
51© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications
and Infrastructure, Palgrave Studies in Digital Business & Enabling
Technologies, https://doi.org/10.1007/978-3-030-39863-7_3

CHAPTER 3

Application Optimisation: Workload
Prediction and Autonomous Autoscaling

of Distributed Cloud Applications

Per-Olov Östberg, Thang Le Duc, Paolo Casari,
Rafael García Leiva, Antonio Fernández Anta,

and Jörg Domaschka

Abstract  Optimisation of (the configuration and deployment of) distrib-
uted cloud applications is a complex problem that requires understanding
factors such as infrastructure and application topologies, workload arrival
and propagation patterns, and the predictability and variations of user

P.-O. Östberg (*)
Umeå University, Umeå, Sweden
e-mail: p-o@cs.umu.se

T. Le Duc
Tieto Product Development Services, Umeå, Sweden
e-mail: thang.leduc@tieto.com

P. Casari • R. García Leiva • A. Fernández Anta
IMDEA Networks Institute, Madrid, Spain
e-mail: paolo.casari@imdea.org; rafael.garcia@imdea.org;
antonio.fernandez@imdea.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39863-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-39863-7_3#ESM
mailto:p-o@cs.umu.se
mailto:thang.leduc@tieto.com
mailto:paolo.casari@imdea.org
mailto:rafael.garcia@imdea.org
mailto:antonio.fernandez@imdea.org
mailto:antonio.fernandez@imdea.org

52

behaviour. This chapter outlines the RECAP approach to application
optimisation and presents its framework for joint modelling of applica-
tions, workloads, and the propagation of workloads in applications and
networks. The interaction of the models and algorithms developed is
described and presented along with the tools that build on them.
Contributions in modelling, characterisation, and autoscaling of applica-
tions, as well as prediction and generation of workloads, are presented and
discussed in the context of optimisation of distributed cloud applications
operating in complex heterogeneous resource environments.

Keywords  Resource provisioning • Workload modelling • Workload
prediction • Workload propagation modelling • Application
optimisation • Autoscaling • Distributed cloud

3.1   Introduction

Key to the RECAP approach for application optimisation is application
autoscaling, the dynamic adjustment of the amount and type of resource
capacity allocated to software components at run-time (Le Duc and
Östberg 2018). In principle, this type of scaling can be done reactively—
by dynamically adjusting the amount of capacity to match observed
changes in load patterns, or proactively—by operating on predicted future
load values. Naturally, proactive autoscaling requires the ability to predict
or forecast future values of the workloads of applications, systems, and
components.

In this chapter, we summarise the RECAP application optimisation
system. Following the problem formulation, we discuss the RECAP
approach to application modelling, workload modelling, and the models
used for application optimisation (application and workload, including
how models are constructed and trained), the optimisation approach,
and the implementation and evaluation of the optimisation models. The
application optimisation approach outlined in this chapter exploits the

J. Domaschka
Institute of Information Resource Management, Ulm University, Ulm, Germany
e-mail: joerg.domaschka@uni-ulm.de

  P.-O. ÖSTBERG ET AL.

mailto:joerg.domaschka@uni-ulm.de

53

advanced techniques for characterising, predicting, and classifying work-
loads presented in Chap. 2 to construct proactive autoscaling systems.

3.2   Problem Formulation

The problem of optimising the deployment and configuration of applications
hosted in geo-distributed resource environments can conceptually be viewed
as a graph-to-graph mapping problem. As discussed in previous chapters,
RECAP models distribute applications as graphs of components where graph
nodes denote application components and the edges of the graph represent
the communication paths and dependencies among components. Similarly,
infrastructure systems can also be represented as graphs where the nodes cor-
respond to resource sites and the edges model the interconnecting network
links of site-connecting networks. The optimisation problem then is to find
the optimal mapping of application nodes to infrastructure nodes. This map-
ping is subject to constraints that reflect requirements on the application
level (e.g. minimal acceptable Quality of Service (QoS) for applications, or
co-hosting restrictions of I/O-intensive processes).

A graph-based formulation of the mapping problem facilitates reason-
ing on the scaling of both application and infrastructure systems.
Application scaling can on the one hand regulate the optimal number of
instances to deploy for specific component-associated services (horizontal
autoscaling) and on the other hand define how much resource capacity to
allocate to a particular application on a specific site (vertical autoscaling).
Furthermore, application scaling can be global, when the entire applica-
tion is scaled, or local, when only individual components are scaled inde-
pendently. Hybrid approaches are also possible where individual parts of
applications or infrastructures are treated differently. In that respect, the
RECAP optimisation approach includes the concept of application and
infrastructure resource zones—subsets of application and infrastructure
graphs that need to be treated as a group.

