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Abstract—Deep unfolding networks have obtained satisfactory 

performance in the pansharpening task owing to their sufficient 
interpretability. Inspired by the back-projection (BP) mechanism, 
we propose a BP-driven model, spatial-spectral dual back-project 
network (S2DBPN), to fuse the low spatial resolution multispectral 
(LR MS) and the high spatial resolution panchromatic (PAN) 
images by exploiting the BP in spatial and spectral domains. 
Specifically, the proposed S2DBPN is made up of a spatial BP 
network, a spectral BP network, and a reconstruction network. In 
the spatial BP network, spatial down- and up-projection modules 
are derived from BP, which is responsible for the projection of the 
LR MS image into the spatial domain. By analogy with the spatial 
BP, we reformulate the degradation between high spatial 
resolution multispectral (HR MS) and PAN images as spectral 
down- and up-projections. Then, the spectral BP network is 
constructed for the projection of the PAN image along the channel 
dimension. Finally, the features from spatial and spectral BP 
networks are integrated to produce the desired HR MS image 
through the reconstruction network. Compared to the 
state-of-the-art methods, extensive experiments on QuickBird, 
GeoEye-1, and WorldView-2 datasets demonstrate that our 
S2DBPN produces better HR MS images in terms of qualitative 
and quantitative evaluation metrics. The code of S2DBPN is 
released at: https://github.com/RSMagneto/S2DBPN. 
 

Index Terms—Pansharpening, spatial back-projection network, 
spectral back-projection network, remote sensing. 

I. INTRODUCTION 
ITH the rapid development of remote sensing imaging 
techniques, many high-resolution satellites have been 

launched successfully. More and more remote sensing images 
are obtained and applied to various fields. However, optical and 
multi/hyperspectral images often suffer from the limitations of 
spatial and spectral resolutions [1]-[2]. The physical tradeoff in 
imaging sensors limits the concurrent increase of spatial and 
spectral resolutions of remote sensing images [3]-[4]. For 
example, given a specific sensor, the spatial resolution of the 
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panchromatic (PAN) image is higher than that of the low spatial 
resolution multispectral (LR MS) image. However, the LR MS 
image contains abundant spectral information because it is 
composed of several bands, e.g. 4 bands. By contrast, the PAN 
image consists of only one channel. In this context, 
pansharpening techniques are advanced to produce high spatial 
resolution multispectral (HR MS) image, which integrates the 
spatial and spectral information present in both PAN and LR 
MS images. 

Over the past three decades, a variety of pansharpening 
methods have been proposed. They can be classified into four 
categories [5] including component substitution (CS), 
multiresolution analysis (MRA), variational optimization (VO), 
and deep neural network (DNN). 

For the methods belonging to the first category, they separate 
the up-sampled LR MS image spatial and spectral components 
via some transforms. Then, the spatial component is substituted 
by the corresponding PAN image. Next, the inverse transform 
is conducted on the replaced components to synthesize the 
desired HR MS image. For these methods, it is important to 
select a proper transform as it significantly affects the quality of 
the obtained HR MS image. The commonly used transforms are 
intensity-hue-saturation (IHS) [6]-[7], Gram-Schmidt (GS) 
transform [8]-[9], principal component analysis (PCA) 
[10]-[11], and band-dependent spatial detail (BDSD) [12]-[13]. 
The primary advantage of CS-based methods is the simplicity 
of implementation. However, spectral distortions often appear 
in their fusion results owing to differences between PAN and 
LR MS images in terms of the spectral range. 

Different from CS-based methods, the techniques based on 
MRA only extract the spatial details from the PAN image and 
then inject them into the up-sampled LR MS image. These 
methods assume that the missing spatial information in the LR 
MS image can be obtained from the PAN image. MRA tools, 
such as wavelet [14]-[15], contourlet [16], and curvelet [17] are 
extensively explored to improve fusion performance because 
they can effectively describe high frequencies and spatial 
details in the images. In addition, some MRA-like 
pansharpening methods are also developed to extract more 
reasonable spatial details in the PAN image, such as support 
value transform (SVT) [18], multiscale nonlocal means filter 
[19], and support tensor transform [20]. These methods 
preserve the spectral features in the fused image better because 
only the spatial details from the PAN image are introduced into 
the LR MS image. 
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In the third category, the fused image is derived from the 
spatial and spectral degradation models, which are solved by 
VO. The pansharpening methods in this category regard the LR 
MS image as the spatial degradation result of the HR MS image. 
Similarly, the PAN image is the spectral degradation result of 
the HR MS image. Then the HR MS image is restored by 
solving the degradation model. But the ill-posedness of the 
degradation model cannot be ignored. Thus, the priors in source 
images and the HR MS image are mined to alleviate its ill 
condition. VO-based methods often adopt sparsity [21]-[22], 
low rank [23]-[25], and variation prior [26]-[27] to produce a 
more accurate HR MS image. VO-based methods behave well 
in terms of the preservation of spatial and spectral features. 
However, their optimization is generally time-consuming 
because of the adopted alternative and iterative algorithms. 

Following their success on various tasks, DNNs have also 
been applied to the fusion of LR MS and PAN images [28]. 
DNN-based pansharpening methods aim to learn a nonlinear 
mapping between source images and the corresponding HR MS 
image. For example, Masi et al. [29] tried to use a convolution 
neural network (CNN) to produce the pansharpened MS image. 
He et al. [30] designed a CNN to learn the spatial details missing 
in the LR MS image. Two CNNs were considered in [31] to 
extract features from LR MS and PAN images. Then, these 
features were merged by cascaded adaptive fusion modules. In 
addition, residual learning was adopted in [32] to model spatial 
information better. Huang et al. [33] combined MRA and 
residual learning to extract more robust spatial and spectral 
features from the source images. Lei et al. [34] proposed a 
nonlocal attention residual network to better consider the global 
similarity in images. 

With the advent of new architectures, the generative 
adversarial network (GAN) is also used for the pansharpening 
task. For instance, Shao et al. [35] utilized a GAN to better 
preserve the spatial information in the fused image. Meanwhile, 
a similar framework was also proposed in [36]. Diao et al. [37] 
presented a GAN to fuse LR MS and PAN images without 
training in advance. In this method, multiscale generators were 
constructed to enrich the spatial details in the fused image 
progressively. Li et al. [38] employed a cycle-consistent GAN 
to achieve unsupervised training on unpaired datasets. 
Furthermore, recent networks based on the transformer are 
drawing the attention of researchers. Meng et al. [39] first 
applied the vision transformer to the pansharpening task. The 
transformer with shifted windows (Swin transformer) was then 
used in [40]. Sun et al. [41] also established a regression 
network based on the Swin transformer to reconstruct the HR 
MS image. CNN and transformer were incorporated in [42] to 
learn the local and global information in source images 
simultaneously. 

