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Abstract—Scene graph generation (SGG) is built on top of
detected objects to predict object pairwise visual relations for
describing the image content abstraction. Existing works have
revealed that if the links between objects are given as prior
knowledge, the performance of SGG is significantly improved.
Inspired by this observation, in this article, we propose a relation
regularized network (R2-Net), which can predict whether there
is a relationship between two objects and encode this relation
into object feature refinement and better SGG. Specifically, we
first construct an affinity matrix among detected objects to repre-
sent the probability of a relationship between two objects. Graph
convolution networks (GCNs) over this relation affinity matrix
are then used as object encoders, producing relation-regularized
representations of objects. With these relation-regularized fea-
tures, our R2-Net can effectively refine object labels and generate
scene graphs. Extensive experiments are conducted on the visual
genome dataset for three SGG tasks (i.e., predicate classifi-
cation, scene graph classification, and scene graph detection),
demonstrating the effectiveness of our proposed method. Ablation
studies also verify the key roles of our proposed components in
performance improvement.

Index Terms—Graph convolution networks (GCNs), scene
graph generation (SGG), visual relationship.

Manuscript received October 17, 2019; revised May 13, 2020 and
September 17, 2020; accepted January 2, 2021. This work was supported in
part by the National Key Research and Development Program of China under
Grant 2018AAA0102200; in part by the National Natural Science Foundation
of China under Grant 61772116, Grant 61872064, Grant 62020106008, and
Grant 61871470; in part by the Sichuan Science and Technology Program
under Grant 2019JDTD0005; in part by the Open Project of Zhejiang Lab
under Grant 2019KD0AB05; and in part by the Open Project of Key
Laboratory of Artificial Intelligence, Ministry of Education under Grant
AI2019005. This article was recommended by Associate Editor D. Goldgof.
(Corresponding author: Lianli Gao.)

Yuyu Guo, Lianli Gao, Jingkuan Song, and Heng Tao Shen are
with the Future Media Center, University of Electronic Science
and Technology of China, Chengdu 611731, China, and also with
the School of Computer Science and Engineering, University of
Electronic Science and Technology of China, Chengdu 611731,
China (e-mail: yuyuguo1994@gmail.com; lianli.gao@uestc.edu.cn;
jingkuan.song@gmail.com; shenhengtao@hotmail.com).

Peng Wang is with the School of Computing and Information Technology,
University of Wollongong, Wollongong, NSW 2170, Australia (e-mail:
pengw@uow.edu.au).

Nicu Sebe is with the Department of Information Engineering and
Computer Science, University of Trento, 38123 Trento, Italy (e-mail:
niculae.sebe@unitn.it).

Xuelong Li is with School of Computer Science and Center for OPTical
IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical
University, Xi’an 710072, China (e-mail: xuelong_li@nwpu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2021.3052522.

Digital Object Identifier 10.1109/TCYB.2021.3052522

I. INTRODUCTION

IN PRACTICE, providing only object labels and detecting
object bounding boxes [1]–[5] may not produce satisfac-

tory semantic information for downstream tasks, such as visual
content retrieval [6]–[9]; visual question answering [10], [11];
and visual captioning [12], [13]. For instance, in Fig. 1, gen-
erated object labels and bounding boxes (e.g., dog, woman,
frisbee, and hair) cannot provide answers to the following
question: what are the two dogs and the woman doing? As a
result, scene graph generation (SGG) has been proposed and
studied by Krishna et al. [14], who also collected a dataset
consisting of images with objects and object relations to eval-
uate the quality of the generated scene graph. In the example
in Fig. 1, the bottom part represents the scene graph, precisely
and briefly describing the semantic content of the top image.
With such a scene graph, we can provide an answer to the
aforementioned question.

As shown in Fig. 1, a scene graph consists of nodes
(objects) and edges (relationships between objects). Given an
image, SGG is built on top of detected objects to predict
object pairwise visual relations for describing the image con-
tent abstraction [15]–[17]. It is challenging to effectively and
accurately generate a scene graph and this has been recently
been the subject of intensified research [15]–[19]. Some stud-
ies have focused on exploiting linguistic priors [15], visual
embedding [18], feature interactions [20], external information
(e.g., region captions) [21], or spatial information [19] to boost
the performance. Some other studies have tried to extract
certain contextual information from objects to enhance the
performance [16], [17], [22] by iterative message passing,
neural motifs, or graphs to avoid detecting and recognizing
individual objects in isolation.

From previous works, we can see that the contextual
information is important to SGG. To truly produce accurate scene
graphs, it is crucial to devise a model that fully and automati-
cally exploits the global contextual information and relational
contextual information. The global contextual information
encodes the visual information from all objects and back-
grounds/environments. The relational contextual information
encodes the graph information among objects. Moreover, the
previous experimental results of the two SGG tasks [i.e., pred-
icate classification (PREDCLS) and scene graph classification
(SGCLS)] [16], [17], [19] have proved that the quality of the
detected object labels significantly influences the performance
of the SGG. In other words, improving the quality of object
label detection could directly lead to better scene graphs.
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Fig. 1. Ideal SGG method takes an image as input to generate a precise
graph for describing the image content abstraction. A scene graph consists of
nodes (dog, tail, and so on) and edges (has, touching and so on). It can also be
represented by a set of triples (dog-has-tail, dog-touching-frisbee, and so on).

