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Abstract

The pattern of implicatures of the modified numeral “more than n” depends on the roundness of n.
Cummins et al. (2012) present experimental evidence for the relation between roundness and impli-
cature patterns and propose a pragmatic account of the phenomenon. More recently, Hesse and Benz
(2020) present more extensive evidence showing that implicatures also depend on the magnitude of n
and propose a novel explanation based on the approximate number system (Dehaene, 1999). Despite
the wealth of experimental data, no formal account has yet been proposed to characterize the full pos-
terior distribution over numbers of a listener after hearing “more than n.” We develop one such account
within the Rational Speech Act framework, quantitatively reconstructing the pragmatic reasoning of
a rational listener. We argue that world knowledge about the distribution of the true quantity has a
substantial impact on the information conveyed by the modified numeral. We show that our pragmatic
account in combination with a heavy-tailed model of the participants’ prior correctly predicts various
features of the experimental data from Hesse and Benz (2020).

Keywords: Modified numerals; Rational speech act

1. Introduction

Traditional pragmatics mostly limited itself to qualitative accounts of implicatures, in
which an utterance in a context implicates some propositions, excluding or including some
possible world states. For instance, “most cats knit” implicates that it is not the case that all
cats knit. In the past 20 years, new experimental and statistical methods have been applied
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to capture subtler patterns in speaker behavior (see, e.g., Cummins & Katsos, 2019, for an
overview). In particular, the development of Bayesian cognitive models of pragmatic language
use and sophisticated experimental designs have allowed researchers to test more fine-grained
hypotheses about graded notions of implicature (Franke & Bergen, 2020).1. In this picture,
rather than a qualitative difference between states pragmatically compatible or incompati-
ble with an utterance, a pragmatic listener has a full prior over states which is updated after
receiving the utterance. The semantic and pragmatic content of the utterance contributes to the
listener’s estimated probability of each possible state, allowing for a graded and quantitative
notion of compatibility between an utterance and a possible state.

As a case study in this approach to pragmatics, in this paper we look at modified numerals,
that is, expressions such as “more than 3.” Modified numerals usually convey information
about the cardinality of the intersection of two sets. For instance, “about 4 Frenchmen yawn”
conveys that the cardinality of the intersection of the set of Frenchmen and the set of yawning
things is not far from 4. Examples of modified numerals are “at least 4,” “exactly 1,” and
“more than 3.” In this paper, we focus on the latter expression: “more than n” (for some
integer n). We develop an account of the shape of the posterior distribution over numbers of
a language user upon hearing an expression containing a modified numeral.

While the meaning of “more than n” might at first appear straightforward, the usage of the
expression poses several puzzles. First, as noticed already in Krifka (1999) and experimen-
tally confirmed in Geurts (2010), the standard Horn account is at odds with the behavior of
modified numerals. Specifically, modified numerals do not seem to elicit some of the pre-
dicted scalar implicatures, for example, “more than 3” does not seem to implicate “not more
than 4.”2. Second, as discussed in Cummins et al. (2012), the implicatures drawn from “more
than n” are influenced by the roundness of n. For instance, “more than 10” seems to implicate
“not more than 20,” but not “not more than 13.” This might be a consequence of “20” being
more round than “13.” Third, as discussed in Hesse and Benz (2020), the range of numbers
for which “more than n” is used is in some contexts influenced by the magnitude of n. Specif-
ically, the greater the magnitude of n, the greater the range of numbers above n to which
“more than n” still probably applies. For instance, “m is more than 10” prima facie would not
be used when m = 1, 010, but “m is more than 25,000” seems appropriate for m = 26, 000,
although the difference between m and n is the same in the two cases.

These three puzzles constitute qualitative patterns in the implicatures induced by
various modified numerals. However, they are all downstream from the posterior dis-
tribution over numbers induced in a listener after hearing “more than n,” formally
p(·|Speakeruttered"morethann"), which we abbreviate to p(·|MT n). In other words,
p(·|MT n) describes the probability that the listener attributes to m being each number after
hearing “m is more than n” (with n known and m unknown). p(·|MT n) encodes the pattern
of implicatures, as well as their dependence on the roundness and magnitude of the modi-
fied numeral.

p(·|MT n) could prima facie take various shapes.3. We consider three for illustration.
First, p(·|MT n) could approximate a normal distribution with mean m, whose mean could
depend on the roundness and magnitude of the modified numeral (option a in Fig. 1). Sec-
ond, p(·|MT n) could approximate an exponential distribution shifted to start at n, with a
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Fig. 1. Three possible usage distribution patterns for modified numerals “more than 10” to “more than 19”
(the distributions are over integers albeit showed as continuous for ease of visualization). Each line corresponds to
a different utterance of the form “more than n” and shows the posterior distribution of a listener after hearing the
signal. The n is shown above each distribution’s peak. Blue lines are used for the numerals of the lowest roundness
level, and the red line is used for “more than 10,” which is more round.

variance that again depends on the roundness and magnitude of n (option b in Fig. 1). Third,
p(·|MT n) could look like a uniform distribution from n to some value that could depend on
the roundness and magnitude of n (option c in Fig. 1).4.

