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Abstract  Optimisation of (the configuration and deployment of) distrib-
uted cloud applications is a complex problem that requires understanding 
factors such as infrastructure and application topologies, workload arrival 
and propagation patterns, and the predictability and variations of user 
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behaviour. This chapter outlines the RECAP approach to application 
optimisation and presents its framework for joint modelling of applica-
tions, workloads, and the propagation of workloads in applications and 
networks. The interaction of the models and algorithms developed is 
described and presented along with the tools that build on them. 
Contributions in modelling, characterisation, and autoscaling of applica-
tions, as well as prediction and generation of workloads, are presented and 
discussed in the context of optimisation of distributed cloud applications 
operating in complex heterogeneous resource environments.

Keywords  Resource provisioning • Workload modelling • Workload 
prediction • Workload propagation modelling • Application 
optimisation • Autoscaling • Distributed cloud

3.1    Introduction

Key to the RECAP approach for application optimisation is application 
autoscaling, the dynamic adjustment of the amount and type of resource 
capacity allocated to software components at run-time (Le Duc and 
Östberg 2018). In principle, this type of scaling can be done reactively—
by dynamically adjusting the amount of capacity to match observed 
changes in load patterns, or proactively—by operating on predicted future 
load values. Naturally, proactive autoscaling requires the ability to predict 
or forecast future values of the workloads of applications, systems, and 
components.

In this chapter, we summarise the RECAP application optimisation 
system. Following the problem formulation, we discuss the RECAP 
approach to application modelling, workload modelling, and the models 
used for application optimisation (application and workload, including 
how models are constructed and trained), the optimisation approach, 
and the implementation and evaluation of the optimisation models. The 
application optimisation approach outlined in this chapter exploits the 
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advanced techniques for characterising, predicting, and classifying work-
loads presented in Chap. 2 to construct proactive autoscaling systems.

3.2    Problem Formulation

The problem of optimising the deployment and configuration of applications 
hosted in geo-distributed resource environments can conceptually be viewed 
as a graph-to-graph mapping problem. As discussed in previous chapters, 
RECAP models distribute applications as graphs of components where graph 
nodes denote application components and the edges of the graph represent 
the communication paths and dependencies among components. Similarly, 
infrastructure systems can also be represented as graphs where the nodes cor-
respond to resource sites and the edges model the interconnecting network 
links of site-connecting networks. The optimisation problem then is to find 
the optimal mapping of application nodes to infrastructure nodes. This map-
ping is subject to constraints that reflect requirements on the application 
level (e.g. minimal acceptable Quality of Service (QoS) for applications, or 
co-hosting restrictions of I/O-intensive processes).

A graph-based formulation of the mapping problem facilitates reason-
ing on the scaling of both application and infrastructure systems. 
Application scaling can on the one hand regulate the optimal number of 
instances to deploy for specific component-associated services (horizontal 
autoscaling) and on the other hand define how much resource capacity to 
allocate to a particular application on a specific site (vertical autoscaling). 
Furthermore, application scaling can be global, when the entire applica-
tion is scaled, or local, when only individual components are scaled inde-
pendently. Hybrid approaches are also possible where individual parts of 
applications or infrastructures are treated differently. In that respect, the 
RECAP optimisation approach includes the concept of application and 
infrastructure resource zones—subsets of application and infrastructure 
graphs that need to be treated as a group.

Based on studies of the technical trade-offs that influence optimality in 
scaling and placement, e.g, power-performance trade-offs and sensors and 
actuators that can used in optimisation of systems (Krzywda et al. 2018), 
we define four types of constraints on application and infrastructure place-
ment and scaling:
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	1.	 Affinity constraints—these specify co-hosting or pinning of 
components;

	2.	 Anti-affinity constraints—these prohibit co-hosting or pinning;
	3.	 Minimal number of instance constraints—these specify lower bounds 

of the number of instances to scale or the amount of capacity to 
allocate to application nodes; and,

	4.	 Maximal number of instance constraints—these specify upper 
bounds of the number of instances to scale or the amount of capac-
ity to allocate to application nodes.

3.3    Optimisation Framework

As well as infrastructure optimisation, RECAP provides an optimisation 
framework that enables the development and execution of optimisation 
tasks at application level. The core of the framework is an optimisation 
engine that consists of multiple modellers and optimisers. More specifically, 
the modellers produce dedicated models for each supported application, 
including workload models, load transition models, user models, and 
application models. These are used to provide a complete view of the 
application. In addition, they are used as input for optimisers to solve 
optimisation problems related to autoscaling. Depending on the type of 
optimiser, it can deal with a wide range of optimisation problems related 
to the placement, deployment, autoscaling, and remediation of applications.