Therefore, in this article, we address the problem of SGG,
where we aim to take advantage of the global context and
relational information to produce a relation regularized scene
graph from an image. Our contributions are threefold as
follows.

1) We propose a novel relation regularized network,
namely, R2-Net, which can predict whether there is
a relationship between two objects and use this rela-
tion as a regularizer to learn relation-embedded features.
Therefore, the R2-Net effectively and progressively
encodes region features with the global context and rela-
tional information to refine object label prediction and
SGG.

2) We propose a stacked LSTM-GCN encoder to extract the
comprehensive features of objects. Specifically, we stack
graph convolution networks (GCNs) on top of bi-LSTMs
as an object feature encoder to combine the relation-
embedded features and the global features.

3) We verify the effectiveness of our method across three
tasks [i.e., PREDCLS, SGCLS, and scene graph detec-
tion (SGDET)] on the visual genome dataset. Our
ablation study also demonstrates the key roles of our
proposed components in performance improvement.

II. RELATED WORK

In this section, we describe three categories of related
works, including: 1) object detection; 2) SGG; and 3) GCNs.

Object Detection: Object detection is one of the most fun-
damental areas in the field of computer vision. Due to the
evolution of convolutional neural networks (CNNs) [23], many
effective CNN-based methods [4], [5], [24]–[27] have been
proposed to deal with this task. First, Girshick et al. [24]
directly extracted the deep features of warped region propos-
als with a deep CNN and classified these deep region features
with SVMs [28]. However, performing a whole CNN forward
pass for each proposal is time consuming. Fast R-CNN [25]
extracted the feature map from an entire image and mapped
region proposals to regions of interest (RoIs) in the feature

map. Then, the RoI pooling layer resized the RoI feature maps
to the same size for classification and regression. By shar-
ing the same CNN for region proposals, fast R-CNN saved
a lot of computing time. In order to achieve real-time detec-
tion, faster R-CNN [5] replaced the time-consuming selective
search method with a region proposal network to search the
class-agnostic foreground objects. Previous methods with the
RoI pooling layer may cause coarse quantization on feature
maps. To alleviate this problem, He et al. [27] proposed the
RoIAlign layer, which preserves precise spatial mappings.
Different from the above works, this article focuses on a
more complex problem: SGG. To solve this problem, we need
not only to detect objects in the image but also to extract
the contextual information to predict the relationships among
objects.

Scene Graph Generation: Object detection cannot ade-
quately represent rich semantic information in images and,
therefore, more works [14], [15], [17]–[19], [21], [29], [30]
pay attention to SGG (or visual relationship detection) for
exploring rich semantic information in images. Since the rela-
tionships between objects largely depend on human prior
knowledge, Lu et al. [15] integrated a visual module and a lan-
guage module for adequately employing human prior knowl-
edge. Inspired by translating embeddings [31] for modeling
multirelational data, Zhang et al. [18] proposed the visual
translation embedding (VTE) network. In VTE, entities are
embedded in a semantic space, and relationships are modeled
as a vector translation: subject − object ≈ relation. Due to
the effectiveness of end-to-end CNNs, Newell and Deng [32]
proposed end-to-end convolutional networks that mapped pix-
els to graphs directly with associative embedding (AE).

All the above works use the local detectors and inde-
pendently predict relationships between entities. As men-
tioned in [17], ignoring the surrounding context may lead
to ambiguity of model prediction. Therefore, for captur-
ing the surrounding context in images, the authors inferred
scene graphs by iteratively refining model predictions with
recurrent neural networks. In addition, Zellers et al. [16]
explored regularly appearing substructures called motifs in
scene graphs. Inspired by this analysis, the authors proposed
a strong baseline. The baseline determines the relationship
between two objects through two steps: 1) determining the
labels of objects by faster R-CNN [5] and 2) finding the
most frequent relationship between the two objects’ labels
(ignoring the visual information) in the training set. Then,
the authors combined the baseline and LSTMs for extracting
global context and outperformed the state-of-the-art methods.
By analyzing the above works, we find that if the links between
objects are given as prior knowledge, the performance of
SGG would be significantly improved. Inspired by this obser-
vation, we propose an R2-Net, which can predict whether
there is a relationship between two objects, and encode this
relation with GCNs to refine features and generate robust
scene graphs.

Graph Convolutional Networks: In order to extract fea-
tures on graph-structured data, Kipf and Welling [33] proposed
GCNs for semisupervised node classification based on spectral
graph convolutions. Given a graph, GCNs refine node features
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Fig. 2. Framework of R2-Net. After the object detector, our model can be divided into two stages: 1) an object label refiner for refining the prior labels
from the object detector and 2) an object relationship generator for generating scene graphs.