The three categorical implicature effects we discussed are compatible with all three options
from Fig. 1. First, for all three options “more than n” can in general cover n + 2, implying that
“not more than n + 1” is not implicated. Second, in all options “more than 10” can behave dif-
ferently from “more than n”, with n less round than 10. Lastly, in all three options the relevant
parameters can be sensitive to the magnitude of n. In sum, a full account of the information
conveyed by a modified numeral to a pragmatic listener should therefore characterize the full
posterior distribution of a listener upon hearing a modified numeral.

Little work has been done to predict, characterize, or describe this distribution as a result
of pragmatic reasoning.5. The main aim of this paper is to propose a quantitative model of
p(·|MT n) which can account for the previously discussed qualitative patterns as well as exper-
imental data in previous literature and that can generate novel empirical predictions. We find
that a small modification to a popular computational model of pragmatic reasoning, the Ratio-
nal Speech Act (RSA) framework (Franke & Jäger, 2016), can account for the observed shape
of p(·|MT n) for a variety of levels of roundness and magnitudes. Moreover, we find that par-
ticipants’ world knowledge about the involved quantities can in large part explain the effect
of magnitude on p(·|MT n).

2. Previous literature and data

2.1. Granularity-based approaches

Early work on “more than n” focused on roundness as a possible factor to explain the
unusual implicature patterns discussed above. The concept of roundness can be analyzed
in terms of the concept of scale. Scales consist of the set of multiples of certain numbers,
for example, 5, 10, 50, 100, which are particularly cognitively simple.6. One scale is finer
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grained than another if it divides the number scale into points that are closer together. The
roundness of a numeral can then be thought of as the level of the least finely grained scale to
which the numeral belo. As an example, consider 30 and 200. Two hundred belongs to many
scales—e.g., the ones containing the multiples of 1, of 2, of 10—but the finest grained scale
it belongs to is arguably the scale of multiples of 100. On the other hand, the finest grained
scale 30 belongs to is that of the multiples of 10. Two hundred is therefore more round than
30 because the former belongs to a more coarse-grained scale than the finest grained scale
where the latter figures.

Cummins et al. (2012) argue that roundness plays a role in the pattern of implicatures
of modified numerals.7. For instance, “more than 1,000” lacks the implicature “not more
than 1,001.” In order for the implicature to be calculated, the listener would have to assume
that, had the speaker observed, for example, 1,002, they would have said “more than 1,001.”
However, 1,000 is rounder than 1,001, and therefore uttering 1,001 comes at an additional
cognitive cost compared to 1,000. For the speaker, the additional cognitive cost is too great for
the little additional information conveyed by uttering “more than 1,001.” The listener cannot,
therefore, infer that the speaker would have said “more than 1,001” had they observed a state
(e.g., 1002) for which “more than 1,001” would have been only slightly more informative
than “more than 1,000.”

Crucially, Cummins et al. (2012) note that the same argument does not apply when the
implicated sentence contains a numeral at the same or greater roundness level as n. For
instance, after observing 2,300 a speaker would rather utter “more than 2,000” than “more
than 1,000,” everything else being equal, because the two involved numerals are cognitively
equally costly, but the former utterance is more informative. Therefore, the listener would
have reason to infer that if the speaker uttered “more than 1,000,” they did not observe a state
for which “more than 2,000” applies. More generally, “more than n” should generate a scalar
implicature to “not more than m,” where m is the next numeral at the same roundness level of
n. Moreover, Cummins et al. (2012) point out that, for similar reasons, “more than n” should
also implicate “not more than m” for any m at a higher roundness level than n. For instance,
“more than 90” is predicted to implicate “not more than 100.”

Based on these arguments, Cummins et al. (2012) make two experimental predictions.
First, the rounder the n, the higher responders’ estimates will be compared to n. Second, in
the range condition, typical estimates will be of the form “n + 1 to m,” where m is the value
after n with the same granularity as n or higher.

Cummins et al. (2012) then present an experiment to test the two predictions. Participants
(n = 1, 200) were presented with 16 contexts. The following is one such context (varying by
condition as indicated):

Information A newspaper reported the following. “[Numerical expression] people
attended the public meeting about the new highway construction project.”
Question Based on reading this, how many people do you think attended the meeting?
Between and people attended [range condition].

people attended [single number condition].
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The numerical expression included a quantifier (either “more than” or “at least n”) and a
numeral belonging to one of three levels of granularity (multiples of 100, multiples of 10 but
not 100, and non-round such as 93).

Overall, the results confirmed the two experimental predictions. The range of interpretation
increases with the roundness of the numeral. Moreover, most responses in the range condition
were as predicted. For instance, “more than 100” typically conveyed an upper bound at 150.

2.2. Hesse and Benz (2020)

Hesse and Benz (2020) consider two empirical predictions from Cummins et al. (2012).
First, the rounder the n in “more than n,” the wider the range of potential values. Second,
the rounder the n, the further away from n will be the single most likely value. In a series of
experiments, Hesse and Benz (2020) test these two predictions for a wider range of numerals
than Cummins et al. (2012) and find that they are not borne out. Moreover, new patterns in
the interpretation of modified numerals emerge from the data.