For creating the respective modellers and optimisers, RECAP uses 
methodological framework that entails three optimisation levels for the 
deployment and management of applications in heterogeneous edge-
cloud environments, see Fig. 3.1. The figure illustrates the three-level pro-
cess that constitutes the optimisation methodology: the first level of 
optimisation is the simplest and aims at the placement of applications 
throughout the edge-cloud environments under fixed network, applica-
tion, and quality-of-service requirements/constraints. Optimisation solu-
tions created by this level of optimisation can be used for long-term 
resource planning as well as initialisations for further optimisation levels.

In the next level of optimisation, the variations of workload and user 
behaviours are taken into account for dynamic application placement and 
autoscaling. The workload model and user models are used to estimate the 
demand of resources of individual application components over time. 
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With the estimation results, resources are allocated for each application 
component. Furthermore, based on predictions, workload can be redi-
rected or migrated in order to maintain the load balance within applications.

The most advanced level of optimisation aims at proactive resource 
provisioning for applications. For that purpose, the RECAP Application 
Optimiser applies workload predictors that make use of workload models 
discussed in previous chapters. Machine learning is adopted to improve 
the understanding of both workload and application behaviours. This 
means more fine-grained models are derived and models can be refined 
and improved over time. Using these models, predictions can be per-
formed more accurately to support load balancing, autoscaling, and reme-
diation in a proactive manner.

Fig. 3.1  A stratified approach to application optimisation iteratively building on 
three optimisation building blocks—(1) classic optimisation on static data, (2) 
application adaptation to variations in workloads and resource availability, (3) joint 
autoscaling and optimisation in multi-tenancy scenarios using machine learning 
(adapted from Le Duc et al. (2019))
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3.4    Application Modelling

This section addresses the application modelling from an optimisation 
perspective. It first introduces the basic requirements and fundamental 
assumptions behind the RECAP application optimisation framework. 
Then, Sect. 3.4.2 introduces the modelling framework.

3.4.1    Application Characteristics and Modelling Requirements

A key enabling technology of cloud and edge computing is virtualisation. 
Abstraction of physical resources through containers and virtual machines 
(VMs) enables consolidation of compute capacity and resources (e.g. pro-
cessors, storage, and networks) into software-defined infrastructures 
(SDIs). Such abstraction provides means for automation, scaling, and 
optimisation of resource allocations and resilience to variations in work-
load intensity.

The services that are running in an edge/cloud environment differ 
from the standard centralised cloud deployments. The difference is dic-
tated in the way applications are used, by the infrastructure topology, and 
the infrastructure availability at the network edges. Geo-distributed infra-
structures enable services (applications) to be brought closer to users, 
which increases the data exchange speeds and results in faster content 
delivery to consumers. However, the distributed nature of edge infrastruc-
ture comes with the limitation of physical space and associated limited 
hardware deployment capabilities. Different types of applications require 
different hardware profiles to process user requests. Varying hardware 
properties across distributed infrastructure stacks also require a distributed 
application architecture that is modular enough to adapt to the available 
edge/fog/cloud infrastructure horizontally and vertically.

As part of the application mode, the application topology depicts appli-
cation components that can be deployed as separate entities (containers or 
VMs), and network link connections between them. A simple example of 
such a topology would be a deployment of an application that has a front-
end web server and a database as two components. The web server can be 
deployed as a separate component on a separate VM or node, or even on 
a different datacentre than the database component, but both of them 
should have a bidirectional data flow connection for data exchange.

Most web applications serve different types of user requests, and to do 
so, different amounts of resources are needed depending on the requests 
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made. For example, a request of streaming video from a content distribution 
network (CDN) would differ from a request to upload video to the ser-
vice. The first request can assume a data download; however, the second 
request requires data upload, resampling, encoding, and other types of 
content analysis and optimisations.

Elasticity is one of the major benefits of virtualised resources. Elasticity 
makes it possible to maintain application QoS by dynamically scaling 
application components based on workload intensity (provided that the 
application architecture caters for it). To take advantage of elastic proper-
ties, application components can be managed by a load balancer that can 
spawn extra parallel application components and redirect user requests to 
evenly distribute the load.