TABLE I
TABLE OF MAIN SYMBOLS

based on the adjacency matrix and encode graph structures
by passing information between adjacent nodes. Due to the
effectiveness of GCNs, several works [34]–[36] introduced
GCNs into different fields. For instance, Marcheggiani and
Titov [35] used GCNs for semantic role labeling (SRL).
They stacked GCNs on LSTMs to capture different ranges
of information. Schlichtkrull et al. [34] proposed relational
graph convolutional networks (R-GCNs) for link prediction
and entity classification on knowledge graphs. In addition to
the graph structure data, GCNs were also applied to computer
vision tasks. In order to predict human–object interactions
(HOIs) in images, Qi et al. [36] expressed HOI structures
as graphs. The information between instances can be effec-
tively captured by GCNs. Different from these works, we
focus on SGG. Since the task of SGG does not give the
affinity matrix in the test phase, we first construct the affin-
ity matrix from the image. Next, GCNs are used to encode
the instance features with the affinity graph. In this way, our
model can generate robust scene graphs with the graph level
features.

III. RELATION REGULARIZED MODEL

In this article, we propose a relation regularized model for
the SGG. The overview of our proposed model is depicted in
Fig. 2. The framework consists of three components: 1) object
detection (i.e., bounding box detection and prior object label
detection); 2) relation regularized label refiner; and 3) relation
regularized relationship generation. In the following sections,
we first introduce the definition of our problem and then
describe the details of the model from inputs to outputs (object
detector, object label refiner, object relationship generator, and
loss functions). Since this section contains many symbols, we
show the dimensions and descriptions of the main symbols in
Table I.

A. Problem Definition

We define the image SGG problem as follows: given an
image I, we want to generate a scene graph G to describe its
content abstraction. Following previous works [6], [16], we
determine to progressively decompose the SGG into a series of
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continued actions: bounding boxes detection B, bounding box
label detection L, and label relation detection R. Therefore,
G is defined as G = {B, L, R}. The probability of G is
decomposed by a multiplication rule

P(G|I) = P(B, L, R|I)
= P(B|I)P(L|B, I)P(R|L, B, I). (1)

B. Object Detector

The object detector is utilized to detect instances in images.
The inputs of the object detector are images, and the out-
puts are bounding boxes, categories, and features of instances.
Faster R-CNN [5] has achieved great success in image object
detection, and it has been widely adopted to support image
SGG [16]–[18], [22]. In this article, we adopt faster R-CNN
to generate a set of bounding boxes B = {b1, . . . , bN}, where
bi ∈ R

4. N is the total number of detected bounding boxes
from the input image. i is an index ranging from 1 to N. With
N boxes, we can further obtain as follows.

1) A set of label probabilities L = {l1, . . . , lN}, where li ∈
R

Dl and Dl is the total number of labels in a dataset.
2) A set of object feature vectors F = {f1, . . . , fN}, where

fi ∈ R
Df and Df is the feature dimension.

3) A set of feature vectors of union boxes U =
{u1,1, . . . , uN,N}, where ui,j ∈ R

Df . Each union box is
the smallest rectangle containing two bounding boxes.

C. Stage I: Object Label Refiner

To efficiently and effectively evaluate an SGG model,
previous works [16]–[18], [22] have designed two exper-
iments: 1) SGCLS and 2) PREDCLS (see details in
Section IV-C). All existing experimental results [16]–[18], [22]
have shown that the scores (recall@20, 50, 100) of PREDCLS
are significantly higher than those of SGCLS by approximately
30%. Both SGCLS and PREDCLS take ground-truth boxes as
inputs, but PREDCLS adopts the ground-truth labels, while
SGCLS takes the predicted object label. These results [16]
prove the importance of accurate object labels for SGG. In
other words, how to improve the prediction accuracy of object
labels is the key to solving the SGG problem.

Therefore, in the second step, we aim to improve SGG
by refining the object labels generated by the faster R-CNN
network. The inputs of the object label refiner are instance
features, bounding boxes, and categories, and the outputs are
refined object categories. When generating object labels, the
faster R-CNN neither considers the global context [16] nor
object relations. Thus, we propose a relation regularized mod-
ule for label refinement with a stack of bi-LSTM [37]–[39] to
capture the global context and a relation-based graph convo-
lution layer [33]–[35] to make full use of object relationships.

Relation Regularized Label Encoder: In our work, we
use deep bidirectional LSTMs to explore the global context.
However, directly using deep LSTMs may exist the prob-
lems of training difficulty and slow convergence. In order to
alleviate such issues, the highway LSTM [40] was designed
by connecting memory units of adjacent LSTM layers, and
this structure [38], [40] has been used predominantly to

Fig. 3. Left figure shows the data stream of bi-LSTMs. The right figure shows
the cell of bi-LSTMs with the highway connection. The operator ◦ represents
the Hadamard product (also known as the elementwise product). The function
σ represents the sigmoid function. For clarity, we omit the subscript of the
symbol in the right figure.