The first experiment identifies some domains for which participants do not have strong
prior beliefs as to the size of the involved numerals. In such contexts, prior belief does not
play a strong role in the estimation of the numerals, and therefore the effect of roundness and
magnitude can be isolated from other prior factors. Four such domains are identified: petition
signatures, audience size at a music concert, votes in an election, and spectators at a sporting
event. The second experiment is a replication of the experiment in Cummins et al. (2012)
for a wider range of numerals at four different roundness levels (Coarse: 100, 200, medium
roundness: 50, 150, low roundness: 90, 110, 130, and unround: 93). Results do not corroborate
the two predictions based on Cummins et al. (2012): the (median) distance between n and the
guessed number in the single number condition does not increase the rounder the n is, and
neither does the (median) range in the range condition. In the third experiment, numerals
of a wider range of magnitudes are tested (20, 30, 40, 60, 70, 80, 120, 140, 160, 170, 180,
and 190) and only the four contexts identified in experiment 1 are used. In the combined data
from the second and third experiments (as well as in the data from the second experiment
alone), magnitude is a stronger predictor of the range of produced values than roundness.

The second and third experiments in Hesse and Benz (2020) fail to find evidence for two
of the effects predicted by Cummins et al. (2012). However, two novel patterns emerge. First,
the median numbers in the single number condition are a constant distance of 10 above the
modified numeral. Second, participants tend to guess numbers with an upper bound located at
the next round number above the modified numeral. For instance, when presented with “more
than 120,” “more than 130,” or “more than 140” participants tend to guess numbers up to 150
(a round numeral). This produces a “squeezing” effect for modified numerals immediately
below a round number. Both patterns can be observed in the left plot in Fig. 2.

In the fourth and last experiment, Hesse and Benz (2020) focus on larger numerals. They
administer the same task, with six contexts (number of signatures on a petition, size of the
audience at a music concert, turnout at an election, number of spectators at a sporting event,
size of a meeting, and budget for a reception) and larger numerals (1k, 1.1k, 1.4k, 15k, 16k,
19k, 20k, 21k, 24k, 25k). Like in the previous experiments, greater roundness does not per se
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Fig. 2. Some participants’ responses from the single numbers condition in experiment 2 (left, low magnitude) and
3 (right, large magnitude) in Hesse and Benz (2020). Responses for “more than n” are shown on the right side of
the gray line, and n is shown on the top right of each subplot.

cause a greater range of guessed numbers or wider ranges in the range condition. Moreover,
the two new patterns noticed in the previous experiments persist, but scale proportionally to
the magnitude of the involved numerals. While in the 1–100 range the median guessed number
was around 10 above the modified numeral, in the range of thousands it is 100 above, and in
the range of tens of thousands it is 1,000 above. While the upper boundaries participants tend
to select are at the roundness level of multiples of 50 or 100 in the 100 interval, they are
multiples of, for example, 500 in the 1,000 range and multiples of 5k in the tens of thousands
range. Both effects can be seen in the right plot in Fig. 2.

Hesse and Benz (2020) also give a characterization of their data in terms of a boundary
function, and they propose an explanation for the fact that larger ns lead to guesses with a
proportionally greater variance. The explanation relies on the Approximate Number System
(ANS), namely the cognitive mechanism that underlies the approximate perception of mag-
nitudes. When using the ANS, numbers are not encoded precisely, but rather as distributions
over numbers. Moreover, the variance of this distribution increases with the magnitude of the
number. Hesse and Benz (2020) argue that, as the modified numeral gets larger, participants
will associate the numeral with increasingly wide distributions, and therefore the spread of
their guessed numbers will also increase.

The account developed in Hesse and Benz (2020) paints a clear picture of the patterns in
production for modified numerals of the form “more than n” and “less than n.” However, the
paper does not give a full model of the way a listener calculates a posterior over numbers. In
order to evaluate their proposal quantitatively, more detail would be needed for the implemen-
tation, specifically concerning the relation between the ANS component of their account and
roundness. For instance, a bare ANS account alone leaves unexplained why participants tend
to produce signals at higher levels of roundness when dealing with larger numbers, rather
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than simply producing from a distribution with greater variance. Among the 1,000 numer-
als guessed in the fourth experiment for n ≥ 15, 000, only 88 were at a level of roundness
lower than 500. As we argue in the next section, a simple model of recursive mindreading can
explain these various patterns in the data in a unified manner.

3. A Bayesian model for “More Than”

3.1. The rational speech act framework

In the following, we propose a characterization of p(·|MT n) based on the RSA framework,
an approach to modeling the process of recursive mindreading that lies behind the pragmatic
interpretation or production of utterances (Frank and Goodman, 2012; Franke & Jäger, 2016;
Goodman & Frank, 2016). RSA models usually start with a pragmatic listener who interprets
utterances based on the simulated behavior of a pragmatic speaker. The pragmatic speaker in
turn given an observation tends to choose the most useful utterance for a literal listener who
interprets it based solely on its literal meaning. We will first explain the simplest type of the
RSA model and then a modification that will be useful to model modified numerals.