Based on studies of the technical trade-offs that influence optimality in
scaling and placement, e.g, power-performance trade-offs and sensors and
actuators that can used in optimisation of systems (Krzywda et al. 2018),
we define four types of constraints on application and infrastructure place-
ment and scaling:

3  APPLICATION OPTIMISATION: WORKLOAD PREDICTION… 

https://doi.org/10.1007/978-3-030-39863-7_2

54

	1.	 Affinity constraints—these specify co-hosting or pinning of
components;

	2.	 Anti-affinity constraints—these prohibit co-hosting or pinning;
	3.	 Minimal number of instance constraints—these specify lower bounds

of the number of instances to scale or the amount of capacity to
allocate to application nodes; and,

	4.	 Maximal number of instance constraints—these specify upper
bounds of the number of instances to scale or the amount of capac-
ity to allocate to application nodes.

3.3   Optimisation Framework

As well as infrastructure optimisation, RECAP provides an optimisation
framework that enables the development and execution of optimisation
tasks at application level. The core of the framework is an optimisation
engine that consists of multiple modellers and optimisers. More specifically,
the modellers produce dedicated models for each supported application,
including workload models, load transition models, user models, and
application models. These are used to provide a complete view of the
application. In addition, they are used as input for optimisers to solve
optimisation problems related to autoscaling. Depending on the type of
optimiser, it can deal with a wide range of optimisation problems related
to the placement, deployment, autoscaling, and remediation of applications.

For creating the respective modellers and optimisers, RECAP uses
methodological framework that entails three optimisation levels for the
deployment and management of applications in heterogeneous edge-
cloud environments, see Fig. 3.1. The figure illustrates the three-level pro-
cess that constitutes the optimisation methodology: the first level of
optimisation is the simplest and aims at the placement of applications
throughout the edge-cloud environments under fixed network, applica-
tion, and quality-of-service requirements/constraints. Optimisation solu-
tions created by this level of optimisation can be used for long-term
resource planning as well as initialisations for further optimisation levels.

In the next level of optimisation, the variations of workload and user
behaviours are taken into account for dynamic application placement and
autoscaling. The workload model and user models are used to estimate the
demand of resources of individual application components over time.

  P.-O. ÖSTBERG ET AL.

55

With the estimation results, resources are allocated for each application
component. Furthermore, based on predictions, workload can be redi-
rected or migrated in order to maintain the load balance within applications.

The most advanced level of optimisation aims at proactive resource
provisioning for applications. For that purpose, the RECAP Application
Optimiser applies workload predictors that make use of workload models
discussed in previous chapters. Machine learning is adopted to improve
the understanding of both workload and application behaviours. This
means more fine-grained models are derived and models can be refined
and improved over time. Using these models, predictions can be per-
formed more accurately to support load balancing, autoscaling, and reme-
diation in a proactive manner.

Fig. 3.1  A stratified approach to application optimisation iteratively building on
three optimisation building blocks—(1) classic optimisation on static data, (2)
application adaptation to variations in workloads and resource availability, (3) joint
autoscaling and optimisation in multi-tenancy scenarios using machine learning
(adapted from Le Duc et al. (2019))

3  APPLICATION OPTIMISATION: WORKLOAD PREDICTION… 

56

3.4   Application Modelling

This section addresses the application modelling from an optimisation
perspective. It first introduces the basic requirements and fundamental
assumptions behind the RECAP application optimisation framework.
Then, Sect. 3.4.2 introduces the modelling framework.

3.4.1   Application Characteristics and Modelling Requirements

A key enabling technology of cloud and edge computing is virtualisation.
Abstraction of physical resources through containers and virtual machines
(VMs) enables consolidation of compute capacity and resources (e.g. pro-
cessors, storage, and networks) into software-defined infrastructures
(SDIs). Such abstraction provides means for automation, scaling, and
optimisation of resource allocations and resilience to variations in work-
load intensity.

