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THE WEIGHT DISTRIBUTION OF CODES OVER FINITE CHAIN

RINGS

GIULIA CAVICCHIONI AND ALESSIO MENEGHETTI

Abstract. In this work, we determine new linear equations for the weight dis-

tribution of linear codes over finite chain rings. The identities are determined by

counting the number of some special submatrices of the parity-check matrix of

the code. Thanks to these relations we are able to compute the full weight dis-

tribution of codes with small Singleton defects, such as MDS, MDR and AMDR

codes.

1. Introduction

Ring-linear coding theory has been widely studied because of its theoretical and
practical interest. On one hand, ring-linear codes are relevant from an algebraic
perspective: as shown in [5], some optimal but non-linear binary codes can be repre-
sented as linear codes over Z/4Z endowed with the Lee metric. On the other hand,
ring-linear codes have received attention in cryptographic community. The recent ef-
fort among cryptographers to obtain secure post-quantum ciphers [1, 2, 4, 11, 12, 15]
led to an increase in the interest in computationally hard algebraic problems, and an
interested reader can refer to [3, 13, 20] for more details. Code-based cryptography is
one of the most studied and promising areas in the post-quantum framework. How-
ever, due to the necessity of reducing the public key size associated to a code-based
cryptosystem, there has been interest in exploring different ambient spaces and met-
rics other then vector spaces over finite fields equipped with the Hamming metric.
For example, codes over finite rings equipped with the Lee metric may decrease the-
public key size of the cryptosystems; for further details see [7, 21, 22].
Understanding the minimum distance of a code is computationally hard and it is one
of the main problem in Coding Theory. In 1997 Vardy proved that, given a basis of
a code, determining precisely the minimum distance of a linear code is NP-hard [20].
Hence this computational problem, as well as several related questions, is linked to
the security of post-quantum cryptographic protocols.
Even the problem of calculating the weight distribution of a linear code, which im-
plies the determination of the minimum distance, is NP-hard. In this paper we
treat the problem of computing the weight distribution of linear codes over finite
chain rings equipped with the Hamming metric. In classical coding theory the most
fundamental result about weight distributions are the MacWilliams identities, which
express how the weight enumerators of a linear code and its dual relate to each other.
Several authors have generalized this work in different directions. For example, a
MacWilliams theorem for codes over finite Frobenius rings was given by Wood in
1999 [23].
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Here, we provide new linear equations for the weight distribution of ring-linear codes
by counting the number of some special submatrices of the parity-check matrix of
the code. This task is certainly as difficult as the original one; however, it allows to
investigate codes having special structure in their parity-check matrix. The provided
equations and MacWilliams identities seems to be independent, but there could be a
possible link in between this equations and some variant of MacWilliams identities.
This paper is organized as follows. In Section 2 we recall some basics on linear codes
over finite fields. In Section 3 we introduce ring-linear codes; we investigate the
structure of the parity-check matrix and the weight distribution of a linear code. In
Section 4 we derive new relations for the weight distribution of ring-linear codes; we
discuss the optimality of the result. The obtained formula is a modification of the
formula given in [14, Proposition 5] for linear codes over finite fields and specialised
in [17] for Hermitian codes. In Section 5 we apply our formula to verify the known
results about the distribution of MDS codes. Moreover we derive the weight distri-
bution formula for MDR and AMDR codes. Finally, in Section 6, we discuss the
connection between MacWilliams identities and the provided relations.

2. Preliminaries on Linear codes over finite fields

In its most general setting, Coding Theory is the study of discrete sets equipped
with a metric. The most studied case is that of algebraic varieties living in vector
spaces over finite fields, and the metric is the Hamming metric. In this framework, a
(linear) code C is a vector subspace of dimension k of (Fq)

n, where the elements of
the code are called codewords and the parameters n and k are respectively known as
the length and the dimension of C. The Hamming metric, also known as Hamming
distance, is a discrete metric counting the number of non-zero coordinates, namely,

d(v,w) = |{i | vi 6= wi, 1 ≤ i ≤ n}| ,

for any v = (v1, . . . , vn) and w = (w1, . . . , wn) in (Fq)
n.