Besides, deep unfolding networks have also been explored 
owing to their interpretability and effectiveness [43]. In these 
methods, the optimization of degradation models is unfolded as 
a DNN to capture the model prior and image prior. Xu et al. [44] 
developed a deep gradient projection network (DGPNN) that 
was composed of a series of cascaded MS and PAN blocks. 
Yang et al. [45] derived a deep conditional unfolding network 

from the degradation model and nonlocal similar prior. Cao et 
al. [46] presented an optimization algorithm based on 
convolutional sparse coding, which was unfolded as a DNN 
with interpretable structures. Dian et al. [47]-[48] combined 
DNNs with the optimization of degradation models, which can 
learn the spatial and spectral priors in images efficiently. Tian 
et al. [49] exploited the similarity between the fused image and 
the PAN image in the gradient domain and constructed a 
variational pansharpening network from the degradation model 
regularized by the similarity prior. 

Recently, back projection (BP) has been employed to 
facilitate the construction of deep unfolding networks. In BP, 
residual images are first iteratively computed as the 
reconstruction error between the target image and its 
counterparts. Then, the residual images are back-projected into 
the target image to improve its spatial details [50]. Following 
the paradigm, BP-driven DNNs are built. For example, Haris et 
al. [51] proposed a deep back-projection network (DBPN) for 
image super-resolution which was made up of stacked up- and 
down-sampling units. Subsequently, DBPN was further 
promoted for the super-resolution of videos [52]. In [53], 
hybrid residual features were introduced into DBPN to improve 
its compactness. Liu et al. [54] designed a weight module to 
integrate the features at different levels together, by which the 
spatial information in these features was sufficiently exploited. 

Compared to other deep unfolding networks, BP-driven ones 
do not involve complicated optimization strategies and are 
simple in principle although the degradation model is also used 
in these methods. Therefore, considering the state-of-the-art 
performance and simplicity of BP-driven DNNs, we use this 
formulation to generate the fused image. However, only the 
spatial degradation between HR and LR images is considered in 
existing BP-driven DNNs, which cannot deal with the 
degradation in the spectral domain. Apart from the spatial 
degradation between LR MS and HR MS images, the spectral 
degradation between PAN and HR MS images is crucial in the 
pansharpening task. Thus, the aforementioned BP-driven 
DNNs cannot be directly applied to the fusion of LR MS and 
PAN images due to the dual degradation models in spatial and 
spectral domains. 

To overcome the above-mentioned limitations, in this paper 
we propose a spatial-spectral dual back-project network 
(S2DBPN) for pansharpening. In the proposed S2DBPN, spatial 
and spectral BP networks are designed to project the LR MS 
and PAN images, respectively. In the spatial BP network, 
spatial down- and up-projection modules are constructed 
according to the BP between LR MS and HR MS images. To 
enhance the spatial details in the features of the LR MS image, 
spatial-aware blocks are introduced into these modules. Similar 
to the projections in the spatial BP network, spectral down- and 
up-projection modules are integrated into the spectral BP 
network, which projects the feature of the PAN image along the 
channel dimension. In the spectral BP network, the multi-head 
mechanism is considered to increase the number of channels in 
the feature space, which makes full use of the information from 
different subspaces. Finally, all features from spatial and 
spectral BP networks are concatenated and fed into the 
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reconstruction network for the generation of the HR MS image. 
To the best of our knowledge, this paper is the first to embed the 
spatial BP and spectral BP into DNN for pansharpening. 
Compared to existing DNN-based methods, the proposed 
S2DBPN is derived from BP, whose interpretability is ensured. 
The blocks in spatial and spectral BP networks correspond to 
the down- and up-sampling operations in spatial and spectral 
BP, respectively. Moreover, the experiments on reduced- and 
full-scale QuickBird, GeoEye-1, and WorldView-2 datasets 
demonstrate the effectiveness of the proposed S2DBPN. 

The main contributions of the paper are summarized as 
follows: 

1) We propose a BP-driven model, S2DBPN that adopts the 
formulation of BP, to produce the desired HR MS images from 
LR MS and PAN images. Compared to other deep unfolding 

networks, the proposed S2DBPN does not require complicated 
optimization algorithms and can be trained effectively. 

2) We design a spatial BP network to implement the BP 
between HR MS and LR MS images in the spatial domain. 
Spatial network modules are constructed to learn the spatial 
down- and up-sampling projections in BP adaptively. 

3) We design a spectral BP network to enhance the feature of 
the PAN image along the channel dimension by spectral down- 
and up-projection modules. The network is derived from the 
spectral degradation between HR MS and PAN images. 

The rest of the paper is organized as follows. In Section II the 
BP is briefly introduced. Section III presents the proposed 
S2DBPN in detail. Section IV demonstrates extensive results on 
datasets from different satellites. Finally, conclusions are given 
in Section V. 
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Fig. 1. Architecture of the proposed S2DBPN. 

II. BACK PROJECTION 
As a typical image refinement technique, BP improves the 

consistency between LR and HR images in terms of the 
degradation model by back-projecting the reconstruction errors 
into the HR image. The formulation of BP can be represented 
as: 

( )

( )
1

l h
i i d

l l l
i i

h l
i i d

h h h
i i i

I I g

E I I

E E p

I I E+

= ∗ ↓

= −

= ↑ ∗

= +

                             (1) 

where the spatial up- and down-sampling operators are d↑  and

d↓ . d is the sampling ratio. Because spatial up- and 
down-sampling are involved, the spatial dimensions of images 
are changed in (1). Thus, we superscripts, l and h, to represent 
LR and HR, respectively. lI  is the observed LR image and l

iI  
is the LR version after the spatial degradation of the HR image 

h
iI  in the ith iteration. l

iE  is the difference between lI  and l
iI . 

h
iE  is the back-projected HR version of l

iE . g  and p  are the 
blur kernel and the back-projection kernel, respectively. The 
convolution operation is denoted by ∗ . 

In the ith iteration of BP, the HR image h
iI  is first spatially 

degraded as l
iI . Then, the reconstruction error l

iE  is obtained 
from the difference between lI  and l

iI . Finally, the 
up-sampled reconstruction error h

iE  is injected into h
iI  to 

refine the HR image. One can see that the quality improvement 
of the HR image is dependent on the handcrafted g  and p  in 
(1). To further enhance the HR images, BP-driven DNNs aim to 
learn these kernels adaptively in the feature space considering 
the powerful mapping ability of DNNs [51]-[54]. 