The simplest RSA model starts with a set of utterances u and a set of possible states s.
The meaning of each utterance can be encoded for our purposes as the set of those states
that verify the utterance. The pragmatic listener L1 receives an utterance u and calculates a
posterior over states by Bayesian update, combining their prior over states with the probability
that the pragmatic speaker S1 would have produced the utterance given each state:

pL1 (s|u) ∝ pL1 (s)pS1 (u|s). (1)

The pragmatic speaker in turn observes a state and produces an utterance with a probability
that depends on a cost-related salience utterance prior weighted by parameter β (see chapt. 3
in Scontras, Tessler, & Franke, 2018):

p(u;C) ∝ exp (−βc(u)) (2)

and on the utility U (u|s) for a literal listener L0 given the state:

pS1 (u|s) ∝ exp(αU (u|s))p(u;C), (3)

where α is the speaker’s rationality parameter: the higher the value of α, the more the
speaker’s distribution will be peaked at the most useful utterances. The utility U (u|s) is the
negative surprisal of the state given the utterance so that the speaker favors utterances that
make the state less surprising for the literal listener:

U (u|s) = log(pL0 (s|u)). (4)

Finally, the probability that literal listener L0 attributes to each state given an utterance is
simply 0 if the utterance is not verified by the state and proportional to the prior for the state
otherwise:

pL0 (s|u) ∝
{

pL0 (s) if s verifies u
0 otherwise

. (5)
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Fig. 3. Simple RSA model with three possible utterances u (y-axis) and three states s (x-axis). L1 calculates a
scalar implicature for utterances u1 and u2 (α = 4). The left, central, and right plots correspond to L0, S1, and L1

respectively. The color indicates the probability of guessing a state given a signal for L0 and L1, and the probability
of producing a signal given a state for S1.

Fig. 3 shows L0, S1, and L1 in this simple RSA model. The crucial phenomenon that can be
observed in Fig. 3 is that L1 calculates a scalar implicature: although utterance u1 is, in its
literal sense, compatible with both s1 and s2, S1 tends to produce u1 mostly for s2, because
when s1 is observed S1 tends to use the more useful signal u2. Therefore, when hearing u1 L1

is more likely to guess s2.

3.2. An RSA model for modified numerals

We start by introducing two simple changes to the basic RSA model above to get a first
approximation of the experimental data in Hesse and Benz (2020). First, we let utterance cost
depend on the roundness level in a way consistent with Hesse and Benz (2020)’s measure of
roundness, itself based on the measure in Cummins et al. (2012) and inspired by Jansen and
Pollmann (2001). Specifically, we calculate the cost as the inverse rank of roundness, in the
following way:

Finest grained scale Cost c(n) Coarsest grained scale Cost c(n)
1,000 0 50 4
500 1 10 5
200 2 5 6
100 3 1 7

For instance, according to this measure 3,000—whose greatest divisor in the table is
1,000—gets cost 0, while 350—whose greatest divisor in the table is 50—gets cost 4. The
relation between roundness level and cognitive cost is confirmed (for a different but related
definition of roundness) by Solt, Cummins, and Palmović (2017), which gives experimental
evidence that the level of granularity influences the cognitive complexity of the expressions.
Second, we specify a prior for both the literal listener, pL0 , and the pragmatic listener, pL1 .
For simplicity, we assume that the two priors are identical. This corresponds to the default
assumption that the literal listener assumes that the pragmatic speaker has an accurate rep-
resentation of the listener’s prior. We provisionally assume for purposes of exposition that
this prior has a geometric distribution with parameter k = 0.007, and we revise this prior in a
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Fig. 4. Left: Listener’s posterior probability p(·|MT n) over numbers given each signal. The squeezing effect can
be visualized as the increasing concentration of posterior mass approaching round numbers from below (α =
7, β = 1). Right: p(·|MT n) for n at intervals of 10. The squeezing effect—the posterior distribution concentrating
between n and the closest round number above—is particularly clear for n = 140, 190.

more principled manner in the next section. The results of these two changes for small n can
be seen in Fig. 4 for numerals between 100 and 190.8.

Some crucial features of the data are predicted by adding granularity-dependent cost and
a prior at the L0 and L1 levels. First, as observed in the data in Hesse and Benz (2020), the
distribution for “more than n” resembles option b in Fig. 1. The reason for this, which as far as
we are aware has not been discussed in the literature, is an accumulation of very weak scalar
implicatures.9. If the listener hears “more than n” and considers whether the true state is m,
then they reason that for all j such that n < j < m, the speaker had to choose to not utter j,
since all expressions “more than j” would also be true. Therefore, the greater the number of
js, the less plausible it is that the true state is m.

A second feature in the data that our model correctly predicts is the effect of the numeral’s
roundness on the distribution of guesses. In partial agreement with Cummins et al. (2012),
some round numbers have a greater variance than less round numbers. For instance, “more
than 0” is predicted to have greater variance than “more than 20.” However, contra to Cum-
mins et al. (2012) and consistent with Hesse and Benz (2020), the effect is small for all
numbers except 0 in the model.

A third feature in the data captured by our model is the squeezing effect. As the signal
approaches a round number from below, the probability mass becomes more concentrated
between n and the round number. This is clear in the right plot in Fig. 4 for numerals approach-
ing 150 and 200. The effect also exists, but to a lesser extent, for numerals of lower roundness
levels. As already described in Cummins et al. (2012), the effect is a consequence of an
implicature. If the true number had been higher than a round numeral higher than the one
the speaker chose, the speaker would have chosen the higher round numeral instead. There-
fore, the number has to be lower than any round numeral above the one actually chosen by
the speaker.