The services that are running in an edge/cloud environment differ
from the standard centralised cloud deployments. The difference is dic-
tated in the way applications are used, by the infrastructure topology, and
the infrastructure availability at the network edges. Geo-distributed infra-
structures enable services (applications) to be brought closer to users,
which increases the data exchange speeds and results in faster content
delivery to consumers. However, the distributed nature of edge infrastruc-
ture comes with the limitation of physical space and associated limited
hardware deployment capabilities. Different types of applications require
different hardware profiles to process user requests. Varying hardware
properties across distributed infrastructure stacks also require a distributed
application architecture that is modular enough to adapt to the available
edge/fog/cloud infrastructure horizontally and vertically.

As part of the application mode, the application topology depicts appli-
cation components that can be deployed as separate entities (containers or
VMs), and network link connections between them. A simple example of
such a topology would be a deployment of an application that has a front-
end web server and a database as two components. The web server can be
deployed as a separate component on a separate VM or node, or even on
a different datacentre than the database component, but both of them
should have a bidirectional data flow connection for data exchange.

Most web applications serve different types of user requests, and to do
so, different amounts of resources are needed depending on the requests

  P.-O. ÖSTBERG ET AL.

57

made. For example, a request of streaming video from a content distribution
network (CDN) would differ from a request to upload video to the ser-
vice. The first request can assume a data download; however, the second
request requires data upload, resampling, encoding, and other types of
content analysis and optimisations.

Elasticity is one of the major benefits of virtualised resources. Elasticity
makes it possible to maintain application QoS by dynamically scaling
application components based on workload intensity (provided that the
application architecture caters for it). To take advantage of elastic proper-
ties, application components can be managed by a load balancer that can
spawn extra parallel application components and redirect user requests to
evenly distribute the load.

Another vital characteristic in a distributed system is the geolocation
and content variability within the same type of application. For example, a
database or a CDN can be distributed across the edge infrastructure,
where some instances will contain the same type of data, but some will
not. Depending on data needed to serve a user request, the request needs
to be routed to an application instance that has these data. Such scenario
requires additional intelligence in the workload orchestration. From a
RECAP perspective, it also requires that the application model have a
notion of data content available within the application component.

All the aforementioned characteristics should be captured and reflected
in the constructed application models. Specifically, the models should pro-
vide the means to estimate computation, memory, and storage capacity
requirements of each components, as well as to present and calculate the
mapping of the applications and application components on the underly-
ing infrastructure. Moreover, they should help identify the type of traffic
or content delivered to the users at different locations, and estimate the
service delay for user requests.

3.4.2   Application Modelling Framework

The characteristics of the edge-cloud infrastructure and applications result
in high complexity when it comes to application modelling. In particular,
this modelling always has to be done in an application-specific manner. As
such, it is necessary to have a comprehensive understanding of typical sys-
tems, models, and modelling tools from theoretical and practical perspec-
tive. This section outlines the strategy adopted in the RECAP methodology
to perform application modelling for each system in its scope.

3  APPLICATION OPTIMISATION: WORKLOAD PREDICTION… 

58

Firstly, a literature survey generated a universe of general and common
architectures of distributed applications including client-server architecture,
cloudlet, service-oriented architecture, and micro-services. Secondly, desk
research allowed a comparison of the previously identified architectures
with those of real large-scale distributed systems/applications and related
industrial technology standards used for the realisation of operational
systems. These systems include, for instance, the multi-tier caching system
of Akamai’s CDN, the operational architecture of Nextflix’s CDN, the
architectural framework of ETSI NFV, and Service Function Chaining
(SFC) (Halpern and Pignataro 2015) amongst others.

Thirdly, following the literature survey and desk research, we explored
mathematical models and tools widely adopted in computing science, such
as queuing theory, graph theory, and control theory. These have been
used to model components and the interaction among components and
are used together to model applications. For instance, a model may be a
combination of queuing theory, graph theory, and control theory as
follows:

•	 Queuing theory is used to model the processing logic of a compo-
nent, e.g. a VNF, a vCache, or a function node (database, data aggre-
gator, balancer).

•	 Graph theory is used to model the network topology, service func-
tion chain, communications between components.

•	 Control theory is used to model the control logic of dispatchers,
balancers, or orchestrators.

Fourthly, we decomposed the application into isolated components and
analysed the components in detail in order to understand the nature of
each component as well as how they communicate to each other in the
whole application. In addition to simplifying the modelling task, this
helps to identify how components impact each other and to identify the
bottlenecks within the entire topology. Once all components have been
modelled, these sub-models can be integrated to form a complete applica-
tion model.

