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1. Introduction

The Schrödinger equation
{

i! ∂
∂tψ = − !2

2m∆ψ + V ψ
ψ(0, x) = ψ0(x)

(1)

with a polynomial potential V of the form V (x) = λ|x|2M and the
asymptotic behaviour of its solution in some limiting situation (for
instance when λ→ 0 or ! → 0, or t → 0) is a largely studied topic [10,
28, 11, 9]. Particularly interesting is the study of a possible functional
integral representation, in the spirit of Feynman path integrals.

During the last four decades, rigorous mathematical definitions of
the heuristic Feynman path integrals have been given by means of
different methods, and the properties of these rigorous integrals have
been studied. let us mention here only three of them, namely the one
using the analytic continuation of Wiener integrals [12, 13], the one
provided by infinite dimensional oscillatory integrals [1, 23] and the
one using white noise calculus [17] (see also the references given in
[1, 23] to other approaches). The main problem which is common to
all the existing approaches is the restriction on the class of potentials
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V which can be handled. For most results one has to impose that V
has at most quadratic growth at infinity. There are two exceptions to
this restriction, the one of potentials which are Laplace transform of
measures (like exponential potentials, see [1, 17] and references therein)
and quartic potentials [4, 8, 22].

A difficulty in the study of equation (1) with a polynomial potential
is the non regular behaviour of the solution. Indeed in [31] it has been
shown that for superquadratic potentials the fundamental solution of
(1) is nowhere of class C1.

In [4, 8, 22] an infinite dimensional oscillatory integral representa-
tion for the weak solution of the Schrödinger equation, i.e. the matrix
element of the Schrödinger group, has been presented and studied in
the case where the potential has precisely a quartic growth at infinity.

The present paper generalizes partially these results to polynomial
potentials with higher growth at infinity. For a dense set of vec-
tors φ, ψ ∈ L2(Rd), we define an analytically continued Wiener in-
tegral I i

t(φ, ψ) (equation (28)) which realizes rigorously the Feynman
path integral representing the corresponding ”matrix elements” of the
Schrödinger group 〈φ, e− i

!
Htψ〉 and prove that it solves the Schrödinger

equation in a weak sense (theorem 8). The relation between the func-
tional integral I i

t(φ, ψ) and the matrix elements 〈φ, e− i
!

Htψ〉 is inves-
tigated in details. In particular we prove that these quantities are
asymptotically equivalent both as t → 0 and as λ → 0. The asymp-
totic expansion in powers of λ of 〈φ, e− i

!
Htψ〉 is studied and its Borel

summability is proved. This result allows one to recover the matrix
elements of the Schrödinger group from the asymptotic expansion in
powers of λ of the functional integral I i

t(φ, ψ), which in this sense can be
recognized as an asymptotic weak solution of the Schrödinger equation.

The paper is organized as follows. In section 2 the analyticity prop-
erties of the spectrum of the anharmonic oscillator Hamiltonian H and
of the matrix elements 〈φ, e− i

!
Htψ〉 of the Schrödinger group are stud-

ied. In section 3 the Borel summability of the asymptotic expansion in
powers of the coupling constant λ (Dyson expansion) of the quantities
〈φ, e− i

!
Htψ〉 is proved. Section 4 studies the definition and the proper-

ties of the functional integral I i
t(φ, ψ), while section 5 investigates its

relations with the matrix elements of the Schrödinger group and their
asymptotic equivalence.

2. The Schrödinger equation with polynomial potential

Let us consider the quantum anharmonic oscillator Hamiltonian with
polynomial potential on L2(Rd), that is the operator defined on the
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vectors φ ∈ C∞
0 (Rd) by

Hφ(x) = −
!2

2
∆ψ(x) + λV2M(x)ψ(x), x ∈ R

d, (2)

where λ ∈ R is a real positive “coupling” constant, V2M is a posi-
tive homogeneous 2M -order polynomial, and ! is the reduced Planck’s
constant (the mass of the particle is set equal to 1 for simplicity).
In the following, in order to simplify some notations, we shall put
V2M(x) := |x|2M , but all our results are also valid in the more gen-
eral case as they depend only on the positivity and the homogeneity
properties of the potential V2M .

H is essentially self-adjoint on C∞
0 (Rd) (see [26], theorem X.28). Its

closure, denoted again by H, has the following domain:

D(H) = D(∆) ∩ D(|x|2M)

= {φ ∈ L2(Rd) :

∫

|x|4M |φ(x)|2dx < ∞,

∫

|p|4|φ̂(p)|2dp < ∞},

where φ̂ denotes the Fourier transform of φ. It is well known that H is
a positive operator with a pure point spectrum {En} ⊂ R+. Therefore
−H generates an analytic contraction semigroup, P (z) : L2(Rd) →
L2(Rd), P (z) = e−Hz, with z being a complex parameter with positive
real part.

In the case where z is purely imaginary of the form z = i
!
t, t ∈ R, one

obtains a one parameter group of unitary operators U(t) := e−
i
!

Ht, i.e.
the Schrödinger group. Given a vector ψ0 ∈ L2(Rd), the vector ψ(t) :=
U(t)ψ0 belongs to D(H) and it satisfies the Schrödinger equation:

i!
∂

∂t
ψ(t) = Hψ(t). (3)

The particular form of the potential allows one to prove a scaling
property for the eigenvalues {En} of the operator H as well as their
analyticity as a function of the coupling constant λ on a suitable region
of a Riemann surface. The present lemma is taken from [28], which
presents a detailed study of this problem, also in more general cases.

Lemma 1. Let En(λ) denote the n−th eigenvalue of the Hamiltonian
(2). Then for λ, α > 0 one has

En(λ) = α−1En(λαM+1) = . (4)

In particular

En(λ) = λ
1

M+1 En(1) (5)
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Proof: Let us consider, for any α ∈ R+, the unitary operator V (α) :
L2(Rd) → L2(Rd) given on vectors φ ∈ S(Rd) by:

V (α)φ(x) = α1/4φ(α1/2x), x ∈ R
d. (6)

It it simple to verify that V (α) leaves D(−∆) and D(|x|2M) invariant
and

V (α)x2MV (α)−1 = αMx2M ,

V (α)∆V (α)−1 = α−1∆.

It follows that

V (α)HV (α)−1 = α−1
(

−
!2

2
∆ + αM+1λx2M

)

.