Notice that in this work we consider the elements of vector spaces and modules to
be row vectors, a standard notation in Coding Theory. If v is any (row) vector, then
its transpose v⊤ is a column vector.
The third most important parameter of a code is the so-called minimum distance
d, which is the minimum among the Hamming distances of any pair of distinct
codewords, i.e.

d = min
c1,c2∈C

d(c1, c2) ,

and it coincides with the minimum weight of a codeword. The importance of the
minimum distance is related to the capability of codes to correct errors. If we are
presented with a vector v that should be a codeword c of a given code C, even if its
coordinates are corrupted (hence v /∈ C), then we can safely reconstruct c from v
provided that the number of erroneous coordinates of v is bounded by ⌊d−1

2 ⌋.
The weight distribution of a code of length n specifies the number of codewords of
each possible weight 0, 1, . . . , n. Even if the weight distribution does not in general
uniquely determine a code, it gives important information: in addition to providing
the correction capability of a code, it allows to calculate the probability of undetected
errors (see [19, Chapter 2]).
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3. Generalities on linear codes over finite chain rings

A finite ring with unity 1 6= 0 is called a left (resp. right) chain ring if its left
(resp. right) ideals are linearly ordered by inclusion. Note that a finite chain ring is
a local ring where all the ideals are principal.
Throughout the paper let R be a finite commutative chain ring. Let γ be the gen-
erator of the maximal ideal and let s be its the nilpotency index. Let K denote the
residue field with p elements R/γR.

Definition 3.1. A linear code of length n in the alphabet R is a submodule of Rn.
The free module Rn is called the ambient space of the code.

Definition 3.2. The Hamming weight of an element c = (c1, . . . , cn) ∈ Rn is the
number w(c) of non-zero entries of c.

Definition 3.3. A matrix G is called a generator matrix for the code C over R if
the rows of G span C and none of them can be written as a linear combination of
the other rows of G.

As shown in [16], any linear code over a finite chain ring has a generator matrix.
In our framework it is convenient to work with a generator matrix in standard form.

Proposition 3.4. [16, Proposition 3.2] Let C be a linear code in Rn. C is per-
mutation equivalent to a code having the following generator matrix in standard
form:

G =










Ik0 A0,1 A0,2 A0,3 . . . A0,s−1 A0,s

0 γIk1 γA1,2 γA1,3 . . . γA1,s−1 γA1,s

0 0 γ2Ik2 γ2A2,3 . . . γ2A2,s−1 γ2A2,s
...

...
...

...
...

...
0 0 0 0 . . . γs−1Iks−1 γs−1As−1,s










,

where Ai,s ∈ Mki×n−K(R/γs−iR) and Ai,j ∈ Mki×kj(R/γs−iR) for j < s.

For all 0 ≤ i ≤ s the ki’s denote the number of rows of G that are divisible by γi

but not by γi+1. The parameters k0, . . . , ks−1 are the same for all generator matrices
in systematic form, and C is said to be of type (k0, k1, . . . , ks−1). The rank of C is

defined as K =
∑s−1

i=0 ki.

Definition 3.5. The free rank of C is defined to be the maximum of the rank of the
free submodules of C and it coincides with k0.

Definition 3.6. A linear code is said to be free if its rank coincides with its free
rank. In this case, the code is a free R-submodule which is isomorphic to Rk0 .

If C is a free code, then any systematic generator matrix has the form

G =
[
Ik0 A

]
∈ (Z/psZ)k0×n.

Since for all 0 ≤ j ≤ s − 1 we have |γjR| = ps−j (see [16, Lemma 2.4]), it is
possible to compute the cardinality of a linear code.

Theorem 3.7. [16, Theorem 3.5] A linear code C over R of type (k0, . . . , ks−1) has

cardinality |C| = p
∑s−1

i=0 (s−i)ki .
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We attach the standard inner product to the ambient space i.e.
v · w =

∑
viwi. The dual code C⊥ of C is defined, as in the classical case, by

C⊥ = {v ∈ Rn | v · w = 0 for all w ∈ C}.

In [23], Wood proved that the dual code of a code over a Frobenius ring, and hence
over a finite chain ring, is well defined (i.e. (C⊥)⊥ = C) . The dual code C⊥ has the
following parameters:

Theorem 3.8. Let C ⊆ Rn be a linear code of rank K and type (k0, . . . , ks−1).
Then C⊥ is a linear code of rank n− k0 and type (n −K, ks−1, . . . , k1).

As a consequence, the dual code of a free code is again free.

We call any matrix H a parity-check matrix for C if its kernel is C.