In order to keep the modelling effort manageable, it is further neces-
sary to identify in advance the factors or metrics that should be captured
in the models in accordance with the requirements of the application.
That is, an application model always needs to capture business-specific
constraints and goals and cannot be constructed on a technical level alone.

  P.-O. ÖSTBERG ET AL.

59

3.5   Workload Modelling

Besides an application model, an application optimisation engine further
requires predictions of the amount of work the application shall be able to
process overall or per zone. This enables proactive optimisation approaches,
where readjustments do not happen on a best-effort basis upon changing
workload conditions, but rather anticipate future workload levels and scale
the applications accordingly.

As discussed in previous chapters, workload analysis and modelling
focuses on techniques efficiently applied to time series data collected from
both real production systems and emulating systems. Before being anal-
ysed, original time-series data have gone through a pre-processing step
(gap filling, smoothing, resampling, etc.). Next, the data flows through
the two-stage process of workload analysis and workload modelling.

Workload analysis is composed of two main tasks: workload decomposi-
tion (which splits a time-series into the trend, the seasonality, and the
random factors of the workload data) and workload characterisation
(which aims to extract workload features as an input and driver of work-
load models). Such workload characterisation is performed by an
Exploratory Data Analysis (EDA), which is typically a manual step.

With this understanding of key features (metrics) of the workload, it is
possible to derive which aspects should be considered in modelling, and
how to effectively construct and evaluate appropriate workload models.
To perform the modelling task, we adopt different categories of tech-
niques in the RECAP methodology:

•	 Autoregressive integrated moving average (ARIMA) and seasonal
ARIMA (SARIMA) models are chosen based on the analysis of the
autocorrelation functions, partial autocorrelation functions, and
tests of stationarity (for example, Dickey-Fuller tests).

•	 The family of autoregressive conditional heteroskedasticity models
(ARCH, GARCH, NGARCH, etc.) is suited when the assumption is
fulfilled that the variance of the time series is not constant but still a
function of previous variances.

•	 Recursive neural networks and deep neural networks can be used to
find more complex interactions between past and future requests.

•	 Long short-term memory neural networks (LSTM) shall be used
when the aim is to detect if long past requests have a predictive value
for future requests.

3  APPLICATION OPTIMISATION: WORKLOAD PREDICTION… 

60

The models obtained by workload analyses are expected to provide
forecasting capability. That is, based on them, it shall be possible to gener-
ate future workload predictions at different periods of time and different
intervals, as required by the application under analysis.

The predictions can be validated through various metrics so as to identify
the best one for each case, i.e. the one with the smallest errors. Depending
on the application, different models are required for different prediction
purposes (online and offline predictions). More specifically, models used
for offline prediction are expected to provide high accuracy so that the
results can be used for long-term planning.

In contrast, models used for online prediction additionally focus on low
execution time besides the accuracy in order to offer short-term predic-
tions in a timely manner. For the latter, it is necessary to evaluate the
execution time in forecasting of each model and to balance between the
error level and the execution time. Once selected, a model becomes the
core of the online predictor component for that application within RECAP.

3.6   Model-based Application Optimisation

The key challenges of efficiently deploying distributed applications in edge
and fog computing environments involve determining the optimal
locations and allocations of resource capacity. This is complicated by the
inherently varying load conditions of distributed infrastructures. Due to
the complexity and distinct mathematical formulations of the problems for
different applications, they are typically treated separately, often with the
solution of one as input to the other.

3.6.1   Application Autoscaling

In this section, we focus on application load balancing and distribution,
which can be seen as a special case of holistic application autoscaling (i.e.
self-scaling of application capacity allocations) given specific workload
arrival patterns and component placements. To avoid confusion, we use
different terms for different types of load balancing in distributed, multi-
tier applications. We denote (1) load balancing between multiple instances
of one single application component as load balancing, and (2) load bal-
ancing within the entire application to balance the loads distributed to
different application components as load distribution. This is addressed
by load transition models that capture how workloads flow through

  P.-O. ÖSTBERG ET AL.

61

applications in workload models. Principally, RECAP assumes that a
RECAP-enabled application is designed such that it is capable of making
use of more instances (scale out) or more resources (scale up).