achieve state-of-the-art results for semantic labeling, language
modeling, etc. Therefore, we use stacked bi-LSTMs with high-
way connections to encode object features F to alleviate the
problems caused by deep LSTMs

ik,t = σ
(

Wk
i

[
hk,t+δk , xk,t

] + bk
i

)

ok,t = σ
(

Wk
o

[
hk,t+δk , xk,t

] + bk
o

)

fk,t = σ
(

Wk
f

[
hk,t+δk , xk,t

] + bk
f

)

rk,t = σ
(

Wk
r

[
hk,t+δk , xk,t

] + bk
r

)

gk,t = tanh
(

Wk
g

[
hk,t+δk , xk,t

] + bk
g

)

ck,t = fk,t ◦ ck,t+δk + ik,t ◦ gk,t

h′
k,t = ok,t ◦ tanh(ck,t)

hk,t = rk,t ◦ h′
k,t + (

1 − rk,t
) ◦ Wk

hxk,t (2)

where xk,t is the input to the kth LSTM layer at time step t,
W∗∗ , and b∗∗ are parameters, and δk indicates the direction of
the kth LSTM layer. The operator ◦ represents the Hadamard
product (also known as the elementwise product). The function
σ represents the sigmoid function. Following He et al. [38],
we set the inputs xk,t and δk of each LSTM layer as follows:

xk,t =
{

ft, k = 1
hk−1,t, k > 1

(3)

δk =
{

1, k mod 2 = 0
−1, k mod 2 = 1

(4)

where ft is the tth bounding box feature of F extracted from the
faster R-CNN as mentioned in Section III-B. The outputs of
the highway LSTMs are denoted as H = {h1, h2, . . . , hN}. The
data stream of bi-LSTMs with highway connection is shown
as Fig. 3.

GCNs [33]–[35] produce an optimized node-level output,
which encodes both original node features and the associations
between data nodes. By using GCNs, our model can integrate
the information of related objects to boost the performance of
the label prediction.
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With faster R-CNN and stacked bi-LSTMs, we can obtain
a set of global features H = {h1, h2, . . . , hN} correspond-
ing to previously detected N objects. By considering each
object feature as a node, we take the global features H to
estimate an adjacency matrix Ae = {ae

1,1, . . . , ae
N,N}, where

ae
i,j ∈ R

1 represents whether a relationship exists from object
i to object j.

In the process of SGG, an object label may act as a subject
or an object in a scene graph. Thus, we first adopt two fully
connected layers to map hi into a subject space domain and
an object space domain, respectively

hs
i = FCs

h(hi)

ho
i = FCo

h(hi). (5)

The output dimensions of the two fully connected layers are
Df . Next, we apply a simple and effective scoring function,
DistMult [41], to compute affinity matrix scores

ae
i,j = σ

((
hs

i ◦ ui,j
)T

Wa
(

ho
j ◦ ui,j

)
+ ba

i,j

)
(6)

where Wa ∈ R
Df ×Df is a diagonal parameter matrix that the

model needs to learn. ba
i,j ∈ R

1 is a bias specific to the subject
i and object j labels. Following [16], we initialize the bias with
the frequency of the training set. σ is an activation function
mapping the score ranging from 0 to 1. Besides, giving two
objects it is difficult to determine the information flow direc-
tion from the object to the subject or vice versa. Therefore,
the adjacency matrix is adjusted to form a symmetric matrix
As to solve this issue

as
i,j =

⎧⎨
⎩

ae
i,j, if ae

i,j ≥ ae
j,i

ae
j,i, if ae

i,j < ae
j,i

1, if i = j.
(7)

With the generated symmetric matrix As, we integrate
bi-LSTMS with GCNs to obtain relational features O =
{o1, . . . , oN}

O = ReLU
(

DsAsHWG
)

(8)

where WG is a parameter matrix. Ds = {ds
1,1, . . . , ds

N,N} is a
diagonal matrix

ds
i,j =

{
1∑N

k=1 as
i,k

, if i = j

0, if i 	= j
. (9)

Next, we concatenate the global context hi and the relational
feature oi to form the final output o′

i

o′
i = [oi, hi]. (10)

For simplicity, we define the whole relation regularized
encoding process as

{
Ae, O′} = R2_Encoder(F|Wo) (11)

where Wo is the parameter in the relation regularized module.
Label Decoder: Finally, we use an LSTM layer with high-

way gate to decode O′. After refining the previous generated

initial object labels L, we obtain the refined object label Ld

qd
i = LSTM

([
ldi−1, qd

i−1, o′
i

])

ldi = argmax
(

Wqd
i + li

)
(12)

where li is the prior label distribution from faster R-CNN as
mentioned in Section III-B. qd

i is the hidden state of LSTM.
ldi is the ith refined object labels Ld. In addition, we set 〈BOS〉
as the start signal for the decoding process.

D. Stage II: Object Relationship Generator

The object relationship generator predicts the relationship
predicate R between instances with instance features O′
from (11) and refined labels L from (12).

Relation Regularized Relationship Encoder: With faster R-
CNN and our proposed relation regularized label generation
module, we can transfer an image into a set of optimized
instance features O′ and refined labels Ld. Next, we apply
our proposed relation regularized encoder to facilitate the
relationship prediction process

{
Ar, Z

} = R2_Encoder
([

O′, WLLd
]∣∣∣Wz

)
(13)

where WL is the embedding parameter and is initialized by
Glove [42], and Z = {z1, . . . , zN} is the output feature of R2-
Encoder in the relationship generator phase. Z is similar to O′
in (11) and contains the global and relational features in the
relationship generator.