Proposition 3.9. [16, Theorem 3.10] Let C be a linear code of type (k0, . . . , ks−1).
Then C is permutation equivalent to a code having a parity-check matrix in system-
atic form:

(3.1) H =








B0,s B0,s−1 . . . B0,1 In−K

γB1,s γB1,s−1 . . . γIks−1 0
...

...
...

...
γs−1Bs−1,s γs−1Ik1 . . . 0 0







=








H(0)

γH(1)

...

γs−1H(s−1)







,

where, for 0 ≤ i, j ≤ s, Bi,j = −
∑j−1

k=i+1Bi,kA
T
s−j,s−k −AT

s−j,s−i .

Clearly, H is a generator matrix for C⊥.

3.1. Hamming weight distribution and Singleton-like bounds. As in the
classical case, the Hamming-weight distribution of a ring-linear code is a vector
A = (Ai)i=0,1...,n, where Ai denotes the number of codewords of C of weight i.
The weight distribution can be encoded as coefficients in a polynomial.

Definition 3.10. The (Hamming)-weight enumerator polynomial of a ring-linear
code C of length n is the bivariate polynomial

WC(X,Y ) =
∑

c∈C

Xn−w(c)Y w(c) =
n∑

i=0

AiX
n−iY i .

The Hamming-weight enumerators of a code and its dual are related by the
MacWilliams identities.

Theorem 3.11. [23, Theorem 8.3] For linear codes over a finite chain ring R with
ps elements, the MacWilliams identities hold:

WC⊥(X,Y ) =
1

|C|
WC(X + (ps − 1)Y,X − Y ) .

Moreover, for the Hamming metric over R, Singleton-like bounds are known.

Remark 3.12. The Singleton bound for codes over any alphabet of size ps states
that

d ≤ n− logps(|C|) + 1 ,
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(see for example [10]). In the framework of codes over finite chain rings, only free
codes meet this bound and they are said maximum distance separable (MDS) codes.
As shown in [6], for codes over principal ideal rings

(3.2) d ≤ n−K + 1 .

This bound is in general tighter than the Singleton bound and they coincides if and
only if the code is free. A linear code over a finite chain ring meeting this bound is
said to be maximum distance with respect to rank (MDR). In particular a code C
is MDS if and only if it is MDR and free.

It is well-known ([18, Corollary 1]) that the MDS property is invariant under
duality (i.e. the dual of an MDS code over a finite chain ring is again MDS). In
general, the dual code of an MDR code does not preserve the property.

Example 3.13. Let C = 〈(1, 0, 1), (0, 2, 0), (0, 0, 2)〉 ⊂ (Z/4Z)3 be a linear code. C
is MDR since d(C) = 1 = n−K+1. However, its dual code C⊥ = 〈(2, 0, 2), (0, 2, 0)〉
has minimum distance d(C⊥) = 1 < 2 = (n−K + 1).

As in the classical case of linear codes over finite fields, we can measure how far
away a linear code C is from being MDR.

Definition 3.14. Let C be a linear code of length n and rank K. The defect s(C)
of C is defined as s(C) := n+ 1−K − d.

3.2. On the parity-check matrix and its submatrices. The parity-check matrix
of a code give important information on some structural properties of the code, such
as the minimum distance.
Analogously to linear codes over finite fields (see [8, Theorem 1.4.13] ), given a code
C over a finite chain ring there is a link between the weights of the codewords of C
and its parity-check matrix H.

Theorem 3.15. Let C be a linear code over R with parity-check matrix H. If
c ∈ C, the columns of H corresponding to the non-zero coordinates of c are linearly
dependent. Conversely, if a linear dependence relation with only non-zero coefficients
exists among w columns of H, then there is a codeword in C of weight w whose non-
zero coordinates correspond to these columns.

Proof. If c ∈ C, the matrix product 0 = HcT =
∑n

i=1 hici, where hi is the ith column
of H, is a linear combination of the columns of H with coefficients provided by c. Con-
versely, if there are w linearly dependent columns in H, then

∑n
i=0 αihi = 0, αi ∈ R

and w of them are non-zero . If c = (α1, . . . , αn), then Hc⊤ = 0 and w(c) = w and
c is the desired codeword. �

For any 0 ≤ j ≤ s − 1, let H(j) be submatrices of H defined according to (3.1).
Since the H(j)s are all full rank, the following is immediate.