In particular, by taking α = λ−1/(M+1) one has

V (λ−1/(M+1))HV (λ−1/(M+1))−1 = λ1/(M+1)
(

−
!2

2
∆ + x2M

)

. (7)

As for any α ∈ R+, the operator V (α)HV (α)−1 has the same spectrum
of H, from equation (7) one easily deduces equation (5)

Remark 1. By analytic continuation, relation (5) allows to extends
En(λ) to all complex values of λ belonging to a Riemann surface. In
particular, the function En is many-sheeted and has a (M +1)-st order
branch point at λ = 0.

Let us consider now the matrix elements of the evolution operator
U(t) = e−

i
!

Ht, i.e. the inner products 〈φ, U(t)ψ〉, with φ, ψ ∈ L2(Rd).
Let us consider also the function f : R+ → C of the coupling constant
λ (present in H, hence in U(t)) defined by

f(λ) := 〈φ, U(t)ψ〉, λ ∈ R, λ > 0. (8)

Let us denote by Dθ1,θ2 the sector of of the Riemann surface C̃ of the
logarithm defined by:

Dθ1,θ2 := {z ∈ C, z = ρeiφ : ρ > 0, φ ∈ (θ1, θ2)}.
Let us consider the dense subset of L2(Rd) made of finite linear

combinations of vectors of the form

φ(x) = P (x)e−σ2|x|2 , x ∈ R
d (9)

with P being any polynomial with complex coefficients and σ2 ∈ C a
complex constant with positive real part (that these vectors are dense in
L2(Rd) follows from the known fact that the finite linear combinations
of Hermite functions are dense in the same space).
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Theorem 1. Let φ, ψ ∈ S(Rd) ⊂ L2(Rd), such that the functions
φ̄, ψ ∈ S(Rd) are of the form (9), with σ2 ∈ C, σ2 = |σ2|eiδ, δ ∈ R

such that there exist an ε > 0 with

cos(δ + α) > ε, ∀α ∈
(

0,
M − 1

M + 1
π
)

, (10)

(This is the case for instance if δ = −π M−1
2(M+1)). Then the function

f : R+ → C defined by (8) can be extended to an analytic function on
the sector D−(M−1)π,0 of the Riemann surface C̃ of the logarithm.

Proof: Let us denote by {En(λ)}, resp. {en(λ)} the eigenvalues and
resp. the eigenvectors of the Hamiltonian operator (2). Under the given
assumptions on φ, ψ and by equation (5), for λ ∈ R+ the function f is
given by

f(λ) =
∑

an(λ)bn(λ)e−
i
!

En(λ)t =
∑

an(λ)bn(λ)e−
i
!
λ

1
M+1 En(1)t

with
an(λ) = 〈φ, en(λ)〉, bn(λ) = 〈en(λ), ψ〉.

On the other hand each coefficient an, bn can be extended to an an-
alytic function of the variable λ on D−(M−1)π,0. Indeed one has (for
λ > 0) that en(λ) = V (λ−1/(M+1))−1en(1), where V (−λ1/(M+1)) is the
operator defined by (6). Without loss of generality, we can consider as
an instance a vector ψ of the form ψ(x) = xke−σ2x2

. In this case one
has:

bn(λ) = 〈V (λ−1/(M+1))−1en(1), ψ〉 = 〈en(1), V (λ−1/(M+1))ψ〉(11)

= λ−
1

4(M+1)

∫

en(1)(x)λ−
k

2(M+1) |x|ke−σ2λ
− 1

(M+1) |x|2 (12)

and the coefficient bn(λ) can be interpreted in terms of the inner prod-
uct between the vector en(1) and the function

x *→ ψλ(x) := λ−
1

4(M+1)λ−
k

2(M+1) |x|ke−σ2λ
− 1

(M+1) |x|2 . (13)

For λ ∈ D−(M−1)π,0 and for σ2 satisfying the assumptions of the theo-
rem, it is simple to verify that the function (13) belongs to L2(Rd) and
its L2-norm is uniformly bounded in D−(M−1)π,0:

‖ψλ‖ <
Ck

εk+1/2
,

where the constant Ck depends on k, while ε is the parameter appearing
in condition (10). An analogous reasoning holds also for the coefficients
an(λ).
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On the other hand, for λ ∈ D−(M−1)π,0, one has

|e−
i
!
λ

1
M+1 En(1)t| ≤ 1.

The function f is then given by the following limit of a sequence of
analytic functions on D−(M−1)π,0, uniformly bounded on it:

f(λ) = lim
N→∞

N
∑

n

an(λ)bn(λ)e−
i
!
λ

1
M+1 En(1)t,

and by Vitali’s theorem, the limit defines an analytic function on
D−(M−1)π,0.

In the case where the potential is not homogeneous, in particular
if we add to it a a second degree term, i.e. a term of the harmonic
oscillator type, the proof of theorem 1 does not work. In particular, in
the case where H = H0 + λV2M , with H0 = −!2

2 ∆ + Ω2

2 x2, Ω2 a d × d
symmetric positive matrix and V2M(x) = |x|2M , an analogous result
can only be obtained by further restricting the region of analyticity, as
exposed in the following:

Theorem 2. For H = H0 + λV2M , with H0 = −!2

2 ∆ + Ω2

2 x2 and

V2M(x) = |x|2M , the function f : R+ → C given by f(λ) := 〈φ, e− i
!

Htψ〉
can be extended to an analytic function of the complex variable λ in the
sector D−π,0.

Proof:
By Trotter’s product formula, for λ ∈ R+ one has for any φ, ψ ∈

L2(Rd):

f(λ) = lim
n→∞

〈φ, (e−
it
n!

H0e−
it
n!

λV2M )nψ〉.

The positive multiplication operator V2M generates an analytic con-
traction semigroup, and for any n ∈ N, the function fn : D−π,0 → C

defined by
fn(λ) := 〈φ, (e−

it
n!

H0e−
it
n!

λV2M )nψ〉
is analytic on D−π,0 and satisfies the bound |fn(λ)| ≤ ‖φ‖ ‖ψ‖. By
Vitali’s theorem the functions fn converge to an analytic function f on
D−(M−1)π,0.

3. Borel summability of the Dyson expansion of the
Schrödinger group in powers of the coupling constant

Let us consider now the asymptotic expansion of the function f when
λ→ 0. The present section is devoted to the proof of its Borel summa-
bility. We recall that an asymptotic expansion

∑

anzn of a function
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f(z) as z → 0 in an appropriate region of the complex plane is said to
be Borel summable [16, 30] if the following procedure is possible:

(1) B(t) =
∑

antn/n! converges in some circle |t| < r;
(2) B(t) has an analytic continuation to a neighborhood of the pos-

itive real axis;
(3) f can be computed in terms of the Borel-Laplace transform of

B(t), i.e. f(z) = 1
z

∫ ∞
0 e−t/zB(t)dt.