Another vital characteristic in a distributed system is the geolocation 
and content variability within the same type of application. For example, a 
database or a CDN can be distributed across the edge infrastructure, 
where some instances will contain the same type of data, but some will 
not. Depending on data needed to serve a user request, the request needs 
to be routed to an application instance that has these data. Such scenario 
requires additional intelligence in the workload orchestration. From a 
RECAP perspective, it also requires that the application model have a 
notion of data content available within the application component.

All the aforementioned characteristics should be captured and reflected 
in the constructed application models. Specifically, the models should pro-
vide the means to estimate computation, memory, and storage capacity 
requirements of each components, as well as to present and calculate the 
mapping of the applications and application components on the underly-
ing infrastructure. Moreover, they should help identify the type of traffic 
or content delivered to the users at different locations, and estimate the 
service delay for user requests.

3.4.2    Application Modelling Framework

The characteristics of the edge-cloud infrastructure and applications result 
in high complexity when it comes to application modelling. In particular, 
this modelling always has to be done in an application-specific manner. As 
such, it is necessary to have a comprehensive understanding of typical sys-
tems, models, and modelling tools from theoretical and practical perspec-
tive. This section outlines the strategy adopted in the RECAP methodology 
to perform application modelling for each system in its scope.
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Firstly, a literature survey generated a universe of general and common 
architectures of distributed applications including client-server architecture, 
cloudlet, service-oriented architecture, and micro-services. Secondly, desk 
research allowed a comparison of the previously identified architectures 
with those of real large-scale distributed systems/applications and related 
industrial technology standards used for the realisation of operational 
systems. These systems include, for instance, the multi-tier caching system 
of Akamai’s CDN, the operational architecture of Nextflix’s CDN, the 
architectural framework of ETSI NFV, and Service Function Chaining 
(SFC) (Halpern and Pignataro 2015) amongst others.

Thirdly, following the literature survey and desk research, we explored 
mathematical models and tools widely adopted in computing science, such 
as queuing theory, graph theory, and control theory. These have been 
used to model components and the interaction among components and 
are used together to model applications. For instance, a model may be a 
combination of queuing theory, graph theory, and control theory as 
follows:

•	 Queuing theory is used to model the processing logic of a compo-
nent, e.g. a VNF, a vCache, or a function node (database, data aggre-
gator, balancer).

•	 Graph theory is used to model the network topology, service func-
tion chain, communications between components.

•	 Control theory is used to model the control logic of dispatchers, 
balancers, or orchestrators.

Fourthly, we decomposed the application into isolated components and 
analysed the components in detail in order to understand the nature of 
each component as well as how they communicate to each other in the 
whole application. In addition to simplifying the modelling task, this 
helps to identify how components impact each other and to identify the 
bottlenecks within the entire topology. Once all components have been 
modelled, these sub-models can be integrated to form a complete applica-
tion model.

In order to keep the modelling effort manageable, it is further neces-
sary to identify in advance the factors or metrics that should be captured 
in the models in accordance with the requirements of the application. 
That is, an application model always needs to capture business-specific 
constraints and goals and cannot be constructed on a technical level alone.

  P.-O. ÖSTBERG ET AL.
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3.5    Workload Modelling

Besides an application model, an application optimisation engine further 
requires predictions of the amount of work the application shall be able to 
process overall or per zone. This enables proactive optimisation approaches, 
where readjustments do not happen on a best-effort basis upon changing 
workload conditions, but rather anticipate future workload levels and scale 
the applications accordingly.

As discussed in previous chapters, workload analysis and modelling 
focuses on techniques efficiently applied to time series data collected from 
both real production systems and emulating systems. Before being anal-
ysed, original time-series data have gone through a pre-processing step 
(gap filling, smoothing, resampling, etc.). Next, the data flows through 
the two-stage process of workload analysis and workload modelling.

Workload analysis is composed of two main tasks: workload decomposi-
tion (which splits a time-series into the trend, the seasonality, and the 
random factors of the workload data) and workload characterisation 
(which aims to extract workload features as an input and driver of work-
load models). Such workload characterisation is performed by an 
Exploratory Data Analysis (EDA), which is typically a manual step.