III. SPATIAL-SPECTRAL DUAL BACK-PROJECTION NETWORK 
This section presents the technical details of the proposed 

S2DBPN, including the spatial BP and the spectral BP. Then, 
the desired HR MS image is reconstructed by integrating all 
features from different stages. 

A. Overall Architecture 
Fig. 1 shows the architecture of the proposed S2DBPN. It is 

composed of a spatial BP network, a spectral BP network, and a 
reconstruction network. In spatial and spectral BP networks, 
the LR MS image m n C× ×∈L   and the PAN image rm rn×∈P   
are fed into the corresponding convolution layers to obtain a 
feature embedding, respectively. In the convolution layers, the 
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size of the filter is 3 3× . m and n are the width and height of the 
LR MS image. C denotes the number of bands in the LR MS 
image. The spatial size of the PAN image is rm rn× . r is the 
spatial ratio between LR MS and PAN images and is typically 
set as 4. For the PAN image, the extracted features are sent into 
the spectral up- and down-projection modules to achieve BP in 
the spectral domain. We employ spatial up- and 
down-projection modules to map the LR MS image for spatial 
BP. Then, an average operation is utilized in each stage to fuse 
the feature maps from spectral and spatial up-projection 
modules. By BP along spatial and spectral dimensions, the 
residuals are iteratively computed to enhance the spatial and 
spectral details of the fused images in feature space. Learning 
the up- and down-projections in BP can efficiently capture the 
relationships between the HR MS image and source images, 
which further improves the consistency among them. In the 
proposed S2DBPN, spatial and spectral BP is achieved by 
successive three stages. The same structures are used in these 
stages, which also share the same model parameters. Finally, all 
features in different stages are concatenated to generate the HR 
MS image rm rn C× ×∈H   via the reconstruction network, in 
which the size of filters in all convolution layers is 3 3× . The 
following parts will present the details of the proposed S2DBPN. 
Table I summarizes some important symbols used in the 
following sections. 

TABLE I. DEFINITIONS OF SYMBOLS. 
Symbols Definitions 

( )⋅  Spatial degradation operator 

( )⋅  Spectral degradation operator 

( )i
down ⋅ , ( )i

down ⋅  Down-sampling operators in spatial 
down-projection module 

( )i
up ⋅  Up-sampling operator in spatial 

down-projection module 

( )i
up ⋅ , ( )i

up ⋅  Up-sampling operators in spatial 
up-projection module 

( )i
down ⋅  Down-sampling operator in spatial 

up-projection module 

( )i
down ⋅ , ( )i

down ⋅  Down-sampling operators in spectral 
down-projection module 

i
up  Up-sampling operator in spectral 

down-projection module 

( )i
up ⋅ , ( )i

up ⋅  Up-sampling operators in spectral 
up-projection module 

i
down  Down-sampling operator in spectral 

up-projection module 

B. Spatial BP Network 
In the pansharpening task, the degradation relationship 

between LR MS and HR MS images is similar to that between 
LR and HR images in Section II. The spatial degradation is 
modeled as: 

( ) 1= e+L H                                   (2) 

where ( )H  denotes the spatial degradation of the HR MS 
image including blurring and down-sampling operations. 
Typically, the down-sampling ratio is 4. 1e  is the Gaussian 
noise.  

Although the spatial information of the LR MS image can be 
improved by the BP in (1), simple up- and down-sampling 

operators cannot describe the complicated mapping between 
them, which limits the quality of the HR MS image. To better 
reconstruct the HR MS image, DNNs are introduced as the up- 
and down-sampling operators to obtain deep features for the 
generation of the HR MS image. According to the formulation 
of BP in (1), we utilize three stages consisting of spatial down- 
and up-projection modules to enrich the spatial information in 
features. In each stage, the HR feature from the previous spatial 
up-projection module is projected as the LR version, which is 
enhanced to obtain the refined HR feature through the 
following spatial up-projection module. 

1) Spatial Down-Projection: In the spatial down-projection 
module of the ith stage, the HR feature 1iM −  from the previous 
spatial up-projection module is down-sampled to obtain the LR 
version iL  and the process is defined as: 

( )
( )

( )

1

1

i i i
down down

i i i
up up down

i i i
up up

i i i
down down up

i i i
down down

M M

M M

F M M

F F

L M F

−

−

=

=

= −

=

= +







                         (3) 

where i
down  is a down-sampling operator with a ratio of r and 

the LR feature i
downM  is up-sampled by the operator i

up  to 

produce i
upM . Then, the error i

upF  between i
upM  and 1iM −  is 

down-sampled by the operator i
down  and back-projected to 

i
downM . 

 
Fig. 2. Architecture of the spatial down-projection module. 

According to the formulation in (3), we construct the spatial 
down-projection module illustrated in Fig. 2. In Fig.2, the 
down- and up-sampling operators in (3) are made up of 
different network blocks. In i

down , a strided convolution layer 
(S-Conv) is introduced to down-sampling the HR feature 1iM − . 
In S-Conv, 128 filters with a size of 8 8×  are equipped and the 
stride is 4. Then, the width and height of i

downM  shrink to a 

quarter of those of 1iM − . In i
up , the pixel shuffle technique is 

adopted to resize the LR feature i
downM  to the dimensions of the 

HR feature. PixelShuffle (4) means that the features are 
up-sampled with a ratio of 4. Moreover, a spatial-aware block 
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(SpaAB) is designed to further enhance the spatial information 
in the HR feature. In SpaAB, the spatial information in features 
is highlighted by 128 filters with the size of 1 1×  and then 
combined the attention map with itself. i

down  adopts the same 

structure as that of i
down . Finally, the down-sampled feature 

i
downF  is injected into i

downM  for down-projection. 
2) Spatial Up-Projection: Following the BP paradigm in (1), 

the spatial up-projection between LR MS and HR MS images is 
designed as: 

( )
( )

( )

i i i
up up

i i i
down down up

i i i
down down

i i i
up up down

i i i
up up

L L

L L

E L L

E E

M L E

=

=

= −

=

= +







                             (4) 

where iL  is the feature from the spatial down-projection 
module in the ith stage. Through the operator i

up , iL  is 

up-sampled with a ratio of r to produce the HR feature i
upL . 

Then, the degraded version i
downL  is obtained by i

down . In the 

final step, the error i
downE  between i

downL  and 1iL −  is 

up-sampled by i
up  and back-projected into i

upL . 

 
Fig. 3. Architecture of the spatial up-projection module. 

Following the projection in (4), we derive the spatial 
up-projection module shown in Fig. 3, where blocks similar to 
those in Fig. 2 are assembled for the up-projection of iL . i

up  

and i
up  both contain the pixel shuffle layer and a SpaAB. The 

down-sampling in i
down  is achieved by the S-Conv layer. 