In this case the asymptotic expansion
∑

anzn allows to construct the
function f without any ambiguity and to characterize it uniquely. One
of the main tools for the proof of Borel summability is Watson’s the-
orem (and its improved version, i.e. Nevanlinna’s theorem). We give
here for later use a particular form of it [30, 27]:

Theorem 3. Let f(z) be an analytic function in a sectorial region of
the Riemann surface C̃ of the logarithm

{z ∈ C̃|0 < |z| < R, |arg(z)| <
1

2
kπ}

and satisfying there an estimate of the form

|f(z) −
N−1
∑

anz
n| ≤ ACN |z|N(kN)!

uniformly in N and z in the sector.
Then the asymptotic series

∑

anzn is Borel summable to the function
f .

Let us consider the function f of the complex variable λ given by
f(λ) = 〈φ, e− i

!
Htψ〉, where H is given by (2), and describing the matrix

elements of the Schrödinger group. Its asymptotic expansion as λ →
0 can be obtained in terms of the Dyson expansion of the evolution
operator Uλ(t) = e−

i
!

Ht. In the following we shall denote by H0 the
Hamiltonian operator H in the case where λ = 0.

Lemma 2. If λ ∈ R+, φ ∈ S(Rd) and ψ ∈ L2(Rd), the function
f(λ) = 〈φ, e− i

!
Htψ〉 describing the Schrödinger group has the following

asymptotic expansion:

f(λ) =
N−1
∑

n

anλ
n + RN(λ) (14)

with

an =
1

n!

(

−
i

!

)n
∫ t

0

. . .

∫ t

0

〈V2M(−s1) . . . V2M(−sn)U0(−t)φ, ψ〉ds1 . . . dsn
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and

RN(λ) =
λN

N !

(

−
i

!

)N
∫ t

0

. . .

∫ t

0

〈V (−sN) . . . V (−s1)U0(−t)φ, U0(−sN)Uλ(sN)ψ〉ds1 . . . dsN (15)

where V (si) := U0(−si)V2MU0(si), U0(t) = e−
it
!

H0.

Proof: The asymptotic expansion can be obtained by means of Dyson’s
expansion. Let us set Uλ(t) = e−

it
!

H and set U0(t) = e−
it
!

H0 . Let
λ ∈ R+. Given a vector ψ ∈ D(Hλ) = D(H0) ∩ D(V2M) one can easily
prove that the vector Uλ(t)ψ satisfies the following integral equation

Uλ(t)ψ = U0(t)ψ −
iλ

!

∫ t

0

U0(t − s)V2MUλ(s)ψds

so that for any φ ∈ L2(Rd), one has

f(λ) = 〈φ, Uλ(t)ψ〉 = 〈φ, U0(t)ψ〉 −
iλ

!

∫ t

0

〈φ, U0(t − s)V2MUλ(s)ψ〉ds

By choosing φ ∈ S(Rd), we have φ ∈ D[(U0(s)V2M)n] for any s ∈ [0, t]
and n ∈ N, and one can easily prove that for any N ∈ N the following
holds

〈φ, Uλ(t)ψ〉 =
N−1
∑

n

anλ
n + RN(λ) (16)

where

an =
1

n!

(

−
i

!

)n
∫ t

0

. . .

∫ t

0

〈V2M(−s1) . . . V2M(−sn)U0(−t)φ, ψ〉ds1 . . . dsn

and

RN(λ) =
λN

N !

(

−
i

!

)N
∫ t

0

. . .

∫ t

0

〈V (−sN) . . . V (−s1)U0(−t)φ, U0(−sN)Uλ(sN)ψ〉ds1 . . . dsN (17)

with V (si) := U0(−si)V2MU0(si).
Both sides of (16) are continuous functionals of the vector ψ ∈ D(H)
and can be extended to ψ ∈ L2(Rd).

Lemma 3. Let φ, ψ satisfy the assumptions of theorem 1. Then the as-
ymptotic expansion (14) holds in the whole analyticity region D−(M−1)π,0.
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Proof: Under the stated assumptions, both sides of (14) are analytic
in D−(M−1)π,0 and coincides on R+. By the uniqueness of analytic
continuation they coincide in the whole sector D−(M−1)π,0.

The following Theorem gives the Borel summability property of the
asymptotic expansion (14) for ψ ∈ L2(Rd) and φ belonging to a dense
set of vectors in L2(Rd).

Theorem 4. Let φ, ψ satisfy the assumptions of theorem 1. Then the
asymptotic expansion (14) of the function f describing the Schrödinger
group is Borel summable.

Proof:
By theorem 1 the function f is analytic on a sector of amplitude

π(M − 1) and admits there an asymptotic expansion of the form (14).
By exploiting the particular form of the vector φ, by a direct compu-
tation it is possible to verify that the remainder RN satisfies uniformly
in D−(M−1)π,0 the bound

|RN(λ)| ≤ ACN |λ|NΓ(N(M − 1)),

where A,C are constants depending on φ, ψ.
By Nevanlinna’s theorem [25, 30], the asymptotic expansion (14) is

Borel summable.

Remark 2. In the case V (x) = |x|4 the Borel summability of the as-
ymptotic expansion (14) can be proved also in the case where H0 is the
harmonic oscillator Hamiltonian, by using the result of theorem 2.

4. On the functional integral representation of the
weak solution of the Schrödinger equation

Let us consider the heuristic Feynman path integral representation
for the matrix elements of the Schödinger group generated by the
Hamiltonian (2):

〈φ, e−
i
!

Htψ〉 =′′
∫

Rd

dxφ̄(x)

∫

γ(t)=x

e
i
!

St(γ)ψ(0, γ(0))dγ′′

=′′
∫

Rd

dxφ̄(x)

∫

γ(t)=0

e
i

2!

R t
0 |γ̇(s)|2dse−

iλ
!

R t
0 |γ(s)+x|2Mdsψ(0, γ(0) + x)dγ′′

(18)

where φ, ψ ∈ L2(Rd). The aim of the present section is to provide
a rigorous mathematical definition of the right hand side of equation
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(18) in terms of a well defined functional integral, by means of an
analytically continued Wiener integral.