With this understanding of key features (metrics) of the workload, it is 
possible to derive which aspects should be considered in modelling, and 
how to effectively construct and evaluate appropriate workload models. 
To perform the modelling task, we adopt different categories of tech-
niques in the RECAP methodology:

•	 Autoregressive integrated moving average (ARIMA) and seasonal 
ARIMA (SARIMA) models are chosen based on the analysis of the 
autocorrelation functions, partial autocorrelation functions, and 
tests of stationarity (for example, Dickey-Fuller tests).

•	 The family of autoregressive conditional heteroskedasticity models 
(ARCH, GARCH, NGARCH, etc.) is suited when the assumption is 
fulfilled that the variance of the time series is not constant but still a 
function of previous variances.

•	 Recursive neural networks and deep neural networks can be used to 
find more complex interactions between past and future requests.

•	 Long short-term memory neural networks (LSTM) shall be used 
when the aim is to detect if long past requests have a predictive value 
for future requests.
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The models obtained by workload analyses are expected to provide 
forecasting capability. That is, based on them, it shall be possible to gener-
ate future workload predictions at different periods of time and different 
intervals, as required by the application under analysis.

The predictions can be validated through various metrics so as to identify 
the best one for each case, i.e. the one with the smallest errors. Depending 
on the application, different models are required for different prediction 
purposes (online and offline predictions). More specifically, models used 
for offline prediction are expected to provide high accuracy so that the 
results can be used for long-term planning.

In contrast, models used for online prediction additionally focus on low 
execution time besides the accuracy in order to offer short-term predic-
tions in a timely manner. For the latter, it is necessary to evaluate the 
execution time in forecasting of each model and to balance between the 
error level and the execution time. Once selected, a model becomes the 
core of the online predictor component for that application within RECAP.

3.6    Model-based Application Optimisation

The key challenges of efficiently deploying distributed applications in edge 
and fog computing environments involve determining the optimal 
locations and allocations of resource capacity. This is complicated by the 
inherently varying load conditions of distributed infrastructures. Due to 
the complexity and distinct mathematical formulations of the problems for 
different applications, they are typically treated separately, often with the 
solution of one as input to the other.

3.6.1    Application Autoscaling

In this section, we focus on application load balancing and distribution, 
which can be seen as a special case of holistic application autoscaling (i.e. 
self-scaling of application capacity allocations) given specific workload 
arrival patterns and component placements. To avoid confusion, we use 
different terms for different types of load balancing in distributed, multi-
tier applications. We denote (1) load balancing between multiple instances 
of one single application component as load balancing, and (2) load bal-
ancing within the entire application to balance the loads distributed to 
different application components as load distribution. This is addressed 
by load transition models that capture how workloads flow through 
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applications in workload models. Principally, RECAP assumes that a 
RECAP-enabled application is designed such that it is capable of making 
use of more instances (scale out) or more resources (scale up).

The RECAP application models describe applications as networks/
graphs of components with interdependencies and constraints in the form 
of network links, quality-of-service requirements, and communication 
patterns. Application components are split into front-end and back-end 
layers (modelling load balancing within components and management of 
component functionality respectively) that can be autoscaled indepen-
dently. Using RECAP application and transition models, application 
workload arrival patterns can be used to derive how load propagates 
through distributed applications, and how the resulting component work-
loads impact the resources (including networks) where component ser-
vices are deployed. Using prediction algorithms allows to provide improved 
performance and proactivity in autoscaling without changing the autoscal-
ing algorithms themselves.

Depending on the application, arrival patterns can be measured from 
instrumented applications or infrastructure, or derived from simulation 
models build on the user (including mobility) models. The value of such 
models lies in the increased understanding of user and system behaviour, 
but also in their potential use for prediction of workload fluctuations in 
predictive scaling algorithms. Overall, RECAP applies the following types 
of autoscaling algorithms:

•	 Local reactive scaling algorithms (similar to the autoscaling algo-
rithms used in Kubernetes) are used to individually scale component 
front-ends and back-ends. They apply varied degrees of downscaling 
inertia in order to reduce the amount of false positives.

•	 Global reactive scaling algorithms that predictively evaluate the per-
formance of individual component autoscalers, and selectively apply 
those that maximise application objective functions, and used to 
control back-ends.