Through the spatial up-projection module, the error is 
back-projected into the up-sampled LR feature to further 
improve the spatial information. 

C. Spectral BP Network 
Different from the super-resolution task, dual source images, 

i.e. LR MS and PAN images, are involved in the pansharpening 
task. Besides the spatial degradation between HR MS and LR 
MS images in (2), the PAN image is generally viewed as the 
degradation result of the HR MS image in the spectral domain, 
which is written as: 

( ) 2= e+P H                                   (5) 
where   stands for the spectral degradation operator and the 
Gaussian noise is denoted by 2e . 

Inspired by the BP in the spatial domain, we believe that the 
HR MS image can be restored from the PAN image by the BP 
in the spectral domain. For MS images, the spectral information 
is embedded into the interdependency and correlation among 
their bands. In the spatial BP network, the spatial down- and 
up-projections are implemented on the spatial dimensions of 
the feature map in the feature space. By analogy with the 
formulations in (3) and (4), we propose a spectral BP network 
to project the feature map along the channel dimension, which 
captures the correlations among channels in the feature map. In 
this way, the BP in the spectral domain is achieved. Then, three 
stages containing spectral up- and down-projection modules are 
introduced into the spectral BP network, whose structures are 
detailed in the following part. 

1) Spectral Down-Projection: In the spectral 
down-projection of the ith stage, the output of the (i-1)th stage 

1iN −  is condensed to produce a degraded version along the 
channel dimension. Similar to (3), the spectral down-projection 
is expressed as: 

( )
( )

( )

1

1

i i i
down down

i i i
up up down

i i i
up up

i i i
down down up

i i i
down down

N N

N N

Y N N

Y Y

P N Y

−

−

=

=

= −

=

= +







                           (6) 

where i
down  and i

up  are the spectral down- and up-sampling 

operators, respectively. The dimension of the channels of 1iN −  
is reduced by i

down  to generate the spectrally degraded feature 
i
downN . Then, i

downN  is up-sampled by i
up  along the channel 

dimension. Next, the channels of the error i
upY  between i

upN  

and 1iN −  is adjusted by the spectral down-sampling operator 
i
down . i

downY  is finally combined with i
downN . 

By exploiting (6), we design a spectral down-projection 
module to implement the above operations as shown in Fig. 
4(a). In the spectral down-projection module, the feature map 
with a size of rm rn B× ×  is first reshaped as 21i r mn BN − ×∈ , in 
which each column contains the values on the same spatial 
position of all channels. Here, B  is specifically set as 128. 
Considering the projection along the channel dimension, each 
column in 1iN −  is down-sampled as a vector with the length of 
b  by the operator i

down , which is composed of a 1D 
convolution layer and a Leaky ReLU as shown in Fig. 4(b). 
Here, the 1D convolution layer is introduced to model the 
correlations among channels in feature maps. Because the 
spectral degradation of HR MS images is achieved along the 
spectral dimension, the 1D convolution layer is also 
analogically implemented on the channels of feature maps. The 
size of i

downN  is rm rn b× ×  and b  is set as 32. Then, i
downN  is 

up-sampled along the channel dimension by i
up  to obtain 

2i r mn B
upN ×∈ . In i

up , all columns in i
downN  are fed into a 
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spectral up-sampling block (SpeUB) containing a 1D 
convolution layer to capture the correlation among channels. 
Because the dimension of each column is increased from b to B, 
we extend the SpeUB to three heads to integrate the 
information from different subspaces. The structure of i

up  is 
shown in Fig. 4(c). With the introduction of multi-head SpeUB, 
the up-sampling along the channel dimension is more stabilized. 

i
down  shares the same structure as that of the i

down . Finally, 
the down-sampled error i

downY  is added to i
downN  and the 

down-projected feature is reshaped to the size of rm rn b× × . 

 
Fig. 4. Architectures of (a) the spectral down-projection module, (b) i

down , and 

(c) i
up . 

2) Spectral Up-Projection: The spectral up-projection aims 
to promote the spectral information in the feature maps by 
increasing the number of channels. Similar to the spatial 
up-projection in (4), the spectral up-projection is formulated as: 
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                            (7) 

where iP  is the output of the spectral down-projection module 
in the ith stage. The spectral up-sampling operator i

up  first 

increases the number of channels in iP . Then, the dimension of 
channels in i

upP  is reduced by the spectral down-sampling 

operator i
down . Finally, we improve the error between i

downP  
and 1iP −  in terms of the channel dimension and add the 
spectrally up-sampled error i

upX  into i
upP . 

Based on the process in (7), we build a spectral up-projection 
module, as illustrated in Fig. 5. The spectral up- and 
down-sampling blocks adopt structures similar to those in Fig. 

4 to change the channels of the input features. Specifically, the 
structures of i

up  and i
up  are the same as that of i

up . i
down  and 

i
down  share the same structure. Through the spectral 

up-projection module, the error is back-projected into the 
feature with more channels. 

 
Fig. 5. Architectures of the spectral up-projection module. 

D. Reconstruction and Optimization 
In the proposed S2DBPN, the three stages shown in Fig. 1 are 

introduced to complete the BP between the source images and 
the HR MS image in the feature space. For each stage, their 
outputs are averaged by (8) to fuse the features from different 
BP networks: 

2

i i
i L PZ ZZ +

=                                   (8) 

where i
LZ  and i

PZ  are the outputs of the spatial and spectral 
up-projection modules in the ith stage, respectively. Then, iZ  
is fed into the spatial and spectral down-projection modules in 
the next stage. Finally, 1Z , 2Z , and 3Z  are concatenated to 
reconstruct the fused image. 

Finally, the following loss is minimized to obtain the desired 
model: 

2

F
= −G H                                 (9) 

where G  is the reference image, i.e. the ground truth. The 
proposed S2DBPN is trained by the PyTorch framework on a 
server with Intel® Core™ i7-9700 processor, 3.0 GHz, 
NVIDIA 2080Ti GPU, and 11-GB memory. In specific, we use 
Adam as an optimizer, in which the learning rate is 0.00003. 
Considering the tradeoff between the GPU memory and the 
computational complexity, the batch size is set as 2. When the 
optimization reaches 500 epochs, the training is completed. 

IV. EXPERIMENTS 
In this section, the effectiveness of the proposed method is 

demonstrated by the reduced- and full-scale experiments on 
QuickBird, GeoEye-1, and WorldView-2 datasets. Besides, 
ablation studies investigate the performance of several variants 
on the fusion results. 