Let us consider first of all the heat equation

!
∂

∂t
ψ = −zHψ (19)

where z is a positive real parameter. It is well known [26] that the
self-adjoint operator H defined by closure from its restriction to the
Schwartz space of test functions S(Rd) by (2) is the generator of an
analytic semigroup. In particular given two vectors φ, ψ ∈ L2(Rd), the
inner product 〈φ, e− z

!
Htψ〉 is given by the Feynman-Kac formula [29]:

〈φ, e−
z
!

Htψ〉 =

∫

Rd

φ̄(x)

∫

Ct

e−
zλ
!

R t
0 |

√
!zω(s)+x|2Mdsψ0(

√
!zω(t)+x)W (dω)dx

= zd/2

∫

Rd

φ̄(
√

zx)

∫

Ct

e−
zM+1λ

!

R t
0 |

√
!ω(s)+x|2Mdsψ0(

√
!zω(t)+

√
zx)W (dω)dx

(20)

By the analyticity property of the semigroup generated by H, one
can easily deduce the following result:

Theorem 5. The left hand side of (20), namely the matrix element
〈φ, e− z

!
Htψ〉, extends, for any φ, ψ ∈ L2(Rd), to an analytic function

of the complex variable z, holomorphic in D−π/2,π/2 and continuous on
the boundary D̄−π/2,π/2. In particular for z = i one obtains the matrix

elements of the Schrödinger group 〈φ, e− i
!

Htψ〉.

By imposing suitable analyticity conditions on the vectors φ, ψ in
(20) one obtains the following:

Theorem 6. Let φ̄, ψ ∈ L2(Rd) satisfying the following conditions:

(1) For any x ∈ Rd) the functions

z *→ φ̄(
√

zx), z *→ ψ(
√

zx), z ∈ D̄− π
2(M+1) , π

2(M+1)

are continuous on D̄− π
2(M+1) , π

2(M+1)
and holomorphic on D− π

2(M+1) , π
2(M+1)

(2) for any z ∈ D̄− π
2(M+1) , π

2(M+1)
, the functions

x *→ φ̄(
√

zx), x *→ ψ(
√

zx), x ∈ R
d

belong to L2(Rd).

Then the right hand side of (20), namely the integral

Iz
t (φ, ψ) := zd/2

∫

Rd

φ̄(
√

zx)

∫

Ct

e−
zM+1λ

!

R t
0 |

√
!ω(s)+x|2Mdsψ0(

√
!zω(t)+

√
zx)W (dω)

(21)



SCHRÖDINGER EQUATION WITH POLYNOMIAL POTENTIAL 11

extends, for any φ, ψ ∈ L2(Rd), to an analytic function of the com-
plex variable z, holomorphic in D− π

2(M+1) , π
2(M+1)

and continuous on the

boundary D̄− π
2(M+1) , π

2(M+1)
.

Proof: By the stated assumptions, for any z ∈ D̄− π
2(M+1) , π

2(M+1)
, the

integral (21) is well defined, and

|Iz
t (φ, ψ)| ≤ zd/2

∫

Rd

|φ̄(
√

zx)|
∫

Ct

|ψ(
√

!zω(t) +
√

zx)|W (dω)

= |z|d/2〈φz, e
− 1

!
H0tψz〉 ≤ ‖φz‖‖ψz‖ (22)

where φz, ψz ∈ L2(Rd) are defined resp. by φz(x) := |φ̄(
√

zx)| ,ψz(x) :=
|ψ(

√
zx)|.

The analyticity of the function z *→ Iz
t (φ, ψ) on D− π

2(M+1) , π
2(M+1)

follows by Fubini’s and by Morera’s theorems. The continuity on
D̄− π

2(M+1) , π
2(M+1)

follows by the dominated convergence theorem.

From the previous theorem one can easily deduce the following

Corollary 1. Let φ̄, ψ ∈ L2(Rd) satisfy the following conditions:

(1) For any x ∈ Rd) the functions

z *→ φ̄(
√

zx), z *→ ψ(
√

zx), z ∈ D̄0, π
2

are continuous on D̄0, π
2

and holomorphic on D0, π
2

(2) for any z ∈ D̄0, π
2
, the functions

x *→ φ̄(
√

zx), x *→ ψ(
√

zx), x ∈ R
d

belong to L2(Rd)

Then

〈φ, e−
i
!

H0tψ〉 = ei π
4 d

∫

Rd

φ̄(ei π
4 x)

∫

Ct

ψ(
√

!ei π
4ω(t) + ei π

4 x)W (dω)dx,

(23)
where H0 is the free Hamiltonian given on ψ ∈ C2

0(Rd) by

H0ψ(x) = −
!2

2
∆ψ(x).

Proof: Let us consider the function f1 : D̄−π/2,π/2 → C given by
f1(z) = 〈φ, e− z

!
H0ψ〉. By theorem 5, f1 is analytic on D−π/2,π/2 and

continuous on D̄−π/2,π/2.
Let f2 : D̄0, π

2
→ C be defined by

f2(z) = zd/2

∫

Rd

φ̄(
√

zx)

∫

Ct

ψ(
√

!
√

zω(t) +
√

zx)W (dω)dx.
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By theorem 6, f2 is analytic on D0,π/2 and continuous on the closure
D̄0,π/2 of D0,π/2.
By the Feynman-Kac formula (20), the functions f1 and f2 coincide on
R+. By the uniqueness of analytic continuation they coincide on the
whole domain. In particular, by the continuity on the boundary, one
has f1(i) = f2(i), i.e.

〈φ, e−
i
!

H0tψ〉 = ei π
4 d

∫

Rd

φ̄(ei π
4 x)

∫

Ct

ψ(
√

!ei π
4ω(t) + ei π

4 x)W (dω)dx

By restricting the time interval [0, t], it is possible to generalize the
previous result to the case where H0 is the harmonic oscillator Hamil-
tonian, given on ψ ∈ C2

0(Rd) by

H0ψ(x) = −
!2

2
∆ψ(x) +

1

2
xΩ2xψ(x), (24)

where Ω is a d × d symmetric positive matrix and Ωj, j = 1, . . . , d are
its eigenvalues.

Theorem 7. Let φ̄, ψ ∈ L2(Rd) satisfying condition 1 of corollary 1.
Let us assume that there exists a positive constant C ∈ R+ such that
∀z ∈ D̄0, π

2
and ∀(x, y) ∈ Rd × Rd the following inequality holds:

|φ̄(
√

z
√

!x)ψ(
√

z
√

!(x + y))|e
|x|2

2 ≤ C.

Let us assume moreover that for any j = 1, . . . , d the time t satisfies
the following inequalities:

Ωjt <
π

2
, 1 − Ωj tan(Ωjt) > 0 (25)

Then

〈φ, e−
i
!