•	 Global proactive algorithms that use short time-frame simulation 
techniques to evaluate application performance for heuristically 
selected subsets for autoscaling actions. This class of algorithms 
shows the greatest autoscaling performance but is also significantly 
slower and resource demanding. This limits its applicability in large-
scale systems.
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3.6.2    Migration Techniques and Infrastructure Planning 
and Provisioning

In addition to the algorithms described above, which target application 
autoscaling in static deployment scenarios i.e. for deployments that do not 
change during or from autoscaling, RECAP also provides tools and tech-
niques for evaluating and performing migrations of service components at 
run-time. In order to incorporate this functionality in the autoscaling-
oriented perspective of application optimisation, such migrations can be 
formulated to be part of the autoscaling problem by scaling the amount of 
service instances for a specific component at a specific location in the space 
of [0; n] (when there is no mobility of services and n is a maximum 
instance count). Alternatively, it can be treated as a separate placement 
problem that does not include autoscaling (beyond considering autoscal-
ing limits in the placement process) that is solved independently (either 
before or after the autoscaling).

RECAP explores and exploits both approaches to develop a flexible 
framework for application migration optimisation. The basic building 
blocks of this framework are application autoscaling algorithms, a set of 
heuristic functions that evaluate alternative deployment scenarios (under 
specified autoscaling settings), and an in-situ simulation framework that 
models application communication at message level within the application 
models. The simulation framework essentially uses application and (pre-
dicted) workload models to simulate how workloads will be processed 
under current application deployment and autoscaling settings. Heuristic 
functions are used to identify components and/or resource sites that 
underperform or for some other reason are candidates for reconfiguration, 
and alternative configuration settings are speculatively evaluated by the 
simulator to identify the reconfiguration actions most likely to improve 
application performance the most (according to application heuristics 
and KPIs).

Currently three types of heuristic functions are used for deployment 
cost evaluations:

•	 Local evaluation functions that build linear combinations of QoS or 
KPI metrics for individual component services or resources,

•	 Aggregate local evaluation functions that define statistical aggregates 
of local evaluation functions for sets of components (i.e. subsets of 
application components) or resources (e.g. regions of resource 
sites), and

  P.-O. ÖSTBERG ET AL.



63

•	 Global evaluation functions that operate on application and infra-
structure models to aggregate QoS or KPI evaluation functions for 
all components of an application or large sets of resources.

Evaluation functions are defined as mathematical constructs and can be 
composed to develop utility functions that combine evaluation of both 
applications and infrastructure resources. Using the simulation techniques, 
recommendations for how to change application deployments (in single- 
and multi-tenancy scenarios) and autoscaling constraints can be derived 
from nominal size estimations of component placements and infrastruc-
ture capacities, or conversely component nominal sizes can be included in 
the decisions on the admission of scaled or migrated service instances from 
autoscaling constraints.

3.6.3    Workload Propagation Model

Workload propagation models describe how workload is propagating 
through an application (i.e. between application components), and how a 
fluctuation of workload at a certain component impacts the other ones. 
Such a model can be constructed using workload data collected from all 
the network nodes/locations in every system. Unfortunately, due to the 
size and complexity of large-scale systems, exhaustively collecting such 
data is extremely challenging (Le Duc et al. 2019). Therefore, the mecha-
nisms for workload generation and/or propagation are needed that enable 
the production of workload data for all network nodes using data traces 
collected only from a subset of nodes.

The five workload diffusion algorithms to address this problem are clas-
sified into non-hierarchical and hierarchical diffusion as follows:

	1.	 Non-hierarchical diffusion—these algorithms perform load 
propagation within networks according to a discrete spatial 
model of how heat is diffused in materials in physics or chemis-
try. They are applicable for controlling data exchange and the 
workload of synchronisation tasks that are carried out by neigh-
bouring network nodes. This also can be extended to cover 
some general cases of unstructured peer-to-peer overlays or ad-
hoc mobile networks.
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	2.	 Hierarchical diffusion—these algorithms rely on a hierarchical 
network model which slices the network into different layers. In this 
case, the workload propagation is directed through network layers 
from end users down to the core network layers or using prede-
termined routing paths destined to the dedicated service nodes. 
This diffusion technique is applicable for core broadband net-
works and CDNs.

3.6.4    Approach and Realisation

Non-hierarchical diffusion algorithms include population-based, location-
based, and bandwidth-based algorithms, while hierarchical diffusion 
ones include hierarchy-based and network-routing-based algorithms. This 
section briefly describes the five algorithms including the assumptions, key 
inputs, the main flow, and properties (see Table 3.1). Further details about 
the calculations or formulae used in each task/step of the algorithms can 
be found in RECAP Deliverable 6.2 which can be downloaded at the 
RECAP website. The algorithms were tested with workload data traces 
collected as time series at three inner-core nodes of BT’s CDN; the repre-
sentative metric of the workload in this use case is the traffic generated at 
caches when serving user requests.