Relationship Decoder: Next, we obtain the object relation-
ship by first mapping zi into two feature space domains:
1) subject domain and 2) object domain, zs

i and zo
i , respectively

zs
i = FCs

h(zi)

zo
i = FCo

h(zi). (14)

We then employ the DisMult score function to compute the
object relations

r′
m,i,j = (

zs
i ◦ ui,j

)T
Wr

m

(
zo

j ◦ ui,j

)
+ br

m,i,j (15)

where r′
m,i,j is the probability that the object i and object j

belong to the relationship m. Wr
m is a diagonal parameter

matrix that needs to be learned. br
m,i,j is the frequency bias

mentioned in [16]. Finally, we use a softmax function to obtain
the final relation score ranging from 0 to 1

rm,i,j = er′
m,i,j

∑Dr
m=1 er′

m,i,j
(16)

where Dr is the number of relationship categories in the
dataset. Now we can get the final relationships R =
{r1,1,1, . . . , rDr,N,N}.

E. Loss Functions

In this section, we first describe two objective functions.
The first one is the label prediction loss L1 for refining the
object labels, while the second loss is relation regularized loss
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(R2-loss L2) for learning the first adjacency matrix

L1 = Cross_Entropy
(

Ld, Lg
)

L2 = Cross_Entropy
(
Ae, Ag) (17)

where Ld is the output from (12), and Lg is the ground-truth
object labels. Ae is obtained by (6). Ag is the ground-truth
adjacency matrix, which is used to indicate whether there is a
relationship between two entities, that is, 0 or 1.

To learn the parameters for generating relations between
objects, we describe two object functions to control our model

L3 = Cross_Entropy
(
Ar, Ag)

L4 = Cross_Entropy
(
R, Rg) (18)

where L3 is another relation regularized loss at the relationship
generation phase, and L4 is the object relationship loss (R2-
loss). The proposed final objective function of our proposed
a relation regularized model is defined as the sum of L1, L2,
L3, and L4.

IV. EXPERIMENTS

In this section, we evaluate our model on the cleaned visual
genome dataset [14]. Some experiments are conducted to test
the role of the major components and to compare our model
with the previous methods.

A. Experimental Setting: Dataset

Krishna et al. [14] collected and officially released a knowl-
edge base to connect structured images concept to languages,
namely, visual genome dataset. They have collected more than
100k images. On average, each image contains 38 objects and
22 pairs of object relations. This is an ideal candidate dataset
for evaluating SGG models. However, some annotations are
ambiguous and may lead to predicting errors. Many cleaning
approaches have been proposed, such as [17], [21], and [29].
In particular, Xu et al. [17] proposed a cleaning strategy to
remove ambiguous annotations. This strategy has been widely
adopted by previous SGG methods, such as [15]–[17], [22],
and [32]. After cleaning, each image, on average, contains
approximately 12 objects and six pairs of relationships. In
total, the cleaned visual genome dataset contains 150 object
categories and 50 object relation classes. Moreover, we fol-
low Xu et al. [17] to divide the cleaned dataset into two
subsets: 1) 70% training and 2) 30% testing. Next, we fol-
low [15]–[17], [22], [32] to select 5k images from the training
dataset as the validation set.

B. Experimental Setting: Implementation Details

For object detection step, we follow the previous
works [16], [17] to adopt the faster R-CNN model as the
object detector to generate a set of bounding boxes and
their corresponding features and labels. Specifically, previous
works [16], [17], [22], [32], and [43] adopted the VGG16
network as the backbone of pretrained faster R-CNN. For a
fair comparison, we also adopt the VGG16-based faster R-
CNN network, which is pretrained on the visual genome object

dataset by Zellers et al. [16]. For the VGG16-based faster R-
CNN network, we obtain the region features from the output
feature map of the second fully connected layer.

By using ResNet101 to extract deeper features, previous
work [5] has proven that ResNet101-based faster R-CNN
can perform better than VGG16-based faster R-CNN on the
object detection task. Better region features and more accurate
object labels may be conducive to object relation generation.
Therefore, we first take the ResNet101 [3] as the backbone of
the faster R-CNN and then train the ResNet101-based faster R-
CNN on the training set of the cleaned visual genome dataset.
Specifically, the detector is trained on a Titan Xp (12 GB)
with the SGD optimizer. The learning rate is set as 1 × 10−3

and the batch size is set as 6. We compare the VGG16-based
faster R-CNN model with the ResNet101-based one on the
cleaned test dataset in ablation studies. In addition, we take
the pool_5 layer of ResNet101 as the output feature map for
extracting region features.

For the second step, label refinement, our relation regular-
ized encoder requires the input regions to be sorted in an order.
Therefore, we sort the object features from left to right as our
encoder’s inputs. A previous study [16] has proven that the
order of the bi-LSTMs inputs has little effect to extract global
context-based region features. For the first relation regularized
encoder, we set the number of bi-LSTM layers as 2. For the
second relation regularized encoder of relation generation, we
set the number of bi-LSTM layers as 4.