H0tψ〉 = ei π
4 d

!
d/2

∫

Rd

φ̄(ei π
4

√
!x)

∫

Ct

ψ(
√

!ei π
4ω(t) + ei π

4

√
!x)

e
1
2

R t
0 (ω(s)+x)Ω2(ω(s)+x)dsW (dω)dx (26)

where H0 is the harmonic oscillator Hamiltonian (24).

Proof: By the Feynman-Kac formula and a change of variable, for any
z ∈ R+ one has

〈φ, e−
z
!

H0tψ〉 = zd/2
!

d/2

∫

Rd

φ̄(
√

z
√

!x)

∫

Ct

ψ(
√

!
√

z(ω(t) + x))e
|x|2

2

e−
z2

2

R t
0 (ω(s)+x)Ω2(ω(s)+x)dsW (dω)e−

|x|2

2 dx (27)



SCHRÖDINGER EQUATION WITH POLYNOMIAL POTENTIAL 13

By the analyticity of the semigroup generated by the harmonic oscil-
lator Hamiltonian, the left hand side is an holomorphic function of
z ∈ D−π/2, π/2 and continuous for z ∈ D̄−π/2, π/2.
The right hand side satisfies, by the stated assumptions on φ, ψ, the
following bound for any z ∈ D̄0, π

2
:

|zd/2
!

d/2

∫

Rd

φ̄(
√

z
√

!x)

∫

Ct

ψ(
√

!
√

z(ω(t) + x))e
|x|2

2

e−
z2

2

R t
0 (ω(s)+x)Ω2(ω(s)+x)dsW (dω)e−

|x|2

2 dx|

≤ |z|d/2|!|d/2C

∫

Rd×Ct

e
1
2

R t
0 (ω(s)+x)Ω2(ω(s)+x)dsW (dω)e−

|x|2

2 dx

By the assumption (25) the latter integral is convergent (see [4] and
[23] for more details on this estimate).
By Fubini’s and Morera’s theorems, the right hand side of (27) is an
holomorphic function of z ∈ D0,π/2 and continuous for z ∈ D̄0,π/2,
which coincides with the function z *→ 〈φ, e− z

!
H0tψ〉 on R+. By the

uniqueness of analytic continuation one gets for z = i equation (26).

We are now going to see to which extent the results of corollary 1 and
of theorem 7 can be generalized to the case where the free Hamiltonian
resp. the harmonic oscillator Hamiltonian are replaced by the anhar-
monic oscillator Hamiltonian with polynomial potential (2).
Formally, by substituting z = i also on the right hand side of (20) one
obtains the following expression:

ei π
4 d

∫

Rd

φ̄(ei π
4 x)

∫

Ct

e−
e
i(M+1) π

2 λ
!

R t
0 |

√
!ω(s)+x|2Mds

ψ(
√

!ei π
4ω(t) + ei π

4 x)W (dω)dx := I i
t(φ, ψ) (28)

Theorem 8. Let the vectors φ, ψ ∈ L2(Rd) satisfy the assumptions of
corollary 1 and let the degree 2M of the polynomial potential V2M be
such that Re(ei(M+1)π

2 ) ≥ 0. Then the integral I i
t(φ, ψ) in equation (28)

is well defined and satisfies the following inequality

|I i
t(φ, ψ)| ≤‖ φi‖‖ψi‖,

where φi(x) := |φ̄(ei π
4 x)|,ψi(x) := |ψ(ei π

4 x)|. Moreover, if φ, ψ ∈
D(H) and Hφ,Hψ satisfy the assumptions of corollary 1, the func-
tional I i

t(φ, ψ) satisfies the Schrödinger equation (3) in the following
weak sense:

I i
0(φ, ψ) = 〈φ, ψ〉, (29)
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Figure 1: the sector D−π/2,π/2

i!
d

dt
I i
t(φ, ψ) = I i

t(φ,Hψ) = I i
t(Hφ,ψ). (30)

Proof: The first part of the theorem follows by a direct estimate.
Equation (29) is a consequence of corollary 1, while equation 30 follows
from Ito’s formula.

A stronger result, namely the equality

I i
t(φ, ψ) = 〈φ, e−

i
!

Htψ〉 (31)

cannot in general be proved in the case where H is given by (2). In
fact, the analyticity argument used in the proof of corollary 1 cannot
in general be applied to the proof of equality (31), as the following
considerations show.
By theorem 5 the function f1 : D̄−π/2,π/2 → C, defined by f1(z) =
〈φ, e− z

!
Hψ〉, is analytic on the sector D−π/2,π/2 (shown in figure 1) and

continuous on D̄−π/2,π/2 (as H has a positive spectrum and generates
an analytic semigroup). On the other hand, as we have already seen,
on the positive real line R+ the function f1 can be expressed in terms
of a functional integral by means of the Feynman-Kac formula:

〈φ, e−
z
!

Hψ〉 = zd/2

∫

Rd

φ̄(
√

zx)

∫

Ct

e−
zN+1λ

!

R t
0 |

√
!ω(s)+x|2Nds

ψ(
√

!
√

zω(t) +
√

zx)W (dω)dxdx (32)

and the right hand side of (32) is well defined, if φ, ψ are sufficiently
regular, when Re(zM+1) ≥ 0, i.e for z = |z|eiθ, with − π

2(M+1) +k 2π
M+1 ≤

θ ≤ π
2(M+1) + k 2π

M+1 , k ∈ Z. i.e. on M + 1 different sectors of

the complex plane. In particular, the right hand side of (32) de-
fines M + 1 different holomorphic functions gk with k = 0, . . . ,M ,
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−Π /6

Π /6

Π /2

5Π /6

7Π/6

3Π /2

Figure 2: The set of definition of the integral I(z)

each of them defined on a different sector of the complex plane, i.e.
Dk := D− π

2(M+1)+k 2π
M+1 , π

2(M+1)+k 2π
M+1

, k = 0, . . . ,M . As the M + 1 open

sectors are disjoint (actually the intersection of their closures contain
a unique point), we cannot consider g0, . . . , gM as the same analytic
function defined on different regions of the complex plane. In particu-
lar the analyticity properties of the left and the right hand side of (32)
allows to extend the Feynman-Kac formula, if the condition of theorem
6 are satisfied, to all the values of z ∈ D̄− π

2(M+1) , π
2(M+1)

. This sector does

not include z = i (unless one considers the trivial case M = 0).
For instance, if 2M = 4 (the quartic oscillator case), the integral on

the right hand side of (32) becomes

I(z) := zd/2

∫

Rd

φ̄(
√

zx)

∫

Ct

e−
z3λ

!