A. Experimental Settings 
1) Datasets: Experiments are conducted on two datasets 

from QuickBird, GeoEye-1, and WorldView-2 satellites. The 
GeoEye-1 dataset was captured in Hobart, Australia, on 
February 24, 2009, and contains rural and urban areas. The 
spatial resolutions of LR MS and PAN images in the dataset are 
2.0m and 0.5m, respectively. The QuickBird satellite dataset 
was collected in the urban area in Sundarbans, India, on 
November 21, 2002. It includes 2.8m LR MS and 0.7m PAN 
images. For the WorldView-2 satellite dataset, the spatial 
resolutions of LR MS and PAN images are 2.0m and 0.5m, 
respectively. This dataset was taken from the area of 
Washington DC, USA, on September 26, 2016. To train the 
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DNN-based methods, the original LR MS and PAN images are 
down-sampled to the reduced scale to compose the training data 
according to Wald’s protocol [4]. Then, the original MS images 
are employed as the ground truth. Through the same 
down-sampling strategy, a set of reduced-scale LR MS and 
PAN images is generated for reference-based evaluations. 
Full-scale datasets are also constructed for no-reference 
evaluations. Table II provides the numbers of training, 
validation, and test images from different satellites. In these 
datasets, the sizes of LR MS and PAN images are 64 64×  and 
256 256× , respectively. 

2) Compared Methods: The proposed S2DBPN is compared 
with four traditional methods and four DNN-based methods. 
The traditional methods are AWLP [15], BDSD [12], GS [4], 
and MTF-GLP [4]. The DNN-based ones are PNN [29], 
GPPNN [44], PanNet [55], PSGAN [36], DMDN [56], and 
Fusion-Net [57]. All DNN-based methods are trained on the 
same server as that of the proposed S2DBPN. 

TABLE II. DETAILS ABOUT TRAINING, VALIDATION, AND TEST DATA. 

Satellite #Training 
Pairs 

#Validation 
Pairs 

#Test Pairs 
Reduced scale Full scale 

QuickBird 900 20 30 30 
GeoEye-1 924 25 30 30 

WorldView-2 990 30 30 30 

3) Metrics: The fusion results of reduced-scale datasets are 
evaluated by reference-based metrics, including Q4 [58], root 
mean square error (RMSE), spectral angle mapper (SAM) [59], 
universal image quality index (UIQI) [60], and relative 
dimensionless global error in synthesis (ERGAS) [61]. Q4 and 
UIQI are in a range from 0 to 1 and their optimal value is 1. 
RMSE, SAM, and ERGAS tend to be 0 for better results. For 
the evaluation of the full-scale fusion results, Dλ , SD , and 
quality no reference (QNR) [62] are considered. Dλ  and SD  
close to 0 mean that the fused image is better. The best value of 
QNR is 1. 

LR MS PAN Reference AWLP BDSD GS MTF-GLP

PNN PanNetGPPNN PSGAN S2DBPNDMDN Fusion-Net

 
Fig. 6. Qualitative comparison of the fused results of all methods on the reduced-scale QuickBird dataset. 

TABLE III. QUANTITATIVE COMPARISON ON THE REDUCED-SCALE DATASET FROM THE QUICKBIRD SATELLITE. 
Metric AWLP BDSD GS MTF-GLP PNN GPPNN PanNet PSGAN DMDN Fusion-Net S2DBPN 

Q4 0.9198 0.8912 0.8629 0.9161 0.9436 0.9453 0.9038 0.9245 0.9461 0.9420 0.9477 
RMSE 15.6137 20.4218 19.4334 15.9483 10.9141 10.0751 18.3154 12.9960 10.4769 10.0201 9.9882 

SAM 2.3588 3.4110 2.9604 2.5355 1.7088 1.5755 2.5797 2.0874 1.6283 1.5797 1.5658 
UIQI 0.9132 0.9002 0.8470 0.9128 0.9610 0.9672 0.8842 0.9511 0.9633 0.9630 0.9672 

ERGAS 0.8995 1.2033 1.1288 0.9205 0.6280 0.5799 1.0081 0.7494 0.6016 0.5867 0.5774 
 

B. Experiments on Reduced-Scale Datasets 
In this part, the reduced-scale experiments are implemented 

on the QuickBird, GeoEye-1, and WorldView-2 datasets. Fig. 6 
shows the fusion results on the QuickBird dataset. Some visual 
differences are demonstrated by a local area highlighted by a 
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red rectangle, which is magnified and put in the lower right 
corner of the fusion result. Moreover, Fig. 6 also shows the 
absolute difference maps between the fused images and the 
reference image for the comparison of the reconstruction 
performance. From Fig. 6, we can see that the spatial details in 
the fused images of traditional methods are over-enhanced 
when compared to the reference image, especially in the 
vegetation regions. For example, the textures of vegetation 
regions in the AWLP result are excessively sharp. Besides, 
some spectral distortions also can be seen in the results of 
BDSD, GS, and MTF-GLP. The absolute difference maps of 
traditional methods also reflect that their reconstruction errors 
are large in texture and edge regions. For the PanNet result, one 
can find some spatial effects similar to those in the results of 
traditional methods. The reason for this may be that the residual 
learned by PanNet is over-injected into the up-sampled LR MS 

image. The building areas in the PSGAN result suffer from 
spectral distortions, which may be caused by insufficient 
adversarial learning. Large reconstruction errors also arise in 
the absolute difference maps of PanNet and PSGAN. PNN, 
GPPNN, and our S2DBPN have better performance compared 
to other methods. However, the reconstruction errors of PNN 
and GPPNN are larger than those in the S2DBPN result. 
Therefore, the proposed S2DBPN can produce better fusion 
results. 

Table III gives the quantitative metrics associated with the 
fusion results in Fig. 6, where the average values of each metric 
on 30 LR MS and PAN image pairs are calculated. The best 
values in Table III are marked in bold. The best values in Table 
III illustrate that the proposed S2DBPN behaves better in terms 
of spatial and spectral metrics. 

GPPNNPNN

LR MS PAN Reference AWLP BDSD GS MTF-GLP

PanNet PSGAN S2DBPNDMDN Fusion-Net

 
Fig. 7. Qualitative comparison of the fused results of all methods on the reduced-scale GeoEye-1 dataset. 