We first train the detector (faster R-CNN) on the visual
genome dataset as mentioned above, and then freeze the
parameters of faster R-CNN when processing the SGG. When
training our model on the SGCLS and the PREDCLS, we fol-
low previous works [17], [32] to use the ground-truth bounding
boxes for refining object labels and generating object relations.
In order to learn two object relation matrices Ae and Ar, we
sample twice as many positive samples as negative samples.
For relation R, we utilize the same number of positive and
negative samples. Moreover, we choose SGD with momen-
tum [44] as our optimizer. The learning rate and batch size
are set to 2 × 10−2 and 24, respectively. When training our
model on the SGDET, we fine-tune our model following the
strategy mentioned in [16] for fairness. We sample 256 RoIs in
each image. After the label decoder in the object label refiner,
we use the per-category nonmaximum suppression (NMS) to
filter redundant objects.

Our codes are implemented in python. We use Pytorch to
build our model. All experiments are conducted on a Ubuntu
server with 2 Titan Xps (12 GB), 4 Intel Xeon E5-2650 CPUs
and 256-GB RAM.

C. Experimental Setting: Evaluation Strategy

Following previous works [17], [22], [32], we evaluate
our model with three experimental setups: 1) the PREDCLS
allows models to take the ground-truth bounding boxes and
the ground-truth object labels as inputs; 2) the SGCLS allows
models to take the ground-truth bounding boxes as inputs; and
3) the SGDET, which requires a model to take an image as
inputs and then predict object bounding boxes, object labels,
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TABLE II
DIFFERENCES AMONG THREE TASKS: PREDCLS, SGCLS,

AND SGDET. CHECK MARKS INDICATE WHAT

INFORMATION A TASK NEEDS TO PREDICT

and object relations. Table II shows what information a task
needs to predict. Since the PREDCLS task allows models to
take the ground-truth bounding boxes and the ground-truth
object labels as inputs, it only requires models to predict rela-
tional predicates. However, the SGCLS task requires models
to predict relationship predicates and object labels, and the
SGDET task requires models to predict relationship predi-
cates, object labels and object bounding boxes. In other words,
SGDET is the most difficult one, while PREDCLS is the eas-
iest one. Moreover, in order to provide a more consistent
comparison, we also report the corresponding results of the
three setups without scene graph constraints.

The object relations in the visual genome dataset are
sparse, thus using the mean average precision (mAP) as the
evaluation metric would falsely punish positive predictions
on unannotated relations. As a result, we follow previous
works [15]–[17], [32] to evaluate our model with recall@K
(i.e., R@K). Specifically, R@K describes the proportion of
ground-truth triplets (i.e., obj1-relation-obj2) in the top K pre-
dicted triplets. The K is set as 20, 50, and 100. Besides, for
the SGDET task, if the object has at least 0.5 IoU overlap-
ping with the ground-truth box, it is considered as correctly
detected.

D. Results and Analysis: Speed of R2-Net

Regarding the speed of our model, in the training phase,
each epoch (about 57k images) takes 40 min for the SGCLS
task and 210 min for SGDET. In the testing phase, our
model takes about 0.12 s to parse a single image for SGCLS
and PREDCLS, and 0.33 s for SGDET. These results are
obtained under the experimental environment mentioned in
Section IV-B.

E. Results and Analysis: Ablation Study

In order to deeply analyze the proposed approach and
demonstrate its effectiveness, we present an extensive ablation
study on the visual genome dataset by considering different
variants of the proposed R2-Net to evaluate its major com-
ponents. In this section, the experimental results are obtained
from the validation dataset and we choose ResNet101-based
faster R-CNN network as our object detector.

Effect of Object Label Refiner: We consider three R2-Net
variants: 1) w/o refiner where R2-Net performs the SGG with
only two components. The object detector is followed by an
object relation generator; 2) w/o prior labels where the object
label refiner without the prior labels mentioned in (12); and 3) All
where R2-Net performs the task with all three components:
a) object detector; b) object label refiner; and c) object relation

TABLE III
ROLE OF RELATION REGULARIZED LABEL REFINER. THE RESULTS ARE

OBTAINED ON THE VALIDATION DATASET

generator. We carry out the experiments, as shown in Table III.
It can be observed that all significantly performs better than
w/o refiner on the SGCLS task with an increase of 6.6% on
R@20, 3.5% on R@50, and 2.2% on R@100, while slightly
outperforms the label detection by 1.2% in terms of accuracy.
The experimental results prove that our proposed label refiner
is able to extract more representative features for both object
label classification and SGG. Compared with w/o prior labels,
using prior labels can improve 1.2% on SGCLS (R@20) and
0.8% on object accuracy. Therefore, we use prior labels in the
object label refiner to make the model easier to learn.

Effect of Relation Regularized Encoder: Our R2-Net con-
sists of two relation regularized encoders. The first one is
proposed for supporting the object label refiner, while the
second one is designed for facilitating the object relation-
ship generation. Both encoders consist of two components:
1) highway-based bi-LSTMS for capturing the global con-
text and 2) object relation-based graph convolutional layers
for learning object relations. In order to deeply evaluate the
effect of bi-LSTMs and relation regularized GCNs of the two
encoders, we design a set of R2-Net variants by removing
the bi-LSTMs of the first encoder (w/o bi-LSTM1), removing
the bi-LSTMs of the second encoder (w/o bi-LSTM2), remov-
ing the GCNs of the first encoder (w/o GCN1), removing the
GCNs of the second encoder (w/o GCN2), removing all GCNs
of the two encoders (w/o GCNs), removing all bi-LSTMs of
the two encoders (w/o bi-LSTMs), and the full R2-Net (All).