R t
0 |

√
!ω(s)+x|2Nds

ψ(
√

!
√

zω(t) +
√

zx)W (dω)dx. (33)

Under analyticity and growing conditions on φ, ψ, the integral I(z)
is well defined on three sectors D̄−π

6 , π
6
∪ D̄π

2 , 5π
6
∪ D̄ 7π

6 , 3π
2

of the com-

plex z plane shown in figure 2. In particular the integral I(z) in (33)
defines three analytic function g0, g1, g2 defined respectively on the dis-
joints domains D−π

6 , π
6
, Dπ

2 , 5π
6

and D 7π
6 , 3π

2
. They are analytic on their

domains of definition and continuous on the boundaries. However the
information we have does not allow to prove that g0, g1, g2 are the same
analytic function, since the intersection of the closure of their definition
domains is a single point, i.e. D̄−π

6 , π
6
∩ D̄π

2 , 5π
6
∩ D̄ 7π

6 , 3π
2

= {0}.
We can then only say that equation (32), i.e the equality f(z) = I(z),
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holds for z belonging to D̄−π
6 , π

6
, but nothing can be said as it stands

for z = i. By these considerations, the Feynman path integral repre-
sentation for the weak solution of the Schrödinger equation studied in
[4] has to be interpreted in the weak sense of theorem 8.

The difficulties in the investigation on the relations between the func-
tional integral (28) and the matrix elements of the Schrödinger group
〈φ, e− i

!
Htψ〉 can be better understood by means of the following sim-

plified model.
Let us consider the two functions of the complex variable λ,

f1(λ) :=

∫

eiλx4+ix2
dx

f2(λ) := eiπ/4

∫

e−iλx4−x2
dx

defined and analytic respectively on D1 = {Im(λ > 0)} and D2 =
{Im(λ < 0)}.

The function f1, for λ ∈ R λ < 0 can be seen as the one dimensional
analogue of 〈φ, e− i

!
Htψ〉, while function f2 as the one dimensional ana-

logue of the functional integral (28).
It is possible to verify by means of a rotation of the integration

contour in the complex plane, that for λ ∈ R+ one has f1(λ) = f2(λ).
For instance if λ = 1 one has

∫

eix4+ix2
dx = eiπ/4

∫

e−ix4−x2
dx.

The extension of the equality between f1 and f2 on the negative real
line is, on the other hand, not possible. Indeed it is possible to see that
f1 and f2 are different branches on an analytic multivalued function
defined on a Riemann sheet.

A transformation of variable allows us to represent the two functions
in a fashion allowing us to enlighten their analyticity properties and the
nature of the singularity in λ = 0. Indeed when λ ∈ R+, the following
equality holds

f2(λ) = eiπ/4

∫

e−iλx4−x2
dx =

eiπ/4

λ1/4

∫

e
−ix4− x2

λ1/2 dx.

The right hand side is an analytic function in the region
{

λ ∈ C , λ = |λ|eiφ : |λ| > 0,−π < φ < π
}

.

It is continuous on the boundary of its analyticity domain but it is
multivalued and it assumes different values approaching the negative
real axis from above and from below:

f2(|λ|eiπ) =

∫

eiλx4+ix2
dx
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f2(|λ|e−iπ) = eiπ/2

∫

eiλx4−ix2
dx

By a rotation technique it is easy to verify that the latter integral is
equal to

eiπ/2

∫

eiλx4−ix2
dx = eiπ/4

∫

e−iλx4−x2
dx.

In other words we can say that the two integrals
∫

eiλx4+ix2
dx and

eiπ/4
∫

e−iλx4−x2
dx do not coincide on the negative real line: they are

different branches of the same analytic but multivalued function. In
a similar way, the functional integral (28) and the matrix elements of
the Schrödinger group can be interpreted, as functions of the complex
variable λ, as different branches of the same analytic but multivalued
function.

Remark 3. Despite the problems described so far, in the literature
some particular cases have been handled by means of different tech-
niques. In [22], equality (31) has been proved in the case where H is
the inverse quartic oscillator Hamiltonian

H0ψ(x) = −
!2

2
∆ψ(x)+

1

2
xΩ2xψ(x)−λ|x|4ψ(x), ψ ∈ C2

0(Rd), λ ∈ R
+,

by means of an analytic continuation technique in the mass parameter.
In [13] the pointwise solution of the heat equation (19) and its func-

tional integral representation have been considered:

(e−
z
!

Htψ)(x) =

∫

Ct

e−
zλ
!

R t
0 |

√
!zω(s)+x|2Mdsψ0(

√
!zω(t) + x)W (dω). (34)

The right hand side of (34) evaluated for z = i gives
∫

Ct

e−
iλ
!

R t
0 |

√
!iω(s)+x|2Mdsψ0(

√
!iω(t) + x)W (dω). (35)

For suitable exponents 2M , namely for Re(ei(M+1)π
2 ) < 0, the integral

(35) is well defined and, as proved in [13] by means of a probabilistic
argument, it represents the pointwise solution of Schrödinger equation.

Let us consider now the integral (28) and let us assume that the
hypothesis of theorem 8 are satisfied. By considering two suitable sets
of vectors in S1,S2 ⊂ L2(Rd), with φ ∈ S2 and φ ∈ S1, it is possible
to interpret the integral I i

t(φ, ψ) as the matrix element of an evolution
operator in L2(Rd).
Let us denote by S1 the subset of S(Rd) made of the functions φ : Rd →
C of the form

φ(x) = P (x)e−
x2

2 (1−i), x ∈ R
d, (36)
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and by S2 the subset of S(Rd) made of the functions φ : Rd → C of the
form

φ(x) = Q(x)e−
x2

2 (1+i) (37)

where P and Q are polynomials with complex coefficients. As the
Hermite functions form a complete orthonormal system in L2(Rd), it
is simple to verify that both S1 and S2 are dense in L2(Rd). Moreover
the functions φ ∈ S1 are such that:

(1) the function z *→ φ(zx), x ∈ Rd, z ∈ D̄0,π/4 is analytic on D0,π/4

and continuous on D̄0,π/4,
(2) the function x *→ φ(ei π

4 x), x ∈ Rd is in L2,

while the functions φ ∈ S2 are such that:

(1) the function z *→ φ(zx), x ∈ Rd, z ∈ D̄−π/4,0 is analytic on
D−π/4,0 and continuous on D̄−π/4,0,

(2) the function x *→ φ(e−i π
4 x), x ∈ Rd belongs to L2(Rd).