TABLE IV. QUANTITATIVE COMPARISON ON THE REDUCED-SCALE DATASET FROM THE GEOEYE-1 SATELLITE. 
Metric AWLP BDSD GS MTF-GLP PNN GPPNN PanNet PSGAN DMDN Fusion-Net S2DBPN 

Q4 0.7987 0.7854 0.7644 0.8075 0.7946 0.8230 0.7728 0.8104 0.8107 0.8145 0.8351 
RMSE 25.5116 29.2840 27.3993 24.5394 27.3163 15.3090 28.5935 22.1315 19.2638 18.7384 11.1062 
SAM 4.9535 5.7013 4.9287 4.7487 4.7835 2.8742 4.5709 4.2201 3.8100 3.6338 2.1052 

UIQI 0.9502 0.9419 0.9284 0.9535 0.9383 0.9816 0.9331 0.9610 0.9702 0.9707 0.9903 
ERGAS 1.5783 1.8290 1.7167 1.5378 1.7010 0.9671 1.7673 1.3789 1.2113 1.1819 0.7045 

 
Fig. 7 shows the fusion results of all methods on the 

reduced-scale GeoEye-1 dataset. Magnified regions and 
absolute difference maps are also shown in Fig. 7 for further 
perception. In the AWLP result, some spatial details are lost. 
For instance, there are some spatial blurring effects in the 

magnified region of the AWLP result. From the enlarged areas 
in the BDSD and GS results, we can find some spatial artifacts, 
which may result from the misestimated gains in the two 
methods. In the absolute difference maps of AWLP, BDSD, 
and GS, the large errors are mainly concentrated on the building 
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areas, which validates the loss of spatial details in their fused 
images. For the MTF-GLP result, the color of the ground is not 
consistent with that of the reference image. Besides, blurring 
effects can be observed from PNN, PanNet, and PSGAN results. 
In the magnified areas of these results, the details of buildings 
are smoothed.  Their corresponding error maps also show that 
the edges of buildings in the fused images are not preserved 
well. GPPNN and our S2DBPN have similar performance in 
terms of visual analysis. But the larger errors in the difference 
maps of GPPNN imply that the proposed S2DBPN can 
reconstruct the fused image better. 

Table IV reports the values of all reference-based metrics on 
the reduced-scale GeoEye-1 dataset, where the values of each 
metric are averaged on 30 LR MS and PAN image pairs. Then, 
the best values are labeled in bold. The proposed method 
produces the best values in terms of all metrics. So, the 
proposed S2DBPN is better than these state-of-the-art methods. 

Fig. 8 provides the visual results of all methods on the 
reduced-scale WorldView-2 dataset. For the results of 
traditional methods, it can be found that the GS result suffers 
from obvious spectral distortions in the building areas. For 
DNN-based methods, PanNet produces large differences in 
terms of spectral information when compared to the reference 
image. The error maps in Fig. 8 also demonstrate that GS and 
PanNet cannot reconstruct the fused images well. Compared to 
other methods, the reconstruction errors of the proposed 
method are smaller than those of other methods. 

Table V also records the average results of all metrics on the 
WorldView-2 dataset. One can see that the best SAM and 
ERGAS values are from the proposed S2DBPN. Moreover, the 
UIQI value of S2DBPN is also very close to the best UIQI value 
of 0.9591. Thus, the proposed method achieves better overall 
performance, which may benefit from the dual BP in spatial and 
spectral domains. 

ReferenceLR MS PAN AWLP BDSD GS MTF-GLP

PNN GPPNN PanNet PSGAN DMDN Fusion-Net S2DBPN

 
Fig. 8. Qualitative comparison of the fused results of all methods on the reduced-scale WorldView-2 dataset. 

TABLE V. QUANTITATIVE COMPARISON ON THE REDUCED-SCALE DATASET FROM THE WORLDVIEW-2 SATELLITE. 
Metric AWLP BDSD GS MTF-GLP PNN GPPNN PanNet PSGAN DMDN Fusion-Net S2DBPN 

Q4 0.8871 0.7602 0.8761 0.8760 0.9487 0.9515 0.8709 0.9543 0.9591 0.9500 0.9590 

RMSE 116.3824 162.1421 135.1632 118.6914 80.2298 70.4923 121.9907 74.0877 69.8947 69.9658 69.8650 
SAM 6.8773 9.6111 7.3724 6.9648 5.3120 4.6880 6.9665 4.7541 4.7186 4.6742 4.6518 

UIQI 0.8805 0.7531 0.7799 0.8673 0.9460 0.9557 0.8542 0.9539 0.9579 0.9572 0.9584 
ERGAS 1.7428 2.2659 2.0643 1.7170 1.2289 1.1943 1.8022 1.1493 1.1161 1.1030 1.1005 

 
C. Experiments on Full-Scale Datasets 

This part illustrates the experimental results on full-scale 
QuickBird, GeoEye-1, and WorldView-2 datasets for 
comparison among all methods. Fig. 9 shows the fused images 

of all methods on the full-scale Quickbird dataset. An 
interesting area is chosen and enlarged for a more intuitive 
visual comparison. For traditional methods, the spatial details 
in fused images are enhanced well, but some spectral 
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distortions appear in vegetation regions. The color of the tree in 
the AWLP and GS results is grey-green. There are slight 
differences between the fused images of PNN and GPPNN, 
especially in the building areas. For the PanNet result, the hue 
of the fused image is different from that of other fused images. 
In addition, the PSGAN result also contains some spectral 
distortions, which can be further noticed in the magnified 
region. Compared with the fused images of other methods, the 

S2DBPN result preserves the spatial and spectral information in 
the fused image better. 

Table VI presents the results of the fused images of different 
methods. 30 LR MS and PAN image pairs are tested and the 
average of metrics is computed. The proposed S2DBPN has the 
best values in terms of Dλ  and QNR. S2DBPN obtains the 
second-best SD , while the best value of SD  is from PNN. 

LR MS PAN AWLP BDSD GS MTF-GLP PNN

PanNetGPPNN PSGAN S2DBPNFusion-NetDMDN  
Fig. 9. Qualitative comparison of the fused results of all methods on the full-scale QuickBird dataset. 

TABLE VI. QUANTITATIVE COMPARISON ON THE FULL-SCALE DATASET FROM THE QUICKBIRD SATELLITE. 
Metric AWLP BDSD GS MTF-GLP PNN GPPNN PanNet PSGAN DMDN Fusion-Net S2DBPN 

Dλ  0.0738 0.0294 0.0461 0.0630 0.0364 0.0364 0.0440 0.0352 0.0358 0.0335 0.0261 

SD  0.0555 0.0315 0.0385 0.0655 0.0232 0.0316 0.0272 0.0274 0.0268 0.0222 0.0271 

QNR 0.8750 0.9400 0.9172 0.8760 0.9414 0.9333 0.9302 0.9383 0.9385 0.9451 0.9474 

LR MS PAN AWLP BDSD GS MTF-GLP PNN

GPPNN PanNet PSGAN S2DBPNFusion-NetDMDN  
Fig. 10. Qualitative comparison of the fused results of all methods on the full-scale GeoEye-1 dataset. 