The experimental results are shown in Table IV and we have
the following observations.

1) Compared with All, w/o bi-LSTM1 decreases the R2-
Net performance more by 0.8% R@20, 0.7% R@50 and
0.6% R@100. This demonstrates the effectiveness of the
proposed bi-LSTM1 for encoding global context.

2) Removing either GCNs (GCN1 or GCN2) could lead
to a drop in both tasks, SGG and label prediction.
However, without GCN1, the performance scores drop
dramatically.

3) Compared with other R2-Net variants, w/o GCNs
obtains the lowest scores for R@20 with 38.3%, which
is 1.6% lower than R2-Net. This demonstrates the
superiority of the proposed GCNs for relation graph
generation.

4) Compared with w/o R2-loss [mentioned in (17)
and (18)], using the relation regularized loss can bring
additional supervision information to the model and
improve the robustness of the model.

5) Compared with all variants, R2-Net (All) performs best
on all tasks.

6) Another fact is that w/o GCN2 and w/o bi-LSTM2 have
little effects on the SGCLS task. This shows that the
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TABLE IV
ROLE OF BI-LSTMS AND GCNS IN R2-NET.THE RESULTS ARE

OBTAINED ON THE VALIDATION DATASET

TABLE V
ROLE OF TWO DEEP LEARNING FEATURES: VGG16 AND RESNET101.

THE RESULTS ARE OBTAINED ON THE TESTING DATASET

prediction of labels is very important on the SGCLS
task because GCN2 and bi-LSTM2 are at the relation-
ship generation phase. This further proves that each
component is helpful and contributes to the final object
detection and SGG.

Effect of CNN Backbones: As mentioned in Section IV-B,
the different backbones of the object detector can make the
model produce different performances, so we compare the
different backbones (VGG16 and ResNet101) in this section.

We first compare the performances of these two back-
bones on the object detection task. The ResNet101-based
faster R-CNN performs better than the VGG16-based model
(22.8 mAP versus 20.0 mAP at 0.5 IoU) on the visual
genome dataset. This result fully demonstrates the advantages
of ResNet.

We further evaluate the effect of CNN backbones of the
detector on the task of SGCLS and PREDCLS. Here, we
choose to run the best previous method Motifnet and our
proposed R2-Net to obtain the results on both tasks. The
experimental results are shown in Table V. Specifically, the
experimental results demonstrate that on the SGCLS task, the
ResNet101-based model is obviously better than the corre-
sponding VGG16-based model. Interestingly on the PREDCLS
task, the VGG16-based models achieve higher scores than
the corresponding ResNet101-based ones. In addition, with
the same evaluation metrics and the same backbones, the
performance score obtained on the PREDCLS task is around
twice higher than the score reached from the SGCLS. From
the experimental results, we can conclude that SGG is largely
depending on the accuracy of the object label prediction, while
the label prediction accuracy is mostly relying on the region
features. The more representative the region feature is the
more accurate the object label prediction is. Moreover, from
the experimental results, we can see that higher level features
have only a slight effect on object label relation generation.
More importantly, our R2-models significantly outperform the

TABLE VI
PERFORMANCE PER PREDICATE (TOP TEN ON LEFT,

BOTTOM TEN ON RIGHT)

previous best method Motifnet on both two tasks, reaching the
new state of the art.

Which of the Predicates Perform Better/Worse? We inves-
tigate the performance of each predicate on the PREDCLS
task (R@100) without graph constraints. In Table VI, the top
ten predicates with the highest score are shown on the left
side and the bottom ten predicates with the lowest score are
shown on the right side. By analyzing the dataset, we find
that the samples of the top ten categories account for 78.9%
of the total dataset, while the samples of the bottom ten cat-
egories account for only 1.3% of the total dataset. Therefore,
the imbalance of the dataset is the main reason for the huge
difference in predicate scores.

F. Results and Analysis: Comparison With State-of-the-Art
Methods

In this section, we compare our proposed R2-Net with
several state-of-the-art methods, including visual relation
detection (VRD) [15], iterative message passing (IMP) [17],
tensorize factorize regularize (TFR) [45], AE [32], graph
R-CNN [22], FREQ+OVERLAP [16], and Motifnet [16].
We cannot compare our method with Factorizable Net [19],
DR-Net [29], and MSDN [21], because the approaches for
data cleaning and splitting are different. Besides, Factorizable
Net [19] has proven that the more bounding boxes gener-
ated, the better performances of SGG are. However, the more
bounding boxes are chosen, the more complex the computation
is. Motivated by this, for the task of SGDET, we choose the top
64 regions detected by the faster R-CNN, following previous
works [16], [17], [45]. To fully evaluate our method, we apply
two evaluation strategies: with and without graph constraints.
The experimental results are shown in Table VII (with graph
constraints) and Table VIII (without graph constraints). From
them, we can see that with two experimental settings, our
R2-Net performs the best on all three tasks with the super-
vised learning strategy, which confirms the effectiveness of our
proposed method. Compared with the methods using reinforce-
ment learning, our R2-Net (w/o GCN1) still achieves better
results on the SGDET task. Because it is not practical to pro-
vide the ground truths of object bounding boxes or categories
for models in real life, the SGDET task has more practical
value than SGCLS or PREDCLS. Therefore, our method is
superior to VCTREE and CMAT in some aspects.
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Fig. 4. Some qualitative examples produced by our R2-Net (w/o GCN1) on the SGDET. Predicted true positive boxes are marked with green (IOU> 0.5).
Orange boxes are ground-truth boxes but not detected. For simplicity, we demonstrate the top 20 object relations or edges at the R@20 setting. Predicted true
positives relations are marked with green arrows, false-negative relations are marked with orange arrows, and false-positive relations are marked with blue
arrows.