The RECAP application models describe applications as networks/
graphs of components with interdependencies and constraints in the form
of network links, quality-of-service requirements, and communication
patterns. Application components are split into front-end and back-end
layers (modelling load balancing within components and management of
component functionality respectively) that can be autoscaled indepen-
dently. Using RECAP application and transition models, application
workload arrival patterns can be used to derive how load propagates
through distributed applications, and how the resulting component work-
loads impact the resources (including networks) where component ser-
vices are deployed. Using prediction algorithms allows to provide improved
performance and proactivity in autoscaling without changing the autoscal-
ing algorithms themselves.

Depending on the application, arrival patterns can be measured from
instrumented applications or infrastructure, or derived from simulation
models build on the user (including mobility) models. The value of such
models lies in the increased understanding of user and system behaviour,
but also in their potential use for prediction of workload fluctuations in
predictive scaling algorithms. Overall, RECAP applies the following types
of autoscaling algorithms:

•	 Local reactive scaling algorithms (similar to the autoscaling algo-
rithms used in Kubernetes) are used to individually scale component
front-ends and back-ends. They apply varied degrees of downscaling
inertia in order to reduce the amount of false positives.

•	 Global reactive scaling algorithms that predictively evaluate the per-
formance of individual component autoscalers, and selectively apply
those that maximise application objective functions, and used to
control back-ends.

•	 Global proactive algorithms that use short time-frame simulation
techniques to evaluate application performance for heuristically
selected subsets for autoscaling actions. This class of algorithms
shows the greatest autoscaling performance but is also significantly
slower and resource demanding. This limits its applicability in large-
scale systems.

3  APPLICATION OPTIMISATION: WORKLOAD PREDICTION… 

62

3.6.2   Migration Techniques and Infrastructure Planning
and Provisioning

In addition to the algorithms described above, which target application
autoscaling in static deployment scenarios i.e. for deployments that do not
change during or from autoscaling, RECAP also provides tools and tech-
niques for evaluating and performing migrations of service components at
run-time. In order to incorporate this functionality in the autoscaling-
oriented perspective of application optimisation, such migrations can be
formulated to be part of the autoscaling problem by scaling the amount of
service instances for a specific component at a specific location in the space
of [0; n] (when there is no mobility of services and n is a maximum
instance count). Alternatively, it can be treated as a separate placement
problem that does not include autoscaling (beyond considering autoscal-
ing limits in the placement process) that is solved independently (either
before or after the autoscaling).

RECAP explores and exploits both approaches to develop a flexible
framework for application migration optimisation. The basic building
blocks of this framework are application autoscaling algorithms, a set of
heuristic functions that evaluate alternative deployment scenarios (under
specified autoscaling settings), and an in-situ simulation framework that
models application communication at message level within the application
models. The simulation framework essentially uses application and (pre-
dicted) workload models to simulate how workloads will be processed
under current application deployment and autoscaling settings. Heuristic
functions are used to identify components and/or resource sites that
underperform or for some other reason are candidates for reconfiguration,
and alternative configuration settings are speculatively evaluated by the
simulator to identify the reconfiguration actions most likely to improve
application performance the most (according to application heuristics
and KPIs).

Currently three types of heuristic functions are used for deployment
cost evaluations:

•	 Local evaluation functions that build linear combinations of QoS or
KPI metrics for individual component services or resources,

•	 Aggregate local evaluation functions that define statistical aggregates
of local evaluation functions for sets of components (i.e. subsets of
application components) or resources (e.g. regions of resource
sites), and

  P.-O. ÖSTBERG ET AL.

63

•	 Global evaluation functions that operate on application and infra-
structure models to aggregate QoS or KPI evaluation functions for
all components of an application or large sets of resources.

Evaluation functions are defined as mathematical constructs and can be
composed to develop utility functions that combine evaluation of both
applications and infrastructure resources. Using the simulation techniques,
recommendations for how to change application deployments (in single-
and multi-tenancy scenarios) and autoscaling constraints can be derived
from nominal size estimations of component placements and infrastruc-
ture capacities, or conversely component nominal sizes can be included in
the decisions on the admission of scaled or migrated service instances from
autoscaling constraints.

3.6.3   Workload Propagation Model

Workload propagation models describe how workload is propagating
through an application (i.e. between application components), and how a
fluctuation of workload at a certain component impacts the other ones.
Such a model can be constructed using workload data collected from all
the network nodes/locations in every system. Unfortunately, due to the
size and complexity of large-scale systems, exhaustively collecting such
data is extremely challenging (Le Duc et al. 2019). Therefore, the mecha-
nisms for workload generation and/or propagation are needed that enable
the production of workload data for all network nodes using data traces
collected only from a subset of nodes.