TABLE VII. QUANTITATIVE COMPARISON ON THE FULL-SCALE DATASET FROM THE GEOEYE-1 SATELLITE. 
Metric AWLP BDSD GS MTF-GLP PNN GPPNN PanNet PSGAN DMDN Fusion-Net S2DBPN 

Dλ  0.1188 0.0457 0.0520 0.1158 0.0562 0.0592 0.0558 0.0693 0.0508 0.0658 0.0472 

SD  0.0471 0.0440 0.0415 0.0527 0.0545 0.0340 0.1036 0.0385 0.0384 0.0374 0.0396 

QNR 0.8400 0.9126 0.9088 0.8381 0.8923 0.9089 0.8464 0.8950 0.9127 0.8994 0.9151 
 

Fig. 10 demonstrates the fusion results of all methods on the 
full-scale GeoEye-1 dataset. The selected region is magnified 
and outlined by a red rectangle. The results on the GeoEye-1 
dataset show more perceptible visual differences, especially in 
the magnified regions. For example, the color of the roof in the 
BDSD result is over-enhanced. But the color in the results of 
AWLP, GS, and MTF-GLP is in undersaturation, which may be 

caused by inappropriate transform coefficients in them. 
Spectral distortions also exist in the results of PNN and PSGAN. 
The results of GPPNN, PanNet, and S2DBPN have a similar 
color. However, some spatial details in the PanNet result are 
lost. 

Table VII lists the averaged values of each metric on 30 LR 
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MS and PAN image pairs. The best Dλ  and QNR are provided 
by the proposed S2DBPN. The SD  of S2DBPN is close to the 
best one from GPPNN. 

The fusion results of all methods on the full-scale 
WorldView-2 dataset are illustrated in Fig. 11. Compared to the 
results of other methods, significant spatial and spectral 
artifacts can be seen in the BDSD result. Moreover, the color 
information of the GS result is also not consistent with that of 
other fusion results. In the results of DNN-based methods, we 
can observe that the PanNet result is blurring, especially in the 

magnified area. In addition, some spectral artifacts appear in 
the magnified areas of DMDN and Fusion-Net results. The 
proposed S2DBPN has better performance in terms of spectral 
and spatial preservation. 

The quantitative results on the full-scale WorldView-2 
dataset are listed in Table VIII. 30 LR MS and PAN image pairs 
are used for the test. The best SD  and QNR are produced by 
S2DBPN. Thus, S2DBPN balances the spatial and spectral 
information in fusion results better. 

PANLR MS AWLP BDSD GS MTF-GLP PNN

GPPNN PanNet PSGAN DMDN Fusion-Net S2DBPN  
Fig. 11. Qualitative comparison of the fused results of all methods on the full-scale WorldView-2 dataset. 

TABLE VIII. QUANTITATIVE COMPARISON ON THE FULL-SCALE DATASET FROM THE WORLDVIEW-2 SATELLITE. 
Metric AWLP BDSD GS MTF-GLP PNN GPPNN PanNet PSGAN DMDN Fusion-Net S2DBPN 

Dλ  0.0655 0.0510 0.0425 0.0814 0.0536 0.0501 0.0536 0.0500 0.0468 0.0392 0.0470 

SD  0.0527 0.1299 0.1198 0.0830 0.0763 0.0522 0.0595 0.0506 0.0555 0.0570 0.0448 

QNR 0.8854 0.8267 0.8434 0.8426 0.8741 0.9005 0.8906 0.9019 0.9004 0.9062 0.9104 

Reference Complete S2DBPNw/o concat. w/o multi-headLR MS PAN w/o PS

 
Fig. 12. Ablation study of the proposed S2DBPN on the reduced-scale GeoEye-1 dataset. 

D. Ablation Study 
To validate the effectiveness of S2DBPN, different 

configurations are tested by removing specific modules. The 
ablation study is conducted on the reduced-scale GeoEye-1 
dataset. Fig. 12 and Table IX demonstrate the qualitative and 
quantitative results of different configurations, respectively. 
First, we remove the concatenation of features from different 
stages in Fig. 1. The absolute difference maps show that the 
reconstruction errors become larger when the concatenation is 
removed. Second, the multi-head SpeUB is replaced by only 
one SpeUB. Without the multi-head mechanism, larger 

reconstruction errors can be found from the corresponding 
difference maps and the values of metrics in Table IX become 
inferior. In addition, the pixel shuffle (PS) is substituted by the 
bicubic interpolation operator. When the bicubic operation is 
adopted, some spatial artifacts are observed in the result of w/o 
PS because the up-sampling in the spatial up-projection module 
is adaptively learned by the PS operator. The results in Fig. 12 
and Table IX imply that the introductions of these 
configurations boost the quality of the fused image of the 
proposed S2DBPN. 
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TABLE IX. ABLATION STUDY ON THE REDUCED-SCALE DATASET FROM THE 
GEOEYE-1 SATELLITE. 

Metric w/o 
concat. 

w/o 
multi-head 

w/o 
PS 

Complete 
S2DBPN 

Q4 0.8259 0.8263 0.8243 0.8351 
RMSE 14.6316 14.8631 15.4657 11.1062 
SAM 2.7925 2.8465 2.9763 2.1052 
UIQI 0.9831 0.9826 0.9809 0.9903 

ERGAS 0.9247 0.9394 0.9768 0.7045 

E. Network Architecture 
In this part, we explore the influence of the number of stages 

on the reduced-scale GeoEye-1 dataset. Fig. 13 shows the 
fusion results of the proposed S2DBPN with various numbers of 
stages. Their absolute difference maps also give in the second 
row of Fig. 13. Table X provides the quantitative results on the 

reduced-scale GeoEye-1 dataset. In the first row of Fig. 13, it is 
difficult to distinguish the visual quality of these fused images. 
However, some differences can be observed from the second 
row of Fig. 13. It can be observed that the reconstruction errors 
are smaller when 3 stages are contained in S2DBPN. In Table X, 
we also can find that the numerical values behave best for the 
S2DBPN with 3 stages. 

Besides, Table X also reports the number of parameters and 
training time of S2DBPN with different numbers of stages. 
Because the weight-sharing strategy is adopted in S2DBPN, the 
numbers of parameters are almost consistent. But it will spend 
more time to train the model by increasing the number of stages. 
Considering the fusion performance, the down- and 
up-projections in spatial and spectral domains are stacked three 
times. 

Reference 1 stage 2 stages 3 stages 4 stagesLR MS PAN

Fig. 13. Influences of the number of stages on the reduced-scale GeoEye-1 dataset. 

TABLE X. INFLUENCES OF THE NUMBER OF STAGES ON THE REDUCED-SCALE 
DATASET FROM THE GEOEYE-1 SATELLITE. 