While the simple model of the pragmatic listener can account for some features of the
experimental data, it differs in a crucial way from the participants in the experiment. Namely,
the RSA pragmatic listener is a pure listener, while the participants were asked to produce a
guess, and therefore are also in a certain way speakers. In order to make predictions compa-
rable to the experimental data presented in Hesse and Benz (2020), we also propose a simple
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Fig. 5. Predicted production probabilities for a simple production model based on an RSA pragmatic listener L1

(α = 7, ρ = 3). The production model correctly describes the participants’ tendency to guess a round number
above the observed number.

way that the listener might use their posterior over states given a modified numeral to give
a response in the experiment. In our participant model, listeners tend to produce states that
have a high probability, with an additional utterance prior against producing signals with a
high cost:

p(Producing m | u) ∝ exp
(
ρ log(pL1 (m | u)) − c(m)

)
, (6)

where u is the utterance shown to the participant and ρ is the softmax (inverse temperature)
parameter, encoding a tendency of the listener to select the signal with the highest posterior
probability. This model of participant production reflects the speaker model of pragmatic
RSA agents, for a listener who is asked to make a guess as to the world state. Fig. 5 shows
the predicted production probabilities for a participant in the single number condition. The
predictions resemble the observed data shown in the left plot of Fig. 2, both in terms of which
numerals are produced and more generally in terms of the shape of the produced numerals.

3.3. The effect of the order of magnitude

While the simple RSA model we presented here correctly captures various features of the
experimental data, it does not explain the observed relation between the magnitude of the
modified numeral and the range of participants’ guesses. Hesse and Benz (2020) propose to
explain this relation with a cognitive mechanism, the ANS. On the other hand, we propose
to explain the effect of magnitude on the observed distribution of guesses based only on
participants’ world knowledge, as encoded in their prior. We focus on the contexts that Hesse
and Benz (2020) use for the production tasks in experiments 2, 3, and 4, which show the
effect of magnitude. For these experiments, Hesse and Benz (2020) select those contexts for
which participants have a wide range of guesses in experiment 1 (called “weak prior beliefs”
in Hesse & Benz, 2020), as opposed to the contexts where guesses cluster together (“strong
prior beliefs”). While we agree that two types of priors indeed appear among the contexts in
experiment 1, we believe their specific functional shape has a crucial role to play in explaining
the effect of magnitude. Namely, we argue in this section that what Hesse and Benz (2020)
call “weak priors” are in fact heavy-tailed distributions with a special property which we
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define below. This will provide a precise explanation of the connection between contexts with
“weak prior beliefs” and the effect of magnitude.

Before discussing the case at hand, it is worth briefly reviewing the different possible
behaviors for the tails of a distribution. Informally, the tail of a distribution is the part of
the distribution that describes values far away from the distribution’s mean.10. Tail behavior
determines various important aspects of the distribution, some of which we return to below.
Nonetheless, a fundamental distinction can be drawn between distributions with heavy or
light tails. A random variable X is said to be heavy-tailed if and only if for any μ > 0,

lim sup
x→∞

P(X > x)

e−μx
= ∞. (7)

Intuitively, this means that the tail of the distribution decreases slower than that of an expo-
nential distribution. While this might appear like an arbitrary diving line between two groups
of distributions, heavy- and light-tailed distributions behave qualitatively different in a num-
ber of ways. While values much bigger than the majority of the values are extremely unlikely
with light-tailed distributions, they can be expected with heavy-tailed distributions.

Our first step in finding the most appropriate prior for the RSA model is to find an appro-
priate family of priors for the contexts under discussion. We begin approaching the problem
of finding the right prior empirically by simply fitting three possible distribution families
with positive support on the prior samples from experiment 1 (without modified numerals).
We consider three families of distributions with discrete positive support: geometric, zeta,
and negative binomial. These three distributions are a natural choice in this context. Among
light-tailed distributions, the negative binomial has a nice interpretation as a compound distri-
bution: it is the distribution of a Poisson-distributed variable whose λ parameter has a Gamma
distribution. In other words, if someone thinks a quantity, for example, the number of people
attending a concert, is determined by independent events happening in a certain interval of
time with a constant rate (Poisson distributed) but is unsure what this rate is (Gamma dis-
tributed), then they give this quantity a negative binomial distribution. The zeta distribution
does not have such a straightforward generative characterization, but its heavy-tail behavior
has a nice property, namely a linearly increasing excess mean function, to which we return
below, that makes it particularly appropriate in the context of the data. Finally, the geomet-
ric distribution serves as a “line of demarcation” between the property of interest for us:
roughly, all and only those positive discrete distributions whose tail is heavier than a geomet-
ric distribution have an increasing mean excess function, since the geometric distribution is
memoryless (Feller, 1957).