Let us denote by T : S1 → S2 the linear operator defined by

Tφ(x) = ei π
8 dφ(ei π

4 x), φ ∈ S1,

and by T−1 : S2 → S1 its inverse, defined by

T−1φ(x) = e−i π
8 dφ(e−i π

4 x), φ ∈ S2.

By considering two vectors φ, ψ ∈ S1 one can easily verify that

〈φ, Tψ〉 = 〈Tφ, ψ〉. (38)

Analogously, by considering two vectors φ, ψ ∈ S2, one can easily verify
that

〈φ, T−1ψ〉 = 〈T−1φ, ψ〉. (39)

This implies that, for φ ∈ S2, ψ ∈ S1, one has 〈T−1φ, Tψ〉 = 〈φ, ψ〉.
Let HT : S2 → S2 be the operator defined by −iHT := THT−1. It

is easy to verify that

HTφ(x) = −
!2

2
∆φ(x) + λei M+1

2 π|x|2Mφ(x), φ ∈ S2.

Theorem 9. Let ψ ∈ S1 and φ ∈ S2. Let us assume that Re(ei M+1
2 π) ≥

0. Then the operator HT is the restriction to S2 of the generator A of
a strongly continuous contraction semigroup V (t) = e−

1
!

At and the inte-
gral I i

t(φ, ψ) given by (28) is equal to the matrix element 〈T−1φ, V (t)Tψ〉.

Proof: Let V (t)t≥0 be the C0-contraction semigroup defined by the
Feynman-Kac type formula:

V (t)ψ(x) :=

∫

Ct

e−ei M+1
2 π λ

!

R t
0 |

√
!ω(s)+x|2Mdsψ(

√
!ω(t) + x)W (dω). (40)
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The operator-theoretic results for semigroups of the form (40) have
been investigated in [24, 20] (see also [18], chapter 13.5). In particular
the generator A of the semigroup V (t) = e−

t
!

A is given on smooth
vectors ψ ∈ S(Rd) by

Aψ(x) = −
!2

2
∆ψ(x) + Q2M(x)ψ(x), Q2M(x) := λei M+1

2 π|x|2M (41)

with domain

D(A) = {ψ ∈ H1(Rd) : −
!2

2
∆ψ + Q2Mψ ∈ L2(Rd)}. (42)

By a direct computation and by taking ψ ∈ S1 and φ ∈ S2, one can
easily verify that

ei π
4 d

∫

Rd

φ̄(ei π
4 x)

∫

Ct

e−
e
i(M+1) π

2 λ
!

R t
0 |

√
!ω(s)+x|2Mds

ψ(
√

!ei π
4ω(t) + ei π

4 x)W (dω)dx = 〈T−1φ, V (t)Tψ〉

so that I i
t(φ, ψ) = 〈T−1φ, V (t)Tψ〉.

Remark 4. Under the assumptions of theorem 9, it is possible to give
an alternative proof of theorem 8, i.e. that the integral I i

t(φ, ψ) is a
weak solution of the Schrödinger equation in the sense that equations
(29) and (30) are satisfied.
Indeed equation (29) follows by writing I i

0(φ, ψ) as 〈T−1φ, Tψ〉 and
by equations (38) and (39). Equation (30) follows from the equality
I i
t(φ, ψ) := 〈T−1φ, e−

t
!

ATψ〉. Indeed

i!
d

dt
〈T−1φ, e−

t
!

ATψ〉 = 〈T−1φ, e−
t
!

A(−iHT )Tψ〉 = 〈T−1φ, e−
t
!

HT THψ〉.

Remark 5. To prove that I i
t(φ, ψ) = 〈φ, e− it

!
Hψ〉 it would be sufficient

to have that |I i
t(φ, ψ)| ≤ C‖φ‖‖ψ‖, or, in other words, that given ψ ∈

S1, one has that the vector e−
t
!

HT Tψ belongs to the domain of (T−1)∗,
so that

〈T−1φ, e−
t
!

HT Tψ〉 = 〈φ, (T−1)∗e−
t
!

HT Tψ〉.
If the inequality |I i

t(φ, ψ)| ≤ C‖φ‖‖ψ‖ holds true, then this would
namely imply that there exists a bounded operator B(t) : L2 → L2 such
that I i

t(φ, ψ) = 〈φ,B(t)ψ〉 and B(0) = I. I i
t(·, ·) defined on S2×S1 can

be extended to L2 × L2. In particular then I i
t(U(t)φ, ψ) makes sense

and by differentiating with respect to the time variable t we obtain

i!
d

dt
I i
t(U(t)φ, ψ) = I i

t(U(t)φ,Hψ) − I i
t(HU(t)φ, ψ) = 0
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so that I i
t(U(t)φ, ψ) = I i

0(U(0)φ, ψ) = 〈φ, ψ〉 for any t and this implies
that B(t) = U(t).

5. The functional integral as asymptotic solution

The present section is devoted to the proof that the functional inte-
gral (28) coincides asymptotically both as t → 0 and as λ → 0 with
the matrix element 〈φ, e i

!
Htψ〉 of the Schrödinger group.

Theorem 10. Let φ, ψ ∈ L2(Rd) and M ∈ N satisfy the assumptions of
theorem 9. Then as t → 0 the integral I i

t(φ, ψ) and the matrix element
〈φ, e i

!
Htψ〉 of the Schrödinger group admit the following asymptotic ex-

pansions

I i
t(φ, ψ) =

∑

ant
n, 〈φ, e

i
!

Htψ〉 =
∑

bnt
n,

and they coincides, i.e. an = bn ∀n ∈ N.

Proof: By theorem 9, the functional integral I i
t(φ, ψ) can be written

as 〈T−1φ, e−
t
!

ATψ〉, where A is the operator defined by (41) and (42).
Under the stated assumptions, the vector Tψ belongs to the domain of
An ∀n ∈ N, and AnTψ belongs to S2 ⊂ D(T−1) ∀n ∈ N. In particular,
for any N ∈ N one has

〈T−1φ, e−
t
!

ATψ〉 =
N

∑

n=0

1

n!

(

−
t

!

)n

〈T−1φ,AnTψ〉 + RN ,

RN =
1

N − 1!

(

−
t

!

)N
∫ 1

0

uN−1〈T−1φ,ANe−
t
!

A(1−u)Tψ〉du.