Metric 1 stage 2 stages 3 stages 4 stages 
Q4 0.8211 0.8252 0.8351 0.8265 

RMSE 16.2461 14.9145 11.1062 14.3092 

SAM 3.0667 2.8450 2.1052 2.7193 

UIQI 0.9790 0.9824 0.9903 0.9839 

ERGAS 1.0269 0.9426 0.7045 0.9047 

#Para. (M) 16.11 16.13 16.15 16.16 

#Time (h) 32.1 37.5 42.1 49.4 

F. Weight Sharing 
In the proposed S2DBPN, the weight-sharing strategy is 

imposed on the three stages in Fig. 1 to reduce the model size. 
In this part, S2DBPN with independent weights is trained and 
compared with the one that shares weights. The comparison is 
conducted on the reduced-scale GeoEye-1 dataset. Fig. 14 
shows the fusion results and the corresponding absolute 
difference maps. The corresponding average results are given 
in Table XI. The difference maps in Fig. 14 suggest that the 
S2DBPN with sharing weights can reconstruct the fused image 
better. The best values in Table XI are also produced by the 
S2DBPN with sharing weights. The performance in Fig. 14 and 
Table VIII is similar to that in [43]. The reason for this may be 
that the S2DBPN with independent weights cannot be trained 
sufficiently on the dataset used in this paper because its model 

size, 36.71M, is much greater than 16.15M of S2DBPN with 
sharing weights as shown in Table XI. Owing to adopting the 
same structures, their computational complexities are 
comparable. Thus, their training time in Table XI is very close. 

Reference Independent weights Sharing weights

LR MS PAN

 
Fig. 14. Independent weights vs. sharing weights on the reduced-scale 

GeoEye-1 dataset. 
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TABLE XI. INDEPENDENT WEIGHTS VS. SHARING WEIGHTS ON THE REDUCED-SCALE DATASET FROM THE GEOEYE-1 SATELLITE. 
Metric Q4 RMSE SAM UIQI ERGAS #Para. (M) #Time (h) 

Independent weights 0.8272 14.3444 2.7163 0.9839 0.9075 36.71 41.2 
Sharing weights 0.8351 11.1062 2.1052 0.9903 0.7045 16.15 42.1 

LR MS PAN Complete S2DBPNw/o down-projectionw/o up-projectionReference

 
Fig. 15. Learnable projection VS. handcrafted projection on the reduced-scale GeoEye-1 dataset. 

G. Learnable Projection VS. Handcrafted Projection 
In this part, the learnable projection modules in Fig. 1 are 

replaced by the handcrafted projections to demonstrate the 
effectiveness of the modules composed of DNNs. The 
experiments are implemented on the reduced-scale GeoEye-1 
dataset. The visual and numerical results are illustrated in Fig. 
15 and Table XII, respectively. In Fig. 15, magnified regions 
and absolute difference maps are also shown for further 
analysis. 
TABLE XII. LEARNABLE PROJECTION VS. HANDCRAFTED PROJECTION ON THE 

REDUCED-SCALE DATASET FROM THE GEOEYE-1 SATELLITE. 

Metric w/o learnable 
up-projection 

w/o learnable 
down-projection 

Complete 
S2DBPN 

Q4 0.8235 0.8279 0.8351 

RMSE 15.6933 14.0762 11.1062 
SAM 3.0327 2.6696 2.1052 
UIQI 0.9803 0.9844 0.9903 

ERGAS 0.9920 0.8895 0.7045 

First, the spatial and spectral up-projection modules in 
S2DBPN are replaced by the bicubic and linear interpolation 
operators, respectively. From Fig. 15, we can find spatial 
artifacts and larger reconstruction errors from the result of the 
S2DBPN without learnable up-projection modules. Besides, we 
substitute the spatial and spectral down-projection modules in 
S2DBPN with the handcrafted operators mentioned above. 
Similar performance is found in the result of the S2DBPN 
without learnable down-projection modules. From the values in 
Table XII, one can see that the complete S2DBPN produces the 
best values for all metrics. The results of S2DBPN without 
learnable projection modules are inferior to those of the 
complete S2DBPN. However, the S2DBPN without learnable 
projection modules behaves better than the compared methods, 
as shown in Table IV. So, it validates the effectiveness of the 
BP-driven model. 

H. S2DBPN VS. DBPN 
This part explores the effectiveness of the spatial-spectral 

dual BP formulation in S2DBPN. Specifically, we directly used 
DBPN in [51] for comparison. In DBPN, only the spatial BP is 
contained and the spectral BP cannot be embedded into DBPN. 
So, DBPN is trained on the paired LR MS and HR MS images, 
without PAN images. From the fusion results in Fig. 16, we can 
see that the DBPN result is more blurring than the S2DBPN 
result because the spatial information in PAN images is not 
considered in DBPN. The quantitative evaluations are given in 
Table XIII. Obvious performance degradation can be seen from 
the metric values of DBPN. The results in Table XIII also 
demonstrate that the spatial-spectral dual BP formulation can 
improve the quality of fused images better. 

S2DBPNDBPN

 
Fig. 16. S2DBPN VS. DBPN on the reduced-scale GeoEye-1 dataset. 

TABLE XIII. S2DBPN VS. DBPN ON THE REDUCED-SCALE DATASET FROM 
THE GEOEYE-1 SATELLITE. 

Metric Q4 RMSE SAM UIQI ERGAS 
DBPN 0.7319 30.7993 4.0846 0.9242 1.9741 

S2DBPN 0.8351 11.1062 2.1052 0.9903 0.7045 

V. CONCLUSION 
In this paper, we have proposed S2DBPN for the fusion of 

LR MS and PAN images, which is inspired by the BP model. 
Compared to the deep unfolding networks that are derived from 
sophisticated optimization algorithms, BP-driven DNNs are 
simple in principle, in which images are enhanced by up- and 
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down-projections in the feature space. In the proposed S2DBPN, 
the spatial BP network focus on the improvement of spatial 
information by successive spatial down- and up-projection 
modules. Spectral down- and up-projection modules are 
established according to the degradation relationship between 
PAN and HR MS images, by which the spectral BP is achieved. 
Then, the designed up- and down-projection modules are 
cascaded to enhance the spatial and spectral information in the 
fused image progressively. Finally, all features at different 
stages of spatial and spectral BP networks are combined to 
obtain the fused image. Experimental results on the datasets 
from QuickBird, GeoEye-1, and WorldView-2 satellites show 
the effectiveness of the proposed S2DBPN compared with some 
state-of-the-art methods. Due to the cascaded down- and 
up-projection modules, the number of parameters of the 
proposed method increases significantly when more modules 
are introduced. So, the training time also becomes longer. For 
future work, we will design efficient and lightweight down- and 
up-projection modules and embed them into the dual BP 
framework to improve the reconstruction of fused images. 
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