3.7    The RECAP Application 
Optimisation Platform

Elasticity is a key function for addressing the problem of reliable resource 
provisioning for edge-cloud applications as it ensures the reliability and 
robustness of the applications regardless of the non-linear fluctuation of 
the workload over time (Östberg et al. 2017; Le Duc et al. 2019). One of 
the key techniques adopted in RECAP to address elasticity and remedia-
tion is autoscaling. By flexibly adjusting the amount of resources allocated 
for applications and/or the number of application instances or compo-
nents, autoscaling enables applications to adapt to workload fluctuations, 
which helps prevent the applications from becoming unresponsive or 
terminating.
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The RECAP system model assumes that applications are dynamically 
distributed, and their behaviours are considerably difficult to predict and 
model. Moreover, each application component may be subject to different 
workloads, and an understanding of workload characteristics is required in 
order to autoscale efficiently. Therefore, workload analysis, modelling, 
and prediction based on time series analysis become the vital factor for the 
efficiency of our solutions, and especially so for the proactive schemes.

For application optimisation, RECAP has created a platform for the 
integration of application optimisers, workload modellers, and workload 
predictors, as shown in Fig. 3.2. The figure also shows how the optimisers 
(autoscalers) utilise the predictors when needed. Predictors, in turn, are 
fed by workload modellers.

By adopting different techniques, for example regression or machine 
learning, a workload modeller can construct multiple workload models. 
For flexibility in system integration, the modellers can be implemented 
using various technologies. The workload models are then wrapped and 
exported as a microservice using a REST API Gateway. On top of model 
services, a set of adapters are built to provide a unification layer. While 
workload models are constructed using historical workload data, they can 
be updated continuously at run-time by the workload modeller. Predictors 
in the platform make use of the adapters in order to access the available 
models and to make their predictions.

Workload
Modeller-1

Time Series Data

Workload
Modeller-2

Workload 
Modeller-N

REST API
Gateway

Model-1
Service 

Model-2
Service 

Model-N
Service 

Model-1
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Model-N
Adapter

<<interface>>

Adapter
<<interface>>

Predictor

Model-1
Predictor

Model-2
Predictor

Model-N
Predictor… …

…

…

UC-A Application
Optimiser

UC-B Application
Optimiser

UC-C Application
Optimiser

UC-D Application
Optimiser

General Client

Fig. 3.2  A platform for the integration of predictors and modellers
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On top of this platform, robust and efficient approaches for autoscal-
ing are constructed based on the results of workload modelling and 
prediction. Optimisers encapsulating optimisation algorithms and 
application-specific constraints make use of prediction for proactive 
optimisation. Note that an optimiser can call multiple predictors that 
access different models constructed using different techniques. This 
also implies that predictors are developed for every constructed model. 
Such implementation enables the capability of extension when a new 
optimiser (of a new application) or new model (using new techniques) 
is added to the system.

3.8    Conclusion

This chapter introduced the RECAP Application Optimisation approach 
and framework and outlined its the constituent building blocks. The inter-
action of the RECAP models and algorithms developed was further dis-
cussed. The RECAP Application Optimisation Framework addresses 
application placement and autoscaling, and provides models and tools for 
prediction, optimisation, and evaluation of the performance of distributed 
cloud applications deployed in heterogeneous resource environments.
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Open Access   This chapter is licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence and 
indicate if changes were made.

The images or other third party material in this chapter are included in the 
chapter’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the chapter’s Creative Commons 
licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder.

  P.-O. ÖSTBERG ET AL.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 3: Application Optimisation: Workload Prediction and Autonomous Autoscaling of Distributed Cloud Applications
	3.1 Introduction
	3.2 Problem Formulation
	3.3 Optimisation Framework
	3.4 Application Modelling
	3.4.1 Application Characteristics and Modelling Requirements
	3.4.2 Application Modelling Framework

	3.5 Workload Modelling
	3.6 Model-based Application Optimisation
	3.6.1 Application Autoscaling
	3.6.2 Migration Techniques and Infrastructure Planning and Provisioning
	3.6.3 Workload Propagation Model
	3.6.4 Approach and Realisation

	3.7 The RECAP Application Optimisation Platform
	3.8 Conclusion
	References