The five workload diffusion algorithms to address this problem are clas-
sified into non-hierarchical and hierarchical diffusion as follows:

	1.	 Non-hierarchical diffusion—these algorithms perform load
propagation within networks according to a discrete spatial
model of how heat is diffused in materials in physics or chemis-
try. They are applicable for controlling data exchange and the
workload of synchronisation tasks that are carried out by neigh-
bouring network nodes. This also can be extended to cover
some general cases of unstructured peer-to-peer overlays or ad-
hoc mobile networks.

3  APPLICATION OPTIMISATION: WORKLOAD PREDICTION… 

64

	2.	 Hierarchical diffusion—these algorithms rely on a hierarchical
network model which slices the network into different layers. In this
case, the workload propagation is directed through network layers
from end users down to the core network layers or using prede-
termined routing paths destined to the dedicated service nodes.
This diffusion technique is applicable for core broadband net-
works and CDNs.

3.6.4   Approach and Realisation

Non-hierarchical diffusion algorithms include population-based, location-
based, and bandwidth-based algorithms, while hierarchical diffusion
ones include hierarchy-based and network-routing-based algorithms. This
section briefly describes the five algorithms including the assumptions, key
inputs, the main flow, and properties (see Table 3.1). Further details about
the calculations or formulae used in each task/step of the algorithms can
be found in RECAP Deliverable 6.2 which can be downloaded at the
RECAP website. The algorithms were tested with workload data traces
collected as time series at three inner-core nodes of BT’s CDN; the repre-
sentative metric of the workload in this use case is the traffic generated at
caches when serving user requests.

3.7   The RECAP Application
Optimisation Platform

Elasticity is a key function for addressing the problem of reliable resource
provisioning for edge-cloud applications as it ensures the reliability and
robustness of the applications regardless of the non-linear fluctuation of
the workload over time (Östberg et al. 2017; Le Duc et al. 2019). One of
the key techniques adopted in RECAP to address elasticity and remedia-
tion is autoscaling. By flexibly adjusting the amount of resources allocated
for applications and/or the number of application instances or compo-
nents, autoscaling enables applications to adapt to workload fluctuations,
which helps prevent the applications from becoming unresponsive or
terminating.

  P.-O. ÖSTBERG ET AL.

65

T
ab

le
 3

.1
 

 S
um

m
ar

y
of

 d
iff

us
io

n
al

go
ri

th
m

s

D
if

fu
sio

n
al

go
ri

th
m

A
ssu

m
pt

io
ns

K
ey

 in
pu

ts
D

es
cr

ip
ti

on

Po
pu

la
tio

n-

ba
se

d
• �

N
on

-h
ie

ra
rc

hi
ca

l
ne

tw
or

k/
ap

pl
ic

at
io

n
to

po
lo

gi
es

(e

.g
. t

el
ec

om
 n

et
w

or
ks

,
P2

P
ap

pl
ic

at
io

ns
)