Proposition 3.16. Let H be a parity-check matrix for the code C, and hence a
generator matrix for C⊥. A message v ∈ Rn−k0 is encoded as the zero codeword in
C⊥ if and only if it is of the form

v = [0, . . . , 0
︸ ︷︷ ︸

n−K

||γs−1 · v1
︸︷︷︸

ks−1

||γs−2 · v2
︸︷︷︸

ks−2

|| . . . ||γ · vs
︸︷︷︸

k1

] .
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Notation 3.17. Let M ∈ Mt×n(R) be a matrix. According to the notation of
Proposition 3.4, we say that M is of type (t0, . . . , ts−1) if ti rows of M are divisible
by γi but not by γi+1, 0 ≤ i ≤ s− 1.

Definition 3.18. Let M ∈ Mt×n(R) be a matrix of type (t0, . . . , ts−1).

• For any subset I ⊆ {1, . . . , n} of size ν, I = {i1, . . . iν} with
i1 < i2 < · · · < iν , we define M[I] as the t× ν submatrix of M identified by
the columns indices I.

• We define NM (ν, r0, r1, . . . , rt) to be the number of t × ν submatrices of M
of type (r0, r1, . . . , rt)

Let C be an R-linear code of type (k0, k1, . . . , ks−1), and let H ∈ M(n−k0)×n(R)
be a parity-check matrix in standard form for C. For any fixed I of size ν, H[I] is a
(n− k0)× ν submatrix of H and, as in (3.1), we can write:

(3.3) H[I] =










H
(0)
[I]

γH
(1)
[I]
...

γs−1H
(s−1)
[I]










,

where each H
(j)
[I] is obtained from H(j) by removing the unnecessary columns. Since

we are selecting ν < n columns from H, the type of H[I] and H may differ. First of
all, note that the dimension of the first block may decrease. Indeed:

(1) Some rows of H
(0)
[I] can be written as linear combinations of the others, so

they can be removed from the parity-check matrix;

(2) Some rows of H
(0)
[I] are multiples of γl for some 1 ≤ l ≤ s − 1. If this is the

case, the rows can be moved in one of the subsequent blocks.

On the other hand, the dimension of the second block can either increase, decrease
or remain unchanged. One or more of the following may occur:

(1) Some rows of H
(0)
[I]

are added to H
(1)
[I]

;

(2) Some rows of of H
(1)
[I] are multiples of γl, 2 ≤ l ≤ s−1. In this case, collecting

γl, the row can be moved in one of the subsequent blocks;

(3) Some rows of H
(1)
[I] are linear combinations of the others, and thus they can

be removed from the matrix.

The procedure can be iterated for any other block H
(j)
[I] , 2 ≤ j ≤ s − 1. Therefore,

the type of H[I], being different from the type of H, can not be studied in its full
generality. However, if ν satisfies certain conditions, the structure of H[I] become
more clear: we will focus on this problem in the next section.

4. Weight distribution for linear codes

From now on, let C be a linear code over a finite chain ring R of length n, rank
K and type (k0, k1, . . . , ks−1).

Lemma 4.1. Let H ∈ M(n−k0)×n(R) be a parity-check matrix for the code C. If

n − d⊥ < ν ≤ n, then all the (n − k0) × ν submatrices of H are of type (n −
K, ks−1, ks−2, . . . , k1). In particular they all have rank n−K.
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Proof. Being the parity-check matrix of a linear code of type (k0, k1, . . . , ks−1), H
is of type (n − K, ks−1, ks−2, . . . , k1). Let H[I], I = {i1, . . . , iν}, be a (n − k0) × ν
submatrix of H. Without loss of generality H[I] can be written as in (3.3). By

contradiction, assume that a row in H
(0)
[I] is multiple of γ. Without loss of generality

we may assume it is the first one. If v̄ = [γ, 0, . . . , 0] ∈ Rn−K , then v̄ ·H
(1)
[I] = 0. The

vector v̄ can be used as a first brick for constructing a new vector v. By Proposition
3.16, v is not encoded as the zero codeword. Therefore c := v ·H is a codeword in
C⊥ of weight w(c) ≤ n − ν, contradicting the hypothesis d⊥ > n − ν. So, since no

row in H
(0)
[I] is a multiple of γ, in H[I] there are at most ks−1 rows which are multiple

of γ but not of γ2. Applying to H
(1)
[I] the procedure described above, it is possible

to show they are exactly ks−1. Iterating the process for all the remaining blocks

H
(2)
[I] , . . . ,H

(s−1)
[I] we get the thesis. �

Corollary 4.2. Let C be a linear code with parity-check matrix H and n−d⊥ < ν ≤ n.