TABLE VII
COMPARISON WITH OTHER METHODS. THE RESULTS ARE OBTAINED ON THE TEST DATASET. THE RESULTS OF IMP+ ARE REPRODUCED IN [16].

THE SUPERVISED LEARNING STRATEGY IS DENOTED AS SL. THE REINFORCEMENT LEARNING STRATEGY IS DENOTED AS RL

Specifically, as shown in Table VII, R2-Net without graph
convolutional layers (GCN1) of the first relation regularized
encoder achieves the highest scores for the SGDET task,

reaching 23.1% on R@20, 29.4% on R@50, and 33.0%
on R@100, which is significantly higher than the R2-Net.
However, for the task of SGCLS, the performance result is
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Fig. 5. Some affinity matrix examples produced by R2-Net on SGCLS. The small gray square indicates whether there is a relationship between two objects.
The lighter the color, the greater the probability. The red bounding boxes indicate visible differences between Ae and Ar mentioned in (11) and (13).

TABLE VIII
COMPARISON WITH OTHER METHODS. PERFORMANCE IS COMPUTED WITHOUT GRAPH CONSTRAINTS. THE RESULTS ARE OBTAINED ON THE TEST

DATASET. THE SUPERVISED LEARNING STRATEGY IS DENOTED AS SL. THE REINFORCEMENT LEARNING STRATEGY IS DENOTED AS RL

opposite. Also, with the same metric and model, the score
of the task SGCLS is around 10% higher than the score of
the SGDET task. These experimental results clearly demon-
strate the effectiveness of the accurate bounding boxes and
confirm that bounding boxes with noise could lead to a failure
of object relation matrix construction, thus further decreasing
the role of GCN1. Moreover, for the task of PREDCLS, the
performance of R2-Net (w/o GCN1) and R2-Net is almost the
same. As mentioned in the ablation study (i.e., Section IV-E),
the object relation prediction is largely depending on the accu-
racy of the object labels instead of the object region features.
Therefore, with ground-truth object labels, using GCN1 to
improve the region features could not considerably improve
the performance of the object relation prediction process.

G. Results and Analysis: Qualitative Results

We show some qualitative examples in Fig. 4 obtained by
our R2-Net (w/o GCN1) on the SGDET. From the first column,
we can see that our model not only predicts relationships in the

ground truth but also predicts relationships not in the ground
truth, such as (pot-1, has, handle-1), (boat-2, has, dog-1), (tie1,
on, shirt-1), and (hair, on, head-1). From the second column,
we can see that undetected bounding boxes are a major reason
for leading to relation generation failures. For instance, railing-
GT1 and logo-GT1 in the first row, tire-GT1 in the second row,
paw-GT1 in the third row and leg-GT1 in the bottom, are not
detected. Therefore, the relations correlated with them are not
detected.

We also show some affinity matrices [Ae and Ar mentioned
in (11) and (13)] in Fig. 5. From examples on the left side, both
Ae and Ar can properly predict whether there is a relationship
between instances. However, in the examples on the right side,
the visual link prediction of Ar is better than Ae. For instance,
Ar can provide correct links of the following object pairs:
(plane-1, tail-1), (man-1, wheel-2), (wheel-1, skateboard-1),
and (food-2, plate-1). In the right bottom example, food-2 (i.e.,
soup and bread) contains food-1 (i.e., bread), but the relation-
ship category between food-2 and food-1 is not contained in
the visual genome dataset. Therefore, in the affinity matrix
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Ar, the value of the object pair (food-1, food-2) is small. The
reason why the prediction of Ar is better than Ae includes two
aspects. First, after the object label refiner, the prediction of
the object label is improved. Second, the residual connection
allows the object relationship generator to receive more robust
features.

V. CONCLUSION

In this article, we proposed a novel model for parsing
visual scene graphs, namely, R2-Net. It predicts whether
there is a relationship between two objects and generates
an affinity matrix. GCNs over the affinity matrix aggregate
the related object features to the target object features. In
this way, the model can integrate the information of related
objects to boost the performance of the label prediction. Bi-
LSTMs are used to extract the global contexts of objects. By
encoding object features with global context and relational
information, the relation regularized module can effectively
refine the prior labels from faster R-CNN and predict the rela-
tionships between objects. Compared with other methods, our
model produces more accurate object labels and more robust
relationship features, so our model outperforms the state-of-
the-art methods on the SGG task. Extensive experiments on
the visual genome dataset demonstrate the effectiveness of our
method.
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