• ��
H

om
o-

ge
ne

ou
s

us

er

be
ha

vi
ou

r

U
se

r
di

st
ri

bu
tio

n
in

 t
he

ne

tw
or

k
�• ��

It
er

at
iv

e
re

fin
em

en
t

al
go

ri
th

m
s

(s
im

ila
r

to
 h

ea
t

di
ff

us
io

n
an

d
sp

ri
ng

 r
el

ax
at

io
n

eq
ua

tio
ns

)
�• ��

R
ep

ea
te

dl
y

so
lv

e
st

at
e

eq
ua

tio
ns

 t
o

di
st

ri
bu

te
 w

or
kl

oa
d

to

ne
ig

hb
ou

rs
 u

nt
il

th
e

ov
er

al
l l

oa
d

di
st

ri
bu

tio
n

ap
pr

oa
ch

es

eq
ui

lib
ri

um
• ��

A
lg

or
ith

m
s

hi
gh

ly
 p

ar
al

le
lis

ab
le

L
oc

at
io

n-
ba

se
d

G
eo

gr
ap

hi
ca

l n
od

e
lo

ca
tio

ns
B

an
dw

id
th

-
ba

se
d

B
an

dw
id

th
 c

ap
ac

ity
 o

f
ne

tw
or

k
lin

ks

H
ie

ra
rc

hy
-

ba
se

d
�• ��

H
ie

ra
rc

hi
ca

l n
et

w
or

k/
ap

pl
ic

at
io

n
to

po
lo

gi
es

(e

.g
. b

ro
ad

ba
nd

ne

tw
or

ks
, C

D
N

ap

pl
ic

at
io

n)
• ��

Fu
ll

m
es

h
ne

tw
or

k

of
 t

he
 in

ne
r-

co
re

 n
od

es
• ��

M
ul

tip
le

 s
ho

rt
es

t
pa

th

ro
ut

in
g

• ��
H

om
o-

ge
ne

ou
s

us
er

be

ha
vi

ou
r

�• 
N

et
w

or
k

hi
er

ar
ch

y
• �

B
an

dw
id

th
 c

ap
ac

ity
 o

f
ne

tw
or

k
lin

ks
• �

U
se

r
di

st
ri

bu
tio

n
in

 t
he

ne

tw
or

k

• �
H

ie
ra

rc
hy

-b
as

ed
 u

se
r

ag
gr

eg
at

io
n

to
 id

en
tif

y
th

e
ag

gr
eg

at
ed

 n
um

be
r

of
 u

se
rs

 a
t

ev
er

y
no

de
/

lo
ca

tio
n

ba
se

d
on

 b
an

dw
id

th
 c

ap
ac

ity
 o

f n
ei

gh
bo

ur
in

g
lin

ks
• �

B
ac

kw
ar

d
w

or
kl

oa
d

ex
tr

ap
ol

at
io

n
to

 c
ol

le
ct

 t
he

 w
or

kl
oa

d
m

ea
su

re
m

en
ts

 fr
om

 e
ve

ry
 n

od
e

to
 t

he
 in

ne
r-

co
de

 n
od

es
• �

In
ne

r-
co

re
 w

or
kl

oa
d

ex
tr

ap
ol

at
io

n
to

 e
xt

ra
po

la
te

w

or
kl

oa
d

at
 e

ve
ry

 in
ne

r-
co

re
 n

od
e

(i
f n

ee
de

d)
• �

W
or

kl
oa

d
pr

op
ag

at
io

n
to

 d
is

tr
ib

ut
e

th
e

w
or

kl
oa

d
fr

om

in
ne

r-
co

de
 n

od
es

 t
o

ev
er

y
no

de
 in

 t
he

 n
et

w
or

k
N

et
w

or
k-

ro
ut

in
g-

ba
se

d
�• ��

N
et

w
or

k
hi

er
ar

ch
y

• �
B

an
dw

id
th

 c
ap

ac
ity

 o
f

ne
tw

or
k

lin
ks

• ��
U

se
r

di
st

ri
bu

tio
n

in
 t

he

ne
tw

or
k

 
• �

A
 s

et
 o

f s
er

vi
ce

(i

nn
er

-c
or

e)
 n

od
es

�• ��
R

ou
tin

g
pa

th
 d

is
co

ve
ry

 t
o

id
en

tif
y

(s
ho

rt
es

t)
 r

ou
tin

g
pa

th
s

fr
om

 c
lie

nt
-c

lu
st

er
s

to
 t

he
 s

er
vi

ce
 n

od
es

• ��
N

et
w

or
k-

ro
ut

in
g-

ba
se

d
us

er
 a

gg
re

ga
tio

n
(u

si
ng

 r
ou

tin
g

pa
th

s)
• ��

B
ac

kw
ar

d
w

or
kl

oa
d

ex
tr

ap
ol

at
io

n
• ��

W
or

kl
oa

d
pr

op
ag

at
io

n

3  APPLICATION OPTIMISATION: WORKLOAD PREDICTION… 

66

The RECAP system model assumes that applications are dynamically
distributed, and their behaviours are considerably difficult to predict and
model. Moreover, each application component may be subject to different
workloads, and an understanding of workload characteristics is required in
order to autoscale efficiently. Therefore, workload analysis, modelling,
and prediction based on time series analysis become the vital factor for the
efficiency of our solutions, and especially so for the proactive schemes.

For application optimisation, RECAP has created a platform for the
integration of application optimisers, workload modellers, and workload
predictors, as shown in Fig. 3.2. The figure also shows how the optimisers
(autoscalers) utilise the predictors when needed. Predictors, in turn, are
fed by workload modellers.