NH(ν, t0, t1, . . . ts−1) =

{(
n
ν

)
if t0 = n−K and ti = ks−i, 1 ≤ i ≤ s− 1

0 otherwise
.

Proposition 4.3. Let C be a code of type (k0, . . . , ks−1) with parity-check matrix
H ∈ Mn−k0×n(R). Let {Ai}i=0,...,n be the weight distribution of C. If n−d⊥ < ν ≤ n,
then

(4.1)

ν∑

l=0

(
n− l

ν − l

)

Al =

(
n

ν

)
|C|

ps(n−ν)
.

Proof. Let V[I] be the kernel of H[I]. Consider the map

ϕ[I] : V[I] → Rn, ϕ[I](v) = (v̄1, . . . , v̄n), v̄j =

{

vj if j ∈ {1, . . . , ν}

0 otherwise
.

ϕ[I] is the restriction of the map

ϕν :
⊔

I : |I|=ν

V[I] → C

to V[I]. The elements in the domain of ϕν can be counted in two different ways:

(1) For any choice of I = {i1, . . . , iν}, by Lemma 4.1, the matrix H[I] is of
length ν and of type (n −K, ks−1, ks−2, . . . , k1). Therefore H[I] is a parity-

check matrix of a linear code C ′ of type (ν−n+k0, k1, . . . , ks−1) and length ν.

Thus, by Theorem 3.7, C ′ has with ps(ν−n+k0)+
∑s−1

i=1 (s−i)ki elements. Hence,
by Corollary 4.2,

∣
∣
∣
∣
∣
∣

⊔

I : |I|=ν

V[I]

∣
∣
∣
∣
∣
∣

= NH(ν, n−K, ks−1, ks−2, . . . , k1)|V[I]| =

=

(
n

ν

)

ps(ν−n+k0)+
∑s−1

i=1 (s−i)ki .

(4.2)
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(2) We consider a codeword c ∈ C of weight l ≤ ν. Let I1 = supp(c). Any
choice of ν − l indices I2 ⊂ {1, . . . , n} r I1 identifies uniquely an element
in ⊔I : |I|=νV[I]. More precisely, I1 ∪ I2 determines uniquely H[I1∪I2], clearly
c[I1∪I2] ∈ V[I1∪I2], and so there is an unique element v ∈ V[I1∪I2] such that

ϕ[I1∪I2](v) = c, that is v = c[I1∪I2]. In order to determine the size of ϕ−1
ν (c),

the fiber of c under the map ϕν , it is enough to count all possible subsets
of {1, . . . , n}r I1 with size ν − l. It follows that the fiber of each codeword

of weight l has
(
n−l
ν−l

)
elements, and we observe that all the fibers of such

codewords form a partition of ⊔I : |I|=νV[I]. Since there are Al codeword of
weight l, we obtain

(4.3)

∣
∣
∣
∣
∣
∣

⊔

I : |I|=ν

V[I]

∣
∣
∣
∣
∣
∣

=

ν∑

l=0

(
n− l

ν − l

)

Al .

Putting together (4.2) and (4.3) we get (4.1). �

Corollary 4.4. For a free code C of length n and rank k0 = K over R the weight
distribution formula reads:

ν∑

l=0

(
n− l

ν − l

)

Al =

(
n

ν

)

ps(ν+K−n) .

Theorem 4.5. Let σ be the sum of the Singleton defects of C and C⊥. the knowledge
of σ+ d+K − k0 − 1 elements of the weight distribution {A0, . . . , An} is enough to
compute the full weight distribution of C and C⊥. In particular the knowledge of d
and of any σ+K − k0 − 1 elements of {Ad, . . . , An} is enough to compute the entire
weight distribution of C and C⊥.

Proof. Consider equation (4.1) with ν varying in range {n − d⊥ + 1, . . . , n}. We
obtain a linear system of the form

P · A(C) = b ,

where P is a truncated Pascal matrix with d⊥ rows and n columns. By [9], all the
minors of P of order d⊥ are non-zero. Hence, the knowledge of n−d⊥+1 = K−σ−
1+d−(K−k0) elements in the weight distribution allow us to obtain a linear system
that admit a unique solution. Finally, the knowledge of d implies the knowledge of
A0, . . . , Ad−1. Hence, it is sufficient to know other n− d⊥ + 1− d = σ +K − k0 − 1
elements in {Ad, . . . An} to determine the full weight distribution of the code. �

We now show that, at least in some cases, Theorem 4.5 is optimal. Indeed, in
general, it is not possible to deterministically deduce the weight distribution of a
linear code with less then σ +K − k0 − 1 elements in {A0, . . . , An}.

