+ c′)n
(1− c+ c′)n
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=
(1− c)n − n(1− c)n−1c′

[(1− c)2 − c′2]n
≃ 1

(1− c)n
+ n

c′

(1− c)n+1

(B.19)

D3 ≃ 0.297
ρw
d

(c+ c′)

(
1

(1− c)n
+ n

c′

(1− c)n+1

)

[(uf − ug)2 + (u′f − u′g)
2 − 2(uf − ug)(u′f − u′g)]

= 0.297
ρw
d

{
c

(1− c)n
(uf − ug)2 +

c

(1− c)n
(u′f − u′g)

2−

−2
c

(1− c)n
(uf − ug)(u′f − u′g)

+
c′

(1− c)n
(uf − ug)2 +

c′

(1− c)n
(u′f − u′g)

2

−2
c′

(1− c)n
(uf − ug)(u′f − u′g)

+n
cc′

(1− c)n+1
(uf − ug)2 + n

cc′

(1− c)n+1
(u′f − u′g)

2−

2n
cc′

(1− c)n+1
(uf − ug)(u′f − u′g)

+n
c′c′

(1− c)n+1
(uf − ug)2 + n

c′c′

(1− c)n+1
(u′f − u′g)

2−

2n
c′c′

(1− c)n+1
(uf − ug)(u′f − u′g)

}

(B.20)
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by averaging and eliminating the correlations of the first order:

D3(c, U) ≃ 0.297
ρw
d

{
c

(1− c)n
(uf − ug)2 +

c

(1− c)n
(u′f − u′g)

2

+
1

(1− c)n
c′(u′f − u′g)

2

−2
1

(1− c)n
(uf − ug)c′(u′f − u′g) + n

c

(1− c)n+1
c′(u′f − u′g)

2

−2n
c

(1 − c)n+1
(uf − ug)c′(u′f − u′g) + n

c′c′

(1− c)n+1
(uf − ug)2

+n
1

(1− c)n+1
c′c′(u′f − u′g)

2 − 2n
1

(1− c)n+1
(uf − ug)c′c′(u′f − u′g)

}

(B.21)

It is possible to collect the terms dependent on the average valuer of the

velocity, which results:

D3 = 0.297
ρw
d

c

(1− c)n
(uf − ug)2 (B.22)

while the terms of the residual drag are:

DR−3 = 0.297
ρw
d

{
c

(1− c)n
(u′f − u′g)

2
+

1

(1− c)n
c′(u′f − u′g)

2

−2
1

(1− c)n
(uf − ug)c′(u′f − u′g) + n

c

(1− c)n+1
c′(u′f − u′g)

2

−2n
c

(1 − c)n+1
(uf − ug)c′(u′f − u′g) + n

c′c′

(1− c)n+1
(uf − ug)2

+n
1

(1− c)n+1
c′c′(u′f − u′g)

2

−2n
1

(1 − c)n+1
(uf − ug)c′c′(u′f − u′g)

}
(B.23)
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or collecting:

DR−3 = 0.297
ρw
d

{
c

(1− c)n
(u′f − u′g)

2

−2

(
1

(1− c)n
+ n

c

(1− c)n+1

)
(uf − ug)c′(u′f − u′g)

+n
c′c′

(1− c)n+1
(uf − ug)2 +

(
1

(1− c)n
+ n

c

(1− c)n+1

)
c′(u′f − u′g)

2

−2n
1

(1 − c)n+1
(uf − ug)c′c′(u′f − u′g) + n

1

(1 − c)n+1
c′c′(u′f − u′g)

2
}

(B.24)
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Equations of the diluted two

phase flow in uniform flow

conditions

In stationary condition the momentum conservation equations of a plane flow

are:

xf1 : 0 = −ρw(1− c)g
∂z

∂x1
− ∂pf

∂x1
+
∂τ f21
∂x2

+ F1 (C.1)

xf2 : 0 = −ρw(1− c)g
∂z

∂x2
− ∂pf

∂x2
+
∂τ f12
∂x1

+ F2 (C.2)

xs1 : 0 = −ρscg
∂z

∂x1
− ∂pg

∂x1
+
∂τ g21
∂x2

− F1 (C.3)

xs2 : 0 = −ρscg
∂z

∂x2
− ∂pg

∂x2
+
∂τ g12
∂x1

− F2 (C.4)

The interaction forces are:

F1 = c
∂pf

∂x1
− c

∂τ f21
∂x2

−D1 (C.5)

F2 = c
∂pf

∂x2
− c

∂τ f12
∂x1

−D2 (C.6)
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By substituting eq.(C.6) in eq.(C.4):

xf1 : 0 = −ρw(1− c)g
∂z

∂x1
− ∂pf

∂x1
+
∂τ f21
∂x2

+ c
∂pf

∂x1
− c

∂τ f21
∂x2

−D1 (C.7)

xf2 : 0 = −ρw(1− c)g
∂z

∂x2
− ∂pf

∂x2
+
∂τ f12
∂x1

+ c
∂pf

∂x2
− c

∂τ f12
∂x1

−D2 (C.8)

xs1 : 0 = −ρscg
∂z

∂x1
− ∂pg

∂x1
+
∂τ g21
∂x2

− c
∂pf

∂x1
+ c

∂τ f21
∂x2

+D1 (C.9)

xs2 : 0 = −ρscg
∂z

∂x2
− ∂pg

∂x2
+
∂τ g12
∂x1

− c
∂pf

∂x2
+ c

∂τ f12
∂x1

+D2 (C.10)

Furthermore, in uniform flow condition in the longitudinal direction x1, eq.(C.10)

reduces to:

xf1 : 0 = −ρw(1− c)g
∂z

∂x1
+ (1− c)

∂τ f21
∂x2

−D1 (C.11)

xf2 : 0 = −ρw(1− c)g
∂z

∂x2
− (1− c)

∂pf

∂x2
−D2 (C.12)

xs1 : 0 = −ρscg
∂z

∂x1
+
∂τ g21
∂x2

+ c
∂τ f21
∂x2

+D1 (C.13)

xs2 : 0 = −ρscg
∂z

∂x2
− ∂pg

∂x2
− c

∂pf

∂x2
+D2 (C.14)

Notice that D2 = 0 and the pressure of the liquid phase result to be hydro-

static:

xf2 :
∂pf

∂x2
= −ρwg

∂z

∂x2
(C.15)
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The final system results:

xf1 :
∂τ f21
∂x2

= ρwg
∂z

∂x1
+

1

1− c
D1 (C.16)

xs1 :
∂τ g21
∂x2

= ρscg
∂z

∂x1
− c

(
ρwg

∂x3
∂x1

+
1

1− c
D1

)
−D1 (C.17)

xs2 :
∂pg

∂x2
= −c(ρs − ρw)g

∂z

∂x2
(C.18)

and so:

xf1 :
∂τ f21
∂x2

= ρwg
∂z

∂x1
+

1

1− c
D1 (C.19)

xs1 :
∂τ g21
∂x2

= c(ρs − ρw)g
∂z

∂x1
− 1

1− c
D1 (C.20)

xs2 :
∂pg

∂x2
= −c(ρs − ρw)g

∂z

∂x2
(C.21)