By adopting different techniques, for example regression or machine
learning, a workload modeller can construct multiple workload models.
For flexibility in system integration, the modellers can be implemented
using various technologies. The workload models are then wrapped and
exported as a microservice using a REST API Gateway. On top of model
services, a set of adapters are built to provide a unification layer. While
workload models are constructed using historical workload data, they can
be updated continuously at run-time by the workload modeller. Predictors
in the platform make use of the adapters in order to access the available
models and to make their predictions.

Workload
Modeller-1

Time Series Data

Workload
Modeller-2

Workload
Modeller-N

REST API
Gateway

Model-1
Service

Model-2
Service

Model-N
Service

Model-1
Adapter

Model-2
Adapter

Model-N
Adapter

<<interface>>

Adapter
<<interface>>

Predictor

Model-1
Predictor

Model-2
Predictor

Model-N
Predictor… …

…

…

UC-A Application
Optimiser

UC-B Application
Optimiser

UC-C Application
Optimiser

UC-D Application
Optimiser

General Client

Fig. 3.2  A platform for the integration of predictors and modellers

  P.-O. ÖSTBERG ET AL.

67

On top of this platform, robust and efficient approaches for autoscal-
ing are constructed based on the results of workload modelling and
prediction. Optimisers encapsulating optimisation algorithms and
application-specific constraints make use of prediction for proactive
optimisation. Note that an optimiser can call multiple predictors that
access different models constructed using different techniques. This
also implies that predictors are developed for every constructed model.
Such implementation enables the capability of extension when a new
optimiser (of a new application) or new model (using new techniques)
is added to the system.

3.8   Conclusion

This chapter introduced the RECAP Application Optimisation approach
and framework and outlined its the constituent building blocks. The inter-
action of the RECAP models and algorithms developed was further dis-
cussed. The RECAP Application Optimisation Framework addresses
application placement and autoscaling, and provides models and tools for
prediction, optimisation, and evaluation of the performance of distributed
cloud applications deployed in heterogeneous resource environments.

References

Le Duc, Thang, and Per-Olov Östberg. 2018. Application, Workload, and
Infrastructure Models for Virtualized Content Delivery Networks Deployed in
Edge Computing Environments. Proceedings of the IEEE International
Conference on Computer Communication and Networks (ICCCN), 1–7.

Le Duc, Thang, Rafael García Leiva, Paolo Casari, and Per-Olov Östberg. 2019.
Machine Learning Methods for Reliable Resource Provisioning in Edge-Cloud
Computing: A Survey. ACM Computing Surveys (ACM) 52 (5): 39. https://
doi.org/10.1145/3341145.

Halpern, J., and C. Pignataro. 2015. Service Function Chaining (SFC)
Architecture. RFC 7665.

Krzywda, Jakub, Ahmed Ali-Eldin, Trevor E. Carlson, Per-Olov Östberg, and Erik
Elmroth. 2018. Power-Performance Tradeoffs in Data Center Servers: DVFS,
CPU Pinning, Horizontal, and Vertical Scaling. Future Generation Computer
Systems 81: 114–128.

Östberg, Per-Olov, James Byrne, Paolo Casari, Philip Eardley, Antonio Fernández
Anta, Johan Forsman, et al. 2017. Reliable Capacity Provisioning for Distributed
Cloud/Edge/Fog Computing Applications. European Conference on Networks
and Communications (EuCNC).

3  APPLICATION OPTIMISATION: WORKLOAD PREDICTION… 

https://doi.org/10.1145/3341145
https://doi.org/10.1145/3341145

68

Open Access  This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

  P.-O. ÖSTBERG ET AL.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 3: Application Optimisation: Workload Prediction and Autonomous Autoscaling of Distributed Cloud Applications
	3.1 Introduction
	3.2 Problem Formulation
	3.3 Optimisation Framework
	3.4 Application Modelling
	3.4.1 Application Characteristics and Modelling Requirements
	3.4.2 Application Modelling Framework

	3.5 Workload Modelling
	3.6 Model-based Application Optimisation
	3.6.1 Application Autoscaling
	3.6.2 Migration Techniques and Infrastructure Planning and Provisioning
	3.6.3 Workload Propagation Model
	3.6.4 Approach and Realisation

	3.7 The RECAP Application Optimisation Platform
	3.8 Conclusion
	References