In order to fit the data to each family of distributions, we assume for each family that partic-
ipants’ guesses are independently drawn with the same parameter values and find a posterior
distribution over these.11. Fig. 6 shows the results of fitting each of the three distribution fam-
ilies on the prior samples in experiment 1 in Hesse and Benz (2020). In some contexts, the
negative binomial distribution shows a better fit to the data than the zeta distribution (Coffee,
Meeting, Movie, Wedding, Excursion, Concert), and in other contexts they are approximately
equal (Budget, Petition, Game). The geometric distribution is never better than the other
distributions for the contexts of interest, namely those with “weak priors” in the terminol-
ogy of Hesse and Benz (2020).
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12 of 20 F. Carcassi, J. Szymanik / Cognitive Science 46 (2022)

Fig. 6. Comparison of three ways of modeling the data from experiment 1 (without numerals): assuming that
guesses come from a geometric, a negative binomial, or a zeta distribution. While the former two are light tailed,
the zeta is a heavy-tailed distribution. The empty circles show the approximated leave-one-out predictive error on
the deviance scale, along with their standard deviation (black error bar). The lower the value, the better the model
for the data. Triangles show the difference between a model and the top model, along with its standard error. The
observations in some contexts are better modeled with a light-tailed distribution (e.g., the size of the audience at a
music concert), while a heavy-tailed distribution is equally good in other contexts (e.g., the number of signatures
in a petition).

Fig. 7 paints a clearer picture of the difference in how the zeta and the negative binomial
families fit the data, which helps understand how each fails or succeeds. The crucial difference
between the two families can be seen in the behavior of the tail. The zeta distribution follows
a power law, and therefore its probability mass function12. decreases log-linearly, while the
probability mass function of the negative binomial eventually decays faster than the zeta dis-
tribution. Therefore, in the Movie context where observations cluster together fairly closely
the zeta distribution cannot do better than the negative binomial for any of the observations. In
contrast, in the Budget context where some observations are very large most of the observed
data still has a higher probability under the negative binomial, while the most extreme data
are more likely under the zeta distribution. In sum, the zeta distribution mostly fails com-
pared to the negative binomial distribution, but even a single extreme enough sample suffices
to compensate. This pattern is representative of the other contexts with heavy tails.

It should be noted at this point that there is an asymmetry between the zeta and the neg-
ative binomial in terms of how successfully we can expect them to fit the data. If the true
participants’ prior is light tailed, the data can likely be fit reasonably well with a negative bino-
mial based on its generative characterization discussed above, while a zeta distribution would
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F. Carcassi, J. Szymanik / Cognitive Science 46 (2022) 13 of 20

Fig. 7. Comparison of the posterior probabilities of the guesses in experiment 1 (without modified numerals) under
the zeta distribution and the negative binomial distribution models, for two contexts. The rugplot at the bottom of
the plot shows the values guessed by the participants. Note that both the x and the y axes are in log space. The two
models differ in two main ways, as can be seen in the plot.

overestimate the probability of events larger than the ones observed. However, the heavy-
tailed case is more complex. Many naturally occurring heavy-tailed distributions behave dif-
ferently in their body and their tails. Therefore, even if the participants’ prior is heavy tailed,
its body might still not resemble a zeta distribution. Therefore, only considering the zeta dis-
tribution underestimates how well the assumption of heavy-tailedness fits the data. Insofar as
we are taking zeta and negative binomial to represent heavy- and light-tailed distributions,
respectively, we are therefore giving an unfair advantage to the latter. One option would be to
only consider the highest order statistics. However, estimating heavy-tailedness directly from
samples is difficult, especially with few samples.

Fortunately, we can take an alternative route to help restrict the shape of participants’ prior,
by looking at the data from the remaining experiments. In particular, we consider the observa-
tion by Hesse and Benz (2020) that the spread of participant’s guesses grows approximately
linearly with the magnitude of the modified numeral. If we momentarily put aside the prag-
matic phenomena influencing the data, we can think of this observation as a constraint on the
prior density f . Namely, the constraint that as we lower truncate f at higher values, the mean
of the resulting distribution grows further away from the lower bound.13. This property can
be expressed in terms of the mean excess function:

e(x) = E(X − x | X > x). (8)

To get an intuition for the different ways the mean excess function can behave, compare the
two cases of height and wealth. Height has a decreasing mean excess function: if you know
someone is taller than 160 cm, you expect them to be roughly 20 cm taller than that. However,
if you know someone is taller than 200 cm, you expect them to be at most a few centimeters
taller than that. On the other hand, wealth has an increasing mean excess function: if you
know someone earns 20k euros yearly, you might expect them to earn just a few thousand
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Fig. 8. Comparison of mean residual functions for the zeta distribution (top row of plots) and the negative binomial
distribution (bottom row of plots). The top left plot shows the probability mass function of the zeta distribution
for four parameter values. The top central plot shows the mean residual function e for the same parameters. Note
that e soon approximates a positive linear function, with a slope depending on the zeta’s s parameter. The relation
between s and the approximate slope of e is shown in the top right plot: as s increases, the slope tends towards
zero. The bottom left plot shows the probability mass function of the negative binomial distribution for a variety of
parameters. The bottom right plot shows the corresponding mean residual functions e. Note that, in contrast to the
case of the zeta distribution, e is decreasing for the negative binomial distribution. The mean residual function of
the geometric distribution is simply a constant function, as therefore conceptually serves as the separation between
light- and heavy-tailed discrete distributions.

euros above that threshold. If someone earns more than 20 million dollars, they probably
make at least a few million dollars more. In the context of the experiments in Hesse and
Benz (2020), we propose that “weak priors” are in fact best described as distributions with
an approximately linearly increasing mean excess function. This can be roughly imagined
as follows. When truncating the prior distribution at some lower bound n, as n increases the
resulting distribution gets progressively flatter. Moreover, the rate of increase in flatness does
not change with n.