The remainder RN can easily be estimated by means of Schwarz in-
equality and one has:

|RN | ≤
|t|N |!|−N

N !
‖T−1φ‖‖ANTψ‖ = O(|t|N).

As Tψ ∈ S2, one has AnTψ = (HT )nTψ = inTHnψ, so that by equa-
tion (39)

〈T−1φ, e−
t
!

ATψ〉 =
N

∑

n=0

1

n!

(

−
it

!

)n

〈φ,Hnψ〉 + O(tN).

Analogously

〈φ, e−
it
!

Hψ〉 =
N

∑

n=0

1

n!

(

−
it

!

)n

〈φ,Hnψ〉 + R′
N ,
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R′
N =

1

N − 1!

(

−
it

!

)N
∫ 1

0

uN−1〈φ,HNe−
it
!

H(1−u)ψ〉du,

with R′
N = O(tN), and one can easily verify that the asymptotic ex-

pansion in powers of t of I i
t(φ, ψ) and of 〈φ, e− it

!
Hψ〉 coincide.

Remark 6. The power series of the variable t are not convergent, but
only asymptotic. This fact implies that the result theorem 10 is not
sufficient to deduce the equality between I i

t(φ, ψ) and 〈φ, e i
!

Htψ〉.

Let us consider now couples of vectors φ, ψ satisfying the assumptions
of theorem 1 (so that the result of theorem 4 holds) and such that the
functional integral (28) is well defined. In fact, it is always possible to
find a dense set of vectors in L2(Rd) satisfying both conditions. For
instance, if M = 2, it is sufficient to take ψ ∈ S1 and φ ∈ S2, while
if M ≥ 3 the fulfillment of hypothesis of theorem 1 implies that the
integral (28) is well defined. Under these conditions, it is possible to
interpret the functional integral (28) as an asymptotic weak solution
of the Schrödinger equation, in the sense of the following theorem.

Theorem 11. Under the assumptions above, the asymptotic expansion
in powers of the coupling constant λ as λ→ 0 of the functional integral
representation (28) coincides with the corresponding asymptotic expan-
sion (14) of the matrix elements of the Schrödinger group. Moreover
the latter is Borel summable.

Proof: By expanding the functional integral (28) in powers of λ one
has

I i
t(φ, ψ) =

N−1
∑

n

anλ
n + RN ,

with

an =
1

n!
ei π

4 d

∫

Rd

φ̄(ei π
4 x)

∫

Ct

(

−
ei(M+1)π

2 λ

!

∫ t

0

|
√

!ω(s) + x|2Mds
)n

ψ(
√

!ei π
4ω(t) + ei π

4 x)W (dω)dx.
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and

RN =
λN

(N − 1)!
ei π

4 d

∫ 1

0

(1 − u)N−1

∫

Rd

φ̄(ei π
4 x)

∫

Ct

(

−
ei(M+1)π

2 λ

!

∫ t

0

|
√

!ω(s) + x|2Mds
)N

e−u e
i(M+1) π

2 λ
!

R t
0 |

√
!ω(s)+x|2Mds

ψ(
√

!ei π
4ω(t) + ei π

4 x)W (dω)dxdu.

It is easy to verify that RN = O(λN). Moreover, by exploiting the
symmetry of the integrand, the coefficients an can be written as:

an = ei π
4 d

(

−
ei(M+1)π

2 λ

!

)n
∫ t

0

. . .

∫ t

0

ds1 . . . dsn

∫

Rd

φ̄(ei π
4 x)

∫

Ct

|
√

!ω(s1) + x|2Mds . . . |
√

!ω(sn) + x|2Mds

ψ(
√

!ei π
4ω(t) + ei π

4 x)W (dω)dx.

By the result of corollary 1, the latter coincides with the coefficient an

of the asymptotic expansion (14). On the other hand, by theorem 4,
the matrix elements of the Schrödinger group can be obtained in terms
of the Borel sum of the asymptotic expansion

∑

anλn.

Remark 7. By a direct computation it is possible to verify that in
the case M = 2 (the quartic oscillator case) the functional integral
I i
t(φ, ψ) can be extended to an analytic function of the variable λ in the

sector D0,π of the complex plane and satisfies there an estimate of the
following form

|I i
t(φ, ψ) −

N−1
∑

n

anλ
n| ≤ ACN |λ|NN !.

By Watson-Nevanlinna’s theorem, it is possible to recover I i
t(φ, ψ) in

terms of the coefficients an in the asymptotic expansion. This result,
combined with the analogous result for 〈φ, e− i

!
Htψ〉, is not sufficient

to deduce the equality I i
t(φ, ψ) = 〈φ, e− i

!
Htψ〉, as the two function are

defined as the Borel sums of the same asymptotic expansion but on
different regions of the complex plane (the left hand side on D0,π and
the right hand side on Dπ,o). Indeed, let us consider two functions f1(z)
and f2(z) of the complex variable z, defined and holomorphic resp. in
D0,π and Dπ,0, admitting as z → 0 the same asymptotic expansion and
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estimate uniformly in their analyticity domains:

f1(z) ∼
∑

anz
n, |f1(z) −

N−1
∑

n

anz
n| ≤ A1C

N
1 |z|NN !,

f2(z) ∼
∑

anz
n, |f2(z) −

N−1
∑

n

anz
n| ≤ A2C

N
2 |z|NN !.

The function f1, f2 can be recovered by their asymptotic expansion
∑

anzn

by means of the following procedure. Let us define two functions g1(z)
and g2(z) of the complex variable z ∈ D−π/2,π/2 defined by

g1(z) := f1(iz), g2(z) := f2(−iz), z ∈ D−π/2,π/2.

g1 and g2 admit the following asymptotic expansion and estimate:

g1(z) ∼
∑

inanz
n, |g1(z) −

N−1
∑

n

inanz
n| ≤ A1C

N
1 |z|NN !,

g2(z) ∼
∑

(−i)nanz
n, |g2(z) −

N−1
∑

n

(−i)nanz
n| ≤ A2C

N
2 |z|NN !.

By theorem 3 they are both Borel summable, i.e. formally:

g1(z) =
1

z

∫ ∞

0

e−t/z
∑ inan

n!
tndt, (43)

g2(z) =
1

z

∫ ∞

0

e−t/z
∑ (−i)nan

n!
tndt. (44)

One would have f1(z) = f2(z) for z ∈ R+, if g1(iρ) = g2(−iρ) for
ρ ∈ R+, however the Borel summability of the asymptotic expansion
∑

anzn, in particular the relations (43) and (44), are by themselves
not sufficient to deduce this equality.
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