Definition 4.6. A linear code is said to be Almost-MDR code(AMDR) if it has
Singleton defect equal to 1. An AMDR code whose dual is still AMDR is called
Near-MDR.

Definition 4.7. A free code is said to be Almost-MDS code(AMDS) if it has Single-
ton defect equal to 1. An AMDS code whose dual is still AMDS is called Near-MDS



THE WEIGHT DISTRIBUTION OF CODES OVER FINITE CHAIN RINGS 9

Consider two Near-MDS codes with the same parameters. For a Near-MDS only
σ +K − k0 − 1 = 1 weight is necessary to determine the full weight distribution. If
the sole knowledge of d and n was enough to compute the entire weight distribution
of the code, then any two near-MDS would be formally equivalent. But this is in
general false:

Example 4.8. Let C1 and C2 be two near-MDS codes over Z53 of length n = 4,
rank K = 2 and minimum Hamming distance d = 2, generated respectively by

G1 =

[
1 0 57 0
0 1 0 68

]

,

and

G2 =

[
1 0 5 43
0 1 82 5

]

.

Their weight distributions are respectively:

A1 = (1, 0, 248, 0, 15376) ,

and

A2 = (1, 0, 8, 480, 15136) .

Therefore C1 and C2 are not formally equivalent.

5. Weight distribution of codes with small Singleton defects

Theorem 4.5 lead us to further investigate codes having a small number of Single-
ton defects.

We start focusing on codes meeting the Singleton bound: from Remark 3.12 fol-
lows that σ = 0 for any MDS code.
The weight distribution of MDS codes is well known (see [18, Theorem 5]); however
it can be directly obtained with the sole knowledge of the length and the minimum
distance from Theorem 4.5:

Theorem 5.1. Let C be a MDS code of length n and rank k, then

Aw(C) =

(
n

w

)w−d∑

j=0

(−1)j
(
i

j

)

(ps−d+1−j − 1) .

Now we move to linear codes meeting the generalized Singleton bound (3.2), the
MDR codes. As shown in 3.12 the dual of an MDR code is not necessarily MDR.
Therefore the weight distribution may depend on one or more parameters.
Let C be an MDR code of length n, rank K, minimum distance d = n−K+1 and let
C⊥ be its dual having rank n−K and minimum distance k0−σ+1 for some σ ≥ 0.
According to the notation of Proposition 4.1, since ν < n− d⊥ and d⊥ = k0 − σ+1,

we can write ν = n − k0 + σ + i with i ranging in {0, . . . , k0 − σ}. Let q = |C|

ps(n−ν) .

Then equation (4.1) becomes

n−k0+σ−1+i∑

l=0

(
n− l

n− k0 + σ + i− l

)

Al =

(
n

n− k0 + σ + i

)

q .
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Since A0 = 1 and Al = 0 for all 1 ≤ l ≤ n− k, we may write

(
n

n− k0 + σ + i

)

+

σ−k+k0−2∑

h=0

(
k − 1− h

σ + i+K − k0 − h

)

An+K+1+h+

+

n−k0+σ+i∑

l=n+σ−k0

(
n− l

n− k0 + σ + i− l

)

Al =

(
n

n− k0 + σ + i

)

q .

Let l = n+ σ − k0 + j, then

i∑

j=0

(
k0 − σ − j

i− j

)

An+σ−k0+j =

=

(
n

n− k0 + σ + i

)

(q − 1)−

σ+K−k0−2∑

h=0

(
K − 1− h

K − k0 + σ + i+ h

)

An+j+1+h .

We can re-write the linear system in matrix form, as P · A = b with P Pascal ma-

trix
[(

k0−σ−j
i−j

)]

i,j=0,...,k0−σ
. Therefore P−1 = (−1)i−j

[(
k0−σ−j

i−j

)]

i,k=0,...,k0−σ
. More

explicitly:

Proposition 5.2. Let C be an MDR code of length n, rank K, minimum distance
d = n−K+1 and let C⊥ be its dual having rank n−k0 and minimum distance k0−

σ + 1 for some σ ≥ 0. Let q = |C|

ps(n−ν) . The knowledge of {An−K+1, . . . , An−k0+σ−1}

in the weight distribution of C is enough to compute the entire weight distribution
of C.
In particular, for all 0 ≤ i ≤ k0 − σ −K, we have:

An−k0+σ+i =

i∑

j=0

(−1)i−j

(
k0 − σ − j

i− j

)[(
n

n− k0 + σ + i

)

(q − 1)−

−

σ+K−k0−2∑

h=0

(
k − h− 1

k − k0 + σ + i− h− 1

)

An+k+1+h

]

.