The mean excess function of the zeta distribution increases approximately linearly. Fig. 8
shows a comparison of the mean excess functions of the zeta and the negative binomial. These
observations, abstracted from the specific samples that might be influenced by the involved
pragmatic phenomena, support the claim that the contexts with “weak” priors in Hesse and
Benz (2020) are in fact approximately zeta distributed.14. Therefore, we implement a zeta
distribution as the prior in the RSA model presented above.
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Fig. 9. The predicted posterior over numerals after hearing “more than n” with a zeta-distributed prior (s = 7, α =
0.1, β = 5), for small values of n. Participants’ guesses are shown as vertical orange lines, while the predicted
distribution of the guesses is shown with a blue line. Note that the parameters are the same as in Fig. 10.

The strength of RSA in this context is that it allows us to naturally implement this infor-
mation about the participants’ prior distribution in the model. Under the assumption that the
prior distribution over states of L0 and L1 belongs to the zeta family, the posterior over states
of L1 become

L1(x | n, s) ∝ 1

xs
S1(n | x, s) (9)

= 1

xs

ζ (s, n)αe−βC(n)∑x−1
i=1

(
ζ (s, i)αe−βC(i)

) with n < x (10)

∝ 1

xs
∑x−1

i=1

(
ζ (s, i)αe−βC(i)

) with n < x, (11)

where ζ is the Hurwitz zeta function, defined as

ζ (s, i) =
∞∑

n=0

1

(n + i)s . (12)

The resulting posterior for the small numerals in experiments 2 and 3 can be seen in Fig
9, along with the specific experimental observations for comparison. Similarly, Fig. 10 shows
this for the large numerals in experiment 4 from Hesse and Benz (2020). The same parameters
are used in the two figures, and only the involved modified numerals change. Nonetheless, the
range of predicted guesses increases in a way that is similar to the one observed: while the
predicted guesses in Fig. 9 are within a few dozen of the modified numeral, the ones in Fig. 10
are scaled proportionally to a few hundreds or a few thousands. Moreover, the squeezing effect
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Fig. 10. The predicted posterior over numerals after hearing “more than n” with a distributed zeta prior (s = 7, α =
0.1, β = 5), for large values of n. Participants’ guesses are shown as vertical orange lines, while the predicted
distribution of the guesses is shown with a blue line. Note that the parameters are the same as in Fig. 9.

also scales in a way consistent with the data: while the numerals squeeze below numbers at the
roundness of 100 in Fig. 9, the same level of roundness does not produce a visible squeezing
effect for the large modified numerals in Fig. 10, where instead greater roundness is needed to
produce the squeezing effect. In sum, a single prior can predict the three main features of the
data: first, the effect of magnitude on the guesses; second, the production of extreme values
in experiment 1 without modified numerals; third, the squeezing effect in a way that scales
with the modified numeral.

While the RSA model predicts the main features of the experimental data from Hesse and
Benz (2020), Figs. 9 and 10 are in some respects quantitatively different from the data. Specif-
ically, in some cases we get a spill-over effect15.: the guesses observed in the experiment are
higher than would be expected based on the model’s predictions. For instance, for n = 1.4k
in Fig. 10 several of the guesses are higher than expected. A possible reason for this is that the
relative costs of different levels of roundness might be different from the simple one assumed
in the model. Future work could fit the cost of the individual levels of granularity based on the
data. Another possible reason is that the model does not account for the hierarchical struc-
ture of the data, where different contexts might be associated with different priors across
participants. This can be important both because some of the contexts in experiment 4 could
have lightweight priors, and, therefore, a decreasing mean excess function, and because the
different heavy-tailed contexts might have different parameters.

4. Conclusions

Overall, our model provided a quantitative account of some aspects of the way participants
understand the modified numeral “more than n.” Various features of the data are predicted
by our model. First, and most importantly, the general shape of the guesses is predicted to
be similar to option b in Fig. 1, which is consistent with the data in Hesse and Benz (2020).
Second, the model captures the patterns of implicature discussed at the beginning of the paper:
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the prima facie surprising lack of strong implicatures for successive numerals and the depen-
dency of implicatures on roundness and magnitude. In particular, assuming zeta-distributed
priors for the heavy-tailed contexts studied in experiments 3 and 4 from Hesse and Benz
(2020) we can account for the increasing range of the guesses as a function of the magnitude
of the modified numeral.

The work in this paper could be extended in various ways. First, a Bayesian statistical
model can be developed to fit the data in Hesse and Benz (2020), and a Bayesian model
comparison can be used to compare our account to the ANS account. The account proposed
in Hesse and Benz (2020) is not a quantitative account of production, and, therefore, it
would have to be extended to directly predict experimental data. Cummins (2022) offers
further considerations on the possible relations between the interpretation of modified
numerals and the ANS. Moreover, a hierarchical model could take into account the dif-
ferences in priors across contexts and participants and possibly help explain the spill-over
effect.

Second, the model could be extended to include more modified numerals. For instance,
Hesse and Benz (2020) also include the modified numeral “less than.” Other modified numer-
als that could be modeled are “at most n” and “at least n,” which have been shown to differ
from “less than n + 1” and “more than n − 1” in interesting ways (Spector, 2020).

Third, the model could be extended to make predictions for the case of light-tailed pri-
ors. In a simple version of the extended model with light-tailed priors, greater values of
n would result in guesses that are closer, rather than further, from the modified numeral.
However, this assumes that participants do not update their prior based on the information
provided by the modified numeral itself. This assumption might be false: the probability
of a person being taller than 100 m is so low that, upon hearing that a person is taller than
100 m, a participant would most likely give up on usual world knowledge and work with
a different set of assumptions.16. The transition from the usual parametric assumptions to
the ones adapted to the observed modified numeral could itself be studied in a Bayesian
framework.

The model also makes some assumptions and predictions beyond the data in Hesse and
Benz (2020) that could be tested experimentally. For instance, it assumes that listeners end up
with a full posterior distribution over numbers after hearing a modified numeral. However, it is
not obvious that language users would possess representations of this kind, especially over an
infinite set of numbers. Moreover, a listener would in principle need to calculate implicatures
over an infinite set of possible utterances, which is implausible from a processing point of
view. While we see the RSA model as a computational level model, these considerations
should be taken into account if the gap to the algorithmic level is to be bridged.17. We leave
all these possibilities to future work.
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Notes

1 For lack of conventional and apt terminology, in the following we will slightly abuse
the term “implicature,” using it for phenomena that might not traditionally count as
such. We will for instance speak of an “accumulation of implicatures.” The context and
model will clarify what is meant in each case.

2 This assumes a contextual restriction to integers. In the following, we will keep this
assumption unless explicitly stated otherwise. We thank a reviewer for pointing out this
needed qualification.

3 All the distributions we consider are proper distribution, which excludes such distribu-
tions as a degenerate density over R. We think this is a reasonable default assumption
as it also ensures that the listener’s posterior defines a generative model.

4 As we discuss below in more detail, experimental work in Hesse and Benz (2020) shows
that option b, with some caveats, is in fact closest to how “more than n” is actually inter-
preted.

5 Hesse and Benz (2020) give a partial characterization which we discuss below. More-
over, Benz (2015) gives an account of implicature patterns of “more than n” for round
ns which is some ways similar to the one presented in this paper, but stops short of char-
acterizing the whole listener’s posterior. Cummins (2015, p. 182), for example, offers
some remarks on the relation between modified numerals and probabilistic thinking.

6 Note that not all possible scales are used to determine roundness. For instance, 202 is
less round than 200, despite being divisible by a number, 101, which is greater than
the greatest divisor of 200, namely 100. This indicates that the scale of multiples of
101 does not play a role in determining roundness. We do not develop an account of
which scales influence roundness, but rather rely on previous characterizations from the
literature (see e.g., Jansen & Pollmann, 2001).

7 Cummins (2013) give a more theoretically grounded and precise account of the impli-
cature patterns for modified numerals based on optimality theory (Prince & Smolensky,
2008). While these previous accounts include more phenomena than are discussed here,
they do not provide a full characterization of p(·|MT n). Therefore, here we focus on
the experimental results.

8 Probabilities are upper-truncated at 10,000 for simplicity, and the possible sig-
nals all the expressions “more than n” with 0 ≤ n ≤ 10, 000. https://github.com/
thelogicalgrammar/modifiedNumeralscontains all the code needed to reproduce this
and the following results.

9 Note that we mean this at the computational level. It is at this stage unclear what algo-
rithmic story could be given for this. One possibility is that only a small set of families
of distributions are used to encode priors, selected to make inference particularly sim-
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ple, and only a small number of numerals are considered at each level of granularity.
We thank the reviewer for pointing to this question.

10 This characterization provides an intuitive understanding, but it cannot be a definition
as not all distributions have a mean. In addition, the concept of “tail” is in itself a vague
concept. Nonetheless, this characterization will suffice for the present exposition.

11 The prior for the geometric family’s p parameter is uniform in [0, 1], the prior for the
zeta family’s s parameter is a half normal distribution with sd= 15, and the prior for
the negative binomial’s p and n parameters are uniform in [0,1] and a half normal with
σ = 20, respectively.

12 The function that for every element in the distribution’s domain gives the probability of
a random variable with the distribution taking that value.

13 Strictly speaking, the observation not only involves the mean but the whole shape of
the distribution, related to the condition of scale invariance. However, for simplicity we
only consider the mean excess function. As will become clear below, the zeta distribu-
tion also approximately satisfies the more general condition.

14 Tail behavior is in general better understood for distributions with continuous support.
For instance, among these only the generalized Pareto family perfectly satisfies our
condition of a linearly increasing mean function (Ghosh & Resnick, 2011). The zeta
distribution can be seen as a discrete version of the Pareto distribution.

15 We thank an anonymous reviewer for suggesting this name for the effect.
16 Hyperbole is one case where utterances with extremely low probability can lead to

adopting a different model. This was studied in detail in the RSA framework by Kao,
Wu, Bergen, and Goodman (2014).

17 We thank an anonymous reviewer for raising these points.
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