In a similar fashion we can derive the weight distribution of an AMDR code:

Proposition 5.3. Let C be an AMDR code of length n, rank K, minimum distance
d = n−K and let C⊥ be its dual having rank n−k0 and minimum distance k0−σ+1

for some σ ≥ 0. Let q = |C|

ps(n−ν) . The knowledge of {An−K+1, . . . , An−k0+σ−1} is

enough to compute the entire weight distribution of C.
In particular, for all 0 ≤ i ≤ k0 − σ −K we have:

An−k0+σ+i =
i∑

j=0

(−1)i−j

(
k0 − σ − j + 1

i− j

)[(
n

n− k0 + σ + i− 1

)

(q − 1)−

σ+K−k0−2∑

h=0

(
k − h

k − k0 + σ + i− h+ 1

)

An+k+h

]

.

Clearly, by specializing the previous formula, we also get the weight distributions
of Near-MDS and Near-MDR codes.



THE WEIGHT DISTRIBUTION OF CODES OVER FINITE CHAIN RINGS 11

6. Relation with MacWilliams identities

Both in classical and ring-linear coding theory, the most fundamental result about
weight distributions are the MacWilliams identities (Theorem 3.11). They relate
the weight enumerator polynomial of a linear code and its dual. However, in our
framework it is more convenient to work with other equivalent set of equations in
place of the polynomial form of 3.11. Following the outline of [10, Chapter 5, Section
2], and combining it with 3.11 we can deduce the following equality:

n−ν∑

j=0

(
n− j

ν

)

Aj =
|C|

psν

ν∑

j=0

(
n− j

n− ν

)

A⊥
j , for 0 ≤ ν ≤ n.

Moreover, in a similar fashion to [8, Theorem 7.2.3], we get:

(6.1)
n∑

j=0

(
j

ν

)

Aj =
|C|

psν

ν∑

j=0

(−1)j
(
n− j

n− ν

)

(ps − 1)ν−jA⊥
j , for 0 ≤ ν ≤ n.

If ν < d⊥, each A⊥
j of the right hand side of (6.1) is equal to zero except for A⊥

0

which is equal to 1. Therefore we get a ring-variant of Pless’ equations.

Proposition 6.1. For any ν < d⊥

(6.2)

n∑

j=0

(
j

ν

)

Aj =
|C|

psν

(
n

n− ν

)

(ps − 1)ν , for 0 ≤ ν < d⊥.

Hence, when enough terms of the weight distributions are known, systems in 4.3
and 6.1 are equivalent.

Corollary 6.2. Let σ be the sum of the Singleton defects of C and C⊥. Using
equation (6.2), the knowledge of σ+d+K−k0−1 elements of the weight distribution
{A0, . . . , An} is enough to compute the full weight distribution of C and C⊥. In
particular the knowledge of d and of any σ+K − k0 − 1 elements of {Ad, . . . , An} is
enough to compute the entire weight distribution of C and C⊥.

Proof. The proof follows the same outline of Proposition 4.5. �

Therefore, the two systems of equations (4.3) and (6.2) are equivalent provided
the existence of the code.

7. Conclusion

In analogy to linear codes over finite fields, the minors of the parity-check matrix
of a ring-linear code enable us to determine linear relations between the weights
of the codes. Our formulae enable to verify the weight distribution of MDS codes.
Moreover this result allows to determine the full weight distributions of MDR, Near-
MDR, AMDR codes.
The number of parameters necessary to derive the full weight distribution of a code
and its dual depends on the the sum of the Singleton defects of the code and its dual,
an in particular it is bounded by n+K − k0 − 1.
An interesting extension of this work would be the study of more classes of codes,
either by considering the case of non-AMDR codes or families obtained via structured
parity check matrices. A second promising line of research would be the derivation
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of formulas for weight distribution related to different metrics, e.g. Lee metric or
Rank metric.
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